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Overview of the Literature

I Much of the theory treats interest rates as constant to focus on the problems of
optimal or strategic behavior of competing corporate claimants.

• Merton (1974) analyzes a risky zero-coupon bond and characterizes the optimal
call policy for a callable coupon bond.

• Brennan and Schwartz (1977) model callable convertible debt.

• Black and Cox (1976) and Geske (1977) value coupon-paying debt when asset
sales are restricted and solve for the equity holders’ optimal default policy.

• Fischer, Heinkel, and Zechner (1989a,b), Leland (1994), Leland and Toft
(1996), Leland (1998), and Goldstein, Leland and Ju (2000) embed the optimal
default and call policy in the problem of optimal capital structure.

• Anderson and Sundaresan (1996), Huang (1997), Mella-Barral and Perraudin
(1997), Acharya, Huang, Subrahmanyam, and Sundaram (1999), and Fan and
Sundaresan (2000) introduce costly liquidations and treat bankruptcy as a
bargaining game.
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I Other models allow for stochastic interest rates and take a di↵erent approach to
the treatment of bankruptcy.

• Some impose exogenous bankruptcy triggers in the form of critical asset values
or payout levels. These include the models of Brennan and Schwartz (1980),
Kim, Ramaswamy, and Sundaresan (1993), Neilsen, Saá-Requejo, and Santa-
Clara (1993), and Longsta↵ and Schwartz (1995), Briys and de Varenne (1997),
and Collin-Dufresne and Goldstein (2001). Cooper and Mello (1991) and Abken
(1993) model defaultable swaps assuming that equity holders can sell assets to
make swap or bond payments. Shimko, et al. (1993) model a zero-coupon
bond.

• Other papers model default risk with a hazard rate or stochastic credit spread.
See, for example, Ramaswamy and Sundaresan (1986), Jarrow, Lando, and
Turnbull (1993), Madan and Unal (1993), Jarrow and Turnbull (1995), Du�e
and Huang (1996), Du�e and Singleton (1999), and Das and Sundaram (1999).

I Acharya and Carpenter (2002) incorporate stochastic interest rates in the model
of optimal default and call.

I More recently, Bhamra, Kuehn, and Strebulaev (2010) combine a corporate finance
model of the firm with a consumption based asset pricing model to explain credit
spreads and default policies in general equilibrium.

6



I Chen (2010) embeds a structural model of the firm into a consumption based
asset pricing model to explain credit spreads.

I Bolton, Chen, and Wang (2011) study how firm investment policies are a↵ected
by the need to hold cash due to costly external financing, finds a wedge between
marginal Q and average Q resulting from the friction of costly external financing.

I Gryglewicz (2011) characterizes the liquidity (cash) policy of a levered firm and
shows how this interacts with default policy (credit risk).

I He and Xiong (2012) analyze how a fall in debt market liquidity a↵ects debt
rollover strategies and then credit risk of firms.

I Demarzo, Fishman, He and Wang (2012) study how firm investment policy is
a↵ected by an agency problem as in Demarzo, Sannikov (2006).

I Bolton, Chen and Wang (2013) aim to explain the underinvestment puzzle by
introducing the friction of costly external financing and seeing how firm leverage
policies are a↵ected by the need to hold cash.

I Diamond and He (2014) show how debt maturity a↵ects the debt overhang
problem in the corporate investment decision.

7

I He and Milbradt (2014) build an explicit search model for OTC trading and show
how secondary market liquidity and credit risk can a↵ect and exacerbate each
other.

I Hugonnier, Malamud, and Morellec (2015) study how a firm’s choice in exercising
a real option is a↵ected by capital market frictions where the firm needs to search
for outside investors. The firm will hold cash as a response and the model is about
the interplay between the cash and investment policies.

I Gomes and Schmid (2016) build a general equilibrium model to understand how
firm default and investment policies are a↵ected by macroeconomic aggregates.

I Mcquade (2016) incorporates stochastic volatility into a standard structural model
of the firm to try and explain the credit spread puzzle.
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Defaultable Zero-Coupon Bonds (Black, Scholes, 1973, Merton 1973, 1974)

I Black and Scholes (1973) and Merton (1973) recognized that corporate equity
could be viewed as a call option on the firm assets, while corporate debt could be
viewed as nondefaultable debt minus a put on firm value.

I Letting V represent the value of firm assets, E equity, D debt, O equity’s default
option, and P nondefaultable debt with the same cash flows as the firm debt, then
E = V � P + O and D = P � O. The default option O is equity’s option to
exchange the firm for the promised debt cash flows. This is typically viewed as a
put on the firm assets, in which light, equity is a call on the firm assets.

I If debt is a zero with face value K maturing at time T , then the payo↵s to equity
and debt are ET = (VT �K)+ and DT = K � (K � VT)+ = K ^ VT .

I If r and firm asset volatility � are constant and firm payout is zero, then the values
of equity and debt are given by the Black-Scholes formula with V replacing S:

E0 = V0N(d1)�e�rTKN(d2) and D0 = V0�E0 = e�rTKN(d2)+V0N(�d1) .

I This approximate structural model of debt is analyzed in Merton (1974) and is
the basis of the KMV model used in practice to estimate default probabilities,
“distance to default” and other measures of credit risk.
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General Structural Model of Corporate Liabilities

In general, structural models of corporate liabilities take firm assets to be a di↵usion

dVt = (rtVt � atVt) dt+ �tVt dB
⇤
t , (1)

where at is the asset payout rate, covering both equity and debt: atVt = �tEt + Ct.
If bankruptcy occurs at time ⌧ , the values of debt and equity can be represented as

Dt = E⇤
t{

Z ⌧

t

�u

�t
Ct dt+

�⌧

�t
V⌧} and Et = Vt �Dt . (2)

I Some models take debt to be a collection of bonds with di↵erent priority on the
residual firm value, with separate valuations for senior and junior debt.

I Others incorporate taxes in the payout rate and model the value of debt tax shields
when coupon expense is tax-deductible.

I Others incorporate bankruptcy costs or liquidation costs as a deadweight loss to
firm value at the time of bankruptcy.

I The issue of whether firm assets can be treated as tradeable for the purpose of
contingent claims pricing may be resolved if both nondefaultable bonds and equity
are tradeable, or one can appeal to general market completeness.
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Defaultable Perpetual Coupon Bonds (Black and Cox, 1976)

I Suppose equity holders control a firm that has issued a perpetuity/consol bond
with continuous coupon c, and the equity holders service the debt with equity
infusions unless they declare bankruptcy and surrender the firm to the debt holders.
Suppose debt covenants prohibit dividend payments and risk shifting. Suppose r

and firm volatility � are constant. Firm value follows

dV = rV dt+ �V dB⇤ . (3)

I The equity value-maximizing default policy will be to default i↵ firm value falls to
a critical level V̄ . Under this policy, the value of the perpetuity is a function of
firm value, f(V ) and in the continuation region, f satisfies the fundamental o.d.e.

1

2
�2V 2fvv + rV fv � rf + c = 0 . (4)

I The solution is of the form f(V ) = c
r
+K1V +K2V �� where � = 2r

�2
.

I The boundary condition f(V ) ! c
r
as V ! 1 implies K1 = 0.
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I The boundary condition f(V ) ! V as V ! V̄ implies K2 = V̄ �+1 � c
r
V̄ �.

I The smooth-pasting condition for optimization over V̄ is fv(V̄ ) = 1, which
implies V̄ = �

�+1
c
r
= c

r+�2/2
, proportional to c and decreasing in r and �2.

I Therefore, the value of the perpetuity is

f(V ) =
c

r
� [

c

r
� V̄ ](V/V̄ )�� =

c

r
� [(

�

� +1
)� � (

�

� +1
)�+1](

c

r
)�+1V ��,

which is the value of the nondefaultable perpetuity minus the value of equity’s
default option. The value of the equity is

e(V ) = V � f(V ) = V �
c

r
+ [

c

r
� V̄ ](V/V̄ )�� . (5)

I Using results on first passage times of Brownian motion, it can be shown that
(V/V̄ )�� = E⇤{e�r⌧̄}, the present value of unit payo↵ to be received at the time
of bankruptcy, ⌧̄ = inf{t : Vt = V̄ }.

I Thus, the default option is seen clearly as equity’s option to exchange the firm for
the nondefaultable perpetuity when firm value reaches V̄ .
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Optimal Capital Structure with Taxes and Bankruptcy Costs (Leland, 1994)

I Now suppose that in bankruptcy, a fraction ↵ of firm value is lost to lawyers.

I If bankruptcy occurs when firm asset value V falls to V̄ , then debt value is

f(V ) =
c

r
� [

c

r
� (1� ↵)V̄ ](V/V̄ )�� , (6)

and the present value of the bankruptcy costs, net firm value, and equity value are

bc(V ) = ↵V̄ (V/V̄ )��, (7)

v(V ) = V � ↵V̄ (V/V̄ )��, and (8)

e(V ) = v(V )� f(V ) = V �
c

r
+ [

c

r
� V̄ ](V/V̄ )�� . (9)

I Ex post, the bankruptcy costs come out of debt holders’ pockets, so the equity-
value maximizing value of default boundary V̄ is the same as before.

I Ex ante, the unlevered equity holders would pay the bankruptcy costs in the form
of lower debt sale price, and without a tax benefit, leverage would be suboptimal.
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I Now interpret V as the after-tax value of the firm assets, and suppose that coupon
expense is fully tax-deductible, delivering a flow tax benefit to the firm of xc,
where x is the corporate tax rate. The present value of the tax benefit is

tb(V ) =
xc

r
[1� (V/V̄ )��] , (10)

and the values of the firm, debt, and equity are

v(V ) = V � bc(V ) + tb(V ) = V � ↵V̄ (V/V̄ )�� +
xc

r
[1� (V/V̄ )��] ,

f(V ) =
c

r
� [

c

r
� (1� ↵)V̄ ](V/V̄ )�� , and

e(V ) = v(V )� f(V ) = V � (1� x)
c

r
+ [(1� x)

c

r
� V̄ ](V/V̄ )�� .

I If coupon expense were always fully tax-deductible, then the ex-ante firm-value-
maximizing policy would be never to go bankrupt, V̄ = 0, which would violate
limited liability of equity–equity value could go negative.

I The ex-post equity-value-maximizing default boundary is V̄ = (1�x)c
r+�2/2

.

I The risky interest rate paid by the debt, R = c/f(V ) and the credit spread,
R� r, are increasing in c and ↵, decreasing in x, and non-monotonic in �2.
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I Debt Capacity Debt value is a hump-shaped function of the coupon c, reaching
a maximum at

cmax(V ) = V (1 + � � (1� ↵)(1� x)�)�1/�/((1� x)�/r(1 + �)) , (11)

at which point debt value is

fmax(V ) =
V �(1 + �)�(1+1/�)[(1 + �)1/�(1 + � � (1� ↵)(1� x)�)�1/�]

r[(1� x)�/r(1 + �)]
(12)

which is the debt capacity of the firm.

I Optimal Capital Structure The value of the coupon that maximizes the firm
value v(V ) is

c⇤(V ) = V (1 + � + ↵(1� x)�/x)�1/�/((1� x)�/r(1 + �)) (13)

I Optimal leverage, f(V )/v(V ) is decreasing in asset riskiness.
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Optimal Call/Default Policies and Hedging with Stochastic Interest Rates
(Acharya and Carpenter, 2002)

I Suppose the interest rate r is a nonnegative Markov Itô process given by

drt = µ(rt, t) dt+ �t(rt, t) dB⇤
t (14)

where µ and � are continuous and satisfy Lipschitz and linear growth conditions.
I Suppose a firm has a single bond outstanding with flow coupon c, maturity T , and

par value one, and interpret all other values as multiples of the bond par value.
The value of the firm assets follow

dVt

Vt
= (rt � �t) dt+ �t dW

⇤
t (15)

where W ⇤ is Brownian motion under P⇤, dhB⇤,W ⇤it = ⇢t, and �t, �t, and ⇢t are
deterministic.

I Consider three cases:

1. the bond is defaultable, but noncallable;

2. the bond is callable at deterministic call price kt, but nondefaultable;

3. the bond is both callable and defaultable.
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I The issuer’s optimal call or default policy is to maximize the value of the option:

⇣t = sup
t⌧T

E⇤
t{
�⌧

�t
(P⌧ � (V⌧ , ⌧))+} (16)

where Pt is the value of the noncallable, nondefaultable host bond with the same
coupon and maturity:

Pt = E⇤
t{c

Z T

t

�u

�t
du+

�T

�t
} , (17)

and (v, t) = v, kt, or kt ^ v, depending on the bond in question.

I Because r is Markov, Pt = pH(r, t) for some function ph s.t. pH(·, t) is strictly
increasing and continuous in r, and thus has a continuous inverse. Therefore,
given Pt = p and Vt = v, the value of issuer’s option is

⇣t = f(p, v, t) (18)

for some continuous function f satisfying f(p, v, t) � (p� (v, t))+. Moreover,
the optimal stopping time is ⌧ = inf{t � 0 : f(Pt, Vt, t) = (Pt � (Vt, t))+}.
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I The value of the bond with one of these embedded options is the value of the
noncallable, nondefaultable host bond minus the value of the embedded option:

pX(p, v, t) = p� fX(p, v, t) , (19)

where X = C for the pure callable bond, X = D for the pure defaultable bond,
and X = CD for the callable defaultable bond.

Theorem 1 The following properties hold for all three embedded options.

1. p1 > p2 ) f(p1, v, t) > f(p2, v, t).

2. v1 < v2 ) f(p, v1, t) � f(p, v2, t).

3. p1 6= p2 ) f(p2,v,t)�f(p1,v,t)
p2�p1

 1 (call delta inequality).

4. v1 6= v2 ) f(p,v2,t)�f(p,v1,t)
v2�v1

� �1 (put delta inequality).

I Proposition 1 The values of the di↵erent embedded options relate as follows:

fc(p, v, t) _ fD(p, v, t)  fCD(p, v, t)  fC(p, v, t) + fD(p, v, t) (20)

I The second inequality implies that the “option-adjusted” credit spread of a callable
is less than the credit spread on the corresponding noncallable.
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I Viewing the bond with the embedded option as a noncallable nondefaultable host
bond minus a call on that bond with strike (Vt, t) explains the empirical finding
that corporate yield spreads on both callables and noncallables narrow as rates
rise–because the embedded call falls out of the money.

I The optimal exercise policy is described by a critical level of the host bond price
b(v, t) above which the issuer calls or defaults.

Theorem 2 (Critical bond price boundary) Let t 2 [0, T ) and v > 0. If there
is any bond price p such that it is optimal to exercise the embedded option at time
t given Pt = p and Vt = v, then there exists a critical bond price b(v, t) > (v, t)
such that it is optimal to exercise the option if and only if p � b(v, t).

I Earlier models with constant interest rates characterize the optimal exercise policy
in terms of critical firm value below which to default and above which to call.
This characterization is also valid here:

Theorem 3 (Critical firm value boundary) Let t 2 [0, T ) and p > 0.

1. For the pure defaultable bond, there exists a critical firm value vD(p, t) < p

such that, at time t, given Pt = p and Vt = v, it is optimal to default if and
only if v  vD(p, t).
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2. For the callable defaultable bond, there exists a critical firm value vCD(p, t),
satisfying vCD(p, t)  kt and vCD(p, t) < p, such that, at time t, given Pt = p

and Vt = v, it is optimal to default if and only if v  vCD(p, t). In addition,
if there exists any firm value v at which it is optimal to call, then there exists
a critical firm value v̄CD(p, t) � kt such that it is optimal to call if and only if
v � v̄CD(p, t).

I The final theorem describes the shape and relation of the boundaries, which turns
out to explain corporate bond duration and hedging, and empirical patterns in
yield spreads.

Theorem 4 For each t 2 [0, T ),

1. v1 < v2 ) bD(v1, t)  bD(v2, t).

2. p1 < p2 ) vD(p1, t)  vD(p2, t).

3. v1 < v2  kt ) bCD(v1, t)  bCD(v2, t).

4. kt < v1 < v2 ) bCD(v1, t) � bCD(v2, t).

5. v  kt ) bCD(v, t) � bD(v, t).

6. v > kt ) bCD(v, t) � bC(v, t).
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Problem

Consider the firm with asset value Vt and debt equal to a perpetuity that pays flow c

in the Black and Cox (1976) framework.

Suppose that the perpetuity is not only defaultable, as in the Black and Cox (1976)
model detailed above, but also callable at a call price K where V̄ < K < c

r
, where V̄

is the optimal default boundary of the noncallable defaultable perpetuity.

Use the ODE approach detailed above to solve for the optimal critical lower and upper
firm values Vd and Vc such that the firm optimally defaults if V  Vd, optimally calls
if V � Vc, and continues servicing the debt of Vd < V < Vc.
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