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Abstract

We consider the problem of dynamic pricing in the presence of patient consumers.

We call a consumer patient if she is willing to wait a certain number of periods for a

lower price and will purchase as soon as the price is equal to or below her valuation.

We allow for arbitrary joint distributions of patience levels and valuations. We propose

an efficient dynamic programming algorithm for finding optimal pricing policies. We

find numerically that optimal policies can take the form of incomplete cyclic policies,

mixing features of nested sales policies and of decreasing cyclic policies.

1 Introduction

When a consumer encounters a price she considers too high, she sometimes waits for a

given amount of time to see if the price drops below a given target level. This is referred

to in the literature as patient consumer behavior. To be more precise, a patient consumer

is characterized by her arrival time, willingness-to-wait and valuation. If the price of the

product on offer drops below her valuation within her patience window, she will purchase

the product. This paper is a study of optimal pricing policies in the presence of patient

consumers who are heterogeneous in their arrival times, patience levels and valuations.

There is a growing body of evidence that retail firms engage in dynamic pricing as a

tool for intertemporal price discrimination (Hendel and Nevo [2013], Li et al. [2014] and

Moon et al. [2018]). This is true of brick-and-mortar and is especially true of e-commerce

retailers, where firms often use sophisticated dynamic pricing algorithms to sort patient

1



consumers from impatient ones. Our work aims to understand how a firm should dynamically

change its prices in order to maximize revenues given that consumers are quite diverse in

their willingness-to-wait for lower prices and that willingness-to-wait is often correlated with

willingness-to-pay.

Our paper builds on earlier work on dynamic pricing with patient consumers by Ahn

et al. [2007] and Liu and Cooper [2015]. Our model is essentially the same as the one

considered in Liu and Cooper [2015], with the only difference being that they study an

infinite horizon model while we focus on a finite horizon formulation. At the heart of Liu

and Cooper [2015] lies a fascinating claim. The authors of that paper argue that pricing for

patient consumers is a more challenging task than pricing for strategic consumers, a claim

that is at odds with the received wisdom of the revenue management research community.

To be more precise, Liu and Cooper [2015] study a model that is identical to Besbes and

Lobel [2015], except for the assumed consumer behavior (Besbes and Lobel [2015] assume

consumers are strategic). While Besbes and Lobel [2015] are able to construct a polynomial-

time algorithm for finding optimal prices for strategic consumers, Liu and Cooper [2015]

are able to do the same for patient consumers only for the special case where all patient

consumers have the same patience level (there are also impatient consumers in this version

of their model). For the case of heterogeneous patience levels, they offer only an algorithm

that runs in exponential time on the maximum willingness-to-wait.

Our contributions. Our main result is the construction of an algorithm for computing

optimal dynamic pricing policies in the presence of patient consumers with heterogeneous

patience levels. The algorithm we propose works for any “patient demand model.” That is,

it works for any joint distribution of valuations and patience levels. The algorithm runs in

polynomial time in both the time horizon and the number of available prices. Our algorithm

can also be used in an infinite horizon model by combining our results with a bound on the

maximum length of any policy from Liu and Cooper [2015]. In the infinite horizon model,

our algorithm runs in polynomial time on the maximum willingness-to-wait and the number

of prices. The algorithm is loosely inspired by the dynamic program proposed in Besbes and
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Lobel [2015] for strategic consumers, but it relies on a different recursion and state space.

At first glance, this result would seem to invalidate Liu and Cooper [2015]’s claim regard-

ing prices for patient consumers being harder to compute than prices for strategic consumers.

However, this would be an incorrect conclusion since the algorithm we propose requires a

bigger state space than the one for strategic consumers from Besbes and Lobel [2015]. Our

algorithm for patient consumers runs in quadratic time in the number of available prices,

while the algorithm for strategic consumers requires only linear time in the number of prices.

At the heart of the increased difficulty of the patient consumers problem lies a simple

idea. Let us call a group of consumers who arrive at a given period with a given patience

level a cohort. In a strategic consumers model, all consumers within a given cohort either

purchase at a given price or do not purchase at all. That is, we can understand revenues by

assigning each cohort to a single price available to its consumers. With patient consumers,

this is no longer the case. Different consumers within a cohort purchase at different prices.

We therefore need to assign different prices to different intervals of valuation within a cohort,

which necessitates a more complex state space.

We also take advantage of our algorithmic result to perform a numerical exploration of

the structure of optimal dynamic pricing policies under patient consumers. Besbes and Lobel

[2015] show that, with strategic consumers, pricing policies often take a form they call nested

sales. Liu and Cooper [2015] show that with one patient consumer class, the optimal policies

are cyclic decreasing. With heterogeneous patience levels, we find that optimal policies can

take a form that combines properties of both nested sales and cyclic decreasing. Specifically,

we call this kind of policy incomplete cyclic. An incomplete cyclic policy looks like a cyclic

decreasing policy, but its cycles are sometimes incomplete, with the price increasing sharply

back to its high point before reaching its low point. We also argue that the seller is able to

better price discriminate in a patient consumers model than in a strategic consumers model.

Other related works. The first paper to consider a model where consumers stay in the

system until they encounter a price below their valuation appears to be Kalish [1983], a

study of pricing under learning-by-doing and word-of-mouth effects. Another early paper to
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consider a model with patient consumers is Besanko and Winston [1990], though the main

focus of that paper is a model with strategic consumers. Patience is assumed to be infinite

in both of these papers, in the sense that consumers only depart the system if they purchase

or the selling season ends. Some recent papers, such as Caldentey et al. [2017], also compare

and contrast strategic consumer models with infinite patience models.

In a very recent contribution that advances the field in a different direction, Araman

and Fayad [2017] consider a model with patient consumers who have stochastic valuations.

Consumer valuations change over time according to a Markov chain, and one of the states

of the Markov chain is assumed to represent departure from the system. The consumers are

patient, since they purchase immediately if their valuation is above the current price. The

authors show that cyclic policies are near-optimal for this stochastic problem. Cohen et al.

[2017] study a model of consumer demand that depends on past prices. Their model allows

for demand to accumulate over time and, thus, has the flavor of a patient consumers model.

There is a substantial related literature on dynamic pricing with strategic consumers.

Conlisk et al. [1984] were the first to consider the problem of how sellers should price their

products in settings where consumers arrive over time and are intertemporal utility maxi-

mizers. They assumed consumers had two possible valuations, low and high, and showed

that this would lead to optimal policies being cyclic. The two papers that introduced the

problem of dynamic pricing with strategic consumers to the operations community are Su

[2007] and Aviv and Pazgal [2008]. Some of the recent contributions to this topic include

Chen and Shi [2016], Chen and Wang [2016], Correa et al. [2016], Briceno et al. [2017] and

Chen and Farias [2018]. As yet, there is no empirical work that attempts to disentangle

patient behavior from strategic behavior within the context of dynamic pricing. There is,

however, experimental work that supports the idea that humans often make decisions via

satisficing rather than utility-maximizing (Caplin et al. [2011], Reutskaja et al. [2011] and

Stüttgen et al. [2012]). There also exists a quickly growing family of papers studying pricing

in the presence of more complex behavioral effects. In particular, there are several papers

that study dynamic pricing with reference price effects (Kopalle et al. [1996], Popescu and
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Wu [2007], Nasiry and Popescu [2011], Wang [2016] and Hu et al. [2016]). Our model is a

behavioral one with a demand accumulation effect but no reference price effect.

2 Model

We consider a monopolist facing a multi-period single-product pricing problem. Consumers

arrive with unit demand and are characterized by their arrival time t, their valuation for the

product v ∈ R
+ and their willingness-to-wait w ∈ {0, 1, ..., S}, where S ∈ N. Consumers

are infinitesimal and arrive deterministically. The mass of consumers arriving in each period

with patience level w is denoted by γw. For each value of w, the cumulative distribution

of valuations is denoted by Fw(·). For each w and v, we let Fw(v) = limv′↑v F(v′) be the

left limit of Fw(·) at v. We assume a finite horizon equal to T ∈ N and that the demand

is stationary, so that in every period t ∈ {1, 2, ..., T}, the mass of consumers arriving with

patience w and valuation greater than or equal to v is given by γw(1 − Fw(v)). We do not

impose any assumptions on the demand model {γw, Fw(·)}w=0,...,S.

We let D be the set of feasible prices available to the seller, which we assume to be a

finite set with cardinality D. The seller selects a sequence of prices pT = (p1, p2, ..., pT ).

We denote the set of available pricing policies by PT = DT . Consumers are assumed to

be patient but not strategic. That is, a consumer will buy the product as soon as the

price is equal to or below her valuation. If a consumer with patience w encounters a price

above her valuation, she will wait for the price to drop for up to w periods. A consumer

arriving at time t with patience w and valuation v will exit the system without purchasing

if v < min{pt, pt+1, ..., pt+w}.

Consider a consumer arriving at period t′ with patience w and valuation v. For any

period t ∈ {t′ + 1, t′ + 2, ..., t′ + w}, the consumer will still be in the system at time t if

v < min{pt′ , ..., pt−1} and will purchase at time t if v ∈ [pt,min{pt′, ..., pt−1}). Therefore,

the fraction of consumers with patience w who arrived at period t′ who purchase at time

t ∈ {t′ + 1, t′ + 2, ..., t′ + w} is given by (Fw(min{pt′ , ..., pt−1}) − Fw(pt))
+, where we use

the notation x+ = max{x, 0}. In order to calculate the seller’s overall revenue, we define
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Rt,w(pT ) as the revenue earned by the seller at period t by selling to consumers with patience

w, which is equal to

Rt,w(pT ) = γwpt

[
(1− Fw(pt)) +

w∑

i=1

(Fw(min{pt−i, ..., pt−1})− Fw(pt))
+

]
, (1)

where for any t ≤ 0, the value of pt is defined to be zero. The first term inside the brackets

above, (1 − Fw(pt)), represents the fraction of the consumer population arriving at time t

with patience w that purchases at time t itself, while the summation captures purchases by

consumers who arrived with patience w strictly before time t.

Without loss of generality, we assume the seller’s product has a marginal cost of zero. We

also assume the seller does not face production capacity constraints, that there are no resale

markets, and that there are no costs to adjusting prices. The seller’s goal is to maximize his

revenue over the entire time horizon t = 1, 2, ..., T . The total revenue is nothing but the sum

of all revenues earned by the seller in each period t by selling to the consumers with each

patience level w:

ZT (pT ) =

T∑

t=1

S∑

w=0

Rt,w(pT ). (2)

The seller’s problem is to choose a policy pT ∈ PT to maximize the total revenue:

max
pT∈PT

ZT (pT ). (3)

3 A Dynamic Programming Formulation

In this section, we develop a dynamic programming solution to the problem in Eq. (3). We

begin by introducing the notion of cutoff prices. For a given pricing policy pT ∈ PT , we

represent the period t cutoff price for consumers arriving at period t − i by ct,i(pT ). The

cutoff price ct,i(pT ) represents the least upper bound of consumer valuations that is present

in the system at the beginning of period t among consumers who arrived in the system at

period t− i. Formally,

ct,i(pT ) =




min{pt−i, pt−i+1, ..., pt−1} if i ≥ 1;

∞ if i = 0.

6



Whenever i = 0, the cutoff price is infinity, since all consumers that arrived at period t are

still present at period t; that is, Fw(ct,0(pT )) = 1 for all t and w. As before, pt is defined to

be equal to zero for all t ≤ 0. Thus, ct,i(pT ) = 0 whenever i ≥ t, since no consumers arrive

in the system before period t = 1. Using the definition of cutoff prices, we can simplify the

expression in Eq. (1) that computes the revenue earned by the seller at period t by selling

to consumers with patience w:

Rt,w(pT ) = γw pt

w∑

i=0

(Fw(ct,i(pT ))− Fw(pt))
+.

To simplify this expression further, we define Hw(q, r) to be the revenue from sales to a

group of consumers with patience w with valuations at most q when the price on offer is r:

Hw(q, r) = γw r (Fw(q)− Fw(r))
+.

Thus, Eq. (1) can be written more succinctly as

Rt,w(pT ) =

w∑

i=0

Hw(ct,i(pT ), pt), (4)

and the overall revenue function in Eq. (2) reduces to

ZT (pT ) =
T∑

t=1

S∑

w=0

w∑

i=0

Hw(ct,i(pT ), pt). (5)

The key to understanding the revenue function, therefore, is understanding the cutoff prices.

We now develop a method for decomposing the revenue function that takes advantage of the

structure of the cutoff prices.

Revenue decomposition. We now propose a methodology for analyzing the revenue gener-

ated by a given pricing policy pT ∈ PT . Eq. (5) suggests that the revenue of a pricing policy

can be computed by adding all the elements in a T × (S + 1)× (S + 1) tensor. We call this

object the cutoff prices tensor. We can represent this tensor via a T × (S +1) matrix where

every entry (t, w) includes the entire sequence of cutoff prices (ct,0(p), ct,1(p), ..., ct,w(p)).

Let us consider the case of policies where the lowest price is offered at time T ; that is,

pT = min{p1, p2, ..., pT}.
1 Let k be a period where the lowest price is offered other than pT ,

1We note that the optimal policy that we eventually find might not belong to this class.
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i.e., k ∈ argmini∈{1,2,...,T−1} pi.
2 We will now propose a decomposition of the revenue of a

policy in this class into the revenues of two subpolicies applied to two smaller subproblems,

one encompassing periods 1 through k and the other encompassing periods k+1 through T ,

plus an additional revenue term. This additional revenue term is given by a new function

Yk,T (q, r), which accounts for the profits from sales that occur in period T to consumers that

arrived in periods 1, ..., k, assuming that pk = q and pT = r. It takes the form

Yk,T (q, r) =

S∑

w=0

(min{w + k + 1− T, k})+ ·Hw(q, r). (6)

Lemma 1 (Decomposition). Consider a policy pT ∈ PT such that pT = mini∈{1,2,...,T} pi. Let

k ∈ argmini∈{1,2,...,T−1} pi. Let Z(·) be as defined in Eq. (5) and Y (·, ·) be as defined in Eq.

(6). Then, the revenue of policy pT satisfies

ZT (pT ) = Zk(p1, ..., pk) + ZT−k(pk+1, ..., pT ) + Yk,T (pk, pT ). (7)

Proof. We first decompose the seller’s revenue function from Eq. (5) into three parts. The

first part represents revenues obtained in periods 1 to k, the second one is for revenues

obtained in periods k + 1 through T − 1 and the third is for revenues obtained in period T :

ZT (pT ) =
k∑

t=1

S∑

w=0

w∑

i=0

Hw(ct,i(pT ), pt)+
T−1∑

t=k+1

S∑

w=0

w∑

i=0

Hw(ct,i(pT ), pt)+
S∑

w=0

w∑

i=0

Hw(cT,i(pT ), pT ).

(8)

We note that the decomposition in Eq. (8) is not the same as the decomposition in Eq. (7).

The first term on the right-hand side of Eq. (8) depends only on prices p1, p2, ..., pk.

Therefore, we obtain

k∑

t=1

S∑

w=0

w∑

i=0

Hw(ct,i(pT ), pt) = Zk(p1, ..., pk). (9)

We cannot immediately make the same statement for the second term on the right-hand

side of Eq. (8), since prices p1, ..., pk do appear inside the cutoff prices ct,i(pT ) whenever

t − i ≤ k. In fact, whenever t − i ≤ k, ct,i(pT ) = pk, since k ∈ argmini∈{1,2,...,T−1} pi. Since

2If there are multiple minimizers, any of them can be chosen as k. It is also valid to have pT = pk.
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pk ≤ pt for all t ≤ T −1, we have Hw(pk, pt) = 0 for all t ≤ T −1 by the definition of Hw(·, ·).

Let us create a new pricing policy p̂T with the first k prices of pT replaced by zero, i.e.,

p̂T = (0, ..., 0, pk+1, ..., pT ). This new policy p̂T will also have Hw(ct,i(p̂T ), p̂t) = 0 whenever

t− i ≤ k and t ≥ k+1 and Hw(ct,i(p̂T ), pt) = Hw(ct,i(pT ), pt) whenever t− i > k. Therefore,

T−1∑

t=k+1

S∑

w=0

w∑

i=0

Hw(ct,i(pT ), pt) =

T−1∑

t=k+1

S∑

w=0

w∑

i=0

Hw(ct,i(p̂T ), p̂t).

Since the first k prices are equal to zero in p̂T , we can also add those first k periods to our

summation without changing our results:

T−1∑

t=k+1

S∑

w=0

w∑

i=0

Hw(ct,i(pT ), pt) =

T−1∑

t=1

S∑

w=0

w∑

i=0

Hw(ct,i(p̂T ), p̂t). (10)

We now focus on the third term from the right-hand side of Eq. (8). Along the same

line as the analysis in the paragraph above, we will separate our analysis into two groups of

terms depending on whether cT,i(pT ) = pk for a given i:

S∑

w=0

w∑

i=0

Hw(cT,i(pT ), pT ) =
S∑

w=0

w∑

i=0
T−i>k

Hw(cT,i(pT ), pT ) +
S∑

w=0

w∑

i=0
T−i≤k

Hw(cT,i(pT ), pT ). (11)

For the values of i where T − i > k, cT,i(pT ) = cT,i(p̂T ), since the these cutoff prices do not

depend on the first k prices. Therefore,

S∑

w=0

w∑

i=0
T−i>k

Hw(cT,i(pT ), pT ) =
S∑

w=0

w∑

i=0
T−i>k

Hw(cT,i(p̂T ), p̂T ).

Note that cT,i(pT ) = 0 whenever T − i ≤ k. Therefore, Hw(cT,i(p̂T ), pT ) = 0 whenever

T − i ≤ k. We can therefore include these terms in the summation above as well:

S∑

w=0

w∑

i=0
T−i>k

Hw(cT,i(pT ), pT ) =

S∑

w=0

w∑

i=0
T−i>k

Hw(cT,i(p̂T ), p̂T ) =

S∑

w=0

w∑

i=0

Hw(cT,i(p̂T ), p̂T ). (12)

We now consider the summation of terms in Eq. (11) with T − i ≤ k. For the terms

where T − i ≤ 0, we have cT,i(pT ) = 0 and Hw(cT,i(pT ), pT ) = 0. For the other terms, where

1 ≤ T − i ≤ k, cT,i(pT ) = pk, since k ∈ argmini∈{1,2,...,T−1} pi. Therefore,

S∑

w=0

w∑

i=0
T−i≤k

Hw(cT,i(pT ), pT ) =

S∑

w=0

w∑

i=0
1≤T−i≤k

Hw(pk, pT ) =

S∑

w=0

Hw(pk, pT )

w∑

i=0
1≤T−i≤k

1.
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Computing the value of that final summation in the equation above, we obtain

w∑

i=0
1≤T−i≤k

1 =

min{w,T−1}∑

i=T−k

1 = (min{w + k + 1− T, k})+,

where the (·)+ operator accounts for the fact that min{w, T − 1} could be strictly smaller

than T − k, in which case, the summation should yield zero. Thus,

S∑

w=0

w∑

i=0
T−i≤k

Hw(cT,i(pT ), pT ) =

S∑

w=0

(min{w + k + 1− T, k})+ ·Hw(pk, pT ) = Yk,T (pk, pT ), (13)

where the second equality follows from the definition of Yk,t(·, ·) in Eq. (6).

Combining Eqs. (9), (10), (11), (12) and (13), we obtain

ZT (pT ) = Zk(p1, ..., pk) +

T−1∑

t=1

S∑

w=0

w∑

i=0

Hw(ct,i(p̂T ), p̂t)

+
S∑

w=0

w∑

i=0

Hw(cT,i(p̂T ), p̂T ) + Yk,T (pk, pT )

= Zk(p1, ..., pk) +
T∑

t=1

S∑

w=0

w∑

i=0

Hw(ct,i(p̂T ), p̂t) + Yk,T (pk, pT )

= Zk(p1, ..., pk) + ZT (p̂T ) + Yk,T (pk, pT ),

where the second equality follows from the definition of ZT (·) from Eq. (5). Since the first

k prices in p̂T are equal to zero, the total revenue obtained from the pricing policy p̂T must

be identical to the revenue obtained by using a policy (pk+1, pk+2, ..., pT ) in a T − k horizon

problem. Thus, ZT (p̂T ) = ZT−k(pk+1, ..., pT ), completing our proof.

Bellman equation. We have proved that the revenue of a pricing policy pT could be

decomposed into three parts, as long as the lowest price was used in the period T . We now

show how to leverage this decomposition to prove a Bellman equation for our problem.

Before we define our value function, we construct a set of pricing policies over which

the value function will optimize. For any q, r ∈ D such that q ≥ r, we define PT (q, r) =

{pT ∈ PT | pt ≥ q for all t ∈ {1, ..., T − 1} and pT = r}. We can now define the value
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function VT (q, r) as the maximum revenue possible for a horizon of length T where only

pricing policies within PT (q, r) are allowed. Formally, for any q, r ∈ D such that q ≥ r, we

define

VT (q, r) = max
pT∈PT (q,r)

ZT (pT ). (14)

If we design an efficient algorithm for computing VT (q, r) for all T and q ≥ r, we will

have solved our problem, since we can add a price equal to zero to our set of available prices

D and then compute maxpT∈PT
ZT (pT ) = VT+1(0, 0). The additional period at time T + 1

with price zero does not lead to any additional revenues. Furthermore, the price zero will

not be used in periods before T + 1, since it generates no revenues and clears the system.

The value VT+1(0, 0) corresponds to the value of an optimal pricing policy since it imposes

no constraints on prices p1, ..., pT .

We now prove the value function VT (q, r) satisfies a Bellman equation. The Bellman

equation builds on the revenue decomposition from Lemma 1.

Lemma 2 (Bellman). For any T ∈ N and q, r ∈ D such that q ≥ r, the value function

VT (q, r) satisfies the following Bellman equation:

VT (q, r) = max
k∈{1,2,...,T−1}

x∈D: x≥q

{Vk(x, x) + VT−k(x, r) + Yk,T (x, r)} .

Proof. Let us define the set of prices P̃T (q, r, k, x) as the subset of prices within PT (q, r)

where k is the period with the lowest price among periods 1 through T − 1 and pk = x:

P̃T (q, r, k, x) =

{
pT ∈ PT (q, r)

∣∣∣∣∣ k ∈ argmin
i∈{1,2,...,T−1}

pi and pk = x

}
.

Using the definition above, we can decompose the problem in Eq. (14) of optimizing prices

over PT (q, r) into a sequence of two problems: we first optimize over the period of the lowest

price k among 1, ..., T − 1 and the price pk, and then we optimize over prices that satisfy

these two properties. That is,

VT (q, r) = max
k∈{1,2,...,T−1}

x∈D: x≥q

max
pT∈P̃T (q,r,k,x)

ZT (pT ).
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Since the lowest price of policy pT ∈ P̃T (q, r, k, x) is used in period T , Lemma 1 applies:

VT (q, r) = max
k∈{1,2,...,T−1}

x∈D: x≥q

max
pT∈P̃T (q,r,k,x)

{Zk(p1, ..., pk) + ZT−k(pk+1, ..., pT ) + Yk,T (pk, pT )}.

The values of k, pk = x and pT = r are constants within all policies in P̃T (q, r, k, x). We can

therefore move the last term outside the price maximization problem:

VT (q, r) = max
k∈{1,2,...,T−1}

x∈D: x≥q

{
Yk,T (x, r) + max

pT∈P̃T (q,r,k,x)
{Zk(p1, ..., pk) + ZT−k(pk+1, ..., pT )}

}
.

The term Zk(p1, ..., pk) depends only on p1 through pk, and the term ZT−k(pk+1, ..., pT )

depends only on pk+1 through pT . Furthermore, the choice of p1 through pk imposes no

restrictions on the choice of pk+1 through pT , given that pT ∈ P̃T (q, r, k, x), or vice versa.

Therefore, we are free to optimize the prices separately. Formally, we do so by constructing

two complete pricing policies pT , p̃T ∈ P̃T (q, r, k, x):

VT (q, r) = max
k∈{1,...,T−1}
x∈D: x≥q

{
Yk,T (x, r)+ max

p̃T∈P̃T (q,r,k,x)
Zk(p̃1, ..., p̃k)+ max

pT∈P̃T (q,r,k,x)
ZT−k(pk+1, ..., pT )

}
.

(15)

The maximization over p̃T does not depend in any way on the values of T and r. It also

satisfies the property that pk is the lowest price within periods 1 through k. All prices above

pk = x can be used in periods 1 through k − 1. Therefore,

max
p̃T∈P̃T (q,r,k,x)

Zk(p̃1, ..., p̃k) = max
p̃k∈Pk(x,x)

Zk(p̃k) = Vk(x, x). (16)

For the maximization over pT in Eq. (15), the problem can be recast as an optimization

over T − k periods, with the lowest price being used in the final period, pT−k = r. However,

only prices above x can be used in periods k + 1 through T − 1. Otherwise, the original

pricing policy pT would not correspond to a policy in P̃T (q, r, k, x). Thus,

max
pT∈P̃T (q,r,k,x)

ZT−k(pk+1, ..., pT ) = max
pT−k∈PT−k(x,r)

ZT−k(p̃T−k) = VT−k(x, r). (17)

We obtain the desired result by combining Eqs. (15), (16) and (17).
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A polynomial-time algorithm. Using Lemma 2, we can write a dynamic program to

compute an optimal pricing policy. This algorithm requires O(D2T 2) steps, where a step is

an arithmetic operation, such as summing, multiplying or comparing two numbers.

Theorem 1. There exists an algorithm that finds an optimal pT ∈ PT in O(D2T 2) steps.

Proof. The algorithm begins by precomputing the value of Yk,T (q, r) for all k, T , q and r,

where Yk,T (q, r) is defined in Eq. (6). A näıve algorithm for computing the values of Yk,T (q, r)

would require a relatively large number of steps. We can speed up the precomputation phase

by taking advantage of the structure of Yk,T (q, r).

For any w ∈ {0, 1, ..., S} and q, r ∈ D with q ≥ r, define Gw(q, r) to be equal to
∑S

i=w Hi(q, r). Note that the partial derivative of (min{w + k + 1 − T, k})+ with respect

to w is equal to one whenever (min{w + k + 1 − T, k})+ = w + k + 1 − T and zero when

w > T − 1 or w < k. Therefore, for any k and T , there exists two numbers a(k, T ) and

b(k, T ) such that Yk,T (q, r) =
∑S

w=0(min{w+k+1−T, k})+ ·Hw(q, r) =
∑b(k,T )

w=a(k,T )Gw(q, r).

For some values of k and T , we have Yk,T (q, r) = 0, a case we can represent by a sum

where a(k, T ) > b(k, T ). To compute the values of Yk,T (q, r), we first compute all values

of Gw(q, r) in O(D2S) steps. We then compute the values of
∑b

w=aGw(q, r) for all q ≥ r

and all integer values of 0 ≤ a ≤ b ≤ S. This task can be accomplished in O(D2S2) steps

by first computing all sums where b − a = 1, then using those results to compute all sums

where b − a = 2, and so on. We then compute all values of a(k, T ) and b(k, T ) and assign

Yk,T (q, r) =
∑b(k,T )

w=a(k,T )Gw(q, r) in O(D2T 2) steps.

We now proceed to the recursion. We first compute V1(q, r) = V1(r, r) =
∑S

w=0Hw(∞, r)

for all q and r in O(DS) steps, where Vt(q, r) is defined in Eq. (14). We then proceed

by induction. Suppose we have computed Vk(q, r) for all q, r ∈ D where q ≥ r and all

k ≤ t − 1. We now compute Vt(q, r) for all q, r ∈ D where q ≥ r. For all k ∈ {1, ..., t − 1}

and x, r ∈ D with x ≥ r, define V̂t(x, r) = maxk∈{1,2,...,t−1} Vk(x, x) + Vt−k(x, r) + Yk,t(x, r).

We can compute the value of V̂t(x, r) for every x and r in O(D2t) steps by taking advantage

of our precomputation of Yk,t(x, r). The Bellman equation from Lemma 2 gives us that the

value function Vt(q, r) satisfies Vt(q, r) = max{x∈D: x≥q} V̂t(x, r). Let x1 and x2 be consecutive
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elements in D such that x2 > x1 ≥ r. Then, Vt(x1, r) = max
{
Vt(x2, r), V̂t(x1, r)

}
. To go

from having V̂t(q, r) for all q ≥ r to having Vt(q, r) for all q ≥ r thus requires O(D2) steps.

Therefore, we can compute Vt(q, r) for all q ≥ r in O(D2t) steps. Repeating this for every t

until T + 1 requires O(D2T 2) steps. Overall, this algorithm requires O(D2T 2) steps.

Extension: infinite horizon model. While our work studies a finite horizon model, our

results can also be used to compute optimal policies for a long-term average infinite horizon

model. To do so, we can leverage Proposition 8 from Liu and Cooper [2015], which shows

that optimal policies are cyclical in such a model, with a bound on the periodicity of SD+1,

assuming S is finite. We can find an optimal policy for the infinite horizon model by consid-

ering all possible values of T ≤ SD + 1 and then computing maxt∈{1,2,...,SD+1} Vt+1(0, 0)/t.

The computational complexity of this algorithm is O(D4S2).

Extension: nonstationarity. Our paper assumes a stationary demand model. Our results

can be extended to a nonstationary model by considering a state space Vt,t′(q, r) where t and

t′ represent the initial and final periods being considered rather than merely a duration. This

technique is analogous to the one used in Theorem 5 of Besbes and Lobel [2015].

4 Structure of Optimal Policies: A Numerical Study

We now consider the structure of optimal pricing policies. We do so via a numerical case

study using a specific patient demand model. We consider a model where each patience

level is represented by a linear demand function. We assume the maximum willingness-

to-wait is S = 11 and the time horizon is T = 40. The set of prices available is D =

{0, 0.01, 0.02, ..., 1}. We assume γw = 1 for all w ∈ {0, ..., S}. For every p ≥ 0 and every

w ∈ {0, .., S}, we assume the consumer valuation distribution follows a uniform distribution

with Fw(p) = min{p(w+ 1), 1}. The uniform assumption is not necessary for our numerical

results to hold: similar patterns can obtained assuming valuations are drawn from light-tailed

distributions such as exponential as well as from heavy-tailed ones such as Pareto.

With a single patience class (besides consumers with w = 0), Liu and Cooper [2015]

showed that optimal policies for patient consumers are cyclic decreasing. Liu and Cooper
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[2015] do not attempt to understand the structure of optimal prices in the presence of

heterogenous patience levels. In contrast, Besbes and Lobel [2015] show numerically that

optimal policies for strategic consumers often have a fractal-like structure they call “nested

sales.” Nested sales are symmetric with respect to time and include multiple promotion

cycles of different depth and periodicity overlaid on top of each other (see Figure (a)).

With heterogeneous patience levels, the optimal policy often combines features of both

cyclic decreasing policies and nested sales policies. Figure (b) shows the optimal policy for

the linear demand system described above. The policy has some of the fractal-like structure

of a nested sales policy and some of the time asymmetry of a cyclic decreasing policy. We

call policies of this form incomplete cyclic policies.
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(a) Optimal prices for strategic consumers.
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(b) Optimal prices for patient consumers.

The rationale for such policies is as follows. If the prices are relatively high for a while,

a large number of low-value consumers accumulate. At that point, it becomes in the firm’s

best interest to use low prices. Low prices clear both low-value and high-value consumers

from the market, leading the cycle of prices to restart. The exception are even-lower-value

consumers, who remain in the system because the prices they find attractive haven’t been

offered yet. This encourages the firm to go deeper in the next round of discounts.

We now compare revenues and optimal price levels obtained in the strategic and patient

consumer models. We also consider the best fixed price policy as a benchmark since the

revenue of a fixed price policy does not depend on whether consumers are patient or strategic.

Table 1 shows the average, minimum and maximum prices for the three different cases,
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assuming the linear demand system described above. It also shows the revenues of the

different policies, with the revenue of the fixed price policy normalized to one.

Fixed Price Strategic Consumers Patient Consumers

Average Price 0.08 0.336 0.213

Minimum Price 0.08 0.06 0.04

Maximum Price 0.08 0.50 0.43

Normalized Revenue 1 1.171 1.349

Table 1: Prices and revenues of (i) the best fixed price policy, (ii) the optimal prices for

strategic consumers and (iii) the optimal prices for patient consumers.

We find that the seller earns higher revenues and uses lower prices (minimum, maximum

and average) when facing patient consumers compared to the strategic consumers case. Using

lower prices and earning higher revenues mean that the seller makes more sales in the patient

consumers model. The maximum and the minimum prices are lower under patient consumers

for different reasons. The maximum price is lower under patient consumers because it is not

as targeted to myopic (w = 0) consumers. In a strategic consumers model, only myopic

consumers are affected by the maximum price, and therefore the highest price is tailored

to them. In a patient consumers model, the highest price affects consumers of all patience

levels arriving when that price is in effect, which has a moderating effect on the maximum

price. On the other hand, the minimum price is much more targeted toward the low-value

consumers in the patient model than in the strategic one. Under strategic consumers, the

minimum price serves as a vortex that attracts a large number of consumers to it. In the

patient consumers case, the lowest price serves only immediate arrivals and consumers who

did not buy at the previous period’s price. Thus, the seller is freer to price the product to

attract low-value consumers in the patient model. Overall, the seller is capable of better

price discrimination in the patient consumers model, and can do so via a strategy that relies

on price skimming over intervals of time, a technique that would backfire in a strategic

consumers setting. Therefore, the seller is able to obtain higher revenues and increase sales
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in a patient consumers model when compared to a strategic consumers one.
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