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Trading Costs and Returns for U.S. Equities:
Estimating Effective Costs from Daily Data

JOEL HASBROUCK∗

ABSTRACT

The effective cost of trading is usually estimated from transaction-level data. This
study proposes a Gibbs estimate that is based on daily closing prices. In a validation
sample, the daily Gibbs estimate achieves a correlation of 0.965 with the transaction-
level estimate. When the Gibbs estimates are incorporated into asset pricing specifi-
cations over a long historical sample (1926 to 2006), the results suggest that effective
cost (as a characteristic) is positively related to stock returns. The relation is strongest
in January, but it appears to be distinct from size effects.

INVESTIGATIONS INTO THE ROLE of liquidity and transaction costs in asset pricing
must generally confront the fact that while many asset pricing tests make use of
U.S. equity returns from 1926 onward, the high-frequency data used to estimate
trading costs are usually not available prior to 1983. Accordingly, most studies
either limit the sample to the post-1983 period of common coverage or use
the longer historical sample with liquidity proxies estimated from daily data.
This paper falls into the latter group. Specifically, I propose a new approach to
estimating the effective cost of trading and the common variation in this cost.
These estimates are then used in conventional asset pricing specifications with
a view to ascertaining the role of trading costs as a characteristic in explaining
expected returns.1

∗Hasbrouck is with the Stern School of Business, New York University. For comments and
suggestions I am grateful to the editor, the referee, Yakov Amihud, L̆ubos̆ Pástor, Bill Schwert,
Jay Shanken, Kumar Venkataraman, Sunil Wahal, and seminar participants at the University of
Rochester, the NBER Microstructure Research Group, the Federal Reserve Bank of New York, Yale
University, the University of Maryland, the University of Utah, Emory University, and Southern
Methodist University. All errors are my own responsibility. Earlier versions of this paper and an
SAS data set containing the long-run Gibbs sampler estimates are available on my web site at
www.stern.nyu.edu/∼jhasbrou.

1 Recent asset pricing analyses based on samples in which high-frequency data are available
include Brennan and Subrahmanyam (1996), Easley, Hvidkjaer, and O’Hara (2002), Sadka (2004),
and Korajczyk and Sadka (2008). Analyses that use proxies based on daily data include Amihud
(2002), Pástor and Stambaugh (2003), Acharya and Pedersen (2005), and Spiegel and Wang (2005).
Closing daily or annual bid-ask quotes are sometimes available over samples longer than those of
the high-frequency data. Studies that use closing spreads include Stoll and Whalley (1983), Amihud
and Mendelson (1986), Eleswarapu and Reinganum (1993), Reinganum (1990), and Chalmers and
Kadlec (1998). Easley and O’Hara (2002) provide a broad survey of the links between asset pricing
and microstructure.
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For a buy order executed in a single trade, the effective cost is the execution
price less the midpoint of the prevailing bid and ask quotes (and vice versa for a
sale). In the simplest setting, the buyer is demanding immediacy by meeting the
ask price set by a dealer or other liquidity supplier, and the effective cost repre-
sents the price of this immediacy. Admittedly, for more complicated strategies,
particularly when the original order is executed over time in multiple trades,
the effective cost does not generally account for the impact of earlier trades
on subsequent prices. On the other hand, this measure is simple to compute
(from detailed trade and quote records), easy to interpret, and widely used as
an indicator of market quality.2 Since 2000 the SEC has required U.S. market
centers to report summary statistics of their effective costs based on the orders
they actually receive and execute (Reg NMS Rule 605, formerly designated Rule
11ac1-5).

To estimate the effective cost from daily closing prices, I review the Roll (1984)
model of price dynamics. Hasbrouck (2004) suggests a Bayesian Gibbs approach
to the Roll model, and applies it to futures transaction data. This study gen-
eralizes the Hasbrouck model and applies it to daily CRSP U.S. equity data.
The CRSP/Gibbs estimates are then compared to estimates based on high-
frequency trade and quote (TAQ) data. This comparison sample spans from
1993 to 2005, and comprises roughly 300 firms per year (approximately 3,900
firm-years). In the comparison sample, the CRSP/Gibbs estimate of average ef-
fective cost achieves a correlation of 0.965 with the TAQ value. Overall, subject
to some qualifications discussed in the body of the paper, these findings suggest
that the CRSP/Gibbs estimates are strong proxies for the high-frequency mea-
sures. I therefore extend the estimates to the full CRSP daily sample (1926 to
present).

Next I turn to applications of these proxies in asset pricing specifications. The
earlier papers in this area view liquidity as a characteristic that drives a wedge
between the returns an investor might realize net of trading costs and the gross
returns used in most asset pricing tests (Amihud and Mendelson (1986)). This
effect predicts a positive relation between gross returns and trading costs. Many
of the studies cited in footnote 1 find such a link, but the evidence is mixed.

I find that, indeed, in diverse samples across listing venues and time, effective
cost and returns are positively related. I also find, however, two problematic as-
pects to this relation. First, it is concentrated in January. This confirms, using
a larger and broader sample, the seasonality results reported by Eleswarapu
and Reinganum (1993). The effective cost seasonality appears to dominate the
January small-firm effect. There is no obvious explanation, however, for this
phenomenon. The second problem is that the coefficients on effective cost are
too large to be consistent with the simplest trading stories. More precisely,
the estimated impact of effective cost on returns can only be viewed as equi-
librium compensation for trading expenses if the marginal agent’s trading
activity is substantially larger than the average measured over the sample
period.

2 Lee (1993) is representative of early work. Stoll (2006) is a recent example.
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Beginning with Pástor and Stambaugh (2003), various studies examine the
effects of dynamic liquidity variation and covariation. Pástor and Stambaugh
find that liquidity risk, that is, the covariance between an asset’s return and the
common liquidity factor, is priced. Liquidity risk is also measured by Acharya
and Pedersen (2005), using the Amihud (2002) illiquidity measure, and by Ko-
rajczyk and Sadka (2008), using high-frequency measures. This study imple-
ments a preliminary analysis of liquidity variation using the Gibbs estimates of
effective cost. The results, however, are less supportive of liquidity risk effects.

The remainder of the paper is organized as follows. Section I describes the
specification and computational procedures used to estimate effective cost. Data
sources and sample construction are discussed in Section II. Section III exam-
ines the performance of the Gibbs estimates (relative to the TAQ values) in the
comparison sample. Section IV discusses the long-run historical estimates of
effective cost and trade directions for U.S. equities. Section V analyzes the link
between returns and effective cost estimates in asset pricing specifications. Sec-
tion VI discusses approaches to characterizing variation in effective costs, and
implements an analysis of daily variation. Section VII concludes the paper.

I. Bayesian Estimation of Effective Cost

A. The Roll Model

Roll (1984) suggests a simple model of security prices in a market with trans-
action costs. The specifications estimated in this paper are variants of the Roll
model, but the basic version is useful for describing the estimation procedure.
The price dynamics may be stated as

mt = mt−1 + ut

pt = mt + cqt ,
(1)

where mt is the log quote midpoint prevailing prior to the tth trade (“efficient
price”), pt is the log trade price, and the qt are direction indicators, which take
the values +1 (for a buy) or −1 (for a sale) with equal probability. The distur-
bance, ut, reflects public information and is assumed to be uncorrelated with
qt. Roll motivates c as one-half the posted bid-ask spread, but since the model
applies to transaction prices, it is natural to view c as the effective cost. The
model has essentially the same form under time aggregation. In particular, al-
though the model is sometimes estimated with transaction data (e.g., Schultz
(2000)), it was originally applied to daily data, with qt being interpreted as the
direction variable for the last trade of the day.

The Roll model implies

�pt = mt + cqt − (mt−1 + cqt−1) = c�qt + ut , (2)

from which it follows that c = √−Cov(�pt , �pt−1), where Cov(�pt, �pt−1) is the
first-order autocovariance of the price changes. The usual estimate of c is the
sample analog of this quantity, and is called the “moment” or “autocovariance”
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estimate because it uses a sample moment (the sample autocovariance) in lieu
of the population value.

The moment estimate is feasible, however, only if the first-order sample au-
tocovariance is negative. In samples of daily frequency this is often not the
case. In annual samples of daily returns, Roll finds positive autocovariances in
roughly half the cases. Harris (1990) discusses this and other aspects of this
estimator. He shows that positive autocovariances are more likely for low val-
ues of the spread. Accordingly, one simple remedy is to assign an a priori value
of zero. Another problem arises when there is no trade on a particular day, in
which case CRSP reports the midpoint of the closing bid and ask. If these days
are retained in the sample, the estimated cost will generally be biased down-
ward, because the midpoint realizations do not include the cost. If these days
are dropped from the sample, heteroskedasticity may arise since the efficient
price innovations may span multiple days.

B. Bayesian Estimation Using the Gibbs Sampler

Hasbrouck (2004) advocates a Bayesian approach. Completing the Bayesian
specification requires specification of the distribution of ut. I assume here that

ut
d∼ i.i.d . N (0, σ 2

u ). The prior distributions for parameters are discussed below.
The data sample is denoted p ≡ {p1, p2, . . . , pT}. The unknowns comprise both

the model parameters {c, σ 2
u } and the latent data, the trade direction indicators

q ≡ {q1, . . . , qT}. (Knowing p and q suffices to determine m ≡ {m1, . . . , mT}.) The
parameter posterior density f (c, σu | p) is not obtained in closed form, but is in-
stead characterized by random draws (from which means and other summary
statistics may be computed). The random draws are generated using a Gibbs
sampler whereby each unknown is drawn in turn from its full conditional (pos-
terior) distribution. First, c and q are initialized to arbitrary feasible values.
Next, c is drawn from f (c | σ 2

u , q, p); σ 2
u is drawn from f (σ 2

u | c, q, p); q1 is drawn
from f (q1 | c, σ 2

u , q2, q3, . . . qT, p), and so on.
The draws are described in more detail below, but one central feature of the

model warrants emphasis. In the expression for �pt given by equation (2), if
the �qt are known (or taken as given), the equation describes a simple linear
regression with coefficient c. The linear regression perspective is a dominant
theme of the present analysis. It simplifies implementation using standard
results from Bayesian statistics, and suggests ways in which the model may be
generalized.

B.1. Simulating the Coefficient(s) in a Linear Regression

The standard Bayesian normal regression model is y = Xb + e where y
is a column vector of n observations of the dependent variable, X is an
n × k matrix of fixed regressors, b is a vector of coefficients, and the resid-
uals are zero-mean multivariate normal e ∼ N(0, �e). Given �e and a nor-
mal prior on b, b ∼ N(µb, �b), the posterior is b ∼ N(µ∗

b, �∗
b), where µ∗

b =
(X ′�−1

e X + �−1
b )−1(X ′�−1

e y + �−1
b µb) and �∗

b = (X ′�−1
e X + �−1

b )−1. Carlin and
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Louis (2000), Lancaster (2004), and Geweke (2005) are contemporary textbook
treatments.

In the present applications it is often necessary to impose inequality restric-
tions on the β. Typically, one or more coefficients is restricted to the positive
domain. It is straightforward to show that when the b prior is restricted to
b < b < b, the posterior has the same parameters as in the unrestricted case, but
is truncated to the same interval as the prior (see, for example, Geweke (2005),
Section 5.3.1). Hajivassiliou, McFadden, and Ruud (1996) discuss computation-
ally efficient procedures for making random draws from truncated multivariate
normal distributions.

B.2. Simulating the Error Covariance Matrix

The primary results in this paper involve the case in which �e = σ 2I. If
the parameter prior is σ 2 ∼ IG(α, β), where IG denotes the inverted gamma
distribution, then the posterior is σ 2 ∼ IG(α∗, β∗), where α∗ = α + n/2 and
β∗ = [β−1 + ∑

e2
i /2]−1.

B.3. Simulating the Trade Direction Indicators

The remaining step in the sampler involves drawing q ≡ {q1, . . . , qT} when c
and σ 2

u are known. The procedure is sequential. The first draw is q1 | q2, . . . qT,
the second draw is q2 | q1, q3, . . . qT, the third draw is q3 | q1, q2, q4, . . . qT, etc.,
where the “|” notation denotes the conditional draw. The full set of conditioning
information includes the price changes �p ≡ {�p2, . . . �pT} and the parameters
c and σ 2

u .
The first realization of ut to enter the observed prices is u2. This may be

written as a function of q1 according to u2(q1) = �p2 − cq2 + cq1 (given q2, etc.).
A priori, u2 ∼ N(0, σ 2

u ) and q1 = ±1 with equal probability. The posterior odds
ratio of a buy versus a sell is

Pr(q1 = +1 | q2, . . .)
Pr(q1 = −1 | q2, . . .)

= f (u2(q1 = +1))
f (u2(q1 = −1))

,

where f is the normal density function with mean zero and variance σ 2
u . The

right-hand side of this is easily computed, and q1 is drawn using the implied
(Bernoulli) probability.

To draw q2, note that, given everything else, we may write u2(q2) = �p2 −
cq2 + cq1 and u3(q2) = �p3 − cq3 + cq2. Given the assumed serial independence
of the ut, the posterior odds ratio is

Pr(q2 = +1 | q1, q3, . . .)
Pr(q2 = −1 | q1, q3, . . .)

= f (u2(q2 = +1)) f (u3(q2 = +1))
f (u2(q2 = −1)) f (u3(q2 = −1))

.

Again, we compute the right-hand side and make the draw. In this fashion,
we progress through the remaining qt. For all draws of qt (except the first and
last) the posterior odds ratio involves only the adjacent disturbances ut and
ut+1. The posterior odds ratio for the last draw is
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Pr(qT = +1 | q1, . . . , qT−1)
Pr(qT = −1 | q1, . . . , qT−1)

= f (uT (qT = +1))
f (uT (qT = −1))

.

In some samples, for a subset of times, the trade directions may be known.
These qt may simply be left at their known values. A related situation arises
from the CRSP convention of reporting quote midpoints on days with no trades.
For these days we fix qt = 0, implying that pt = mt, that is, that the quote mid-
point is observed without error. This may be formally justified by positing a
more general model that admits the possibility of no trade. If the no-trade prob-
ability is denoted π , for example, the general model would allow qt to take on
values 0, +1, and −1 with probabilities π , (1 − π )/2, and (1 − π )/2, respectively.
Assuming, however, that the no-trade days are known, that buys and sells are
equally likely given a trade occurrence, and that we do not wish to estimate
or characterize π , the more general model is observationally equivalent to the
simpler one.

Another sort of observational equivalence is slightly more troublesome. It
is natural to assume that trading costs are (at least on average) nonnegative,
that is, c > 0. This is an economic assumption, however. From a statistical
viewpoint, the model is observationally equivalent to one in which c < 0 and all
trade directions have the opposite signs (“buys” have qt = −1, etc.). Simulated
posteriors for c are therefore bimodal, symmetric about the origin. To rule out
this “mirror” situation, it is convenient and sensible to impose the restriction
c > 0 on the prior.

Bayesian analyses sometimes use improper priors, often with the purpose
of establishing an explicit connection to classical frequentist approaches. For
example, letting �−1

b approach zero in the Bayesian regression model discussed
above leads to posterior estimates that converge to the usual frequentist ones
(e.g., Geweke, p. 81). The present situation does not admit this device, however.
The regressors in equation (2) are the �qt, which are simulated. If the qt drawn
in one iteration (sweep) of the sampler all happen to have the same sign, then
all of the �qt equal zero, and the computed regression is uninformative (for
this sweep). In this case, a draw must be made from the prior distribution.
Although this is an infrequent occurrence, it effectively rules out a prior for c
that is proper but extremely diffuse.

C. The Basic Market-Factor Model and Sampler Specification

The models estimated in this paper generalize on the basic Roll model in
various respects. It is straightforward to add other regressors to equation (2).
The motivation for doing so is that, intuitively, the procedure tries to allocate
transaction price changes between “true” (efficient price) returns and transient
trading costs. Anything that helps explain either component will sharpen the
resolution. Return factors are obvious candidates for supplemental regressors.
The basic market-factor model is
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�pt = c�qt + βmrmt + ut , (3)

where rmt is the market return on day t. It is assumed that the market return is
independent of �qt. This would be the case if the trade direction indicators for
the component securities are mutually independent, implying a diversification
of bid-ask bounce. Note that although the present goal is improved estimation
of c, it is likely that estimation of βm will also be enhanced.

In the present applications (all involving U.S. equity data), the prior for c is
the normal density with mean parameter equal to zero and variance parameter
equal to 0.052 restricted to nonnegative values, denoted N+(µ = 0, σ 2 = 0.052).
The µ and σ 2 appearing here are only formal parameters: The actual mean
and variance of the distribution will differ due to the truncation. The prior for
βm is N(µ = 1, σ 2 = 1); that for σ 2

u is inverted gamma, IG(α = 1 × 10−12, β =
1 × 10−12).

The sampler then follows the following program:

� Step 0 (initialization). Although the limiting behavior of the sampler is in-
variant to starting values, “reasonable” initial guesses may hasten conver-
gence. The trade direction indicators qt that do not correspond to midpoint
reports are set to the sign of the most recent price change, with q1 set (arbi-
trarily) to +1; σ 2

u is initially set to 0.0004 (roughly corresponding to a 30%
annual idiosyncratic volatility). No initial values are required for c and βm,
as they are drawn first.

� Step 1. Based on the most recently simulated values for σ 2
u and the set

of qt, compute the posterior for the regression coefficients (c and βm) and
make a new draw.

� Step 2. Given c, βm, and the set of qt, compute the implied ut, update the
posterior for σ 2

u , and make a new draw.
� Step 3. Given c, βm, and σ 2

u , make draws for q1, q2, . . . , qT. Go to Step 1.

To ease the computational burden, each sampler is run for only 1,000 sweeps.
Although this value is small by the standards of most Markhov chain Monte
Carlo analyses, it appears to be sufficient in the present case, as experimenta-
tion with up to 10,000 sweeps does not materially affect the mean parameter
estimates. Of the 1,000 draws for each parameter, the first 200 are discarded to
“burn in” the sampler, that is, remove the effect of starting values. The average
of the remaining 800 draws (an estimate of the posterior mean) is used as a
point estimate of the parameter in subsequent analysis.

D. An Illustration

The essential properties of the estimator may be illustrated by considering
two simulated price paths. The paths correspond to situations typical of U.S.
equities. Both paths are of length 250 (roughly a year of daily observations).
The standard deviation for the efficient price innovation is σu = 0.02 (that is,
about 2%, corresponding to an annual standard deviation of about 32%). For
simplicity, βm = 0. One simulated series of ut and one simulated series of qt are
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Figure 1. Posteriors for simulated price paths. A quote-midpoint series of length 250 (roughly
a year’s worth of daily data) is simulated using volatility σu = 0.02; 250 realizations are also gen-
erated for the trade direction indicators (qt). Using these values, two price series are simulated:
one using an effective cost of c = 0.01, the other with c = 0.10. For each series, the joint parameter
posterior is estimated using 10,000 draws of a Gibbs sampler. The shaded regions indicate the 90%
confidence regions. In the two panels, the horizontal (σu) axis and the scale of the vertical (c) axis
are identical.

used for both paths. The price paths are identical except for the scaling of the
effective cost: c is either set to 0.01 or 0.10. The prior for c is N+(0, 1), that is,
somewhat more diffuse than the prior used in the actual estimates. For each
path the Gibbs sampler is run for 10,000 sweeps, with the first 2,000 discarded.
The remaining 8,000 draws are used to characterize the posteriors.

Figure 1 illustrates the simulated 90% confidence regions for the parameter
posteriors. Panel A (Panel B) depicts the posterior when c = 0.01 (c = 0.10). To
facilitate comparisons, the horizontal axes (σ u) are identical. The vertical axes
(c) are shifted, but have the same scale.

The results are striking. In Panel A (c = 0.01), the joint confidence region
is large and negatively sloped. In Panel B (c = 0.10), the confidence region is
circular, centered around the population values, and compact.

To develop the intuition for this result, recall that the Gibbs procedure gener-
ates conditional random draws for the trade direction indicators. These draws
characterize the posteriors for the trade direction indicators, and the sharp-
ness of these posteriors corresponds very closely to what one might guess on
the basis of looking at the price paths. When c is large relative to the effi-
cient price increments, the price path appears distinctly “spikey” (with many
reversals), as a consequence of the large bid-ask bounce. It is easy to confi-
dently identify buys and sells, and the parameter posterior is concentrated.
When c is small, however, the reversals are less distinct. It is less certain
whether a given trade is a buy or sell. The allocation of the price change between
the transient (bid-ask) component and the permanent change in the security
value is less clear. This naturally leads to greater uncertainty (less concentra-
tion) and the negative correlation (downward slope) implied by the posterior in
Panel A.
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This illustration has implications for studies of U.S. equities. Although prior
to 2000 the minimum price increment on most U.S. equities was $0.125, it has
since been $0.01, and currently this value might well approximate the posted
half-spread in a large, actively traded issue. For a share hypothetically priced
at $50, the implied c equals 0.0002. No approach using daily trade data is likely
to achieve a precise estimate of such a magnitude. The posted half-spread for
a thinly traded issue might be 25 cents on a $5 stock, implying c equals 0.05.
This is likely to be estimated much more precisely.

E. Small Sample Properties and Other Practical Considerations

As emphasized above, the effective cost parameter c in this model is a regres-
sion coefficient. In the standard Bayesian normal regression framework, the
coefficient posterior distribution is a combination of the prior and the distribu-
tion of the conventional OLS coefficient estimate. Drawing on the usual Gauss–
Markov results, the latter estimate is unbiased. In a large data-dominated sam-
ple, therefore, any bias in the posterior estimate of c should be small. In small
samples, however, the posterior will more closely resemble the prior. This is
important because the prior is often strongly biased, due to the nonnegativity
restriction. The mean of the prior used in the illustration of the last section,
N+(0, 1), is

√
2/π ≈ 0.8, a value much higher than a plausible c for any U.S.

stock. The mean of the prior used in the actual implementations, N+(0, 0.052),
is approximately 0.04. While this might be close to the mean c in a cross-section
of U.S. stocks, the range is likely to be large, with values for some individual
firms far removed from 0.04.

The usual way of characterizing variation in a liquidity parameter is to con-
struct a series of estimates based on short samples. Common practice uses
monthly estimates for an individual firm based on daily data, that is, roughly
20 observations. In the present situation, however, the posterior for a sample
this size will closely resemble the prior. As a result, the monthly estimates for
individual stocks will generally be highly biased. The relatively poor perfor-
mance of monthly Gibbs estimates is noted by Goyenko et al. (2005). This bias
will extend to subsequently derived estimates of other parameters (like sys-
tematic variability). As the bias will tend to be in the same direction for similar
stocks, portfolio formation is unlikely to mitigate the problem.

These considerations do not rule out the use of the present approach to charac-
terize variation in c, however. The problems arise from the practice of construct-
ing a dynamic series by estimating over progressively smaller time windows.
Section VI discusses alternative approaches to capturing variation.

It was noted above that one of the advantages of the Gibbs approach is that
it restricts the effective cost estimate to be positive, thereby avoiding the infea-
sibility problem that arises in applying the moment estimate when the price
change autocovariance is (in sample) positive. This is an important difference,
but it is nevertheless clear from the illustration in the last section that the fea-
ture of the data driving the Gibbs estimate is the prominence and prevalence
of price reversals. Since these reversals will also tend to generate the negative
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Table I
Variable Definitions

Effective cost
measures

cTAQ
it Estimate for firm i in year t based on high-frequency (TAQ)

data. For a given trade, the effective cost is the difference
between the log transaction price and the prevailing log
quote midpoint. cTAQ

it is the average over all trades in the
year, weighted by dollar value of the trade.

cGibbs
it Gibbs estimate for firm i in year t using the market-factor

model applied to daily CRSP prices and dividends.
cMoment

it Modified Roll estimate for firm i in year t, equal to√−Cov(�pt , �pt−1) where �pt is the log price change and
the autocovariance, Cov(�pt , �pt−1) is estimated over all
trading days in the year. cMoment

it is set to zero if the
autocovariance is positive.

Other liquidity
measures

λit Price impact coefficient for firm i in year t based on TAQ data
and estimated from the regression
�pτ = λ(Signed

√
Dollar Volume)τ + ετ estimated annually

using log price changes and aggregated signed dollar
volumes where τ indexes five-minute intervals.

Iit The Amihud (2002) illiquidity measure for firm i in year t,
|daily return|/|daily dollar volume|, averaged over all days
with nonzero volume.

PropZeroit Proportion of trading days in the year that had a zero price
change from the previous day, for firm i in year t.

Variables used in
asset-pricing
specifications

rmt Return on valued-weighted portfolio of NYSE, Amex, and
NASDAQ stocks (Fama–French).

rft Return on 1-month T-bills (Ibbotson Associates) in month t.
Rit Excess return, rit − rmt, on portfolio i in month t.
smbt Fama–French size factor in month t.
hmlt Fama–French book-to-market factor in month t.
βGibbs

m,it Market beta for portfolio i in month t. (Portfolio average of
Gibbs estimates for prior year.)

LRMCit Log relative market capitalization for portfolio i in month t.
Let mjt denote the logarithm of the equity market
capitalization of firm j at the end of preceding year,
LRMCjt = mjt − median(mkt) where the median is
computed over all firms in the sample at the end of the
previous year. LRMCit is the average over all firms in
portfolio i.

autocovariance driving the Roll estimate, there is a similarity in the way the
two estimators exploit the data.

Knowing the feature of the data that is driving the estimates helps us to think
about other economic mechanisms that might be affecting the estimates. Among
other things, price reversals can be generated (at various horizons) by market
makers’ dynamic inventory control (Amihud and Mendelson (1980), Hasbrouck
and Sofianos (1993), Madhavan and Smidt (1993)); by changing risk aversion
(Campbell, Grossman, and Wang (1993)); by changing exposure to the risk of
nonmarketable wealth (e.g., Lo, Mamaysky, and Wang (2004)); etc. Indeed, vir-
tually any mechanism that features stationary variation in preferences, cash
flows, information, or irrational trading can in principle induce price reversals.
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Realistic calibration, however, often suggests that the magnitudes of these ef-
fects, at least at the daily frequency, are likely to be small.

II. Data and Implementation

A. Sample Construction

Most of the Gibbs estimates in the paper are computed in annual samples
of daily data. These data are taken from the 1926 to 2006 CRSP daily data
set, restricted to ordinary common shares (CRSP share code 10 or 11) that
had a valid price for the last trading day of the year, and had no changes of
listing venue or large splits within the last 3 months of the year. For purposes
of assessing the performance of the Gibbs estimates, the analysis uses TAQ
data produced by the NYSE. The asset pricing tests also use the Fama–French
return factors (downloaded from Ken French’s web site).

Although the full CRSP sample is used in the asset pricing tests, the perfor-
mance of the Gibbs estimates is assessed using a smaller comparison sample.
This sample consists of 300 randomly chosen firms per year, 1993 to 2005. Liq-
uidity measures for these firms are estimated from the TAQ data set. These
3,900 CRSP firm-years are matched to TAQ subject to the criteria of: agreement
of ticker symbol; uniqueness of ticker symbol; the correlation (over the year)
between the TAQ and CRSP closing prices is above 0.9; and, on fewer than 2%
of the days does TAQ report trades when CRSP does not (or vice versa). Subject
to these criteria, 3,777 firms are matched between TAQ and CRSP. Table II
reports summary statistics for the comparison sample.

B. TAQ Liquidity Measures

In the comparison sample, the effective cost for firm i on day t is computed as a
trade-weighted average for all trades relative to the prevailing quote midpoint.

Table II
Summary Statistics for the Comparison Sample, 1993 to 2005

The comparison sample consists of approximately 150 NASDAQ firms and 150 NYSE/Amex firms
selected in a capitalization-stratified random draw in each of the years from 1993 to 2005. Values
in the table are based on annual estimates for the 3,777 firms that could be matched between CRSP
and TAQ. Variable definitions are given in Table I.

Variable Mean Median Std. Dev. Skewness Kurtosis

cTAQ
it 0.0106 0.0054 0.0146 4.61 54.7

cGibbs
it 0.0112 0.0061 0.0141 4.97 62.8

cMoment
it 0.0106 0.0056 0.0152 4.35 52.1

PropZeroit 0.1363 0.1071 0.1171 1.02 0.9
λit × 106 28.1500 7.4098 70.6173 7.84 101.2
Iit × 106 3.6592 0.0709 20.0366 16.56 395.8
Market capitalization ($ Million) 2,587.7190 196.9200 14,407.3199 18.55 502.9
Price (end of year, $/share) 20.8442 14.5000 29.4357 11.38 229.8
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Similar results obtain using unweighted averages.3 In principle, the effective
cost measures the cost of an order executed as a single trade. When the order is
executed in multiple trades, the price impact of a trade also contributes to the
execution cost. For each firm in the comparison sample, a representative price
impact coefficient is estimated as the λi coefficient in the regression

�pit = λi(Signed
√

Dollar Volume)it + εit. (4)

The specification is estimated using price changes and signed volume aggre-
gated over 5-minute intervals. A separate estimate is computed for each month.
Reported summary statistics are based on the average of the monthly values.
Variants of specification (4) were also employed, with qualitatively similar re-
sults.

C. CRSP Liquidity Measures

The study considers various alternative daily liquidity proxies. The simplest
is the moment estimate of the effective cost based on the traditional Roll model,
that is,

√−Cov(�pi,t , �pi,t−1). When the autocovariance is positive, the mo-
ment estimate is set to zero. (This occurs for roughly one-third of the firm-years
in the comparison sample.) The statistics reported in the paper use only those
days on which trading occurred, but similar results are obtained when all prices
(including nontrade days) are used.

In addition, the analysis includes the proportion of days with no price changes
relative to the previous close (Lesmond, Ogden, and Trzcinka (1999)) and the
Amihud (2002) illiquidity measure (I = |return|/|Dollar volume|). The study
does not include the Pástor and Stambaugh (2003) gamma measure because
the authors caution against its use as a liquidity measure for individual stocks,
noting the large sampling error in the individual estimates (p. 679).

III. Results in the Comparison Sample

Table II presents summary statistics for the TAQ and CRSP liquidity vari-
ables. Since the effective costs are logarithmic, the means correspond to ef-
fective costs of about 1%. The proportion of zero returns is restricted to the
unit interval by construction. At its median value, the TAQ-based price im-
pact coefficient λ implies that a $10,000 buy order would move the log price
by

√
10,000 × 7 × 10−6 = 0.0007, that is, seven basis points. The median value

for the illiquidity ratio suggests that $10,000 of daily volume would move the
price by 10,000 × 0.07 × 10−6 = 0.0007 as well. The summary statistics of
both the CRSP moment and Gibbs estimates of effective costs are close to the

3 The prevailing quote is assumed to be the most recent quote posted two seconds or more prior
to the trade. This is within the “1 to 2 seconds” rule that Piwowar and Wei (2006) find optimal for
their 1999 sample, but it is likely that reporting conventions have changed over the sample period
used here.
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Figure 2. TAQ and CRSP/Gibbs estimates of effective cost in the comparison sample.
The comparison sample consists of approximately 150 NASDAQ firms and 150 NYSE/Amex firms
selected in a capitalization-stratified random draw in each of the years 1993 to 2005. For each firm
in each year, the effective cost is estimated from TAQ data and from CRSP daily data using the
Gibbs procedure. The figure depicts the cross-sectional distributions for these estimates year-by-
year, with TAQ estimates on the left and Gibbs estimates on the right. The upper and lower ranges
of the box-and-whisker figures demarcate the 5th and 95th percentiles; the upper and lower edges
of the boxes correspond to the 25th and 75th percentiles; the line drawn across the box indicates
the median.

TAQ values. All liquidity measures exhibit extreme values; the coefficients of
skewness and kurtosis are large, particularly for the illiquidity measure.

The discussion now focuses more closely on effective costs. Figure 2 presents
annual box-and-whisker plots of the TAQ and CRSP/Gibbs estimates. There
are several notable features of the TAQ values. First, the distributions do not
appear stationary. Although the 5th percentile (indicated by the lower limit of
the whisker) is relatively stable, the 95th percentile (upper limit of the whisker)
has declined from about 0.05 in 1993 to 0.02 in 2005. The median (marked by
the horizontal line in the box) has declined from roughly 0.01 in 1993 to 0.004
in 2005. This decline may reflect changes in trading technology and regulation,
but it may also arise from changes in the composition of the sample.

The second important feature is that cross-sectional variation is larger than
the aggregate time-series variation. The smallest range between the 5th and
95th percentiles is about 0.01 (in 2005), and for most of the sample the range is
at least 0.02. This dominates the decline in the median over the period, roughly
0.006. This suggests that tests of liquidity effects are likely to be more powerful
if they are based on cross-sectional variation.
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Table III
Correlations between Liquidity Measures for the Comparison Sample
The comparison sample consists of approximately 150 NASDAQ firms and 150 NYSE/Amex firms
selected in a capitalization-stratified random draw in each of the years from 1993 to 2005. Def-
initions of the liquidity measures are given in Table I. Partial correlations are adjusted for log
(end-of-year price) and log (market capitalization).

cTAQ
it cGibbs

it cMoment
it PropZeroit λit Iit

Pearson correlation
cTAQ

it 1.000 0.965 0.878 0.611 0.513 0.612

cGibbs
it 0.965 1.000 0.917 0.579 0.450 0.589

cMoment
it 0.878 0.917 1.000 0.451 0.378 0.504

PropZeroit 0.611 0.579 0.451 1.000 0.311 0.252
λit 0.513 0.450 0.378 0.311 1.000 0.668
Iit 0.612 0.589 0.504 0.252 0.668 1.000

Spearman correlation
cTAQ

it 1.000 0.872 0.636 0.770 0.735 0.937

cGibbs
it 0.872 1.000 0.791 0.620 0.577 0.778

cMoment
it 0.636 0.791 1.000 0.417 0.363 0.592

PropZeroit 0.770 0.620 0.417 1.000 0.510 0.704
λit 0.735 0.577 0.363 0.510 1.000 0.824
Iit 0.937 0.778 0.592 0.704 0.824 1.000

Pearson partial correlation
cTAQ

it 1.000 0.943 0.805 0.366 0.268 0.567

cGibbs
it 0.943 1.000 0.866 0.359 0.189 0.517

cMoment
it 0.805 0.866 1.000 0.193 0.107 0.397

PropZeroit 0.366 0.359 0.193 1.000 0.068 0.103
λit 0.268 0.189 0.107 0.068 1.000 0.610
Iit 0.567 0.517 0.397 0.103 0.610 1.000

Spearman partial correlation
cTAQ

it 1.000 0.678 0.382 0.564 0.024 0.631

cGibbs
it 0.678 1.000 0.682 0.285 −0.123 0.361

cMoment
it 0.382 0.682 1.000 0.101 −0.182 0.288

PropZeroit 0.564 0.285 0.101 1.000 −0.021 0.341
λit 0.024 −0.123 −0.182 −0.021 1.000 0.375
Iit 0.631 0.361 0.288 0.341 0.375 1.000

The general features of the CRSP/Gibbs cost distributions closely match those
derived from TAQ. To more rigorously assess the quality of the CRSP/Gibbs esti-
mates and other liquidity proxies, Table III presents the correlation coefficients.
The standard (Pearson) correlation between the TAQ and CRSP/Gibbs esti-
mate of effective cost is 0.965.4 The Spearman correlation, a more appropriate

4 This and other reported correlations are computed as a single estimate, pooled over years and
firms. The values are very similar, though, to the averages of annual cross-sectional correlations.
Over the 13-year sample, the lowest estimated correlation between the CRSP/Gibbs estimate and
the TAQ value is 0.903 (in 2005, possibly reflecting the narrowing of spreads postdecimalization).
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measure if the proxy is being used to rank liquidity, is 0.872. Because liquid-
ity proxies are often used in specifications with explanatory variables that are
themselves likely to be correlated with liquidity, the table also presents par-
tial correlations that control for the logarithm of end-of-year share price and
the logarithm of market capitalization. Not only are the CRSP/Gibbs estimates
strong proxies in the sense of correlation, but they are also good point estimates
of the TAQ measures. A regression of the latter against the former would ideally
have unit slope and zero intercept. In the comparison sample, the estimated
regression is cTAQ

i = 0.001 + 0.935cCRSP/Gibbs
i + ei. By any of the four types of

correlation considered here, the conventional moment estimate of effective cost
is dominated by the CRSP/Gibbs estimator.

The table also reports correlations for the alternative TAQ and CRSP liquid-
ity measures. The two TAQ-based liquidity measures (effective cost and price
impact coefficient) are moderately positively correlated (0.513, Pearson). This
is qualitatively similar to the findings of Korajczyk and Sadka (2008). Among
the daily proxies, the Amihud illiquidity measure is most strongly correlated
with the TAQ-based price impact coefficient, with the CRSP/Gibbs effective cost
estimate being second.

IV. Historical Estimates, 1926 to 2006

A. Effective Cost

The basic market-factor model is estimated annually for all ordinary common
shares in the CRSP daily database. Figure 3 graphs effective costs, separately
for NYSE/Amex (listed) and NASDAQ, averaged over market capitalization
quartiles.

Effective costs for NYSE/Amex issues (upper graph) exhibit considerable
variation over time. The highest values are found immediately after the 1929
crash and during the Depression. It is likely that this reflects historic lows
for per-share prices coupled with a tick size that remained at one-eighth of a
dollar, which together imply an elevated proportional cost. Subsequent peaks
in effective cost generally also coincide with local minima of per-share prices.
After the Depression, however, average effective costs don’t rise above 1% for
the three highest capitalization quartiles. The largest variation is confined to
the bottom capitalization quartile.

The NASDAQ estimates (lower graph) begin in 1985. As for the listed sample,
the largest variation arises in the lowest capitalization quartile. The temporal
variation, however, may also reflect changes in sample composition. In the early
1990s, NASDAQ delisted firms that were especially young and volatile (Fama
and French (2004), Fink et al. (2006)).

B. Trade Directions

Although the discussion has emphasized the estimates of model parameters,
the Gibbs procedure also generates posteriors for the trade direction indicators
(the qt). These offer insight into the model because they help assess the validity
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Figure 3. Average effective costs 1926 to 2006. Average Gibbs effective cost estimates for
all ordinary common shares in the CRSP daily database. NYSE, Amex, and NASDAQ firms are
analyzed separately; subsamples are quartiles based on end-of-year market capitalization. Fama–
French NYSE breakpoints are used to construct the samples.
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of the assumptions and suggest ways in which the model might be extended.
They also have implications for broader phenomena. The returns usually used
in asset pricing specifications are based on last-trade prices, and therefore re-
flect bid/ask components that are driven by these indicators. Any commonality
or seasonality in these indicators is likely therefore to contribute to commonal-
ity and seasonality in returns.

The analyses are based on the set of q̂it, which denotes the estimated posterior
mean of the trade direction indicator for firm i on day t. There are roughly 22,000
firms and 21,520 days (all trading days, 1926 to 2006), but most firms are traded
only for a portion of the sample. The average of q̂it over all firms and days is, at
−0.008, quite close to zero. Not surprisingly, however, given the large number
of observations, the hypothesis of a zero mean is easily rejected. In principle
the qt in the Roll model have unit variance. The standard deviation of the q̂it,
however, is 0.379 (a variance of 0.143). These lower values arise because the
q̂it are posterior estimates. The prior mean is zero, and the sample is rarely
sufficiently informative to confidently assert that a particular trade is a buy
or a sale. Furthermore, following the CRSP midpoint convention discussed in
Section I.C, some of the trade direction indicators are set to zero.

In the development of the sampler, the qt are assumed to be serially un-
correlated. Over the entire sample, the average first-order autocorrelation,
Corr(q̂it, q̂i,t−1), is −0.32. The violation of the assumption is not as large, though,
as it might first appear. The autocorrelation is computed as the autocovariance
divided by the variance, and as noted above, the variance of the q̂it is much
lower than that of the true underlying measures. The average first-order auto-
covariance Cov(q̂it, q̂i,t−1) is, at −0.042, much closer to zero.

The �qt in the market-factor model (3) are also assumed to be uncorrelated
with rmt. Across all firms, the Corr(�q̂it, rmt) are generally close to zero: The 1st,
50th, and 99th percentiles are (respectively) −0.091, −0.004, and 0.072. How-
ever, the q̂it estimates do not offer any insight into the appropriateness of the
assumption for specifications (2) and (3) that Corr(�qt, ut) = 0. This is because
in each sweep of the sampler, these specifications are estimated via OLS, and
the computed residuals (the ut) are orthogonal to the dependent variables (the
�qt) by construction.

The q̂it estimates may be used to assess cross-firm commonality in trade
directions. Let q̄t denote the cross-firm average of the q̂it on day t, with
t = 1, . . . , 21,520 (all of the trading days, 1926 to 2006). The 10th and 90th

percentiles of the q̄t are −0.047 and 0.029, respectively, suggesting that on any
given day there are modest systematic cross-firm patterns in trade directions.
More formally, I compute for each day the p-value for the null hypothesis that
E[q̄t] = 0, assuming independence of the q̂it across firms. Roughly half of these
p-values are below 0.03. The commonality may also be characterized by ex-
amining the correlations Corr(q̂it, q̄t)estimated for each firm over all days with
observations. The average (across all firms) Corr(q̂it, q̄t) is 0.093. The t-statistic
for the null hypothesis of a zero mean, assuming independence, is 248.

The return specifications discussed later in the paper will be seen to ex-
hibit striking liquidity-related seasonalities. In this connection, it is useful to
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consider seasonalities in the q̂it. The return specifications are estimated using
monthly data, which naturally suggests consideration of the trade direction of
the last price of the month. Figure 4 depicts (by exchange) the averages of these
estimates.

Common to all exchanges is a pattern of end-of-quarter and end-of-year ele-
vations. This implies that end-of-quarter trade prices are more likely to be at
the ask price, a finding consistent with institutional window dressing (Lakon-
ishok, Thaler, and Vishny (1991), Musto (1997), Sias and Starks (1997), Musto
(1999), O’Neal (2001), He, Ng, and Wang (2004), Meier and Schaumburg (2004),
Elton et al. (2006), and Sias (2006)).

V. Stock Returns and Effective Cost

This section presents empirical analyses aimed at determining whether the
level of effective cost is a priced characteristic in long-term U.S. equity data.

A. Specifications and Estimation Methodology

The empirical analysis follows the GMM approach summarized in Cochrane
(2005) (pp. 241–243), modified to allow for characteristics and applied to port-
folios constructed according to various rankings. The specification for expected
returns is

ERt = βλ + Ztδ, (5)

where Rt is a vector of excess returns relative to the risk-free rate for N assets;
λ is a K-vector of factor risk premia; β is a matrix of factor loadings; Zt is
an N × M matrix of characteristics; and δ is an M-vector of coefficients for
the characteristics. The factor loadings are the projection coefficients in the
K-factor return generating process

Rt = a + β ft + ut , (6)

where a is a constant vector; ft is a vector of factor realizations; and ut is a vector
of idiosyncratic zero-mean disturbances. The equilibrium conditions that follow
from the usual economic arguments imply δ = 0 and a = β(λ − Eft). If all factors
are excess returns on traded portfolios (a condition met for all factors used here)
the second condition reduces to a = 0.

The results reported below are representative of a large set of potential spec-
ifications. Two sets of factors are considered. The first set consists solely of the
Fama–French excess market return factor, rmt − rft. The second set adds the
smbt and hmlt factors.

The characteristics are cGibbs (estimated in the prior year), relative size, and
various January seasonal terms. The relative size measure is constructed as
follows. Letting mjt denote the logarithm of the equity market capitalization
of firm j at the end of the preceding year, the log market capitalization rela-
tive to the median is mjt − median(mkt) where the median is computed over
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Figure 4. Trade directions associated with end-of-month prices. In the Roll model the
trade direction variable qt = +1 if the trade is at the ask price, qt = −1 if at the bid, and qt = 0
if the reported price is quote midpoint. The Gibbs estimation procedure produces estimates of qt
for each reported price. The figure depicts the means of the qt across firms and years for the last
reported price (trade or quote midpoint) of the month. Means are indicated by a horizontal line.
Standard errors of the means are computed by first grouping over firms (for a given month and
year). The vertical lines demarcate the mean ± twice the standard error. The sample covers 1926
to 2006 for NYSE firms, 1962 to 2006 for Amex, and 1985 to 2006 for NASDAQ.
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all of the firms in the sample. The log relative market capitalization, LRMCit,
is then computed as the average over all firms in portfolio i. The normaliza-
tion by median firm size captures the cross-sectional variation while removing
the nonstationary long-run components. The seasonal variables are a January
dummy (JanDumt) and January interactions with cGibbs and LRMC. As the
characteristics are not demeaned, Zt also includes a constant term. With these
definitions, specification (5) becomes

Rit = rit − rft = δ0 + λmβm
i + λsmbβ

smb
i + λhmlβ

hml
i + δJanJanDumt

+
[

δccGibbs
it

δc×Jan
(
cGibbs

it × JanDumt
) + δc×∼Jan

(
cGibbs

it × (1 − JanDumt)
)
]

+ δLRMC×Jan(LRMCit × JanDumt)

+ δLRMC×∼Jan(LRMCit × (1 − JanDumt)) + uit. (7)

Within the bracket, the top and bottom expressions are mutually exclusive
(to avoid linear dependence).

The model is estimated using monthly return data and a GMM procedure
that estimates (6) and (7) jointly (Cochrane (2005)). The parameter estimates
reported below are equivalent to those obtained from a two-pass procedure in
which estimates of β are obtained via OLS time-series regression of (6) over the
full sample and then used on the right-hand side in an OLS estimation of (7).
The GMM standard errors of the λ and δ estimates are corrected for estimation
error in the β values (as well as heteroskedasticity).5

B. Portfolio Formation

Portfolios are formed annually based on information available at the start
of the year: market capitalization at the close of the prior year, and the Gibbs
estimates of effective cost and beta formed over the prior year. In the return
specifications, portfolio values are equally weighted averages.6

5 More precisely, the moment conditions used in estimation are

E




Rt − (a + β f t )

f ′
t ⊗ (Rt − (a + β f t ))

β ′(Rt − βλ − Ztδ)

Z ′
t (Rt − βλ − Ztδ)


 = 0.

These suffice to identify estimates of a, β, λ, and δ that equal those from the two-pass OLS procedure.
The first two (vector) conditions are the N(K + 1) normal equations that identify the estimates of
a and β; the second two conditions are the K + M normal equations that identify the estimates of
λ and δ. Cochrane shows that under the assumption of normality, the GMM standard errors are
asymptotically equivalent to those constructed with the Shanken (1992) correction.

6 Due to the inverse relationship between market capitalization and liquidity, averages weighted
by market capitalization (value-weighted averages) tend to suppress variation in effective cost.
Accordingly, in alternative specifications that use value-weighted averages for returns and effective
costs, the effective cost estimates are similar to those in the equally weighted specifications, but
statistically weaker.
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Results are reported for four samples. The first sample is a benchmark anal-
ysis. There are 10 NYSE portfolios ranked by market capitalization, and the
estimation period is 1927 to 1998. It is straightforward to construct and ana-
lyze, and estimates are reported in Cochrane (2005). This helps in gauging the
effects of liquidity measures in a standard specification.

The other three samples are derived from NYSE, Amex, and NASDAQ issues,
and each are analyzed over the longest available span. The portfolio construc-
tion maximizes the variation in beta and effective cost. For the NYSE, for ex-
ample, all stocks in the sample at the end of a year are ranked in five groups by
the beta estimate. Then, within each beta group, stocks are ranked by effective
cost. In the portfolio formation process, both beta and effective cost estimates
are the Gibbs estimates of the basic market-factor model. The NYSE sample
covers 1927 to 2006. The Amex (1963 to 2006) and NASDAQ samples (1985 to
2006) are constructed in a similar fashion.

Table IV presents summary statistics for the factors discussed above and
related series for the four samples. All three Fama–French factors have positive

Table IV
Summary Statistics for Return Factors

Summary statistics for return factors (and the risk-free rate) over each of the four sample periods
considered in the return specifications. Variable definitions are given in Table I.

Correlation with:
First-Order

Mean SD Autocorrelation rf rm − rf smb hml

Panel A: Benchmark Sample (1927 to 1998)

rf 0.0031 0.0026 0.973 1.000 −0.069 −0.057 0.008
rm − rf 0.0069 0.0556 0.111 −0.069 1.000 0.344 0.291
smb 0.0020 0.0321 0.119 −0.057 0.344 1.000 0.206
hml 0.0039 0.0354 0.194 0.008 0.291 0.206 1.000

Panel B: NYSE Sample (1927 to 2006)

rf 0.0031 0.0025 0.973 1.000 −0.069 −0.059 0.012
rm − rf 0.0065 0.0545 0.107 −0.069 1.000 0.329 0.215
smb 0.0025 0.0336 0.073 −0.059 0.329 1.000 0.091
hml 0.0042 0.0360 0.176 0.012 0.215 0.091 1.000

Panel C: Amex Sample (1963 to 2006)

rf 0.0047 0.0022 0.952 1.000 −0.096 −0.073 0.024
rm − rf 0.0049 0.0437 0.053 −0.096 1.000 0.301 −0.409
smb 0.0025 0.0321 0.068 −0.073 0.301 1.000 −0.280
hml 0.0047 0.0289 0.133 0.024 −0.409 −0.280 1.000

Panel D: NASDAQ Sample (1985 to 2006)

rf 0.0039 0.0017 0.949 1.000 −0.001 −0.158 −0.075
rm − rf 0.0070 0.0435 0.043 −0.001 1.000 0.197 −0.497
smb 0.0006 0.0340 −0.033 −0.158 0.197 1.000 −0.433
hml 0.0036 0.0314 0.097 −0.075 −0.497 −0.433 1.000
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average returns in all sample periods. The risk-free rate is the most persistent
series. Table V reports summary statistics for a subset of the portfolios in each
sample. Note that the effective cost in the highest quintile is sharply higher,
relative to the lower quintiles. This is consistent with the positive skewness of
effective costs noted in connection with Table II.

C. Results

Table VI reports estimates of the expected return specifications. Panel A
contains estimates for the benchmark sample. Specification (1) is a one-factor
CAPM specification. The estimated market price of risk is 0.0080 (0.80% per
month) with a heteroskedasticity-consistent t-statistic of 4.11. Cochrane reports
an estimate of 0.71% per month, with a t-statistic of 3.74. The discrepancies are
small, and presumably reflect minor differences in portfolio construction and
a slightly different time period. (Cochrane’s sample begins in 1926, whereas
here the first year is used to estimate the model parameters.) Specification (6)
also includes smb (size) and hml (book-to-market) factors. The prices of market
and book-to-market factor risk are positive and significant, but that of the size
factor is close to zero.

Specifications (3) and (8) add as characteristics cGibbs
it and a constant. In both

cases, the cGibbs
it coefficient is positive (but only marginally significant). This

is consistent with the usual view that securities are priced so that their gross
returns include compensation for trading costs. The point estimates, however,
indicate that this notion should not be embraced unreservedly. The cGibbs

it coef-
ficients in both specifications are slightly above one. This magnitude can only
be justified by assuming an unrealistically high turnover. To see this, note that
following Amihud and Mendelson (1986), a representative trader making a
round-trip over 2 months would pay the effective cost twice (once on the pur-
chase and once on the sale). This suggests that the expected 2-month gross
return should impound 2cGibbs

it , or equivalently, that the coefficient on cGibbs
it de-

termining the expected 1-month gross return should be one. A holding period
of 2 months is equivalent to a turnover of six times per year. While there is cer-
tainly considerable variation over time, firms, and investors, average annual
NYSE turnover rates are currently around one, and are well under one for most
of the 20th century. (The historical data section of the NYSE web site reports
2005 turnover as 103%; 1960 turnover was 12%.) Thus, the point estimates of
the coefficient are difficult to reconcile with the most straightforward trading
stories.

Specifications (4) and (9) introduce a January dummy and also split the effec-
tive cost variable into January and non-January components. The coefficients
on January effective cost are positive and significant, while those on the non-
January components become marginally significant. The January seasonal is
generally thought to be associated with firm size. In specifications that employ
the relative size measure in lieu of effective cost, the coefficient on the January
relative size measure is strongly negative, implying that smaller firms have el-
evated January returns. These results confirm the findings of numerous other
researchers, and are not shown (for the sake of brevity).
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Table V
Summary Statistics for Portfolios

For the NYSE, Amex, and NASDAQ, portfolios are formed by the criteria indicated below. For a
representative set of the portfolios, the table reports averages (over time) of the equally weighted
portfolio averages. Variable definitions are given in Table I.

Panel A: Benchmark Sample, 1927 to 1998. Ten NYSE Portfolios Sorted by Market Capitalization

Capitalization Rank Rit βGibbs
it cGibbs

it LRMCit Number of Firms

1 0.017 0.872 0.023 −2.529 104
5 0.009 0.995 0.007 −0.204 107
10 0.007 1.014 0.003 2.944 109

Panel B: NYSE Sample, 1927 to 2006. Twenty-Five Portfolios Formed by Ranking First on βGibbs
m ,

and Then on cGibbs

βGibbs
m Rank cGibbs Rank Rit βGibbs

it cGibbs
it LRMCit Number of Firms

1 1 0.007 0.348 0.002 0.899 44
1 3 0.008 0.330 0.006 −0.077 45
1 5 0.016 0.290 0.022 −1.822 43
3 1 0.008 0.908 0.002 1.656 45
3 3 0.010 0.909 0.005 0.253 45
3 5 0.014 0.908 0.019 −1.496 43
5 1 0.007 1.659 0.003 1.540 44
5 3 0.009 1.747 0.006 0.233 45
5 5 0.014 1.741 0.015 −1.063 43

Panel C: Amex Sample, 1963 to 2006. Twenty-Five Portfolios Formed by Ranking First on βGibbs
m ,

and Then on cGibbs

βGibbs
m Rank cGibbs Rank Rit βGibbs

it cGibbs
it LRMCit Number of Firms

1 1 0.008 0.134 0.003 0.823 27
1 3 0.009 0.111 0.010 −0.270 27
1 5 0.026 0.045 0.038 −1.327 26
3 1 0.009 0.640 0.003 1.208 27
3 3 0.009 0.640 0.011 0.009 28
3 5 0.018 0.644 0.035 −1.083 27
5 1 0.002 1.509 0.004 1.790 27
5 3 0.003 1.493 0.010 0.640 27
5 5 0.020 1.403 0.033 −0.710 26

Panel D: NASDAQ Sample, 1985 to 2006. Twenty-Five Portfolios Formed by Ranking First
on βGibbs

m , and Then on cGibbs

βGibbs
m Rank cGibbs Rank Rit βGibbs

it cGibbs
it LRMCit Number of Firms

1 1 0.009 0.092 0.008 0.462 118
1 3 0.009 0.042 0.020 −0.688 121
1 5 0.020 −0.018 0.050 −1.889 115
3 1 0.008 0.635 0.004 1.774 120
3 3 0.009 0.630 0.014 0.092 121
3 5 0.021 0.625 0.044 −1.686 115
5 1 0.006 1.619 0.004 2.294 121
5 3 0.003 1.633 0.009 1.151 122
5 5 0.008 1.499 0.029 −0.504 117
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Specifications (5) and (10) include a January dummy and January/non-
January components of both effective cost and relative size. In these specifi-
cations, the size coefficients are insignificant. The effective cost coefficients
remain substantially unchanged. These findings suggest that effects usually
ascribed to size are more precisely attributed to trading costs. The coefficient
magnitudes, however, are still troubling. The January effective cost coefficients
are in the vicinity of four, implying that equilibrium gross returns reflect a
turnover for the marginal investor of twice per month.

One potential explanation for the direction of the January return/liquidity
seasonality might be that December closing prices are more likely to be at bid
prices and January closing prices are more concentrated at asks, perhaps due
to tax-related trading. The analysis of end-of-month trade directions in Section
IV (and Figure 4), however, suggests otherwise, that is, that December closing
prices have a slight (but statistically significant) tendency to be at the ask,
while January’s closing prices have little evident direction.

It might also be conjectured that the January seasonality is a spurious
methodological artifact arising in some fashion from the calendar-year esti-
mation of the effective cost and the end-of-year portfolio formation. To address
this concern, I repeated all analyses with Gibbs estimations based on sam-
ples ending in June and portfolios formed at the end of June. The results are
essentially unchanged.

The results for the full NYSE, Amex, and NASDAQ samples are reported in
Panels B, C, and D of Table VI. The coefficients corresponding to the market
prices of factor risk (λm, λsmb, and, λhml) vary considerably across the samples
and specifications. When relative size is used without effective cost, the re-
sults (not shown) uniformly confirm the strong January small-firm effect. In
the specifications that include effective cost, however, the coefficient patterns
are very similar to those found in the benchmark sample. In all samples, ef-
fective cost is positively (and generally significantly) associated with returns.
The effect is concentrated in January, but (except for the NASDAQ sample) is
also present in other months. The role of effective cost persists in the presence
of (and often essentially displaces the explanatory power of) the January size
variable. The point estimates of the cGibbs

it coefficients, however, generally imply
unreasonably high equilibrium levels of turnover.

The estimates presented here use the standard CRSP monthly returns, which
are usually computed from transaction prices. However, Blume and Stambaugh
(1983) show that a half-spread of c causes the expected transaction-based return
to overstate the true expected return by c2. As c is usually unknown, many
authors minimize the problem by eliminating securities (such as low-priced
stocks) for which the problem is likely to be most severe. Here, with the present
availability of c estimates it is possible to make the bias adjustment directly.
The cost-adjusted excess return is defined as Rit = rit − r f t − (cGibbs

it )2, where
cGibbs

it is the portfolio average Gibbs estimate of effective cost in the preceding
year. When these are used in the return regressions, estimates of the cGibbs

it
coefficients (and their t-statistics) are generally slightly lower, but the overall
results are not materially affected.
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VI. Variation in Effective Cost

The estimation of a liquidity measure is rarely an end in itself. One usually
seeks to explain liquidity variation in the cross-section (across firms) or over
time, or to relate this variation to other quantities of economic interest. This
section discusses several approaches to extending the basic model to accommo-
date liquidity covariation and risk.

To assess variation in any liquidity estimate, the simplest strategy is to par-
tition the sample across firms and/or time periods, form estimates over the
subsamples, and use the subsample values in subsequent analysis. As noted in
Section I.E, however, small samples will give large weight to the prior, and in
many situations the prior for effective cost is unacceptably biased. Remedies
here generally follow two paths: Make the prior more informative and/or incor-
porate the variation directly into the model. I discuss both of these approaches
below, taking as a representative situation the construction of monthly esti-
mates of effective cost for U.S. equities, based on daily data.

A. Informative Priors

In estimating over successive periods, last period’s posterior may be very in-
formative about current values and so may serve as a basis for the current
prior. For example, one might use the mean and standard deviation of the sim-
ulated January effective cost posterior to calibrate the µ and σ parameters of
the half-normal density N+(µ, σ 2) used as the prior for February. Unspecified
slow-moving variation in effective cost could be accommodated by inflating the
σ parameter of the most recent posterior. It may also be useful to include recent
cross-sectional data in the prior. There are many variables known to partially
explain cross-sectional variation in effective cost (e.g., market capitalization,
price level, volatility, and trading venue or mechanism). In a regression of poste-
rior mean effective cost estimates against a set of these variables, the predicted
values may also be useful in calibrating priors for subsequent samples.

B. Incorporating Variation Directly into the Model

Liquidity proxies are often used in two-step analyses, where the second step
(the characterization of liquidity variation) is of primary interest. Typically, for
example, monthly liquidity estimates are subsequently used as regressands in
specifications that allow for liquidity covariation (e.g., Pástor and Stambaugh
(2003) or Acharya and Pedersen (2005)).

It is often feasible to incorporate the second-stage analysis directly into the
price change specification and estimate the entire model in one step. This gen-
eral technique is widely used in other financial econometrics contexts. In as-
set pricing applications, for example, time variation in betas and risk premia
is commonly modeled by placing parametric functions, typically linear projec-
tions on conditioning variables, directly in the return specifications. (Pástor
and Stambaugh (2003) use this approach for predicted liquidity betas; also see
Jagannathan, Skoulakis, and Wang (2006) and references therein.)
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In the present situation, this approach is simplified by the linear regres-
sion interpretation placed on equation (3). By using linear projections to model
cost variation, estimation can proceed by repeated applications of the Bayesian
regression model. The price change specification (3) is generalized to

�pit = citqit − ci,t−1qi,t−1 + βimrmt + uit for

i = 1, . . . , N firms and t = 2, . . . , T . (8)

Here, cit denotes the cost for firm i at time t. It is convenient to assume
that the qit and uit are independent across firms. Thus, all commonality in
efficient price movements is driven by the market factor. To modify the Gibbs
sampler developed for the basic market-factor model, note that at the point
where we need to simulate the qit, the values of cit are fixed (taken as given).
Thus, these draws may be accomplished with a straightforward modification of
the procedure described in Section I.B: It suffices to replace all terms involving
cqt with citqit.

The effective cost can be modeled as cit = Zitγi, where Zit is a set of known
conditioning variables and γ i is a firm-specific coefficient vector. With this func-
tional form, the price change may be written as

�pit = (qit Zit − qi,t−1 Zi,t−1)γi + βimrmt + uit. (9)

Thus, given all other variables and parameters, γ i and β i are regression
coefficients, and their conditional draws may be obtained using the results from
the Bayesian normal regression model. Since the uit are assumed independent
across firms, the computation may be performed separately for each firm.

C. Latent Factors

With sufficient additional structure, it is not even essential that the con-
ditioning variables be observable. Bayesian Gibbs sampling approaches have
been applied to multivariate models involving latent factors. (Geweke and Zhou
(1996) present a treatment of the APT, for example.) Common variation in ef-
fective cost can be modeled as

cit = γ0i + γi1zt , (10)

where zt is an unobserved factor common to the effective costs of all firms.
When this is used in (8), the expression can be reworked so that (taking the
qit and γ s as given), the zt appear as regression coefficients. (To remove the
scale indeterminacy in the product γ i1zt and force nonnegativity on cit, it is
convenient to use independent half-unit normal distributions as priors for
the zt.)

I estimate this latent common factor model for all firms in the comparison
sample. The estimated zt (based on daily data) are moderately correlated with
average effective costs estimated from TAQ data. (The correlation is 0.447 at
a daily frequency and 0.670 at a monthly frequency.) The quality of daily γ
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estimates is assessed by comparing them to the coefficients obtained in a one-
factor analysis of TAQ estimates sampled daily. The results here are weaker.
The cross-sectional (across firms) correlation between the daily-based common
factor loading coefficients (the γ 1i in (10)) and the coefficients derived from
TAQ is only 0.328. There is only modest improvement when the coefficients
were grouped (averaged) over portfolios.

In the full 1926 to 2006 sample, when the innovations in zt are added as
explanatory variables in the return specifications (akin to (5)), the coefficients
are generally insignificantly different from zero and the increase in overall
explanatory power is trivial. In cross-sectional specifications, the market price
of zt risk is insignificant and of varying sign. These equivocal findings regarding
the importance of effective cost variation and risk contrast with the stronger
conclusions of Pástor and Stambaugh (2003), Acharya and Pedersen (2005),
and Korajczyk and Sadka (2008) using different liquidity measures. Complete
details are available in an earlier working paper version of this paper.

VII. Conclusion

This paper develops a practical approach to estimating effective costs of trad-
ing using only daily data. The estimates are Bayesian and constructed using a
Gibbs procedure. In a sample of firms and periods for which TAQ data are also
available, the Gibbs estimates of effective cost are strongly correlated with the
TAQ estimates.

The availability of estimates based on daily data makes possible analysis of
the relation between trading costs and returns over a sample that is longer
and more diverse than that considered in analyses that rely on high-frequency
cost estimates. The analyses in this paper cover CRSP data going back to 1926.
For various samples covering listed and unlisted firms over diverse time pe-
riods, the level of effective cost is found to be positively related to expected
returns. However, this relation is concentrated in January. The seasonality of
liquidity effects is noted in Eleswarapu and Reinganum (1993). The present
analysis confirms the presence of this phenomenon in a longer and broader
sample.

The January seasonality in the effective cost impact remains statistically
and economically significant even in the presence of other seasonal and size-
related variables. The inclusion of a simple January dummy variable raises the
January returns on all stocks by the same amount. The inclusion of a January
dummy interacted with a relative size measure can account for the January
small-firm effect. Yet even when both types of variables are included in return
specifications, the January effective cost impact remains strong, and the ex-
planatory power of the January relative size measure usually vanishes. Taken
at face value, these findings suggest that the January small-firm effect is more
properly considered to be a January trading cost effect.

The magnitude of the effective cost impact, however, is too large to be consis-
tent with straightforward trading explanations. Point estimates suggest that
the gross expected monthly return impounds triple or quadruple the effective
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cost. This is sensible only if the marginal agent’s trading activity is much higher
than implied by measured average turnover.

The approach developed in this paper can be extended to characterize varia-
tion in effective costs driven by cross-sectional and dynamic determinants. As
such it is a useful tool for assessing the effects of trading costs in many situa-
tions where daily price data are available, but high-frequency data are not.
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