The Continuous-Time Financial Market

- 1. Security prices Itô processes
 - ► Brownian motion
 - Stochastic integrals
 - Stopping times
 - ► Local martingales
 - ▶ ltô's lemma
- 2. Markov model
- 3. Trading strategies self-financing, square-integrable, tame
- 4. Market prices of risk
- 5. Equivalent martingale measures Girsanov theorem
- 6. Portfolio value martingale properties, lower bounds
- 7. Market completeness Martingale representation theorem

Readings and References

Back, chapter 13. Karatzas and Shreve, 1998, chapter 1. Karatzas and Shreve, 1991. Now let's develop these results more explicitly in a rich but tractable setting with continuous trading and security price processes constructed from Brownian motion.

- \blacktriangleright There is a finite time horizon [0, T].
- The filtered probability space is (Ω, F, P, F^B) where F^B is the filtration (information) generated by a *d*-dim'l Brownian motion B = (B₁, B₂, ..., B_d).
- ▶ The consumption space C is the set of pairs (c, W) where c is an adapted consumption rate process with $\int_0^T |c_t| dt < \infty$ a.s. and W is a random variable representing terminal (time T) wealth.
- ▶ There are n + 1 securities traded, with ex-dividend prices $S = (S_0, S_1, \dots, S_n)$.
- ► Security 0 is a "bond" or *locally riskless* money market account earning the *instantaneous riskless rate* r_t. I.e.,

$$\frac{dS_{0,t}}{S_{0,t}} = r_t dt \Leftrightarrow S_{0,t} = S_{0,0} e^{\int_0^t r_u du} \tag{1}$$

where r is an adapted process with $\int_0^T |r_t|\,dt < \infty$ a.s.

▶ The *n* "risky" asset prices are strictly positive Itô processes, each satisfying

$$\frac{dS_{k,t}}{S_{k,t}} = \left[\mu_{k,t} - \delta_{k,t}\right] dt + \underbrace{\sigma_{k,t}}_{1 \times d} dB_t .$$
⁽²⁾

The *n*-dimensional instantaneous expected return process $\mu = (\mu_1, \ldots, \mu_n)$ is adapted and satisfies $\int_0^T |\mu_t| dt < \infty$ a.s., the *n*-dimensional dividend payout rate process $\delta = (\delta_1, \ldots, \delta_n)$ is adapted and satisfies $\int_0^T |\delta_t| dt < \infty$ a.s., and the $n \times d$ -matrix-valued volatility process $\sigma = \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_n \end{pmatrix}$ is adapted and satisfies

- $\int_0^T ||\sigma_{k,t}||^2 \, dt < \infty$ a.s. for each k.
- Equation (2) above is shorthand for

$$S_{k,t} = S_{k,0} e^{\int_0^t [\mu_{k,u} - \delta_{k,u} - |\sigma_{k,u}|^2/2] \, du + \int_0^t \sigma_{k,u} \, dB_u} \,. \tag{3}$$

- ▶ W.I.o.g. assume $n \leq d$ unless you want to track redundant securities for a reason.
- Let's briefly review Brownian motion, stochastic integrals, and Itô processes.

Brownian Motion

Definition 1 A continuous, adapted process B is a standard Brownian motion if $B_0 = 0$ and for any $0 \le t \le s \le T$, the increment $B_s - B_t$ is independent of \mathcal{F}_t and normally distributed with mean zero and variance s - t. A process X is a Brownian motion if $X_t = X_0 + \mu t + \sigma B_t \forall [t \in [0, T]]$, where μ is constant.

Proposition 1 A process X is continuous with stationary independent increments if and only if X is a Brownian motion.

Proposition 2 The sample paths of a Brownian motion have infinite variation and finite quadratic variation. I.e., for all $t \in [0, T]$,

$$\lim_{n \to \infty} \sum_{i=0}^{2^n - 1} |B_{t*(i+1)/2^n} - B_{t*i/2^n}| = \infty \text{ a.s.},$$
(4)

$$\lim_{n \to \infty} \sum_{i=0}^{2^{n-1}} |B_{t*(i+1)/2^n} - B_{t*i/2^n}|^2 = t \text{ a.s.}$$
(5)

Definition 2 An *d*-dimensional Brownian motion is a vector-valued process $B = (B_1, \ldots, B_d)$, where each B_j is a Brownian motion, $\forall j = 1, \ldots, d$ and B_i is independent of B_j for all $i \neq j$.

Stochastic Integrals

Now let's define the stochastic integral $\int_0^t \theta_s dB_s$ of a process θ w.r.t. a Brownian motion B. A path-by-path Riemann-Stieltjes definition won't work when the integrand θ has infinite variation, so we build it up starting with "simple" integrands.

Definition 3 An adapted process θ satisfying $E \int_0^T |\theta_t|^2 dt < \infty$ is *simple* if there exists a finite partition

 $0 = t_0 < t_1 < \cdots < t_J = T$ of [0, T] and random variables $\theta_j \in \mathcal{F}_{t_j}$ such that

$$\theta_t = \begin{cases} \theta_0 & \text{if } t \in [t_0, t_1] \\ \theta_j & \text{if } t \in (t_j, t_{j+1}] \end{cases}$$
(6)

 $\forall j = 0, \dots, J - 1.$

The stochastic integral of a simple integrand θ can be defined path by path as

$$I_t = \int_0^t \theta_s \, dB_s = \sum_{j=0}^{N-1} \theta_j [B_{t_{j+1}\wedge t} - B_{t_j\wedge t}] \,. \tag{7}$$

Proposition 3 The stochastic integral I_t of a simple integrand θ is continuous, adapted to **F**, linear in θ , an $L^2(\mathcal{P})$ -martingale, and for simple θ_1 and θ_2 satisfies

$$\operatorname{E}[(\int_0^t \theta_{1,s} \, dB_s)(\int_0^t \theta_{2,s} \, dB_s)] = \operatorname{E} \int_0^t \theta_{1,s} \theta_{2,s} \, ds \; . \tag{8}$$

- Next, it turns out that every process θ satisfying E{∫₀^T |θ_t|² dt} < ∞, which we'll call "strongly square-integrable," has a sequence of simple processes that converge to it, and the limit of the integrals of these processes exists and is unique.</p>
- So we define the stochastic integral of a strongly square-integrable process θ as the limit of the integrals of any sequence of simple processes that converges to θ.
- ► This is the so-called Itô-integral and it satisfies the same properties as the integrals of the simple processes listed above: the Itô-integral is continuous, adapted, linear in its integrand, an L²(P)-martingale, and the expectation of the product of stochastic integrals is the expectation of time-integral of the product of the integrands.
- Finally, it is also possible to define the Itô integral of adapted processes θ that satisfy ∫₀^T |θ_t|² dt < ∞ a.s., which we'll call "weakly square-integrable," as follows.</p>

Definition 4 An \mathcal{F} -measurable map $\tau : \Omega \to [0,T] \cup \{\infty\}$ is a *stopping time* if $\{\omega \in \Omega : \tau(\omega) \leq t\} \in \mathcal{F}_t \ \forall t \in [0,T].$

▶ It is always possible to interpret a stopping time as the first time an event occurs.

Definition 5 A process X is a *local martingale* if \exists a sequence of stopping times $\tau_n \uparrow T$ a.s. s.t. each stopped process X^{τ_n} is a martingale.

- Now, for any weakly square-integrable process θ there exists a sequence of *stopping* times $\tau_n \uparrow T$ a.s. s.t. each of the *stopped* processes $\theta_n = \theta \cdot \mathbf{1}_{t \leq \tau_n}$ is strongly square-integrable. Then we can define the Itô integral of a weakly square-integrable process as the limit of the integrals of the stopped processes that converges to it.
- The Itô integral of a weakly square-integrable process will have all of the properties above, except that it may be only a *local martingale*, not a martingale.
- An example of a local martingale that is not a martingale is a wealth process under a doubling strategy.

Itô Processes

Definition 6 A process X adapted to the filtration \mathcal{F}^B generated by a Brownian motion B is an $It\hat{o}$ process if \exists an adapted real-valued process μ with $\int_0^T |\mu_t| dt < \infty$ a.s., which we'll call "absolutely integrable," and an \mathcal{R}^n -valued weakly square-integrable process σ s.t.

$$X_{t} = X_{0} + \int_{0}^{t} \mu_{s} \, ds + \int_{0}^{t} \sigma_{s}' \, dB_{s} \, \forall t \in [0, T] \text{ a.s.}$$
(9)

The process μ is called the *drift* of X and the process σ is called the *diffusion* of X.

- Equation (9) can be written in differential form as $dX_t = \mu_t dt + \sigma'_t dB_t$.
- ▶ An Itô process is a local martingale iff it has zero drift.

Definition 7 If X_1 and X_2 are Itô processes with $dX_{it} = \mu_{it} dt + \sigma_{it} dB_t$, the *quadratic variation* of X_i is

$$\langle X_i, X_i \rangle_t \equiv \lim_{n \to \infty} \sum_{j=0}^{2^n - 1} (X_{i,(j+1)t/2^n} - X_{i,jt/2^n})^2 = \int_0^t |\sigma_s|^2 \, ds \,, \tag{10}$$

and the *covariation* of X_1 and X_2 is

$$\langle X_1, X_2 \rangle_t \equiv \lim_{n \to \infty} \sum_{j=0}^{2^n - 1} (X_{1,(i+1)t/2^n} - X_{1,it/2^n}) (X_{2,(j+1)t/2^n} - X_{2,jt/2^n})$$
(11)

$$=\int_0^t \sigma_{1s} \sigma'_{2s} \, ds \;, \tag{12}$$

where the convergence above is in probability.

- As a mnemonically helpful shorthand, some write $d\langle X_i, X_i \rangle_t = (dX_i)^2$ and $d\langle X_i, X_j \rangle_t = (dX_i)(dX_j)$.
- ► If X is an Itô process, and f is a smooth real-valued function, then f(X) is also an Itô process, and Itô's lemma gives its drift and diffusion:

Itô's Lemma Let X be an m-dimensional Itô process as in equation (9) and let $f : \mathcal{R}^m \times [0,T] \to \mathcal{R}$ be $C^{2,1}$. Then $f(X_t,t)$ is also an Itô process with $df = f_t dt + f_X dX + \frac{1}{2} \operatorname{tr}[f_{XX}\sigma\sigma'] dt = (\frac{1}{2} \operatorname{tr}[f_{XX}\sigma\sigma'] + f_X\mu + f_t) dt + f_X\sigma dB.$

- In the shorthand, the Taylor expansion underlying Itô's lemma is more apparent, and this becomes more memorable as
 - $df = f_t dt + f_X dX + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial X_i \partial X_j} (dX_i) (dX_j).$

Example 1 To gain intuition for the 2nd-order term with f_{XX} , let $X_t = B_t$ and $f(X) = X^2$. The usual calculus $df = f_X dX$ would yield $f(B_1) = \int_0^1 2B_t dB_t$ and $E\{f(B_1)\} = E\{B_1^2\} = 0$, which is incorrect. Including the 2nd-order term gives $f(B_1) = \int_0^1 2B_t dB_t + \frac{1}{2}\int_0^1 2 dt$ so $E\{f(B_1)\} = E\{B_1^2\} = 1$. The 2nd-order term captures the "Jensen's inequality" adjustment to the drift of f which is increasing in both the convexity of f and the volatility of X.

Example 2 Let $X_t = -\int_0^t \theta'_s dB_s - \frac{1}{2} \int_0^t |\theta_s|^2 dt$. Let $f(X) = e^X$. Then $df = f dX + \frac{1}{2} f \theta^2 dt$ or $\frac{df}{f} = -\theta dB$, so $f = e^{-\int_0^t \theta'_s dB_s - \frac{1}{2} \int_0^t |\theta_s|^2 dt}$ is a local martingale.

Example 3 Consider again the continuous-time model of security prices: $\frac{dS_{0,t}}{S_{0,t}} = r_t dt \text{ and } \frac{dS_{k,t}}{S_{k,t}} = [\mu_{k,t} - \delta_{k,t}] dt + \underbrace{\sigma_{k,t}}_{1 \times d} dB_t, \ k = 1, \dots, n.$

- ► Use Itô's lemma to show $S_{k,t} = S_{k,0}e^{\int_0^t [\mu_{k,u} \delta_{k,u} |\sigma_{k,u}|^2/2] du} + \int_0^t \sigma_{k,u} dB_u$.
- ▶ Note that r, μ, δ and σ can be any suitably integrable, adapted processes.
- ▶ Special Case: Markov Model It is often convenient to specialize to the case in which the coefficients r, μ, δ and σ are functions of (S, Y, t), where Y is a vector of *state variables* with $Y_t = Y_0 + \int_0^t \mu_Y(Y_u, u) du + \int_0^t \sigma_Y(Y_u, u)' dB_u$. Under Lipschitz and growth conditions on the coefficients, (S, Y) is Markov.

Continuous-Time Trading Strategies

- ▶ We can specify a trading strategy in the n + 1 securities either in terms of the number of shares of each security held at time t, $N_t = (N_{0,t}, N_{1,t}, \ldots, N_{n,t})$, or in terms of the value invested in each security, $\bar{\pi}_t = (\pi_{0,t}, \pi_{1,t}, \ldots, \pi_{n,t}) \equiv (\pi_{0,t}, \pi_t)$, where each $\pi_k = N_k S_k$.
- The integrability condition on the trading strategy is easier to state in terms of the (row-vector) of values invested in the n risky assets, π.

Definition 8 A trading strategy is an n + 1-dimensional adapted process $\overline{\pi}_t = (\pi_{0,t}, \pi_{1,t}, \dots, \pi_{n,t}) \equiv (\pi_{0,t}, \pi_t)$ with $\int_0^T |\pi_t \sigma_t|^2 dt < \infty$ a.s.

• We'll focus on tight trading strategies, eliminate π_0 and just specify π .

Definition 9 Starting from initial wealth x_0 , a *tight* trading strategy π generates consumption plan (c, W) and wealth process $X_t^{\pi, c, x_0} = X_t$ if

$$X_t = x_0 + \int_0^t r_u X_u \, du + \int_0^t \pi_u (\mu_u - r_u) \, du + \int_0^t \pi_u \sigma_u \, dB_u - \int_0^t c_u \, du \qquad (13)$$

(the continuous-time WEE) and $X_T = W$.

- ► The economic effect of the dividends is that if a share of security k is held in a portfolio for an instant in time, then it changes portfolio value by $dS_k + \delta_k S_k dt = \mu_k S_k dt + \sigma_k S_k dB$. Thus, holding μ_k constant, the effect on the portfolio is invariant to δ_k . Nevertheless, we keep track of the dividend rate, because it affects the ex-dividend security price, which is the basis for many derivative contracts.
- Equation (13) can also be written $N_tS_t = N_0S_0 + \int_0^t N_u dS_u$ if there are no dividends and intermediate consumption.
- The "tightness" of the trading strategy, i.e., the self-financing condition, is essentially the restriction that

$$d(NS) = NdS \tag{14}$$

and the additional terms from Itô's lemma, $S dN + d\langle N, S \rangle_t$ are zero. This is the continuous-time analog to more intuitive simple self-financing condition $N_{t_j}S_{t_j} = N_{t_{j-1}}S_{t_j} \ \forall j = 1, \ldots, J-1$ that we saw for simple trading strategies before.

Market Prices of Risk and Equivalent Martingale Measures

Definition 10 A market price of risk (mpr) is an adapted d-dim'l process θ s.t.

$$\underbrace{\mu_t}_{nx1} - r_t \underbrace{1}_{nx1} = \underbrace{\sigma_t}_{nxd} \underbrace{\theta_t}_{dx1} \text{ a.s. a.e.}$$
(15)

Proposition 4 No arbitrage \Rightarrow there exists a market price of risk θ .

▶ The *d*-factor risk structure together with the wide range of available trading strategies here means that the cross-section of expected returns must respect this structure, i.e., instantaneous excess expected returns must be linear in factor loadings.

Proof No arbitrage \Rightarrow If $\pi_t \sigma_t = 0$ then $\pi_t[\mu_t - r_t \mathbf{1}] = 0$ a.s., a.e.. Otherwise, from WEE (13), one could construct a trading strategy that generated positive consumption from zero wealth. From linear algebra, the statement "If $\pi_t \sigma_t = 0$ then $\pi_t[\mu_t - r_t \mathbf{1}] = 0$ " is equivalent to the CSER Equation (15).

It turns out that from any well-behaved mpr θ we can construct an equivalent martingale measure P*. **Definition 11** The *riskless discount factor* is $\beta_t \equiv e^{-\int_0^t r_u du}$, risklessly discounted security prices are $S_t^* = \beta_t S_t$, and risklessly discounted dividends are

$$D^{*}(t) \equiv \left(\int_{0}^{t} S_{1,u}^{*} \delta_{1,u} \, du, \dots, \int_{0}^{t} S_{n,u}^{*} \delta_{n,u} \, du\right) \,. \tag{16}$$

Definition 12 A probability measure \mathcal{P}^* on $(\Omega, \mathcal{F}, \mathcal{P})$ is an *equivalent martingale* measure if $\mathcal{P}^* \sim \mathcal{P}$ and discounted cum-dividend stock prices $G^*(t) \equiv S_t^* + D^*(t)$ are local martingales under \mathcal{P}^* .

This is a relaxed version of the previous emm definition that's as far as we can go without further restrictions.

Proposition 5 If there exists a mpr θ s.t. $\int_0^T |\theta_t|^2 dt \leq \infty$ a.s. and the process

$$Z_t \equiv e^{-\int_0^t \theta'_u \, dB_u - \frac{1}{2} \int_0^t |\theta_u|^2 \, du} \tag{17}$$

is a martingale, then \mathcal{P}^* defined by $\frac{d\mathcal{P}^*}{d\mathcal{P}} = Z_T$ is an emm.

The proof uses the Girsanov theorem. Let's review it now.

Girsanov Theorem Let *B* be an *n*-dim'l Brownian motion under \mathcal{P} , \mathbf{F}^B its natural filtration, and \mathcal{P}^* a probability measure equivalent to \mathcal{P} . Then \exists a process θ with $\int_0^T |\theta_t|^2 dt \leq \infty$ a.s. s.t.

$$\frac{d\mathcal{P}^*}{d\mathcal{P}} = e^{-\int_0^T \theta_t' \, dB_t - \frac{1}{2} \int_0^T |\theta_t|^2 \, dt} \tag{18}$$

and $B_t^* \equiv B_t + \int_0^t \theta_s \, ds$ is an n-dim'l Brownian motion under \mathcal{P}^* . Moreover, if $X_t = X_0 + \int_0^t \mu_s \, ds + \int_0^t \sigma_s \, dB_s$ is an Itô process under \mathcal{P} , then X is an Itô process under \mathcal{P}^* with representation $X_t = X_0 + \int_0^t (\mu_s - \sigma_s \theta_s) \, ds + \int_0^t \sigma_s \, dB_s^*$.

under \mathcal{P}^* with representation $X_t = X_0 + \int_0^t (\mu_s - \sigma_s \theta_s) \, ds + \int_0^t \sigma_s \, dB_s^*$. Here is some intuition. Suppose $X \sim N(0, 1)$ under \mathcal{P} and $X \sim N(-\theta, 1)$ under \mathcal{P}^* . The p.d.f. of X is $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ under \mathcal{P} and $f^*(x) = \frac{1}{\sqrt{2\pi}} e^{-(x+\theta)^2/2}$ under \mathcal{P}^* . So $\frac{f^*(x)}{f(x)} = e^{-\theta x - \theta^2/2}$. Further, for any function g(X), the \mathcal{P}^* -mean is

$$E^*\{g(X)\} = E\{g(X)\frac{f^*(X)}{f(X)}\} = E\{g(X)e^{-\theta X - \theta^2/2}\}.$$

Girsanov says the mean shift can be done to Itô processes Brownian increment by Brownian increment, with an adapted, mean shift process θ .

Note that equivalent changes of measure on a Brownian space can only change drift, not diffusion. **Proof of Proposition 5** Note $\frac{d\mathcal{P}^*}{d\mathcal{P}} = Z_T > 0$ and $\mathbb{E}\{Z_T\} = 1$, so $\mathcal{P}^* \sim \mathcal{P}$. Next, it follows from the Girsanov Theorem that $B_t^* \equiv B_t + \int_0^t \theta_s ds$ is an *n*-dim'l Brownian motion under \mathcal{P}^* , so $G_k^*(t)$ is a local martingale for all $k = 1, \ldots, n$:

$$dG_{k,t}^* = dS_{k,t}^* + dD_{k,t}^* = d(\beta_t S_{k,t}) + \beta_t S_{k,t} \delta_{k,t} dt$$
(19)

$$=\beta_t dS_{k,t} - r_t \beta_t S_{k,t} dt + \beta_t S_{k,t} \delta_{k,t} dt = \beta_t S_{k,t} [(\mu_{k,t} - r_t) dt + \sigma_{k,t} dB_t]$$
(20)

$$=\beta_t S_{k,t} \sigma_{k,t} [\theta_t \, dt + dB_t] = \beta_t S_{k,t} \sigma_{k,t} \, dB_t^* \,. \tag{21}$$

Proposition 6 If θ is a mpr and \mathcal{P}^* is its associated emm, then the discounted cumconsumption value of wealth $\beta_t X_t + \int_0^t \beta_s c_s \, ds$ is also a \mathcal{P}^* -local martingale under any tight trading strategy π .

Proof From Itô's lemma, $d(\beta_t X_t) = -r_t \beta_t X_t + \beta_t dX_t$, so discounting with the riskless discount factor β absorbs the interest term in WEE 13, and switching from dB to $dB^* = dB + \theta dt$ absorbs excess returns, giving WEE*:

$$\beta_t X_t = x_0 + \int_0^t \beta_u \pi_u (\mu_u - r_u) \, du + \int_0^t \beta_u \pi_u \sigma_u \, dB_u - \int_0^t \beta_u c_u \, du \qquad (22)$$

$$= x_0 + \int_0^t \beta_u \pi_u \sigma_u \, dB_u^* - \int_0^t \beta_u c_u \, du \; . \tag{23}$$

Tame Trading Strategies and Supermartingales

Definition 13 A trading strategy π starting from wealth x_0 is *tame* if $\beta X^{x_0,\pi} \ge -K$ for some finite constant K.

Proposition 7 A local martingale that is bounded below is a supermartingale.

The proof uses Fatou's lemma.

Fatou's lemma If $\{X_n\}$ is a sequence of nonnegative random variables, then $\liminf_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \geq \mathbb{E}[\liminf_{n\to\infty} X_n|\mathcal{G}].$

Apply this to the sequence $\{X_s^{\tau_n}\}$ with $\mathcal{G} = \mathcal{F}_t$ to get $X_t \ge \mathbb{E}\{X_s | \mathcal{F}_t\}$.

Proposition 8 If \mathcal{P}^* is an emm and π is a tame, tight trading strategy generating a nonnegative consumption plan (c, W), then the discounted cum-consumption wealth $\beta_t X_t^{x_0,\pi,c} + \int_0^t \beta_u c_u \, ds = x_0 + \int_0^t \beta_u \pi_u \sigma_u \, dB_u^*$ is a \mathcal{P}^* -local martingale bounded below, and thus a \mathcal{P}^* -supermartingale. Therefore,

$$X_t^{x_0,\pi,c} \ge \mathbf{E}^* \{ \int_t^T e^{-\int_t^u r_s \, ds} c_u \, du + e^{-\int_t^T r_s \, ds} W | \mathcal{F}_t \} \; \forall t \in [0,T].$$

Corollary 9 If there exists an emm, there are no tame arbitrage opportunities.

Complete Markets and Martingales

Lemma 1 No arbitrage \Rightarrow there exists a unique mpr θ s.t. every mpr $\hat{\theta}$ can be written as $\hat{\theta} = \theta + \nu$ where $\sigma\nu = 0$ a.s. a.e. If rank $(\sigma) = n$ then $\theta = \sigma'[\sigma\sigma']^{-1}(\mu - r1)$.

We'll focus on this mpr θ and its associated emm \mathcal{P}^* and Brownian motion B^* .

Definition 14 A trading strategy π is martingale-generating if $\int_0^t \beta_u \pi_u \sigma_u dB_u^*$ is a \mathcal{P}^* -martingale, not just a \mathcal{P}^* -local martingale.

Proposition 10 If a tame tr. str. π starting from wealth x_0 generates a consumption plan (c, W) that is bounded below, then π is tight and martingale-generating \Leftrightarrow

$$X_t^{x_0,\pi,c} = \mathbf{E}^* \{ \int_t^T e^{-\int_t^u r_s \, ds} c_u \, du + e^{-\int_t^T r_s \, ds} W | \mathcal{F}_t \} \, \forall t \in [0,T].$$
(24)

Definition 15 The market is *complete* if every cons. plan (c, W) with $E^* \{ \int_0^T \beta_u | c_u | du + \beta_T | W | \} < \infty$ can be generated by a tight, martingale-generating trading strategy.

Theorem 1 The market is complete $\Leftrightarrow n = d$ and σ is nonsingular.

The proof uses the Martingale Representation Theorem.

Martingale Representation Theorem Let *B* be an *n*-dim'l Brownian motion, \mathbf{F}^B its natural filtration, and *X* a local martingale w.r.t. \mathbf{F}^B . Then there exists an *n*-dim'l adapted process with $\int_0^T |\theta_t|^2 dt < \infty$ s.t. $X_t = X_0 + \int_0^T \theta'_u dB_u$. Moreover, *X* is an $L^p(\mathcal{P})$ -martingale for some $p \in [1, \infty)$ iff $\mathbb{E}[(\int_0^T |\theta_t|^2 dt)^{\frac{p}{2}}] < \infty$.

Lemma 2 (Representation of \mathcal{P}^* -martingales) If M^* is a \mathcal{P}^* -martingale then there exists an adapted, square-integrable process ψ s.t. $M_t^* = M_0 + \int_0^t \psi'_u dB_u^*$.

Proof of Theorem 1 \Leftarrow : Given consumption plan (*c*, *W*), let

$$M_t^* = \mathbf{E}^* \{ \int_0^T \beta_u c_u \, du + \beta_T W | \mathcal{F}_t \} \; .$$

By the M.R.T. $M_t^* = M_0^* + \int_0^t \psi'_u dB_u^*$ for some adapted, square-integrable process ψ . Let $\pi = \psi' \sigma^{-1} / \beta$ and let $x_0 = M_0^*$. Then, by the WEE*, π generates (c, W) starting from wealth x_0 . In particular, evaluating WEE* at time t = T gives

$$\beta_T X_T + \int_0^T \beta_u c_u \, du = x_0 + \int_0^T \beta_u \pi_u \sigma_u \, dB_u^* = M_T^* = \int_0^T \beta_u c_u \, du + \beta_T W.$$
(25)

Corollary 11 In a complete market, there exists a unique mpr $\theta = \sigma^{-1}(\mu - r\mathbf{1})$.

Problem Set 2

1. Suppose the price in yen P of a Japanese stock and the exchange rate X dollars per yen are Itô processes given by

$$dP/P = \mu_P dt + \sigma'_P dB , \qquad (26)$$

$$dX/X = \mu_X dt + \sigma'_X dB , \qquad (27)$$

where B is standard 2-dimensional Brownian motion. Describe the dynamics of the price Y of the stock in dollars.

2. Suppose rank $(\sigma_t) = n$. Let ν be an *d*-dimensional process with $\sigma_t \nu_t = 0$ and let

$$\theta_t = \sigma'_t (\sigma_t \sigma'_t)^{-1} [\mu_t - r_t \mathbf{1}] , \qquad (28)$$

$$\hat{\theta}_t = \theta_t + \nu_t , \qquad (29)$$

$$\hat{Z}_t \equiv e^{-\int_0^t \hat{\theta}'_s \, dB_s - \frac{1}{2} \int_0^t |\hat{\theta}_s|^2 \, ds} \,, \tag{30}$$

$$\beta_t \equiv e^{-\int_0^t r_s \, ds} \text{ , and} \tag{31}$$

$$m_t \equiv \beta_t \hat{Z}_t . \tag{32}$$

Finally, let

$$Z_t \equiv e^{-\int_0^t \theta'_s \, dB_s - \frac{1}{2} \int_0^t |\theta_s|^2 \, ds} \,, \tag{33}$$

$$m_t^* \equiv \beta_t Z_t , \qquad (34)$$

$$m^* \equiv m_T^* \ . \tag{35}$$

- (a) Show that m^* is the only m of the form above in the payoff space, that is, it is the only such m for which there exists a trading strategy that strictly finances a consumption plan $(c, W) \in C$ with W = m.
- (b) Show that m_t^* is the *m* process with the smallest instantaneous volatility, or in other words, that its log has the smallest quadratic variation.

3. Verify the following: if θ , θ_1 , $\theta_2 \in \mathcal{H}_0^2$, then

- (a) I^{θ} is an $L(\mathcal{P})^2$ martingale;
- (b) $\operatorname{E}[I_t^{\theta_1}I_t^{\theta_2}] = \operatorname{E}[\int_0^t \theta_{1,s} \theta_{2,s} \, ds]$.
- In addition, verify that $||I^{\theta_1} I^{\theta_2}||_{\mathcal{M}^2} = ||\theta_1 \theta_2||_{\mathcal{H}^2}$.

4.(a) Use the Martingale Representation Theorem and Itô's Lemma to prove the following corollary:

Let $\{B_t\}$ be an n-dimensional Brownian motion, $\{\mathcal{F}_t\}$ its natural filtration, and $\{X_t\}$ a strictly positive local martingale adapted to $\{\mathcal{F}_t\}$. Then there exists an n-dimensional process $\theta \in \mathcal{L}^2$ such that

$$X_t = X_0 e^{\int_0^t \theta'_s dB_s - \frac{1}{2} \int_0^t |\theta_s|^2 ds} .$$
(36)

(b) Conclude that if $Z \in L^2(\mathcal{P})$ is a strictly positive random variable measurable with respect to \mathcal{F}_t , then Z has the representation (36).

5. Use the results in question 4 above, the lemma stated below, and Levy's Theorem (Prop 14 of Domenico Cuoco's lecture notes) to prove the Girsanov Theorem:

Let B_t be standard *n*-dimensional Brownian motion on [0, T] under the probability measure \mathcal{P} with $\{\mathcal{F}_t\}$ its natural filtration and let \mathcal{P}^* be a probability measure equivalent to \mathcal{P} . Then there exists an *n*-dimensional process $\theta \in \mathcal{L}^2$ s.t.

$$\frac{d\mathcal{P}^*}{d\mathcal{P}} = \exp(-\int_0^T \theta_t' \, dB_t - \frac{1}{2} \int_0^T |\theta_t|^2 \, dt) \tag{37}$$

and

$$B_t^* \equiv B_t + \int_0^t \theta_s \, ds \tag{38}$$

is standard n-dimensional Brownian motion on [0,T] under \mathcal{P}^* .

Lemma In the setting described above, define $Z_t \equiv E\left\{\frac{d\mathcal{P}^*}{d\mathcal{P}} | \mathcal{F}_t\right\}$, a strictly positive martingale w.r.t $\{\mathcal{F}_t\}$. If Y is an Itô process and ZY is a \mathcal{P} -local martingale, then Y is \mathcal{P}^* -local martingale.

6. Suppose $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$ and let the σ -field \mathcal{F} be the set of all subsets of Ω . Define the probability measure \mathcal{P} by

$$\mathcal{P}\{\omega_1\} = \mathcal{P}\{\omega_2\} = \mathcal{P}\{\omega_3\} = \mathcal{P}\{\omega_4\} = \mathcal{P}\{\omega_5\} = \frac{1}{5}.$$

Finally, suppose X_1, X_2 are random variables on $(\Omega, \mathcal{F}, \mathcal{P})$ that take on the following values.

state	X_1	X_2
ω_1	1	2
ω_2	1	3
ω_3	2	3
ω_4	3	4
ω_5	3	4
\sim) M/h_{2}	+ ic	+ha

(a) What is the σ -field \mathcal{F}_{X_1} generated by X_1 ? What is the σ -field \mathcal{F}_{X_2} generated by X_2 ? (Formally, \mathcal{F}_X is defined as

$$\mathcal{F}_X = \left\{ X^{-1}(B) \, | B \in \mathcal{B} \right\},\tag{39}$$

where \mathcal{B} is the Borel σ -field on \mathbb{R} . That is, \mathcal{F}_X is the smallest σ -field with respect to which X is measurable.)

- (b) Specify the values of the random variables $E\{X_2|\mathcal{F}_{X_1}\}$ and $E\{X_1|\mathcal{F}_{X_2}\}$ for each ω_i .
- (c) Suppose X_1 and X_2 are the time 1 and 2 values of a stochastic process X with $X_0 = 1$. Let $\{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2\}$ be the filtration generated by X. What is \mathcal{F}_0 ? \mathcal{F}_1 ? \mathcal{F}_2 ? (In the filtration generated by a stochastic process X, each \mathcal{F}_t is the σ -field generated by the complete history of X up to and inclusing time t. That is,

$$\mathcal{F}_t = \sigma \left\{ \mathcal{F}_{X_s} | s \le t \right\} \quad , \tag{40}$$

where the notation σ {}, or " σ -closure," or the " σ -field generated by" is necessary because the union of $\mathcal{F}_{X_1}, ..., \mathcal{F}_{X_t}$ may not by itself represent a valid σ -field.)