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In this paper we analyze the optimal contract for a portfolio manager who can exert effort
to improve the quality of a private signal about future market prices. We assume complete
markets over states distinguished by asset payoffs and place no restrictions on the form of the
contract. We show that trading restrictions are essential because they prevent the manager
from undoing the incentive effects of performance-based fees. We provide conditions under
which simple benchmarking emerges as optimal compensation. Additional incentives to
take risk are necessary when information can be manipulated or else the manager will
understate information to offset the benchmarking. (JEL D82, G11)

The appropriate evaluation and compensation of portfolio managers is an ongo-
ing topic of debate among practitioners and regulators. Although performance
measurement and optimal managerial contracting are two sides of the same
coin, the academic literature has largely considered the two questions sepa-
rately. Typically, performance measurement has been studied in the context of
models with realistic security returns, without consideration of the incentives
created by the measure. Optimal contracting has been studied in informa-
tion models with careful consideration of incentives but simplistic models of
portfolio choice and security returns. This paper derives optimal contracts for
portfolio managers in the tradition of agency theory1 but uses a rich model of
security returns with full spanning of market states.

We suppose that the manager can exert effort to influence the quality of a
private signal about future market prices. The investor’s problem is to find a
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contract for the manager that provides incentives to exert effort and to use the
signal in the investor’s interest while still sharing risk efficiently. We derive
optimal contracts given a mixture assumption under which the joint density
function of the manager’s signal and the market state depends affinely on the
effort of the manager. Mostly we assume that both the investor and the manager
have log utility, but we conduct some sensitivity analysis using power utility. In
a first-best world, the manager’s effort is observable, and the optimal contract
is a proportional sharing rule.

In a second-best world, the manager’s signal is observable but effort is not
observable. To give the appropriate incentive to generate a high-quality signal,
the optimal fee for the manager overexposes him to the optimal portfolio for
the signal. This fee appears as a proportion of the managed portfolio plus a
share of the excess return of the portfolio over a passive benchmark portfolio.
Thus, we provide a framework in which the commonly observed practice of
benchmarking emerges endogenously as part of the optimal contract.

By contrast, other authors have found that benchmarking provides no incen-
tives for effort. For example, Stoughton (1993) examines affine and quadratic
contracts in a two-asset world. He finds that affine contracts provide no in-
centives for effort.2 Admati and Pfleiderer (1997) present a similar result to
Stoughton’s result for affine contracts.

The negative results on benchmarking in the previous literature arise from an
assumption that the contracts do not restrict the portfolio choice of the manager.3

Restrictions on the manager’s portfolio choice are essential for incentive pay
schemes to induce effort. Unrestricted trading may allow a manager to eliminate
completely the incentive effects of the fee. For example, whatever leverage is
created by the benchmarking in the fee could be undone by de-levering the
underlying portfolio.

Our analysis shows that an optimal contract specifies not only the fee sched-
ule for the agent but also a menu of allowable portfolio strategies.4 Actual
investment guidelines include many portfolio restrictions, although not neces-
sarily the ones predicted by the model. Common restrictions on asset allocations

2 Stoughton (1993) finds quadratic contracts provide some incentive but are not optimal due to their poor risk-
sharing properties. The paper also claims that quadratic contracts approach the first-best in the limit as the investor
becomes risk-neutral. Unfortunately, the result is uninterpretable due to an unfortunate choice of utility repre-
sentation used to define convergence. Using a more reasonable sense of convergence measured by difference in
certainty equivalent, the proof does not work. Intuitively, the problem with using small differences in utilities (in-
stead of, say, small differences in certainty equivalent) is that the utility representation UB (WB ) = − exp(−bWB )
used in that paper becomes very flat as risk aversion b falls. For example, UB (WB ) → −1 and U ′

B (WB ) → 0
uniformly on bounded sets as b ↓ 0.

3 Gómez and Sharma (2001) have shown that these nonincentive results disappear when a restriction on short-
selling is imposed. Similarly, Basak, Pavlova, and Shapiro (2003) show that restricting the deviation from a
benchmark can reduce the perverse incentives of an agent facing an ad hoc convex objective (motivated by
performance-linked future business).

4 In Admati and Pfleiderer (1997), Proposition 5 does examine the effect of adding an affine portfolio restriction
to the model. However, this restriction does not look like an optimal menu, nor does it seem similar to portfolio
restrictions observed in practice.
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Portfolio Performance and Agency

include restrictions on the universe of assets and ranges for proportions in the
various assets, while common restrictions for management within an asset class
are limitations on market capitalization or style of stocks, such as growth or
income, credit ratings or durations of bonds, restrictions on use of derivatives,
maximum allocations to a stock or industry, and increasingly restrictions on
portfolio risk measures such as duration, beta, or tracking error.5

In a third-best world, neither the effort nor the signal is observable, and
additional adjustments are necessary to induce the intended portfolio choice.
With the second-best contract in a third-best world a manager could partially
undo the leverage effect of the benchmarking by underreporting the signal and
thus implementing a more conservative underlying portfolio position. There-
fore, relative to the second-best, the third-best contract rewards the manager
for reporting more extreme signals, or, in other words, for trading more aggres-
sively on extreme information. This illustrates the limitations of the second-best
contract. The failure of the second-best contract to discourage overly conser-
vative strategies explains the concerns of practitioners about “closet indexers,”
managers who collect active management fees but adopt passive strategies.

In summary, this paper makes three main contributions. First, it shows that
trading restrictions are an essential part of an optimal contract because they
prevent the manager from undoing the incentive effects of performance-based
fees. Second, the paper delineates conditions under which simple linear bench-
marking emerges endogenously as optimal compensation. Third, we show that
additional incentives to take risk must be provided when information can be
manipulated or else the manager will understate information, because to elicit
effort, the benchmarking overexposes the manager to the optimal portfolio. In
addition, by mapping out optimal contracts across a range of settings, our paper
shows how the optimal compensation function depends on the nature of the
information generation process. In particular, our empirical prediction is that
the complexity and nonlinearity of the compensation function increases with
the opacity of the information generation process.

Conceptually, this paper is very similar to Kihlstrom (1988). However, the
model in that paper has only two market states and two signal states, so it
does not admit nonaffine contracts. With only two signal states, there is also no
way for a manager to deviate slightly from the desired investment policy. The
only choices are to take the correct position or to take the opposite position
from what the signal would suggest and, consequently, when there are only two
signal states, the incentive to be overly conservative does not arise. In addition,
the investor in the model of Kihlstrom (1988) is risk-neutral. This would imply
that no optimal contract exists except that short sales are not allowed. This
leads to a corner solution.

5 Almazan et al. (2001) document the prevalence of portfolio restrictions in contracts observed in the mutual fund
industry.
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This paper’s model is not a model of screening managers by ability as
in Bhattacharya and Pfleiderer (1985), and in fact the manager’s ability is
common knowledge from the outset. Rather, there is moral hazard in informa-
tion production. We are skeptical of the ability of portfolio managers to predict
their own performance, and we think managers who are the most optimistic
about their own performance are naive and may not be good managers (see
Baranchuk and Dybvig [2009] for a development of this idea). In a similar
vein, absence of any information asymmetry at the outset distinguishes this
paper from Garcia (2001), whose managers already know their signals at the
time of contracting.

Zender (1988) shows that the Jensen measure is the optimal affine contract in
a reduced-form model of a mean-variance world. The limitations of that paper
are that the mapping from effort to return properties is a black box and that it is
unclear what underlying model it is a reduced form for, or indeed whether the
optimal contract in the reduced form is also optimal in the underlying model.
Palomino and Prat (2003) have a more complex single-period reduced-form
model with some unusual assumptions; for example, there is assumed to be
an internal maximum of expected return as the risk level varies. Sung (1995)6

and Ou-Yang (2003) analyze continuous-time models, in which both the drift
and diffusion coefficient can be controlled, and affine contracts arise optimally.
As in Zender (1988), the portfolio choice is a reduced form, and it is not clear
whether this is the reduced form for a reasonable underlying model.

Finally, a number of economic models are not models of portfolio manage-
ment but share with our model the feature of having both adverse selection
and moral hazard (see Laffont and Martimort 2002, Sections 7.1 and 7.2). Very
close to our model is the model of delegated expertise of Demski and Sapping-
ton (1987), which shares our structure of moral hazard followed by adverse
selection. In that model, an analyst exerts costly effort to obtain information.
The main differences between that paper and the current paper are that their
principal is risk-neutral and the sharing rule over the output is restricted to
depend only on output and not on the action taken or the signal observed by
the agent. Also, a literature on the “generalized agency problem,” starting with
Myerson (1979), has the reverse timing of adverse selection followed by moral
hazard. Some recent papers in this literature are Faynzilberg and Kumar (1997);
Faynzilberg and Kumar (2000); and Sung (2003).

The paper proceeds as follows. Section 1 describes the optimal contracting
problem. Section 2 presents analytical solutions in the first-best and second-
best cases, and discusses the problems that arise in the third-best case. Section 3
provides numerical examples. Section 4 discusses empirical implications and
Section 5 closes the paper.

6 The portfolio application is mentioned in Sung (1995) and spelled out in more detail in Sung’s thesis
(Sung 1991).
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Portfolio Performance and Agency

1. The Agency Problem

We consider the contracting problem between an investor and a portfolio man-
ager. Our analysis takes the approach of contracting theory and looks for an
optimal contract without pre-supposing that the contract conforms to known
institutions or has any specific form. The optimal contract derived in this way
can be compared with practice or other contracts assumed by other analy-
ses, understanding that an equivalent contract may take a somewhat different
appearance.

There are a number of different technologies that can be used to manage of
information problems. For example, information problems can be managed by
using various forms of information gathering, such as evaluation before-the-
fact and monitoring after-the-fact and, in a multiperiod context, by the impact
of reputation on future business. Our analysis considers only what can be done
using contracting and communication without these other technologies. We
pose this in the typical format of an agency problem (as in Ross 1973), with
allowance for a direct mechanism in the signal reporting stage. Here are the
assumptions of the model.

Market returns. Investments are made in a market that is complete over
states distinguished by security prices. Let ω ∈ ! denote such a state and let
p(ω) be the pricing density for a claim that pays a dollar in state ω. This is
a single-period model in the sense that payoffs will be realized only once,
but we think of market completeness as being due to dynamic trading as in a
Black-Scholes world. Our agents are “small” and we assume that their trades
do not affect market prices.

Information technology. Through the costly effort ε ∈ [0, 1], the manager
has the ability to generate information about the future market state in the form
of a private signal s ∈ S. Given effort ε,

f (s,ω; ε) = ε f I (s,ω) + (1 − ε) f U (s,ω) (1)

is the probability density of s and ω, where the market state is ω and the
signal is s. Here, f I is an “informed” distribution and f U is an “uninformed”
distribution. We assume that s and ω are independent in the uninformed distri-
bution, i.e., f U (s,ω) = f s(s) f ω(ω), the product of the marginal distributions.
These marginal distributions are assumed to be the same as for the informed
distribution. For ω, this must be true or else the manager’s effort choice could
influence the market return. For s, this is a normalization.

One interpretation of the mixture model is that the signal observed by the
manager may be informative or it may be uninformative, and the manager
cannot tell which. However, the manager knows that expending more effort
makes it more likely an informative signal will be generated. Using the mixture
model is without loss of generality if there are only two effort levels, and it
is a simple sufficient condition for the first-order approach to work in many
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agency models,7 including our second-best problem. Perhaps most importantly,
using a mixture model avoids the pathological features of the more common
assumption in finance that the agent chooses the precision of a signal joint
normally distributed with the outcome; with this common assumption, the
unbounded likelihood ratio in the tails makes it too easy to create approximately
first-best incentives using a limiting “forcing solution” of Mirrlees (1974). In
the mixture model, likelihood ratios are bounded and the Mirrlees forcing
solution no longer approaches first-best.

Preferences. Both the investor and the manager have logarithmic von
Neumann-Morgenstern utility of end-of-period consumption, and the man-
ager also bears a utility cost of expending effort. Specifically, the manager’s
(agent’s) utility is log(φ) − c(ε), where φ is the manager’s fee and c(ε) is
the cost of the effort ε (the hidden action). We assume that c(ε) is differen-
tiable and convex with c′(0) = 0. We assume that all the problems we consider
have optimal solutions.8 The investor’s (principal’s) utility is log(V ), where V
is the value of what remains in the portfolio after the fee has been paid. Follow-
ing Grossman and Hart (1983), we use utility levels, rather than consumption
levels, as the choice variables; this choice makes most of the constraints affine.
Our results extend Grossman and Hart (1983) to incorporate a risk-averse
principal: this is an important extension for portfolio problems. We denote by
ui (s,ω) the investor’s equilibrium utility level log(V ) given s and ω, and we
denote by um(s,ω) the manager’s equilibrium utility level for only the wealth
component log(φ) given s and ω.

Initial wealth and reservation utility. The investor’s initial wealth is w0,
and the manager does not have any initial wealth. The agency problem is
formulated as maximizing the investor’s utility subject to giving the manager a
reservation utility level of u0. We interpret the reservation utility level as the best
the manager can do in alternative employment. In an alternative interpretation,
the reservation utility level would be a parameter mapping out the efficient
frontier in a bargaining problem between the investor and the manager. Either
way, the contracting problem is the same.

Optimal contracting. The contracting problem looks at mechanisms that
work in this way. First, there is a contracting phase in which the investor offers
a contract to the manager. The contract specifies a menu of portfolio strategies
and rules for dividing the resulting payoff between investor and manager. In
particular, the contract specifies one portfolio strategy-sharing rule pair for each

7 Rogerson (1985) attributes Holmström (1984) with pointing out the appeal of the mixture model as an alternative
to the more complex convexity condition of Mirrlees (1976). See also Grossman and Hart (1983) and Hart and
Holmström (1987).

8 For the first-best problem with positive initial wealth, we have in essence a portfolio optimization, and an optimal
solution exists under growth bounds on the tail probabilities of the state-price density and the asymptotic marginal
utility, as in Cox and Huang (1991) or Dybvig, Rogers, and Back (1999). For the other problems, existence can
fail in more subtle ways, for example, because compensating the manager enough to induce effort never leaves
enough wealth left over to meet the investor’s minimum utility level. Or, there may be a closure problem in the
second-best like the forcing solution described by Mirrlees (1974) in the first-best problems.
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Portfolio Performance and Agency

possible signal realization. The manager either accepts or refuses the contract;
in our formal analysis, this is handled as a constraint that says the investor must
choose a contract that the manager will be willing to accept. Once the contract
is accepted, the manager chooses effort ε and receives the private signal s. Then
the manager chooses a portfolio-strategy and sharing-rule pair from the menu.
Finally, portfolio returns are realized and the manager and the investor divide
the portfolio value according to the specified sharing rule.

The investor must ensure that when the manager has observed the signal
and is choosing from the menu of strategies, the manager always wants to
choose the strategy that is intended for that signal realization. To formalize this
constraint, we model the manager’s choice of trading strategy as a report of
the signal, and we require that truthful reporting be incentive compatible. Im-
posing truthful reporting is without loss of generality. The revelation principle
ensures that any equilibrium allocation implemented with false reporting can
also be implemented with truthful reporting. The intuition for this is that in
any equilibrium with false reporting, the principal will still know the reporting
function his contract induces and will interpret reports accordingly, and so the
outcome will be the same as if truthful reporting had been induced instead. In
any equilibrium, the principal will structure the menu so that for each signal
realization, the manager chooses the trading strategy and sharing rule intended
for that signal, and the details of how the signal was reported will not matter.
In this sense, the form of the contract is invariant to the reporting function the
principal chooses to induce.9

The merit of structuring the contract as a menu of allowable portfolio strate-
gies and sharing rules is that the search for an optimum considers all feasible
allocations. In particular, this approach imposes no restriction on the form of
the sharing rule. A contract such as this can implement allocations that can be
implemented using the sharing rules traditionally studied in the literature. But
the optimal contract may do even better. The menu structure of the contract has
an economic interpretation as a set of restrictions and guidelines on investment
strategies that the investor permits the manager.

The search for an optimal contract is formalized as the solution of a choice
problem that makes the investor as well off as possible subject to a budget
constraint, the manager’s reservation utility level, and incentive-compatibility
of the choices intended for the manager. We consider three forms of the problem.
The first-best assumes that the manager’s choice of action and portfolio can
be dictated, and as implied by the first theorem of welfare economics it is
equivalent to a competitive allocation. The first-best seems unrealistic but it is
a useful ideal benchmark and may approximate reality if the agency problem

9 Because of the private costly effort, our model does not conform to the traditional derivation of the revelation
principle, in which there is private information but no private costly effort. Nonetheless, the revelation principle
still works because there are no private actions chosen after the signal is reported (the portfolio choice is
reasonably assumed to be public or at least publicly verifiable). Laffont and Martimort (2002), Section 7.2,
discusses how the revelation principle is still valid even with initial costly effort.
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we are concerned about is, for whatever reason, not so important in practice.
The second-best requires the manager to want to choose the effort optimally
but assumes that the use of the information signal in constructing the portfolio
can be dictated. This is consistent with an assumption that there is monitoring
of the process that ensures the information will be used as intended, or with an
assumption that the incentives to misuse the information are handled another
way; for example, through loss of business due to a reputation for being a “closet
indexer” who collects fees as an active manager but actually chooses a portfolio
close to the index. The third-best problem has the most profound difficulties
with incentives and requires the manager to have the incentive to select the
costly effort and also the incentive to reveal truthfully the observed signal.
Whether the third-best is more realistic than the second-best is an empirical
question.

First-best. Choose ui (s,ω), um(s,ω), and ε to maximize investor’s expected
utility,

∫∫
ui (s,ω)(ε f I (ω|s) + (1 − ε) f ω(ω)) f s(s)dωds, (2)

subject to the budget constraint,

(∀s ∈ S)
∫

(exp(ui (s,ω)) + exp(um(s,ω))) p(ω)dω = w0, (3)

and the participation constraint,
∫∫

um(s,ω)(ε f I (ω|s) + (1 − ε) f ω(ω)) f s(s)dωds − c(ε) = u0. (4)

Second-best. Add the constraint for the incentive-compatibility of effort:

ε = arg max
ε′

∫∫
um(s,ω)(ε′ f I (ω|s) + (1 − ε′) f ω(ω)) f s(s)dωds − c(ε′).

(5)

Third-best. Instead of constraint (5), add the constraint for simultaneous
incentive compatibility of effort and truthful signal reporting:

{ε, s} = arg max
{ε′,ρ(s)}

∫∫
um(ρ(s),ω)(ε′ f I (ω|s)

+ (1 − ε′) f ω(ω)) f s(s)dωds − c(ε′). (6)

In the choice problems, the choice variables are the effort level ε and the
utility levels for investor and manager in each contingency (s,ω). The objective
function is expected utility for the investor as computed from the investor’s
utility level in each contingency and the joint distribution of s and ω given the
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Portfolio Performance and Agency

effort level ε. The participation constraint says that the agent has to be treated
well enough to meet the reservation utility level u0 of outside opportunities.

The budget constraint computes the consumption levels for investor and
manager from their utility levels and values them using the pricing rule p(ω).
There is a separate budget constraint for each signal realization. This is because
the contract specifies a different market-dependent portfolio payoff for each
signal, and each of these payoffs must be affordable. In particular, the cost of
each payoff cannot exceed the initial portfolio value w0. The pricing rule p(ω)
is the same for each s because the signal is purely private and because we
are making the “small investor” assumption that the manager does not affect
pricing in security markets.

In the first-best, it is assumed that the effort and the dependence of the
portfolio strategy on the signal can be dictated. In the second-best, there is an
incentive-compatibility condition that says that the manager has an incentive
to choose the intended effort ε. In the third-best, the incentive compatibility
condition says that the manager has incentive to choose the intended effort and
to report the true state s, i.e., to select the intended payoff-pair.

Given a choice of effort, a realization of the signal, and a payoff for
the manager, the investor’s optimal payoff is essentially just the solution to
the standard investment problem. Thus, we can reduce both the number of
choice variables and the number of constraints by use of the following lemma.
The lemma enables us to eliminate the variables ui (s,ω) and use as the ob-
jective the investor’s indirect utility, which equals the optimal value for the
investor given the investor’s budget share, the effort level and the realization of
the signal.

Lemma 1. In the solution to all the three forms of the investor’s problem, the
expected utility conditional on s for the investor is given by

log
(

Bi (s)
f ω(ω) + ε( f I (ω|s) − f ω(ω))

p(ω)

)
, (7)

where

Bi (s) = w0 −
∫

exp(um(s,ω))p(ω)dω (8)

is the investor’s budget share. Therefore, the indirect utility function can be
substituted for the original objective in these problems.

Proof. Note that the choice of investor utilities ui (s,ω) only appears in
the problems in the objective function (2) and in the budget constraint (3).
Therefore, the optimal solution must solve the subproblem of maximizing
Equation (2) subject to Equation (3). The first-order condition of this problem is

[ε f I (ω|s) + (1 − ε) f ω(ω)] f s(s) = λB(s)p(ω) exp(ui (s,ω)), (9)
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where λB(s) is the multiplier of the budget constraint. Integrating the above
with respect to ω, and rearranging, gives

λB(s) = f s(s)
Bi (s)

, (10)

which can be substituted back into the first-order condition to give
Equation (7). !

Equation (7) can be taken to be an application of the usual formula for optimal
consumption given log utility and complete markets (in this case conditional
on s). The gross portfolio return

R P ≡ ε f I (ω|s) + (1 − ε) f ω(ω)
p(ω)

(11)

is optimal for a log investor conditional on observing s.
A related gross portfolio return

RB ≡ f ω(ω)
p(ω)

(12)

is optimal for a log investor who does not observe s. We will refer to this
portfolio as the benchmark portfolio, motivated by the fact that benchmark
portfolios in practice are intended to be sensible passively managed portfolios.

We can also identify the signal return

RI (s) ≡ f I (ω|s)
p(ω)

, (13)

the optimal return for maximum effort, ε = 1. The investor’s optimal return is
then R P = εRI + (1 − ε)RB . Thus, the effect of better information is to tilt the
portfolio more toward the signal return RI , and this holds regardless of which
version of the problem the investor is solving.

Using lemma 1, we can compute the investor’s expected utility as
∫

log
(

w0 −
∫

exp(um(s,ω))p(ω)dω

)
f s(s)ds

+
∫∫

log
(

ε f I (ω|s) + (1 − ε) f ω(ω)
p(ω)

)
(ε f I (s,ω)

+ (1 − ε) f ω(ω) f s(s))dsdω. (14)

Note that the second term, which we will denote by K (ε), depends only on
effort, ε, and not on the manager’s utilities. This means we can ignore this term
when solving the problem of what contract will implement a particular effort
level and take it into consideration only when optimizing the effort levels. Note
also that the first term is concave in the manager’s utilities. We will assume

10
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Portfolio Performance and Agency

K (ε) is finite for all effort levels ε to avoid some technical difficulties that are
far from the main concerns of our paper.

2. Optimal Contracts

We now describe the solutions to each of the three problems stated above.
We begin with the simplest problem, the first-best. Then we demonstrate the
impact of the agency problems by showing how the solution changes as we add
incentive compatibility constraints in the second-best and third-best.

First-best. In a first-best contract, we expect to find that there is optimal risk
sharing between the manager and the investor. This means that the marginal util-
ity of wealth for the manager should be proportional to the investor’s marginal
utility in all states.

The first-order condition for um is

exp(um(s,ω))p(ω)
Bi (s)

= λR( f ω(ω) + ε( f I (ω|s) − f ω(ω))), (15)

where λR is the Lagrange multiplier on the participation constraint. Multiplying
both sides by Bi (s) and integrating both sides with respect to ω, we obtain

Bm(s) = λR Bi (s). (16)

Since the two budget shares must sum to w0, we have

Bi (s) = w0

1 + λR
, (17)

from which we obtain

um(s,ω) = log
(

w0λR

1 + λR

f ω(ω) + ε( f I (ω|s) − f ω(ω))
p(ω)

)
(18)

or, equivalently, the manager’s fee is

φ(s,ω) = w0λR

1 + λR
R P , (19)

since um(s,ω) = log(φ(s,ω)). Comparing this with Equation (7), substituting
the definition of Bi (s) from above, we see that the first-best contract is a sharing
rule that gives the manager a fixed proportion of the payoff of the portfolio
independently of the signal. So, as expected, optimal risk sharing is derived.
It is worth noting that this result does not depend on the mixture distribution
assumption. A proportional sharing rule would still be the first-best contract
even under alternative distributional assumptions.

We have not reported the Lagrange multiplier λR , but it is easy to do so by
substituting the manager’s fee (19) into the reservation utility constraint (4).
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As mentioned above, the first-best contract assumes that moral hazard and
adverse selection are not a problem, and that the effort the manager exerts and
the signal the manager observes (not just what is reported) can be contracted
upon. However, it turns out that even if truthful reporting of the signal cannot be
verified, the manager will still report truthfully. Because we assume log utility,
this result follows from Ross’s (1974, 1979) work on preference similarity. In
other words, a manager who is constrained to take the first-best effort and is
faced with a contract of the form (18) will choose to report the signal honestly,
since the budget share does not depend on the reported signal. Misreporting
will only affect R P . But R P is the gross return on an optimal portfolio for a log
investor. Misreporting the signal can only make the manager worse off because
it is equivalent to the choice of a suboptimal portfolio.

Connecting the contract in a single-period model with the actual multiperiod
economy should not be oversold. However, it is worth observing that this
contract resembles the commonly observed contract paying a fixed proportion
of funds under management. Of course, the implications of this contract may be
a lot different in our single-period model than in a multiperiod world in which
the amount of funds under management can depend on past performance.

Second-best. In a second-best world, effort is not observable and therefore
the contract must be incentive-compatible for effort. Note that in the manager’s
effort optimization problem in condition (5), the objective function is concave
because his utility is affine in effort and his cost of effort is convex. Therefore,
we can adopt the first-order approach of Holmström (1979) and replace the
effort incentive-compatibility condition (5) with the following sufficient first-
order condition for the manager’s maximization:

∫∫
um(s,ω)( f I (ω|s) − f ω(ω)) f s(s)dsdω − c′(ε) = 0. (20)

Proposition 1. The second-best contract gives the manager a payoff that is
proportional to the investor’s payoff plus a bonus that is proportional to the
excess return of the portfolio over the benchmark:

φ(s,ω) = Bm(R P + k(R P − RB)),

where Bm and k are nonnegative constants.

Proof. In the first-order version of the problem, the investor’s first-order
condition for um(s,ω) is

exp(um(s,ω))p(ω)
Bi (s)

= λR( f ω(ω) + ε( f I (ω|s) − f ω(ω)))

+ λε( f I (ω|s) − f ω(ω)), (21)

12
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Portfolio Performance and Agency

where λε is the Lagrange multiplier on the IC-effort constraint. Proceeding as
in the derivation of the first-best case, we find that the budget shares are of the
same form as in the first-best contract so that we obtain

um(s,ω) = log

(
w0λR

(1 + λR)

f ω(ω) + (ε + λε

λR
)( f I (ω|s) − f ω(ω))

p(ω)

)

(22)

or, equivalently, the manager’s fee is

φ(s,ω) = Bm(R P + k(R P − RB)), (23)

where

k = λε

ελR
≥ 0. (24)

!
The difference between this contract and the first-best contract is that the

second-best contract gives the manager a “bonus” that is proportional to the
excess return of the fund over a benchmark in addition to a fraction of end-
of-period assets under management. This suggests using excess returns over
a benchmark as a measure of portfolio performance. This is intriguing since
measuring portfolio performance relative to a benchmark is common practice
in the portfolio management industry.

The mixture-model assumption plays two roles in this analysis. First, as
noted in the literature, it implies that any first-order solution is a solution of the
underlying agency model since the first-order conditions for the manager are
necessary and sufficient. Second, the mixture model assumption implies that
the benchmark in the solution can be chosen to be the uninformed optimum.

Absent the mixture model assumption, the optimal contract will include a
bonus that is proportional to the excess return over a benchmark but, in general,
this benchmark will not be the uninformed optimum and it may depend on the
reported signal. Let f (ω|s; ε) be the conditional distribution of the market state
given the signal. If this distribution is differentiable in effort and the first-order
approach is still valid, then the first-order condition for um(s,ω) is

exp(um(s,ω))p(ω)
Bi (s)

= λR f (ω|s; ε) + λε fε(ω|s; ε), (25)

where the subscript indicates partial derivative. When we multiply both sides
by state prices and integrate with respect to market states, the term involving λε

drops out because f (ω|s; ε) integrates to one for all s and we can interchange the
order of integration and differentiation. Therefore, the budget share is constant
and is of the same form as in the first-best case. The random variable

Z ≡ λε

fε(ω|s; ε)
p(ω)

(26)
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is a zero-cost payoff. Because of complete markets, this random variable is
some excess return. We can interpret this random excess return as the excess
return of the managed portfolio over some other portfolio return defined by

RO = R P − Z . (27)

The manager’s payoff is

φ(s,ω) = Bm[R P + k ′(R P − RO )], (28)

where k ′ = λε/λR . In general, of course, this “benchmark” RO will not be the
uninformed optimum because it will be some function of s, the reported signal
(which is okay since the signal is observed in the second-best, but not consistent
with the usual choice of a benchmark in practice as an uninformed portfolio).

Even if the first-order approach fails and there are non-locally-binding in-
centive compatibility constraints, a similar expression can be derived. In this
general case, the manager still receives a proportion of the portfolio payoff plus
a constant times excess return relative a benchmark; however, the benchmark
loses the simple interpretation as the uninformed log-optimal portfolio.

If we relax the assumption of log utility, we lose the strict linearity of the
contract. An Appendix available from the authors shows that when the investor
and manager have power utility, with the risk aversion coefficients γi and γm ,
respectively, the manager’s second-best payoff is a power function of a linear
combination of the returns R P and RB above, and the budget share depends on
the signal. In particular, the manager’s fee is of the form

φ(s,ω) = Bm(s)
Q(s)

[R P + k(R P − RB)]1/γm , (29)

where the manager’s budget Bm(s) and the function Q(s) are defined by

Q(s) =
∫

[R P + k(R P − RB)]1/γm p(ω) dω, (30)

Q1(s) =
[∫

(R P )1/γi p(ω)dω

]γi

, (31)

Bm(s) =
(

Bi (s)γi λr

Q1(s)

)1/γm

Q(s), (32)

Bi (s) = w0 − Bm(s). (33)

It is clear from Equation (29) that, for γm not equal to unity, the manager’s
optimal fee is no longer linear in R P and RB . To see how well the manager’s
optimal fee is approximated by a linear contract, we simulate values of the
returns R P and RB and the corresponding values of the manager’s optimal fee,
and then calculate the R2s of numerical regressions of the manager’s fee on
these returns. In an Appendix available from the authors, we find that these R2s
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Portfolio Performance and Agency

are quite high over a range of risk aversion levels, indicating that the optimal
contracts are nearly linear.

Third-best. In the third-best, truthful reporting of the signal must also be
incentive compatible. However, in the manager’s optimization problem in con-
dition (6), the maximum across reporting strategies of the double integral is
the maximum of affine functions and is, therefore, convex. The curvature in
the cost function may or may not overcome the curvature in the optimized
double integral. If not, the objective function fails to be concave and the first-
order conditions may fail to characterize the incentive-compatibility constraint.
Moreover, since the utility levels in the double integral are endogenous to the
investor’s choice problem, we do not know how to specify a priori a level
of convexity in the cost function c(·) large enough to ensure the manager’s
objective function is concave.10

However, if the cost function is sufficiently convex, we can apply the first-
order approach and replace the joint effort and reporting incentive compatibility
constraint (6) with the manager’s first-order condition for effort, Equation (20),
together with the following first-order conditions for report choice, evaluated
at ρ(s) = s:

(∀s ∈ S)
∫

∂um(s,ω)
∂s

(ε f I (ω|s) + (1 − ε) f ω(ω)) f s(s)dω = 0. (34)

With this substitution, the investor’s first-order condition for um is

exp(um(s,ω))p(ω)
Bi (s)

= λR( f ω(ω) + ε( f I (ω|s) − f ω(ω))) (35)

+ λε( f I (ω|s) − f ω(ω))

− λ′
s(s)( f ω(ω) + ε( f I (ω|s) − f ω(ω)))

− ελs(s)
∂ f I (ω|s)

∂s
,

where λs(s) is the Lagrange multiplier on the truthful reporting constraint. In
this case, we have

Bi (s) = w0

1 + λR − λ′
s (s)

f s (s)

(36)

and

Bm(s) =
w0

(
λR − λ′

s (s)
f s (s)

)

1 + λR − λ′
s (s)

f s (s)

. (37)

10 In the limiting case of a proportional cost function, the objective is convex in effort, once we have optimized
the over-reporting strategy, and the manager will never choose an interior effort level. In this case, any binding
incentive-compatibility constraint will compare full effort with no effort, and will not be the same as the local
condition.
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Equation (37) indicates that the manager’s share of the budget in the third-
best is no longer constant, as it was in the second-best, but will generally depend
on the signal. This is part of the mechanism for inducing truthful reporting. In
addition, the final term in Equation (35) indicates that even conditional on the
signal, the manager’s fee is no longer a linear combination of the returns R P

and RB , but contains an additional payoff, which can be shown to have zero
net present value. To develop intuition for these results, we examine numerical
examples of these payoffs in the next section.

3. Numerical Results

Now we turn to numerical results that compare the first-best, second-best, and
third-best. We assume conditional joint normality of ω and s, with correlation
ρ > 0 under the “informed” distribution and ρ = 0 under the “uninformed”
distribution. The marginal densities of ω and s are the same under the informed
as under the uninformed. We think of this as a model of market timing, with ω

representing the demeaned log one-year market return in the usual lognormal
model. Let n(·; ·, ·) be the normal density parameterized by mean and variance.
Then f s(s) = n(s; 0, σ2) is the density of s in either case, f ω(ω) = n(ω; 0, σ2)
is both the unconditional density and the conditional density of the market state
ω in the uninformed case, and f I (ω|s) = n(ω; ρs, σ2(1 − ρ2)) is the conditional
density of the market state ω given s in the informed case. Thus, with maximum
effort, i.e., ε = 1, observing the signal is like observing the market for a fraction
ρ2 of the year and seeing that its excess log return is up by ρs.

State prices are consistent with Black-Scholes and can be computed as
the discount factor times the risk-neutral probabilities as p(ω) = e−r n(ω; r −
µ, σ2). In these expressions, r is the risk-free rate, µ is the mean return on
the market, and σ is the standard deviation of the market return. Without loss
of generality, the signal s has mean 0 and the same variance as the log of
the market return. The parameter values used are µ = 0.10, σ = 0.2, ρ = 0.5,
r = 0.05, and w0 = 100.

To facilitate the comparison of the cases, we vary the cost function to make the
same effort level optimal in the first-, second-, and third-best. This removes the
obvious distinction among the contracts that higher equilibrium effort implies
a more informative signal and therefore more aggressive portfolios for both
agents. By fixing effort exogenously, we isolate the differences among the
contracts due solely to the addition of the IC constraints.11 We adjust the

11 Another question of interest is how optimal effort and principal utility vary as we add constraints, holding the
effort cost function constant. To illustrate the cost of these constraints in terms of investor welfare and suboptimal
effort, we fix the effort cost function to c(ε) = (ε + 0.3)10 − 0.310, which ensures interior optimal effort levels,
and examine the three different solutions. In the first-best, the optimal managerial effort level is 0.69 and the
principal’s uninformed equivalent wealth, i.e., the amount of wealth that would make the principal equally happy
if he invested alone and without information, is 104.2. The first-best fixed fee is 2.15%. In the second best, the
optimal effort level falls to 0.5, the principal’s uninformed equivalent wealth falls to 101.5, the fixed component
of the fee is 1.77%, and the benchmark coefficient is k = 1. In the third-best, the optimal effort level falls to 0.35,
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Figure 1
Manager’s utilities: First-best contract

cost of effort function so that u0 − c(ε) = 0.955 and c′(ε) = 0.2 at the chosen
equilibrium effort level, ε = 0.5.

We work with discretized versions of f I (ω|s), f U (ω), and p(ω) with N
market states and M signal states. In order to circumvent the difficulty imposed
by the presence of λ′

s(s) in this first-order condition of the third-best problem,
we work with a discrete version in which the reporting constraint is replaced
by two sets of reporting constraints. The first set imposes the restriction that
reporting the state just higher than the true state is not optimal and the other
does the same for reporting the state just lower than the true state. Together
this makes 2(M − 1) constraints. As the discretization becomes very fine, this
problem approximates the continuous state case.

The manager’s utilities from the first-best problem are plotted in Figure 1.
Not surprisingly, the figure shows that for higher signal states, the optimal
payoff is a longer position in the market.

A visual inspection of the solution to the second- and third-best contracts at
these parameter values is not very instructive. However, we can gain insight
by examining the incremental changes in the contract when we move from
first-best to second-best to third-best. Figure 2 plots the manager’s utilities

the principal’s uninformed equivalent wealth falls to 100.6, and the manager’s budget share, which corresponds
roughly to a fixed fee, is about 1% on average across signal states.

17

 at N
ew

 Y
o
rk

 U
n
iv

ersity
 S

ch
o
o
l o

f L
aw

 o
n
 S

ep
tem

b
er 1

7
, 2

0
1
2

h
ttp

://rfs.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://rfs.oxfordjournals.org/


Signal States

5
10

15
20

25

30

35

40

Marke
t S

tates

5

10

15
20

25
30

35
40

45
50

Figure 2
Manager’s utilities: Second-best minus first-best levels

in the second-best minus the manager’s utilities in the first-best. When signal
and market are both high (or both low), f I (ω|s) > f ω(ω), so the manager is
rewarded in those states. In the other corners of the distribution, the manager has
less utility than in the first-best case. This provides the incentive to exert effort.

Figure 3 plots the manager’s utilities in the third-best minus the manager’s
utilities in the second-best. The difference between these two contracts is that
the third-best provides incentives to report truthfully. From the figure, we can
see that compared to the second-best, the third-best contract provides extra
rewards for reporting more extreme signals.

The intuition for this is straightforward. In order to induce an effort to
generate a quality signal, the second-best contract overexposes the manager to
the signal’s optimal portfolio. A manager who could misreport the signal would
therefore have incentive to report a more conservative signal in order to partially
undo this overexposure. This may be related to plan sponsors’ common concern
that managers might be “closet indexers” who mimic the index but collect fees
more appropriate for active managers. To address this problem, the third-best
contract must provide an additional component of compensation that rewards
the manager for reporting more extreme signals.

Another way to understand the difference between the third- and second-best
contracts is to look at the differences in payoff, which are plotted in Figure 4.
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Figure 3
Manager’s utilities: Third-best minus second-best levels

Notice that, in dollar terms, the difference between the two contracts is very
subtle in low-signal states of the world. When the signal is low the manager’s
pay is also low in the second-best contract and so marginal utility is high. This
means that only a small increase in pay is required to induce the manager to
report the correct state. However, when the signal state is high the manager’s
pay is also high and so a very large bonus is required to induce truthful reporting.
Thus, the way to truthful reporting may be more of a “carrot” approach than a
“stick.” Note, finally, that in the high-signal states, which are associated with
high expected market returns, the incremental payments in the third-best look
like those of a long position, perhaps conditional a call option position, in the
market. Thus, the manager’s extra reward is invested efficiently, given the signal.

Finally, Figure 5 illustrates the difference between third- and second-best
manager’s fees in the case when the investor is less risk averse than the manager.
In particular, the investor’s coefficient of relative risk aversion is 0.75. The
results are quite similar to the case of log utility. In the Appendix available
from the authors, we also examine the case when the investor has higher risk
aversion, and the results are still qualitatively the same. In particular, the effect
of the third-best contract is still to encourage more risk-taking in the form of
reports of more extreme states.
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Manager’s payoff: Third-best minus second-best levels
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Figure 5
Manager’s payoff: Third-best minus second-best levels when investor has RRA = 1.0 and manager has
RRA = 0.75
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4. Interpretation and Implications

By mapping out optimal contracts across a range of contracting settings, we
show how the optimal compensation varies with the transparency of the infor-
mation generation process. At one extreme, when the collection and analysis
of information is verifiable and easy to interpret, a simple proportional sharing
rule is best. This might be the case in settings where there are standardized
protocols for what data to gather and what analysis to perform, and where the
results of the analysis are easily understood.

However, if adequate information generation is hard to verify, though the
results are still straightforward to interpret or difficult to manipulate, then a
simple linear benchmark contract can effectively give a manager incentives to
generate information when used in conjunction with portfolio restrictions that
prevent his undoing those incentives. This situation might arise, for example, if
the misreporting problem is mitigated by strong governance mechanisms, such
as boards of directors who closely monitor and question the manager, or with
reputation effects that make it costly for the manager be a “closet indexer.”

By overexposing the manager to his own strategy, the benchmarking gives
the manager incentive to understate his information. Thus, at the other extreme,
if both effort and information are easy to conceal, and there are no mechanisms
outside the contract that discourage the manager from misreporting the in-
formation, then a third-best compensation component is needed to induce the
manager to act aggressively on extreme information.

Explicit contracts used in practice may look something like these. We see
simple percentage fees for most mutual fund managers, linear benchmarking in
some cases, and option-like contracts in the hedge fund industry. It is tempting
to conclude, and perhaps plausible, that these contracts must coincide with
increasingly complex information generation processes. However, in the real,
multiperiod world, the total compensation function is also affected by the
fund’s performance-flow relation. Our paper predicts that the complexity and
nonlinearity of the total compensation function will increase with the opacity
of the information generation process.

5. Conclusion

We have proposed a new model of optimal contracting in the agency problem
in delegated portfolio management. We have shown that in a first-best world
with log utility, the optimal contract is a proportional sharing rule over the
portfolio payoff. In a second-best world, the optimal contract (if it exists) is a
proportional sharing rule plus a bonus proportional to the excess return over
a benchmark to give incentives to the manager to work hard. In a third-best
world, such excess return strategies will provide incentives to work but will
tend to make the manager overly conservative. These results have been demon-
strated in the context of a realistic return model and the derived performance
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measurement criterion looks more like the simple benchmark comparisons
used by practitioners than more elaborate measures such as the Jensen measure,
Sharpe measure, or various marginal-utility weighted measures. In addition, the
optimal contract includes restrictions on the set of permitted strategies. These
institutional features are more similar to practice than other existing agency
models in finance.

Many interesting extensions are possible. For example, it could be illumi-
nating to add more securities to extend the numerical results from a model of
market timing to a model of security selection. A more challenging extension
is to extend the model to consider quality of trade execution, which will require
some modeling of trading opportunities and probably requires many changes
in the model. This seems especially promising because studying execution
could take advantage of the rich trade-by-trade data available in reports from
custodians.

A different kind of extension would include explicitly the two levels of
portfolio management we see in practice, with the separation of responsibilities
for asset allocation across asset classes and management of sub-portfolios in
each asset class. The ultimate beneficiaries have to create incentives for the
overall manager to hire and compensate the asset class managers, and this
could be modeled as a hierarchy of agency contracts.
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