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Random variables are used to describe the outcomes of situations subject to randomness.  
Here “situations” could refer to games of chance, sales of a business in one week, biodata 
on a person, and many others.  A random variable could be observable many times (as in 
recording sales for week after week after week) or might be observable only once (as in 
the outcome of a single election).  Random variables are usually described with 
upper-case letters, and their possible values are usually described with lower-case letters. 
 
There is clear interest in the outcomes of random variables.  The descriptions X = 14.6  or  
Y > 200  or  -1.0 ≤ Z ≤ -0.4  provide important facts.  From the analyst’s perspective, 
there is a great need to describe the probabilities of outcomes.   What, for example, is 
P[ X = 14.6 ] ?   Can we express P[ X = x ]  as a simple function of  x?   In working from 
the probability descriptions, it will be possible to say many things about random 
variables, even before data are collected. 
 

In the expression P[ X = x ], the upper-case X is the random variable itself 
and represents the phenomenon, which might be the number of orders in 
one hour at Delaware Deli.  The lower-case x is a stand-in for a possible 
value.  If we have x = 15, we are asking P[ X = 15 ].   The symbol x is an 
algebra symbol in the conventional sense. 

 
Random variables are divided into these two broad categories: 
 

Discrete random variables are obtained by counting and have values for which 
there are no in-between values.  These values are typically the integers 0, 1, 2, ….    
These are described by their probability functions P[ X = x ].   These functions are 
also called probability mass functions.   

 
Continuous random variables are obtained by measuring.  Between any two 
possible values are other possible values.  If Y is a height in inches, there are 
certainly values between 57 inches and 58 inches.  This property holds even if we 
happen to round our data to the nearest inch, quarter inch, or even 0.001 inch.    
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Random variables are usually denoted by upper case (capital) letters.  The possible values 
are denoted by the corresponding lower case letters, so that we talk about events of the 
form [X = x].  The random variables are described by their probabilities.  For example, 
consider random variable X with probabilities 
 

          x 0 1 2 3 4 5 
P[X = x] 0.05 0.10 0.20 0.40 0.15 0.10 

 
You can observe that the probabilities sum to 1.   
 
The notation P(x) is often used for P[X = x].  The notation f(x) is also used.  In this 
example, P(4) = 0.15.  The symbol P (or f) denotes the probability function, also called 
the probability mass function. 
 

The cumulative probabilities are given as F x P i
i x

( ) ( )=
≤
∑ .  The interpretation is that F(x) 

is the probability that X will take a value less than or equal to x.  The function F is called 
the cumulative distribution function (CDF).  This is the only notation that is commonly 
used.  For our example,  
 

F(3)  = P[X ≤ 3]  = P[X=0] + P[X=1] + P[X=2] + P[X=3]  
 

=    0.05   +   0.10   +   0.20    +   0.40     =    0.75    
 

One can of course list all the values of the CDF easily by taking cumulative sums: 
 

        x 0 1 2 3 4 5 
P[X = x] 0.05 0.10 0.20 0.40 0.15 0.10 

F(x) 0.05 0.15 0.35 0.75 0.90 1.00 
 
The values of F increase. 
 
The expected value of X is denoted either as E(X) or as μ.  It’s defined as 

E P( P( ) ) [ ]X x x x X x
x x

= = =∑ ∑ .   The calculation for this example is  

 
E(X)  =   0 × 0.05 + 1 × 0.10 + 2 × 0.20 + 3 × 0.40 + 4 × 0.15 + 5 × 0.10   

 
 =     0.00    +     0.10    +    0.40    +    1.20    +    0.60    +    0.50     =   2.80 

 
This is also said to be the mean of the probability distribution of X. 
 
The probability distribution of X also has a standard deviation, but one usually first 
defines the variance. The variance of X, denoted as Var(X) or σ2, or perhaps 2

Xσ , is  
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Var(X) =  ( ) ( )2 P
x

x x−μ∑   =  ( ) ( )2 P
x

x X x−μ =∑  

This is the expected square of the difference between X and its expected value, μ.   We 
can calculate this for our example: 
 
 

x x – 2.8 (x – 2.8)2 P[ X = x ] (x – 2.8)2P[ X = x ] 
0 -2.8 7.84 0.05 0.392 
1 -1.8 3.24 0.10 0.324 
2 -0.8 0.64 0.20 0.128 
3 0.2 0.04 0.40 0.016 
4 1.2 1.44 0.15 0.216 
5 2.2 4.84 0.10 0.484 

 
The variance is the sum of the final column.  This value is 1.560. 
 
This is not the way that one calculates the variance, but it does illustrate the meaning of 
the formula.  There’s a simplified method, based on the result 

2 2 2( ) P[ ] P[ ]
x x

x X x x X x⎧ ⎫−μ = = = − μ⎨ ⎬
⎩ ⎭

∑ ∑ .   This is easier because we’ve already 

found  μ, and the sum  x X x
x

2∑ =P[ ]  is fairly easy to calculate because the x  values 

here are small integers.  For our example, this sum is  
 

02 × 0.05 + 12 × 0.10 + 22 × 0.20 + 32 × 0.40 + 42 × 0.15 + 52 × 0.10 = 9.40    

Then ( ) [ ]x X x
x

− =∑ μ 2 P =   9.40 -  2.82  =  9.40 - 7.84  =  1.56.  This is the same 

number as before, although obtained with rather less effort. 
 
The standard deviation of X is determined from the variance.  Specifically, SD(X) = σ = 

( )Var X  .  In this situation, we find simply σ = 1 56.  ≈ 1.2490. 
 
It should be noted that random variables also obey, at least approximately, a variant on 
the empirical rule used with data.  Specifically, for a random variable X with mean μ and 
standard deviation σ, we have  

 
P[ μ - σ  ≤  X  ≤  μ + σ ]   ≈   2

3   
 
P[ μ - 2σ  ≤  X  ≤  μ + 2σ ]  ≈   95% 
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1.  Suppose that you are rolling a die eight times.  Find the probability that the face with 
two spots comes up exactly twice. 
 
SOLUTION:  Let X be the number of “successes,” meaning the number of times that the 
face with two spots comes up.   This is a binomial situation with n = 8 and p = 1

6 .  The 

probability of exactly two successes is P[ X = 2 ]  =  ( ) ( )2 651
6 6

8
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

  =  
6

8

528
6

× .  This can 

be done with a calculator.  There are various strategies to organize the arithmetic, but the 
answer certainly comes out as about 0.260476. 
 

Some calculators have keys like yx , and these can be useful to calculate 
expressions of the form 68.   Of course, 68 can always be calculated by careful 
repeated multiplication.  The calculator in Microsoft Windows will find 68 
through the keystrokes 6, y, 8, =. 

 
 
2.  The probability of winning at a certain game is 0.10.  If you play the game 10 times, 
what is the probability that you win at most once? 
 
SOLUTION:  Let X be the number of winners.  This is a binomial situation with n = 10 
and p = 0.10.  We interpret “win at most once” as meaning “X ≤ 1.”  Then  
 

P[ X ≤ 1 ]  =  P[ X = 0 ] + P[ X = 1 ]  =  0 10 1 910 10
0.10 0.90 0.10 0.90

0 1
⎛ ⎞ ⎛ ⎞

× + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
=  0.9010  +  10×0.101 × 0.909   =  0.9010  +  0.909   = 0.909 ( 0.90 + 1 ) 
 
=  0.909 × 1.90  ≈  0.736099   

 
 
3.  If X is binomial with parameters n and p, find an expression for P[ X ≤ 1 ]. 
 
SOLUTION:  This is the same as the previous problem, but it’s in a generic form. 
 

P[ X ≤ 1 ]  =  P[ X = 0 ] + P[ X = 1 ]  =  ( ) ( ) 10 11 1
0 1

n nn n
p p p p −⎛ ⎞ ⎛ ⎞

− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
=  ( ) ( ) 11 1n np np p −− + −   =   ( ) ( )( )11 1np p np−− − +   
 
=  ( ) ( )( )11 1 1np n p−− + −  
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4.  The probability is 0.038 that a person reached on a “cold call” by a telemarketer will 
make a purchase.  If the telemarketer calls 40 people, what is the probability that at least 
one sale will result? 
 
SOLUTION:   Let X be the resulting number of sales.  Certainly X is binomial with 
n = 40 and p = 0.038.  This “at least one” problem can be done with this standard trick: 
 

P[ X ≥ 1 ]  =  1 - P[ X = 0 ]  =  0 4040
1 0.038 0.962

0
⎛ ⎞

− ×⎜ ⎟
⎝ ⎠

  =  1  -  0.96240  

≈  0.787674. 
 

 
5.  The probability is 0.316 that an audit of a retail business will turn up irregularities in 
the collection of state sales tax.  If 16 retail businesses are audited, find the probability 
that 

(a) exactly 5 will have irregularities in the collection of state sales tax. 
(b) at least 5 will have irregularities in the collection of state sales tax. 
(c) fewer than 5 will have irregularities in the collection of state sales tax. 
(d) at most 5 will have irregularities in the collection of state sales tax. 
(e) more than 5 will have irregularities in the collection of state sales tax. 
(f) no more than 5 will have irregularities in the collection of state sales tax. 
(g) no fewer than 5 will have irregularities in the collection of state sales tax. 
 

SOLUTION:  Let X be the number of businesses with irregularities of this form.  Note 
that X is binomial with n = 16 and p = 0.316.  The calculations requested here are far too 
ugly to permit hand calculation, so a program like Minitab should be used. 
 

(a) asks for P[ X = 5 ]  =  5 1116
0.316 0.684

5
⎛ ⎞

×⎜ ⎟
⎝ ⎠

 =  0.2110.   This was done by Minitab. 

(b) asks for P[ X ≥ 5 ].   Use Minitab to get 1 - P[ X ≤ 4 ]  =  1 - 0.3951 = 0.6049. 
(c) asks for P[ X ≤ 4 ] = 0.3951. 
(d) asks for P[ X ≤ 5 ] = 0.6062. 
(e) asks for P[ X > 5 ].  Use Minitab to get 1 - P[ X ≤ 5 ] = 1 - 0.6062 = 0.3938. 
(f) asks for P[ X ≤ 5 ] = 0.6062.  This is the same as (d). 
(g) asks for P[ X ≥ 5 ] = 0.6049.  This is the same as (b). 
 
 
6.  A certain assembly line produces defects at the rate 0.072.  If you observe 100 items 
from this list, what is the smallest number of defects that would cause a 1% rare-event 
alert?  Specifically, if X is the number of defects, find the smallest value of k for which 
P[ X ≥ k ] ≤ 0.01. 
 
SOLUTION:  This will require an examination of the cumulative probabilities for X.  
Since Minitab computes cumulative probabilities in the ≤ form, rephrase the question as 
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searching for the smallest k for which P[ X ≤ k-1] ≥ 0.99.  Here is a set of cumulative 
probabilities calculated by Minitab: 
 

x P[ X ≤ x ] 
11 0.94417 
12 0.97259 
13 0.98751 
14 0.99471 
15 0.99791 

 
The first time that the cumulative probabilities cross 0.99 occurs for x = 14.  This 
corresponds to k-1, so we report that k = 15.  The smallest number of defects which 
would cause a 1% rare-event alert is 15. 
 
 
7.  If you flip a fair coin 19 times, what is the probability that you will end up with an 
even number of heads? 
 
SOLUTION:  Let X be binomial with n = 19 and p = 1

2 .  This seems to be asking for 
P[ X = 0 ] + P[ X = 2 ] + P[ X = 4 ] + …. + P[ X = 18 ], which is an annoying calculation.  
However, we’ve got a trick.  Consider the first 18 flips.  The cumulative number of heads 
will either be even or odd.  If it’s even, then the 19th flip will preserve the even total with 
probability 1

2 .  If it’s odd, then the 19th flip will convert it to even with probability 1
2 .  At 

the end, our probability of having an even number of heads must be 1
2 .  This trick only 

works when p = 1
2 . 

 
 
8.  Suppose that you are playing roulette and betting on a single number.  Your 
probability of winning on a single turn is 1

38  ≈  0.026316.  You would like to get at least 
three winners.  Find the minimum number of turns for which the probability of three or 
more winners is at least 0.80. 
 
SOLUTION:  The problem asks for the smallest n for which P[ X ≥ 3 ] ≥ 0.80.  Since 
Minitab computes cumulative probabilities in the ≤ form, we’ll convert this question to 
finding the smallest n for which P[ X ≤ 2 ] ≤ 0.20. 
 
This now requires a trial-and-error search.  It helps to set up a diagram in which the first 
row is for an n that’s likely to be too small and a last row for an n that is likely to be too 
big. 

n P[ X ≤ 2 ] value of n is 
20 0.9851 too small 
   
   
   

200 0.1011 too large 
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Then intervening positions can be filled in.  Let’s try n = 100.  This would result in 
P[ X ≤ 2 ] = 0.5084, revealing that n = 100 is too small.  The table gets modified to this: 
 

n P[ X ≤ 2 ] value of n is 
20 0.9851 too small 
100 0.5084 too small 

   
   
   

200 0.1011 too large 
 
Now try n = 150, getting P[ X ≤ 2 ] = 0.2420.  This says that n = 150 is too small, but not 
by much.  Here’s what the table looks like: 
 

n P[ X ≤ 2 ] value of n is 
20 0.9851 too small 
100 0.5084 too small 
150 0.2420 too small 

   
   

200 0.1011 too large 
 
After a little more effort, we get to this spot: 
 

n P[ X ≤ 2 ] value of n is 
20 0.9851 too small 
100 0.5084 too small 
150 0.2420 too small 
160 0.2050 too small 
161 0.2016 too small 
162 0.1982 just right! 
200 0.1011 too large 

 
For n = 162, the cumulative probability drops below 0.20 for the first time.  This is the 
requested number of times to play the game. 
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Recall that the binomial coefficient 
n
r
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is used to count the number of possible 

selections of r things out of n.   Using n = 6 and r = 2 would provide the number of 
possible committees that could be obtained by selecting two people out of six. 
 

The computational formula is 
n
r
⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  
( )

!
! !

n
r n r−

.   For n = 6 and r = 2, this would give 

6
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 6!
2! 4!×

 =  
( ) ( )

6 5 4 3 2 1
2 1 4 3 2 1

× × × × ×
× × × × ×

  =  6 5
2 1
×
×

 = 15.  If the six people are named 

A, B, C, D, E, and F, these would be the 15 possible committees: 
 

A B  B C  C E 
A C  B D  C F 
A D  B E  D E 
A E  B F  D F 
A F  C D  E F 

 
There are a few useful manipulations: 
 

0! = 1   (by agreement) 
 

n
r
⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  
n

n r
⎛ ⎞
⎜ ⎟−⎝ ⎠

 

In the committee example, 
6
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
6
4
⎛ ⎞
⎜ ⎟
⎝ ⎠

, so that the number of 

selections of two people to be on the committee is exactly equal to 
the number of selections of four people to leave off the committee. 

 

0
n⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  
n
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  1 

 

1
n⎛ ⎞
⎜ ⎟
⎝ ⎠

  =  n 

 

2
n⎛ ⎞
⎜ ⎟
⎝ ⎠

  =  ( )1
2

n n −
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The hypergeometric distribution applies to the situation in which a random selection is to 
be made from a finite set.  This is most easily illustrated with drawings from a deck of 
cards.  Suppose that you select five cards at random from a standard deck of 52 cards.   

This description certainly suggests a card game in which five cards are 
dealt to you from a standard deck.  The game of poker generally begins 
this way.  The fact that cards will also be dealt to other players does not 
influence the probability calculations, as long as the identities of those 
cards are not known to you. 

You would like to know the probability that your five cards (your “hand”) will include 
exactly two aces.  The computational logic proceeds along these steps: 
 

* There are 
52
5

⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible selections of five cards out of 52.  These 

selections are equally likely. 

* There are four aces in the deck, and there are 
4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways in which you can 

identify two out of the four. 

* There are 48 non-aces in the deck, and there are 
48
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ways in which you 

can identify three of these non-aces. 
* The number of possible ways that your hand can have exactly two aces 

and exactly three non-aces is 
4 48
2 3
⎛ ⎞ ⎛ ⎞

×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  This happens because every 

selection of the aces can be matched with every selection of the non-aces. 

* The probability that your hand will have exactly two aces is 

4 48
2 3

52
5

⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
The computation is not trivial.  If you are deeply concerned with playing poker, the 

number 
52
5

⎛ ⎞
⎜ ⎟
⎝ ⎠

 will come up often.  It’s 52!
5! 47!×

 =  52 51 50 49 48
5 4 3 2 1
× × × ×
× × × ×

 =  2,598,960.   

 

Now note that 
4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 6 ,  
48
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 48 47 46
3 2 1
× ×
× ×

  =  17,296.  Then you can find the desired 

probability 6 17,296
2,598,960
×  ≈  0.039930.  This is about 4%. 

  



☺☺☺☺☺ THE HYPERGEOMETRIC RANDOM VARIABLE ☺☺☺☺☺ 

{                                                          page                                                       © gs2010 12

This technology can be generalized in a useful random variable notation.  We will let 
random X  be the number of special items in a sample of n taken at random from a set 
of N. 

You will sometimes see a distinction between “sampling with replacement” and 
“sampling without replacement.”  The issue comes down to whether or not each 
sampled object is returned to the set of N before the next selection is made.  
(Returning an item to the set of N would make it possible for that item to appear 
in the sample more than once.)  In virtually all applications, the sampling is 
without replacement.   
 
The sampling is usually done sequentially, but it does not have to be.  In a card 
game, the same probabilities would apply even if you were given all your cards in 
a single clump from the top of a well-shuffled deck.  Of course, dealing out cards 
in clumps violates the etiquette of the game. 

 
The process is sometimes described as “taking a sample of n from a finite population 
of N.”   We then use these symbols: 
 

N population size 
n sample size 
M number of special items in the population 
N – M number of non-special items in the population 
X (random) number of special items in the sample 

 
This table lays out the notation: 
 

 General 
notation Card example 

Population size N 52 (cards in deck) 
Sample size n 5 (cards you will be dealt) 

Special items in the 
population  M 4 (aces in the deck) 

Non-special items in the 
population  N – M 48 (non-aces in the deck) 

Random number of special 
items in the sample X 

Number of special items in 
your hand (we asked for 

this to be 2 in the example) 
 
The probability structure of X is given by the hypergeometric formula 
 

P[ X = x ]  =  

M N M
x n x

N
n

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠
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For our example, this was 

4 48
2 3

52
5

⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
In a well-formed hypergeometric calculation 
 

the numerator upper numbers add to the denominator upper number  
(as 4 + 48 = 52) 
 

the numerator lower numbers add to the denominator lower number 
(as 2 + 3 = 5) 

 
As an interesting curiousity, it happens that we can write the 
hypergeometric probability in the alternate form 
 

P[ X = x ]  =  

n N n
x M x

N
M

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In our example, this would be 

4 48
2 3

52
5

⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  

5 47
2 2

52
4

⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
The program Minitab, since release 13, can compute hypergeometric probabilities.  
Suppose that you would like to see the probabilities associated with the number of spades 
that you get in a hand of 13 cards.  The game of bridge starts out by dealing 13 cards to 
each player, so this question is sometimes of interest to bridge players. 
 
In column 1 of Minitab, lay out the integers 0 through 13.  You can enter these manually, 
or you can use this little trick: 
 

Calc ⇒ Make Patterned Data ⇒ Simple Set of Numbers  
 

On the resulting panel, enter the information indicated. . . 
Store patterned data in: (enter C1) 
From first value:  (enter 0) 
To last value:    (enter 13) 
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Minitab can then easily find all the probabilities at once: 
 

Calc ⇒ Probability Distributions ⇒ Hypergeometric    
 
Fill out the resulting panel to look like this: 
 

 
 

The first 13, successes in population, corresponds to the symbol M.  The second 13, 
sample size, corresponds to our symbol n. 
 
When you click OK, the entire column of probabilities appears in column C2. 
 
 
Here are some typical problems. 
 
Example 1:  What is the most likely number of spades that you will get in a hand of 
13 cards? 
 
Solution:  If you examine the output that Minitab produced, you’ll see  
 

P[ X = 2 ]  = 0.205873 
P[ X = 3 ]  = 0.286330 
P[ X = 4 ]  = 0.238608 

 
All the other probabilities are much smaller.  Thus, you’re most likely to get three spades. 
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Example 2:  Suppose that a shipment of 100 fruit crates has 11 crates in which the fruit 
shows signs of spoilage.  A quality control inspection selects 8 crates at random, opens 
these selected crates, and then counts the number (out of 8) in which the fruit shows signs 
of spoilage.  What is the probability that exactly two crates in the sample show signs of 
spoilage? 
 
Solution:  Let X be the number of bad crates in the sample.  This is a hypergeometric 
random variable with N = 100, M = 11, n = 8, and we ask P[ X = 2 ].  This probability is 
 

11 89
2 6

100
8

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  
The arithmetic is possible, but it’s annoying.  Let’s use Minitab for this.  The detail panel 
should be this: 
 

 
 
Minitab will produce this information in its session window: 

Probability Density Function  
 
Hypergeometric with N = 100, M = 11, and n = 8 
 
x  P( X = x ) 
2    0.171752 

 
The requested probability is 0.171752. 
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The Poisson random variable is obtained by counting outcomes.  The situation is not 
governed by a pre-set sample size, but rather we observe over a specified length of time 
or a specified spatial area.  There is no conceptual upper limit to the number of counts 
that we might get.  The Poisson would be used for  
 

The number of industrial accidents in a month 
The number of earthquakes to strike Turkey in a year 
The number of maple seedlings to sprout in a 10 m × 10 m patch of meadow 
The number of phone calls arriving at your help desk in a two-hour period 

 
The Poisson has some similarities to the binomial and hypergeometric, so we’ll lay out 
the essential differences in this table: 
 

 Binomial Hypergeometric Poisson 

Number of trials n n no concept of 
sample size 

Population size Infinite (trials could 
go on indefinitely) N no concept of 

population size 

Event probability p 
M
N

 no concept of event 
probability  

Event rate no concept of event 
rate 

no concept of event 
rate λ 

 
The Poisson probability law is governed by a rate parameter λ.  For example, if we are 
dealing with the number of industrial accidents in a month, λ will represent the expected 
rate.  If X is this random variable, then the probability law is 
 

P[ X = x ]  =  
!

x

e
x

− λ λ  

 
This calculations can be done for x = 0, 1, 2, 3, 4, …    There is no upper limit.   
 
If the rate is 3.2 accidents/month, then the probability that there will be exactly two 
accidents in any month is 
 

P[ X = 2 ]  = 
2

3.2 3.2
2!

e−  ≈  0.040762 10.24
2

 ≈  0.2087 

  
Minitab can organize these calculations easily.  In a column of the data sheet, say C1, 
enter the integers 0, 1, 2, 3, 4, …., 10.   It’s easy to enter these directly, but you could also 
use Calc ⇒ Make Patterned Data.   Then do Calc ⇒ Probability Distributions ⇒ 
Poisson.    
 



��������� THE POISSON RANDOM VARIABLE ��������� 

{                                                          page                                                       © gs2010 17

The information panel should then be filled as indicated:  
 

 
 
The probabilities that result from this operation are these: 
 

Accidents Probability  
0 0.040762 
1 0.130439 
2 0.208702 
3 0.222616 
4 0.178093 
5 0.113979 
6 0.060789 
7 0.027789 
8 0.011116 
9 0.003952 
10 0.001265 
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Here is a graph of the probability function for this Poisson random variable: 
 

20191817161514131211109876543210

0.2

0.1

0.0

Accidents

Probability

 
This is drawn all the way out to 20 accidents, but it’s clear that nearly all the probability 
action is below 12. 
 
EXAMPLE:  The number of calls arriving at the Swampside Police Station follows a 
Poisson distribution with rate 4.6/hour.  What is the probability that exactly six calls will 
come between 8:00 p.m. and 9:00 p.m.? 
 
SOLUTION:  Let X be the random number arriving in this one-hour time period.  We’ll 

use λ = 4.6 and then find P[ X = 6 ]  =  
6

4.6 4.6
6!

e−  ≈ 0.1323. 

 
 
EXAMPLE:  In the situation above, find the probability that exactly 7 calls will come 
between 9:00 p.m. and 10:30 p.m. 
 
SOLUTION:  Let Y be the random number arriving during this 90-minute period.  The 
Poisson rate parameter expands and contracts appropriately, so the relevant value of λ is 

1.5 × 4.6 = 6.9.  We find P[ Y = 7 ] = 
7

6.9 6.9
7!

e−  ≈  0.1489. 

 
The Poisson random variable has an expected value that is exactly λ.  The standard 
deviation is λ . 
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EXAMPLE:  If X is a Poisson random variable with λ = 225, would it be unusual to get a 
value of X which is less than 190? 
 
SOLUTION:  If we were asked for the exact number, we’d use Minitab to find 
P[ X ≤ 189 ] ≈  0.0077.  This suggests that indeed it would be unusual to get an X value 
below 190.  However, we can get a quick approximate answer by noting that E X = mean 

of X = λ = 225, and SD(X) = λ  = 225  = 15.  The value 190 is 225 190
15
−  ≈ 2.33 

standard deviations below the mean;  yes, it would be unusual to get a value that small. 
 
 
This chart summarizes some relevant facts for the three useful discrete random variables. 
 
 

Random 
variable  Description Probability function 

P[ X = x ] 

Expected 
value 

(Mean) 
Standard deviation 

Binomial 

Number of successes in n 
independent trials, each 
having success 
probability p 

( )1 n xxn
p p

x
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

 np ( )1np p−  

Hyper-
geo-
metric 

Number of special items 
obtained in a sample of  n  
from a population of  N  
containing  M  special 
items 

M N M
x n x

N
n

−⎛ ⎞ ⎛ ⎞
×⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 Mn
N

 1
1

M M N nn
N N N

−⎛ ⎞−⎜ ⎟ −⎝ ⎠
 

Poisson 

Number of events observed 
over a specified period of 
time (or space) at event 
rate λ 

!

x

e
x

− λ λ  λ λ  
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Suppose that the two random variables X and Y have this probability structure: 
 
 

 Y = 1 Y = 2 
X =   8 0.12 0.18 
X = 10 0.20 0.40 
X = 12 0.02 0.08 

 
 
We can check that the probability sums to 1.   The easiest way to do this comes in 
appending one row and one column to hold totals: 
 

 Y = 1 Y = 2 Total 
X =   8 0.12 0.18 0.30 
X = 10 0.20 0.40 0.60 
X = 12 0.02 0.08 0.10 
Total 0.34 0.66 1.00 

 
Thus P(Y = 1) = 0.34 and P(Y = 2) = 0.66.  Then 
 

E Y = 0.34 × 1  +  0.66 × 2  =  1.66  =  μY 
 
E Y2 = 0.34 × 12  +  0.66 × 22  =  2.98 
 
σY

2   =  Var(Y)  =  E Y2  -  ( E Y )2  =  2.98  – 1.662  =  2.98  –  2.7556  = 0.2244 
 
σY  =  SD(Y)  =  0 2244.   ≈  0.4737 
 
 

Using P(X = 8) = 0.30,  P(X = 10) = 0.60, and P(X = 12) = 0.10.   Then 
 

E X = 0.30 × 8  +  0.60 × 10  +  0.10 × 12  =  9.6  =  μX 
 
E X2 = 0.30 × 82  +  0.60 × 102  +  0.10 × 122  = 93.6 
 
σX

2   =  Var(X)  =  E X2  - ( E X )2  =  93.6  -  9.62  =  93.6 - 92.16 = 1.44 
 
σX =  SD(X) =  1.44   =  1.2 
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Here  E[ X Y ]  =   
 

    0.12 ×   8 × 1    +    0.18 ×   8 × 2 
 
+  0.20 × 10 × 1    +    0.40 × 10 × 2 
 
+  0.02 × 12 × 1    +    0.08 × 12 × 2      =    16.00 

 
Then Cov(X, Y)  =  16  –  9.6 × 1.66  =   16  –  15.936  =  0.064. 
 
We can then find the correlation of X and Y as 
 

ρ = Corr(X, Y)  =  Cov X Y

X Y

,a f
σ σ

  =  0 064
1 2 0

.
. .4737×

  ≈  0.1126 

Let’s introduce the calculation of Covariance(X, Y) = Cov(X, Y).  This is defined as  
 

Cov(X, Y)  =  E[  (X  –  μX)(Y  –  μY)  ] 
 

but it is more easily calculated as  
 
Cov(X, Y)  =  E[ X Y ]  –   μX μY 
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This section considers two different ways of thinking about a game of chance based on 
tickets or number selection. 
 
As the first example, consider a lottery in which there are 500 tickets.  Let’s suppose that 
each ticket costs $10 and that there is a single $3,000 prize.   Notice that the lottery 
organizer will make money;  that’s the whole point of lotteries in the first place. 
 
Suppose that Zoe has purchased 5 tickets.  We’d like to find the probability that Zoe will 
win the $3,000. 
 
From Zoe’s perspective, her purchase has made 5 of the tickets special and left 495 as 
ordinary.  The lottery operation will now select one ticket.   The probability that this will 
be chosen from the 5 special tickets is given by the hypergeometric probability 
 

P[ Zoe wins ]  =  

5 495
1 0

500
1

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

  =  5 1
500
×   =  1

100
  =  0.01 

 
This thinks of taking a sample of n = 1 from a population of N = 500;  in the population 
are M = 5 special tickets and N – M = 495 ordinary tickets.  This is a very obvious result. 
 
Now consider this from the standpoint of the lottery operator.  For the lottery operator, 
one ticket is special and 499 are ordinary.  Now Zoe’s purchase represents five drawings 
from the set of 500 tickets and the probability that her five drawings manage to capture 
the special ticket is again hypergeometric, but now given by 
 

P[ Zoe wins ]  =  

1 499
1 4

500
5

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

  =  

499 498 497 4961
4 3 2 1

500 499 498 497 496
5 4 3 2 1

× × ×
×

× × ×
× × × ×
× × × ×

  =  5
500

 = 0.01 

 
This thinks of taking a sample of  n = 5  from a population of N = 500;  in the population 
are M = 1 special ticket and N – M = 499 ordinary tickets.  These are of course the same. 
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This example is a little too transparent, so let’s extend this to a common KENO-type 
game in which the player selects ten numbers from the set {1, 2, …, 80} and then the 
lottery operator selects 20 numbers from the same set.  Let X  be the number of matches.  
The player wins according to the number of matches common to both selections.   
 
From the perspective of the player, M = 10 numbers are special and N – M = 70 are 
ordinary.  In thinking of the probability P[ X = 4 ], the player imagines that the lottery 
operator will select n = 20 from the set of N = 80, getting 4 of the 10 special numbers and 
20 – 4 = 16 of the ordinary numbers.  The probability is then 
 

P[ X = 4 ]  =  

10 70
4 16

80
20

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

  ≈  0.147319 

  
 
 
From the perspective of the lottery operator, M = 20 numbers are special and N – M = 60 
are ordinary.  A particular player, such as the one we are considering, will be making 
n = 10 selections from the set of N = 80.  The probability of getting exactly four matches 
can be thought of as getting 4 of the 20 special numbers and 6 of the 60 ordinary 
numbers.  The value is  
 

P[ X = 4 ]  =  

20 60
4 6

80
10

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

  ≈  0.147319 

 
 
 
This shows that the probabilities will be computed consistently from the two 
perspectives. 
 
This particular situation for the hypergeometric can be summarized as 
 

P[ X = x ]  =  

M N M
x n x

N
n

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

  =  

n N n
x M x

N
M

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠
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There are many situations in which we needs to consider linear combinations of random 
variables.  If X1, X2, X3 , …, Xn  are random variables, a linear combination is any 

expression of the form T =  0
1

n

i i
i

a a X
=

+ ∑   =  a0 + a1 X1 + a2 X2 + … + an Xn .   In this 

notation, the symbols a0, a1, …, an are assumed to be non-random constants.   These ai’s 
may be known numbers or they may be unknown quantities to be handled as ordinary 
algebra symbols.  In some problems the objective is to find values for the ai’s to satisfy 
some properties.   
 
If all the random variables X1, X2, …, Xn are discrete, then T is discrete.  If one or more of 
the Xi’s is continuous, then T is continuous also. 
 
The properties which will be discussed here are means, standard deviations, and 
correlations.  This discussion is quite general, and it has nothing to do with whether the 
random variables are discrete, continuous, or some of each. 
 
Let’s suppose that E Xi = μi is the mean (or expected value) of Xi .   The values 
μ1, μ2, …, μn  may be known numbers or they may be unknown and treated as algebra 
symbols. 
 
Let’s suppose also that SD(Xi) = σi is the standard deviation of Xi . 
 

Finally, let σij be the covariance of Xi with Xj .   Then define   ρij = Corr(Xi , Xj)  =  ij

i j

σ

σ σ
  

as the correlation of Xi with Xj . 
 
As with the means, the values for the σi’s, the σij’s, and the ρij’s may be known or 
unknown. 
 
We have three important formulas, noted as [1], [2], and [3].   An important formula, less 
frequently used, is given later as [4]. 
 

Formula [1]:   E T  =  μT  = 0
1

E
n

i i
i

a a X
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑   =  0
1

n

i i
i

a a
=

+ μ∑     

 
In words, the expected value of a linear combination in the Xi’s is the same linear 
combination of the μi’s.   
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* This result holds whether the Xi’s are statistically independent of each 
other or not. 

* As a technical note (which we worry about only rarely), if some of the 
Xi’s have infinite or undefined expected values, then T will (likely) have 
an infinite or undefined expected value. 

* There is nothing random associated with the a0 term, but a0 still appears 
on the right side of [1]. 

 
 
Example 1a:  If X1, X2, …, X10 are the final amounts in 10 plays at roulette, each time 

betting one dollar on a color, find 
10

1
E i

i
X

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ .    

 

To solve this, you will need P[ Xi = -1 ] = 10
19

  and  P[ Xi = +1 ] = 9
19

.   This leads to E Xi 

= μi = 1
19
−  ≈ -0.0526.   For one-dollar bets, the expected yield is about -5.26¢.    [1] says 

that 
10

1
E i

i
X

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑   =  ( )

10

1
E i

i
X

=
∑   =  ( ) ( ) ( )1 2 10E E ... EX X X+ + +   =  10 × (-0.0526)  

=  -0.526.   This is, of course, -52.6¢.    This used [1] with a0 = 0 and 
a1 = a2 = … = a10 = 1. 
 
 
Example 1b:  Suppose that you invest $1,000 in stock A, for which the expected return 
per dollar invested is 2.4¢ and that you also invest $3,000 in stock B, for which the 
expected gain per dollar invested is 3.8¢.   (We can describe 2.4¢ per dollar as a 2.4% 
expected return.) 
 
Find your expected gain in dollars.   In this context, “gain” is the amount by which your 
initial $4,000 will change.   That is,  
 

final amount  =  initial amount  +  gain 
 
This is an easy intuitive problem, and the solution is certainly 
$1,000 × (0.024)  +  $3,000 × (0.038)  =  $24  +  $114  =  $138.   Let’s be careful about 
the notation, however. 
 
Let A be the random gain from one dollar invested in stock A.  We are told that 
E A = 0.024.    Similarly let B be the random gain from one dollar invested in stock B;  
we know that E B = 0.038.   Your gain from the combined investment should be 
expressed as G = 1,000 A  +  3,000 B.    Using [1] (with a0 = 0, a1 = 1,000, and 
a2 = 3,000) gives E G = $138. 
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Formula [2]:    If  X1, X2, …, Xn are independent random variables, then  

 SD(T)  =  σT =  0
1

SD
n

i i
i

a a X
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑   =  2 2

1

n

i i
i

a
=

σ∑  

 
* This formula requires that the Xi’s be independent of each other.   

Formula [3] below covers the case in which this does not happen. 
* The a0 term does not appear on the right side of Formula [2]. 
* This expression looks a little cleaner in terms of the variance: 

0
1

Var
n

i i
i

a a X
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑   =  2 2

1

n

i i
i

a
=

σ∑  

* The condition “independent random variables” is sometimes replaced by 
the weaker condition “uncorrelated random variables.”   These are not 
exactly the same thing, as independence implies uncorrelated (but 
uncorrelated does not imply independence). 

 
 

Example 2a:  If X1, X2, …, X10 are your final amounts in 10 plays at roulette, each time 

betting one dollar on a color, find 
10

1

SD i
i

X
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ .    

 

This is an extension of Example 1a above.  We noted P[ Xi = -1 ] = 10
19

  and  P[ Xi = +1 ] 

= 9
19

.   This led to E Xi =  μi  = 1
19
−  ≈ -0.0526.    

 

Now we note also Var(Xi) =  2
iσ  = ( )2E i iX⎡ ⎤− μ⎣ ⎦   =  ( )2 2E i iX − μ   =  

211
19
−⎛ ⎞− ⎜ ⎟

⎝ ⎠
  

=  360
361

  ≈  0.99722992.   Then SD(Xi) =  σi  =  ( )Var iX   =  0.99722992  ≈  0.9986. 

 
This calculation used several facts. 
(1) SD(Xi) = ( )Var iX ,  and it’s easy to get Var(Xi). 

(2) The step  ( )2E i iX⎡ ⎤− μ⎣ ⎦   =  ( )2 2E i iX − μ   is true in 

general, and it was used here as an easier computational 
method.  The alternative would have been 

2 2
1 10 1 91 1

19 19 19 19
⎛ − ⎞ ⎛ − ⎞⎛ ⎞ ⎛ ⎞− − × + + − ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
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(3) Since the only values for Xi in this problem are -1 and +1, it 
happens that 2

iX  is always 1.   Thus ( )2E iX  = 1.   
 
Now use [2] with a0 = 0, a1 = a2 = …. = a10 = 1.   This will give 
 

10

1

SD i
i

X
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑   =  

10
2

1
i

i=
σ∑   =  10 0.99722992×   =  9.9722992   ≈  3.1579 

   
This is in money units, of course, and it represents about $3.16.    
 
 
 
Example 2b:  Suppose that you invest $1,000 in stock A, for which the expected gain per 
dollar invested is 2.4¢, with a standard deviation of 6.7¢.   Suppose also that you also 
invest $3,000 in stock B, for which the expected gain per dollar invested is 3.8¢, with a 
standard deviation of 8.2¢.   Stocks A and B are assumed to have independent gains.    
 
In Example 1b, we found that the expected gain of this investment is $138.   We will now 
find the standard deviation of the gain. 
 
As in Example 1b, we let G = 1,000 A  +  3,000 B.    Using [2] (with a0 = 0, a1 = 1,000, 
and a2 = 3,000) we find  
 

SD(G) =   ( ) ( )2 22 21,000 0.067 3,000 0.082× + ×  
 

=   4,489 + 60,516   =  65,005   ≈  254.96 
 
Thus, the standard deviation of this scheme is $254.96. 
 
 
 
Example 2c:   Suppose that X1, X2, …, Xn  are n independent random variables, each from 
same population.   (It’s usually said that these Xi’s constitute a random sample.)   
Suppose that the population mean is μ and that the population standard deviation is σ.   

Let X  = 1 2 ... nX X X
n

+ + +  be the usual average.   Find the mean and standard deviation 

of X . 
 
We will use [1] for the mean and [2] for the standard deviation.   These are done with 
a0 = 0, a1 = a2 = … = an = 1

n .   Formula [1] quickly gives E X  = μ, so that the mean of the 
sample average is the same as the mean of any single value and in turn is the mean of the 
population. 
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Formula [2] gives us 
 

SD( X )  =  ( ) ( ) ( ) ( )2 2 2 22 2 2 21 1 1 1...n n n nσ + σ + σ + + σ   =  
2

n
σ   = 

n
σ   

 
 
 
Example 2d:   Hank buys a lottery ticket for $5.  The amount that he can win (gain) is the 
random variable W, with the probability structure 
 

P[ W = 0 ] = 0.94 P[ W = 25 ] = 0.04 P[ W = 100 ] = 0.02 
 
On the same day places a $20 bet on a football game, and the amount that he can win 
(gain) is the random variable X, with 
 

P[ X = 0 ] = 0.54 P[ X = 40 ] = 0.46 
 
Hank will have the gain given by T = W + X.   He’s also interested in his final amount for 
the day, meaning U = T – 25  =  W + X – 25.    Find the mean and standard deviation of 
both T and U. 
 
First for W 
 

E(W)  =  0 × 0.94   +   25 × 0.04   +   100 × 0.02  =  0  +  1  +  2  =  3  = μW   
 
Var(W)  =  E[ (W - μW)2 ]  =  E[ W2 ]  -  2

Wμ    
 

=  [02 × 0.94   +   252 × 0.04   +   1002 × 0.02]   -  2
Wμ  

 
=  [  0  +  25  +  200 ]  -  2

Wμ   =    225  -  32  =  216  =  2
Wσ  

 
This could have been done also as   
 
(0 – 3)2 × 0.94   +   (25 – 3)2 × 0.04   +   (100 – 3)2 × 0.02   
 
=  9 × 0.94    +  484 × 0.04  +  9,409 × 0.02  =  216  =  2

Wσ  
 

SD(W)  =  σW  =  216   ≈  14.6969 
 
 



r r r  LINEAR COMBINATIONS OF RANDOM VARIABLES r r r 

{                                                          page                                                       © gs2003 29

Then for X 
 

E(X)  =  0 × 0.54   +   40 × 0.46   =   18.4  = μX 
 
Var(X)  =  E[ (X - μX)2 ]  =  E[ X2 ]  -  2

Xμ    
 

=  [ 02 × 0.54  +  402 × 0.46 ]  -  2
Xμ    

 
=  [  0  +  736 ]  -  2

Xμ   =  736 – 18.42  =  397.44 
 

This could have been done also as   
 
(0 – 18.4)2 × 0.54   +   (40 – 18.4)2 × 0.46 
 
=  338.56 × 0.54    +    466.56 × 0.46  =  397.44  =  2

Xσ  
 
SD(X)  =  σX  =  397.44   ≈  19.9359 

 
 
These two bets are certainly independent.    
 
Formula [1] gives immediately 
 

E[ T ] = E[ W + X ]  =  E[ W ] + E[ X ]  =  3 + 18.4  =  21.4 
 
E[ U ]  =  E[W + X – 25 ]  =  E[ W ] + E[ X ] – 25  =  3 + 18.4 – 25 = -3.6 

 
It is no surprise that E[ U ] < 0.   Hank is playing $25 in total, and his expected final 
value is -$3.60. 
 
Formula [2] gives 
 

SD[ T ] = σT  =  SD[ W + X ]  =  2 2
W Xσ + σ    =  216 397.44+   

 
=  613.44   ≈  24.77 

 
It happens also that SD[ U ]  = 24.77, since T and U are distinguished only by the -25 
summand, and this -25 does not contribute to the standard deviation.  Here the -25 plays 
the role of a0 in formula [2]. 
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Formula [3]:    If  X1, X2, …, Xn are random variables with Correlation(Xi , Xj) = ρij , 
then  

 SD(T)  =  σT  =  0
1

SD
n

i i
i

a a X
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑    

 

=  2 2

1
2

n

i i i j ij i j
i i j

a a a
= <

σ + ρ σ σ∑ ∑∑     =  2 2

1

n

i i i j ij i j
i i j

a a a
= ≠

σ + ρ σ σ∑ ∑∑  

 
* If all the ρij values are zero, this reduces to Formula [2]. 
* The decision between the last two terms depends on whether it’s easier to 

count cases with i less than j  or to count cases with i ≠ j.   
* These forms can also be expressed with Cov(Xi , Xj) = σij = ij i jρ σ σ , 

perhaps as SD(T)  

= ( ) ( )2

1
Var 2 Cov ,

n

i i i j i j
i i j

a X a a X X
= <

+∑ ∑∑  

= 2 2

1
2

n

i i i j ij
i i j

a a a
= <

σ + σ∑ ∑∑ , 

 
Example 3a:  A private lottery has 20 tickets, sold at $100 each.  There are three prizes, 
in amounts $800, $400, and $200.  Fran has purchased five tickets, and she uses 
X1, …, X5  to represent her gains.  Thus, for her first ticket, 
 

P[ X1 = 0 ] = 0.85  P[ X1 = 200 ] = 0.05 
 
P[ X1 = 400 ] = 0.05  P[ X1 = 800 ] = 0.05  

 
The probability distributions for X2, … X5 are identical. 
 
If G = X1 + … + X5  is Fran’s total gain, find E(G) and SD(G).   In this example, the Xi’s 
are correlated, and part of the problem is finding the correlation. 
 
Find first μX = E(X1) = E(X2) = … = E(X5).    (Since each Xi has the same distribution, 
there is no need to put a subscript on the X in the symbol μX .)  This is 
 

0 × 0.85   +   0.05 × 200   +   0.05 × 400   +   0.05 × 800 
 

=  0  +  10  + 20  +  40  =  70  = μX 
 
It is not a surprise that  μX  < 100,  the ticket cost. 
 
Formula [1] gives very quickly E(R) = μR  =  5 × 70  =  350.  Remember that Fran spent 
$500 for these tickets. 
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Next identify σX  =  SD(X1) = SD(X2) = … = SD(X5).   It’s easier to start with Var(X1).  
This is  
 

Var(X1)  =  ( )2
1E XX⎡ ⎤− μ⎣ ⎦   =  ( )2 2

1E XX − μ    

 
=  2 2 2 2 20 0.85 200 0.05 400 0.05 800 0.05 70× + × + × + × −  
 
=  20 2,000 8,000 32,000 70+ + + −    =   37,100  =  2

Xσ  
 

This could have been done also as   
 
(0 – 70)2 × 0.85   +   (200 – 70)2 × 0.05    
 

+   (400 – 70)2 × 0.05   +   (800 – 70)2 × 0.05 
 
=  (4,900) × 0.85   +   (16,900) × 0.05    
 

+   (108,900) × 0.05   +   (532,900) × 0.05 
 
=  37,100  =  2

Xσ  
 

Then SD(X1) =  σX  = 37,100   ≈  192.61. 
 
In the actual execution of this lottery, there will be 20 slips of paper, each with the name 
of a ticket purchaser, in a large bowl, and then three of these will be drawn out in 
sequence.  From the other probability perspective, let’s imagine instead that the bowl 

contains 20 tickets with the composition 
17 times

$0, $0, ..., $0, $200, $400, $800
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
1442443

.   Now Fran 

gets to make five selections from the bowl.  In this way of thinking, X1 represents Fran’s 
first selection, X2 her second selection, and so on.   
 
The complication in this problem is that the Xi’s are not independent.  After all, if Fran’s 
first selection gets the $800 prize, this prize is not going to be available to her other 
selections.  For X1 through X5 there are 10 correlations, but by symmetry they must all the 
same.   Let’s just find ρ12 .   This needs the joint distribution of (X1, X2).   Here are the 
probabilities: 
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  X2  
  0 200 400 800 

X1 

0 
17 16
20 19

×  17 1
20 19

×  17 1
20 19

×  17 1
20 19

×  

200 
1 17
20 19

×  0 
1 1
20 19

×  1 1
20 19

×  

400 
1 17
20 19

×  1 1
20 19

×  0 
1 1
20 19

×  

800 
1 17
20 19

×  1 1
20 19

×  1 1
20 19

×  0 

 
These probabilities are symmetric.  For example, the value in the box (X1 = 200, X2 = 0) 
is the same as that in the box (X1 = 0, X2 = 200). 
 
 
The covariance Cov(X1, X2)  =  E[ (X1 - μX) (X2 - μX) ] is needed.  It’s easiest to calculate 
from this form: 
 

E[ (X1 - μX) (X2 - μX) ]  =  E[X1 X2 ]  -  2
Xμ  

 
This is easy because many of the X1 X2 products are zero, and the probabilities are equal 

to the same 1 1
20 19

×  for all the non-zero products.   Thus 

 
Cov(X1, X2)  =  E[ (X1 - μX) (X2 - μX) ]  =  E[X1 X2 ]  -  2

Xμ  
 

=  2

0 200 400 200 800
1 1400 200 0 400 800 70
20 19

800 200 800 400 0

+ × + ×⎡ ⎤
⎢ ⎥+ × + + × × × −⎢ ⎥
⎢ ⎥+ × + × +⎣ ⎦

 

 
≈   -1,952.6316 
 
 

This gives Corr(X1, X2) = ρ12  =  ( )
( ) ( )

1 2

1 2

Cov ,
SD SD

X X
X X×

  =   1,952.3615
192.61 192.61
−

×
  ≈  -0.0526. 

 

Then Var(G)  =  Var(X1 + X2 + … + X5)  =  
5

2 2

1
2i i i j ij

i i j
a a a

= <

σ + σ∑ ∑∑ ,  and this is to 

be used with a1 = … = a5 = 1,  2 2
1 5...σ = = σ  = 2

Xσ  =  37,100,  and  σij = -1,952.6316.    
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The result is  
 

Var(G)  =  5 × 37,100   +   2 × 10 × (-1,952.6316)  =  146,447.3680 
 
This leads to SD(G)  =  146,447.3680   ≈  382.68. 
 
Thus, Fran’s expected gain is E(G) = 350 (which is less than the $500 she spent on the 
tickets) and her standard deviation of gain is SD(G) = $382.68. 
 
 
 
Example 3b: 
This is a continuation of Examples 1b and 2b, except that we now allow the stocks to 
have correlated gains.  Suppose that you invest $1,000 in stock A, for which the expected 
gain per dollar invested is 2.4¢, with a standard deviation of 6.7¢.   Suppose also that you 
also invest $3,000 in stock B, for which the expected gain per dollar invested is 3.8¢, with 
a standard deviation of 8.2¢.   The gains here are correlated, with ρ = 0.28.   Find the 
mean and standard deviation of the overall gains. 
 
As before, let A be the random gain from one dollar invested in stock A and let B be the 
random gain from one dollar invested in stock B.   The gain is R = 1,000 A  +  3,000 B.    
Using [3] (with a0 = 0, a1 = 1,000, and a2 = 3,000) and with σA = 0.067, σB = 0.082, and 
ρ = 0.28, we get  
 

SD(R) =  ( ) ( )2 22 21,000 3,000 2 1,000 3,000A B A Bσ + σ + × × ×ρσ σ    = 
 

 ( ) ( ) ( ) ( )2 2 2 21,000 0.067 3,000 0.082 2 1,000 3,000 0.28 0.067 0.082+ + × × × × ×  
 

=  4,489 + 60,516 + 9,229.92   =  74,234.92   ≈  272.46 
 

This represents $272.46.  This is slightly larger than the $254.96 found in Example 2b, in 
which the stocks were assumed to be uncorrelated.  In Example 3b, the stocks were 
assumed to have a positive correlation, meaning that they tend to move together.  As a 
result, the variability increases. 
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Finally, we’ll note one additional result related to two different linear combinations.   In 
this story, we still have the random variables X1, X2, …, Xn .   This time we consider two 
different linear combinations,  
 

T  =  0
1

n

i i
i

a a X
=

+ ∑   and  U  =  0
1

n

j j
j

b b X
=

+ ∑  

 
The symbols b0, b1, …, bn are also assumed to be non-random constants.  They may be 
known numbers or they may be treated as ordinary algebra symbols.   It is not critical to 
use the counter  j  in the definition of U, but it makes the work a little cleaner. 
 
 
Formula [4]:    If  X1, X2, …, Xn are random variables with Correlation(Xi , Xj) = ρij , 
then  

 Cov(T, U)  =  
1 1

n n

i j ij i j
i j

a b
= =

ρ σ σ∑∑   =  
1 1

n n

i j ij
i j

a b
= =

σ∑∑  

 
 
* Note that a0 and b0 do not appear in the covariance. 

* It follows from Formula [4] that Corr(T, U)  =  ( )
( ) ( )
Cov ,

SD SD
T U

T U×
 . 

 
Formula [4] applies directly to two different portfolio strategies over the same set of 
n stocks.  If stock 6 is in the T portfolio but not in the U portfolio, then the formula will 
have a6 > 0 and b6 = 0. 
 
 
If the two portfolios involve completely different sets of stocks (or in general any 
non-overlapping sets of random variables), it may be more convenient to use a slightly 
different setup.   Let X1, X2, …, Xn be the stocks for the T portfolio and let Y1, Y2, …, Yq  
be the stocks for the U portfolio.  Note the use of  q  here;  in general n ≠ q.   Now 
consider  
 

T  =  0
1

n

i i
i

a a X
=

+ ∑   and  U  =  0
1

q

j j
j

b b Y
=

+ ∑  

 
With this notation, Formula [4] is 

 

Cov(T, U)  =  
1 1

qn

i j ij i j
i j

a b
= =

ρ σ σ∑∑   =  
1 1

qn

i j ij
i j

a b
= =

σ∑∑  

 
 


