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“Uncertainty, Time-Varying Fear, and Asset Prices” ∗

Itamar Drechsler

This Internet Appendix serves as a companion to the paper “Uncertainty, Time-Varying Fear,

and Asset Prices”. It reports results not reported in the main text due to space constraints. I

present results in the order they appear in the main text.

I. Discussion of Alternative Approaches

I discuss potential alternative approaches to an equilibrium model aimed at jointly capturing

the properties of equity returns, option prices, and the variance premium.

Given their popularity in the asset-pricing literature, it is natural to consider models based on

habits (e.g., Campbell and Cochrane (1999), Menzly, Santos, and Veronesi (2004)) as a potential

alternative equilibrium approach to generating a large equity return and index option price pre-

mium. In habits models, variation in the surplus consumption ratio, or equivalently, risk aversion,

drives variation in the conditional moments of prices, such their risk premiums and conditional

variance. Having this single source drive all variation in valuations and risk premiums creates some

challenges for simultaneously confronting the targets considered by my paper. First, since shocks

to risk aversion under habits are driven by innovations in i.i.d consumption, they are relatively
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‘smooth’. In addition, risk-aversion is typically modeled as quite persistent to match the persis-

tence in the price-dividend ratio. However, matching options prices, the variance premium, and

conditional variance dynamics requires some abrupt, non-normal shocks and relatively faster mean

reversion. Hence, capturing the variation in these series along with the price-dividend ratio using

only the surplus consumption ratio represents a serious challenge to this approach. Second, to get

equity return realizations that are large and carry a high price of risk, habits models will generally

require large movements in consumption. This is problematic for habits models that follow Camp-

bell and Cochrane (1999) in specifying an i.i.d. endowment process. Du (2010) shows that the

implied-volatility skew implied by the calibrations of Campbell and Cochrane (1999) and Menzly,

Santos, and Veronesi (2004) are very off far from the data and notes that alternative calibrations

of these models cannot resolve this inconsistency.

Another popular paradigm in the asset pricing literature is the rare disasters framework of Rietz

(1988) and Barro (2006) and its extensions to time-varying disaster intensity by Gabaix (2011) and

Wachter (2011). These models embed a ‘peso problem’, whereby investors price in the possibility of

a large negative drop in consumption even though one does not appear in US historical data. This

allows the model to match the large equity premium with low levels of risk aversion. In principle

such a model should be capable of producing a steep implied volatility skew and a large variance

premium, since consumption disasters generate large realized equity returns that are highly priced.

However, Backus, Chernov, and Martin (2011) argue that disasters models calibrated as in Barro

(2006) generate an implied volatility skew that is actually far too steep relative to the data. In

addition, to generate the empirically observed conditional variance dynamics and higher moments

of realized returns, such models would require a lot of variation in the conditional disaster intensity,

and this is likely to worsen their counter-factual implications for the implied volatility surface. The

model in this paper does not rely on a ‘peso problem’. The benchmark model used by the agent

fits the observed data well and the alternative models about which the agent is concerned are

statistically difficult to distinguishable from it.

Du (2010) combines both of the above mechanisms to generate the implied-volatility skew. He
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embeds rare consumptions disasters into a model with external habits, allowing him to address

some of the drawbacks of habits for option pricing. The rare disasters in his model induce a large,

negative return realization that carries a high price of risk. Due to habits, larger jumps are realized

when risk aversion is already high, so jumps carry a large risk premium and produce a high value

for out-of-the-money (otm) puts. Moreover, this allows his model to use smaller disasters than

in Barro (2006) and avoid the excessively steep implied volatility skew it implies. While disasters

help the model in Du (2010) to address these challenges, there remain some important limitations.

First, the model equates aggregate consumption with dividends, and equity is modeled as the claim

to aggregate consumption. While this generates higher risk prices for ‘dividends’, this comes at

the cost of matching the properties of dividends. More importantly perhaps, this implies that

the model must generate excessively volatile changes in the price-dividend ratio in order to match

unconditional return volatility. In addition, while the model does generate a high unconditional

return volatility, it does not match the dynamic properties of conditional variance or the higher

moments of equity returns. It also does not match the properties of the variance premium, an

important direct measure of the option price premium. Unlike disasters models, which use a low

risk aversion and hence ‘resolve’ the equity premium puzzle, the combined habits-disasters model

still requires a high average risk aversion of 34 despite the embedded ‘peso problem’. In contrast,

the model in this paper uses a risk aversion of only 5.

Benzoni, Collin-Dufresne, and Goldstein (2011) construct a model where there is a rare and

large downward jump in a persistent component of consumption growth. In their model, the

representative agent learns about which of two regimes controls the intensity of this rare jump.

Following Bansal and Yaron (2004), this representative agent has Epstein-Zin (1989) preferences

with a preference for early resolution of uncertainty and an IES greater than one. This implies that

a large negative shock to growth causes both a big drop in stock prices and an increase in marginal

utility. The risk of such a shock increases the prices of otm put options and leads to a steep implied

volatility skew. BCDG focus on the stock market crash of 1987, viewing it as being caused by an

update in the representative agent’s perceived likelihood of being in the high jump intensity regime.

The increased perception of being in the ‘bad’ regime causes a stock market crash and a persistent
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steepening in the implied volatility skew, though the jump realization that catalyzes this update is

relatively small. Similar to the model of this paper, and in contrast to the consumption disasters

models, jump shocks in the BCDG model hit the rate of cash flow growth rather than its level, so

the levels of consumption and dividends follow a continuous, smooth process. However, the jumps

calibrated in this paper are smaller and more frequent than in BCDG (they are ‘infrequent’ rather

than ‘rare’). Moreover, in this paper it is the desire for robustness against model uncertainty,

calibrated using statistical detection probabilities, rather than the risk of being in the ‘bad’ regime,

that induces a heightened fear of jumps and a demand for puts.

Shaliastovich (2011) also generates the implied volatility skew in a model with an Epstein-Zin

representative agent and fundamentals driven by a long-run risks process. In his model the long-run

risk component in cash flow growth is latent and the agent must learn it from a set of ‘signals’

received each period. The ‘noisiness’ of the signals (their cross-sectional standard deviation) is

modeled as a persistent and volatile process that gets hit with jump shocks. In the model, periods

in which the signals are noisier are characterized by volatile updates to the agent’s filtered estimate.

Hence, the noisiness of the signals acts like the volatility of the long-run risk component and the

jump shocks to it cause jumps in prices, allowing the model to generate a high price for otm put

options and a steep implied volatility skew. Shaliastovich (2011) does not, however, study the

size of the embedded variance premium or its predictive power for stock returns. An issue with

the approach followed by the model is that standard Bayesian learning implies that the filtered

estimate for a latent variable will be less volatile than the variable itself, making it more difficult

to generate high risk premiums in the model. More importantly, under Bayesian learning the

conditional volatility of the latent state estimate varies inversely with signal noisiness, since high

noise means the set of signals are less informative for updating. Therefore, with a Bayesian learner

the state variable will update more smoothly during periods of high signal noise, implying less

volatile stock returns and reducing the value of options. Instead, Shaliastovich (2011) uses a non-

Bayesian representative agent who has ‘recency bias’ and sub-optimally puts excessive weight on

recent observations.
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Bollen and Whaley (2004) and Garleanu, Pedersen, and Poteshman (2009) argue that net buying

pressure from investors for index options, coupled with an imperfect ability of market makers to

hedge net option supply, lead to a high price premium for otm puts. This explanation takes the

demand for options as exogenous. Hence, it does not explain why investors are willing to pay the

high option premium or why, given the high (presumably risk-adjusted) returns available for selling

options, other market participants, such as hedge funds, do not increase their option supply and

thereby reduce the price premium.

A potentially interesting approach for option pricing that has not yet been implemented (to

my knowledge) involves a representative agent with Disappointment Aversion preferences as in

Gul (1991) or its extension to Generalized Disappointment Aversion (Routledge and Zin (2010)).1

These preferences penalize outcomes where the agent’s realized utility is below some fraction of

his certainty equivalent. They have intuitive appeal for option pricing because put options can be

used to help avoid the ‘disappointing’ outcomes. As shown in Routledge and Zin (2010), under

Disappointment Aversion the agent’s Euler equation involves a scaling up of the probabilities of

disappointing states by a constant proportion. The drawback to this is that a constant probability

scaling is not particularly well-suited to generating the implied volatility skew. To generate a steep

skew, one would prefer a state-price density that continues to increase as outcomes become more

negative, rather than staying constant. This is necessary to make puts that are further out-of-

the-money increasingly valuable compared to Black-Scholes. This feature of the data is implied

by the skew since the elasticity of put prices with respect to their Black-Scholes implied volatility

decreases with their moneyness. Hence, the put price premium relative to Black-Scholes must

increase as moneyness decreases, rather than stay flat, to generate a steep and monotonic skew.

Generally speaking, since Disappointment Aversion is characterized by first-order risk-aversion, it

“implies proportionately greater aversion to small risks than large ones” (Backus, Routledge, and

Zin (2004)) and therefore does not seem particularly well suited for explaining otm put prices.

1I thank the Editor for suggesting a discussion of this approach.
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II. Conditional Variance Forecast

I create a proxy for the conditional expectation of total return variation using the one-step

ahead forecasts from a simple regression. I use the same regression specification used in Drechsler

and Yaron (2009), extended to the longer sample. For the conditional forecast series, I use the one-

step-ahead (e.g one-month ahead) forecast implied by the regression. The regression is estimated

using the the full data sample, except for the rolling regression results in Table III. A brief summary

is given below for completeness. See Drechsler and Yaron (2009) for a more detailed discussion.

Let Fut2
t and Ind2

t denote the realized variance in month t on the S&P 500 Futures and S&P 500

Index, respectively. The realized variance for a given month is found by summing up the squared

five-minute log returns over the whole month. Five-minute log returns are calculated by taking the

difference in the log price over 5 minute intervals. The conditional forecast is then the forecast of

Fut2
t+1 at time t. I follow Drechsler and Yaron (2009) by projecting it on lagged values of Ind2

and VIX2. The projection is estimated by OLS and the forecasts from it serve as the proxy for

the series of conditional expectations of total return variation. The estimated coefficients are given

below, with t-statistics in parenthesis, calculated using Newey-West (HAC) standard errors with 4

lags.

Fut2
t+1 = α + β1 Ind2

t + β2 VIX2
t + εt+1 R2

0.25 0.35 0.54 0.46

(0.12) (3.82) (5.99)

The regression R2 is 46%. Due to the large, rapid changes in realized variance during the

financial crisis, the full-sample variance predictability is somewhat lower than during the pre-crisis

period (about 59%). However, the coefficient estimates remain very similar to the ones estimated

by Drechsler and Yaron (2009) in a pre-crisis period.

As explained in Secton II, I impose on the forecast proxy series the theoretical restriction that

the physical expectation of total return variance be less than the risk-neutral expectation (which is

given by VIX2). I do this by truncating the value of the forecast series from above at the value of
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VIX2. This is equivalent to imposing nonnegativity on the estimated variance premium series. This

is similar to Campbell and Thompson (2007), who argue in favor of imposing theoretical constraints

on their forecasts. This restriction only has a noticeable impact on one of the 240 forecasts (the

one for 2009.10).

Finally, for Table III, I use the one-step ahead forecasts from the same projection, but estimated

on a rolling basis using only past data. Once again, I impose the same theoretical restriction using

the same truncation scheme. The first 24 months of data are used to initialize the rolling regression

estimates, so the proxy series begins in January 1992.

III. Derivation of Measure Changes

Recall that ηt = ηdZt ηJt . I derive expressions for ηdZt and ηJt corresponding to the alternative

model dynamics discussed in the main text.

ηdZt solves the SDE
dηdZt
ηdZt

= hTt dZt. An application of Ito’s lemma shows that its solution is:

ηdZt = exp

(∫ t

0
hTs dZs −

1

2

∫ t

0
hTs hsds

)

Note that ηdZt is a martingale and that ηdZ0 = 1. Let P (η) be the measure that results from

application of η to the reference measure P . Girsanov’s theorem then implies that Zηt = Zt−
∫
htdt

is a Brownian motion under P (η). Writing the dynamics (1) in terms of Zηt alters the drift by

adding to it the term Σ(Yt)ht, as in (2). This accounts for the perturbation to the drift under P (η).

Since the Poisson process arrivals are (conditionally) independent and the jump sizes are i.i.d,

the expression for ηJt can be written as ηJ1t η
J2
t . . . where ηJit changes the probability law for the i-th

jump component. I construct such terms to change the distribution of gamma-distributed jumps

and normally distributed jumps.

Consider first gamma-distributed jumps, ξi ∼ Γ(k, θ), where k and θ are the shape and scale

parameters respectively. I want to construct the corresponding term ηJit in the Radon-Nikodym
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derivative so that under P (η) the jump distribution is given by ξηi ∼ Γ
(
k, θ

1−θb

)
, where b is the

parameter that changes the gamma distribution’s scale. I further specify the measure change so

that the corresponding jump intensity changes from lt,i to lηt,i = exp(a)lt,i, i.e. it is scaled by the

term exp(a) where a is a perturbation parameter. The desired ηJit solves the following SDE:

dηJit = (exp [a+ bξi − lnψi(b)]− 1) ηJit−dNt − (exp(a)− 1) lt,iη
Ji
t dt

where ψi(b) is the moment-generating function of ξi evaluated at b. An application of Ito’s lemma

shows that ηJit is given by:

ηJit = exp

(∫ t

0
(a+ bξi,s − lnψi(b)) dNs −

∫ t

0
ls,i (exp(a)− 1) ds

)

Note that the process ηJit is a martingale and ηJi0 = 1. Girsanov’s theorem for jump processes then

implies that under P (η), the jump intensity is scaled by exp(a), as desired. Furthermore, under

P (η) the moment-generating function of ξi is given by:

ψηi (u) =
ψηi (b+ u)

ψi(b)

Straightforward substitution of the mgf for a gamma distribution shows that ψηi (u) is the mgf of a

Γ
(
k, θ

1−θb

)
, as desired.

Finally, I consider normally-distributed jumps, ξk ∼ N (µ, σ2). I want to construct the cor-

responding term ηJkt in the Radon-Nikodym derivative so that under P (η) the jump distribution

is given by ξηk ∼ N
(
µ+ ∆µ, σ2sσ

)
, where ∆µ shifts the mean and sσ scales the variance of the

distribution. I further specify the measure change so that the corresponding jump intensity changes

to lηt,k = exp(a)lt,k. The desired ηJkt is given by:

ηJkt = exp

(∫ t

0

(
a+ b2ξ

2
k + b1ξk −

1

2

[
(µ+ ∆µ)2

sσσ2
− µ

σ2
+ ln sσ

])
dNs −

∫ t

0
lt,k (exp(a)− 1) ds

)

where b1 = µ(1−sσ)+∆µ
sσσ2 and b2 = 1

2
1
σ2

(
1− 1

sσ

)
. By construction, the process ηJkt is a martingale
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and ηJkt = 1.

Finally, since the the terms composing ηt are all martingales and have zero cross-variation (they

are conditionally independent) ηt is a martingale with η0 = 1 and therefore the measure P (η) is

indeed a probability measure.

IV. Equilibrium Consumption-Wealth Ratio

In equilibrium, markets clear so that the representative investor must hold all of his wealth in

the aggregate consumption claim. To derive the equilibrium consumption-wealth ratio, consider

the consumption and portfolio problem of the representative investor in this endowment setting.

Under the reference measure, the price of the aggregate consumption claim Pc follows an Itô process

of the form:

dPc,t = (Pc,tuc,t − Ct)dt+ Pc,tσ
T
c,tdZt + Pc,t−(exp(∆ lnPc,t)− 1)

There is also a risk-free money market account in zero-net supply, paying an endogenously de-

termined rate rf,t. The investor chooses the proportion αt of his wealth, Wt, to invest in the

consumption claim. His budget constraint is then:

dWt = Wt [αt(uc,t − rf,t) + rf,t] dt+ αtWtσ
T
c,tdZt + αt(exp(∆ lnPc,t)− 1)− Ctdt

The lifetime utility of the investor J(Wt, Ỹt) is a function of Wt and the state variables for the

dynamics, Ỹt. The investor’s HJB equation is:

0 = max
{αt,Ct}

min
P (ηt)

f(Ct, Jt) + Eηt [dJ ]

subject to the restriction on R(ηt). We are interested in the investor’s first-order condition with

respect to Ct. Writing out the Lagrangian and taking the derivative with respect to Ct, the FOC

is:

fC(C, J) = JW
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Homogeneity of the preferences in wealth and linearity of the budget constraint imply that the

value function must take the form J(W, Ỹ ) = H(Ỹ )W
γ

γ for some function H. Substituting in for

f(C, J) and JW their functional forms, simplifying, and rearranging, one obtains:

C

W
= H(Ỹ )

1−ψ
γ δψ (IA.1)

We want to obtain the consumption-wealth ratio in terms of the function g(Ỹ ). In equilibrium,

the market clears and the investor consumes exactly the aggregate consumption stream, so lifetime

utility is given by the equilibrium value of J in (6). Equating the two expressions for J and dividing

through by W γ gives:

H(Ỹ ) = exp
(
γg(Ỹ )

)( C
W

)γ
Substituting this in for H(Ỹ ) in (IA.1) and solving for C

W gives the result:

Ct
Wt

= exp
(
−ρg(Ỹt)

)
δ (IA.2)

V. Equity Return

I follow the approach of Eraker and Shaliastovich (2008). Let lnVt+s = lnMt+s − lnMt +∫ t+s
t d lnRm,u. The Euler equation implies that Vt is a martingale under the worst-case measure:

Eηt [d lnV c
t +

1

2
(d lnVt)

2 + exp(∆ lnVt)− 1] = 0 (IA.3)

where d lnVt = d lnMt + d lnRm,t. Log-linearizing d lnRm,t around the unconditional mean of

vm,t gives: d lnRm,t = κ0,mdt + κ1,mdvm,t − (1 − κ1,m)vm,tdt + d lnDt. Further substituting into

this expression the conjecture (11) for vm,t gives (12), which expresses d lnRm,t in terms of A0,m,

Am and the state variables. Substituting the expression for d lnRm,t into d lnVt along with the
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expression for d lnMt (9) gives:

d lnVt = −θδdt− (1− θ)δ exp
(
−ρA0 − ρA′Ỹt

)
dt+ κ0,mdt− (1− κ1,m)(A0,m +A′mYt)dt+ χ′mdYt

where χm = (−Λ + κ1,mAm + δd). I now employ the exact same log-linearization of exp(−ρA0 +

−ρA′Ỹt) given in Appendix Appendix C to replace it with κ0 +κ1ρA0 +κ1ρA
′Ỹt. Then substituting

d lnVt into (IA.3) and evaluating the expectation results in the following equation:

0 = −θδdt− (1− θ) [δκ0 + δκ1ρA0] dt+ κ0,mdt− (1− κ1,m)A0,mdt+ χ′mE
η
t [dY c

t ]

+
[
(θ − 1)δκ1ρ(Â− δc) + (κ1,m − 1)Am

]′
Ytdt+

1

2
χTmΣtΣ

T
t χm + lηt

′
(ψη(χm)− 1) (IA.4)

We can now use the method of undetermined coefficients. This equation must hold for any value

of Yt, which implies that for each component in Yt the sum of the terms multiplying it must be

0. Furthermore, the sum of the constant terms must be 0. Thus, the equation implies a system of

n + 1 equations whose solution is the n × 1 vector Am and the scalar A0,m. The solution can be

found numerically and verifies the conjectured functional form (11) for vm,t.

VI. Integrated Variance and Risk-Neutral Dynamics

For convenience, let ∗ ∈ {P, η,Q} refer to either the reference, worst-case, or risk-neutral

measure, respectively. Equation (12) implies that E∗t (d lnRm,t)
2 = B′rΣtΣ

′
tBr + B2

r
′ [
E∗(ξ2

t ) · l∗t
]
,

where B2
r denotes the vector obtained by squaring the components of Br. We want to calculate

the expectation of integrated variance: E∗t [
∫ T
t (d lnRm,s)

2] =
∫ T
t E∗t (d lnRm,s)

2. To that end, it is

useful to write E∗t (d lnRm,t)
2 = α∗0 +α∗′Yt where α0 is a scalar and α is a vector of loadings on the

state Yt. The law of iterated expectations implies that:
∫ T
t E∗t (d lnRm,s)

2 =
∫ T
t (α∗0 + α∗TE∗t (Yt))
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A straightforward expansion of the expression for E∗t (d lnRm,t)
2 shows that:

α∗0 = B′rhBr

α∗′ = B′rHBr +B2
r
′
diag(E∗(ξ2

t ))l∗1

where B′rHBr denotes a row vector where the i-th component is B′rHiBr. From this we see that

only α∗ differs across the measures.

In order to calculate expectations of future values of Yt, which is required to calculate the

integral, it is easiest to express the dynamics of Yt in terms of demeaned jump shocks (i.e. using

the ‘compensated’ Poisson processes). The general form of compensated dynamics is:

dYt = µ∗ + K̂∗Yt + ΣtdZ
∗
t + ξ∗t · dN∗t − E∗t (ξ∗t · dN∗t )

where K̂∗ is the resulting transition matrix which incorporates the uncompensated transition ma-

trix, K∗, and the compensation to the jump terms. A standard calculation then gives that:

E∗t (Yt+∆t) = exp(K̂∗∆t)Yt + K̂∗
−1
(

exp(K̂∗∆t)− I
)
µ∗

where I is the identity matrix. A straightforward calculation of the integral in
∫ T
t (α∗0 +α∗TE∗t (Yt))

results in the following expression for expected integrated variance:

E∗t

[∫ t+∆t

t
(d lnRm,s)

2

]
= α∗0∆t+ α∗′

[
ΘYt + K̂∗

−1
[Θ− I ·∆t]µ∗

]
(IA.5)

where Θ = K̂∗
−1

(exp(K̂∗∆t)− I).

Finally, I derive the parameters of the compensated dynamics under the three measures. Recall

that ψ∗(u) denotes the stacked vector of moment-generating functions evaluated at the vector

u. Then we have that E∗t (ξ∗t · dN∗t ) = diag(ψ∗(1)(0))l∗1q
2
t where ψ∗(1)(0) is the first derivative

of ψ∗(u) evaluated at 0. Let δq be the selector vector for q2
t , i.e. δ′qYt = q2

t . Then denote by
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[l∗1]q a matrix that has the vector l∗1 in the ‘q-th’ column, so that [l∗1]qδq = l∗1, and all other

columns set equal to the 0 vector. The transition matrix for the compensated dynamics under

P is then given by: K̂P = K + diag(ψ(1)(0))[l1]q and µP = µ. Under the worst-case model:

K̂η = K+ [Σtht/q
2
t ]q + diag(ψη(1)(0))[lη1 ]q and µη = µ. The difference from P comes from the drift

perturbation and the change in the jump intensity and moment-generating function. Finally, under

the risk-neutral measure, KQ = K+[Σtht/q
2
t ]q−HΛ+diag(ψQ

(1)
(0))[lQ1 ]q and µQ = µ−hΛ, where

HΛ denotes an n× n matrix with k-th column equal to HkΛ.

The risk-neutral moment-generating function and jump intensity are determined by the worst-

case moment-generating function and jump intensity and the price of risk vector Λ. The moment-

generating functions are given by ψQ(u) = ψη(−Λ + u)/ψη(−Λ), where the division is component-

wise. The jump intensity vector is lQq = ψη(−Λ) · lηt . For a proof see Proposition 5 in Duffie, Pan,

and Singleton (2000). The risk-neutral expressions show that in going from η to Q, the change in

jump intensities and distributions depends on the prices of risk Λ. Risk-neutralization tilts proba-

bilities towards ‘high-price’ states of the world. The direction and amount of the ‘tilt’ depends on

the magnitude of Λ. For example, note that if Λ = 0 the worst-case and risk-neutral quantities are

identical.

VII. Detection Error Probabilities

Detection error probabilities are a useful tool for calibrating model uncertainty that is due to

Anderson, Hansen, and Sargent (2003). The detection error probability gives the probability that,

using a likelihood-ratio test, a decision maker will incorrectly reject the worst-case model in favor

of the reference model based on a data sample of a given length T . This is an important statistic

because the investor is exactly worried about the possibility that the data has led him to favor the

reference model although the true data-generating process is the worst-case model. I now explain

how the detection error probability can be calculated in terms of the Radon-Nikodym process ηt.

The likelihood ratio of the worst-case model to the reference model is exactly given by the
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Radon-Nikodym derivative ηt. Therefore, the probability at time zero of making a detection error

based on a sample of length T is Probη(ln ηT < 0|F0, η0 = 1). Note that the probability is evaluated

under the worst-case measure. For illustration, I derive the detection error probability for an i.i.d

pure diffusion reference model and then discuss how it can be calculated for the framework in this

paper.

As Appendix III shows, in a pure diffusion setting ln ηT =
∫ T

0 hTt dZt− 1
2

∫ T
0 hTt htdt. Substituting

in dZt = dZηt +htdt gives an expression that is more convenient for evaluation under the worst-case

measure:

ln ηT =

∫ T

0
hTt dZ

η
t +

1

2

∫ T

0
hTt htdt

Now consider the distribution of ηT under the worst-case measure. Taking expectations gives

Eη0 [ln ηT ] =
1

2

∫ T

0
Eη0
[
hTt ht

]
dt =

1

2

∫ T

0
2ϕ = ϕT

When the reference and worst-case models are i.i.d, ht is constant. It then follows that ln ηT has a

normal distribution with variance T × hTh = 2ϕT , i.e. ln ηT
η∼ N (ϕT, 2ϕT ). The detection error

probability is then:

Probη(ln ηT < 0|F0, η0 = 1) = Prob

(
N (0, 1) <

−ϕT√
2ϕT

)
= Prob

(
N (0, 1) <

−1√
2

√
ϕT

)

Therefore, in this simple case, the detection error probability is Φ(−1√
2

√
ϕT ), where Φ is the cdf of

the standard normal distribution.

In general, a closed-form expression for the detection error probability is not available since

the distribution of ln ηT is not known in closed-form. However, for a general class of specifications

that includes the affine setting of this paper, the detection error probability can be calculated

numerically via Fourier inversion. As Maenhout (2006) shows, using the expression for ηT from

Appendix III, one can find the (conditional) characteristic function of ηT in closed-form (up to a

system of ODEs). The exact detection error probability can then be calculated numerically via
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a Fourier inversion. This methodology is similar to the one used to calculate option prices in

affine settings, as developed in Duffie, Pan, and Singleton (2000). Maenhout (2006) contains a

detailed derivation. In calculating the detection error probabilities for the calibrated model, I set

the time-0 value of the state vector equal to its unconditional mean. Except for short samples, the

detection-probabilities are relatively insensitive to the time-0 value of the state vector.

VIII. An Option-Extracted Uncertainty Series

I obtain a time series of q2
t and σ2

t from the empirical options data by using the model-based

option prices. I do this by finding the values of these two state variables that provide the best

fit to a cross-section of implied-volatilities at each date t using the calibrated model. Although

technically xt also effects option prices via the risk-free rate, this effect is minuscule and should be

swamped by any noise in the price data. I therefore fix xt at its unconditional mean. Using at least

two implied-volatilities on a given date t, one can solve for the values of the two state variables

that generates the best model fit to the data. While using exactly two implied-volatilities generates

an exact fit, one can include additional options and do a (non-linear) least-squares fit in order to

attenuate the impact of any data noise.

Figure IA.3 shows the extracted series obtained by fitting the model-based implied volatilities to

their empirical counterparts for strikes with moneyness of 1, 0.9, and 0.8 at a 1-month maturity. For

each month, I use the implied volatilities for the last day of the month. The series were obtained

from CSFB and span 1998.9 to 2008.7. A moneyness of 0.8 represents put options that are far

out-of-the-money and should be informative regarding investor’s fears of negative jump shocks.

The figure shows that the implied q2
t series is volatile and is occasionally hit by extreme spikes,

while the implied σ2
t series is smoother. The extreme spikes in q2

t correspond to the the periods

of the 1998 LTCM crisis, September 11th, and the corporate scandals of 2002. Both series are

low and tranquil for a period that begins in 2004 and ends in 2007. The time-series properties of

the series appear to be overall consistent with those implied by the calibrated model. The means
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of the implied (σ2
t , q

2
t ) are (1.17, 1.04), which is close to their population means of 1, while their

standard deviations are (0.64, 1.12), which is close to the population values of (0.69, 1.19). The

autocorrelations of the implied (σ2
t , q

2
t ) are 0.80 and 0.68 respectively, which are somewhat lower

than their population counterparts, while the correlation between the two series is 0.15.
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Figure IA.1: Implied Volatilities: Model and Data
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The figure plots implied volatilities from empirical option prices and for option prices calculated
for the model of Table IV. The plots show implied-volatility curves for maturities of 1, 3,
and 12 months. Strikes are expressed in moneyness (Strike Price/Spot price). The top plot
shows the mean of daily implied volatilities for S&P 500 index options for the period 1999.10-
2008.6, as quoted in the over-the-counter market. The bottom plot shows the model-based
implied volatilities for option prices obtained when the model’s state vector is set equal to its
unconditional mean.



Figure IA.2: Implied Volatilities: No-Uncertainty Model and Data
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The figure plots the implied volatilities from empirical option prices and for option prices calcu-
lated for Model 1-B, which was used in the comparative statics exercise in Table VIII. The plot
shows curves for maturities of 1, 3, and 12 months. Strikes are expressed in moneyness (Strike
Price/Spot price). The top plot shows the mean of daily implied volatilities for S&P 500 index
options for the period 1999.10-2008.6, quoted in the over-the-counter market. The bottom plot
shows the model-based implied volatilities for option prices obtained when the model’s state
vector is set equal to its unconditional mean.



Figure IA.3: Option-Implied Time Series of State Variables
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The figure plots the time-series of q2t and σ2
t extracted from empirical option prices using the

model of Table IV. The sample is 1998.9-2008.7.
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