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Bond Option Models 

Outline 
� From short rates to bond prices 
� The simple Black, Derman, Toy model 
� Calibration to current the term structure 
� Short Rate Dollar Duration 
� Short Rate Duration 

Readings 
� Tuckman and Serrat, Chapters 8-10 
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Building the Bond Option Model 
1.  Start with a model (recipe) for the tree of one-period rates (“short 

rates”) and risk-neutral probabilities.   
 For example, Black-Derman-Toy, Ho and Lee, … 

2.  Build the tree of bond prices from the tree of short rates using the 
risk-neutral pricing equation (RNPE) 
 Bond price = disc. factor x [p x up payoff + (1-p) x down payoff] 

3.  Build the tree of derivative prices from the tree of bond prices by 
pricing by replication. 
 Repl. cost = disc. factor x [p x up payoff + (1-p) x down payoff] 

4.  Calibrate the model parameters (drift, volatility) to make the 
model prices match observed bond prices and option prices. 

Example of a Model of the Evolution of 
Short Rates for Pricing Bond Options: 
Black-Derman-Toy with Constant Volatility 

The short rate 
(the rate on h-year 
bonds): 

Time h Time 2h Time 0 

0.5 

0.5 

0.5 

• Each date the short rate changes by a multiplicative factor: 
 up factor = emh+σ√h,  

 down factor = emh-σ√h 
• The exponential function is always positive, which guarantees that 

interest rates are always positive in this model.  

hhmre σ+1

hhmre σ−1

hhmhmre σ221 ++

hmhmre 21 +

hhmhmre σ221 −+
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Description of the Model 
• The parameter h is the amount of time between dates in the tree, in 

years.  For example, in a semi-annual tree, h = 0.5.  In a monthly 
tree, h = 1/12 = 0.08333.   
• Each value in the tree represents the short rate or interest rate for a 

zero with maturity h.   
• For simplicity, this model sets the risk-neutral probability 

of moving up or down at each date equal to 0.5. 
• The mean-rate-change parameters m1, m2,… are not random, but 

they vary over time.  In practice, they are calibrated to make the 
model bond prices match the observed current term structure. 
• The proportional volatility σ, is constant here – this is typically 

calibrated to an option price.   
• In the full-blown BDT model, σ also varies each period to allow the 

model to fit multiple option prices. 
• In the limit, as h->0, the distribution of the future instantaneous 

short rate is lognormal, i.e., its log is normally distributed. 
 

Model Calibrated to Our Given Term 
Structure and Historical Volatility 
• To calibrate a semi-annual model (h=0.5) to the time 0 term 
structure r0.5=5.54%, r1=5.45%, r1.5=5.47%, and incorporate a 
historical volatility estimate of σ=0.17, it turns out we need 
m1=-0.0797 and m2=0.0422, as we shall see. 
• This gives the following tree of 0.5-year rates: 

Time 0.5 Time 1 Time 0 

0.5 

0.5 

0.5 

r0.5 = 5.54% 

0.5r1
u = 6.004% 

0.5r1
d = 4.721% 

1r1.5
uu = 6.915% 

1r1.5
ud = 5.437% 

1r1.5
dd = 4.275% 

For example, at time 0.5, up, the 6-month 
zero rate is 0.0554e-0.0797x0.5+0.17√0.5 =0.06004 
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Building the Price Tree from the Rate Tree 
• Next, we derive the tree prices of zeroes from the tree of short rates: 
• Zero maturing at time 0.5: Time 0 price 

• Zero maturing at time 1: Time 0.5 possible prices 

• Time 0 price of the zero maturing at time 1 
 d1 = 0.973047 [0.5 x 0.9709 + 0.5x0.9769] = 0.9476 

Time 0.5 Time 1 Time 0 

0.5 

0.5 

0.5 r0.5 = 5.54% 
d0.5 = 0.9730 
d1 = 0.9730 x 0.5 x 
(0.9709+0.9769) 

0.5r1
u = 6.004% 

0.5d1
u = 0.9709 

0.5r1
d = 4.721% 

0.5d1
d = 0.9769 

1r1.5
uu = 6.915% 

1r1.5
ud = 5.437% 

1r1.5
dd = 4.275% 

d0.5 = 1/(1+0.0554/2) = 0.973047 

0.5d1
u = 1/(1+0.06004/2) = 0.9709,  0.5d1

d = 1/(1+0.04721/2) = 0.9769 

Price Tree for the Zero Maturing at Time 1.5 
• Time 1 possible prices: 

• Time 0.5 possible prices: 
 

 
• Time 0 price: 
 d1.5 = 0.973047 [0.5 x 0.9418 + 0.5 x 0.9538] = 0.9222 

1d1.5
uu = 1/(1+0.06915/2) = 0.9666,  1d1.5

ud = 1/(1+0.05437/2) = 0.9735 

1d1.5
dd = 1/(1+0.04275/2) = 0.9791,  

0.5d1.5
u =0.9709 [0.5 x 0.9666 + 0.5 x 0.9735] = 0.9418  

0.5d1.5
d =0.9769 [0.5 x 0.9735 + 0.5 x 0.9791] = 0.9538  

Time 0.5 Time 1 Time 0 

0.5 

0.5 

0.5 
r0.5 = 5.54% 
d1.5 = 0.9222 

0.5r1
u = 6.004% 

0.5d1.5
u = 0.9418  

 

0.5r1
d = 4.721% 

0.5d1.5
d = 0.9538  

1r1.5
uu = 6.915% 

1d1.5
uu = 0.9666 

1r1.5
ud = 5.437% 

1d1.5
ud = 0.9735 

1r1.5
dd = 4.275% 

1d1.5
dd = 0.9791 
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Resulting Zero Price Tree 
• At each node, the prevailing prices of outstanding zeros are 

listed, in ascending order of maturity.  
• For instance, the price of a 1-year zero at time 0.5. state up, 

is 0.5d1.5
u = 0.941787. 

        Time 0                      Time 0.5                Time 1 

0.970857    
0.941787 

0.976941    
0.953790 0.979071 

0.973533 

0.966581 

0.973047
0.947649   
0.922242 

• Then, from the zero price tree, we can build the tree of prices 
of any bond option by using the RNPE working back from the 
last period back to time 0.  Or equivalently, by replication. 
• We can build the tree out as many periods as needed to model 

any given bond option. 

Model as a Tree of Future Possible  
Term Structures 
• We can envision the model as a tree of future possible term 

structures.   
• For example, at each node, the prevailing term structure of 

zero rates is listed, in ascending order of maturity.  
• For instance, the 1-year zero rate at time 0.5, state up, is 

0.5r1.5
u = 6.089%. 

                    Time 0             Time 0.5             Time 1                

5.54%  
5.45%    
5.47%     

6.004%    
6.089% 

4.721%   
4.788% 4.275% 

5.437%    

6.915%     
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1) Build a tree of 0.5-year rates out to time 0.5 using 
h=0.5, 0r0.5=2%, m1=0.01, and σ=0.20. 

Class Problems 

Time 0.5 Time 0 

? 

? 

? 

Class Problems 
2)  What is the price of the 0.5-year zero at each node? 

Time 0.5 Time 0 

0.5 

? 

? 

? 

3) What is the price of the 1-year zero at time 0? 
 
 
4) What is the 1-year zero rate at time 0? 
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Model Calibration 
• Notice that if we increase the parameter m1, then 
• both time 0.5 six-month rates will rise, 
• both time 0.5 six-month zero prices will fall, 
• so the time 0 price of the zero maturing at time 1 will fall, 
• so the time 0 1-year rate will rise. 
• Thus, the time 0 1-year rate in the tree is determined by the 

value of m1. 
• To calibrate the tree, numerically solve for the value of m1 that 

makes the model 1-year rate match the observed 1-year rate. 
• Similarly, the time 0 1.5-year rate in the tree is determined by 

the value of m2, so we calibrate the value of m2 to make the 
model time 0 1.5-year rate match the observed 1.5-year rate. 
• And so on for each successive zero maturing at 2, 2.5, 3, …. 
• Similarly, the volatility parameter σ could be set by solving for 

the value that makes the model price of a given option match 
the observed price (an “implied volatility). 

Limitations of This Model 
• Only one volatility parameter 
• The model may not be able to fit the prices of options with 

different maturities simultaneously. 
• The full-blown Black-Derman-Toy model allows the 

proportional volatility parameter to vary over time to 
match prices of options with different maturities, allowing 
for a term structure of volatilities. 

• Independent interest rate change over time. 
• Some feel that rates should be mean reverting. This would 

mean down moves would be more likely at higher interest 
rates. 
• For example, there is a Black-Karasinski model that 

introduces mean reversion in the interest rate process. 
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Limitations of This Model… 
• Only a One-Factor Model 
• Each period one factor (the short rate) determines the 

prices of all bonds. 
• This means that each period all bond prices move 

together. Their returns are perfectly correlated. There is 
no possibility that some bond yields could rise while 
others fall. 
• To allow for this possibility the model would require 

additional factors, or sources of uncertainly, which would 
expand the dimensions of the state-space. For example, in 
a two-factor model, each period you could move up or 
down and right or left, so there would be four possible 
future states.  

•  Large investment banks and derivatives dealers often have 
their own proprietary models.   

�  Recall: dollar duration ≈ -Δprice/Δrates 
�  For securities like options that don’t have fixed cash flows, 

there may not be an explicit price-rate function to 
differentiate. 

�  But the binomial tree gives prices at the end of the first 
period (time h) in two different interest rate 
environments, which we can use to estimate dollar 
duration with respect to the short rate with the following 
formula: 

Short Rate Dollar Duration 

Time 0.5 
Ku 

0.5r1
u 

Kd       

0.5r1
d

 

Asset 
price 
Short rate 

    

€ 

short rate $dur =  - Ku -  Kd

0.5r1
u -  0.5r1

d
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€ 

- 0.941787 - 0.953790
0.06004 - 0.04721

= 0.9356

    

€ 

- 0.970857 - 0.976941
0.06004 - 0.04721

= 0.4742

Examples 

Time 0                 Time 0.5 

0.973047   
0.947649   
0.922242 

0.5r1
u = 

6.004% 
0.970857 
0.941787 
 
0.5r1d = 4.721%          
0.976941   
0.953790  

    

€ 

- 1-1
0.06004 - 0.04721

= 0

• $1 par of 0.5- year zero: 

•  $1 par of 1- year zero: 

•  $1 par of 1.5- year zero: 

Recall the zero prices in 
our binomial tree below: 

Calculate the SR dollar 
duration for $1 par of 
each of these zeroes: 

�  For ordinary bonds, the short rate dollar duration 
is like ordinary dollar duration after one period of 
time., i.e., 0.5-years later in our example. 

�  In practice, the time steps are much shorter, so the 
effect of the passage of time is small and the short 
rate dollar duration is very close to traditional 
dollar duration. 

�  The point of this risk measure is that it applies not 
only to bonds, but also to bond derivatives. 

�  It is also the right risk measure to use to calibrate a 
hedge. 

�  I.e., a position with zero SR $dur is riskless here. 
 

SR $Duration and Hedging 
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SR $Duration for an Option 
Time 0                 Time 0.5 

0.973047     
0.922242 
C = 0.157 
(N0.5=-22.97, 
N1.5=24.41) 

0.941787 
Cu = 0.015 
 
0.953790 
Cd = 0.308 

• Recall the issuer’s 1-year call 
embedded in the 1.5-year 
bond from last lecture. 

• Class Problems 
1)  Calculate the SR $duration 

for 24.41 par of the 
underlying 1.5-year zero: 

2) Calculate the SR $duration 
of the call: 

• For securities with positive prices, we can define 
short rate duration = short rate $duration/price 
• This is essentially the effective duration of the 

security. 
• Analogous to the traditional duration, this measures 

interest rate risk per dollar invested.   
• It is essentially the same as the traditional duration 

of the security at time h.  
• If the time step h is very small, it is virtually the same 

as the traditional duration. 
• But this measure applies to derivatives as well. 
• Class Problem: What is the SR duration of the call? 

Short Rate Duration 


