
The Continuous-Time Financial Market

1. Security prices – Itô processes

I Brownian motion

I Stochastic integrals

I Stopping times

I Local martingales

I Itô’s lemma

2. Markov model

3. Trading strategies – self-financing, square-integrable, tame

4. Market prices of risk

5. Equivalent martingale measures – Girsanov theorem

6. Portfolio value – martingale properties, lower bounds

7. Market completeness – Martingale representation theorem
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Now let’s develop these results more explicitly in a rich but tractable setting with
continuous trading and security price processes constructed from Brownian motion.

I There is a finite time horizon [0, T ].

I The filtered probability space is (⌦,F ,P,FB) where FB is the filtration (infor-
mation) generated by a d-dim’l Brownian motion B = (B1, B2, . . . , B

d

)..

I The consumption space C is the set of pairs (c,W ) where c is an adapted
consumption rate process with

R

T

0 |c
t

| dt < 1 a.s. and W is a random variable
representing terminal (time T ) wealth.

I There are n+1 securities traded, with ex-dividend prices S = (S0, S1, . . . , Sn

).

I Security 0 is a “bond” or locally riskless money market account earning the
instantaneous riskless rate r

t

. I.e.,

dS0,t

S0,t
= r

t

dt , S0,t = S0,0e

R

t

0
r

u

du (1)

where r is an adapted process with
R

T

0 |r
t

| dt < 1 a.s.
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I The n “risky” asset prices are strictly positive Itô processes, each satisfying

dS

k,t

S

k,t

= [µ
k,t

� �

k,t

] dt+ �

k,t

|{z}

1⇥d

dB

t

. (2)

The n-dimensional instantaneous expected return process µ = (µ1, . . . , µn

) is
adapted and satisfies

R

T

0 |µ
t

| dt < 1 a.s., the n-dimensional dividend payout

rate process � = (�1, . . . , �n) is adapted and satisfies
R

T

0 |�
t

| dt < 1 a.s., and

the n ⇥ d-matrix-valued volatility process � =

0

B

B

@

�1
...
�

n

1

C

C

A

is adapted and satisfies

R

T

0 ||�
k,t

||2 dt < 1 a.s. for each k.

I Equation (2) above is shorthand for

S

k,t

= S

k,0e

R

t

0
[µ

k,u

��
k,u

�|�
k,u

|2/2] du+
R

t

0
�

k,u

dB

u

. (3)

I W.l.o.g. assume n  d unless you want to track redundant securities for a reason.

I Let’s briefly review Brownian motion, stochastic integrals, and Itô processes.
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Brownian Motion

Definition 1 A continuous, adapted process B is a standard Brownian motion if
B0 = 0 and for any 0  t  s  T , the increment B

s

�B

t

is independent of F
t

and
normally distributed with mean zero and variance s� t. A process X is a Brownian

motion if X
t

= X0 + µt+ �B

t

8 [t 2 [0, T ], where µ is constant.

Proposition 1 A process X is continuous with stationary independent increments if
and only if X is a Brownian motion.

Proposition 2 The sample paths of a Brownian motion have infinite variation and
finite quadratic variation. I.e., for all t 2 [0, T ],

lim
n!1

2n�1
X

i=0

|B
t⇤(i+1)/2n �B

t⇤i/2n| = 1 a.s., (4)

lim
n!1

2n�1
X

i=0

|B
t⇤(i+1)/2n �B

t⇤i/2n|2 = t a.s. (5)

Definition 2 An d-dimensional Brownian motion is a vector-valued process B =
(B1, . . . , B

d

), where each B

j

is a Brownian motion, 8 j = 1, . . . , d and B

i

is
independent of B

j

for all i 6= j.

5

Stochastic Integrals

Now let’s define the stochastic integral
R

t

0 ✓s dBs

of a process ✓ w.r.t. a Brownian
motion B. A path-by-path Riemann-Stieltjes definition won’t work when the integrand
✓ has infinite variation, so we build it up starting with “simple” integrands.

Definition 3 An adapted process ✓ satisfying E
R

T

0 |✓
t

|2 dt < 1 is simple if there
exists a finite partition
0 = t0 < t1 < · · · < t

J

= T of [0, T ] and random variables ✓
j

2 F
t

j

such that

✓

t

=

(

✓0 if t 2 [t0, t1]
✓

j

if t 2 (t
j

, t

j+1]
(6)

8 j = 0, . . . , J � 1.

The stochastic integral of a simple integrand ✓ can be defined path by path as

I

t

=
Z

t

0
✓

s

dB

s

=
N�1
X

j=0

✓

j

[B
t

j+1^t �B

t

j

^t] . (7)
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Proposition 3 The stochastic integral I

t

of a simple integrand ✓ is continuous,
adapted to F, linear in ✓, an L

2(P)-martingale, and for simple ✓1 and ✓2 satisfies

E[(
Z

t

0
✓1,s dBs

)(
Z

t

0
✓2,s dBs

)] = E
Z

t

0
✓1,s✓2,s ds . (8)

I Next, it turns out that every process ✓ satisfying E{R T

0 |✓
t

|2 dt} < 1, which we’ll
call “strongly square-integrable,” has a sequence of simple processes that converge
to it, and the limit of the integrals of these processes exists and is unique.

I So we define the stochastic integral of a strongly square-integrable process ✓ as
the limit of the integrals of any sequence of simple processes that converges to ✓.

I This is the so-called Itô-integral and it satisfies the same properties as the integrals
of the simple processes listed above: the Itô-integral is continuous, adapted,
linear in its integrand, an L

2(P)-martingale, and the expectation of the product
of stochastic integrals is the expectation of time-integral of the product of the
integrands.

I Finally, it is also possible to define the Itô integral of adapted processes ✓ that
satisfy

R

T

0 |✓
t

|2 dt < 1 a.s., which we’ll call “weakly square-integrable,” as follows.
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Definition 4 An F-measurable map ⌧ : ⌦ ! [0, T ] [ {1} is a stopping time if
{! 2 ⌦ : ⌧(!)  t} 2 F

t

8t 2 [0, T ].

I It is always possible to interpret a stopping time as the first time an event occurs.

Definition 5 A process X is a local martingale if 9 a sequence of stopping times
⌧

n

" T a.s. s.t. each stopped process X⌧

n is a martingale.

I Now, for any weakly square-integrable process ✓ there exists a sequence of stopping
times ⌧

n

" T a.s. s.t. each of the stopped processes ✓

n

= ✓ · 1
t⌧

n

is strongly
square-integrable. Then we can define the Itô integral of a weakly square-integrable
process as the limit of the integrals of the stopped processes that converges to it.

I The Itô integral of a weakly square-integrable process will have all of the properties
above, except that it may be only a local martingale, not a martingale.

I An example of a local martingale that is not a martingale is a wealth process under
a doubling strategy.
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Itô Processes

Definition 6 A process X adapted to the filtration FB generated by a Brownian
motion B is an Itô process if 9 an adapted real-valued process µ with

R

T

0 |µ
t

| dt < 1
a.s., which we’ll call “absolutely integrable,” and an Rn-valued weakly square-
integrable process � s.t.

X

t

= X0 +
Z

t

0
µ

s

ds+
Z

t

0
�

0
s

dB

s

8t 2 [0, T ] a.s. (9)

The process µ is called the drift of X and the process � is called the di↵usion of X.

I Equation (9) can be written in di↵erential form as dX
t

= µ

t

dt+ �

0
t

dB

t

.

I An Itô process is a local martingale i↵ it has zero drift.

Definition 7 If X1 and X2 are Itô processes with dX

it

= µ

it

dt + �

it

dB

t

, the
quadratic variation of X

i

is

hX
i

,X

i

i
t

⌘ lim
n!1

2n�1
X

j=0

(X
i,(j+1)t/2n �X

i,jt/2n)
2 =

Z

t

0
|�

s

|2 ds , (10)
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and the covariation of X1 and X2 is

hX1, X2it ⌘ lim
n!1

2n�1
X

j=0

(X1,(i+1)t/2n �X1,it/2n)(X2,(j+1)t/2n �X2,jt/2n) (11)

=
Z

t

0
�1s�

0
2s ds , (12)

where the convergence above is in probability.

I As a mnemonically helpful shorthand, some write dhX
i

,X

i

i
t

= (dX
i

)2 and
dhX

i

,X

j

i
t

= (dX
i

)(dX
j

).

I If X is an Itô process, and f is a smooth real-valued function, then f(X) is also
an Itô process, and Itô’s lemma gives its drift and di↵usion:

Itô’s Lemma Let X be an m-dimensional Itô process as in equation (9) and let
f : Rm ⇥ [0, T ] ! R be C

2,1. Then f(X
t

, t) is also an Itô process with
df = f

t

dt+ f

X

dX + 1
2tr[fXX

��

0] dt = (12tr[fXX

��

0] + f

X

µ+ f

t

) dt+ f

X

� dB.

I In the shorthand, the Taylor expansion underlying Itô’s lemma is more apparent,
and this becomes more memorable as
df = f

t

dt+ f

X

dX + 1
2

P

n

i=1
P

n

j=1
@

2
f

@X

i

@X

j

(dX
i

)(dX
j

).
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Example 1 To gain intuition for the 2nd-order term with f

XX

, let X

t

= B

t

and
f(X) = X

2. The usual calculus df = f

X

dX would yield f(B1) =
R 1
0 2B

t

dB

t

and
E{f(B1)} = E{B2

1} = 0, which is incorrect. Including the 2nd-order term gives
f(B1) =

R 1
0 2B

t

dB

t

+ 1
2

R 1
0 2 dt so E{f(B1)} = E{B2

1} = 1. The 2nd-order term
captures the “Jensen’s inequality” adjustment to the drift of f which is increasing in
both the convexity of f and the volatility of X.

Example 2 Let X

t

= � R

t

0 ✓
0
s

dB

s

� 1
2

R

t

0 |✓2s | dt. Let f(X) = e

X. Then df =

f dX + 1
2f✓

2
dt or df

f

= �✓ dB, so f = e

�
R

t

0
✓

0
s

dB

s

�1
2

R

t

0
|✓2
s

| dt is a local martingale.

Example 3 Consider again the continuous-time model of security prices:
dS0,t
S0,t

= r

t

dt and
dS

k,t

S

k,t

= [µ
k,t

� �

k,t

] dt+ �

k,t

|{z}

1⇥d

dB

t

, k = 1, . . . , n.

I Use Itô’s lemma to show S

k,t

= S

k,0e

R

t

0
[µ

k,u

��
k,u

�|�
k,u

|2/2] du+
R

t

0
�

k,u

dB

u

.

I Note that r, µ, � and � can be any suitably integrable, adapted processes.

I Special Case: Markov Model It is often convenient to specialize to the case in
which the coe�cients r, µ, � and � are functions of (S, Y, t), where Y is a vector
of state variables with Y

t

= Y0 +
R

t

0 µY

(Y
u

, u) du +
R

t

0 �Y (Yu

, u)0dB
u

. Under
Lipschitz and growth conditions on the coe�cients, (S, Y ) is Markov.
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Continuous-Time Trading Strategies

I We can specify a trading strategy in the n + 1 securities either in terms of the
number of shares of each security held at time t, N

t

= (N0,t, N1,t, . . . , Nn,t

), or in
terms of the value invested in each security, ⇡̄

t

= (⇡0,t,⇡1,t, . . . ,⇡n,t

) ⌘ (⇡0,t,⇡t

),
where each ⇡

k

= N

k

S

k

.

I The integrability condition on the trading strategy is easier to state in terms of
the (row-vector) of values invested in the n risky assets, ⇡.

Definition 8 A trading strategy is an n + 1-dimensional adapted process ⇡̄

t

=
(⇡0,t,⇡1,t, . . . ,⇡n,t

) ⌘ (⇡0,t,⇡t

) with
R

T

0 |⇡
t

�

t

|2 dt < 1 a.s.

I We’ll focus on tight trading strategies, eliminate ⇡0 and just specify ⇡.

Definition 9 Starting from initial wealth x0, a tight trading strategy ⇡ generates

consumption plan (c,W ) and wealth process X⇡,c,x0
t

= X

t

if

X

t

= x0 +
Z

t

0
r

u

X

u

du+
Z

t

0
⇡

u

(µ
u

� r

u

) du+
Z

t

0
⇡

u

�

u

dB

u

�
Z

t

0
c

u

du (13)

(the continuous-time WEE) and X

T

= W .
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I The economic e↵ect of the dividends is that if a share of security k is held in a
portfolio for an instant in time, then it changes portfolio value by dS

k

+ �

k

S

k

dt =
µ

k

S

k

dt + �

k

S

k

dB. Thus, holding µ

k

constant, the e↵ect on the portfolio is
invariant to �

k

. Nevertheless, we keep track of the dividend rate, because it a↵ects
the ex-dividend security price, which is the basis for many derivative contracts.

I Equation (13) can also be written N

t

S

t

= N0S0 +
R

t

0Nu

dS

u

if there are no
dividends and intermediate consumption.

I The “tightness” of the trading strategy, i.e., the self-financing condition, is
essentially the restriction that

d(NS) = NdS (14)

and the additional terms from Itô’s lemma, S dN + dhN,Si
t

are zero. This
is the continuous-time analog to more intuitive simple self-financing condition
N

t

j

S

t

j

= N

t

j�1St

j

8j = 1, . . . , J � 1 that we saw for simple trading strategies
before.
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Market Prices of Risk and Equivalent Martingale Measures

Definition 10 A market price of risk (mpr) is an adapted d-dim’l process ✓ s.t.

µ

t

|{z}

nx1

�r

t

1
|{z}

nx1

= �

t

|{z}

nxd

✓

t

|{z}

dx1

a.s. a.e. (15)

Proposition 4 No arbitrage ) there exists a market price of risk ✓.

I The d-factor risk structure together with the wide range of available trading
strategies here means that the cross-section of expected returns must respect
this structure, i.e., instantaneous excess expected returns must be linear in factor
loadings.

Proof No arbitrage ) If ⇡
t

�

t

= 0 then ⇡

t

[µ
t

� r

t

1] = 0 a.s., a.e.. Otherwise,
from WEE (13), one could construct a trading strategy that generated positive
consumption from zero wealth. From linear algebra, the statement “If ⇡

t

�

t

= 0 then
⇡

t

[µ
t

� r

t

1] = 0” is equivalent to the CSER Equation (15).

I It turns out that from any well-behaved mpr ✓ we can construct an equivalent
martingale measure P⇤.
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Definition 11 The riskless discount factor is �
t

⌘ e

�
R

t

0
r

u

du, risklessly discounted
security prices are S

⇤
t

= �

t

S

t

, and risklessly discounted dividends are

D

⇤(t) ⌘ (
Z

t

0
S

⇤
1,u�1,u du, . . . ,

Z

t

0
S

⇤
n,u

�

n,u

du) . (16)

Definition 12 A probability measure P⇤ on (⌦,F ,P) is an equivalent martingale

measure if P⇤ ⇠ P and discounted cum-dividend stock prices G

⇤(t) ⌘ S

⇤
t

+ D

⇤(t)
are local martingales under P⇤.

This is a relaxed version of the previous emm definition that’s as far as we can go
without further restrictions.

Proposition 5 If there exists a mpr ✓ s.t.
R

T

0 |✓
t

|2 dt  1 a.s. and the process

Z

t

⌘ e

�
R

t

0
✓

0
u

dB

u

�1
2

R

t

0
|✓
u

)|2 du (17)

is a martingale, then P⇤ defined by dP⇤
dP = Z

T

is an emm.

The proof uses the Girsanov theorem. Let’s review it now.
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Girsanov Theorem Let B be an n-dim’l Brownian motion under P, FB its natural
filtration, and P⇤ a probability measure equivalent to P. Then 9 a process ✓ with
R

T

0 |✓
t

|2 dt  1 a.s. s.t.

dP⇤

dP = e

�
R

T

0
✓

0
t

dB

t

�1
2

R

T

0
|✓
t

|2 dt (18)

and B

⇤
t

⌘ B

t

+
R

t

0 ✓s ds is an n-dim’l Brownian motion under P⇤. Moreover, if
X

t

= X0 +
R

t

0 µs

ds+
R

t

0 �s dBs

is an Itô process under P, then X is an Itô process
under P⇤ with representation X

t

= X0 +
R

t

0(µs

� �

s

✓

s

) ds+
R

t

0 �s dB
⇤
s

.
I Here is some intuition. Suppose X ⇠ N(0,1) under P and X ⇠ N(�✓,1) under

P⇤. The p.d.f. of X is f(x) = 1p
2⇡
e

�x

2
/2 under P and f

⇤(x) = 1p
2⇡
e

�(x+✓)2/2

under P⇤. So f

⇤(x)
f(x) = e

�✓x�✓2/2. Further, for any function g(X), the P⇤-mean is

E⇤{g(X)} = E{g(X)
f

⇤(X)

f(X)
} = E{g(X)e�✓X�✓2/2}.

Girsanov says the mean shift can be done to Itô processes Brownian increment by
Brownian increment, with an adapted, mean shift process ✓.

I Note that equivalent changes of measure on a Brownian space can only change
drift, not di↵usion.
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Proof of Proposition 5 Note dP⇤
dP = Z

T

> 0 and E{Z
T

} = 1, so P⇤ ⇠ P. Next, it
follows from the Girsanov Theorem that B

⇤
t

⌘ B

t

+
R

t

0 ✓s ds is an n-dim’l Brownian
motion under P⇤, so G

⇤
k

(t) is a local martingale for all k = 1, . . . , n:

dG

⇤
k,t

= dS

⇤
k,t

+ dD

⇤
k,t

= d(�
t

S

k,t

) + �

t

S

k,t

�

k,t

dt (19)

= �

t

dS

k,t

� r

t

�

t

S

k,t

dt+ �

t

S

k,t

�

k,t

dt = �

t

S

k,t

[(µ
k,t

� r

t

) dt+ �

k,t

dB

t

] (20)

= �

t

S

k,t

�

k,t

[✓
t

dt+ dB

t

] = �

t

S

k,t

�

k,t

dB

⇤
t

. (21)

Proposition 6 If ✓ is a mpr and P⇤ is its associated emm, then the discounted cum-
consumption value of wealth �

t

X

t

+
R

t

0 �scs ds is also a P⇤-local martingale under any
tight trading strategy ⇡.

Proof From Itô’s lemma, d(�
t

X

t

) = �r

t

�

t

X

t

+ �

t

dX

t

, so discounting with the
riskless discount factor � absorbs the interest term in WEE 13, and switching from
dB to dB

⇤ = dB + ✓ dt absorbs excess returns, giving WEE*:

�

t

X

t

= x0 +
Z

t

0
�

u

⇡

u

(µ
u

� r

u

) du+
Z

t

0
�

u

⇡

u

�

u

dB

u

�
Z

t

0
�

u

c

u

du (22)

= x0 +
Z

t

0
�

u

⇡

u

�

u

dB

⇤
u

�
Z

t

0
�

u

c

u

du . (23)
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Tame Trading Strategies and Supermartingales

Definition 13 A trading strategy ⇡ starting from wealth x0 is tame if �Xx0,⇡ � �K

for some finite constant K.

Proposition 7 A local martingale that is bounded below is a supermartingale.

The proof uses Fatou’s lemma.

Fatou’s lemma If {X
n

} is a sequence of nonnegative random variables, then
lim inf

n!1E[X
n

|G] � E[lim inf
n!1X

n

|G].
Apply this to the sequence {X⌧

n

s

} with G = F
t

to get X
t

� E{X
s

|F
t

}.
Proposition 8 If P⇤ is an emm and ⇡ is a tame, tight trading strategy generating a
nonnegative consumption plan (c,W ), then the discounted cum-consumption wealth
�

t

X

x0,⇡,c
t

+
R

t

0 �ucu ds = x0+
R

t

0 �u⇡u

�

u

dB

⇤
u

is a P⇤-local martingale bounded below,
and thus a P⇤-supermartingale. Therefore,

X

x0,⇡,c
t

� E⇤{
Z

T

t

e

�
R

u

t

r

s

ds

c

u

du+ e

�
R

T

t

r

s

ds

W |F
t

} 8t 2 [0, T ].

Corollary 9 If there exists an emm, there are no tame arbitrage opportunities.
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Complete Markets and Martingales

Lemma 1 No arbitrage ) there exists a unique mpr ✓ s.t. every mpr ✓̂ can be written
as ✓̂ = ✓+ ⌫ where �⌫ = 0 a.s. a.e. If rank(�) = n then ✓ = �

0[��0]�1(µ� r1).

We’ll focus on this mpr ✓ and its associated emm P⇤ and Brownian motion B

⇤.

Definition 14 A trading strategy ⇡ is martingale-generating if
R

t

0 �u⇡u

�

u

dB

⇤
u

is a
P⇤-martingale, not just a P⇤-local martingale.

Proposition 10 If a tame tr. str. ⇡ starting from wealth x0 generates a consumption
plan (c,W ) that is bounded below, then ⇡ is tight and martingale-generating ,

X

x0,⇡,c
t

= E⇤{
Z

T

t

e

�
R

u

t

r

s

ds

c

u

du+ e

�
R

T

t

r

s

ds

W |F
t

} 8t 2 [0, T ]. (24)

Definition 15 The market is complete if every cons. plan (c,W ) with E⇤{R T

0 �u|cu| du+
�

T

|W |} < 1 can be generated by a tight, martingale-generating trading strategy.

Theorem 1 The market is complete , n = d and � is nonsingular.

The proof uses the Martingale Representation Theorem.
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Martingale Representation Theorem Let B be an n-dim’l Brownian motion, FB

its natural filtration, and X a local martingale w.r.t. FB. Then there exists an n-dim’l
adapted process with

R

T

0 |✓
t

|2 dt < 1 s.t. X

t

= X0 +
R

T

0 ✓
0
u

dB

u

. Moreover, X is an
L

p(P)-martingale for some p 2 [1,1) i↵ E[(
R

T

0 |✓
t

|2 dt)p

2] < 1.

Lemma 2 (Representation of P⇤
-martingales) If M⇤ is a P⇤-martingale then there

exists an adapted, square-integrable process  s.t. M⇤
t

= M0 +
R

t

0 
0
u

dB

⇤
u

.

Proof of Theorem 1 (: Given consumption plan (c,W ), let

M

⇤
t

= E⇤{
Z

T

0
�

u

c

u

du+ �

T

W |F
t

} .

By the M.R.T. M⇤
t

= M

⇤
0 +

R

t

0 
0
u

dB

⇤
u

for some adapted, square-integrable process
 . Let ⇡ =  

0
�

�1
/� and let x0 = M

⇤
0. Then, by the WEE*, ⇡ generates (c,W )

starting from wealth x0. In particular, evaluating WEE* at time t = T gives

�

T

X

T

+
Z

T

0
�

u

c

u

du = x0 +
Z

T

0
�

u

⇡

u

�

u

dB

⇤
u

= M

⇤
T

=
Z

T

0
�

u

c

u

du+ �

T

W. (25)

Corollary 11 In a complete market, there exists a unique mpr ✓ = �

�1(µ� r1).
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Problem Set 2

1. Suppose the price in yen P of a Japanese stock and the exchange rate X dollars
per yen are Itô processes given by

dP/P = µ

P

dt+ �

0
P

dB , (26)

dX/X = µ

X

dt+ �

0
X

dB , (27)

where B is standard 2-dimensional Brownian motion. Describe the dynamics of
the price Y of the stock in dollars.

2. Suppose rank(�
t

) = n. Let ⌫ be an d-dimensional process with �
t

⌫

t

= 0 and let

✓

t

= �

0
t

(�
t

�

0
t

)�1[µ
t

� r

t

1] , (28)

✓̂

t

= ✓

t

+ ⌫

t

, (29)

Ẑ

t

⌘ e

�
R

t

0
✓̂

0
s

dB

s

�1
2

R

t

0
|✓̂
s

|2 ds

, (30)

�

t

⌘ e

�
R

t

0
r

s

ds

, and (31)

m

t

⌘ �

t

Ẑ

t

. (32)
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Finally, let

Z

t

⌘ e

�
R

t

0
✓

0
s

dB

s

�1
2

R

t

0
|✓
s

|2 ds

, (33)

m

⇤
t

⌘ �

t

Z

t

, (34)

m

⇤ ⌘ m

⇤
T

. (35)

(a) Show that m⇤ is the only m of the form above in the payo↵ space, that is, it is
the only such m for which there exists a trading strategy that strictly finances
a consumption plan (c,W ) 2 C with W = m.

(b) Show that m⇤
t

is the m process with the smallest instantaneous volatility, or in
other words, that its log has the smallest quadratic variation.

3. Verify the following: if ✓, ✓1, ✓2 2 H2
0, then

(a) I✓ is an L(P)2 martingale;

(b) E[I✓1
t

I

✓2
t

] = E[
R

t

0 ✓1,s✓2,s ds] .

In addition, verify that ||I✓1 � I

✓2||M2 = ||✓1 � ✓2||H2 .
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4.(a) Use the Martingale Representation Theorem and Itô’s Lemma to prove the
following corollary:

Let {B
t

} be an n-dimensional Brownian motion, {F
t

} its natural filtration,

and {X
t

} a strictly positive local martingale adapted to {F
t

}. Then there

exists an n-dimensional process ✓ 2 L2
such that

X

t

= X0e

R

t

0
✓

0
s

dB

s

�1
2

R

t

0
|✓
s

|2 ds

. (36)

(b) Conclude that if Z 2 L

2(P) is a strictly positive random variable measurable
with respect to F

t

, then Z has the representation (36).
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5. Use the results in question 4 above, the lemma stated below, and Levy’s Theorem
(Prop 14 of Domenico Cuoco’s lecture notes) to prove the Girsanov Theorem:

Let B
t

be standard n-dimensional Brownian motion on [0, T ] under the probability
measure P with {F

t

} its natural filtration and let P⇤ be a probability measure
equivalent to P. Then there exists an n-dimensional process ✓ 2 L2 s.t.

dP⇤

dP = exp(�
Z

T

0
✓

0
t

dB

t

� 1

2

Z

T

0
|✓

t

|2 dt) (37)

and

B

⇤
t

⌘ B

t

+
Z

t

0
✓

s

ds (38)

is standard n-dimensional Brownian motion on [0, T ] under P⇤.

Lemma In the setting described above, define Z
t

⌘ E

n

dP⇤
dP |F

t

o

, a strictly positive
martingale w.r.t {F

t

}. If Y is an Itô process and ZY is a P-local martingale, then
Y is P⇤-local martingale.
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6. Suppose ⌦ = {!1,!2,!3,!4,!5} and let the �-field F be the set of all subsets
of ⌦. Define the probability measure P by

P{!1} = P{!2} = P{!3} = P{!4} = P{!5} =
1

5
.

Finally, suppose X1, X2 are random variables on (⌦,F ,P) that take on the
following values.
state X1 X2

!1 1 2
!2 1 3
!3 2 3
!4 3 4
!5 3 4

(a) What is the �-field F
X1 generated by X1? What is the �-field F

X2 generated
by X2? (Formally, F

X

is defined as

F
X

=
n

X

�1(B) |B 2 B
o

, (39)

where B is the Borel �-field on R. That is, F
X

is the smallest �-field with
respect to which X is measurable.)
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(b) Specify the values of the random variables E{X2|FX1} and E{X1|FX2} for each
!

i

.

(c) Suppose X1 and X2 are the time 1 and 2 values of a stochastic process X

with X0 = 1. Let {F0,F1,F2} be the filtration generated by X. What is F0?
F1? F2? (In the filtration generated by a stochastic process X, each F

t

is
the �-field generated by the complete history of X up to and inclusing time t.
That is,

F
t

= � {F
X

s

|s  t} , (40)

where the notation �{}, or “�-closure,” or the “�-field generated by” is
necessary because the union of F

X1, ...,FX

t

may not by itself represent a valid
�-field.)
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