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1. Introduction
We rely on the actions of our friends, relatives, and neigh-
bors for guidance in many decisions. This is true of both
minor decisions, like where to go for dinner or what movie
to watch tonight, and major, life-altering ones, such as
whether to go to college or get a job after high school.
This reliance may be justified because others’ decisions
are informative: our friends’ choices reveal some of their
knowledge, which potentially enables us to make better
decisions for ourselves. Nevertheless, in the vast majority
of real-life situations, we view the implicit advice of our
friends with at least some skepticism. In essentially any
setting in which we would expect to find social learning,
preferences influence choices as much as information does.
For instance, upon observing a friend’s decision to patron-
ize a particular restaurant, we learn something about the
restaurant’s quality, but her decision is also influenced by
her preference over cuisines. Similarly, a stock purchase
signals both company quality and risk preferences. In each
case, two individuals with the same information may rea-
sonably choose opposite actions.

The structure of our social network determines what
information we can obtain through social ties. This struc-
ture comprises not only the pattern of links between indi-
viduals, but also patterns of preferences among neighbors.
Since differences in preferences impact our ability to infer
information from our friends’ choices, these preference pat-
terns affect the flow of information. In real-world networks,
homophily is a widespread structural regularity: individu-
als interact much more frequently with others who share
similar characteristics or preferences.1 To understand the
effects of network structure on information transmission,
we must therefore consider how varying preference dis-

tributions, and the extent of homophily, influence social
learning.
In this paper, we study a sequential model of social learn-

ing to elucidate how link structure and preference structure
interact to determine learning outcomes. We adopt a partic-
ularly simple representation of individual decisions, assum-
ing binary states and binary actions, to render a clear intu-
ition on the role of the network. Our work builds directly
on that of Acemoglu et al. (2011) and Lobel and Sadler
(2015), introducing two key innovations. First, we signif-
icantly relax the assumption of homogeneous preferences,
considering a large class of preference distributions among
the agents. Although all agents prefer the action matching
the underlying state, they can differ arbitrarily in how they
weigh the risk of error in each state. Second, we allow
correlations between the link structure of the network and
individual preferences, enabling our study of homophily.
Our principal finding is that network link density deter-

mines how preference heterogeneity and homophily will
impact learning. In a relatively sparse network, diverse
preferences are a barrier to information transmission: het-
erogeneity between neighbors introduces an additional
source of signal noise. However, we find that sufficiently
strong homophily can ameliorate this noise, leading to
learning results that are comparable to those in networks
with homogeneous preferences. In a dense network, the
situation is quite different. If preferences are sufficiently
diverse, dense connectivity facilitates learning that is highly
robust, and too much homophily may lead to inefficient
herding. Homophilous connections offer more useful infor-
mation, but the information provided through additional
ties quickly becomes redundant. Conversely, diverse ties
provide less information individually, but there is more
independence between observations. Hence, the value of
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a homophilous connection versus a diverse connection
depends on the other social information available to an
individual.

Our formal analysis begins with sparse networks, mean-
ing networks in which there is a uniform bound on how
many neighbors any agent can observe. We first present a
specialized example to highlight key mechanisms underly-
ing our results. There are two distinct reasons why pref-
erence heterogeneity reduces the informational value of
an observation. One source of inefficiency is uncertainty
about how our neighbors make trade-offs. Perhaps surpris-
ingly, there is additional inefficiency simply by virtue of
the opposing trade-offs agents with different preferences
make. Consider a diner who prefers Japanese food to Ital-
ian. When choosing between restaurants, this diner might
default to a Japanese restaurant unless there is strong evi-
dence that a nearby Italian option is of higher quality.
Observing this individual enter a Japanese restaurant is a
much weaker signal of quality than observing the same
individual enter an Italian restaurant. Consequently, this
observation is unlikely to influence a person who strongly
prefers Italian food. When connections are scarce, long-
run learning depends upon individual observations carrying
a greater amount of information, and homophily reduces
inefficiency from both sources.

Further results show that preference heterogeneity is
generically harmful in a sparse network. Theorem 1 shows
that we can always render asymptotic learning impossible
via a sufficiently extreme preference distribution. Moreover,
we find that the improvement principle, whereby agents
are guaranteed higher ex ante utility than any neighbor,
breaks down with even a little preference diversity. The
improvement principle is a cornerstone of earlier results
in models with homogeneous preferences (Banerjee and
Fudenberg 2004, Acemoglu et al. 2011), but we show that
there can be no improvement principle unless strong pref-
erences occur much less frequently than strong signals.
Homophily reduces the inefficiency from preference diver-
sity by rescuing the improvement principle: if an agent can
identify a neighbor with preferences very close to her own,
then she can use her signal to improve upon that neighbor’s
choice. We define the notion of a strongly homophilous
network, in which each agent can find a neighbor with arbi-
trarily similar preferences in the limit as the network grows,
and we find that learning in a strongly homophilous net-
work is comparable to that in a network with homogeneous
preferences. Moreover, adding homophily to a network that
already satisfies the improvement principle will never dis-
rupt learning.

In contrast, when networks are dense, preference het-
erogeneity plays a positive role in the learning process.
When agents have many sources of information, the law
of large numbers enables them to learn as long as there is
some independence between the actions of their neighbors.
If the support of the preference distribution is sufficiently

broad, there are always some types that act on their pri-
vate information, creating the needed independence. Goeree
et al. (2006) find this leads to asymptotic learning in a
complete network even with bounded private beliefs. The-
orem 4 generalizes this insight to a broad class of net-
work structures, showing that learning robustly succeeds
within a dense cluster of agents as long as two condi-
tions are satisfied: there is sufficient diversity within the
cluster, and agents in the cluster are aware of its exis-
tence. Since homophily reduces the diversity of preferences
among an agent’s neighbors, it has the potential to inter-
fere with learning in a dense network. Example 4 shows
that if homophily is especially extreme, with agents sorting
themselves into two isolated clusters based on preferences,
informational cascades can emerge, and learning is incom-
plete. We might imagine a network of individuals with
strongly polarized political beliefs, in which agents on each
side never interact with agents on the other. Interestingly, a
small amount of bidirectional communication between the
two clusters is sufficient to overcome this failure. The sem-
inal paper of Bikhchandani et al. (1992) emphasized the
fragility of cascades, showing that introducing a little out-
side information can quickly reverse them. Our result is
similar in spirit, showing that in the long run, the negative
impact of homophily on learning in dense networks is also
fragile.
We make several contributions to the study of social

learning and the broader literature on social influence. First,
we show clearly how preference heterogeneity has dis-
tinct effects on two key learning mechanisms. This in turn
helps us understand how the network affects long-run learn-
ing. Most of the social learning literature assumes that
all individuals in society have identical preferences, dif-
fering only in their knowledge of the world.2 Smith and
Sorensen (2000) offer one exception, showing that, in a
complete network, diverse preferences generically lead to
an equilibrium in which observed choices become unin-
formative. However, a key assumption behind this result
is that preferences are nonmonotonic in the state: differ-
ent agents may change their actions in opposite directions
in response to the same new information. This excludes
the case in which utilities contain a common value com-
ponent, which is our focus. Closer to our work, Goeree
et al. (2006) consider a model with private and common
values in a complete network, obtaining a result that we
generalize to complex dense networks. Models that situate
learning in the context of investment decisions have also
considered preference heterogeneity. This work finds that
heterogeneity hinders learning and may increase the inci-
dence of cascades, leading to pathological spillover effects
(Cipriani and Guarino 2008). Our innovation is the incorpo-
ration preference heterogeneity and complex network struc-
ture into the same model. We obtain results for general
classes of networks, providing new insights on the under-
lying learning mechanisms.
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In tandem with our study of preference diversity, we
shed light on the impact of homophily on social learning.
Despite its prevalence, few papers on learning have con-
sidered homophily. Golub and Jackson (2012) study group-
based homophily in a non-Bayesian framework, finding that
homophily slows down the convergence of beliefs in a net-
work. To the best of our knowledge, ours is the first paper
on learning in a context with preference-based homophily.
We offer a nuanced understanding of its effects, showing
two ways homophily can impact information transmission:
homophily increases the information content of observa-
tions while decreasing independence between observations.
The first effect suggests one reason why empirical studies
find that homophilous ties have more influence on behav-
ior. For instance, Centola (2011) provides experimental evi-
dence that positive health behaviors spread more slowly in
networks with diverse types, whereas they propogate faster
and more broadly in networks with greater homophily. In
an empirical study of learning about health plan choices,
Sorensen (2006) finds that employees learn more from
peers in a similar demographic. Similarly, Conley and Udry
(2010) find that the farmers in their study learn more
about agricultural techniques from other farmers with sim-
ilar wealth levels.

We can also fruitfully compare our results to those in
the empirical literature on tie strength and social influence.
There has been much debate on the relative importance of
weak versus strong ties in propagating behaviors. Notable
work has found that an abundance of weak ties bridging
structural holes often accounts for the majority of diffu-
sion or information flows in a network (see, for instance,
Granovetter 1973, Burt 2004, and Bakshy et al. 2012).
Others have emphasized the importance of strong ties that
carry greater bandwidth, especially when the information
being transmitted is complex (see Hansen 1999, Centola
and Macy 2007, and Aral and Walker 2014). Aral and Van
Alstyne (2011) analyze this “diversity-bandwidth” trade-
off in behavior diffusion, arguing that weak, diverse ties
are more likely to provide access to novel information,
but strong, homophilous ties transmit a greater volume of
information, potentially resulting in more novel information
flowing through strong ties. Our work offers an alternative
theoretical basis for this trade-off, showing how rationality
implies that decisions made by a homophilous contact con-
vey less noisy information and reflect similar priorities to
our own. Furthermore, our analysis of the impact of net-
work structure provides guidance on which contexts should
lead strong or weak ties to be most influential.

We first describe our model before analyzing learning
in sparse networks. Our analysis emphasizes the difficul-
ties that preference diversity creates and the benefits that
homophily confers. We next provide general results on
dense networks, finishing with a brief discussion. Most
proofs are contained in the main body of the paper, with
more technical results given in the appendix.

2. Model
Each agent in a countably infinite set sequentially chooses
between two actions, 0 and 1. We index agents by the order
of their decisions, with agent m < n choosing an action
prior to agent n’s decision. The decision of agent n is
denoted by xn. Each agent has a random, privately observed
type tn 2 40115, and the payoff to agent n is a function of
n’s decision, n’s type, and the underlying state of the world
à 2 80119. For simplicity, we assume that a priori the two
possible states are equally likely. Agent n’s payoff is

u4tn1xn1 à5=
(
41É à5+ tn1 if xn = 01
à+ 41É tn51 if xn = 10

This utility function has two components: the first
depends on whether xn = à and is common to all types,
whereas the second is independent of the state, depending
only on the private type tn and the action chosen xn. Agents
balance between two objectives: each agent n wishes to
choose xn = à, but the agent also has a type-dependent
preference for a particular action. The type tn determines
how agent n makes this trade-off. If tn = 1

2 , agent n is neu-
tral between the two actions and chooses solely based on
which action is more likely to realize xn = à. Higher values
of tn correspond to stronger preferences toward action 0,
and lower values of tn correspond to stronger preferences
toward action 1. Restricting types to the interval 40115
implies that no agent is precommitted to either action.
Agent n is endowed with a private signal sn, a ran-

dom variable taking values in an arbitrary metric space S .
Conditional on the state à, each agent’s signal is inde-
pendently drawn from a distribution ⌃à. The pair of mea-
sures 4⌃01⌃15 is common knowledge, and we call these
measures the signal structure. We assume that ⌃0 and ⌃1
are not almost everywhere equal, so agents have a pos-
itive probability of receiving an informative signal. The
private belief pn ⌘ ⇣4à = 1 ó sn5 of agent n is a suffi-
cient statistic for the information contained in sn. We write
⌥i4r5⌘ ⇣4pn ∂ r ó à= i5 for the state-conditional private
belief distribution. We assume the private beliefs have
full support over an interval 4Ç1 Ç̄5, where 0 ∂ Ç < 1

2 <

Ç̄ ∂ 1. As in previous papers,3 we say private beliefs are
unbounded if Ç= 0 and Ç̄= 1 and bounded if Ç> 0 and
Ç̄< 1.
In addition to the signal sn, agent n also has access to

social information. Agent n observes the actions of the
agents in her neighborhood B4n5✓ 81121 0 0 0 1nÉ 19. That
is, agent n observes the value of xm for all m 2 B4n5. The
neighborhood B4n5 is a random variable, and the sequence
of neighborhood realizations describe a social network of
connections between the agents. We call the probability
qn = ⇣4à = 1 ó B4n5, xm for m 2 B4n55 agent n’s social
belief.
We represent the structure of the network as a joint dis-

tribution ⌘ over all possible sequences of neighborhoods
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and types; we call ⌘ the network topology and assume
⌘ is common knowledge. We allow correlations across
neighborhoods and types since this is necessary to model
homophily, but we assume ⌘ is independent of the state
à and the private signals. The types tn share a common
marginal distribution �, and the distribution � has full sup-
port in some range 4É1 É̄5, where 0∂ É ∂ 1

2 ∂ É̄ ∂ 1. The
range 4É1 É̄5 provides one measure of the diversity of pref-
erences. If both É and É̄ are close to 1

2 , then all agents are
nearly indifferent between the two actions prior to receiv-
ing information about the state à. On the other hand, if É
is close to 0 and É̄ is close to 1, then there are agents
with strong biases toward particular actions. Analogous to
our definition for private beliefs, we say preferences are
unbounded if É = 0 and É̄ = 1 and bounded if É > 0 and
É̄ < 1.

For algebraic simplicity, we often impose the following
symmetry and density assumptions, but where they save
little effort, we refrain from invoking them.

Assumption 1. The private belief distributions are anti-

symmetric: ⌥04r5 = 1 É ⌥141 É r5 for all r 2 60117; the

marginal type distribution � is symmetric around 1/2; the
distributions ⌥0, ⌥1, and � have densities.

Agent n’s information set, denoted by In 2 In, con-
sists of the type tn, the signal sn, the neighborhood real-
ization B4n5, and the decisions xm for every agent m 2
B4n5. Agent n’s strategy ën is a function mapping real-
izations of In to decisions in 80119. A strategy profile ë
is a sequence of strategies for each agent. We use ëÉn to
denote the set of all strategies other than agent n’s, ëÉn =
8ë11 0 0 0 1ënÉ11ën+11 0 0 09, and we can represent the strategy
profile as ë = 4ën1ëÉn5. Given a strategy profile ë , the
sequence of actions 8xn9n2� is a stochastic process with
measure ⇣ë . We analyze the perfect Bayesian equilibria
of the social learning game, denoting the set of equilibria
by Ë.

We study asymptotic outcomes of the learning process.
We interpret these outcomes as measures of long-run effi-
ciency and information aggregation. We say that asymptotic
learning occurs if, in the limit as n grows, agents act as
though they have perfect knowledge of the state. Equiv-
alently, asymptotic learning occurs if actions converge in
probability on the true state:

lim
n!à⇣ë4xn = à5= 10

This is the strongest limiting result achievable in our frame-
work. Asymptotic learning implies almost sure convergence
of individual beliefs, but almost sure convergence of actions
need not occur: agents must continue to act based on their
signals to achieve full information aggregation. Whether
asymptotic learning obtains is the main focus of our anal-
ysis, but we also comment on learning rates to shed some
light on shorter term outcomes.

We conclude this section with two basic lemmas required
in our subsequent analysis. These lemmas provide use-
ful properties of belief distributions and characterize best
response behavior.

Lemma 1. The private belief distributions ⌥0 and ⌥1 sat-

isfy the following properties:

(a) For all r 2 40115, we have d⌥0/d⌥14r5= 41É r5/r 0
(b) For all 0< z< r < 1, we have ⌥04r5æ 441É r5/r5 ·

⌥14r5+ 44r É z5/25⌥14z50
(c) For all 0 < r < w < 1, we have 1 É ⌥14r5 æ

4r/41É r5541É⌥04r55+ 44wÉ r5/2541É⌥04w55.
(d) The ratio ⌥04r5/⌥14r5 is nonincreasing in r and is

strictly larger than 1 for all r 2 4Ç1 Ç̄5.
(e) Under Assumption 1, we have d⌥04r5= 441É r5/r5 ·

d⌥041É r5, and d⌥14r5= 4r/41É r55d⌥141É r5.

Proof. Parts (a) through (d) comprise Lemma 1 in Ace-
moglu et al. (2011). Part (e) follows immediately from part
(a) together with Assumption 1. É
Lemma 2. Let ë 2Ë be an equilibrium, and let In 2In be

a realization of agent n’s information set. The decision of

agent n satisfies

xn =
(
01 if ⇣ë4à= 1 ó In5< tn1

11 if ⇣ë4à= 1 ó In5> tn1

and xn 2 80119 otherwise. Equivalently, the decision of

agent n satisfies

xn =

8
>>><

>>>:

01 if pn <
tn41É qn5

tn41É qn5+ qn41É tn5
1

11 if pn >
tn41É qn5

tn41É qn5+ qn41É tn5
1

and xn 2 80119 otherwise.

Proof. Agent n maximizes her expected utility given her
information set In and the equilibrium ë 2 Ë. Therefore,
she selects action 1 if ⇧ë 6à+ 41É tn5 ó In7> ⇧ë 641É à5+
tn ó In7, where ⇧ë represents the expected value in a given
equilibrium ë 2 Ë. The agent knows her type tn, so this
condition is equivalent to ⇧ë 6à ó In7> tn. Since à is an indi-
cator function and tn is independent of à, we have ⇧ë 6à ó In7
= ⇣ë4à = 1 ó sn1 B4n51 xm for all m 2 B4n55, proving the
clause for xn = 1. The proof for xn = 0 is identical with the
inequalities reversed. The second characterization follows
immediately from the first and an application of Bayes’
rule. É
An agent chooses action 1 whenever the posterior prob-

ability that the state is 1 is higher than her type, and she
chooses action 0 whenever the probability is lower than her
type. Therefore, agent n’s type tn can be interpreted as the
minimum belief agent n must have that the true state is
à= 1 before she will choose action xn = 1.
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3. Sparsely Connected Networks
We call a network sparse if there exists a uniform bound
on the size of all neighborhoods; we say the network is
M-sparse if, with probability 1, no agent has more than M
neighbors. We begin our exploration of learning in sparse
networks with an example.

Example 1. Suppose the signal structure is such that
⌥04r5 = 2r É r2 and ⌥14r5 = r2. Consider the network
topology ⌘ in which each agent observes her immediate
predecessor with probability 1, agent 1 has type t1 = 1

5 with
probability 0.5 and type t1 = 4

5 with probability 0.5. Any
other agent n has type tn = 1É tnÉ1 with probability 1.

In this network, agents fail to asymptotically learn the
true state, despite having unbounded beliefs and satisfying
the connectivity condition from Acemoglu et al. (2011).

Without loss of generality, suppose t1 = 1
5 . We show

inductively that all agents with odd indices err in state 0
with probability at least 1

4 , and likewise agents with even
indices err in state 1 with probability at least 1

4 . For the
first agent, observe that ⌥04

1
5 5= 9

25 <
3
4 , so the base case

holds. Now suppose the claim holds for all agents of index
less than n, and n is odd. The social belief qn is minimized
if xnÉ1 = 0, taking the value

⇣ë4xnÉ1=0 óà=15
⇣ë4xnÉ1=0 óà=15+⇣ë4xnÉ1=0 óà=05

æ 1/4
1/4+1

= 1
5
0

It follows from Lemma 2 that agent n will choose action 1
whenever pn >

1
2 . We obtain the bound

⇣ë4xn = 1 ó à= 05æ 1É⌥0

✓
1
2

◆
= 1

4
0

An analogous calculation proves the inductive step for
agents with even indices. Hence, all agents err with prob-
ability bounded away from zero, and asymptotic learning
fails. Note this failure is quite different from the classic
results on herding and informational cascades. Agents con-
tinue acting on their private signals in perpetuity, and both
actions are chosen infinitely often. Here, the difference in
preferences between neighbors confounds the learning pro-
cess, bounding the informational content of any observation
even though there are signals of unbounded strength.

This example sheds light on the mechanisms that drive
our results in this section. Given a simple network struc-
ture in which each agent observes one neighbor, long-run
learning hinges on whether an individual can improve upon
a neighbor’s decision. We can decompose an agent’s util-
ity into two components: utility obtained through copying
her neighbor and the improvement her signal allows over
this. The improvement component is always positive when
private beliefs are unbounded, creating the possibility for
improvements to accumulate toward complete learning over
time. With homogeneous preferences, this is exactly what
happens because copying a neighbor implies earning the

same utility as that neighbor, so utility is strictly increasing
along a chain of agents. In our example, differing prefer-
ences mean that an agent earns less utility than her neigh-
bor if she copies. The improvement component is unable
to make up this loss, and asymptotic learning fails.
Although we shall model far more general network struc-

tures, in which agents have multiple neighbors and are
uncertain about their neighbors’ types, this insight is impor-
tant throughout this section. Learning fails if there is a
chance that an agent’s neighbors have sufficiently different
preferences because opposing risk trade-offs obscure the
information that is important to the agent. Homophily in
the network allows individuals to identify neighbors who
are similar to themselves, and an improvement principle
can operate along homophilous connections.

3.1. Failure Caused by Diverse Preferences

This subsection analyzes the effects of diverse preferences
in the absence of homophily. We assume that all types and
neighborhoods are independently distributed.

Assumption 2. The neighborhoods 8B4n59n2� and types

8tn9n2� are mutually independent.

Definition 1. Define the ratio RÖ
t ⌘ t41É Ö5/4t41 É Ö5

+ 41É t5Ö5. Given private belief distributions 8⌥à9, we say
that the preference distribution � is M-diverse with respect
to beliefs if there exists Ö with 0< Ö< 1

2 such that

Z 1

0


⌥04R

Ö
t 5É

✓
1É Ö

Ö

◆1/M

⌥14R
1ÉÖ
t 5

�
d�4t5∂ 00

A type distribution with M-diverse preferences has
at least some minimal amount of probability mass located
near the endpoints of the unit interval. We could also
interpret this as a polarization condition, ensuring there
are many people in society with strongly opposed prefer-
ences. As M increases, the condition requires that more
mass is concentrated on extreme types. For any N < M ,
an M-diverse distribution is also N -diverse. Our first the-
orem shows that without any correlation between types
and neighborhoods, M-diversity precludes learning in an
M-sparse network.

Theorem 1. Suppose the network is M-sparse, and let

Assumptions 1 and 2 hold. If preferences are M-diverse

with respect to beliefs, then asymptotic learning fails.

Moreover, for a given signal structure, the probability that

an agent’s action matches the state is uniformly bounded

away from 1 across all M-sparse networks.

Proof. Given the Ö in Definition 1, we show the social
belief qn is contained in 6Ö11É Ö7 with probability 1 for
all n, which immediately implies all of the stated results.
Proceed inductively; the case n = 1 is clear with q1 = 1

2 .
Suppose the result holds for all n ∂ k. Let B4k+ 15= B
with óBó ∂ M , and let xB denote the random vector of
observed actions. If x 2 80119óBó is the realized vector of
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decisions that agent k+1 observes, we can write the social
belief qk+1 as 1/41+ l5, where l is a likelihood ratio:

l= ⇣ë4xB = x ó à= 05
⇣ë4xB = x ó à= 15

= Y

m2B

⇣ë4xm = xm ó à= 01 xi = xi1 i <m5

⇣ë4xm = xm ó à= 11 xi = xi1 i <m5
0

Conditional on a fixed realization of the social belief qm,
the decision of each agent m in the product terms is inde-
pendent of the actions of the other agents. Since qm 2
6Ö11É Ö7 with probability 1, we can fix the social belief of
agent m at the end points of this interval to obtain bounds.
Each term of the product is bounded above by

R 1
0 ⌥04R

Ö
t 5d�4t5R 1

0 ⌥14R
1ÉÖ
t 5d�4t5

∂
✓
1É Ö

Ö

◆1/M

0

This in turn implies that qk+1 æ Ö. A similar calculation
using a lower bound on the likelihood ratio shows that
qk+1 ∂ 1É Ö. É

Regardless of the signal or network structure, we can
always find a preference distribution that will disrupt
asymptotic learning in an M-sparse network. Moreover,
because of the uniform bound, this is a more severe fail-
ure than what occurs with bounded beliefs and homo-
geneous preferences. Acemoglu et al. (2011) show that
asymptotic learning often fails in an M-sparse network if
private beliefs are bounded, but the point at which learn-
ing stops depends on the network structure and may still
be arbitrarily close to complete learning. In this sense, the
challenges introduced by preference heterogeneity are more
substantial than those introduced by weak signals.

An analysis of 1-sparse networks allows a more pre-
cise characterization of when diverse preferences cause the
improvement principle to fail. In the proof of our result,
we employ the following convenient representation of the
improvement function under Assumptions 1 and 2. Recall
the notation R

y
t ⌘ t41É y5/4t41É y5+ 41É t5y5.

Lemma 3. Suppose Assumptions 1 and 2 hold. Define

Z2 6 12 117! 6 12 117 by

Z4y5= y+
Z 1

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t50 (1)

In any equilibrium ë , we have ⇣ë4xn = à ó B4n5= 8m95=
Z4⇣ë4xm = à55.

Proof. Observe under Assumption 1 we have ⇣ë4xn = à5
= ⇣ë4xn = à ó à = i5 for each i 2 80119, andR 1
0 f 4t5d�4t5 = R 1

0 f 41 É t5d�4t5 for any f . Taking y =
⇣ë4xm = à5, we have ⇣ë4xn = à ó B4n5= 8m95 equal to

Z 1

0

1X

i=0

⇣ë4xn = à ó B4n5= 8m91 xm = i1 à= 01 tn = t5

·⇣ë4xm = i ó à= 05d�4t5

=
Z 1

0

1X

i=0

⇣4pn ∂R
qn
t 5⇣ë4xm = i ó à= 05d�4t5

=
Z 1

0

h
y⌥04R

1Éy
t 5+ 41É y5⌥04R

y
t 5
i
d�4t5

= y+
Z 1

0

h
41É y5⌥04R

y
t 5É y41É⌥04R

1Éy
t 55

i
d�4t5

= y+
Z 1

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
1Ét5

i
d�4t5

= y+
Z 1

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t51

as desired. É
Theorem 2. Suppose the network is 1-sparse, and let As-

sumptions 1 and 2 hold. If either of the following conditions

is met, then asymptotic learning fails.

(a) The preference distribution satisfies

lim inf
t!0

�4t5
t

> 00

(b) For some K > 1 we have

lim
r!0

⌥04r5

rKÉ1
= c > 01 and

Z 1

0

tKÉ14KÉ 42KÉ 15t5
41É t5K

d�4t5< 00

Proof. Each part follows from the existence of an Ö > 0
such that Z4y5 given in Lemma 3 satisfies Z4y5 < y for
y 2 61 É Ö115. This immediately implies that learning is
incomplete.
Assume the condition of part (a) is met. Divide by 1É y

to normalize; for any Ö> 0 we obtain the bound

Z 1

0

h
⌥04R

y
t 5É

y

1É y
⌥14R

y
t 5
i
d�4t5

∂
Z 1ÉÖ

0
⌥04R

y
t 5d�4t5+

Z 1

1ÉÖ
⌥04R

y
t 5d�4t5

É y

1É y

Z 1

y
⌥14R

y
t 5d�4t5

∂⌥04R
y
1ÉÖ5+�4Ö5É⌥1

✓
1
2

◆
y�41É y5

1É y
0

Choosing Ö sufficiently small, the second term is negligible,
while for large enough y, the first term approaches zero,
and the third is bounded above by a constant less than zero.
Hence the improvement term in Equation (1) is negative in
61É Ö115 for sufficiently small Ö.
The proof of part (b) is presented in the appendix. É
These conditions are significantly weaker than 1-

diversity. We establish a strong connection between the
tail thicknesses of the type and signal distributions. The
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improvement principle fails to hold unless the preference
distribution has sufficiently thin tails; for instance, part (a)
implies learning fails under any signal structure if types are
uniformly distributed on 40115. As the tails of the belief
distributions become thinner, the type distribution must
increasingly concentrate around 1

2 in order for learning to
remain possible. In many cases, little preference diversity
is required to disrupt the improvement principle.

Even if preferences are not so diverse that learning fails,
we might expect heterogeneity to significantly slow the
learning process. Interestingly, once the distribution of pref-
erences is concentrated enough to allow an improvement
principle, learning rates are essentially the same as with
homogeneous preferences. Lobel et al. (2009) show in a
line network with homogeneous preferences that the prob-
ability of error decreases as nÉ1/4K+15, where K is a tail
thickness parameter; we adapt their techniques to obtain
the following result.

Proposition 1. Suppose B4n5= 8nÉ19 with probability 1

for all næ 2, and let Assumptions 1 and 2 hold. Suppose

an improvement principle holds, meaning that the function

Z from Lemma 3 satisfies Z4y5> y for all y 2 6 12 115. If for
some K > 1 we have

lim
r!0

⌥04r5

rKÉ1
= c > 01 and

Z 1

0

tKÉ14KÉ 42KÉ 15t5
41É t5K

d�4t5> 01

then the probability of error decreases as nÉ1/4K+15
:

⇣ë4xn 6= à5=O4nÉ1/4K+1550

Proof. See appendix. É
Once an improvement principle holds, the size of the

improvements, and hence the rate of learning, depends on
the tails of the signal structure. Early work on learning
suggests that diverse preferences can slow learning (Vives
1993, 1995), even if information still aggregates in the long
run. Perhaps surprisingly, Proposition 1 shows that as long
as an improvement principle still holds, asymptotic learn-
ing rates are identical to the homogeneous preferences case.
This result suggests that the learning speed we find if pref-
erences are not too diverse, or if we have homophily as in
the next section, is comparable to that in the homogeneous
preferences case.

3.2. The Benefits of Homophily

In this subsection, we extend our analysis to sparse net-
works with homophily: we consider networks in which
agents are more likely to connect to neighbors with similar
preferences to their own. We find that homophily resolves
some of the learning challenges preference heterogeneity
introduces. Analyzing homophily in our model presents

technical challenges because we cannot retain the inde-
pendence assumptions from the last subsection; we need
to allow correlations to represent homophily. In a model
with homogeneous preferences, Lobel and Sadler (2015)
highlight unique issues that arise when neighborhoods are
correlated. This creates information asymmetries leading
different agents to have different beliefs about the overall
structure of connections in the network. To avoid the com-
plications this creates, and focus instead on issues related
to preferences and homophily, we assume the following.

Assumption 3. For every agent n, the neighborhood B4n5
is independent of the past neighborhoods and types

84tm1B4m559m<n.

This assumption allows significant correlations in the
sequence of types and neighborhoods 84tn1B4n559, but
the neighborhoods 8B4n59 by themselves form a sequence
of independent random variables. This representation of
homophily is a technical contribution of our paper. Instead
of first realizing independent types and then realizing links
as a function of these types, we reverse the order of events
to obtain a more tractable problem. Although the assump-
tion is not costless, we retain the ability to explore the role
of preferences and homophily in a rich class of network
topologies. In many cases, we can translate a network of
interest into an identical (or at least similar) one that sat-
isfies Assumption 3. For instance, Examples 2 and 3 in §4
show two different, but equivalent ways to model a net-
work with two complete subnetworks, one with low types
and one with high types. The first example is perhaps more
intuitive, but the second, which satisfies Assumption 3, is
entirely equivalent.
If agent m is a neighbor of agent n, then under our

previous assumption, the distribution of tn conditioned on
the value of tm is �, regardless of agent m’s type. With
homophily, we would expect this conditional distribution
to concentrate around the realized value of tm. We define a
notion of strong homophily to capture the idea that agents
are able to find neighbors with similar types to their own
in the limit as the network grows large.
To formalize this, we recall terminology introduced by

Lobel and Sadler (2015). We use B̂4n5 to denote an exten-
sion of agent n’s neighborhood, comprising agent n’s
neighbors, her neighbors’ neighbors, and so on.

Definition 2. A network topology ⌘ features expand-
ing subnetworks if, for all positive integers K,
lim supn!à⌘4óB̂4n5ó<K5= 0.
Let �n = 81121 0 0 0 1nÉ 19. A function Én2 2�n ! �n [

8ô9 is a neighbor choice function for agent n if for all sets
Bn 2 2�n we have either Én4Bn5 2 Bn or Én4Bn5=ô.
A chosen neighbor topology, denoted by ⌘É , is derived

from a network topology ⌘ and a sequence of neighbor
choice functions 8Én9n2�. It consists only of the links in ⌘
selected by the neighbor choice functions 8Én9n2�.
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Without the expanding subnetworks condition, there is
some subsequence of agents acting based on a bounded
number of signals, which clearly precludes asymptotic
learning. We interpret this as a minimal connectivity
requirement. Neighbor choice functions allow us to make
precise the notion of identifying a neighbor with cer-
tain attributes. We call a network topology strongly
homophilous if we can form a minimally connected
chosen neighbor topology in which neighbors’ types
become arbitrarily close. That is, individuals can identify
a neighbor with similar preferences, and the subnetwork
formed through these homophilous links is itself minimally
connected.

Definition 3. The network topology ⌘ is strongly
homophilous if there exists a sequence of neighbor choice
functions 8Én9n2� such that ⌘É features expanding subnet-
works, and for any Ö> 0 we have

lim
n!à⌘4ótn É tÉn4B4n55ó> Ö5= 00

Theorem 3. Suppose private beliefs are unbounded and

Assumption 3 holds. If ⌘ is strongly homophilous, asymp-

totic learning obtains.

Proof. See appendix. É
This theorem is proved by repeatedly applying an

improvement principle along the links of the chosen neigh-
bor topology. If, in the limit, agents are nearly certain
to have neighbors with types in a small neighborhood of
their own, they will asymptotically learn the true state.
The reasoning behind this result mirrors that of our previ-
ous negative result. With enough homophily, we ensure the
neighbor shares the agent’s priorities with regard to trade-
offs, so copying this neighbor’s action entails no loss in
ex ante expected utility. Unbounded private beliefs are then
sufficient for improvements to accumulate over time. We
note that the condition in Theorem 3 does not require the
sequence of type realizations to converge. As we now illus-
trate, sufficient homophily can exist in a network in which
type realizations are mutually independent and distributed
according to an arbitrary � with full support on 40115.

To better understand our positive result, consider its
application to the following simple class of networks. We
shall call a network topology ⌘ä a simple ä-homophilous
network if it has the following structure. Let ä be a nonneg-
ative real-valued parameter, and let � be a type distribution
with a density. The types are mutually independent and are
generated according to the distribution �. Given a realiza-
tion of 8tm9m∂n, define i⇤ such that

tn 2

�É1

✓
i⇤ É 1
nÉ 1

◆
1 �É1

✓
i⇤

nÉ 1

◆◆
1 (2)

and let mi denote the index of the agent with ith small-
est type among agents 1121 0 0 0 1nÉ 1. Define the weights
8wi9i<n by wi⇤ = nä, wi = 1 if i 6= i⇤, and let

⌘ä4B4n5= 8mi95=
wiP
j<n wj

0

For example, let � be the uniform distribution on 40115,
and suppose agent n= 101 has randomly drawn type t101 =
00552. By Equation (2), we have i⇤ = 55 since 00552 2
60055100565. Suppose agent n= 80 has the 55th lowest type
among the first 100 agents. Then, agent 101 will observe
the decision of agent 80 with probability 101ä/4101ä+995
and observe any other agent with probability 1/4101ä+995.
Since agent 80, with the 55th lowest type among the first
hundred agents, is likely to have a type near t101 = 00552,
this network exhibits homophily.
The parameter ä neatly captures our concept of ho-

mophily. A value of ä= 0 corresponds to a network with
no homophily, in which each agent’s neighborhood is a
uniform random draw from the past, independent of real-
ized types. As ä increases, agent n’s neighborhood places
increasing weight on the past agent whose type rank most
closely matches agent n’s percentile in the type distribu-
tion. Moreover, it is easy to check that B4n5 contains a
past agent drawn uniformly at random, independent of the
history, so Assumption 3 is satisfied. We obtain a sharp
characterization of learning in these networks as a function
of the parameter ä.

Proposition 2. Suppose private beliefs are unbounded,

Assumption 1 holds, and lim inf t!0�4t5/t > 0. Asymptotic
learning obtains in a simple ä-homophilous network if and
only if ä> 1.

Proof. For the forward implication, two observations
establish that Theorem 3 applies. First,

lim
n!à⌘ä4B4n5= 8i⇤95= nä

nÉ 2+ nä
= 1

whenever ä > 1. Second, it follows from the Glivenko-
Cantelli Theorem that for any Ö> 0, we have

lim
n!à⌘ä4ótn É ti⇤ ó> Ö5= 00

Given any Ö> 0, we can find N 4Ö5 with ⌘ä4B4n5 6= 8i⇤95∂
Ö/2 and ⌘ä4ótnÉ ti⇤ ó> Ö5∂ Ö/2 for all næN 4Ö5. Defining
the functions 8Én9n2� in the natural way, we have

⌘ä4ótn É tÉn4B4n55ó> Ö5∂ Ö

for all n æ N 4Ö5. It is a simple exercise to show that ⌘ä

features expanding subnetworks.
For the converse result, fix n > m. Define y =

⇣ë4xm = à5,

Pi4t5= ⇣ë4xm = à ó à= i1 B4n5= 8m91 tn = t51 and

qi4t5=
Pi4t5

Pi4t5+ 1ÉP1Éi4t5
0

Using Assumption 1 and following calculations similar to
the proof of Lemma 3, we obtain

⇣ë4xn = à ó B4n5= 8m95

= y+
Z 1

0

h
41ÉP14t55⌥04R

q14t5
t 5ÉP14t5⌥14R

q14t5
t 5

i
d�4t50
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We can uniformly bound Pi4t5, and hence qi4t5, using y
as follows. Define p⇤ = 4n É 15/4n É 2 + nÅ5, and note
that the distribution of agent n’s neighbor can be expressed
as a compound lottery choosing uniformly from the past
with probability p⇤ and choosing agent k⇤ otherwise. Con-
ditioned on the event that a uniform draw from the past
was taken, the probability that xm = à is equal to y when
conditioned on either possible value of à. Thus we have

p⇤y ∂ Pi4t5∂ 1Ép⇤41É y5

for each i and for all t 2 40115. As long as p⇤ is uni-
formly bounded away from zero, we can make a slight
modification to the argument of Theorem 2 part (a) to show
that learning fails. This is precisely the case if and only if
Å∂ 1. É

With ä > 1, the likelihood of observing the action of
a neighbor with a similar type grows fast as n increases.
While types across the entire society could be very
diverse—� could be the uniform distribution on 40115, for
instance—agents almost always connect to those who are
similar to themselves. If the density of the type distribu-
tion is bounded away from zero near the end points 0 and
1, the threshold ä= 1 is sharp. With any less homophily,
there is a nontrivial chance of connecting to an agent with
substantially different preferences, and asymptotic learning
fails.

Our last proposition in this section complements our
results on the benefits from homophily. We show that,
in a certain sense, making a network more homophilous
never disrupts social learning. Under Assumption 3,
we can describe a network topology via a sequence
of neighborhood distributions together with a sequence
of conditional type distributions �tn ó t110001tnÉ11B41510001B4n54t5.
These conditional distributions may depend on the his-
tory of types t11 0 0 0 1 tnÉ1 and the history of neighborhoods
B4151 0 0 0 1B4n5. To simplify notation, we represent the con-
ditional type distribution of agent n by �n.

Definition 4. Let ⌘ and ⌘0 be two network topologies
that satisfy Assumption 3. We say that ⌘ and ⌘0 are modifi-
cations of one another if they share the same neighborhood
distributions and the same marginal type distribution �.

If the network topologies ⌘ and ⌘0 are modifications
of each other, they represent very similar networks. They
will have identical neighborhood distributions and equally
heterogeneous preferences. However, the conditional distri-
butions �n and �0

n can differ, so the networks may vary sig-
nificantly with respect to homophily. This will allow us to
make statements about the impact of increasing homophily
while keeping other properties of the network topology
constant. Given two network topologies that are modifica-
tions of each other, we can take convex combinations to
create other modifications of the original two.

Definition 5. Let ⌘ and ⌘0 be modifications of one
another with conditional type distributions �n and �0

n,
respectively. Given a sequence ã = 8ãn9n2� 2 60117�, we
define the ã-mixture of ⌘ and ⌘0 as the modification ⌘4ã5

of ⌘ with conditional type distributions �4ã5
n = ãn�n +

41Éãn5�
0
n.

We consider networks in which asymptotic learning
obtains by virtue of an improvement principle, and we find
that mixing such networks with strongly homophilous mod-
ifications preserves learning.

Definition 6. We say that a network topology ⌘ satis-
fies the improvement principle if any agent can use her
signal to achieve strictly higher utility than any neigh-
bor. Formally, this means there is a continuous, increas-
ing function4 Z2 6113/27 ! 6113/27 such that Z4y5 > y

for all y 2 6113/25, and ⇧ë 6u4tn1xn1 à5 ó B4n5 = 8m97 æ
Z4⇧ë 6u4tm1xm1 à575 for all m<n.

This definition expresses the idea that an agent in the
network can combine her private signal with information
provided by one of her neighbors to arrive at a better deci-
sion than that neighbor.

Proposition 3. Suppose private beliefs are unbounded,

and Assumption 3 holds. Assume the network topology ⌘
features expanding subnetworks and satisfies the improve-

ment principle. Suppose ⌘0
is any strongly homophilous

modification of ⌘. Asymptotic learning obtains in any

ã-mixture of ⌘ and ⌘0
.

Proof. See appendix. É

Proposition 3 shows if we take any network topology
satisfying the natural sufficient conditions for learning in a
sparse network—expanding subnetworks and the applica-
bility of the improvement principle—and consider a con-
vex combination between this network and one with strong
homophily, agents will still learn. One interpretation of this
statement is that the addition of homophily to a network
never harms learning that is already successful without
homophily.
Our findings in this section establish a positive role for

homophily in social learning. Without homophily, a sparse
network with diverse preferences struggles to aggregate
information because the meaning of a decision is difficult
to interpret, and different agents make different trade-offs.
Homophily counters both sources of inefficiency, leading
to better outcomes as the degree of homophily increases.
In the next section, we see the other side of homophily’s
impact on learning. Networks with dense connections offer
an opportunity to overcome the difficulty of learning with
bounded private beliefs. The ability to observe a diverse
neighborhood is a major driver of this positive result, and
an excess of homophily can stifle the learning process.
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4. Densely Connected Networks
A classic result by Banerjee (1992) and Bikhchandani et al.
(1992) shows that informational cascades occur in a com-
plete network when private beliefs are bounded and pref-
erences are homogeneous. More recently, Goeree et al.
(2006) find that unbounded preferences can remedy the sit-
uation, proving a strong positive result in a comparable
setting. Intuitively, if the distribution of preferences has full
support on 40115 and types are independent, then agents
always emerge whose preferences roughly balance against
their social information. These agents must rely on their
private signals to choose an action, so new information is
revealed to the rest of the network. Even if an individ-
ual decision provides little information, dense connections
allow learning to operate through a law-of-large-numbers
mechanism in addition to the improvement principle. The
presence of this second learning mechanism leads to robust
learning.

In contrast to our results for sparse networks, preference
diversity appears decisively beneficial with full observation.
In this section, we show this insight is generic in a broad
class of dense network components that we call clusters.

Definition 7. A cluster C is a sequence of stopping
times 8Åi9i2� with respect to the filtration generated by
84tn1B4n559n2� that satisfy

lim
i!à

⌘4Åk 2 B4Åi55= 1 for all k 2�0

A cluster is a generalization of the concept of a (ran-
domly generated) clique. Any complete subnetwork—a
clique—with infinitely many members is a cluster. A sub-
set C of the agents such that any member of C is observed
with probability approaching one by later members of C
is also a cluster. Clusters may exist deterministically, with
the indices Åi being degenerate random variables as in the
complete network, or they may arise stochastically. For
instance, suppose types are i.i.d. and all agents with types
above 008 are connected with each other through some cor-
relation between neighborhoods and types. In this case, the
stopping time Åi would refer to the ith agent with type
above 008 and this group would form a cluster. Note that
a cluster potentially has far fewer edges than a clique; the
ratio of the number of edges in a cluster to the number of
edges in a clique can approach zero as n grows.

As in §3, we introduce an independence assumption for
tractability.

Assumption 4. For each stopping time Åi in the cluster

C, conditional on the event Åi = n, the type tn is gener-

ated according to the distribution �Åi
independently of the

history t11 0 0 0 1 tnÉ1 and B4151 0 0 0 1B4n5.

The assumption above represents a nontrivial technical
restriction on the random agents that form a cluster. If
the types are i.i.d., then any stopping time will satisfy the
assumption, but if the types are correlated, the condition

needs to be verified. We still have a great deal of flexibility
to represent different network structures. Examples 2 and 3
demonstrate two ways to represent essentially the same net-
work structure, both of which comply with Assumption 4.

Example 2. Suppose types are i.i.d., and suppose the net-
work topology is such that any agent n with type tn æ 1

2
observes any previous agent m with tm æ 1

2 and any agent
n with type tn <

1
2 similarly observes any previous agent m

with tm < 1
2 . The sequence of stopping times 8Åi9i2�, where

Åi is the ith agent with type at least 1
2 , forms a cluster, and

the agents with types below 1
2 form another.

In the example above, a cluster of agents forms accord-
ing to realized types; neighborhood realizations are corre-
lated such that high type agents link to all other high type
agents. A similar clustering of types can be achieved in
a network with deterministic neighborhoods and correlated
types instead of correlated neighborhoods.

Example 3. Let �É and �+ denote the distribution � con-
ditional on a type realization less than or at least 1

2 , respec-
tively. Suppose agents are partitioned into two disjoint fixed
subsequences C = 8ci9i2� and D = 8di9i2� with c1 = 1.
Conditional on t1 <

1
2 , agents in C realize types indepen-

dently according to �É with agents in D realizing types
independently from �+; if t1 æ 1

2 , the type distributions for
the subsequences are switched. Let the network structure
be deterministic, with all agents in C observing all previ-
ous agents in C, and likewise for the subsequence D. The
members of C form one cluster, and the members of D
form another.

This section’s main finding is a sufficient condition for
learning within a cluster 8Åi9i2�. We say that asymptotic
learning occurs within a cluster 8Åi9i2� if we have

lim
i!à

⇣ë4xÅi
= à5= 10

We require the cluster satisfies two properties.

Definition 8. A cluster is identified if there exists a family
of neighbor choice functions 8Ék

i 9i1k2� such that for each
k, we have

lim
i!à

⌘4Ék
i 4B4Åi55= Åk5= 10

That is, a cluster is identified only if, in the limit as the
network grows large, agents in a given cluster can identify
which other individuals belong to the same cluster.
A cluster is uniformly diverse if the following two con-

ditions hold.
(a) For any interval I ✓ 40115 there exists a constant

ÖI > 0 such that ⇣4tÅi
2 I5æ ÖI for infinitely many i.

(b) There exists a finite measure å such that the Radon-
Nykodim derivative då/d�Åi

æ 1 almost surely for all i.
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The first part of the uniform diversity condition gener-
alizes the notion of unbounded preferences. It is unnec-
essary for any particular member of a cluster to have a
type drawn from a distribution with full support; we simply
need infinitely many members of the cluster to fall in any
given interval of types. The second part of the condition
is technical, requiring the existence of a finite measure on
40115 that dominates the type distribution of all agents in
the cluster. Without this condition, it would be possible to
construct pathological situations by having the type distri-
butions �Åi

concentrate increasing mass near the end points
of 40115 as i grows. Together, these conditions are suffi-
cient for asymptotic learning in clusters regardless of the
signal structure or the structure of the rest of the network.

Theorem 4. Let Assumption 4 hold. Suppose 8Åi9i2� is an

identified, uniformly diverse cluster. Asymptotic learning

obtains within the cluster.

Proof. See appendix. É

With enough preference diversity, there is sufficient
experimentation within a cluster to allow full information
aggregation, even with bounded private beliefs. A key and
novel element in our characterization is the concept of iden-
tification. Agents need to be able to tell with high proba-
bility who the other members of their cluster are to ensure
asymptotic learning within the cluster. We can immediately
apply this result to any network without homophily where
the entire network forms a cluster.

Corollary 1. Suppose preferences are unbounded, and

the types 8tn9n2� form an i.i.d. sequence that is also inde-

pendent of the neighborhoods. If for each m we have

lim
n!à⌘4m 2 B4n55= 11 (3)

asymptotic learning obtains.

Proof. Define the stopping indices Åi = i, and define the
neighbor choice functions

É i
n4B4n55=

(
i if i 2 B4n5

ô otherwise.

Theorem 4 applies. É

This corollary substantially generalizes the asymptotic
learning result of Goeree et al. (2006) for the complete
network; it obtains a positive result that applies even to
networks with correlated neighborhoods and gaps, as long
as Equation (3) is satisfied. Both identification and uniform
diversity play a vital role in Theorem 4. Without identifi-
cation, agents may be unable to interpret the information
available to them, and without uniform diversity, inefficient
herd behavior may appear.

Example 4. Suppose the types 8tn9n2� form an i.i.d.
sequence, � is symmetric around 1

2 , and private beliefs are
bounded. Consider a network in which agents sort them-
selves into three clusters Ci for i 2 8112139. Let 1 2C1, and
let cn denote the number of agents in C1 with index less
than n. Each agent n is contained in C1 with probability
1/2cn , and these agents observe the entire history of action.
Otherwise, if tn <

1
2 we have n 2 C2, and n observes all

prior agents in C2 and only those agents for sure. Likewise,
if tn æ 1

2 we have n 2 C3, and n observes all prior agents
in C3 and only those agents for sure.
The cluster C1 is uniformly diverse, but unidentified, and

learning fails. The clusters C2 and C3 are identified, but the
lack of diversity means informational cascades occur with
positive probability; asymptotic learning fails here too.

In Example 4, agents sort themselves into three clusters:
a small uniformly diverse cluster, a large cluster of low
types, and a large cluster of high types. Since private beliefs
are bounded, if the low type cluster approaches a social
belief close to one, no agent will ever deviate from action 1.
Likewise, if the high type cluster approaches a social belief
close to zero, no agent will deviate from action 0. Both
of these clusters have a positive probability of inefficient
herding. If this occurs, the agents in C1 observe a history
in which roughly half of the agents choose each action,
and this is uninformative. Since the other members of C1

make up a negligible share of the population and cannot be
identified, their experimentation fails to provide any useful
information to agents in C1.
This example clearly suggests a negative role for

homophily in a dense network. Densely connected net-
works offer an opportunity to overcome the difficulty
presented by bounded private beliefs, but if homophily
is strong enough that no identified cluster is uniformly
diverse, the benefits of increased connectivity are lost.
However, an inefficient herding outcome requires extreme
isolation from types with different preferences, and even
slight exposure is enough to recover a positive long-run
result.
Consider the network introduced in Example 3. For a

given marginal type distribution � with unbounded pref-
erences, let �É denote the distribution � conditional on a
type realization less than 1

2 , and �+ the distribution � con-
ditional on a type realization of at least 1

2 . Agents are par-
titioned into two disjoint deterministic subsequences C =
8ci9i2� and D= 8di9i2� with r1 = 1. Conditional on t1 <

1
2 ,

agents in C realize types independently according to �É,
while agents in D realize types independently according to
�+, with the distributions switched conditional on t1 æ 1

2 .
We assume that ci 2 B4cj5 and di 2 B4dj5 for all i < j , so
clearly C and D are identified clusters. If the two clusters
are totally isolated from one another, meaning agents in C
never observe an agent in D, and vice versa, an informa-
tional cascade can occur if the private beliefs are bounded.
However, the outcome changes drastically if agents in each
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cluster occasionally observe a member of the other clus-
ter. Only a small amount of bidirectional communication
between the clusters is needed to disrupt herding, leading
to asymptotic learning in the entire network.

Proposition 4. Assume private beliefs are bounded. Con-

sider a network topology ⌘ with deterministic neighbor-

hoods that is partitioned into two clusters as described

above. Asymptotic learning occurs in both clusters if and

only if

sup8i2 9 j1 ci 2 B4dj59= sup8i2 9 j1 di 2 B4cj59=à0

Proof. See appendix. É
The key requirement in this statement is another type of

minimal connectivity. For each cluster, the observations of
the other cluster cannot be confined to a finite set. This
means that periodically there is some agent in each clus-
ter who makes a new observation of the other. This single
observation serves as an aggregate statistic for an entire
cluster’s accumulated social information, so it holds sub-
stantial weight even though it is generated by a cluster of
agents with significantly different preferences. This sug-
gests that informational cascades in two cluster networks
are difficult to sustain indefinitely, even in the presence of
homophily, though if observations across groups are very
rare, convergence may be quite slow.

5. Conclusions
Preference heterogeneity and homophily are pervasive in
real-world social networks, so understanding their effects
is crucial if we want to bring social learning theory closer
to how people make decisions in practice. Preference diver-
sity, homophily, and network structure impact learning in
complex ways, and the results presented in this paper
provide insight on how these three phenomena interact.
Underlying our analysis is the idea that learning occurs
through at least two basic mechanisms, one based on the
improvement principle and the other based on a law-of-
large-numbers effect. The structure of the network dictates
which mechanisms are available to the agents, and the two
mechanisms are affected differently by preference hetero-
geneity and homophily.

The improvement principle is one way people can learn
about the world. An individual can often combine her
private information with that provided by her neighbor’s
action to arrive at a slightly better decision than her neigh-
bor. In sparsely connected networks, the improvement prin-
ciple is the primary means through which learning occurs.
However, this mechanism is, to some extent, quite fragile:
it requires the possibility of extremely strong signals and
a precise understanding of the decisions made by individ-
ual neighbors. Preference heterogeneity introduces noise in
the chain of observations, and our results show this noise
challenges the operation of the improvement principle. The

problems that arise are due to both uncertainty regarding
how a neighbor makes her decision and to different trade-
offs neighbors face. Homophily ameliorates both issues,
making it unambiguously helpful to this type of learning.
Dense connectivity allows a far more robust learning

mechanism to operate. Having strong information from
individual neighbors becomes less important when one can
observe the actions of many neighbors. As long as each
observation provides some new information, the law of
large numbers ensures that learning succeeds. Diverse pref-
erences provide a degree of independence to the observa-
tions, facilitating this means of learning. Homophily, since
it reduces preference diversity within a neighborhood, has
the potential to interfere, but our results suggest this learn-
ing mechanism is resilient enough to be unaffected unless
homophily is particularly extreme.
Overall, we find that preference heterogeneity and

homophily play positive, complementary roles in social
learning as typical complex networks include both sparse
and dense components. If private signals are of bounded
strength, preference diversity is necessary to ensure learn-
ing in the dense parts of the network via the law-of-
large-numbers mechanism. If homophily is also present, the
information accumulated in the dense parts of the network
can spread to the sparse parts via the improvement principle
mechanism. The combination of preference heterogeneity
and homophily should generally benefit information aggre-
gation in complex, realistic networks.
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Appendix

We first prove part (b) of Theorem 2 from §3.1 and estab-
lish a version of the improvement principle to prove the
results in §3.2. We conclude by applying the theory of mar-
tingales to establish results from §4.

Proof of Theorem 2 Part (b)

Our first task is to show the assumption on ⌥0 implies a
similar condition on ⌥1:

lim
r!0

⌥04r5

rKÉ1
= c =) lim

r!0

⌥14r5

rK
= c

✓
1É 1

K

◆
0
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An application of Lemma 1 and integration by parts gives

⌥14r5=
Z r

0
d⌥14s5=

Z r

0

s

1É s
d⌥04s5

= r

1É r
⌥04r5É

Z r

0

1
41É s52

⌥04s5ds0

Using our assumption on ⌥0, given any Ö> 0, we may find
rÖ such that for all r ∂ rÖ,

c41É Ö5rKÉ1 ∂⌥04r5∂ c41+ Ö5rKÉ10

Thus, for any r ∂ rÖ we have

Z r

0

c41É Ö5sKÉ1

41É s52
ds ∂

Z r

0

1
41É s52

⌥04s5ds

∂
Z r

0

c41+ Ö5sKÉ1

41É s52
ds0

Now compute,

Z r

0

sKÉ1

41É s52
ds = rK

1É r
É 4KÉ 15

Z r

0

sKÉ1

41É s5
ds

= rK

1É r
É 4KÉ 15

Z r

0

àX

i=0

sKÉ1+i ds

= rK

1É r
É 4KÉ 15

rK

K
+O4rK+150

It follows that for any r ∂ rÖ,

r

1É r
⌥04r5É c41+ Ö5

✓
rK

1É r
É 4KÉ 15

rK

K

◆
+O4rK+15

∂⌥14r51 and

⌥14r5∂
r

1É r
⌥04r5É c41É Ö5

✓
rK

1É r
É 4KÉ 15

rK

K

◆

+O4rK+150

Dividing through by rK and letting r go to zero, we have

c

✓
1É 1+ Ö

K

◆
∂ lim

r!0

⌥14r5

rK
∂ c

✓
1É 1É Ö

K

◆

for any Ö, proving the result.
We now show that

Z 1

0

tKÉ14KÉ 42KÉ 15t5
41É t5K

d�4t5< 01

implies the existence of Ö > 0 such that Z4y5 < y for all
y 2 61É Ö115. Choose a function h4Ö5 such that h4Ö5> 0
whenever Ö> 0, and

lim
Ö!0

Z 1ÉÖ

0

h4Ö5

41É t5K
d�4t5= 00

For a given Ö > 0, the argument Ry
1ÉÖ goes to zero as y

approaches 1, so for sufficiently large y and all t ∂ 1É Ö,

41Éy5⌥04R
y
t 5Éy⌥14R

y
t 5

∂c


41Éy541+h4Ö554Ry

t 5
KÉ1Éy41Éh4Ö55

KÉ1
K

4Ry
t 5

K

�

=41Éy5K
✓
ctKÉ1


41+h4Ö554t41Éy5+y41Ét55

Éyt41Éh4Ö55
KÉ1
K

�◆
·44t41Éy5+y41Ét55K5É10

For y sufficiently close to 1, the portion of the improvement
term
Z 1ÉÖ

0
41É y5⌥04R

y
t 5É y⌥14R

y
t 5d�4t5 (4)

is then bounded above by

c

K
41É y5K

Z 1ÉÖ

0
4tKÉ16K41+h4Ö554t41É y5+ y41É t55

É 4KÉ 1541Éh4Ö55ty75

· 44t41É y5+ y41É t55K5É1 d�4t50 (5)

For t 2 6011É Ö7, the integrand in Equation (5) converges
uniformly as y approaches 1 to

tKÉ14KÉ 42KÉ 15t+h4Ö54KÉ t55

41É t5K
0

Therefore, for any Ö0 > 0 and y sufficiently close to 1,

Z 1ÉÖ

0
4tKÉ16K41+h4Ö554t41É y5+ y41É t55É 4KÉ 15

· 41Éh4Ö5ty575 · 44t41É y5+ y41É t55K5É1 d�4t5

∂ Ö0 +
Z 1ÉÖ

0

tKÉ14KÉ 42KÉ 15t+h4Ö54KÉ t55

41É t5K
d�4t50

As Ö approaches zero, this converges to

Ö0 +
Z 1

0

tKÉ14KÉ 42KÉ 15t5
41É t5K

d�4t50 (6)

If the integral in Equation (6) is negative, then we can
choose some Ö0 > 0, Ö> 0, and a corresponding y⇤ such that
for any y 2 6y⇤115, the integral in Equation (5) is negative.
Therefore,

Z 1ÉÖ

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t5< 0

for any y 2 6y⇤115.
To complete the proof, we show that for a sufficiently

small choice of Ö, there exists yÖ < 1 such that

Z 1

1ÉÖ

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t5< 0
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for all y 2 6yÖ115. Thus, for y 2 6max4yÖ1y⇤5115, the entire
improvement term is negative. Again using Lemma 1 and
integration by parts we have

41Éy5⌥04R
y
t 5Éy⌥14R

y
t 5

=
Z R

y
t

0
41Éy5d⌥04r5Éyd⌥14r5=

Z R
y
t

0

1ÉyÉr

r
d⌥14r5

= y41É2t5
t

⌥14R
y
t 5+

Z R
y
t

0

41Éy5⌥14r5

r2
dr 0

Since ⌥1 is increasing and bounded, there exist constants
0< c < c̄, such that

crK ∂⌥14r5∂ c̄rK

for all r 2 60117. Therefore, for any t > 1
2 we have

y41É 2t5
t

⌥14R
y
t 5+

Z R
y
t

0

41É y5⌥14r5

r2
dr

∂ cy41É 2t5
t

6Ry
t 7

K + c̄41É y5

KÉ 1
6Ry

t 7
KÉ10

The right-hand side is negative whenever t > y4c ·
4K É 15 + c̄5/42yc4K É 15 + 42y É 15c̄5. This threshold
is decreasing in y, with a limiting value that is strictly
less than 1. Therefore, for any Ö < 1É c4KÉ 15+ c̄/42c ·
4KÉ 15+ c̄5, we can find yÖ such that

41É y5⌥04R
y
t 5É y⌥14R

y
t 5< 0

for all t æ 1 É Ö and all y 2 6yÖ115, completing the
proof. É

Proof of Proposition 1

Fixing an Ö> 0, we can bound the improvement term as
Z 1

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t5

æ
Z 1ÉÖ

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t5

É
Z 1

1ÉÖ
y⌥14R

y
t 5d�4t50

Carrying out a similar exercise as in the previous proof,
we can show that for any Ö0, we can find y⇤ such that
Z 1ÉÖ

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t5

æ c

K
41É y5K

✓Z 1

0

tKÉ14KÉ 42KÉ 15t5
41É t5K

d�4t5É Ö0
◆

for all y 2 6y⇤115. There exists a constant c̄ such that
⌥14r5∂ c̄rK for all r , so we have
Z 1

1ÉÖ
y⌥14R

y
t 5d�4t5

∂ c̄41É y5K
Z 1

1ÉÖ
y

tK

4t41É y5+ y41É t55K
d�4t5

∂ c̄41É y5K
Z 1

1ÉÖ

tK

41É t5K
d�4t5

for all Ö< 1
2 . Since

R 1
0 tKÉ14KÉ 42KÉ 15t5/41É t5K d�4t5

is positive, we know that
R 1
0 tK/41É t5K d�4t5 is finite.

Hence, for any Ö0, we can choose Ö such that 4Kc̄/c5 ·R 1
1ÉÖ

tK/41É t5K d�4t5< Ö0.
Take Ö0 < 1

3

R 1
0 tKÉ14KÉ 42KÉ 15t5/41É t5K d�4t5,

choose Ö so that 4Kc̄/c5
R 1
1ÉÖ

tK/41É t5K d�4t5 < Ö0, and
find y⇤ such that
Z 1ÉÖ

0

h
41É y5⌥04R

y
t 5É y⌥14R

y
t 5
i
d�4t5

æ c

K
41É y5K

✓Z 1

0

tKÉ14KÉ 42KÉ 15t5
41É t5K

d�4t5É Ö0
◆

for all y 2 6y⇤115. Then for all y 2 6y⇤115 there is a constant
C such that Z4y5> y+C41É y5K . The analysis of Lobel
et al. (2009) now implies the result. É
We use the following version of the improvement prin-

ciple to establish positive learning results.

Lemma 4 (Improvement Principle). Let Assumption 3

hold. Suppose there exists a sequence of neighbor choice

functions 8Én9n2� and a continuous, increasing function

Z2 6113/27! 6113/27 with the following properties:

(a) The chosen neighbor topology ⌘É features expand-

ing subnetworks.

(b) We have Z4y5> y for any y < 3
2 .

(c) For any Ö> 0, we have

lim
n!à⇣ë8⇧ë 6u4tn1xn1 à5 ó Én4B4n557

<Z4⇧ë 6u4tÉn4B4n551xÉn4B4n551 à575É Ö9= 00

Asymptotic learning obtains.

Proof. Note that asymptotic learning is equivalent to

lim
n!à⇧ë 6u4tn1xn1 à57=

3
2
0

We construct two sequences 8ák9 and 8îk9 with the prop-
erty that for all k æ 1 and n æ ák, ⇧ë 6u4tn1xn1 à57 æ îk.
Upon showing that limk!àîk = 3

2 , we shall have our result.
Using our assumptions, for any integer K and Ö > 0, we
can find a positive integer N 4K1 Ö5 such that

⌘4Én4B4n55= 8m91 m<K5<
Ö

2
1 and

⇣ë8⇧ë 6u4tn1xn1 à5 ó Én4B4n557

<Z4⇧ë 6u4tÉn4B4n551xÉn4B4n551 à575É Ö9<
Ö

2

for all n æ N 4K1 Ö5. Set á1 = 1 and î1 = 1, and let Ök ⌘
1
2 41+Z4îk5É

p
1+ 2îk +Z4îk5

25; we define the rest of
the sequences recursively by

ák+1 =N 4ák1 Ök51 îk+1 =
Z4îk5+îk

2
0

Given the assumptions on Z4îk5, these sequences are well
defined.
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Proceed by induction to show that ⇧ë 6u4tn1xn1 à57æîk

for all næ ák. The base case k= 1 trivially holds because
an agent may always choose the action preferred a priori
according to her type, obtaining expected utility at least 1.
Considering næ ák+1 we have

⇧ë 6u4tn1xn1à57

æ
X

m<n

⇧ë 6u4tn1xn1à5 óÉn4B4n55=m7⌘4Én4B4n55=m5

æ41ÉÖk54Z4îk5ÉÖk5=îk+10

To see that îk converges to 3
2 , note the definition implies

8îk9 is a nondecreasing, bounded sequence, so it has a limit
î⇤. Since Z is continuous, the limit must be a fixed point
of Z. The only fixed point is 3

2 , finishing the proof. É

Proof of Theorem 3

Our goal is to construct a function Z on which to apply
Lemma 4. We begin by characterizing the decision x̃n,
defined as

x̃n = argmax
y280119

⇧ë 6u4tn1y1 à5 ó Én4B4n551 xÉn4B4n5570

The decision x̃n is a decision based on a coarser informa-
tion set than what agent n actually has access to. There-
fore, the utility derived from this decision provides a lower
bound on agent n’s utility in equilibrium.

Suppose Én4B4n55=m. To simplify notation, we define
Pit = ⇣ë4xm = i ó à = i1 tm = t5 and Pi =

R 1
0 Pit d�tm ó tn4t5,

where �tm ó tn denotes the distribution of tm conditioned
on the realized tn and the event Én4B4n55 = m. We fur-
ther define Eit as the expected utility of agent m given
that tm = t and Ei analogously to Pi. These quantities are
related by

E0t = 2tP0t + 1É t1 E1t = 241É t5P1t + t0 (7)

Note that Pit and Eit are constants, independent of the
realization of tn, while Pi and Ei are random variables as
functions of tn through the conditional distribution �tm ó tn .
Define the thresholds

Ltn
= tn41ÉP05

tn41ÉP05+41Étn5P1
1 Utn

= tnP0

tnP0+41Étn541ÉP15
0

For the remainder of the proof we suppress the subscript tn
to simplify notation. An application of Bayes’ rule shows
that

x̃n =

8
><

>:

0 if pn < L

xm if pn 2 4L1U 5

1 if pn >U 0

(8)

Fixing tn, the expected payoff from the decision x̃n is easily
computed as

1
2
6⌥04L541+ tn5+ 4⌥04U 5É⌥04L5542tnP0 + 1É tn5

+ 41É⌥04U 5541É tn5+ 41É⌥14U 5542É tn5

+ 4⌥14U 5É⌥14L554241É tn5P1 + tn5+⌥14L5tn71 (9)

with the first line corresponding to the payoff when à = 0
and the second to the payoff when à = 1. An application
of Lemma 1 provides the following inequalities.

⌥04L5æ
1ÉL

L
⌥14L5+

L

4
⌥1

✓
L

2

◆
1

1É⌥14U 5æ U

1ÉU
41É⌥04U 55+ 1ÉU

4

✓
1É⌥1

✓
1+U

2

◆◆
0

Substituting into Equation (9), we find

⇧ë 6u4tn1 x̃n1 à5 ó tn1 Én4B4n55=m7

æ 1
2
+ tnP0 + 41É tn5P1 + tn41ÉP05

L

4
⌥1

✓
L

2

◆

+41Étn541ÉP15
1ÉU

4

✓
1É⌥0

✓
1+U

2

◆◆
0 (10)

We collectively refer to the first three terms above as the
“base” terms, and the last two as the “improvement” terms.
We focus first on the base terms. Using Equation (7) the
base terms can be written as

E0 +E1

2
+
Z 1

0
4tn É t54P0t ÉP1t5d�tm ó tn4t5

= ⇧ë 6u4tm1xm1 à5 ó Én4B4n55=m1 tn7

+
Z 1

0
4tn É t54P0t ÉP1t5d�tm ó tn4t50 (11)

For a given Ö> 0, define pÖ = ⇣4ótmÉ tnó> Ö ó Én4B4n55=
m5. Integrating over tn and using Assumption 3, for
any Ö> 0 we can bound the integrated base terms from
below by

⇧ë 6u4tm1xm1à57+
Z 1

0

Z 1

0
4sÉt54P0tÉP1t5d�tm ótn4t5d�tn

4s5

æ ⇧ë 6u4tm1xm1 à57É ÖÉpÖ0 (12)

Moving to the improvement terms, note that

P0 =
Z 1

0
P0t d�tmótn4t5=

Z 1

0

E0t É 41É t5

2t
d�tmótn4t50

The last integrand is Lipschitz continuous in t for t
bounded away from zero. Therefore, for any Ö with 0 <
2Ö< tn, we can find a constant c such that

Z 1

0

E0t É 41É tn5

2tn
d�tm ó tn4t5É cÖÉ pÖ

tn

∂
Z 1

0

E0t É 41É t5

2t
d�tm ó tn4t5

∂
Z 1

0

E0t É 41É tn5

2tn
d�tm ó tn4t5+ cÖ+ pÖ

tn
0

This is equivalent to

E0 É 41É tn5

2tn
É cÖÉ pÖ

tn
∂ P0 ∂

E0 É 41É tn5

2tn
+ cÖ+ pÖ

tn
0
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Similarly, we can find a constant c such that

E1 É tn
241É tn5

É cÖÉ pÖ

1É tn
∂ P1 ∂

E1 É tn
241É tn5

+ cÖ+ pÖ

1É tn
0

Consider a modification of the improvement terms in Equa-
tion (10) where we replace P0 by 4E0É 41É tn55/42tn5 and
P1 by 4E1 É tn5/4241É tn55, including in the definitions of
L and U . Our work above, together with the continuity of
the belief distributions, implies that the modified terms dif-
fer from the original improvement terms by no more than
some function Ñ4Ö1pÖ1 tn5, where Ñ converges to zero as
Ö and pÖ approach zero together, and the convergence is
uniform in tn for tn bounded away from 0 and 1. We can
then bound the improvement terms by

tn41ÉP05
L

4
⌥1

✓
L

2

◆

æ 1
8
41+tnÉE05

2

1ÉE0+E1
⌥1

✓
1+tnÉE0

241ÉE0+E15

◆
ÉÑ4Ö1pÖ1tn51 (13)

41É tn541ÉP15
1ÉU

4

✓
1É⌥0

✓
1+U

2

◆◆

æ 1
8
42É tn ÉE15

2

1+E0 ÉE1

✓
1É⌥0

✓
1É 2É tn ÉE1

241+E0 ÉE15

◆◆

É Ñ4Ö1pÖ1 tn50 (14)

Let y⇤ = 4E0 + E15/2; we must have either E0 ∂ 2
3y

⇤ + tn
or E1 ∂ 2

3y
⇤ + 1É tn since y⇤ ∂ 3

2 . The first term on the
right-hand side of Equation (13) can be rewritten as

1
8
41+ tn ÉE05

2

1É 2E0 + 2y⇤
⌥1

✓
1+ tn ÉE0

241É 2E0 + 2y⇤5

◆
1

which we note is decreasing in E0 for E0 ∂ 2
3y

⇤ + tn (we
have used that y⇤ æ 1

2 ). Therefore, if E0 ∂ 2
3y

⇤ + tn, then
Equation (13) is bounded below by

1
16

✓
1É 2

3
y⇤
◆2

⌥1

✓
1É 42/35y⇤

4

◆
É Ñ4Ö1pÖ1 tn50 (15)

Similarly, if E1 ∂ 2
3y

⇤ + 1 É tn, then Equation (14) is
bounded below by

1
16

✓
1É 2

3
y⇤
◆2✓

1É⌥0

✓
1É 1É 42/35y⇤

4

◆◆

É Ñ4Ö1pÖ1 tn50 (16)

To simplify notation, define

Z4y⇤5= 1
16

✓
1É 2

3
y⇤
◆2

min

⌥1

✓
1É42/35y⇤

4

◆
1

✓
1É⌥0

✓
1É 1É42/35y⇤

4

◆◆�
0

Recall that y⇤ = y⇤4tn5 is a function of tn through E0
and E1. Using Equations (15) and (16), we can integrate
over tn to bound the contribution of the improvement terms
to agent n’s utility. Since the improvement terms are non-
negative, we can choose any Ö0 > 0 and restrict the range
of integration to obtain a lower bound of

Z 1ÉÖ0

Ö0

h
Z4y⇤4t55É 2Ñ4Ö1pÖ1 t5

i
d�4t50

Now define y = ⇧ë 6u4tm1xm1 à57 and note that y =R 1
0 y⇤4t5d�4t5. Observe since y⇤ æ 1

2 , this implies ⇣ë4y
⇤ ∂

3
4 +y/25æ 43É2y5/41+2y5. Choosing Ö0 sufficiently small
we can bound the improvement terms below by

3É 2y
241+ 2y5

Z4y5É
Z 1ÉÖ0

Ö0
2Ñ4Ö1pÖ1 t5d�4t50 (17)

Finally, define Z4y5 = y + 443 É 2y5/241+ 2y55Z4 34 +
y/25. Combining Equations (10), (12), and (17), and using
that Z is nonincreasing, we have

⇧ë 6u4tn1xn1 à5 ó Én4B4n55=m7

æZ4y5É ÖÉpÖ É 2
Z 1ÉÖ0

Ö0
2Ñ4Ö1pÖ1 t5d�4t5

for any Ö > 0 and some fixed Ö0 > 0. The hypothesis of
the theorem implies that for any Ö> 0, pÖ approaches zero
as n grows without bound. Using the uniform convergence
to 0 of Ñ for tn 2 6Ö011É Ö07, we see that Z satisfies the
hypothesis of Lemma 4, completing the proof. É

Proof of Proposition 3

Since ⌘0 is strongly homophilous, there exist neighbor
choice functions 8Én9n2� for which limn!à⌘04ótnÉ tÉn4B4n55ó
> Ö5 = 0, and the improvement principle of Lemma 4
applies to establish learning along the chains of observations
in ⌘0

É . We shall see the same neighbor choice functions can
be used to establish learning in ⌘4ã5.
Considering an arbitrary agent n with Én4B4n55 = m,

recall the decision thresholds Ltn
and Utn

defined in the
proof of Theorem 3. Here we let Ltn

and Utn
denote the

corresponding thresholds for the network ⌘, and let L0
tn

and U 0
tn

denote the thresholds for the network ⌘0. As in
the proof of Theorem 3, we suppress the subscript tn from
here on. A lower bound on the improvement agent n makes
in network ⌘0 can be obtained by using the suboptimal
decision thresholds L and U . Since the last of the base
terms (see Equation (11)) does not depend on the decision
thresholds, the proof of Theorem 3 may be followed with
essentially no changes to obtain an improvement function
Z0 satisfying the assumptions of Lemma 4. Crucially, this
improvement function applies for decisions made via the
suboptimal decision thresholds that are appropriate to the
network ⌘ as opposed to ⌘0.
By assumption, we have an improvement function Z for

the network ⌘. Considering an arbitrary ã-mixture of ⌘
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and ⌘0, we suppose that n uses the decision thresholds
L and U , instead of the optimal thresholds for ⌘4ã5. It is
immediately clear that

Z4ã5 = min
ã260117

8ãZ+ 41Éã5Z09

is an improvement function for the suboptimal decision
rule. This provides a lower bound on the true improvement,
so Z4ã5 is an improvement function for ⌘4ã5

É . Lemma 4
applies. É

The following lemmas provide the essential machinery
for the proof of Theorem 4. The first lemma shows that
if a subsequence of decisions in a cluster provides infor-
mation that converges to full knowledge of the state, the
entire cluster must learn. The essence of the proof is that
the expected social belief of agents in an identified cluster,
conditional on the decisions of this subsequence, must also
converge on the state à. Since social beliefs are bounded
between 0 and 1, the realized social belief of each agent
in the cluster deviates from this expectation only with very
small probability.

The second lemma establishes a lower bound on the
amount of new information provided by the decision of an
agent within a uniformly diverse cluster. Given a subset
of the information available to that agent, we bound how
much information the agent’s decision conveys on top of
that. Under the assumption of uniform diversity, we can
show that either the agent acts on her own signal with pos-
itive probability, or she has access to significant additional
information not contained in the subset we considered. This
is a key technical innovation that allows us to apply mar-
tingale convergence arguments even when agents within a
cluster do not have nested information sets.

Lemma 5. Let Assumption 4 hold; suppose 8Åi9i2� is

a uniformly diverse, identified cluster. If there exists a

subsequence 8Åi4j59j2� such that the social beliefs q̂k =
⇣ë4à = 1 ó xÅi4j5

1 j ∂ k5 converge to à almost surely, then

asymptotic learning obtains within the cluster.

Proof. Consider the case where à = 0; the case à = 1 is
analogous. Fixing any Ö > 0, by assumption there exists
some random integer KÖ, which is finite with probabil-
ity 1, such that q̂k ∂ Ö/3 for all k æ KÖ. Fix a k large
enough so that ⇣4KÖ > k5∂ Ö/3. Since the cluster is identi-
fied, for large enough n there are neighbor choice functions
É415
Ån
1 0 0 0 1 É4k5

Ån
such that

⇣ë49 i∂ k ó É4i5
Ån
4B4Ån55 6= Åi5∂

Ö

3
0

We then have

⇧ë 6qÅn
ó x

É
4i5
Ån 4B4Ån55

1 i∂ k1 à= 07

∂
✓
1É Ö

3

◆
⇧ë 6q̂k ó à= 07+ Ö

3

∂
✓
1É Ö

3

◆2

⇧ë 6q̂k ó kæKÖ1 à= 07+ 2Ö
3

∂ Ö0

Since the social belief qÅn
is bounded below by 0, we nec-

essarily have

⇣ë4qÅn
>
p
Ö ó à= 05∂

p
Ö0

Therefore,

⇣ë4xÅn
=0 óà=05

æ41Ép
Ö5
Z 1

0
⇣ë4xÅn

=0 óà=01 qÅn
=p

Ö1 tÅn
= t5d�Ån

4t5

=41Ép
Ö5
Z 1

0
⌥04R

p
Ö

t 5d�Ån
4t50

Condition (b) of uniform diversity ensures this last inte-
gral approaches 1 as Ö approaches zero, completing the
proof. É
Lemma 6. Let Assumption 4 hold. Let Å be a stopping time

within a cluster, and suppose I is a random variable taking

values contained in agent Å’s information set with proba-

bility 1. For a given realization I of I , define q̂Å = ⇣ë4à=
1 óI = I5, and suppose there exist p1d > 0 such that

�Å4R
1Éq̂Å
Ç̄

Éd5É�Å4R
1Éq̂Å
Ç +d5æ p0

If for some Ö > 0 we have q̂Å æ Ö, then there exists some

Ñ> 0 such that

⇣ë4xÅ = 0 óI = I1 à= 05
⇣ë4xÅ = 0 óI = I1 à= 15

æ 1+ Ñ0

Similarly, if q̂Å ∂ 1É Ö, then we can find Ñ> 0 such that

⇣ë4xÅ = 1 óI = I1 à= 15
⇣ë4xÅ = 1 óI = I1 à= 05

æ 1+ Ñ0

Proof. Fix a realization I of I , and define

Pqi = d⇣ë4qÅ = q ó I1 à= i50

We can rewrite the ratio

⇣ë4xÅ=0 ó I1 à=05
⇣ë4xÅ=0 ó I1 à=15

=
R 1
0 ⇣ë4xÅ=0 ó I1 à=01 tÅ= t5d�Å4t5R 1
0 ⇣ë4xÅ=0 ó I1 à=11 tÅ= t5d�Å4t5

=
R 1
0

R 1
0 Pq0⌥04R

q
t 5dq d�Å4t5R 1

0

R 1
0 Pq1⌥14R

q
t 5dq d�Å4t5

=
R 1
0

R 1
0 Pq1⌥04R

q
t 5+4Pq0ÉPq15⌥04R

q
t 5dq d�Å4t5R 1

0

R 1
0 Pq1⌥14R

q
t 5dq d�Å4t5

=
✓Z 1

0

Z 1

0
Pq1⌥04R

q
t 5+4Pq0ÉPq154⌥04R

q
t 5

É⌥04R
q̂Å
t 55dq d�Å4t5

◆

·
✓Z 1

0

Z 1

0
Pq1⌥14R

q
t 5dq d�Å4t5

◆É1

0 (18)
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It follows from the definition of the social belief and an
application of Bayes’ rule that for ⇣ë almost all q we have

q =

1+

✓
1
q̂Å

É 1
◆
Pq0

Pq1

�É1

0

In particular, if q < q̂Å, then Pq0 >Pq1, and the same holds
with the inequalities reversed. Now for any given Ö0 > 0,
define qÉ

Ö0 < q+
Ö0 as the values given above when we take

Pq1/Pq0 equal to 1É Ö0 and 1+ Ö0, respectively.
We shall consider three cases. First, suppose ⇣ë4q

É
Ö0 æ

qÅ ó I5æ 1/3. For q ∂ qÉ
Ö0 we have

4Pq0 ÉPq154⌥04R
q
t 5É⌥04R

q̂Å
t 55

= Pq0

✓
1É Pq1

Pq0

◆
4⌥04R

q
t 5É⌥04R

q̂Å
t 55

æ Ö0Pq04⌥04R
qÉ
Ö0

t 5É⌥04R
q̂Å
t 550

Integrating over all such q and choosing Ö0 small enough
we have

Z 1

0

Z 1

0
4Pq0 ÉPq15⌥04R

q
t 5dq d�Å4t5

æ Ö0

6

Z 1

0
4⌥04R

qÉ
Ö0

t 5É⌥04R
q̂Å
t 55d�Å4t5

æ pÖ0

6
min

t26R1Éq̂Å
Ç +d1R

1Éq̂Å
Ç̄

Éd7

4⌥04R
qÉ
Ö0

t 5É⌥04R
q̂Å
t 55> 01

where the last inequality follows because R
q̂Å
t is bounded

strictly between Ç and Ç̄ for the given range, and ⌥0 has
full support in 4Ç1 Ç̄5. Since the denominator in Equa-
tion (18) is bounded by 1, and the first term of the numer-
ator is at least as large by Lemma 1 part (d), the inequal-
ity above gives us our desired Ñ. For the second case, if
⇣ë4q

+
Ö0 ∂ qÅ óI = I5æ 1/3, then a similar exercise gives

Z 1

0

Z 1

0
4Pq0 ÉPq15⌥04R

q
t 5dq d�Å4t5

æ Ö0

6

Z 1

0
4⌥04R

q̂Å
t 5É⌥04R

q+
Ö0

t 55d�Å4t50

For small Ö0, the required Ñ is forthcoming by the same
argument.

Finally, we assume that ⇣ë4q
É
Ö0 ∂ qÅ ∂ q+

Ö0 ó I = I5 æ
1/3. We can then bound Equation (18) below by

R 1
0

R 1
0 Pq1⌥04R

q
t 5dq d�Å4t5R 1

0

R 1
0 Pq1⌥14R

q
t 5dq d�Å4t5

æ
R 1
0

R q+
Ö0

qÉ
Ö0
Pq1⌥04R

q
t 5dq d�Å4t5+ 1

R 1
0

R q+
Ö0

qÉ
Ö0
Pq1⌥14R

q
t 5dq d�Å4t5+ 1

0 (19)

For q in the given range, Lemma 1 part (d) gives
R 1
0 ⌥04R

q
t 5d�Å4t5R 1

0 ⌥14R
q
t 5d�Å4t5

=
R q

0 ⌥04R
q
t 5d�Å4t5+

R 1
q
⌥04R

q
t 5d�Å4t5

R 1
0 ⌥14R

q
t 5d�Å4t5

æ
4⌥041/25/⌥141/255

R q

0 ⌥14R
q
t 5d�Å4t5+

R 1
q
⌥14R

q
t 5d�Å4t5

R 1
0 ⌥14R

q
t 5d�Å4t5

=1+
✓
⌥041/25
⌥141/25

É1
◆R q

0 ⌥14R
q
t 5d�Å4t5R 1

0 ⌥14R
q
t 5d�Å4t5

æ1+
✓
⌥041/25
⌥141/25

É1
◆R qÉ

Ö0
0 ⌥14R

q+
Ö0

t 5d�Å4t5R 1
0 ⌥14R

q
t 5d�Å4t5

0 (20)

The denominator of the last expression is at most 1, and the
numerator is nonnegative. Define b= 42Ç+ 15/4. Observe
that for any q 2 40115, we have q > Rb

q , so we may fix Ö0

small enough so that qÉ
Ö0 > R

b

q+
Ö0
. Restricting the range of

integration, Equation (19) is bounded below by

1+
✓
⌥041/25
⌥141/25

É 1
◆Z qÉ

Ö0

R
b

q+
Ö0

⌥14R
q+
Ö0

t 5d�Å4t5

æ 1+
✓
⌥041/25
⌥141/25

É 1
◆Z qÉ

Ö0

R
b

q+
Ö0

⌥14b5d�Å4t5

= 1+
✓
⌥041/25
⌥141/25

É 1
◆
⌥14b54�Å4q

É
Ö0 5É�Å4R

b

q+
Ö0
55> 1

for small enough Ö0. Choosing Ö0 small enough for all
three cases to satisfy the corresponding inequalities finishes
the proof of the first statement; the second statement is
analogous. É

Proof of Theorem 4

We first construct a subsequence on which we can apply
Lemma 5. Define the indices i4j5 recursively, beginning
with i415= 1. For j > 1, let

Öj =
1
2
min
x

min8⇣ë4à= 1 ó xÅi4l5
1 l < j51

1É⇣ë4à= 1 ó xÅi4l5
1 l < j590

Since the cluster is identified, we can choose i4j5 large
enough so that

⇣ë49 l < j ó É i4l5
Åi4j5

4B4Åi4j555 6= Åi4l55∂ Öj 0

Since the cluster is uniformly diverse, we can choose the
indices so that the resulting subsequence is also uniformly
diverse.
For the subsequence 8Åi4j59j2�, define q̂k = ⇣ë4à = 1 ó

xÅi4j5
1 j ∂ k5. The sequence q̂k is clearly a bounded martin-

gale, so the sequence converges almost surely to a random
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variable q⇤ by the martingale convergence theorem. Con-
ditional on à= 1, the likelihood ratio 41É q̂k5/q̂k is also a
nonnegative martingale (Doob 1953, Eq. (7.12)). Therefore,
conditional on à = 1, the ratio 41É q̂k5/q̂k converges with
probability 1 to a limiting random variable. In particular,

⇧ë


1É q⇤

q⇤

���� à= 1
�
<à1

(Breiman 1968, Theorem 5.14), and therefore, q⇤ > 0 with
probability 1 when à = 1. Similarly, q̂k/41É q̂k5 is a non-
negative martingale conditional on à = 0, and by a similar
argument we have q⇤ < 1 with probability 1 when à= 0.

We shall see that the random variable q⇤ equals à with
probability 1. Let x4k5 denote the vector comprised of the
actions 8xÅi4j5

9j∂k, and suppose without loss of generality
that xÅi4k+15

= 0 for infinitely many k. Using Bayes’ rule
twice,

q̂k+1=⇣4à=1 óxÅi4k+15
=01 x4k55

=

1+ ⇣4x4k5 óà=05⇣4xÅi4k+15

=0 óx4k51 à=05

⇣4x4k5 óà=15⇣4xÅi4k+15
=0 óx4k51 à=15

�É1

=

1+

✓
1
q̂k

É1
◆⇣4xÅi4k+15

=0 óx4k51 à=05

⇣4xÅi4k+15
=0 óx4k51 à=15

�É1

0 (21)

To simplify notation, let

f 4x4k55= ⇣4xÅi4k+15
= 0 ó x4k51 à= 05

⇣4xÅi4k+15
= 0 ó x4k51 à= 15

0

Thus,

q̂k+1 =

1+

✓
1
q̂k

É 1
◆
f 4x4k55

�É1

0

Suppose q̂k 2 6Ö11 É Ö7 for all sufficiently large k and
some Ö> 0. From our construction of the subsequence Åi4j5,
this implies

q̃k ⌘ ⇣ë4à= 1 ó xm1 m= É i4l5
Åi4k+15

4B4Åi4k+15551 l∂ k5

2

Ö

2
11É Ö

2

�

for all such k. By Lemma 6 together with the uniform diver-
sity property, there exists ÑÖ > 0 such that f 4x4k55æ 1+ÑÖ.
Given this ÑÖ, we can bound the difference q̂k É q̂k+1. If
xÅi4k+15

= 0, we have

q̂k É q̂k+1 æ q̂k É

1+

✓
1
q̂k

É 1
◆
41+ ÑÖ5

�É1

= q̂k41É q̂k5ÑÖ

1+ ÑÖ41É q̂k5
æ Ö41É Ö5ÑÖ

1+ 41É Ö5ÑÖ

⌘K04Ö5> 00 (22)

If q̂k 2 6Ö11ÉÖ7 for all sufficiently large k, this implies the
sequence 8q̂k9 is not Cauchy. This contradicts the almost
sure convergence of the sequence, so the support of q⇤

cannot contain 6Ö11ÉÖ7 for any Ö> 0. Lemma 5 completes
the proof. É

Proof of Proposition 4

The negative implication follows similar reasoning as
Example 4. If one cluster fails to observe the other beyond
a certain point, then once social beliefs become strong
enough in favor of the cluster’s preferred state, the cluster
will herd. Since this happens with positive probability, the
other cluster obtains bounded information from this cluster,
and herds with positive probability as well. We now prove
the positive implication.
Define q̂C

k = ⇣ë4à = 1 ó xci 1 i ∂ k5 and q̂D
k = ⇣ë4à = 1 ó

xdi 1 i ∂ k5. Following the same argument as in the proof
of Theorem 4, the sequences q̂C

k and q̂D
k converge almost

surely to random variables qC and qD, respectively. We
further have for each i 2 80119 that

⇣ë4q
C = 1É i ó à= i5= ⇣ë4q

D = 1É i ó à= i5= 00

Without loss of generality, assume tc1 2 6011/25; following
the argument from Theorem 4, and applying Lemma 6,
we immediately find that the support of qC is contained
in 809 [ 61É Ç117 and the support of qD is contained in
6011É Ç̄7[ 819.
Define the constants ÑC and ÑD by

ÑC = inf8Ñ ó ⇣ë4q
C 2 809[ 61É Ñ1175= 19 and

ÑD = inf8Ñ ó ⇣ë4q
D 2 601 Ñ7[ 8195= 190

Our first task is to show that if qC 2 61É ÑC115, then only
finitely many agents in C select action 0; similarly if qD 2
401 ÑD7, only finitely many agents in D selection action 1.
We will analyze only the cluster C since the other result
is analogous. The argument should be familiar by now; we
establish a contradiction with almost sure convergence of
the martingale.
Suppose xck+1

= 0 with positive probability, and recall
the computation leading to Equation (18) in the proof of
Lemma 6. Consider the corresponding result with I =
8xci9i∂k,

⇣ë4xck+1
= 0 ó xci 1 i∂ k1 à= 05

⇣ë4xck+1
= 0 ó xci 1 i∂ k1 à= 15

=
R 1
0

R 1
0 Pq1⌥04R

q
t 5+4Pq0ÉPq154⌥04R

q
t 5É⌥04R

q̂Å
t 55dqd�É4t5R 1

0

R 1
0 Pq1⌥14R

q
t 5dqd�É4t5

0

If qC 2 61ÉÑC11ÉÖ7 for some fixed Ö> 0, then by almost
sure convergence, for all k large enough we must have q̂C

k æ
1É ÑC É Ö æ 1É ÇÉ Ö. Since tck+1

∂ 1
2 with probability 1,

we have ⌥04R
q
t 5=⌥14R

q
t 5= 0 for any q > 1ÉÇ, so these

values of q do not contribute to the integrals; from here on
we consider the densities Pqi above to be conditional on this
event. We analyze two cases: First suppose that conditional
on q ∂ 1 É Ç, we have q ∂ 1 É Ç É 2Ö with probability
at least 1/2. Following the argument of Lemma 6, this gives
us a lower bound on the second term in the numerator, and
therefore bounds the ratio strictly above one.
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Alternatively, suppose that conditional on q ∂ 1É Ç we
have q 2 61É ÇÉ 2Ö11É Ç7 with probability at least 1/2.
For any t sufficiently close to 1/2, we have

⌥04R
q
t 5

⌥14R
q
t 5

æ
⌥04Ç+ 2Ö5

⌥14Ç+ 2Ö5
> 10

Since �É is supported in any interval 61/2É Ñ11/27, posi-
tive measure is assigned to these values of t, and together
with Lemma 1 part (d) this again allows us to bound the
ratio strictly above one. Following the argument of The-
orem 4, infinitely many agents in C selecting action 0
would contradict almost sure convergence of q̂C

k if qC 2
61É ÑC11É Ö7. Since Ö was arbitrary, the result follows.

Our next task is to show for a fixed q 2 61É ÑC115 we
have

⇣ë4q
D 2 401 ÑD7 ó qC = q1 à= 15æ

41ÉÇ541É q5

Çq
0 (23)

Similarly, for a fixed q 2 401 ÑD7 we have

⇣ë4q
C 2 6ÑC115 ó qC = q1 à= 05æ Ç̄q

41É Ç̄541É q5
0 (24)

Let NC and ND denote the smallest integer valued ran-
dom variables such that xck = 1 for all kæNC and xdk = 0
for all k æ ND. From the above work, we have that NC

is finite with probability 1 conditional on qC 2 61É ÑC115,
and ND is finite with probability 1 if qD 2 401 ÑD7. Con-
sider a particular sequence of decisions 8xck9k2� such that
qC = q 2 61É ÑC115. This immediately implies

lim
k!à

⇣ë4xdk = 0 ó 8xck9k2�1 à= 15

⇣ë4xdk = 0 ó 8xck9k2�1 à= 05

= ⇣ë4q
D 2 401 ÑD7 ó 8xck9k2�1 à= 15

⇣ë4q
D 2 601 ÑD7 ó 8xck9k2�1 à= 05

= ⇣ë4q
D 2 401 ÑD7 ó 8xck9k2�1 à= 150

Given an Ö > 0 we can choose NÖ large enough so that
⇣ë4NC ∂ NÖ ó 8xck9k∂NÖ

5 æ 1 É Ö. If further we have NÖ

larger than the realized NC for our fixed sequence, we have
the bounds

⇣ë4xdj = 0 ó 8xck9k2�1 à= 15

⇣ë4xdj = 0 ó 8xck9k2�1 à= 05

∂
⇣ë4xdj = 0 ó 8xck9k∂n1 à= 15+ Ö

⇣ë4xdj = 0 ó 8xck9k∂n1 à= 05É Ö
1 and

⇣ë4xdj = 0 ó 8xck9k2�1 à= 15

⇣ë4xdj = 0 ó 8xck9k2�1 à= 05

æ
⇣ë4xdj = 0 ó 8xck9k∂n1 à= 15É Ö

⇣ë4xdj = 0 ó 8xck9k∂n1 à= 05+ Ö

for any næNÖ and all j .
Suppose ⇣ë4q

D 2 401 ÑD7 ó qC = q1 à = 15 <
41ÉÇ541É q5/4Çq5. From the above work, we can find
a collection of sequences 8xck9k2� with positive measure
conditional on qC = q, an Ö > 0, and an integer N 0

Ö such
that

⇣ë4xdm = 0 ó 8xck9k∂n1 à= 15

⇣ë4xdm = 0 ó 8xck9k∂n1 à= 05
∂

41ÉÇ541É q5

Çq
É Ö

for all n1m æ N 0
Ö when one of the sequences 8xck9k2� is

realized. For all sufficiently large n, q̂C
n is within Ö/2 of q;

this in turn implies that for all such n and mæN 0
Ö , we have

an Ö0 > 0 such that

⇣ë4à= 1 ó xdm = 01 xck 1 k∂ n5∂ 1ÉÇÉ Ö00

Note that for any subsequence of the cluster D, since types
are conditionally independent and arbitrarily close to 1,
infinitely many members of the subsequence will select
action 0. If dm 2 B4cn5 for n1m as above, we have ⇧ë 6qcn ó
xdm = 01 xck 1 k ∂ n7 ∂ 1É ÇÉ Ö0. Since social beliefs are
bounded between 0 and 1, there is a positive lower bound
on the probability that qcn ∂ 1É ÇÉ Ö0/2 conditional on
these observations. Since infinitely many agents cn observe
such dm and have types arbitrarily close to 1/2, with prob-
ability 1 infinitely many agents in C choose action 0. We
conclude that either ÑC = 0 or

lim
n!à⇣ë4q

D 2 401 ÑD7 ó xck 1 k∂ n1 à= 15

= ⇣ë4q
D 2 401 ÑD7 ó qC = q1 à= 15æ

41ÉÇ541É q5

Çq

as claimed. In the former case, decisions of agents in C
become fully informative, and asymptotic learning clearly
obtains. On the other hand, if Equations (23) and (24) hold,

⇣ë4q
C 2 61É ÑC117 ó à= 05

=
Z ÑD

0
⇣ë4q

C 2 61É ÑC117 ó qD = q1 à= 05

· d⇣ë4q
D = q ó à= 05

æ
Z ÑD

0

Ç̄q

41É Ç̄541É q5
d⇣ë4q

D = q ó à= 05

=
Z ÑD

0

Ç̄q

41É Ç̄541É q5

· d⇣ë4q
D = q ó à= 05

d⇣ë4q
D = q ó à= 15

d⇣ë4q
D = q ó à= 150 (25)

Now, observe the definition of qD implies

d⇣ë4q
D = q ó à= 05

d⇣ë4q
D = q ó à= 15

= ⇣ë4à= 0 ó qD = q5

⇣ë4à= 1 ó qD = q5
= 1É q

q
0
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Substituting into Equation (25) gives

⇣ë4q
C 2 61ÉÑ117 óà=05æ Ç̄

1ÉÇ̄

Z ÑD

0
d⇣ë4q

D=q óà=15

= Ç̄

1ÉÇ̄
⇣ë4q

D2 601ÑD7 óà=150

A similar calculation for qD gives

⇣ë4q
D2 601ÑD7 óà=15æ

1ÉÇ

Ç
⇣ë4q

C 2 61ÉÑC117 óà=050

Combining the two gives

⇣ë4q
C 2 61É ÑC117 ó à= 05

æ
Ç̄41ÉÇ5

41É Ç̄5Ç
⇣ë4q

C 2 61É ÑC117 ó à= 050

Since the ratio on the right-hand side is strictly larger than
one, this leads to a contradiction if the probability is larger
than zero. We conclude that both probabilities are equal to
zero, and consequently, asymptotic learning obtains. É

Endnotes

1. See Marsden (1988), McPherson et al. (2001), and Currarini
et al. (2009, 2010).
2. This includes the foundational papers by Banerjee (1992) and
Bikhchandani et al. (1992) as well as more recent work by
Bala and Goyal (1998), Gale and Kariv (2003), Çelen and Kariv
(2004), Guarino and Ianni (2010), Acemoglu et al. (2011, 2014),
Mossel et al. (2012), Mueller-Frank (2013), and Lobel and Sadler
(2015).
3. See Smith and Sorensen (2000), Acemoglu et al. (2011), and
Lobel and Sadler (2015).
4. The range 6113/27 of the function Z in this definition corre-
sponds to the possible range of an agent’s ex ante expected utility,
not the possible range of an agent’s probability of matching the
state of the world.
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