Convexity

Concepts and Buzzwords

- Dollar Convexity
- Convexity

- Curvature
- •Taylor series
- •Barbell, Bullet

Readings

- •Veronesi, Chapter 4
- •Tuckman, Chapters 5 and 6

Convexity

- Convexity is a measure of the curvature of the value of a security or portfolio as a function of interest rates.
- Duration is related to the slope, i.e., the first derivative.
- Convexity is related to the curvature, i.e. the second derivative of the price function.
- Using convexity together with duration gives a better approximation of the change in value given a change in interest rates than using duration alone.

Correcting the Duration Error

- The price-rate function is nonlinear.
- Duration and dollar duration use a linear approximation to the price rate function to measure the change in price given a change in rates.
- The error in the approximation can be substantially reduced by making a convexity correction.

Taylor Series

- The Taylor Theorem from calculus says that the value of a function can be approximated near a given point using its "Taylor series" around that point.
- Using only the first two derivatives, the Taylor series approximation is:

$$f(x) \approx f(x_0) + f'(x_0) \times (x - x_0) + \frac{1}{2} f''(x_0) \times (x - x_0)^2$$
Or, $f(x) - f(x_0) \approx f'(x_0) \times (x - x_0) + \frac{1}{2} f''(x_0) \times (x - x_0)^2$

Dollar Convexity

- Think of bond prices, or bond portfolio values, as functions of interest rates.
- The Taylor Theorem says that if we know the first and second derivatives of the price function (at current rates), then we can approximate the price impact of a given change in rates.

$$f(x) - f(x_0) \approx f'(x_0) \times (x - x_0) + 0.5 \times f''(x_0) \times (x - x_0)^2$$

- **★**The first derivative is minus dollar duration.
- ★ Call the second derivative *dollar convexity*.
- Then change in price \approx -\$duration x change in rates
 - + 0.5 x \$convexity x change in rates squared

Dollar Convexity of a Portfolio

If we assume all rates change by the same amount, then the dollar convexity of a portfolio is the sum of the dollar convexities of its securities.

Sketch of proof:

$$\sum f_i(x) - f_i(x_0) \approx \left(\sum f_i{}'(x_0)\right) \times (x - x_0) + 0.5 \times \left(\sum f_i{}''(x_0)\right) \times (x - x_0)^2$$

I.e., Δ portfolio value \approx - (sum of dollar durations) x Δ r

- + 0.5 x (sum of dollar convexities) x $(\Delta rates)^2$
- ⇒Portfolio dollar duration = sum of dollar durations
- ⇒Portfolio dollar convexity = sum of dollar convexities

Convexity

- Just as dollar duration describes dollar price sensitivity, dollar convexity describes curvature in dollar performance.
- To get a scale-free curvature measure, i.e., curvature per dollar invested, we define

convexity =
$$\frac{\text{dollar convexity}}{\text{price}}$$

⇒The convexity of a portfolio is the average convexity of its securities, weighted by present value:

convexity =
$$\frac{\sum \text{price}_i \times \text{convexity}_i}{\sum \text{price}_i}$$
 = pv wtd average convexity

• Just like dollar duration and duration, dollar convexities add, convexities average.

Dollar Formulas for \$1 Par of a Zero

For \$1 par of a *t*-year zero-coupon bond

price =
$$d_t(r_t) = \frac{1}{(1 + r_t/2)^{2t}}$$

dollar duration =
$$-d_t'(r_t) = \frac{t}{(1 + r_t/2)^{2t+1}}$$

dollar convexity =
$$d_t''(r_t) = \frac{t^2 + t/2}{(1 + r_t/2)^{2t+2}}$$

For \$*N* par, these would be multiplied by *N*.

Percent Formulas for Any Amount of a Zero

duration =
$$\frac{\text{dollar duration}}{\text{price}} = \frac{N \times t/(1 + r_t/2)^{2t+1}}{N \times 1/(1 + r_t/2)^{2t}} = \frac{t}{1 + r_t/2}$$

convexity =
$$\frac{\text{dollar convexity}}{\text{price}} = \frac{N \times (t^2 + t/2)/(1 + r_t/2)^{2t+2}}{N \times 1/(1 + r_t/2)^{2t}} = \frac{t^2 + t/2}{(1 + r_t/2)^2}$$

- These formulas hold for any par amount of the zero they are scale-free.
- The duration of the *t*-year zero is approximately *t*.
- The convexity of the t-year zero is approximately t^2 .
- (If we defined price as $d_t = e^{-rt}$, and differentiated w.r.t. this r, then the duration of the t-year zero would be exactly t and the convexity of the t-year zero would be exactly t^2 .)

Class Problems

Calculate the price, dollar duration, and dollar convexity of \$1 par of the 20-year zero if $r_{20} = 6.50\%$.

Class Problems

Suppose r_{20} rises to 7.50%.

- 1) Approximate the price change of \$1,000,000 par using only dollar duration.
- 2) Approximate the price change of \$1,000,000 using both dollar duration and dollar convexity.
- 3) What is the exact price change?

Class Problems

Suppose r_{20} falls to 5.50%.

- 1) Approximate the price change of \$1,000,000 par using only dollar duration.
- 2) Approximate the price change of \$1,000,000 using both dollar duration and dollar convexity.
- 3) What is the exact price change?

Sample Risk Measures

Duration and convexity for \$1 par of a 10-year, 20-year, and 30-year zero.

	Maturity	Rate	Price	\$Duration	Duration	\$Convexity	Convexity
	10	6.00%	0.553676	5.375493	9.70874	54.7987	98.9726
	20	6.50%	0.278226	5.389364	19.37046	107.0043	384.5951
ſ	30	6.40%	0.151084	4.391974	29.06977	129.8015	859.1356

For zeroes,

- duration is roughly equal to maturity,
- convexity is roughly equal to maturity squared.

Dollar Convexity of a Portfolio of Zeroes

- •Consider a portfolio with fixed cash flows at different points in time $(K_1, K_2, ..., K_n)$ at times $t_1, t_2, ..., t_n$.
- Just as with dollar duration, the dollar convexity of the portfolio is the sum of the dollar convexities of the component zeroes.
- The dollar convexity of the portfolio gives the correction to make to the duration approximation of the change in portfolio value given a change in zero rates, assuming all zero rates change by the same amount.

portfolio dollar convexity =
$$\sum_{j=1}^{n} K_j \times \frac{t_j^2 + t_j/2}{(1 + r_{t_j}/2)^{2t_j+2}}$$

Class Problem:

Dollar Convexity of a Portfolio of Zeroes

Consider a portfolio consisting of

- \$25,174 par value of the 10-year zero,
- •\$91,898 par value of the 30-year zero.

Maturity	Rate	Price	\$Duration	Duration	\$Convexity	Convexity
10	6.00%	0.553676	5.375493	9.70874	54.7987	98.9726
20	6.50%	0.278226	5.389364	19.37046	107.0043	384.5951
30	6.40%	0.151084	4.391974	29.06977	129.8015	859.1356

What is the dollar convexity of the portfolio?

Convexity of a Portfolio of Zeroes

convexity =
$$\frac{\text{$convexity}}{\text{present value}} = \frac{\sum_{j=1}^{n} K_{j} \times \frac{t_{j}^{2} + t_{j}/2}{(1 + r_{t_{j}}/2)^{2t_{j}+2}}}{\sum_{j=1}^{n} \frac{K_{j}}{(1 + r_{t_{j}}/2)^{2t_{j}}}}$$

$$= \frac{\displaystyle\sum_{j=1}^{n} \frac{K_{j}}{\left(1 + r_{t_{j}}/2\right)^{2t_{j}}} \times \frac{t_{j}^{2} + t_{j}/2}{\left(1 + r_{t_{j}}/2\right)^{2}}}{\displaystyle\sum_{j=1}^{n} \frac{K_{j}}{\left(1 + r_{t_{j}}/2\right)^{2t_{j}}}}$$

- = average convexity weighted by present value
- ≈ average maturity² weighted by present value

Class Problem

Consider the portfolio of 10- and 30-year zeroes.

- The 10-year zeroes have market value \$25,174 x 0.553676 = \$13,938.
- •The 30-year zeroes have market value \$91,898 x 0.151084 = \$13,884.
- The market value of the portfolio is \$27,822.
- What is the convexity of the portfolio?

Maturity	Rate	Price	\$Duration	Duration	\$Convexity	Convexity
10	6.00%	0.553676	5.375493	9.70874	54.7987	98.9726
20	6.50%	0.278226	5.389364	19.37046	107.0043	384.5951
30	6.40%	0.151084	4.391974	29.06977	129.8015	859.1356

Barbells and Bullets

- Consider two portfolios with the same duration:
 - A *barbell* consisting of a long-term zero and a short-term zero
 - A *bullet* consisting of an intermediate-term zero
- The barbell will have more convexity.

Example

- •Bullet portfolio: \$100,000 par of 20-year zeroes market value = $100,000 \times 0.27822 = 27,822$ duration = 19.37
- •Barbell portfolio: from previous example \$25,174 par value of the 10-year zero \$91,898 par value of the 30-year zero. market value = 27,822

duration =
$$\frac{(13,938 \times 9.70874) + (13,884 \times 29.06977)}{13,938 + 13,884} = 19.37$$

- •The convexity of the bullet is 385.
- •The convexity of the barbell is 478.

Securities with Fixed Cash Flows:

More disperse cash flows, more convexity

- •In the previous example,
 - the duration of the bullet is about 20 and
 - the convexity of the bullet is about 20^2 =400.
- •The duration of the barbell is about

$$0.5 \times 10 + 0.5 \times 30 = 20$$

but the convexity is about

$$0.5 \times 10^2 + 0.5 \times 30^2 = 500 > 400 = (0.5 \times 10 + 0.5 \times 30)^2$$

- •I.e., the average squared maturity is greater than the average maturity squared.
- •Indeed, recall $Var(X) = E(X^2) (E(X))^2$
- •Think of cash flow maturity t as the variable and pv weights as probabilities. Duration is like E(t) and convexity is like $E(t^2)$.
- •So convexity \approx duration² + dispersion (variance) of maturity.

Does the Barbell Always Outperform the Bullet?

- If there is an immediate parallel shift in interest rates, either up or down, then the barbell will outperform the bullet.
- If the shift is not parallel, anything could happen.
- If the rates on the bonds stay exactly the same, then as time passes the bullet will actually outperform the barbell:
 - •the bullet will return 6.5%
 - •the barbell will return about 6.2%, the market value-weighted average of the 6% and 6.4% on the 10- and 30-year zeroes.

Convexity and the Shape of the Yield Curve?

- If the yield curve were flat and made parallel shifts, more convex portfolios would always outperform less convex portfolios, and there would be arbitrage.
- •So to the extent that market movement is described by parallel shifts, bullets must have higher yield to start with, to compensate for lower convexity.
- This would explain why the term structure is often humpshaped, dipping down at very long maturities where convexity is greatest relative to duration—investors may give yield to buy convexity.
- Some evidence suggests that the yield curve is more curved when volatility is higher and convexity is worth more.