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Now let's develop these results more explicitly in a rich but tractable setting with
continuous trading and security price processes constructed from Brownian motion.

» There is a finite time horizon [0, T1.

» The filtered probability space is (2, F, P, FB) where FB is the filtration (infor-
mation) generated by a d-dim’l Brownian motion B = (B1, Ba, . .., Bj)..

» The consumption space C is the set of pairs (¢, W) where ¢ is an adapted
consumption rate process with [J |¢;|dt < oo a.s. and W is a random variable
representing terminal (time T') wealth.

» There are n + 1 securities traded, with ex-dividend prices S = (So, S1,...,Sn).

» Security 0 is a “bond” or locally riskless money market account earning the
instantaneous riskless rate ry. l.e.,

dSo
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where r is an adapted process with [ |ry| dt < oo a.s.

» The n “risky” asset prices are strictly positive I1to processes, each satisfying

Sk,

- [/.Lkﬁt — 5k,t] dt + Okt dBt . (2)
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The n-dimensional instantaneous expected return process pu = (p1,...,1n) is
adapted and satisfies [y |u|dt < oo a.s., the n-dimensional dividend payout
rate process 6 = (41,...,0,) is adapted and satisfies foT|5t|dt < oo a.s., and
o1
the n x d-matrix-valued wvolatility process o = : is adapted and satisfies
On

S okl |2 dt < oo a.s. for each k.

» Equation (2) above is shorthand for

t t
Skt = Skoelolia=dku=lokul?/2 dut foorudBu (3)

» W.l.o.g. assume n < d unless you want to track redundant securities for a reason.

» Let's briefly review Brownian motion, stochastic integrals, and 1t processes.



Brownian Motion

Definition 1 A continuous, adapted process B is a standard Brownian motion if
Bo =0 and for any 0 <t < s < T, the increment B, — B; is independent of F; and
normally distributed with mean zero and variance s — t. A process X is a Brownian
motion if X; = Xo+ ut+ 0B,V [t € [0,T], where p is constant.

Proposition 1 A process X is continuous with stationary independent increments if
and only if X is a Brownian motion.

Proposition 2 The sample paths of a Brownian motion have infinite variation and
finite quadratic variation. l.e., for all ¢t € [0, T7],

2n—1
n||_)n;o Z |Bt*(i+l)/2" — Bt*i/2"| = o0 a.s., (4)
=0
on_1
Nim > [Brugt1y/on — Braijon|? =t as. (5)
=0

Definition 2 An d-dimensional Brownian motion is a vector-valued process B =
(B1,...,B4), where each Bj is a Brownian motion, V j = 1,...,d and B is
independent of B; for all ¢ # j.

Stochastic Integrals

Now let's define the stochastic integral fé 05 dBs of a process 6 w.r.t. a Brownian
motion B. A path-by-path Riemann-Stieltjes definition won't work when the integrand
0 has infinite variation, so we build it up starting with “simple” integrands.

Definition 3 An adapted process 0 satisfying E [ |6;|2dt < oo is simple if there
exists a finite partition
0=to<t1<---<ty=T of [0,7] and random variables 0; € Ft; such that

o={5 Tl ®
Vji=0,...,J—1.
The stochastic integral of a simple integrand 6 can be defined path by path as

N-1

"t
It == /o 95 st == Z Gj[Bthrl/\t — Btj/\t] . (7)

=0



Proposition 3 The stochastic integral I; of a simple integrand 6 is continuous,
adapted to F, linear in 0, an L?(P)-martingale, and for simple 81 and 65 satisfies

t t t
E[(/ olysst)(/ 02, dB.)] :E/ 01,402, ds . (8)
0 0 0

» Next, it turns out that every process 6 satisfying E{ ] |6;|2dt} < oo, which we'll
call “strongly square-integrable,” has a sequence of simple processes that converge
to it, and the limit of the integrals of these processes exists and is unique.

» So we define the stochastic integral of a strongly square-integrable process 6 as
the limit of the integrals of any sequence of simple processes that converges to 6.

» This is the so-called It6-integral and it satisfies the same properties as the integrals
of the simple processes listed above: the ItG-integral is continuous, adapted,
linear in its integrand, an L?(P)-martingale, and the expectation of the product
of stochastic integrals is the expectation of time-integral of the product of the
integrands.

» Finally, it is also possible to define the It6 integral of adapted processes 0 that
satisfy fOT |6:]% dt < oo a.s., which we'll call “weakly square-integrable,” as follows.

Definition 4 An F-measurable map 7 : Q — [0,T] U {oco} is a stopping time if
{weQ:r(w) <t} e FVtel0,T].

» It is always possible to interpret a stopping time as the first time an event occurs.

Definition 5 A process X is a local martingale if 3 a sequence of stopping times
7, T T a.s. s.t. each stopped process X™ is a martingale.

» Now, for any weakly square-integrable process 6 there exists a sequence of stopping
times T, T T a.s. s.t. each of the stopped processes 0, = 0 - 1i<,, is strongly
square-integrable. Then we can define the It integral of a weakly square-integrable
process as the limit of the integrals of the stopped processes that converges to it.

» The ItG integral of a weakly square-integrable process will have all of the properties
above, except that it may be only a local martingale, not a martingale.

» An example of a local martingale that is not a martingale is a wealth process under
a doubling strategy.



Ito Processes

Definition 6 A process X adapted to the filtration FZ generated by a Brownian
motion B is an Ito process if 3 an adapted real-valued process p with fOT || dt < oo
a.s., which we'll call “absolutely integrable,” and an R"-valued weakly square-
integrable process o s.t.

t t
X, = Xo +/ s ds—l—/ o' dB, Vt € [0,T] as. (9)
0 0

The process p is called the drift of X and the process o is called the diffusion of X.
» Equation (9) can be written in differential form as dX, = p; dt + o,dB;.
» An Ito process is a local martingale iff it has zero drift.

Definition 7 If X; and X, are It6 processes with dX; = pudt + o dBy;, the
quadratic variation of X is

on_1 .
(X, Xi)e = J'_KE‘O Z (Xi,(j—i-l)t/Q" - Xi,jt/2")2 = /o |Us|2d5 ) (10)
j=0

and the covariation of X1 and X5 is

on_q
(X1, Xo)¢ = Jim > (X1 i41yeyom — X1,it0n) (X, (j41ye/2m — X2 jt/on) (11)
=0

¢
=/ 015055 ds , (12)
0

where the convergence above is in probability.

» As a mnemonically helpful shorthand, some write d(X;, X;); = (dX;)? and
d(Xi, Xj)e = (dXi)(dXj;).

» If X is an Itd process, and f is a smooth real-valued function, then f(X) is also
an It6 process, and Itd’'s lemma gives its drift and diffusion:

Ito’s Lemma Let X be an m-dimensional ItG process as in equation (9) and let

f:R™x[0,T] = R be C%. Then f(X;,t) is also an Itd process with

df = fidt + fxdX + %tr[fxxao’] dt = (%tr[fxxoa’] + fxp+ fi)dt + fxodB.

» In the shorthand, the Taylor expansion underlying 1t6's lemma is more apparent,

and this becomes more memorable as
2
df = fdt + fxdX + 3 i1 Yot g (dX) (dX5).



Example 1 To gain intuition for the 2nd-order term with fxx, let X; = B; and
f(X) = X2 The usual calculus df = fx dX would yield f(B1) = J3 2B;dB; and
E{f(B1)} = E{B?} = 0, which is incorrect. Including the 2nd-order term gives
f(B1) = [y 2BidB; + 3 [y 2dt so E{f(B1)} = E{B?} = 1. The 2nd-order term
captures the "Jensen's inequality” adjustment to the drift of f which is increasing in
both the convexity of f and the volatility of X.

Example 2 Let X, = — [50.dB, — %jg|@f|dt. Let f(X) = eX. Then df =
t t
fdX + %f@Q dt or % = —0dB,so f =¢" Jo®:dBs=3 5 16214t is 5 [ocal martingale.

Example 3 Consider again the continuous-time model of security prices:
dSo 4 dsSy,

so = rudt and ﬁ = [trs — 614 dt+@ dBi, k=1,...,n.

1xd
~ t D S 2 : t
» Use Itd's lemma to show Sj; = Skjoefo["kv" Oku=lokul®/2) dut [y ok dBu
» Note that r, u, 0 and o can be any suitably integrable, adapted processes.

» Special Case: Markov Model It is often convenient to specialize to the case in
which the coefficients r, 1, § and o are functions of (S,Y,t), where Y is a vector
of state variables with Y; = Yo + [¢ uy (Yu,w) du + [¢ oy (Ya, u)'dB,. Under
Lipschitz and growth conditions on the coefficients, (S,Y") is Markov.

Continuous-Time Trading Strategies

» We can specify a trading strategy in the n 4 1 securities either in terms of the
number of shares of each security held at time ¢, Ny = (Noyt, N1ty ..., Nnt), Orin
terms of the value invested in each security, T = (o, T1t, - - -, Tnt) = (Mo, T1),
where each 7, = NSy.

» The integrability condition on the trading strategy is easier to state in terms of
the (row-vector) of values invested in the n risky assets, .

Definition 8 A trading strategy is an n 4+ 1l-dimensional adapted process 7w =
(71'0}1,7'('1,15, e 77Tn,t) = (7‘('0¢,7'l't) with fOT |7Tt0't|2dt < o0 a.s.

» We'll focus on tight trading strategies, eliminate 7 and just specify .

Definition 9 Starting from initial wealth xo, a tight trading strategy = generates
consumption plan (¢, W) and wealth process X" = X, if

t t t ¢
X, =x0+ / roXudu + / o (g — 7)) du + / MOy dBy — / ¢, du (13)
0 Jo Jo 0

(the continuous-time WEE) and Xy = W.



» The economic effect of the dividends is that if a share of security k is held in a
portfolio for an instant in time, then it changes portfolio value by dS) + 6;S; dt =
Sk dt + oSk dB. Thus, holding py constant, the effect on the portfolio is
invariant to d;. Nevertheless, we keep track of the dividend rate, because it affects
the ex-dividend security price, which is the basis for many derivative contracts.

» Equation (13) can also be written N.S; = NoSo + fé N, dS, if there are no
dividends and intermediate consumption.

» The “tightness” of the trading strategy, i.e., the self-financing condition, is
essentially the restriction that

d(NS) = NdS (14)
and the additional terms from It6's lemma, SdN 4 d(N,S); are zero. This
is the continuous-time analog to more intuitive simple self-financing condition

Ny Si; = Ny, 1Sy, Vi =1,...,J — 1 that we saw for simple trading strategies
before.

Market Prices of Risk and Equivalent Martingale Measures

Definition 10 A market price of risk (mpr) is an adapted d-dim'l process 6 s.t.

—-r 1, = o, 6 as. a.e. 15
Mt tL_ t t ( )
nrl nxl nxd drl

Proposition 4 No arbitrage = there exists a market price of risk 6.

» The d-factor risk structure together with the wide range of available trading
strategies here means that the cross-section of expected returns must respect
this structure, i.e., instantaneous excess expected returns must be linear in factor
loadings.

Proof No arbitrage = If mo; = O then m[u: — r:1] = 0 a.s., a.e.. Otherwise,
from WEE (13), one could construct a trading strategy that generated positive
consumption from zero wealth. From linear algebra, the statement “If w0, = O then
mi[ue — 7 1] = Q" is equivalent to the CSER Equation (15).

» It turns out that from any well-behaved mpr 6 we can construct an equivalent
martingale measure P*.



t
Definition 11 The riskless discount factor is B; = e~ fOT“d“, risklessly discounted
security prices are S; = (:S;, and risklessly discounted dividends are

it t
D*(t) = (/ S’l‘uémdu,...,/ S* Spudu) . (16)
0 ’ 0 ’

Definition 12 A probability measure P* on (2, F,P) is an equivalent martingale
measure if P* ~ P and discounted cum-dividend stock prices G*(t) = S; + D*(¢)
are local martingales under P*.

This is a relaxed version of the previous emm definition that's as far as we can go
without further restrictions.

Proposition 5 If there exists a mpr 6 s.t. [7 |6;/2dt < co a.s. and the process
Zi=e fg&gi dB’”f%_ Ot 0u)[2 du (17)

is a martingale, then P* defined by % = Zr is an emm.

The proof uses the Girsanov theorem. Let's review it now.

Girsanov Theorem Let B be an n-dim’'l Brownian motion under P, FZ its natural
filtration, and P* a probability measure equivalent to 7. Then 3 a process 6 with
Jo 16:?dt < o0 as. sit.

L T (18)
dpP

and B} = B, + fées ds is an n-dim'l Brownian motion under P*. Moreover, if

X = Xo+ fé wsds + fé osdBg is an Ito process under P, then X is an ItG process

under P* with representation X; = Xo + [(us — 0s05) ds + [50sdB;.

» Here is some intuition. Suppose X ~ N (0, 1) under P and X ~ N(—#6, 1) under
P*. The p.d.f. of X is f(x) = %e*IQ/Q under P and f*(z) = \/%e*(xw)z/?

2w
under P*. So L&) = ¢=02-6%/2 Fyrther, for any function g(X), the P*-mean is

*(3
f@)

f1(X)
fF(X)

Girsanov says the mean shift can be done to Ito processes Brownian increment by

Brownian increment, with an adapted, mean shift process 6.
» Note that equivalent changes of measure on a Brownian space can only change

drift, not diffusion.

E{g(X)} = E{g(X) } = E{g(X)e "X 9/2},



Proof of Proposition 5 Note d(% = Zpr >0 and E{Zr} =1, so P* ~ P. Next, it
follows from the Girsanov Theorem that B = B, + fé 0sds is an n-dim'l Brownian

motion under P*, so G;(t) is a local martingale for all k =1,...,n:
dG;;t == dSZA,t + dD;t == d(BtSk,t) + 6tSk,t5k,t dt (19)
= Bt dSks — 1SSk dt + BeSk 0k dt = BeSki[(pry — 1) dt + ok dBy] (20)
== ﬂtsk,tak,t [Gt dt + ClBt] == /Btsk,tak,t dB; . (21)

Proposition 6 If 8 is a mpr and P* is its associated emm, then the discounted cum-
consumption value of wealth 5, X; —|—f(§ Bscs ds is also a P*-local martingale under any
tight trading strategy .

Proof From Itd's lemma, d(8:X:) = —nrB:X: + B:dX:, so discounting with the
riskless discount factor 3 absorbs the interest term in WEE 13, and switching from
dB to dB* = dB + 0 dt absorbs excess returns, giving WEE*:

t t t
B X, = o+ /O Burmu(pta — 1) du + /O Bumuory By — /0 Bucudu — (22)
t t
= 20+ /O Bumuou dB: — /O Buca du . (23)

Tame Trading Strategies and Supermartingales

Definition 13 A trading strategy = starting from wealth zg is tame if BX*0™ > — K
for some finite constant K.

Proposition 7 A local martingale that is bounded below is a supermartingale.

The proof uses Fatou's lemma.

Fatou’s lemma If {X,} is a sequence of nonnegative random variables, then
M inf, e E[X,|G] > E[liminf, e X,|G].

Apply this to the sequence {X["} with G = F; to get X; > E{X,|F:}.

Proposition 8 If P* is an emm and 7 is a tame, tight trading strategy generating a
nonnegative consumption plan (¢, W), then the discounted cum-consumption wealth
B X [0+ [E Bucy ds = xo+ [ Bumuo, dB;: is a P*-local martingale bounded below,
and thus a P*-supermartingale. Therefore,

T U T
XFome > E*{/ e i dse, du 4 e e W RY vt € [0,T1.
t

Corollary 9 If there exists an emm, there are no tame arbitrage opportunities.



Complete Markets and Martingales

Lemma 1 No arbitrage = there exists a unique mpr 0 s.t. every mpr 8 can be written
as @ = 6 + v where ov = 0 a.s. a.e. If rank(c) = n then 6 = ¢'[c0’] (i — r1).

We'll focus on this mpr 6 and its associated emm P* and Brownian motion B*.

Definition 14 A trading strategy = is martingale-generating if fg Bumuou dB; is a
P*-martingale, not just a P*-local martingale.

Proposition 10 If a tame tr. str. 7 starting from wealth zo generates a consumption
plan (¢, W) that is bounded below, then = is tight and martingale-generating <

T u T
XPOTC = E*{/ e di b, du 4 e o W | F) v € [0, T, (24)
t

Definition 15 The market is complete if every cons. plan (¢, W) with E*{ [ B.|c.| du+
Br|W|} < oo can be generated by a tight, martingale-generating trading strategy.

Theorem 1 The market is complete < n = d and o is nonsingular.

The proof uses the Martingale Representation Theorem.

Martingale Representation Theorem Let B be an n-dim'l Brownian motion, F?
its natural filtration, and X a local martingale w.r.t. F5. Then there exists an n-dim’l
adapted process with fOT 0% dt < oo s.t. Xy = Xo+ ‘[OT 0., dB,. Moreover, X is an
LP(’P)-martingale for some p € [1,00) iff E[(f] |6:]2 dt)?] < oo.

Lemma 2 (Representation of P*-martingales) If M* is a P*-martingale then there
exists an adapted, square-integrable process 1 s.t. M; = Mo + fé !, dB.

Proof of Theorem 1 «: Given consumption plan (¢, W), let
T
M= E*{/O Bucu du + BrWI|F,} .
By the M.R.T. M} = M{ + fé 1!, dB: for some adapted, square-integrable process
Y. Let m = '0c~1/B and let xo = M{. Then, by the WEE*, 7 generates (c, W)

starting from wealth xg. In particular, evaluating WEE* at time t = T gives

T T T
ﬁTXT + / 5ucu du = o + / /Buﬂ-uo-u dBZ = M;‘ = / ﬁu,cu du + ﬂTW (25)
0 0 JO

Corollary 11 In a complete market, there exists a unique mpr = o~ 1(pu — r1).



Problem Set 2

1. Suppose the price in yen P of a Japanese stock and the exchange rate X dollars
per yen are It0 processes given by

dP/P = ppdt + opdB | (26)
dX/X = pxdt + o’y dB | (27)

where B is standard 2-dimensional Brownian motion. Describe the dynamics of
the price Y of the stock in dollars.

2. Suppose rank(o;) = n. Let v be an d-dimensional process with o,y = 0 and let

0 = 0,(010,) M — rel] (28)
ét = 9,5 + Vg, (29)
Zt =e f(;ﬁ; dBS*% S@Rds s (30)
L red
Br=e Jom% and (31)
my = BtZt . (32)
Finally, let
Zy= e Bl foloslas (33)
m;‘ = BtZt s (34)
m*=mi . (35)

(a) Show that m* is the only m of the form above in the payoff space, that is, it is
the only such m for which there exists a trading strategy that strictly finances
a consumption plan (¢, W) € C with W = m.

(b) Show that m; is the m process with the smallest instantaneous volatility, or in
other words, that its log has the smallest quadratic variation.

3. Verify the following: if 6,01, 0> € H3, then
(a) I% is an L(P)? martingale;
(b) E[I]*1/?) = E[J¢ 01,025 ds] .

In addition, verify that ||I% — I%2|| 2 = |61 — 02|32 -



4.(a) Use the Martingale Representation Theorem and Ité's Lemma to prove the
following corollary:
Let {B:} be an n-dimensional Brownian motion, {F:} its natural filtration,
and {X:} a strictly positive local martingale adapted to {F}. Then there
exists an n-dimensional process 0 € L2 such that

X, = Xoeltan 3 [ (36)

(b) Conclude that if Z € L2(P) is a strictly positive random variable measurable
with respect to F;, then Z has the representation (36).

5. Use the results in question 4 above, the lemma stated below, and Levy’s Theorem
(Prop 14 of Domenico Cuoco's lecture notes) to prove the Girsanov Theorem:

Let B; be standard n-dimensional Brownian motion on [0, T'] under the probability
measure P with {F;} its natural filtration and let P* be a probability measure
equivalent to . Then there exists an n-dimensional process § € £? s.t.

dp*
dP

T 1 /T
=exp(—/ ngBt—f/ 16,2 dt) (37)
o 2 Jo
and
t
B = Bt—l—/ 0, ds (38)
0

is standard n-dimensional Brownian motion on [0, 7] under P*.

Lemma In the setting described above, define Z; = F {Ci% |.7-"t} a strictly positive
martingale w.r.t {F:}. If Y is an It6 process and ZY is a P-local martingale, then
Y is P*-local martingale.



6. Suppose 2 = {w1, w2, ws,ws,ws} and let the o-field F be the set of all subsets
of 2. Define the probability measure P by

1
P{wr} = P{w2} = P{ws} = P{ws} = P{ws} = =
Finally, suppose Xi,X» are random variables on (€2, F,P) that take on the
following values.

state X1 X>
w1 1 2
wr 1 3
w3 2 3
waq 3 4
ws 3 4

(a) What is the o-field Fx, generated by X17 What is the o-field Fx, generated
by X57? (Formally, Fx is defined as

Fx={X"Y(B)|BeB}, (39)

where B is the Borel o-field on R. That is, Fx is the smallest o-field with
respect to which X is measurable.)

(b) Specify the values of the random variables E{ X»|Fx, } and E{X1|Fx,} for each
Wi

(c) Suppose X1 and X5 are the time 1 and 2 values of a stochastic process X
with Xo = 1. Let {Fo, F1, F2} be the filtration generated by X. What is Fo?
F1? F2?7 (In the filtration generated by a stochastic process X, each F; is
the o-field generated by the complete history of X up to and inclusing time t.
That is,

Fir=0{Fxls<t}, (40)

where the notation o{}, or “o-closure,” or the “o-field generated by" is
necessary because the union of Fx,, ..., Fx, may not by itself represent a valid
o-field.)



