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The business world provides plenty of data in the form of time series.   
 
The simplest form for a time series is  X1, X2, X3, …  in which 

X1 is the value collected at time point 1 
X2 is the value collected at time point 2 
X3 is the value collected at time point 3 
and so on. 

The time points are usually evenly spaced.  For example, the data could be weekly 
financial reports or hourly temperature readings.   
 
The data could be daily values on an equity index.  These would be unevenly spaced 
because of weekends and holidays.  For data of this type, the analyst would watch for 
weekend effects. 
 
Time series are described through statistical models that specify the random and 
nonrandom mechanisms that create the data.  Many different statistical models have been 
proposed for time series. You should be aware that the data will not come to you with a 
label that indicates the model.  The data will, at best, provide clues as to what type of 
model might have created them and thus might provide a good description.  A good deal 
of statistical work has been invested on the problem of model identification. 
 
There are two main types of models for statistical time series. 

Time-domain models describe Xt , the value obtained at time point t, as related to 
the values obtained at other time points.  Most business time series are described 
in time domain models. 
 
Frequency-domain models conceptualize the observations as points on a sum of 

cosine waves.  The model  Xt = ( )
5

1

cosj j j t
j

R t
=

μ + ω + φ + ε∑   describes a sum 

of five cosine waves, and the statistical interest is nearly always on the wave 
frequencies ω1 through ω5.  These models are especially useful in engineering, 
where the frequencies are interpreted as sounds or as vibrations. 

 
Every time-domain model has an equivalent frequency-domain version, and vice versa.  
While most business series are analyzed through time-domain methods, there can 
occasionally be great benefits to considering their frequency-domain forms. 
 
This document will consider only time-domain models.  It will give definitions and 
examples for the most commonly used time-domain models. 
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1. White noise 
The data series X1, X2, X3, … consists of independent values, sampled from a 
population with mean μ and standard deviation σ.  If the values follow a normal 
distribution, the series would be described as normal white noise.  If the values of μ 
and σ are unknown, then the usual statistical interest is in estimating them. 
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Each value in this series was generated independently of all the others, each with a 
mean of 50 and a standard deviation of 10. 
 
 

TECHNICAL NOTE:  The white noise series has the stationarity property, 
meaning that the distribution of Xt (considered in isolation) is exactly the same for 
every t.  An immediate consequence is that the mean of Xt and the standard 
deviation of Xt does not change over time. 
 
The full definition of stationarity is that, for any positive integer k, the combined 
distribution of (Xt , Xt+1 , Xt+2 , ..., Xt+k) is exactly the same for every t. 

 
 
2. Random walk 
The data series Y1, Y2, Y3, ... consists of accumulated sums of white noise.  If X1, X2, X3, ... 
is a white noise series, then  
 

Y1    = X1 
Y2 = Y1 + X2   = X1 + X2 
Y3 = Y2 + X3   = X1 + X2 + X3 
Y4 = Y3 + X4   = X1 + X2 + X3 + X4  
and so on 

 
This model is sometimes used (with controversy) for equity prices.   
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The recommended analysis for a random walk begins with differencing.  Specifically, 
create 
 

∇Y2 = Y2 - Y1 
 
∇Y3 = Y3 - Y2  
 
∇Y4 = Y4 - Y3 
 
and so on 

 
 

The series ∇Y2 , ∇Y3 , ∇ Y4 , ∇Y5 , ...  can then be treated as white noise.  Observe these 
four things: 
 

* The series ∇Y2 , ∇Y3 , ∇ Y4 , ∇Y5 , ...  is exactly the same as series 
X2 , X3 , X4 , X5 , ...   That is, the differencing operation just recovers the 
white noise. 

* The series ∇Y2 , ∇Y3 , ∇ Y4 , ∇Y5 , ...  has one observation fewer than the 
original data series.  This is not a material problem, but it’s an accounting 
nuance that one should be aware of. 

* Sometime there is a nonrandom starting value Y0 , so that the differencing 
can start with ∇Y1 = X1 . 

* The random walk is not a stationary series, as the standard deviation 
increases with time. 
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The changes (here meaning X1, X2, X3, X4, ...) were generated independently with mean 0 
and standard deviation 10.  The mean (here 0) corresponds to a notion that most users 
would describe as drift. This series should have the property that it “goes nowhere,” but 
this picture shows how deceptive this notion is.  There are several critical points: 

* Your impression depends on where you stop.  This started at value 50, 
but ended up around 60 at time index 100, so you might call it a success 
(assuming that high values are good).  If you had stopped your 
surveillance of these data at time index 70, you would have declared this 
a serious failure. 

* Random walks can create long “waves,” and you can be greatly misled 
by these.  Notice that this series spent nearly all of its time below the 
starting value of 50, even though the drift was zero. 

* Random walks can drop below zero, as this one did.  This can be a 
concern for modeling equity prices, so some people prefer the 
log-normal random walk presented later. 

 
Here is another result, obtained from exactly the same model: 
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3. Lognormal random walk 
In the notation of the previous example, suppose that there is a series of positive values 
P0 , P1 , P2 , P3 , ...  We assume that P0 is nonrandom.  Now form the association 
 

 Y1 = 0

1

log P
P

 

Y2 = 2

1

log P
P

 

Y3 = 3

2

log P
P

 

and so on 
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This model is often used for equity prices, with P0 = known price on day 0, P1 = random 
price on day 1, P2 = random price on day 2, and so on.  The “lognormal random walk” 
name applies to the price series P0 , P1 , P2 , P3 , ...    Here Pn denotes the price on day n, 
and it can be related to the white noise X1, X2, X3, ... through the equation 
 

Pn = 1 2 3 ...
0

nX X X XP e + + + +  
 

You may also see the related forms 
1

t

t

P
P−

 =  tXe , Xt = 
1

log t

t

P
P−

,  and  
0

log nP
P

 = 

X1 + X2 +  … + Xn .   
 
The lognormal random walk is not a stationary series. 
 
A lognormal random walk can never turn negative.  The behavior of this model depends 
dramatically on the mean and standard deviation of the log-ratio random variables 
X1, X2, X3, ... 
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You can think of the “Value” here as being an equity price.  The series above would be 
regarded as a success, in that the price advanced from 50 to about 58.   
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This second illustration of the lognormal random walk was created with exactly the same 
parameters, but it would have to be called a failure.   
 
The standard deviation is clearly related to the volatility.  The next picture shows the 
same model, with the standard deviation of 0.02 replaced by standard deviation 0.10. 
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The vertical scale here is much wider than in the previous picture! 
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If the drift, the mean, is (very) different from zero, the results can be quite dramatic.  
Here is a case with positive drift: 
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Here is an illustration with negative drift: 
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4. Autoregressive, order 1  (AR1) 
Examples 1, 2, and 3 are white noise or convertible to white noise.  The model discussed 
here is an intellectual leap forward.  The model starts with a nonrandom value X0 .  
Thereafter, 
 

Xt  =  ρ Xt-1 + εt       [4a] 
 
This says that the value obtained at time t is a multiple of the value at time t - 1, plus an 
added random noise term.  The set of noise terms ε1 , ε2 , ε3 , ...  is assumed to be white 
noise, with a mean of zero.   In addition, it is assumed that εt is also independent of 
X0 , X1 , ..., Xt-1 .  This model is only useful in the case of stationarity.  For reasons of 
stationarity, as will be made clear below, it is necessary to assume that -1 < ρ < 1.  Here ρ 
is called the autoregressive parameter. 
 
You will often see the AR1 model given with a mean term: 
 

Xt - μ  =  ρ (Xt-1 - μ)  +  εt      [4b] 
 
In this form, E Xt = expected values of Xt = μ  at every time point. 
 
Since [4b] can be written as Xt = μ(1 - ρ)  +  ρ Xt-1 + εt , you may also see this model in 
form 
 

Xt  =  ν +  ρ Xt-1 + εt       [4c] 
 

 
TECHNICAL NOTE:  With ρ = 1, this is a random walk.  In any of [4a] 
or [4b] or [4c] with ρ = 1, the model is  Xt =  Xt-1 +  εt , which was 
discussed under point 2.  Thus, 
 

X1 = X0 + ε1 
 
X2 = X1 + ε2    =  X0 + ε1 + ε2 
 
X3 = X2 + ε3    =  X0 + ε1 + ε2 + ε3 
 
X4 = X3 + ε4    =  X0 + ε1 + ε2 + ε3 + ε4  
 
and so on 
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TECHNICAL NOTE:  Why can we not have ρ > 1?  In terms of just 
modeling, we do have the freedom to create any model we desire, but 
ρ > 1 creates some consequences that we might wish to avoid. 

 
Use form [4c] and investigate the variance of Xt .  We will assume that 
σ2 = Var(εt) for every time point t. 

 
Var( Xt )   =  Var( ν +  ρ Xt-1 + εt ) 
 

=  Var( ρ Xt-1 + εt )  since ν is not random 
 
=  Var( ρ Xt-1 )  + Var ( εt ) since εt is independent 

of Xt-1 
 
=  ρ2 Var( Xt-1 )  +  σ2 

 
If we have ρ > 1 or ρ < -1, then certainly ρ2 > 1.  This would have 
Var( Xt ) growing to infinity at an exponential rate.  This is almost 
certainly not a property that we want a model to have. 

 
With -1 < ρ < 1, we can have Var( Xt ) the same for every value of t.  Let’s say 
Var( Xt ) = τ2 .  Then τ2  =  ρ2 τ2 + σ2 , and 

 

τ2 =  
2

21
σ
− ρ

        [4d] 

 
The appeal of the AR1 model is easily grasped.  It says that our statistical performance on 
Thursday depends on what we did Wednesday (but not directly on what we did Tuesday, 
Monday, Sunday, Saturday, ...), plus a little random noise.  Models of this form are called 
Markovian, meaning that they depend on all of past history only through the most recent 
value. 
 
In the graph of an AR1 time series, μ and σ are just scaling parameters, while the 
parameter ρ dictates the appearance.  A serious user will want to estimate μ and σ, but ρ 
is the most interesting parameter. 
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Here is a picture with ρ = 0.2: 
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The AR1 time series will always fluctuate around the same value.  In the picture above, 
that value is 50.  Each data value is roughly similar to the previous value, but there is 
plenty of variability. 
 
Here is a picture with ρ = 0.90: 
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Here each data value is very similar to the previous value.  Graphs of AR1 series with ρ 
near 1.0 tend to produce long waves.  When ρ is near 1.0, the appearance will resemble 
that of a random walk.  Note that up to time index 50, nearly all of the data values exceed 
the starting value of 50.  This property makes it very difficult to estimate the mean μ. 
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Just for the sake of amusement, here is an AR1 series with ρ = -0.90: 
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When ρ is close to -1.0, the data will oscillate, and the picture above is very typical. 
 
For ρ negative, but just below zero, the picture would not be so extreme.   
 
There are real-data AR1 series with negative ρ, and these might arise in games for which 
the time index refers to turns of play.  The sequence of distances achieved by a golfer 
practicing at a driving range could be such a situation.  We’d let X1 = distance on first 
ball, X2 = distance on second ball, and so on. 
 

TECHNICAL NOTE:  If the time index is clock time, you should be 
suspicious of any time series that is modeled as AR1 with a negative ρ.  
Suppose that X1, X2, X3, … represents a sequence of equity prices at the 
end of the trading day.  An AR1 model with negative ρ would seem to say 
that the price tends to rebound from its performance on the previous day.  
This would, however, create a situation in which X1, X3, X5, X7, ... is AR1 
with positive ρ and X1, X4, X7, X10, X13, ... is again AR1 with negative ρ.  
The possibility that ρ is negative thus says that the apparent behavior of 
the series can be materially altered just by changing the time spacing of 
the observations.   
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If you believe that a time series is reasonably described as AR1, you can estimate ρ by a 
simple linear regression.  Just regress { Xt } on { Xt-1 }.   
 
Here are explicit instructions for doing this in Minitab 14.  Suppose that the time series 
appears as column C1 and that it has length n.  Use Stat ⇒ Time Series ⇒ Lag and then 
set up the panel as follows: 
 

 
 
The first entry of the lagged column, C2 in this example, will have the missing data code 
* in its first position.  Now ask for the simple linear regression of C1 on C2.  The slope 
coefficient in this regression is the estimate of ρ. 
 

TECHNICAL NOTE:  The X values in an AR1 series are statistically dependent.  
It can be shown that Corr(Xt+u , Xt )  =  u−ρ .  The absolute value merely allows 
the use of negative u’s. 

 
TECHNICAL NOTE:  The AR1 series writes each Xt in terms of the previous Xt-1 
and an independent noise term.  The series can also be represented as a linear 
combination of all past noise terms.  Re-examine [4b]: 

 
Xt - μ  =  ρ (Xt-1 - μ)  +  εt 

 
Now rewrite this stepping down the time index from t back to t – 1: 
 

Xt-1 - μ  =  ρ (Xt-2 - μ)  +  εt-1 
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Substitute the second equation into the first to produce this: 
 

Xt - μ   =  ρ { ρ (Xt-2 - μ)  +  εt-1  } +  εt 
 

=  εt  +  ρ εt-1   +  ρ2 (Xt-2 - μ) 
 

Express now Xt-2 - μ in terms of Xt-3 - μ and substitute into the equation just 
above.  This will produce 
 

Xt - μ   =  ρ { ρ (Xt-2 - μ)  +  εt-1  } +  εt 
 

=  εt  +  ρ εt-1   +  ρ2 εt-2  +  ρ3 ( Xt-3 - μ) 
 
We can extend this argument indefinitely far into the past.  This shows that Xt is 
combination of εt and all the previous ε’s.  If you create the mathematical fiction 

that the series extends back to time  -∞, you can write Xt - μ  =  
0

j
t j

j

∞

−
=

ρ ε∑ .   In 

this form Xt is an infinite combination of past ε’s. 
 
 

TECHNICAL NOTE:  Autoregressive series can be extended to higher orders.  
The AR2 model, in form similar to [4b], is  
 

Xt - μ  =  ρ1 (Xt-1 - μ)  +  ρ2 (Xt-2 - μ)  +  εt   
 

The general ARp model is  
 

Xt - μ  =  ρ1 (Xt-1 - μ)  +  ρ2 (Xt-2 - μ)  +  ρ3 (Xt-3 - μ)  +  ...  
 

+  ρp (Xt-p - μ)  +  εt   
 

In this form Xt can be written as an infinite combination of all past ε’s.  The 
structure of the coefficients is much more complicated for the ARp model than for 
the AR1 model. 
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5. Moving average (MA) 
Suppose that ε0, ε1, ε2, ε3, ...  is a white noise series.  (The mean does not necessarily have 
to be zero.)  Then the series  
 

X1 = a0 ε1   -  a1 ε0 
 

X2 = a0 ε2   -  a1 ε1 
 

X3 = a0 ε3   -  a1 ε2 
 
X4 = a0 ε4   -  a1 ε3 
 
and so on 

 
is called a moving average of extent 1.  We identify this as MA1.  In what follows next, 
we’ll assume a0 = 1.  (If we don’t fix a0 or a1 then we will not be able to disentangle 
a0, a1, and σ = SD(εt). )  Later we will restore a0 . 

 
Certainly X1 and X2 are statistically dependent, since both depend on ε1 .  However X1 and 
X3 are independent;  note that X1 depends on ε0 and ε1 , while X3 depends on ε2 and ε3 . 
 

TECHNICAL NOTE:  The MA1 series can be written in the form of an infinite 
autoregression.   Start with  
 

Xt = εt – a1 εt-1   
 

Use the relationship Xt-1 = εt-1 – a1 εt-2 to recover  
 

εt-1 = Xt-1 + a1 εt-2  
 

Substitute this into the previous to obtain 
 

Xt = εt – a1 {  Xt-1 + a1 εt-2 } =  εt  – a1  Xt-1    -  2
1 2ta −ε   

 
Then use Xt-2 = εt-2 – a1 εt-3 to get 
 

εt-2 = Xt-2 + a1 εt-3 
 
Substitue for εt-2 , giving  

 
Xt   =  εt  – a1  Xt-1    -  { }2

1 2 1 3t ta X a− −+ ε    
 

=   2 3
1 1 1 2 1 3t t t ta X a X a− − −ε − − − ε  
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If we create the fiction that the series times index goes all the way back to  -∞, we 

can write  Xt  =  1
1

j
t t j

j

a X
∞

−
=

ε − ∑ .   This creates the MA1 series as an infinite 

autoregression. 
 
 
TECHNICAL NOTE:  The MA2 series is Xt = εt – a1 εt-1  - a2 εt-2 .  The general 
form MAq is Xt = εt – a1 εt-1  - a2 εt-2  - a2 εt-3  -  … - aq εt – q .  This can also be 
written as an infinite autoregression, but the coefficients are more complicated.  

 
The analyst who works with time series will nearly always start with nothing but the data.  
The analyst will have to make a decision as to what kind of time series it is (white noise?  
autoregressive?  moving average?  random walk?).  He or she will also have to decide the 
order (ARp for what p?  MAq for what q?)  In addition, the various coefficients will have 
to be estimated.   
 
Moving average series, on the other hand, are sometimes produced intentionally.  Many 
government-produced data series are given as moving averages.  This is done from 
observed ε1 , ε2 , … (not even necessarily white noise) and, using specified a’s, produces 
the X ’s for public consumption.  For example, data that are acquired as monthly ε’s can 
be put through a twelve-month moving average to make resulting X ’s that have 
smoothed out monthly effects. 
 
In summary, the discussion on moving average series is done on two levels: 
 

(1) The analyst gets the X ’s as an observed series.  He or she never gets to see 
the ε’s and may not even succeed in figuring out that the data are MAq (or 
anything else).  After claiming that the series is MAq, the analyst still 
needs to estimate a1 through aq. 

(2) The X series is presented as a specified moving average.  The extent q will 
be identified, the coefficients a1 through aq will be available, and the 
original series of ε’s (not necessarily white noise) will also be available.  
(The analyst might need to make a special request to get these.)  

 
 
TECHNICAL NOTE:  In a twelve-month moving average, we usually use equal 
weights, as in Xt = 1 1 1

1 1112 12 12...t t t− −ε + ε + + ε .   In this form, a0 = 1
12  = a1 = 

… = a11 .  However, there is no requirement to do so. 
 
The following pictures, produced by Minitab, show that a twelve-month moving average 
greatly damps down erratic behavior.  It’s much easier to grasp the behavior of the 
squares than of the dots. 
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This picture was produced with all weights equal to 1

12 .  The first 12 values of the raw 
series are averaged together to produce X12 .  That is, 
 

X12  =  1
12 ε1 + 1

12 ε2 + … + 1
12  ε12 

 
At times we like to align the X indices at the centers of the values that were averaged.  
This is a mere accounting nuance.  Here is (almost) the same data with that feature. 
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For this picture, first square for the moving average is produced at time point 7.  The 
“almost” in the sentence above the graph refers to a computing convention when the 
moving average is to be taken over an even number of time points.  Here this means 

 

1
712

1 1 1 1 1 1
7 1 2 3 4 12 1324 12 12 12 12 24

Weight  used on 11 values centered at 

...X
ε

= ε + ε + ε + ε + ε + ε  
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Consider this picture: 
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This plot shows an MA2 series with a1 = -0.4 and a2 = +0.2.  Identifying time series types 
from their graphs is not easy.  
 
 
 
6. Hybrid models 
It is possible to form models that combine the features of autoregressive and moving 
average series.  Consider 
 

( )
0

p

h t h
h

X −
=

ρ − μ∑   =  
0

q

j t j
j

a −
=

ε∑  

 
The left side (usually with ρ0 = 1) is part of an autoregression of order p, and the right 
side (usually with a0 = 1) is part of a moving average of order q.  This particular model is 
called ARMA (p, q), meaning autoregressive moving average of orders p and q. 
 
The analyst with a series of unknown type will often try to identify it as an ARMA (p, q).  
The challenge includes the identification of all the unknown coefficients, the ρ’s and 
the a’s.   
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Time series in regression present some challenging problems.  Let’s suppose that we have 
the simple linear regression model Yt = β0 + β1 xt + εt  for t = 1, 2, ..., n.   
 

We’ve used t as the subscript instead of the more conventional i.  This was done 
to suggest that the data were collected in time order with (x1, Y1) first, then 
(x2, Y2), then (x3, Y3), and so on.   
 
We’ve used lower case x to suggest nonrandom values, along with upper case Y to 
suggest random values.  This is a non-binding suggestion, and you will find other 
conventions regarding upper case and lower case symbols. 
 
The spreadsheet holding the data will have a column for x, a column for Y, and 
almost certainly also a column that identifies the time.  The values in this column 
could just be the sequence 1, 2, ..., n or they could be Jan 1981, Feb 1981, 
Mar 1981, Apr 1981, ..., Nov 2004, Dec 2004.   
 
If the time column has real dates, it may be helpful to create a column with 
consecutive integers.  This is used in Solution 4 below.  The correspondence 
between the dates and numbers should be noted;  in the example just above, we’d 
note  1 ⇔ Jan 1981, 2 ⇔ Feb 1981, and so on. 
 
The time series problems can occur in either simple regression (one predictor) or 
in multiple regression (two or more predictors).  However, the statistical issues 
are exactly the same, and we will use a simple regression to illustrate the ideas. 
 

In doing the regression work, we think of the values x1, x2, … , xn as non-random, even 
though they are really a time series.  The real problem with the time series regression is 
that the noise terms ε1, ε2, ..., εn will be a time series, instead of being statistically 
independent.  The most plausible time series model for these noise terms is AR1, 
autoregressive of order 1. 
 
The data shown on the next page are the CO2 emissions for Australia for the years 1950 
to 1997.  These data clearly constitute a time series.  Suppose that we do the regression of 
CO2 emissions on Solid Fuels.  The regression looks routine: 
 

The regression equation is 
CO2Emissions = - 4252 + 1.94 SolidFuels 
 
Predictor      Coef  SE Coef      T      P 
Constant      -4252     1454  -2.92  0.005 
SolidFuels  1.94260  0.05240  37.08  0.000 
 
S = 3868.89   R-Sq = 96.8%   R-Sq(adj) = 96.7% 
 
Analysis of Variance 
Source          DF           SS           MS        F      P 
Regression       1  20574813518  20574813518  1374.56  0.000 
Residual Error  46    688542533     14968316 
Total           47  21263356051 

(Discussion continues on the page following the data.) 
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YEAR CO2 
Emissions 

Solid 
Fuels 

 YEAR CO2 
Emissions 

Solid 
Fuels 

1950 14941 12028  1974 44170 23254 
1951 16112 12581  1975 45199 23729 
1952 16432 12835  1976 47009 24255 
1953 16223 13163  1977 50697 26250 
1954 18517 13956  1978 51490 25665 
1955 19291 13987  1979 52433 26468 
1956 19934 13986  1980 55348 28066 
1957 20340 14090  1981 58365 28886 
1958 21184 14371  1982 59536 29676 
1959 22849 15472  1983 56734 29173 
1960 24052 16083  1984 59398 30221 
1961 24703 16368  1985 60863 32572 
1962 25883 16781  1986 60909 32171 
1963 27551 17393  1987 64656 35130 
1964 29719 18323  1988 65799 35881 
1965 32988 19394  1989 69898 38765 
1966 32814 19487  1990 72601 39791 
1967 35251 20580  1991 69886 40344 
1968 36712 20902  1992 74412 42561 
1969 38793 21282  1993 76422 41465 
1970 38888 20277  1994 78886 43934 
1971 40011 20268  1995 79989 45281 
1972 41238 21216  1996 85936 48973 
1973 43814 21756  1997 86336 50875 

 
The CO2Emissions data is the country’s total emissions, and the SolidFules data is the 
emissions component from burning solid fuel.   Both variables are in units of thousands 
of metric tons. 
 
The next page shows the base-e logarithms of these values. 
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YEAR n(CO2) n(Solid)  YEAR n(CO2) n(Solid) 
1950 9.6119 9.3950  1974 10.6958 10.0542 
1951 9.6873 9.4399  1975 10.7188 10.0745 
1952 9.7070 9.4599  1976 10.7581 10.0964 
1953 9.6942 9.4852  1977 10.8336 10.1754 
1954 9.8264 9.5437  1978 10.8491 10.1529 
1955 9.8674 9.5459  1979 10.8673 10.1837 
1956 9.9002 9.5458  1980 10.9214 10.2423 
1957 9.9203 9.5532  1981 10.9745 10.2711 
1958 9.9610 9.5730  1982 10.9943 10.2981 
1959 10.0367 9.6468  1983 10.9461 10.2810 
1960 10.0880 9.6855  1984 10.9920 10.3163 
1961 10.1147 9.7031  1985 11.0164 10.3912 
1962 10.1613 9.7280  1986 11.0171 10.3788 
1963 10.2238 9.7638  1987 11.0768 10.4668 
1964 10.2995 9.8159  1988 11.0944 10.4880 
1965 10.4039 9.8727  1989 11.1548 10.5653 
1966 10.3986 9.8775  1990 11.1927 10.5914 
1967 10.4702 9.9321  1991 11.1546 10.6052 
1968 10.5109 9.9476  1992 11.2174 10.6587 
1969 10.5660 9.9656  1993 11.2440 10.6326 
1970 10.5684 9.9172  1994 11.2758 10.6904 
1971 10.5969 9.9168  1995 11.2896 10.7206 
1972 10.6271 9.9625  1996 11.3614 10.7990 
1973 10.6877 9.9876  1997 11.3660 10.8371 

 
These data will be discussed in logarithm terms.  The original values showed variability 
proportional to size;  the values for CO2 and Solid moved around by hundreds in the early 
years and by thousands in the later years.  This is a firm indication of the need for 
logarithms. 
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The regression of nCO2 on nSolid seems to have problems with the residuals.  Here is 
the residual versus fitted plot: 
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It’s tempting to just say that this is a problem of curvature.  Curvature could be cured by 
using also ( nSolid)2 as a predictor.  However there are other clues.  Suppose that we ask 
for the residuals in time sequence.  This is available in Minitab through Stat ⇒ 
Regression ⇒ Regression ⇒ Graphs ⇒ Residuals versus order.  The result is this: 
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  MULTIPLE REGRESSION DATA COLLECTED AS TIME SERIES   

 24

Since the data file has a column for Year, you could also do this as Stat ⇒ Regression 
⇒ Regression ⇒ Graphs ⇒ Residuals versus the variables, naming Year in the 
selection box.  This would produce 
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The information is identical, but the “versus order” option connects the dots.  The “versus 
the variables” option has better labels on the horizontal axis.   
 
In any case, we see that et = residual at time t very closely resembles et-1 = residual at 
time t-1.  This of course violates our regression assumptions.  It’s not a simple case of 
curvature!  In the regression context, this is almost certainly a case of autocorrelated 
errors. 
 
Minitab provides a routine test for this problem, the Durbin-Watson statistic.  This 
statistic should always be requested with time series data.  This is available through Stat 
⇒ Regression ⇒ Regression ⇒ Options ⇒ Durbin-Watson statistic.  For these data, 
you get the result is 
 

Durbin-Watson statistic = 0.0947725 

 
The target value for the statistic is 2.  That is, a value near 2 suggests the absence of an 
autocorrelation problem.  Lower values indicate serious autocorrelation.  Minitab does 
not provide a p-value for this statistic, so that you will need to consult a statistical table.  
A plausible approximate cutoff for concern is 1.2, meaning that you should worry about 
autocorrelation when the Durbin-Watson statistic is below 1.2.  Certainly the value 
obtained here, 0.0947725, suggests that the autocorrelation problem is very serious.   
 

Tables of DW, the Durbin-Watson statistic, will provide two cutoffs, clower and 
cupper .  If DW > cupper , then there is no problem related to autocorrelation.  If 
DW < clower , then there is significant autocorrelation.  The intermediate story 
clower ≤ DW ≤ clower is inconclusive.   
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It is possible to get values of DW noticeably larger than 2.  The theoretic upper 
limit is 4, but you will probably never see a value of DW as large as 3.  This 
would suggest an AR1 process for the noise terms with negative autocorrelation, 
and this is logically implausible.    

 
Regression data with a low Durbin-Watson statistic requires a repair.  There are several 
possible solutions.   
 
SOLUTION 1:  Difference the data.  Just let 
 

*
1

*
1

t t t

t t t

Y Y Y

x x x
−

−

⎧ = −⎪
⎨

= −⎪⎩
 

 
Some people would write this as 
 

*

*
t t

t t

Y Y

x x

⎧ = ∇⎪
⎨

= ∇⎪⎩
 

 
This use the “del” symbol ∇ to denote differences. 
 
In the multiple regression context, this differencing would be done to the dependent 
variable and to all the independent variables.  In Minitab, this operation can be done as 
Stat ⇒ Time Series ⇒ Differences.  You might fill in the information panel as follows: 
 

 
 
This should be done for each of the variables in the regression.  The first data point, year 
1950 in this example, will be noted as missing.   
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The regression should now be done as Y* on X*, meaning Diff nCO2 on Diff nSolid.  In 
this regression, you must still check the plot of the residuals in time order, and you must 
compute the Durbin-Watson statistic.  The output is this: 
 

Regression Analysis: DIFFlnCO2 versus DIFFlnSOLID  
 
The regression equation is 
DIFFlnCO2 = 0.0177 + 0.641 DIFFlnSOLID 
 
47 cases used, 1 cases contain missing values 

 
 

Predictor        Coef   SE Coef     T      P 
Constant     0.017656  0.005722  3.09  0.003 
DIFFlnSOLID    0.6409    0.1334  4.80  0.000 
 
S = 0.0274007   R-Sq = 33.9%   R-Sq(adj) = 32.4% 
 
Analysis of Variance 
 
Source          DF        SS        MS      F      P 
Regression       1  0.017323  0.017323  23.07  0.000 
Residual Error  45  0.033786  0.000751 
Total           46  0.051109 
 
Unusual Observations 
 
Obs  DIFFlnSOLID  DIFFlnCO2       Fit   SE Fit  Residual  St Resid 
  5       0.0585    0.13226   0.05515  0.00545   0.07711      2.87R 
 21      -0.0484    0.00245  -0.01335  0.01128   0.01579      0.63 X 
 34      -0.0171   -0.04821   0.00670  0.00752  -0.05491     -2.08R 
 42       0.0138   -0.03811   0.02650  0.00459  -0.06462     -2.39R 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 
 
Durbin-Watson statistic = 2.03940 

 



  MULTIPLE REGRESSION DATA COLLECTED AS TIME SERIES   

 27

 
Here is the plot of the residuals in time order: 
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This is an excellent outcome.  The Durbin-Watson statistic is close to 2.0, showing that 
the autocorrelation problem has been cured.  The regression fits very well.  The slope 
coefficient of 0.641 indicates that proportional changes in Solid are associated with 
smaller proportional changes in CO2 , and in the same direction. 
 
The solution by differencing is sometimes called pre-whitening.  It’s a clear attempt to 
convert random walks back to white noise. 
 

It’s important to understand what is happening when we take differences of 
logarithms in a time series.  Since ∇ Yt  =  Yt  -  Yt-1 , it follows that 
 

∇ ( n CO2t )  =  ( n CO2t )  -  ( n CO2t-1 )  =  
1
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As a plausible approximation, n(1 + q) ≈ q .   This works for q near zero, say for 
-0.10 < q < +0.10.   When the consecutive changes tend to stay within ± 10%, 
then analyzing the proportional changes will give pretty much the same result as 
analyzing the differences of the logarithms. 
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SOLUTION 2:  Estimate the autocorrelation coefficient and adjust it away.  You can use 

complicated methods to estimate, but a quick simple estimate is ρ̂  = 1
2

DW
− .  Then 

compute 
 

ˆ
1

ˆ
1

ˆ

ˆ
t t t

t t t

Y Y Y

x x x

ρ
−

ρ
−

⎧ = − ρ⎪
⎨

= − ρ⎪⎩
 

 

Then regress ˆY ρ on ˆxρ .  In our example, ρ̂  =  0.09477251
2

−  ≈  0.95.  For this 

particular example, ρ̂  is rather close to 1, so the end result will be very similar to simple 
differencing.   
 
Let’s use DiffLnCO2r as the name for ˆ

1ˆt t tY Y Yρ
−= − ρ .   Minitab can get this through 

Calc ⇒ Calculator.  Set up the panel like this: 
 

 
 
Perform a similar operation to create LnSOLIDr.   
 



  MULTIPLE REGRESSION DATA COLLECTED AS TIME SERIES   

 29

The regression of LnCO2r on LnSOLIDr produces this: 
 

Regression Analysis: LnC02r versus LnSOLIDr  
 
The regression equation is 
LnC02r = 0.202 + 0.685 LnSOLIDr 
 
 
47 cases used, 1 cases contain missing values 
 
Predictor     Coef  SE Coef     T      P 
Constant   0.20164  0.05199  3.88  0.000 
LnSOLIDr   0.68453  0.09727  7.04  0.000 

 
 
S = 0.0249415   R-Sq = 52.4%   R-Sq(adj) = 51.3% 
 
Analysis of Variance 
 
Source          DF        SS        MS      F      P 
Regression       1  0.030810  0.030810  49.53  0.000 
Residual Error  45  0.027993  0.000622 
Total           46  0.058804 

 
Unusual Observations 
 
Obs  LnSOLIDr   LnC02r      Fit   SE Fit  Residual  St Resid 
  4     0.498  0.47255  0.54270  0.00498  -0.07015     -2.87R 
  5     0.533  0.61697  0.56633  0.00364   0.05064      2.05R 
 42     0.543  0.52152  0.57360  0.00377  -0.05207     -2.11R 
 
R denotes an observation with a large standardized residual. 
 
Durbin-Watson statistic = 2.32547 

 
The graph of the residuals in time order is similar to that of SOLUTION 1, and it will not 
be shown. 
 
You might observe that the R2 in SOLUTION 2 was 52.4%, substantially better than the 
33.9% of SOLUTION 1. 
 

The R2 value in the original regression was 96.8%.  We cannot use that original 
regression as the assumptions of the regression model were violated. 
 

 
SOLUTION 3:  Convert the problem to generalized least squares.  This is a high-power 
method, and it requires the construction of the model in vector-matrix notation.  This 
goes under a number of names, like Cochrane-Orcutt.  It will not be discussed here. 
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SOLUTION 4:  Use time itself as an additional independent variable.  This solution is 
very simple to implement, but it’s only occasionally successful.  Here we’ll just regress 
CO2Emissions on (SolidFuel, Year). 
 
The regression output looks very pleasing. 
 

Regression Analysis: CO2Emissions versus SolidFuels, YEAR  
 
The regression equation is 
CO2Emissions = - 1950264 + 0.683 SolidFuels + 1002 YEAR 
 
 
Predictor       Coef  SE Coef       T      P 
Constant    -1950264   106602  -18.29  0.000 
SolidFuels   0.68302  0.07138    9.57  0.000 
YEAR         1002.43    54.91   18.26  0.000 
 
S = 1349.20   R-Sq = 99.6%   R-Sq(adj) = 99.6% 
 
Analysis of Variance 
 
Source          DF           SS           MS        F      P 
Regression       2  21181440596  10590720298  5817.98  0.000 
Residual Error  45     81915455      1820343 
Total           47  21263356051 
 
Source      DF       Seq SS 
SolidFuels   1  20574813518 
YEAR         1    606627077 
 
Unusual Observations 
 
Obs  SolidFuels  CO2Emissions    Fit  SE Fit  Residual  St Resid 
 32       28886         58365  55271     276      3094      2.34R 
 33       29676         59536  56813     280      2723      2.06R 
 42       40344         69886  73122     337     -3236     -2.48R 
 47       48973         85936  84027     601      1909      1.58 X 
 48       50875         86336  86329     675         7      0.01 X 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 
 
Durbin-Watson statistic = 0.872753 



  MULTIPLE REGRESSION DATA COLLECTED AS TIME SERIES   

 31

 
This gives a wonderful R2, it has significant coefficients on both SolidFuel and YEAR, 
but the Durbin-Watson statistic is too low. 
 
 
In addition, the plot of residuals in time order tells us that the method has failed: 
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Please be aware that our decisions cannot be guided by the R2 value alone!  If the model 
assumptions are flawed, no value of R2 will save the analysis. 
 
 
 


