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Abstract 

We analyze fixed income executions in an electronic auction venue and in the over-the-counter 
dealer search market to toward understand the value of an electronic auction process, endoge-
nous venue selection, and the determinants of bond trading costs.  Analysis of an extensive sam-
ple of corporate bond execution data from January 2010 through April 2011 provides evidence 
that:  (1) Traders select between dealer and auction markets based on a tradeoff between leakage 
about trading intentions and search costs; (2) Costs of trading are significant relative to a last 
trade benchmark.  (3) Costs are directly related to measures of dealer competition and decline 
with size; (4)  Dealer competition can be predicted as a function of bond attributes, trade size, 
past activity, and seasonalities; and (5) Competition is a strong determinant of trading cost and 
can explain our results in terms of trade size.   The results demonstrate the value of intelligent 
sourcing of liquidity and suggest that electronic auctions will play an increasingly important role 
in the future evolution of over-the-counter markets. 
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1. Introduction 

Trading in over-the-counter (OTC) markets typically involves a bilateral transaction with 

a dealer over the phone with limited pre- or post-trade transparency.  Price negotiation with a 

single dealer enables a trader to control information leakage regarding their positions and inten-

tions, but concedes some temporary bargaining power to the dealer.  The advent of new trading 

technologies, however, allows even relatively illiquid assets to be traded in an electronic auction 

mechanism where a trader can simultaneously contact multiple potential counterparties.  As elec-

tronic trading volumes increase across all asset classes, a market structure transition sometimes 

referred to as "voice to electronic," many questions remain open.  How do new, auction-type 

mechanisms coexist with existing OTC markets, and are there natural limits to their growth?  Are 

they preferred for certain kinds of transactions?  What is the impact of the competition between 

voice and electronic trading on liquidity and trading costs?  This paper examines these questions 

using unique data for all 1.8 million transactions in US investment grade corporate bonds from 

January 2010-April 2011.   

Fixed income markets are a natural candidate for an analysis of the potential and limits 

for electronic auction trading.  Despite being the largest asset class, most fixed income securities 

are typically not traded on an open exchange.1  Further, the proliferation and complexity of fixed 

income instruments further complicates execution and limits the opportunity for standardized ex-

change trading.  Indeed, relative to other asset classes such as equities, price discovery and li-

quidity sourcing are far more challenging.  Hence, the limits of electronic trading are in the 

sharpest relief in these markets.  

We examine traders’ choice of electronic auctions versus traditional dealer trading mech-

anisms using data for all trades in investment grade US corporate bonds which also identify and 

detail the transactions executed in an electronic auction market.  This feature of the data permits 

an analysis of mechanism choice and costs under the two structures.  We show that traders are 

most likely to use electronic auctions when their search costs are likely high and leakage is less 

important.  We find strong evidence that fixed income costs decrease in size and vary with prox-

ies for risk and inventory carrying costs.  We highlight the value of competition among dealers, 

                                                 

1 Exceptions include fixed-income futures contracts, interdealer electronic brokerage systems, and transactions on 
certain electronic markets such as MarketAxess and TradeWeb, typically in liquid government issues. 



CALL OR CLICK? 

 2

showing that increased auction participation sharply reduces costs.  To the extent that technology 

will continue to reduce search costs, these results support the view that even traditional bastions 

of over-the-counter trading will face strong competition from auction type markets.   

The paper contributes to the growing literature on the evolution of market structure and 

fixed income markets in particular.  Our results are consistent with Biais and Green (2007) who 

note that there was an active market in corporate and municipal bonds on the NYSE prior to the 

1940s.  They argue that the decline of exchange trading was driven by the growing importance of 

institutional investors, who prefer to trade in over the counter markets.   That dynamic is shifting 

again with the advent of new, electronic trading technologies that allow traders to easily engage 

in multilateral trading.  More practically, the results confirm the value to traders and investors 

from sourcing liquidity widely and using tools to optimally select venue.  We show that these 

gains are significant and can materially influence realized investment returns.   

Recent regulatory requirements have improved trade reporting, leading to a growing lit-

erature providing valuable insight into the magnitude and determinants of fixed income trading 

costs in OTC markets dominated by dealers.  Edwards, Harris and Piwowar (2007) and Gold-

stein, Hotchkiss and Sirri (2007) document large transactions costs in corporate bonds, and con-

trary to most microstructure theories based on asymmetric information or inventory control, the 

costs of trade are higher for small trades and subsequently decline.  Harris and Piwowar (2006) 

find, for example, that municipal bond trades are significantly more expensive than equivalent 

sized equity trades, which is surprising given that bonds are lower risk securities.  One explana-

tion may be the lack of pre-trade transparency that confers rents to dealers who possess bargain-

ing power in bilateral trading situations.  Green, Hollifield, and Schürhoff (2007) develop and es-

timate a structural model of bargaining between dealers and customers, and conclude that dealers 

exercise substantial market power.   

Bessembinder, Maxwell, and Venkataraman (2007) argue that improvements in post-

trade transparency associated with the implementation of the TRACE system provides market 

participants with better indications of true market value, allowing for a reduction in costs for 

those bonds included in the TRACE system.  While these papers all suggest that the relatively 

large transactions costs facing bondholders are due to the OTC structure of the bond market, they 

do not provide insights into the costs in an alternative, electronic market with lower search costs.  

Nor do they help us understand whether the OTC market in bonds and other asset classes will 

evolve over time towards a more standardized, exchange traded form.   
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A number of empirical papers examine trading mechanism choice in financial markets 

both in terms of electronic versus non-electronic and searching for liquidity.  Bessembinder and 

Kaufman (1997) examine trading costs across different stocks exchanges.  Conrad, Johnson, and 

Wahal (2003) and Barclay, Hendershott, and McCormick (2003) analyze stock trading on elec-

tronics markets and traditional exchanges. Much of the equity market research focuses on both 

information flow across markets and trading costs.  Barclay, Hendershott, and Kotz (2006) study 

the venue choice for U.S. Treasury securities between fully electronic limit order book and hu-

man voice broker intermediation.  Consistent with our results that more liquid bonds trade more 

electronically, they find that trading moves from the electronic systems to the voice mechanisms 

when securities go off the run and liquidity falls.  Bessembinder and Venkataraman (2004) ex-

amine large equity trades upstairs in a dealer search market versus immediate execution in the 

electronic limit order book.  They along with others find that the electronic venue is used for eas-

ier trades.  

By contrast, the auction “request for quote” mechanism analyzed here is quite distinct 

from the more familiar electronic communications networks (ECNs) that characterize many 

stock and derivative exchanges.  In less liquid instruments, mechanisms that require liquidity 

providers to post continuous and firm quotations face challenges from adverse selection and pos-

sible tacit collusion.  The auction mechanism described here mitigates these challenges and of-

fers traders an alternative method of sourcing liquidity over the traditional dealer model.  For in-

stitutional traders with many securities in their trading list, it is difficult to simultaneously call 

many counterparties in a short interval of time.  By contrast, the request for quote auction mech-

anism allows traders to reach multiple counterparties simultaneously and avoid prolonged nego-

tiations by setting a time limit for the auction.  Since the trader can reveal how many other deal-

ers are being queried, this can be a credible way induce dealers to improve pricing.  Indeed, the 

results show that electronic auction markets based on a competitive sealed bid process are a via-

ble and important source of liquidity even in inactively traded instruments.   

Our results augment our knowledge of trading costs in fixed income markets and our un-

derstanding of the value of the competition inherent in an auction setting.  The evolution of bilat-

eral, sequential trading into an auction type framework offers a path from an over-the-counter 

market to centralized, continuous trading. 

The paper proceeds as follows:  Section 2 provides an overview of the relevant institu-

tional detail and summarizes our data sources and procedures; Section 3 examines overall trading 
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costs in the corporate bond market as a whole; Section 4 analyzes endogenous mechanism choice 

and provides a framework to analyze the data; Section 5 contains our empirical results on bid-

ding and trading behavior including estimates in the auction mechanism; and Section 6 con-

cludes and offers some recommendations for public policy. 

2. Institutions and Data 

The data comprise all investment-grade corporate bond trades in Financial Industry 

Regulatory Authority’s (FINRA) Trade Reporting and Compliance Engine (TRACE) from the 

beginning of 2010 through April 2011, a total of 1.8 million transactions.  We augment the 

TRACE data with specific details on all trades directed to an electronic auction venue, Market-

Axess, in the period.  MarketAxess was formed in April 2000 to provide institutional investors 

an electronic trading platform with access to multi-dealer competitive pricing in U.S. high-grade 

corporate bonds, Eurobonds, emerging markets, high yield, credit default swaps (CDS) and U.S. 

agency securities.  Other electronic venues – most importantly TradeWeb – are also used by 

fixed income traders, primarily for transactions in treasury bonds where costs are typically very 

low.   

Access to MarketAxess typically involves the fixed costs of integration into an institu-

tions order management system.  Once integration is complete traders can simply click to send 

their orders to a number of dealers.  Institutional clients select the number of dealers queried for 

a request for quote in a bond for a given size trade, providing considerable efficiencies in terms 

of time relative to the alternative of a sequence of bilateral negotiations.  Typically dealers are 

aware of the number of other dealers queried and the identity of the institutional client.  A time 

period is specified for the quotes to be submitted, also encouraging competitive behavior.  At the 

end of the “bidding” period all dealer quotes are revealed to the client.  If satisfied with the re-

sponses the client selects the best quote and the trade is executed. Essentially it operates as a 

sealed bid auction.  MarketAxess trades with client prices are reported in TRACE.  MarketAxess 

charges dealers a fee between 0.1 and 0.5 basis points for investment grade bonds.  

The TRACE data are comprehensive and indicate the size of the trade and whether each 

trade is between two dealers or buyer- or seller-initiated with a dealer.  This latter feature is rela-

tively new starting in late 2008.  Of special interest, the MarketAxess data are unique in several 

respects in that they identify the number of dealers queried and those that respond.   We focus 
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only on bond trades in standard, e.g., non-callable, U.S. investment grade assets, excluding 

trades in agencies, treasuries, TIPS and mortgages.  

Summary statistics are contained in Table 1.  While all MarketAxess trades are included 

in TRACE, for ease of exposition we refer to the non-MarketAxess trades simply as TRACE 

trades.  Interdealer trades in TRACE are also excluded.  MarketAxess is designed to facilitate 

client to dealer transactions, so interdealer trades do not occur on MarketAxess.  

[ Insert Table 1 Here] 

The total TRACE sample (excluding MarketAxess transactions) is approximately 1.6 

million transactions in 4,129 different bonds.  By comparison 191,150 transactions were in Mar-

ketAxess in 1,579 bonds.  The trade size categories in Table 1 are based on dollar value traded 

and are chosen in accordance with standard industry conventions.  The majority of these trades 

are micro lots (77%) defined as below $100,000 in value.  Although we will examine this point 

in more detail later, some size differences are already apparent in Table 1 between the auction 

mechanism and the over the counter market.  There is a much higher concentration of odd lot 

($100,000-$1 Million) sized trades on MarketAxess and it also appears that there are fewer large 

transactions.  Overall, the share of the auction market in overall bond trading is 6.5% in micro 

(1-100K), 26.1% in odd lot (100K-1M), 21.9% in round lot (1M-5M) and 3.6% of the maximum 

reported size (5M+) trades.2  MarketAxess’ small market share in micro sized trades could result 

from smaller retail oriented traders not having access to the platform.  This could also explain 

why the average trade size is larger on MarketAxess for odd and round lot trades.  MarketAxess’ 

lower market share in the largest trades likely arises from differences in the trading mechanisms.   

Trading occurs in MarketAxess in 1,579 distinct bonds.  The average bond characteristics 

of trades on and off MarketAxess differ noticeably.  Younger bonds and bonds with larger issu-

ance size are likely to be more liquid; see Harris and Piwowar (2006) and Edwards, Harris and 

Piwowar (2007) for evidence of this for the municipal and corporate bonds markets.  The aver-

age bond age is smaller and the bond issuance size is larger for MarketAxess trades suggesting 

that the electronic platform may be more effective for easier trades.  Table 1 also includes a 

standard risk measure of the bond’s yield spread over treasury times duration.  Our proxy for du-

ration is years to maturity.  As with issue size and age MarketAxess trades are more prevalent in 

less risky bonds which are expected to be more liquid.  It should be noted that there are likely 

                                                 

2 Trades greater than five million bonds are reported as five million for investment grade corporate bonds.  . 
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some differences in the clienteles across systems, although most large institutions will likely use 

both venues.  In general, because of the set up costs and sophistication required, we would ex-

pect a narrower pool of users for MarketAxess.  We address questions of endogenous venue 

choice later in the paper. 

3. Market-wide Transactions Costs 

A number of approaches have been used to calculate trading costs in sparsely traded fixed 

income markets.  Unlike equity markets where continuous bid and ask quotations are available, 

corporate bond markets only report transactions.  The simplest approach is to compare buy and 

sell prices of the same bond around the same time to create an imputed spread.  As the TRACE 

data identify whether a transaction is buyer- or seller-initiated, it is possible to compute the im-

puted spreads straightforwardly.  Hong and Warga (2000) follow this approach to estimate what 

Harris and Piwowar (2006) refer to as a benchmark methodology by subtracting the average 

price for all sell transactions from the average buy price for each bond each day when there is 

both a buy and a sell.  Imputed spreads, although simple, have some deficiencies.  Given the in-

frequency of trading for many bonds, the same bond, same day criterion limits the amount of us-

able data.  Further, although we know transaction side, trades may be initiated based on market 

moves (either contrarian or momentum) confounding the estimates.  Harris and Piwowar (2006) 

use a regression approach to utilize more data.  We adapt the Harris and Piwowar approach to al-

low us to more closely follow the transaction cost literature in the equity markets and to more 

easily include cross-sectional and time series covariates in our cost estimation.  In this section we 

use both the imputed (benchmark) and regressions methodologies. 

3.1      Imputed Half-Spreads 

Table 2 calculates different between the average price for all sell transactions and the av-

erage buy price for each bond each day when there is both a buy and a sell.  This cost is in basis 

point for MarketAxess and TRACE for each of the trade size category in Table 1.  We divide the 

different between buy and sell prices by two to measure the one way transaction cost often re-

ferred to as half-spreads. 

Panel A shows the standard decline in trading costs with trade size. Panel A also reveals 

substantial costs differences between MarketAxess and TRACE. For odd lot trades MarketAxess 

averages 8.54 basis points while for TRACE trades the cost is 32.43 basis points, substantially 
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higher.  The costs for TRACE fall to 9.12 and 6.39 in the round and maximum trade size catego-

ries, respectively. MarketAxess costs fall with trade size also, but more slowly.  These TRACE 

costs are similar in magnitude to previous corporate bonds cost estimates.  

[ Insert Table 2 Here] 

While MarketAxess costs are lower than TRACE, Table 1 shows that the characteristics 

of bonds traded via MarketAxess and TRACE differ with bonds likely to be more liquid, e.g., 

bonds with larger issue sizes, trading more on MarketAxess.  An initial attempt to control for dif-

ferences in the types of bonds is in Panel B of Table 2 where half-spreads are calculated only for 

bonds traded via both MarketAxess and TRACE. The MarketAxess costs in Panel B are very 

similar to those in Panel A because virtually all the bonds traded on MarketAxess are also traded 

on TRACE. The TRACE costs generally are lower in Panel B, but the declines are modest and 

costs remain higher than in MarketAxess.  

Limiting the analysis to only bonds traded on both MarketAxess and TRACE controls for 

cross-sectional differences in bond characteristics. However, it is still possible that bonds are 

more likely to trade on MarketAxess on days where liquidity in those bonds in higher. Panel C of 

Table 2 controls for this by only examining on days where costs for a bond can be calculated for 

both MarketAxess and TRACE. The costs and cost differences are not greatly affected by further 

narrowing the sample, but the number of observations falls substantially, especially in the larger 

trade sizes. A natural approach to controlling for bond characteristics and market conditions is in 

a multivariate regression framework. 

3.2      Regression Cost Estimates  

To control for bonds characteristics, market conditions, and trade characteristics it is use-

ful to construct a cost of transacting for each trade. Typically, trading costs are defined the dif-

ference in return between the actual investment return and the return to a notional or paper port-

folio.   Costs include commissions, market impact, and opportunity costs.  One important unob-

servable opportunity cost for OTC markets is the time traders spend searching for a counterparty.   

We compute percentage transaction costs in basis points relative to a variety of bench-

marks but focus here on the last trade in that bond in the interdealer market as most representa-

tive.  Then the cost or implementation shortfall) is defined as: 

����	 = 	�� 	 
��������
��������������� × �����	�� �	   (1)	
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Trade sign is the standard buy/sell indicator which is +1 if the client is buying and -1 if the client 

is selling.  It is important to note that cost in (1) is a fraction of trade value, not yield.  The trad-

ing convention for high-grade corporate bonds is typically for negotiations to take place in terms 

of yield relative to the yield on a benchmark treasury of similar duration rather than dollar value.  

However, from the investment perspective, cost or shortfall should be expressed relative to the 

value of the trade.  We compute transactions costs throughout in basis points of value by multi-

plying equation (1) by 10,000.   

Harris and Piwowar (2006), Bessembinder, Maxwell, and Venkataraman (2006), and 

Edwards, Harris and Piwowar (2007) calculate trading costs with regressions of the change in 

price between transaction on change in the trade sign.  Consistent with our approach interdealer 

trades are given a sign of zero.  Our approach uniquely assigns a cost to each transaction. This al-

lows for more straightforward inclusion of transaction specific covariates of interest, in particu-

lar, later when analyzing MarketAxess trades the inclusion of the number of dealers queried and 

number responding. The disadvantage of calculating a cost for each trade is the information in 

trade signs and price changes is less fully exploited. In addition, the interdealer price may in-

clude costs dealers charge each other for trading. Our baseline regression transaction costs esti-

mates are similar to the costs in Table 2 which do not use any interdealer trades. In unreported 

results we obtain similar trading costs estimates using the Harris and Piwowar (2006) regression 

approach that utilizes both prior customer and dealer trade prices as a benchmark. 

For cost computations, we favor using the last interdealer price as the benchmark price as 

this is a good proxy for the mid-quote.  Using the last price introduces a bias from bid-ask 

bounce.  Another popular benchmark, the Volume Weighted Average Price (VWAP) suffers 

from problems of relevance when there are few trades in the day.  

3.3      Determinants of Costs 

Table 3 analyzes trading costs for TRACE and MarketAxess while controlling for market 

conditions, bond characteristics, and trade size.  Before presenting the results we discuss our 

control variables in detail. 

Bond characteristics: 

• Credit quality – dummy variables for A and B rated bonds. 
• Maturity – natural logarithm of the time until the bond matures 
• Age – natural logarithm of the time since the bond was issued 
• Issue size – natural logarithm of the bond’s issue size bond  
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• Industry sector – dummy variables for whether the bond issuer is in the financial, indus-
trial, or utility sectors.  

 

Market conditions: 

• Risk term:  DTS – the yield spread over treasury times years to maturity.   
• Drift term: – change in treasury yield relative to benchmark trade × buy-sell indicator × 

years to maturity; the controls changes in price due to treasury rate shifts. 
• Calendar Time Controls – beginning and ending of week dummy, 1 for Friday and Mon-

day, 0 otherwise; month end dummy, 1 for last trading day of the month, 0 otherwise. 
 

Trade characteristics: 

• Trade size:  Micro, Odd, Round, and Max dummy variables for trades of less than 
100,000, 100,000 to 999,999, 1M to less than 5M, and 5M and above, respectively. 

• MA – dummy equal to 1 if the trade is on MarketAxess and 0 otherwise. 
• MA Micro, MA Odd, MA Round, MA Max – MA dummy variable interacted with trade 

size dummy variables.  
 

[ Insert Table 3 Here] 

Table 3 presents three transaction cost regressions. Standard errors control for contempo-

raneous correlation across bonds on the same day and time series correlation within bond using 

the clustering approach of Petersen (2009) and Thompson (2011). The first regression’s inde-

pendent variables are the trade size dummy variables, the MarketAxess interacted trade size 

dummy variables, the calendar time dummy variables, the rating and industry dummy variables, 

and the treasury drift variable. All independent variables are demeaned so the trade size dummy 

variables can be added together to calculate average trading costs.  

The constant of 78.38 represents the cost of a micro-sized TRACE trade and is close to 

the 70.58 cost for a micro trade in Table 2.  That is a substantial trade cost relative to small trades 

in other asset classes.  The -32.05 coefficient on the odd-lot dummy variable shows the cost for a 

TRACE odd-lot trade is 32.05 basis points lower than for a TRACE micro trade; making the 

TRACE odd-lot cost 46.33 basis points, somewhat higher than the 32.43 basis points in Table 2. 

Round lot TRACE costs are 20.75 basis points (= 	78.38	 − 	57.63). Maximum sized TRACE 

trades are 19.19 basis points. The cost estimates for TRACE odd, round, and maximum trade 

sizes being higher in Table 3 as compared to Table 2 could arise from buys and sells occurring in 

the same day in bonds that are more liquid or on days that are more liquid.  So, costs decline with 

trade size but in a non-linear manner.  Beyond a round lot, there appears to be little difference in 

cost as a function of size. 
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The MarketAxess interacted trade size dummy variables capture the difference in trading 

costs between MarketAxess and TRACE for that trade size. For odd-lot, round-lot, and maxi-

mum trade sizes costs on MarketAxess are 27.27, 4.50, and 2.80 basis points lower than TRACE, 

respectively. The differences are comparable to the differences in the simple trading costs 

measures in Table 2.  

The second regression specification in Table 3 adds the bond characteristics for time to 

maturity, age since issuance, and issuance size as independent variables. The coefficients on the-

se are consistent with Edwards, Harris and Piwowar’s (2007) findings that older, longer ma-

turety, small issue bonds have higher transactions costs.  Adding these controls increase the costs 

difference between MarketAxess and TRACE for micro and round trade sizes.  For the maxi-

mum trade size the relative cost difference between MarketAxess and TRACE becomes positive, 

1.81 basis points, but is not statistically significant. For larger sizes client traders have an incen-

tive to invest more time in negotiating better prices over the phone with dealers. As noted above, 

such costs are not observable in prices. In contrast the time required for an auction in Market-

Axess is independent of trade size. Thus, the 5M+ result is consistent with a search model where 

for large enough sizes the unobserved search effort for TRACE trades increase to offset the gains 

from lower search costs on MarketAxess. Similarly, this could lead to MarketAxess having 

smaller trades in the 5M+ category, complicating the cost comparison for the largest trade size. 

The third regression specification in Table 3 adds the risk variable as an independent var-

iable. Higher yield bonds with longer duration represent greater inventory risk for dealers. Sur-

prisingly, after controlling for other bond and market characteristics, the risk variable is not sta-

tistically significant. The calendar time, industry sector, and rating dummy variables are often 

not statistically significant so these variables are omitted in some subsequent specifications. 

4. Endogenous Venue Choice 

 To move beyond our largely exploratory empirical investigation thus far it is useful to 

build a more explicit framework to analyze endogenous venue choice.  We focus on the tradeoff 

between the lower search costs a trader enjoys by using an electronic auction mechanism, where 

a trader can simultaneously request multiple quotes, and the anonymity benefits from bilateral 

negotiation in the over the counter market.  Let �( denote trader’s the expected cost from trans-

acting bilaterally in the OTC market and let �� denote the expected cost if the trader were in-
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stead to select the auction mechanism.  The trader selects the auction market if and only if the 

costs of transacting there are lower than the OTC alternative, i.e., �( > ��.  

Consider a potential buy order of size x > 0.  We model the expected price in bilateral 

OTC trading as the expected value of the asset v plus a premium �( = 	*	 + 	�(-), where d is the 

expected dealer markup which could depend on trade size x and is trader specific, depending on 

relative bargaining power.3  From an econometric viewpoint, the relative bargaining position of a 

trader is unobserved and will create selectivity bias.   

Now consider the cost of trading in the auction mechanism.  The trader can conduct an 

auction by simultaneously selecting M dealers to contact, up to a maximum of 0.  The choice of 

M is itself endogenous and will depend also on trade size:  Contacting more dealers implies a 

higher likelihood of responses and hence lower costs but involves additional leakage of infor-

mation.   We assume the number of dealers to query, conditional upon selecting the auction 

mechanism, is optimally selected and let 0(-) denote this function.4   Let N be the (random) 

number of dealers responding given that 0(-) dealers are queried.  We model 1[3] 	= 	5(6) 
where λ is the hazard rate that depends on a vector of bond and trade characteristics, z.  In our 

later empirical analysis, we will estimate this function assuming a Poisson model for responses.  

We assume the auction fails (i.e., that no dealers respond) with probability 7 = Pr[3	 = 	0] =
�;<.   In this case, the trader is forced to go to the bilateral dealer mechanism and incurs addi-

tional costs �(-) 	≥ 	0 relative to the OTC market.  The additional cost has two potential compo-

nents:  First, given M dealers were contacted, there is potential additional leakage of information 

which is likely positively related to size because larger trades may be more likely to be associat-

ed with private information.  Even if the trade were not information motivated, knowledge of 

flows may lead to front running and hence there could be a leakage cost just associated with the 

fact that a large buyer is in the market.  So that in the event there are zero responses, the total 

purchase cost is �( + 	�(-), where �(	is the expected cost in the bilateral market.  Implicit in this 

framework is the time dimension; the multilateral auction may take longer to run even though it 

involves a single click than a bilateral negotiation on the phone.  Thus, s captures the additional 

                                                 

3 For simplicity we assume that if the trader engages in bilateral trading, execution will be obtained with certainty 
albeit at a cost, and hence there is no leakage cost.  It is straightforward to extend the model to allow for a positive 
probability that the negotiations lead to no trade followed by subsequent searches in the future. See Duffie, Gar-
leanu, and Pedersen (2005) for a fully developed sequential search and trading OTC model. 
4 Levin and Smith (1994) examine entry incentives in auctions with stochastic numbers of entrants.  They show that 
in a common value auction (in our setting the common value is the common inventory component across dealers) a 
seller wants to limit the number of bidders even in the absence of leakage costs. 
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leakage (over any in the OTC market) result.  The term , s is hence trader or trade specific and is 

not observed by the econometrician. 

If 3	 > 	0, with probability 1 − 7, the auction is viable.  Rational dealer behavior sug-

gests that in a sealed bid auction, each dealer will charge their reservation price which is the ex-

pect value (v) plus a dealer specific inventory based premium which depends on size.  A positive 

premium can arise as a compensation for unwanted risk or if the dealer ascribes a positive proba-

bility to being in a monopolistic position should no other dealers respond.   Alternatively, a deal-

er who has an opposite side inventory position may aggressively bid to reduce risk in which case 

the premium can be negative.  We expect there to be cross-sectional dispersion in initial invento-

ry across dealers.  The expected total auction cost, ��, for trade size x combines the cost of a 

failed auction with the costs of a successful auction: 

�� 	= 	7(�( + 	�(-)) 	+ 	(1 − 7)(*	 + 	?(-))     (2)	
where ?(-) is the expected premium.  This yields the choice model; a trader chooses the OTC 

market (@�� = 1) if and only if: 

7�(-) + (1 − 7)A?(-) − �(-)B > 		0    (3) 

For a given size x, the higher the costs of leakage s, the greater likelihood of searching the deal-

ers over the auction, and vice versa with the dealer markup d.  Similarly, lower dealer response 

rates λ (e.g., on less liquid issues) implies a higher q and hence less likelihood of selecting the 

auction.   

The model also shows that costs can vary with size in a nonlinear way.  Unlike asymmet-

ric information models, realized cost �(-) will reflect the optimal choice of venue plus the 

tradeoff between the cost elements:  

�(-) 	= 	C��[�((-|@�� = 1), ��(-|@�� = 0)]	.    (4) 

This equation forms the basis for the endogenous choice model we estimate below.  For small 

sizes, leakage s is likely to be minimal and the auction mechanism dominates.  This is also the 

case if dealers are competitive in bidding so that ?(-) = 0.  Beyond a point, as trade size rises, 

we would expect higher costs from leakage and hence more likelihood of using a dealer mecha-

nism.  If the dealer markup �(-) reflects economies of scale or bargaining power, we may ob-

serve that realized cost declines with x.    
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4.1      Regression Cost Estimates Controlling for Selection Bias 

The multivariate regressions in Table 3 control for observable differences in bond charac-

teristics and market conditions. However, there may be unobservable characteristics of trades 

which affect both the costs of the trade and whether the trade is executed on MarketAxess. The 

standard econometric approach is an endogenous Heckman switching model.5  This is a two 

stage model.  In stage 1, a trader chooses venue 1 (auction) over venue 2 (dealer phone search) if 

he believes that the expected cost of venue 1 are lower than those of venue 2.  We model ex-

pected costs as 

'
k k k

c z δ η= + .      (5) 

Where z is a vector of explanatory terms (including possibly non-linear functions of size) and the 

error term η captures the unobserved costs of search and slippage, as detailed in the model.  The 

auction venue is chosen if 

1 2 2 1 2 1or '( ) ( ) 0 or ' 0c c z zδ δ η η δ η≤ − + − ≥ + ≥ ,  (6) 

which forms the basis of the Probit equation in Table 4.   

 In stage 2, we model the true cost equation (if there was no selection bias) as  

'
k k k

y x β ε= + .     (7) 

The residual captures unobserved cost factors such as dealer inventory effects.  Assuming joint 

normality:  

1 11 1 2 1 1 1 1

( ' )
[ | , , ] ' ' ( ' )

( ' )

z
E y x z c c x x mr z
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ε ε
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Φ
  (8) 
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ε ε

ϕ δ
β ρ σ β ρ σ δ

δ
≥ = − = −

− Φ
 (9) 

where ρk is the correlation of εk and ηk.  Essentially to run both regressions requires two Mill’s 

ratio variables (with appropriate dummies) where the denominators are slightly different (they 

sum to one).  

 We estimate the probit model for venue selection in Table 4 with the same three specifi-

cations in Table 3.  Consistent with Table 1 odd- and round-lot trades and bonds with larger issue 

sizes are more likely to be on MarketAxess.  Unlike in Table 3 some of the bond characteristic 

and calendar time dummy variables are significant. A-rated bonds are more likely to trade on 

                                                 

5 Madhavan and Cheng (1997) and Bessembinder and Venkataraman (2004) use the procedure to estimate costs for 
block trades while controlling for selection. 



CALL OR CLICK? 

 14

MarketAxess.  Trades on Monday and at the end of the month are more likely to be on Market-

Axess.   

[ Insert Table 4 Here] 

Table 5 uses the third probit specification to estimate the second-stage cost model for 

MarketAxess and TRACE. As before all continuous independent variables are demeaned. The 

selectivity adjustment (Mill’s ratio) terms are Inv Mill MA and Inv Mill TRACE, respectively.  

The difference in independent variable coefficients (MarketAxess minus TRACE) shows that 

MA’s relative costs decrease in issue size and increase in age and duration times spread, con-

sistent with easier trades being done on MA.  The inverse mills ratio has a negative coefficient, is 

consistent with our model of selection and where the auction market is chosen for orders with 

less likelihood of leakage and higher search costs.   

[ Insert Table 5 Here] 

The results in Table 5 are consistent with MarketAxess being cheaper for average trades.  

The differences in coefficient estimate across the columns illustrate how much the independent 

variable must change for the cost differential between MarketAxess and TRACE to change sign.  

For example, leaving aside the selectivity adjustment (Mill’s ratio) terms an average maximum 

size trade on MarketAxess costs 12.93 basis points (= 	19.14	 − 	6.21) as compared to 17.23 ba-

sis points (= 	78.87	 − 	61.64) on TRACE.  The difference in the issue size coefficients is 

−6.117	 + 	2	 = 	−4.117. The ratio of the costs difference to coefficient difference is 1.04	 =
	−4.3/−4.117.  Because issue size is in natural logarithm units this translates into issue size dif-

fering by a factor of 2.83 (= e1.04).  Put another way, a maximum sized trade in an otherwise av-

erage bond would need to have an issue size less than one-third the average issue size, e.g., 

$600M as compared to $1.8B, to be cheaper on TRACE than MarketAxess. 

Also noteworthy are the cost differentials for odd lot trades.  Very clearly, the auction 

mechanism is preferred for this size over the OTC alternative.  Given the relative size of the co-

efficients, we would need the slippage term s or the probability of non-trading q to be implausi-

bly large to explain this selection.   It is likely that this result reflects some of the differences in 

the client composition across the venues referred to earlier.   Specifically, the results may reflect 

the fact smaller and less active traders who could benefit from trading their odd lots in an auction 

framework are unwilling to bear the associated set up costs, closing out this option. 
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Finally, we have not considered the 30% or so of the time that a MarketAxess auction 

does not result in a trade.  However, we also do not observe phone searches that do not result in 

trades.  In general, to fully capture expected trading costs across venues one needs to run an ex-

periment where orders are randomly sent to different mechanisms.  This is a shortcoming of all 

studies of observed transaction costs. 

5. Trading and Bidding Behavior in Electronic Auctions 

Theory suggests that bidder’s behavior is crucial for auction performance (for example, 

Bulow and Klemperer (2009)).  We next turn to the detailed data we have on dealer’s bidding 

behavior in MarketAxess.  Figure 1 illustrates the frequency distribution of the number of dealer 

responses in the auction market, conditional upon at least one response.  The modal response is 

3.  With that number of dealers, the typical auction should approach a competitive outcome.  In 

7.3 percent of auctions no dealers respond.  

[ Insert Figure 1 Here] 

Table 6 provides information by trade size on the per auction average number of dealers 

queried, the percentage of dealers responding, and the percentage of auctions with zero respons-

es.  The number of dealer’s queried decreases with trade size with 27.70 dealers queried for mi-

cro trades and 23.98 queried for maximum trades. This is consistent with a concern by traders 

about leakage of their intentions increasing in trade size.  Despite this the number of dealers re-

sponding increases in trade size.  Queries decreasing in trade size while dealer responses increas-

ing indicates the dealers are more likely to respond for large trades.  This would arise if dealers’ 

costs of participation is fixed, making the participation cost per bond falling in trade size.  The 

percentage of dealers responding increases substantially from 16.8% for micro trades to 29.7% 

for large trades.  An alternative explanation is that large trades are simply done in bonds where 

dealers are more likely to respond.   

 [ Insert Table 6 Here] 

To control for bond characteristics requires a more formal model of the number of dealers 

N responding to M queries, i.e., 1[3|0] 	= 	5(6),  We model the number of dealers who respond 

to a trader’s queries using a count data model (as N = 0,1,2…) which also naturally allows for ze-

ro outcomes or auction failure.  It is important to allow for cross-sectional heterogeneity which 
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we expect given that dealer bargaining power and perceptions of leakage will vary across traders.  

We model this for trade i as the outcome of a Poisson distribution with conditional mean: 

ln(5�) = 6�KL + M�     (10) 

where the error term M� captures individual (unobserved) variation in dealer responses.  When M� 
has a gamma distribution Γ(1, O), this yields a negative binomial model.  Unlike the Poisson 

model, we do not restrict the mean and variance of the sample data to be equal.  Over dispersion 

(where the variance exceeds the mean) is quite common with count data and hence the negative 

binomial is preferred.  The distribution of the number of dealer responses 3� in auction i condi-

tioned on 6� is 
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Table 7 reports estimates of three versions of the dealer response model.6  Trade size and issue 

size are positive predictors.   

[ Insert Table 7 Here] 

The model can help traders better predict auction interest to utilize this mechanism more effi-

ciently and reduce costs.  Using equation (1), the probability of the auction failing with no re-

sponses at all is 

θ

λθ

θ
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==
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ii zNP )|0( , which is the analog to the Poisson probability with no 

heterogeneity in responses.  There is a marked jump in the probability of auction failure as trade 

size changes from a round to an odd lot.  Depending on the model, the difference in the odd and 

round lot coefficients is approximately 0.2 implying that, all else equal, the probability of auction 

failure for an odd lot transaction is 1.22 times that of a comparable round lot.  Risk is a negative 

predictor along with age and the end of week and end of month dummy variables.  There are 

fewer dealers in higher yield bonds, which makes sense given dealer risk aversion.  It is also in-

teresting to note that the coefficient on the log number of dealers is less than one, which corre-

sponds to the probability of dealers responding declining in the number of dealers queried. 

Auction theory predicts that the number of dealer should be closely linked to the auction 

outcome. Figure 2 shows the costs in basis points as a function of the number of responding 

                                                 

6 In order to utilize the results from our response model in a trading cost regression model 3 is estimated only for 
auctions resulting in trades.  Approximately two percent of trades cannot be matched to auctions causing the number 
of observations in model 3 of Table 7 to be slightly less than the number of MarketAxess trades in Table 1. 
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dealers.  Competition lowers costs as is clear from the figure.  When only a few dealers respond, 

costs are high, 20-35 basis points.  Observe that mean realized costs go to zero and actually be-

come slightly negative (-3 to -4 basis points) when the number of responses is large, in this case 

above 10.   While estimation error could lead to negative realized costs, recall from the model 

that this result is consistent with a negative premium ?(x), i.e., that some dealers are willing to 

price aggressively to liquidate unwanted inventory.  It is worth noting that this does not mean 

that the winning dealer loses on the round trip in expectation as they may be able to charge a 

premium to enter into the position initially.  

[ Insert Figure 2 Here] 

Table 8 presents cost estimates for the auction market.  Model 2 shows that costs declin-

ing in the number of dealers responding in Figure 2 is robust to the inclusion of bond and trade 

characteristics.  Essentially, this can be thought of as a regression with a log of frequency re-

sponse as an explanatory variable.  We use the natural logarithm of the bids because Figure 2 

shows a clear nonlinearity in costs as a function of bids.  Model decomposes the number of bid-

ders into the expected and unexpected number of bidders using specification 3 of the negative 

binomial dealer response model in Table 7.  The logarithm of expected and unexpected respons-

es is taken after subtracting the overall minimum and adding one; this ensures that the minimum 

of both the logarithm of expected and unexpected responses is zero.  The coefficient on the un-

expected number of bidders is significantly more negative than the coefficient on the expected 

number showing that unexpectedly fewer bidders responding is particularly costly.   

It is interesting that conditioning on the number of bids in model 2 reverses the ordering 

of costs for odd, round, and maximum trade sizes with the costs of trading no longer monoton-

ically decreasing in trade size.  This difference demonstrates that dealer bidding behavior drives 

the decline costs in trade size.  This contrasts with the standard argument that costs decreasing in 

trade size is due to market power by intermediaries where the bargaining power the trader in in-

creasing in trade size.7  

 [ Insert Table 8 Here] 

                                                 

7 Bernhardt, Dvoracek, Hughson, and Werner (2005) provide a variant on this argument by modeling the repeated 
interaction between customers and dealers.  They find that dealers offer better prices to more regular customers, and, 
in turn, these customers optimally choose to submit larger order. 
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Note that Model (1) and (2) in Table 7 include auctions where there was no trade.  Model (3) is 

only for trades.  The number of observations in Model 3 is slightly smaller than in Table 1 be-

cause some of the trades could not be matched to auctions, 191,150 in Tables 1 and 5 versus 

187,834 in Tables 7 and 8. 

It would be interesting to extend this analysis to capture the time dimension of trading 

(i.e., the duration between order initiation and execution), which as we noted earlier is a factor in 

determining the expected slippage and hence the trader’s strategy.  While this statistic is not in 

the TRACE data, in theory we could look at this for the MA data.  It would, for example, also be 

interesting to examine to link the duration statistic to leakage and also examine dealer behavior 

in time, i.e., whether some dealers always wait until the end of the allotted auction period or re-

spond right away.  These more detailed questions are topics for further analysis.    

6. Conclusions 

As electronic trading expands more rapidly across regions and asset classes, it is natural 

to ask whether there are limits to the potential scope of auction markets.  The fixed income mar-

kets are of particular interest given their size and the complexities of the instruments traded.  

Trading in this asset class still remains very much over-the-counter although electronic auctions 

– as in equities and derivatives markets – are gaining traction. 

Using an extensive sample of corporate bond transactions from January 2010 to April 

2011 we show that:  (1) There is clear evidence that traders rationally select between dealer and 

auction markets based on a tradeoff between leakage about trading intentions and search costs; 

(2) Costs of trading are significant relative to a last interdealer trade benchmark.  The analysis al-

so confirms that trading costs decreases as a function of size and provides an explanation for this 

result; (3) Costs are directly related to measures of dealer competition and trade size; (4) Dealer 

competition can be predicted as a function of bond attributes, trade size, past activity, and sea-

sonalities; and (5) Competition is a strong determinant of trading cost.  There are significant 

gains to sourcing multiple bids for fixed income transactions.  Competition is greater for larger 

trade sizes, providing an explanation for why costs might decline with size. 

From a public policy perspective, the results here shed light on trading costs in fixed in-

come markets and increase our understanding of the value of the competition inherent in an auc-

tion setting.  It is important to understand that the evolution of bilateral, sequential trading into 

an auction type framework offers a path from an over-the-counter market to a centralized, con-
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tinuous trading.  The mechanism analyzed here is quite distinct from the more familiar electronic 

communications networks (ECNs) that many stock and derivative exchanges have evolved into 

over the past two decades.  The auction “request for quote” market made possible by technologi-

cal advances is a very different system altogether and may offer a way to mitigate the complexi-

ties of markets where liquidity providers post their quotes such as the original Nasdaq Automat-

ed Quotation System.  In less liquid instruments, such markets pose problems of potential collu-

sion among dealers who observe each other’s actions or adverse selection from offering free op-

tions in the form of continuous and firm quotes.  Our results indicate that electronic auction mar-

kets based on “sealed bids” are a viable and important source of liquidity even in inactively trad-

ed instruments. 
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Table 1 

Descriptive Statistics 

 

The table presents descriptive statistics based on a sample of all US investment-grade non-
callable corporate bond trades in Financial Industry Regulatory Authority’s (FINRA) Trade Re-
porting and Compliance Engine (TRACE) from January 2010 through April 2011, excluding all 
interdealer trades and trades directed to MarketAxess, an electronic auction venue.  Four trade 
size categories by dollar size are represented based on market conventions, up to a maximum of 
$5M and above. Bond characteristics such as Age and Maturity are measured in years.  DTS (du-

ration×Spread) is a risk measure defined the bond’s duration multiplied by its yield spread over 
treasuries. 
 

 

  MarketAxess TRACE 

      

Number of Trades                         191,150                      1,578,024  

   Micro (1-100K) 44.6% 77.1% 

   Odd (100K-1M) 42.6% 14.6% 

   Round (1M-5M) 11.8% 5.1% 

   Max (5M+) 1.0% 3.2% 

      

Mean Trade Size ($000)     

   Micro (1-100K)                                   29                                    21  

   Odd (100K-1M)                                 320                                  247  

   Round (1M-5M)                             1,794                              1,896  

   

Number of Distinct Bonds                             1,579                              4,129  

Issue Size ($ Billion) 1.91 1.56 

 
Age 

 
3.20 

 
3.96 

Maturity 7.52 7.82 

DTS (Duration×Spread)                               10.89 14.12 
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Table 2 

Benchmark Corporate Bond Trading Costs 

 

The table presents estimates of one-way trading costs (half the bid-offer spread) for a sample of 
all US investment-grade non-callable corporate bond trades in Financial Industry Regulatory Au-
thority’s (FINRA) Trade Reporting and Compliance Engine (TRACE) from January 2010 
through April 2011.  Half-spread is defined as the difference between the average price for all 
sell transactions and the average buy price for each bond-day when there is both a buy and a sell, 
divided by two and expressed in basis points.   

 

 

           MarketAxess TRACE 

  Half-

Spread 

Number of  

Bond-Days 

 Half-

Spread 

Number of  

Bond-Days 

  

Panel A: All bond-days with both a buy and sell in same size category  

     

   Micro (1-100K) 14.35                    12,029  70.58                 130,529  

   Odd (100K-1M) 8.54                      9,032  32.43                    33,596  

   Round (1M-5M) 5.79                      1,113  9.12                    13,225  

   Max (5M+) 2.76                           16   6.39                      8,874  

     

Panel B: Only bonds with both MarketAxess and TRACE trades in same trade size category 

     

   Micro (1-100K) 14.34                    12,023  58.74                    73,118  

   Odd (100K-1M) 8.49                      8,995  32.98                    24,294  

   Round (1M-5M) 5.72                      1,108  8.90                      6,754  

   Max (5M+) 2.58                          16    4.95                         471  

     

Panel C: Only bond-days with both MarketAxess and TRACE trades  in same trade size category 

     

   Micro (1-100K) 14.05                      9,135  48.60                      9,135  

   Odd (100K-1M) 6.09                      2,164  30.43                      2,164  

   Round (1M-5M) 6.22                         202   7.43                         202  

   Max (5M+) 0.36                             9   5.05                             9  
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Table 3 

Regressions on Corporate Bond Trading Costs 

 

The table presents three regression models for implementation shortfall. Standard errors are in 
parentheses and control for contemporaneous correlation across bonds and time series correlation 
within a bond.  Independent variables include treasury drift and dummy variables for trade size, 
trade size interacted with MarketAxess (MA), calendar time, rating, and industry.  DTS (Dura-

tion×Spread) is duration multiplied by yield spread.  All independent variables are demeaned.  
 

 (1) (2) (3) 

    

Odd  -32.05*** -27.32*** -27.44*** 

 (1.523) (1.494) (1.487) 

Round -57.63*** -52.06*** -52.28*** 

 (1.765) (1.832) (1.807) 

Max -59.19*** -55.04*** -55.23*** 

 (1.598) (1.928) (1.912) 

MA Micro -55.01*** -45.84*** -45.71*** 

 (1.582) (1.394) (1.404) 

MA Odd -27.27*** -27.75*** -27.61*** 

 (1.308) (1.514) (1.529) 

MA Round     -4.503*** -6.829***     -6.626*** 

 (0.887) (1.047) (1.051) 

MA Max   -2.795** 1.812 1.943 

 (1.150) (1.335) (1.343) 

A-Rated   -6.925** -3.049      -2.031 

 (3.293) (2.937) (2.828) 

B-Rated      12.79 11.60      11.49 

     (11.47) (11.02)     (11.01) 

Industrial -7.875 0.404       -0.361 

  (8.477) (6.183)  (6.129) 

Financial -3.101 13.89**  12.61** 

  (7.880) (5.678)  (5.651) 

Utility  21.82** 2.910 2.010 

     (10.34) (7.191) (7.208) 

Monday  0.611 -0.111 -0.0881 

  (0.612) (0.692) (0.682) 

Friday    -1.243** -1.033      -1.034 

  (0.627) (0.735) (0.722) 

Month-End 0.566 -0.0693 -0.0864 

 (0.956) (1.110)      (1.094) 
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Table 3 (Continued) 

 

 (1) (2) (3) 

    

Drift       0.347***     0.358***     0.359*** 

  (0.0160) (0.0157) (0.0158) 

ln(Maturity)   36.52*** 34.21*** 

       (1.875)     (2.629) 

ln(Age)       4.867***    4.476*** 

  (1.156)     (1.195) 

ln(Issue Size)      -5.194***   -5.117*** 

  (0.366)     (0.356) 

DTS         0.117 

   (0.0997) 

Constant  78.32***    58.80*** 59.15*** 

      (7.838) (6.109)     (6.086) 

    

Observations 1,769,174 1,769,174 1,769,174 

R-squared       0.055 0.100      0.100 

*** p<0.01, ** p<0.05, * p<0.1 
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 Table 4 

Endogenous Selection of Trading Mechanism: Stage I Choice Model 

Three probit models for the binary choice between over-the-counter versus electronic trading.  
Trades in MarketAxess are denoted by 1; zero otherwise.  Independent variables include dummy 
variables for trade size, calendar time, rating, and industry.  DTS (Duration×Spread) is duration 
multiplied by yield spread.  All independent variables are demeaned.  Standard errors are in pa-
rentheses. 
 

  (1) (2) (3) 

    
Odd     0.897***    0.863***    0.876*** 
 (0.0252) (0.0246) (0.0230) 
Round     0.742***    0.684***    0.702*** 
 (0.0247) (0.0264) (0.0257) 
Max   -0.286***   -0.373***   -0.357*** 
 (0.0276) (0.0315) (0.0310) 
A-Rated    0.224*** 0.117* 0.0312 
 (0.0649) (0.0618) (0.0596) 
B-Rated   -0.809***   -0.738***   -0.715*** 
     (0.189)     (0.183)      (0.179) 
Industrial 0.0523     -0.0592      -0.0208 
 (0.0839) (0.0873)      (0.0890) 
Financial -0.153**   -0.264*** -0.153** 
 (0.0658) (0.0662) (0.0697) 
Utility   -0.837***   -0.551***   -0.456*** 
 (0.0951) (0.0945)      (0.102) 
Monday    0.0318**      0.0416***      0.0404*** 
 (0.0136) (0.0148)      (0.0141) 
Friday -0.00360 -0.00653      -0.00588 
 (0.0138) (0.0150)      (0.0139) 
Month-End     0.194***    0.201***   0.202*** 
 (0.0184) (0.0207)      (0.0184) 
ln(Maturity)    -0.120*** 0.0897* 

  (0.0274)     (0.0499) 
ln(Age)      -0.0302     -0.00289 

  (0.0254)     (0.0252) 
ln(Issue Size)     0.215***  0.212*** 

  (0.0194)     (0.0186) 
DTS      -0.0127*** 

       (0.00311) 
Constant  -1.581***   -1.437*** -1.480*** 
    (0.0813) (0.0807)     (0.0798) 

    
Observations 1,769,174 1,769,174 1,769,174 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5 

Endogenous Selection of Trading Mechanism: Stage II Cost Model 

Table 5 uses the probit specification of Table 4, model (3), to estimate the second-stage cost 
model for MarketAxess and TRACE. All continuous independent variables are demeaned. The 
selectivity adjustment (Inverse Mill’s ratio) terms are Inv Mill MA and Inv Mill TRACE, respec-
tively.  Standard errors are in parentheses. 
 

 MarketAxess TRACE 

   

Odd  -5.543*** -5.307 

       (1.794)  (4.000) 
Round      -8.187***   -35.13*** 

      (1.412)  (2.832) 

Max      -6.208***   -61.64*** 

       (1.622) (2.294) 

Drift  0.423***       0.344*** 
      (0.0169)   (0.0177) 

ln(Maturity)       6.896***    35.04*** 
      (0.838)         (2.718) 

ln(Age)       3.921***      3.263*** 
      (0.456) (1.101) 
ln(Issue Size)      -6.117***      -2.000*** 

       (0.500) (0.495) 
DTS   0.177***  0.0469 

       (0.0483)  (0.0875) 
Inv Mills MA      -0.222  
       (2.753)  

Inv Mills TRACE    80.00*** 
         (12.14) 

Constant  19.14***    78.87*** 
        (5.088) (2.102) 

   

Observations 191,150 1,578,024 
R-squared         0.069 0.085 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6 

Descriptive Statistics for Number of Dealers in an Auction 

 

The table presents descriptive statistics from January 2010 through April 2011 for the number of 
dealers participating in 191,150 electronic auctions.  Four trade size categories by dollar size are 
represented, based on market conventions, up to a maximum of $5M and above.  Figures report-
ed are sample means. 

 

Trade Size Number of 

Dealers Queried 

Percentage 

 Responding 

Percentage with  

No Response 

   Micro (1-100K) 27.70 16.8% 5.9% 

   Odd (100K-1M) 26.60 22.3% 7.7% 

   Round (1M-5M) 25.66 26.6% 9.8% 

   Max (5M+) 23.98 29.7% 15.1% 

  



CALL OR CLICK? 

 29

Table 7 

Negative Binomial Model for Number of Dealers Responding in Auction  

 

The table presents three regression models for the number of dealers responding for a sample of 
electronic auctions from January 2010-April 2011.  Independent variables include treasury drift 
and dummy variables for trade size, trade size interacted with MarketAxess (MA), calendar time, 
rating, and industry.  DTS (Duration×Spread) is duration multiplied by yield spread.  All inde-
pendent variables are demeaned. Robust standard errors in parentheses 
 

 (1) (2) (3) 

    
Ln(Queries)    0.643***   0.591***   0.534*** 
  (0.00684)  (0.00543)  (0.00568) 
Odd   0.255***    0.263***    0.291*** 
     (0.0117)     (0.0103)  (0.00958) 
Round    0.456***    0.462***    0.511*** 
 (0.0164)     (0.0127)      (0.0110) 
Max     0.490***    0.527***   0.674*** 
  (0.0215)     (0.0176)      (0.0138) 
Monday      0.0617***      0.0599***      0.0589*** 
   (0.00311)  (0.00275)  (0.00260) 
Friday     -0.0588***    -0.0555***    -0.0496*** 
  (0.00362)  (0.00310)  (0.00289) 
Month-End  0.00716    -0.0186***    -0.0185*** 
  (0.00721)  (0.00523)  (0.00494) 
ln(Maturity)     -0.0203***    0.117*** 
   (0.00226)      (0.0183) 
ln(Age)     -0.0817***    -0.0482*** 
   (0.00326) (0.00509) 
ln(Issue Size)     0.318***   0.255*** 
      (0.0106)      (0.0104) 
DTS        -0.00435*** 
     (0.000869) 
Constant   -0.683***    -0.595*** -0.130*** 
 (0.0251) (0.0190)      (0.0308) 
    
Observations 261,306 261,306 187,834 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8 

Corporate Bond Trading Costs in an Auction Mechanism 

 

The table presents three regression models for trading cost (implementation shortfall) for a sam-
ple of electronic auctions from January 2010-April 2011.  Independent variables include treasury 
drift and dummy variables for trade size, bond characteristics, and dealer responses (total, ex-
pected, and unexpected) to queries based on the estimates in Table 7.  DTS (Duration×Spread) 
is duration multiplied by yield spread.  All independent variables are demeaned. Robust standard 
errors in parentheses 
 

 (1) (2) (3) 

    

Odd     -5.373***     -1.309***     -2.631*** 

 (0.478) (0.420) (0.458) 

Round    -7.792***        -0.454     -3.157*** 

        (0.594) (0.537)        (0.604) 

Max   -6.277***       2.933***        -1.222 

         (1.199) (1.137) (1.196) 

Drift     0.422***      0.424***       0.424*** 

 (0.0169)  (0.0165)   (0.0165) 

ln(Maturity)    6.843***      9.075***       8.395*** 

        (0.827) (0.754) (0.776) 

ln(Age)    2.192***       1.451***       1.677*** 

        (0.205) (0.208) (0.202) 

ln(Issue Size)  -6.263***     -1.225***     -3.288*** 

        (0.420) (0.390) (0.420) 

DTS   0.186***       0.120***      0.144*** 

       (0.0449)   (0.0382)  (0.0396) 

ln(Resp)   -17.07***  

  (0.640)  

ln(Exp_Resp)    -14.09*** 

   (0.803) 

ln(Unexp Resp)   -36.14*** 

   (1.529) 

Constant 27.46***  29.16***     140.3*** 

 (1.365)        (1.223) (4.709) 

    

Observations 187,834 187,834 187,834 

R-squared 0.069         0.101         0.097 

*** p<0.01, ** p<0.05, * p<0.
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Figure 1: Frequency Distribution of Number of Dealer Responses 
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Figure 2: Transaction Costs in Basis Points by Number of Dealer Responses 
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Liquidity: What you see is what you get?
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Abstract

Competition between electronic limit order books improves the overall liquidity of

equity markets in most studies. However, my model shows that liquidity offered on

the limit order books combined may strongly overestimate the actual liquidity avail-

able to investors. The excess is caused by high-frequency traders operating as market

makers, who may duplicate their limit order schedules on several venues to increase

their execution probabilities. Then, after a trade on one venue they will quickly cancel

outstanding limit orders on others. The magnitude of the cancellations depends on

the fraction of investors that may access several venues simultaneously, i.e., who use

Smart Order Routing Technology (SORT). The reason is that market makers incur

higher adverse selection costs when the investor trades at a competing venue first.

Consequently, a higher fraction of SORT investors reduces the incentives of market

makers to place duplicate limit orders. The empirical results confirm the main pre-

diction of the model, as trades on the most active venues are followed by cancellations

of limit orders on competing venues of more than 53% of the trade size.
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1 Introduction

Two important trends have drastically changed equity markets in recent years. First, tech-

nological innovations have lead to high-frequency trading, a trading strategy whereby a

computer algorithm analyzes market data and trades at extremely high speed. Second,

competition between trading venues has caused a dispersion of trading volumes and liq-

uidity across venues, i.e., the market has become fragmented. These two changes in the

structure of equity markets might strongly affect the optimal behavior of investors. Indeed,

as high-frequency traders operate on several trading venues simultaneously, the order flow

and liquidity of these venues become strongly interrelated.1 This paper argues that the in-

terrelation of liquidity across trading venues causes substantial overestimation of liquidity

aggregated over these trading venues.

I underpin this hypothesis in a model of competition between two centralized limit order

books. The model predicts that high-frequency traders, who supply liquidity by acting as

traditional market makers, have an incentive to duplicate their limit orders on both venues.

They will do so because this strategy increases their execution probabilities and therefore

expected profits. Then, after execution on one venue, they will quickly cancel their limit

orders on competing venues. Effectively, the depth aggregated over all venues overstates

true liquidity, as a single trade reduces liquidity on many venues simultaneously. The

empirical results strongly support this hypothesis: a trade reduces liquidity at competing

venues by 53% of the trade size within a second.

My first contribution to the literature is a theoretical model. The model is based on the

framework of a pure limit order market with adverse selection of Sandås (2001), extended

to a two-venue setting. High-frequency market makers supply liquidity with limit orders,

whereas potentially informed traders demand liquidity with market orders. In this setting,

only a fraction of the traders has the technological infrastructure to submit market orders

to both venues simultaneously, i.e., smart order routing technology (SORT). Effectively,

I introduce market segmentation because non-SORT traders cannot access the liquidity

of both venues. In equilibrium, a limit order faces higher adverse selection costs when

executed against a SORT trader. The reason is that conditional upon execution, there is

a probability that she traded on the competing venue already and therefore the combined

1The high level of interaction between markets became apparent during the flash crash, i.e., between
the E-mini S&P 500 futures and the individual stocks (SEC-CFTC “Findings regarding the market events
of May 6 2010”, 2010).
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trades are larger and more informed on average. Consequently, a lower fraction of SORT

traders reduces adverse selection costs and increases equilibrium liquidity supply. However,

the additional liquidity follows from market segmentation only, and will be cancelled after

a trade on the competing venue; hence the term duplicate liquidity.

The model offers the following predictions. First, due to the information content of

a trade on one venue, limit orders on the same side of the order books of competing

venues will be cancelled. Cancellations would not occur in a single venue setting, which

implies that I must test whether the observed cancellations are significantly greater than

zero. Second, after a trade new limit orders will be placed on the opposite side of the

limit order books of all venues, consistent with asymmetric information models. Third,

duplicate limit orders will only be placed on venues where non-SORT investors operate

(mostly the traditional market), because market makers face lower adverse selection costs

when trading with non-SORT investors. When all investors use SORT, competition between

market makers only improves liquidity, as documented by Glosten (1998) and Foucault and

Menkveld (2008). Fourth, the model explains why entrant venues are typically very liquid

but execute relatively little volume. Although market makers offer substantial liquidity

there, only a small fraction of investors use SORT to tap this liquidity.2 Fifth, the decision

of one investor to adopt smart order routing technology increases her accessible liquidity,

but also imposes a negative externality on all other investors (the SORT and non-SORT

traders as well as market makers).

My second contribution to the literature is an empirical investigation. The dataset

contains the entire limit order books of all relevant trading venues with publicly displayed

data, for a sample of FTSE 100 stocks in November 2009. These stocks are traded in a

fairly fragmented environment, as the traditional market (the London Stock Exchange)

executes 66% of lit trading volume, leaving 34% to four competing venues (Chi-X, Bats

Europe, Turquoise and Nasdaq OMX). I test the models main predictions by investigating

the short-term correlations between the supply and demand of liquidity across trading

venues. Specifically, I regress changes in liquidity supply at the bid or ask side of one

venue on contemporeneous and lagged liquidity demand of all five venues, i.e., buy and sell

trading volumes. Lagged trading volumes of up to ten seconds away measure investors’

responses to trades over time. I sample one observation per 100 milliseconds in order to

analyze high-frequency trading strategies. To the best of my knowledge, this paper is the

2In the model, transaction costs and trading speeds are assumed equal across trading venues, and
therefore do not explain differences in market shares.
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first to analyze the impact of high-frequency trading strategies on the liquidity supply

across trading venues.

The empirical results strongly support the models’main prediction that trades are

followed by limit order cancellations on competing venues. That is, within 100 milliseconds,

transactions on the three most active trading venues are followed by cancellations on the

same side of competing limit order books of 38 to 85% of the transaction size. As a result,

liquidity aggregated over all venues overstates liquidity available to investors, since e.g. a

100 share trade reduces liquidity by more than 138 shares. Further, these cancellations

increase to 53 to 149% of the transaction size after one second (depending on the trading

venue). This finding is particularly relevant to algorithms designed to split up large trades

over time, as the liquidity impact of each individual small trade is indeed larger than

previously thought. The fact that liquidity shocks immediately spill over to other venues

is not captured by static liquidity measures, such as the quoted depth.

The analysis also confirms several other predictions of the model. First, the magnitude

of cancellations is stronger on the primary market after trades on entrant venues (46 to

52%), than vice versa (14 to 30%). Second, trades reveal information on the true asset

value, as a trade on the ask side is followed by new limit orders on the bid side of 30 to

70% of the tradesize.

The main policy implication of the model is that fair markets require investors to be able

to split up trades simultaneously across several venues. When a trader leaves a millisecond

delay between the split, the market effectively becomes segmented. That is, after high-

frequency traders observe the first part of the trade, they will quickly cancel their duplicate

limit orders on competing venue before the second part arrives. This high-frequency trading

strategy is known as latency arbitrage, and relates to the trend of increasingly faster trading

mechanisms.3

Most related to this work is literature on competition between electronic limit order

books. Pagano (1989) predicts that all trading activity should divert to the trading system

with the lowest transaction costs, and only unstable equilibria may exist when two venues

have identical cost structures. In contrast, Glosten (1998) shows that two electronic limit

order markets can coexist when tick sizes are discrete and time priority rules apply. Since

time priority is absent across venues, competition between liquidity suppliers increases,

which in turn raises aggregate liquidity. This point is further developed in Foucault and

3See for example “Trading at the speed of light”, Sept 12, 2011 on www.ft.com.
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Menkveld (2008), who coin this channel the “queue-jumping”effect. Competition between

exchanges also arises through differences in the tick size, where the venue with the smallest

tick size becomes most liquid (Biais, Bisière, and Spatt (2010) and Buti, Rindi, Wen, and

Werner (2011)). My model confirms all these findings, and adds the presence of duplicate

limit orders when some investors cannot access all trading venues.

Empirical research on competition between exchanges typically focusses on its impact

on aggregate liquidity and welfare. O’Hara and Ye (2011) find that competition between

exchanges reduces the effective cost of trading. Jovanovic and Menkveld (2011) find that

competition between an entrant (Chi-X) and incumbant market (Euronext) has an ambigu-

ous effect on total welfare. Degryse, de Jong, and van Kervel (2011) show that aggregate

liquidity increases by competition between venues with publicly displayed limit order books,

but worsens by competition of opaque markets. Instead, the current paper studies the effect

of competing exchanges on the liquidity supply of each of the individual exchanges.

Rather than assuming a fraction of non-SORT traders, market segmentation may also

arise when investors have different trading speeds. Biais, Foucault, and Moinas (2011) show

that high-frequency trading facilitates the search for trading opportunities, but increases

adverse selection costs for slow traders. As a result, the equilibrium level of investment in

high-frequency technology exceeds the welfare maximizing level. Hoffmann (2011) shows

that high-frequency traders have lower adverse selection costs on average, which in turn

causes slow traders to post less aggressive limit orders. The result is an ambiguous effect

on welfare, which depends on the stocks fundamental volatility. High-frequency traders

might extract rents from liquidity motivated traders when they operate as intermediaries

(Cartea and Penalva, 2011). McInish and Upson (2011) provide empirical evidence that

high-frequency traders pick off slower traders in the US, due to regulation that effectively

causes slow investors to trade against stale quotes. Hasbrouck and Saar (2011) argue that

trading speeds affect the competition between liquidity suppliers in a single trading venue.

This paper shows that different trading speeds might in fact cause duplicate limit orders

in fragmented markets.

Finally, this paper relates to recent research on high-frequency traders who act as

market makers (e.g., Jovanovic and Menkveld (2011), Menkveld (2011) and Guilbaud and

Pham (2011)). Such market makers gain the bid-ask spread by offering liquidity at both

sides of the limit order book, while simultaneously managing advere selection costs (e.g.,

Glosten and Milgrom (1985), Glosten and Harris (1988)) and inventory risk (e.g., Ho and

5



Stoll (1981)). This paper extends these works by analyzing market making when trading

is fragmented across electronic limit order books.

The remainder of the paper is structured as follows. Section 2 describes the duplicate

limit order hypothesis and the model. Section 3 presents the empirical work, after which I

conclude.

2 The model

In this section I first describe the duplicate limit order hypothesis. Then, I place it into a

model that quantifies this duplicate limit order effect. In essence, the model is a combina-

tion of Glosten (1998), Sandås (2001) and Foucault and Menkveld (2008). I contribute to

Foucault and Menkveld (2008) by allowing for adverse selection. Rather than analyzing the

single exchange setting in Sandås (2001), I focus on two competing centralized limit order

books. Compared to Glosten (1998), I introduce market segmentation by constraining some

traders to have access to one trading venue only, and show how this causes overestimation

of consolidated liquidity. Glosten (1998) and Sandås (2001) are special cases of my model.

2.1 Duplicate limit order hypothesis

In a fragmented trading environment time priority is not enforced between trading venues,

whereas price priority is enforced only when the trader has access to both venues. Price

priority implies that limit orders with a better price are executed before those with a worse

price, while time priority entails that limit orders placed first are executed first.4

Because of the absence of time priority across venues, liquidity suppliers can improve

their execution probabilities by placing similar limit orders on several venues simultane-

ously. After execution on one venue, they will cancel remaining limit orders on the other

venues.5 Therefore, I predict that a trade is immediately followed by cancellations of limit

orders on the same side of competing limit order books. A tradeoff arises however, as there

is a probability that both limit orders will be executed simultaneously, causing the liquidity

supplier to trade too much.

4In the US, price priority across markets is enforced by law, Reg NMS. Time priority however, crucial
for this hypothesis, is not enforced.

5Note that this strategy does not work in a single exchange setting due to time priority.
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Who might pursue this duplicate limit order strategy? I argue that high-frequency

traders who operate as market makers can strongly benefit from the increased execution

probability. That is, placing duplicate limit orders increases their trading rate and expected

profits. At the same time, using state of the art technology allows them to monitor several

venues simultaneously and cancel limit orders quickly after observing trades and other

news. Being able to cancel quickly reduces the expected cost of simultaneous execution

and adverse selection.6 In contrast, this strategy is likely not very attractive to “regular

traders.”For some traders, the technology required for continuous monitoring might be too

expensive. Other traders might use algorithms to optimally split up large quantities over

time, in which case they will not cancel limit orders since each child order is part of a large

parent order.

2.2 Model setup

This section quantifies the cost of executing duplicate limit orders in an adverse selection

framework. I show that duplicate limit orders face higher adverse selection costs because

conditional upon executing both limit orders, the incoming trade is larger and therefore

more informed on average.

Consider two venues, A and B, and two types of investors, market makers and traders.

The risk neutral market makers supply liquidity by placing limit orders on one or both

venues. They are profit maximizing and use high-frequency trading technology to quickly

access all venues. The risk averse traders demand liquidity by placing market orders.

Traders have private information or liquidity motives, and therefore want to trade quickly.7

The asset has a fundamental value Xt, which incorporates all information available up

until period t. The next periods fundamental value is given by

Xt+1 = Xt + µ+ εt+1, (1)

where µ is a trend and εt+1 a random innovation. Traders have some private information

on εt+1.

6In this context, trades on two venues occur simultaneously when the liquidity supplier is not fast
enough to adjust his outstanding limit orders after the first trade. Effectively, his quotes are stale when
the second trade comes in.

7Since traders are risk averse and may have liquidity motives, the market does not break down like in
a Kyle (1985) framework.
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Trading occurs sequentially over periods indexed by t. Each period t consists of three

stages. First, the market makers arrive consecutively and place limit orders on one or both

venues. They do so until no market maker finds it optimal to place additional limit orders.

Then the trader arrives, placing market orders with total size x that consume liquidity on

one or both venues. Finally, the market makers update their expected fundamental value of

the asset conditional on the incoming market order using some price impact function. Now,

the game starts over and is repeated for every trade. Because of high-frequency trading

technology, the last two stages might last only a few milliseconds.

Market makers place their limit orders on a discrete pricing grid, {p1, p2, ...pk} for the
ask side. The current expected value (midpoint) is p0, the best ask price p1 and the tick

size ∆ = pi − pi−1 > 0. I focus on the ask side only, prices larger than p0, as the bid side

is analogous. Denote the number of shares offered on venue j ∈ {A,B} at each price level
by {Qj1, Qj2, . . . , Qjk}. Price and time priority exists within each venue, but not between
venues.

2.3 The trader

The trader is randomly drawn from a population of traders, which consists of three types.

The first type only goes to venue A (fraction α), the second type only to venue B (fraction

β), and the third type uses smart order routing technology (SORT) to access both venues

simultaneously (fraction γ = 1− α− β). Simultaneous is defined here as sending trades to

both venues so fast that the market makers are unable to update their limit order schedules

inbetween the trades. When both venues offer the same best price, the SORT investors

are indifferent as to where to send their trades to. In this case, they simply use a tie-

breaking rule, which posits that with probability π they first buy shares on venue A, and

with probability (1− π) they first buy shares on venue B. The parameters α, β and π are

constant, as I focus on a high-frequency environment.

Four reasons motivate why some investors are not able to trade on both venues si-

multaneously. First, human traders with access to both venues might trade too slowly,

creating a delay of several milliseconds when they split up a trade across two venues. In

this case, high-frequency market makers have suffi cient time to update their limit order

schedules inbetween trades. As a result, human traders effectively have access to one ex-
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change only.8 This argument seems realistic, as McInish and Upson (2011) show that slow

traders are adversely selected because they often trade against stale quotes. Second, smart

order routing technology might be too expensive for some traders, as it requires fixed costs

for technological infrastructure, software, programmers and access to data feeds etc. Third,

fixed costs of sending your trade to two venues could make it more economical to trade

through one price but save on the transaction costs (such that fixed clearing and settlement

costs are paid only once). Fourth, investors may deliberately decide to split up large trades

over time, for example to benefit from the resiliency of liquidity. In this case, they might

not need the liquidity offered on additional venues.

The trader is a buyer or seller with equal probability, and has a reservation price pm > p1

at which she is not willing to buy.9 The expected order size is similar for all types, with

mean φ and exponential density function

f(x) =
1

φ
exp(−x

φ
) if x > 0 (market buy). (2)

The cumulative distribution function is F (·). Assuming an exogenous order size simpli-
fies the analysis, although in reality the size depends on several factors, such as the current

state of the limit order book, the trader’s expected fundamental value and her current

holdings. However, I mainly focus on the behavior of the market makers, described next.

2.4 The market makers

Since traders are informed about the innovations in the assets true value, market makers

update their expectation of the fundamental value based on the size of the incoming trade

x. The market makers observe trades on both exchanges. They use a price impact function

h(x) which is non-decreasing, since buy trades typically contain positive information with

respect to the true value (similarly, sells contain negative information). Then, larger orders

8In fact, when market makers can update inbetween the two trades, the slow trader will never prefer
to split up his trade across two venues. The reason is that the market makers update their limit order
schedules symmetrically across two venues. Therefore, if it is optimal to submit the first part of the trade
to venue A, then it is also optimal to submit the second part there.

9This small assumption prevents the trade from walking up the limit order book too much in case of
a thin order book, but does not affect the outcome of the model.
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cause more adverse selection costs and greater price impacts.

E(Xt+1|x) = E(Xt) + µ+ h(x). (3)

As in Sandås (2001), the price impact function is linear with coeffi cient λ,

h(x) = λx. (4)

For simplicity, I assume market makers face a fixed limit order execution cost c, while the

submission cost is zero.10 Given this setup, we can calculate the expected profit of a limit

order placed on any location q in the queue of limit orders on each venue. The profit

depends on the expected value of the asset conditional upon execution of the limit order.

For a limit order on venue A, this value is E(X|x > q) when the trader immediately goes

to A (denoted Eq(X) for brevity), and E(X|x > q + QB1) when the trader first buys all

shares QB1 on venue B and then goes to A. Denote the probability that the incoming order

x is larger than q as F q = 1−F (q), then the profit of a limit order on price level 1 of venue

A is

ΠA,q = (α + γπ)F q(p1 − c− Eq(X)) + γ(1− π)F q+QB1(p1 − c− Eq+QB1(X)). (5)

In the first term, the limit order executes against traders going to venue A only (α) and

against SORT investors who choose to trade on venue A first (γπ). Then, the expected profit

is simply the price minus the fixed cost c and the expected value of the asset conditional on

x > q. The second term represents SORT traders who first buy all the shares offered at price

p1 on venue B, and then buys shares on venue A (γ(1 − π)). Indeed, market makers only

realize profits when their limit orders are executed. Therefore, conditional upon execution,

the second term of the expected profit is lower since the incoming trade is larger and more

informed, i.e., E(Xt+1|x > q +QB1) > E(Xt+1|x > q).

Not surprisingly, we observe that the expected profit of limit orders on venue A de-

pends on the number of shares offered on venue B. Therefore, to obtain the equilibrium

liquidity supply we need to solve for the profit equations of limit orders on both venues

10Placing limit orders is costless on the venues we analyze empirically.
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simultaneously. The profitabilty of limit orders on price level 1 of venue B is

ΠB,q = (β + γ(1− π))F q(p1 − c− Eq(X)) + γπFQA1+q(p1 − c− EQA1+q(X)). (6)

2.5 Equilibrium

The model is in equilibrium when no market maker can profitably place an additional limit

order on any price level (as in Glosten (1994), Proposition 2). Therefore, the expected profit

of the marginal limit order, the single share offered at the end of the queue of limit orders,

must equal zero for all price levels on each venue. Following Sandås (2001), I substitute

q = QA1 (the marginal limit order) and integrate the profit equation over the distribution

of the incoming order x, using equations (2), (3) and (4)

ΠA1 =

∞∫
QA1

(α + γπ)(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx+

∞∫
QA1+QB1

γ(1− π)(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx = 0.

The first integral goes to infinity, because the marginal limit order is executed for any trade

larger or equal to QA1. For demonstrational purposes previous equations contain γ, which

I next substitute with (1− α− β) to calculate the solutions. Solving the integral gives

ΠA1 = (α + π(1− α− β))(p1 − c−Xt − λ(φ+QA1)) exp(−QA1

φ
)+

(1− π)(1− α− β)(p1 − c−Xt − λ(φ+QA1 +QB1)) exp(−QA1 +QB1

φ
) = 0.

The zero expected profit condition implies that the first line of the equation is positive while

the second line is negative. In equilibrium, the market makers expect to lose to traders

that go to venue B first, and profit from traders that go to venue A first. Similarly, for
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venue B we have

ΠB1 =

∞∫
QB1

(β + γ(1− π))(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx+

∞∫
QA1+QB1

γπ(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx = 0,

which I solve to obtain

ΠB1 = π(β + (1− π)(1− α− β))(p1 − c−Xt − λ(φ+QB1)) exp(−QB1

φ
)+

π(1− α− β)(p1 − c−Xt − λ(φ+QA1 +QB1)) exp(−QA1 +QB1

φ
) = 0.

The two equations with two unknowns can be solved implicitly11

QA1 =
p1 − c−Xt − λφ

λ
− γ(1− π)QB1

γ(1− π) + (α + γπ) exp(QB1
φ

)
, (7)

QB1 =
p1 − c−Xt − λφ

λ
− γπQA1

γπ + (1− (α + γπ)) exp(QA1
φ

)
.

The zero expected profit condition holds for prices deeper in the order book too. Now,

the expected profit consists of three terms, as a limit order on price level 2 on venue A

might get executed by traders of type α (who first buy QA1 and then QA2), by type γπ

(who first buy QA1, QB1 and then QA2), or by type γ(1− π) (who first buy QB1, QA1, QB2

and then QA2). For brevity, denote Z(x) = α(p2 − c−Xt − λx) 1
φ

exp(−x
φ
), then

ΠA2 =

∞∫
QA1+QB1

Z(x)dx+

∞∫
QA1+QB1+QA2

Z(x)dx+

∞∫
QB1+QA1+QB2+QA2

Z(x)dx. (8)

I solve the system for prices deeper in the order book in similar fashion to equation (7),

which gives an implicit solution of the form QA2 = f(QA1, QB1, QB2; parameters), and

similarly for other price levels.

11This solution is unique. In Equation (7), ∂QA1/∂QB1 < 0 and ∂QB1/∂QA1 < 0, since the first term
does not depend on QA1 or QB1, while we subtract a second term which consists of non-negative parameters
only.
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2.6 Testable implications

In this section I discuss two static predictions of the model, which hold at each point in

time, and two dynamic predictions, which hold before and after a trade.

The static predictions follow from the solutions for QA1 and QB1 in equation (7). The

first terms are identical, and equal the optimal quantity offered in a single venue setting

(the solution obtained by Sandås (2001)). However, we subtract a non-negative second

term, implying that the offered quantities on the individual venues are weakly lower in

a fragmented market. The second term reflects the adverse selection costs incurred by

the market makers when a SORT trader buys at the competing venue first. Based on

the solution, I derive the following static predictions (the proofs are in section A.1 of the

Appendix).

Proposition 1 When the liquidity at both venues has reached equilibrium:

1. An increasing fraction of SORT traders γ strictly reduces consolidated depth.

2. For γ > 0 and SORT traders do not always go to venue A first or always to venue

B first, i.e., 0 < π < 1, the consolidated liquidity is strictly higher than the liquidity

offered in a single exchange setting.

A larger fraction of SORT traders implies less segmented markets, as many traders have

access to the liquidity of both venues simultaneously. Effectively, market makers face higher

adverse selection costs when trading with a SORT trader, because there is a probability

that she traded on the competing venue already. Therefore, a higher fraction of SORT

traders increases expected adverse selection costs and reduces equilbrium liquidity supply.

The second part of the proposition relates to the benefit of competition between exchanges

as documented by Glosten (1998) and Foucault and Menkveld (2008), which stems from

market makers’ability to jump the queue of limit orders on one venue by placing limit

orders on the other. Such “queue jumping”erodes the profitability of existing limit orders

on the first venue and effectively increases competition between liquidity suppliers.

To demonstrate how the equilibrium liquidity depends on the individual parameters, I

take the first derivative from the solution of QA1 with respect to α, β, γ and π. The results

can be summarized as follows, and hold symmetrically for QB1 (see the Appendix).
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Proposition 2 Other things equal, the number of shares offered at price level 1 of venue

A, QA1:

1. Increases by π, the probability that SORT traders go to venue A first; by α, the

fraction of investors that only have access to venue A; and by β, those with access

only to venue B when holding α constant.

2. Decreases by QB1; by γ, the fraction of SORT investors; and by β when holding γ

constant.

As expected, the liquidity offered on venue A strictly increases in α, and decreases in γ.

These effects are solely driven by adverse selection costs, which reduce when more investor

go to venue A first (α and π) and increase when more investors go to venue B first and

then to venue A (γ(1 − π)).12 Since γ = 1 − α − β, liquidity on A increases with β when
holding α constant (such that the fraction of smart order routers decreases), and decreases

with β when holding γ constant (such that the fraction of α decreases). An increase in QB1

implies larger adverse selection costs when a SORT trader purchases QB1 first and then

QA1.

Notice the following extreme case. When the fraction of SORT investors γ = 0, the

second term of equation (7) becomes zero and the quantity offered on each venue is identical

to that of a single exchange setting. However, while consolidated liquidity is twice that

of the single exchange setting, investors are not better off since they can trade on one

venue only. Effectively, duplicates of limit orders are placed on both venues, such that

consolidated liquidity overstates liquidity available to investors by a factor of two.

The market segmentation that arises when γ < 1 leads to important dynamic changes

in market makers’liquidity supply, i.e., before and after a trade. This is the main prediction

of the model.

Proposition 3 Define the “consolidated liquidity impact” of a trade as the difference in

equilibrium consolidated liquidity before and after a one unit trade.

1. When γ = 1 or in the single exchange setting, the consolidated liquidity impact equals

one.
12The signs of the derivatives with respect to π and QB1 hold on the relevant domain of QA1, i.e., for

QA1 smaller or equal to the equilibrium solution.
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2. The consolidated liquidity impact decreases by γ. For γ < 1, the consolidated liquidity

impact is strictly larger than one, such that the impact of a trade on liquidity is larger

than the trade size.

In the first case, a one unit trade reduces consolidated liquidity with one unit because

the price impact of the trade equals the slope of the limit order book. However, a decrease

in γ reduces the market makers expected adverse selection costs, who in turn increase

their liquidity supply. But given that the information content of a trade is held fixed, it

must be that the increased liquidity is cancelled after the trade.13 Effectively, the private

information of a trade is incorporated on the competing venue via cancellations of limit

orders. The numerical example of the next subsection explains this in more detail.

Market segmentation does not arise when γ = 1 or in the single exchange setting, so

market makers have no incentive to place duplicate limit orders. The channel of duplicate

limit orders occurs in addition to the effect that for γ > 0, consolidated liquidity increases

because of competition between liquidity suppliers (the second part of Proposition (1)). In

what follows, I define duplicate liquidity as the liquidity impact minus one, i.e., the impact

of a trade on consolidated liquidity due to additional cancellations of limit orders.

Next we analyze the impact of a trade on the liquidity supply at the other venue.

Proposition 4 Define the “cross-venue liquidity impact” as the difference in equilibrium

liquidity at the competing exchange before and after a one unit trade. The cross-venue

liquidity impact as always negative, and increases in magnitude by the liquidity of the com-

peting exchange. Further, a similar effect takes place on the bid side after a trade on the

ask side, and vice versa.

The cancellations are simply a consequence of the private information revealed by the

trade. The price impact changes the market makers’ expected fundamental value, and

accordingly they cancel and resubmit their entire limit order schedules around this value.

If market makers offer more liquidity on a venue, the cancellations following trades on the

competing venue will be larger too. Proposition (2) describes the impact of the models’

parameters on QA1, which directly translate into the cross-venue liquidity impact. Also,

since a trade on the ask side increases the expected fundamental value, the liquidity supply

13The proposition that γ reduces consolidated liquidity is proved in the Appendix, which makes this
proof redundant.
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on the bid side of both venues will increase accordingly. This holds symmetrically for trades

on the bid side.

To summarize this section, a reduction in the fraction of SORT investors lowers liquidity

via less competition between liquidity suppliers, but this negative effect is more than offset

by the increase in duplicate limit orders. However, the duplicate limit orders will be

cancelled after a trade, as shown in the numerical example of the next section.

2.7 Numerical example

In this section I substitute the models parameters with realistic values and analyze the

equilibrium. In particular, we are interested in the impact of the fraction of traders that

might go to one venue only (α and β) on outstanding liquidity of both venues.

I choose the following parameter values. The average trade size is 1 unit (φ = 1), the

best ask price is £ 10.00 and the tick size is 0.5 cent, which is the relevant case for the sample

stocks with a price of £ 10.00. The fixed order execution cost c is 0.1 cent (one fifth of the

tick size). The price impact of a one unit trade λ = 20 basis points, and the tie-breaking

rule π = 0.5. The models’results come out clearest when I set the fundamental value Xt

just above £ 9.99, such that the depth in the order book is constant at each price level for

the case that all investors use SORT (γ = 1).14

The numerical outcomes for the four best price levels are shown in Table (1), where α

and β vary. The first row shows the single exchange setting, α = 1, which is the Sandås

(2001) solution. This is the benchmark case, and shows that 1.53 units are offered on the

best price level, and 2.5 units on all subsequent price levels. In this case, the quantities

offered beyond the best price are constant because of the tradeoff between improved prices

and higher adverse selection costs, which equals the tick size divided by the price impact.

The second column shows the situation where all investors use smart order routing

technology (γ = 1, α = β = 0). Compared to the benchmark case, consolidated liquidity

is 63% higher on price p1 (2.5 versus 1.53), and identical on all subsequent levels. This

corresponds to part 2 of Proposition (1), and shows that liquidity summed over the first

price level and beyond indeed dominates the benchmark case. Consistent with competition

14Specifically, I set the fundamental value Xt = 9.993943. Small changes in Xt relative to the fixed
pricing grid cause changes in offered liquidity at the best price, which interact with liquidity on the
competing exchange and in turn with liquidity deeper in the order book.
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between market makers, the SORT traders reduce the expected profits to market makers

with 33% (from 2.24 to 1.50 basis points per trade, in the bottom part of the Table).

From columns three to six the fraction of SORT traders gradually decreases, which

increases consolidated liquidity (part 1 of Proposition (1)). When we move towards the

full duplicate limit orders case (γ = 0, column (6)), consolidated liquidity is twice that of

the single exchange setting. In each case, the Table reports the market shares and the per

trade expected profits to markets makers of both venues.

The main prediction of the model is that a higher fraction of SORT traders reduces

the amount of duplicate limit orders (Proposition (3)). To illustrate this point, we analyze

the impact of a 2.5 share trade on the liquidity of both limit order books. The price

impact is 2.5λ = 1 tick, meaning that all prices shift up exactly one level after market

makers have revised their limit orders. When all investors use SORT (column (2)), the

trade consumes the 1.25 units of QA1 and 1.25 of QB1, and then the limit order books are

immediately in equilibrium (market makers will not need to revise limit orders on the ask

side). In effect, there are no duplicate limit orders and the consolidated liquidity impact

of a trade is exactly one. In contrast, when no investors use SORT (column (6)), the trade

will consume half of the offered liquidity on both venues (1.25 of QA1 and QB1), but then

the remaining shares will be cancelled because of the price impact of these trades. In effect,

after the market makers revision, the 2.5 share trades reduce liquidity on both venues with

5 shares, meaning that 100% of the order size is cancelled.

The second prediction of the model is that the cross-venue liquidity impact of a trade

depends on the liquidity of the competing exchange (Proposition (4)). We confirm this in

column (7), where 50% of the investors have access to venue A only and 50% use SORT.

Thus, venue A is very liquid compared to B. As above, when we trade 1.25 on venue A

and B simultaneously, the entire liquidity schedules shift up one price level. Therefore,

cancellations on QA1 are 0.17 (from 1.42-1.25 to 0), and QA2 are 1.12 (from 2.37 to 1.42),

whereas QB1 are 0 and QB2 is -0.10, a replenishment (from 1.15 to 1.25). In general, the

replenishment implies that after a trade on one exchange, limit orders may get cancelled

on the competing venue and replaced on the current venue to restore equilibrium.

Indeed, column (7) shows the realistic setting in Europe, where a large fraction of

investors is able to trade only on the traditional venue A (50%), and the remaining investors

use SORT to access a new entrant venue B. The model correctly describes the following

stylized facts. Despite that only SORT investors trade on venue B, liquidity is still fairly
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high here: 88% relative to venue A at p1, which reduces to 29% when we sum liquidity

on levels p1 to p4. This is consistent with the stocks analyzed empirically. In addition,

the liquidity at p1 of venue A is about 93% of that in the single venue setting in column

(1), which closely matches the finding of Degryse et al. (2011) that competition between

exchanges reduces liquidity of the traditional market with about 10%. Lastly, while the

entrant offers a substantial fraction of total liquidity, it has a relatively low market share

of trading volume (22%, highly consistent with the empirical results).

3 Empirical results

This section first presents a brief overview of the sample stocks trading environment, fol-

lowed by a data description and an explanation of the liquidity measures, the DepthAsk(X)

and DepthBid(X). Then I test the duplicate limit order hypothesis and discuss the results.

3.1 Market structure FTSE100 stocks

The FTSE100 stocks are primarily listed on the London Stock Exchange (LSE), which is

the fourth largest stock exchange in the world. In the sample period, November 2009,

the LSE executes approximately 61% of trading volume (excluding dark pool and OTC

volumes).15 These stocks are traded on the trading system SETS, an electronic limit order

market organised by the LSE which integrates market makers liquidity provision. Note that

the market makers in the model are regular investors, who use high-frequency technology

to operate like traditional market makers. Continuous trading occurs between 08:00 and

16:30, local time.

Once stocks are listed on the LSE, alternative trading venues may decide to organize

trading in them as well.16 Four important entrants have emerged which also employ publicly

displayed limit order books: Chi-X, Bats, Turquoise and Nasdaq OMX Europe. These

venues are regulated as Multi-lateral Trading Facilities (MTFs), the European equivalent

to ECNs. While these entrants in effect have the same market model as the LSE, they

differ with respect to trading technology (speed in particular), fixed and variable trading

fees, and some of the types of orders that may be placed (e.g., pegging a limit order price

15As reported by Fidessa, see http://fragmentation.fidessa.com.
16This feature makes the current study inherently different from literature on cross-listings, where firms

may choose to list on several exchanges to improve access to global capital.
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to the midpoint, such that it always equals the midpoint +n ticks). Investors can demand

(“take”) liquidity by issuing a market order or supply (“make”) liquidity by issuing limit

orders at any moment in time. All markets allow for visible, partially hidden (iceberg)

and fully hidden limit orders. The hidden portion of iceberg orders becomes visible after

(partial) execution of the visible part. Accordingly, limit orders have a price, transparency,

time priority within a trading venue, but not between trading venues.

Chi-X started trading in April 2007 and is the most succesful entrant in terms of market

share with 24% of trading volume in November 2009. Turquoise and Nasdaq OMX started

trading FTSE 100 firms as of September 2008, and Bats two months later. Their market

shares are substantially lower, with 5.5%, 1.8% and 7.6%, respectively. In May 2010 Nasdaq

OMX closed down, as they did not meet their targeted market shares.17 As of July 2009,

the five trading venues use identical tick sizes, which depend on the stock price. All the new

competitors employ a maker - taker pricing schedule, where executed limit orders receive

a rebate of 0.18 to 0.20 basis points, while market orders are charged 0.28 to 0.30 basis

points of traded value. These make-take fees are relatively small compared to a ticksize of

5 basis points (0.5 pennies) for a £ 10.00 stock.

The trading venues with publicly displayed limit order books execute approximately

60% of total volume, while the remaining 40% is executed on dark pools, Broker-Dealer

Crossing Networks, internalized and Over-The-Counter.

3.2 Data

The current analysis is based on a subsample of ten FTSE100 stocks, each randomly selected

from one market cap decile of the 100 constituents (i.e., a size stratified sample).18 The

sample period consists of 10 trading days (November 2 - 13, 2009), and high-frequency

data are taken from the Thomson Reuters Tick History database. For each stock, the data

contain separate limit order books for the five trading venues.

For each transaction, I observe the price, traded quantity and execution time to the

millisecond,19 while for each limit order placement, modification or cancellation, the dataset

17See “Nasdaq OMX to close pan-European equity MTF”, www.thetradenews.com.
18I choose ten stocks during ten trading days as computational limitations prevents me from using the

full sample of stocks or more trading days.
19If a single market order is executed against several outstanding limit orders, separate messages are

generated for each limit order.
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reports the timestamp and the ten best prevailing bid and offer prices and their associated

quantities.20

While the time stamp is per millisecond, I take snapshots of the limit order books

at the end of every 100th millisecond, resulting in approximately 30 million observations.

Higher frequencies are not useful when comparing multiple trading venues, as it may lead

to inaccuracies because of latency issues, i.e. millisecond reporting delays. Per snapshot, I

observe the available liquidity and that periods trading volumes on the buy and sell sides

of every venue. The advantage of taking snapshots is that the data become evenly spaced,

such that every observation receives the same weight in the regressions. Accordingly, lagged

variables in the regressions become easily interpretable.

I do not directly observe hidden and iceberg limit orders. However, from trades I can

construct the executed hidden quantity, based on the state of the order book directly before

and after the trade and the traded quantity. As such, I do observe hidden liquidity that

gets ‘hit’by a market order. These data are identical to those offered by several information

vendors, meaning I use the information set available to the market.

Panel A of Table 2 presents summary statistics for the sample stocks. As I select

stocks from within each size decile, there is a large variation in market cap: the mean is

£ 21 billion with a £ 37 billion standard deviation. Accordingly, also trading volume (in

shares and pounds) and realized volatility vary substantially. A large part of this variation

stems from Itv PLC, the smallest stock in the sample. In contrast, the market shares of

the five trading venues are fairly stable between firms, and highly representative for the

entire FTSE100 index.

Panel B of Table 2 presents summary statistics on the average number of limit orders

and transactions per minute. While the LSE’s market share is largest by far, the number of

transactions lie much closer together (i.e., Chi-X trades are smaller on average). On top of

that, the number of limit orders on Chi-X greatly exceeds the LSEs, on average 218 versus

160 per minute.

Worth mentioning is the ratio of limit orders to trades, which is 31:1 for the LSE, 51:1

for Chi-X and increases as a venues market share goes down to 123:1 for Nasdaq. This

is mostly due to high-frequency traders placing many limit orders, and shows that new

entrants are highly active despite a small overall market share. Chi-X and Bats are the

20This feature of the data makes it diffi cult to follow a limit order over time, because its location in the
order book can changes and may even fall outside the observable range of ten price levels.
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most succesfull new competing venues in terms of market share, number of transactions

and limit order book activity.

Finally, in Table 3 reports summary statistics on trading volume per minute, denomi-

nated in GBPs. For each venue I show the total buy and sell volume (left panel), and the

volume executed against hidden limit orders (right panel). Overall, the buy and sell sides

are fairly symmetric.

3.3 The DepthAsk(X) and DepthBid(X) liquidity measures

This subsection explains the DepthAsk(X) and DepthBid(X) measures, also used in Degryse

et al. (2011).

The DepthAsk(X) aggregates all shares offered at prices between the midpoint and the

midpoint plus X basis points. Similarly, the DepthBid(X) sums the shares offered within

the midpoint minus X basis points and the midpoint. The midpoint is the average of the

best bid and ask price available in the market, and I choose X = 10 basis points relative

to the midpoint. The price constraint X garantuees that I sum liquidity at prices close to

the midpoint, i.e. only at good price levels. This is important, as liquidity offered deeper

in the order book is less likely to be executed, and therefore less relevant to investors. The

number of shares in the interval are then converted to the value in GBPs.

Formally, define price level j = 1, 2, ..., J on the pricing grid and the midpoint M , the

average of the best ask and bid price available in the market, then for venue v,

DepthAsk(X)v =

J∑
j=1

PAsk
j,v QAsk

j,v 1
(
PAsk
j,v < M(1 +X)

)
, (9a)

DepthBid(X)v =
J∑
j=1

PBid
j,v Q

Bid
j,v 1

(
PBid
j,v > M(1−X)

)
. (9b)

The measures are calculated at the end of every 100 millisecond interval and represent

liquidity offered at the bid and ask side, per trading venue. When taking higher values

for X, liquidity deeper in the order book is also incorporated. Then, comparing different

price levels X reveals the shape of the order book. For example, if the depth measure

increases rapidly in X, the order book is deep while if it increases only slowly, the order

book is relatively thin. The order book is asymetric when the absolute difference between
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DepthAsk(X) and DepthBid(X) is high.

The measure has several features that make it highly suitable for the empirical ap-

proach. First, the measure is calculated per venue, for the bid and ask side, which allows

us to analyze correlations between the provision and consumption of liquidity across venues,

sides and over time. Second, the measure can directly be related to trading volumes, as

both are denoted in pounds. Third, the Depth measure incorporates limit orders beyond

the best price levels, making it robust to small, price improving limit orders. Such orders

are often placed by high-frequency traders, who mostly drive the dynamics in the model.

Fourth, by choosing a fixed interval the measure is independent of the tick size, which varies

across stocks. For a detailed discussion and comparison of this measure with related liquid-

ity measures such as the Cost of Roundtrip (CRT (D)) and Exchange Liquidity Measure

(XLM(V )), I refer the interested reader to Degryse et al. (2011).

Table 4 contains summary statistics on the Depth(10) and Depth(50) measures for

the bid and ask side, reported in GBPs and calculated per exchange. The statistics are

based on single observations per tenth of a second per stock, equal weighted over all stocks.

Depending on the tick sizes, the Depth(10) aggregates liquidity of two to five price levels

on the bid and ask side. First and most strikingly, we observe that the liquidity offered on

Chi-X is 86% of the LSE, while they execute only a third of the LSE volume. As predicted

by the model, this implies that indeed a substantial fraction of investors only have access to

the LSE. The liquidity available at Bats is roughly 40% of the liquidity at the LSE, while

Turquoise and Bats have approximately 20% each. The ask side contains on average 3%

more liquidity than the bid side, meaning that the order books are very symmetrical.

The regression analysis works with changes in DepthAsk(X) and DepthBid(X), i.e.,

the value of the current minus the previous observation. As Eq. (9) shows, these changes

depend on the activity in the limit order book and on the level of the midpoint. The

model relates changes in the depth measures due to limit order book activity only, i.e.,

the placement, cancellation, modification and execution of limit orders. Therefore, I de-

fine Chg_DepthAsk(X) as the difference in DepthAsk between each period, holding the

midpoint constant

Chg_DepthAsk(X)i,t = DepthAsk(X,Mt−1)i,t −DepthAsk(X,Mt−1)i,t−1. (10)

The measure simply shows how much liquidity in GBPs is added or removed from one

period to the next.
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3.4 Methodology

The model predicts that high-frequency traders operating as market makers place duplicate

limit orders on several exchanges. Therefore, we expect that a trade is followed by cancel-

lations of limit orders on the same side of the limit order books of competing venues. This

prediction holds equally for buy and sell trades. The second prediction of the model is that

the cancellations should occur to a greater extent on venues with a high share of non-SORT

traders, i.e., the traditional exchange. The reason is that the market makers place more

duplicate limit orders on the LSE than on Chi-X, which in turn will be cancelled after a

Chi-X trade. The third prediction, consistent with theories of asymmetric information, is

that new limit orders will be placed on the bid side after a buy trade (and on the ask side

after a sell), including some duplicate limit orders.

Cancellations of limit orders occur when the Chg_DepthAsk(10) is negative (after

controlling for trading volume). Thus, I regress the Chg_DepthAsk(10) of venue v on

contemporeneous and lagged buy and sell volumes of all venues. I add lags of ten seconds,

which are 100 periods as the data are sampled at a 100 millisecond frequency, because the

model’s predictions apply to a high-frequency trading environment and should be incor-

porated very quickly. Instead of estimating 100 individual lagged coeffi cients, I add five

variables that average trading volume of 1, 2-4, 5-10, 11-20 and 21-100 periods away, per

venue for buy and sell volumes. Section A.2 in the appendix explains in more detail how I

obtain the cumulative impact of a transaction over time.

A trade is classified as Buy or Sell, and define trading venue v = 1, ..., 5, for the current

and five lagged groups l, stock i and time t. I test the model’s predictions with the following

regressions:

Chg_DepthAsk(10)Vit = ci +
5∑
v=1

5∑
l=0

(
βBuyl,v ×Buyvit−l + βSelll,v × Sellvit−l

)
+

5∑
v=1

(
βBuyv ×BuyHidvit + βSellv × SellHidvit

)
+ εit. (11)

The term after the firm fixed effects represents the buy and sell volumes (in GBPs) for

the five venues covering the six lagged groups. The term on the second line controls for

contemporeneous hidden buy and sell liquidity (observed when executed), which is added

for the following reason. The effect of a buy trade on Chg_DepthAsk(10) of that venue
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should mechanically be −1 : a one pound trade reduces the depth with exactly one pound.

However, since a trade executed against a hidden limit order does not reduce DepthAsk(10),

I control for executed hidden liquidity.

This regression is executed ten times: for the bid and ask sides of five trading venues.

It shows how many pounds close to the midpoint are submitted or cancelled after a one

pound buy or sell trade on some venue. Note that the effects do not die out over time,

as for example a buy trade might contain positive price information, such that some limit

orders will permanently be cancelled on the ask side.

3.5 Results

The regression results are reported in Table (5), with the change in DepthAsk and Depth-

Bid of all venues as dependent variables. Each column represents one regression, showing

separate coeffi cients for buy and sell volumes, per trading venue. The dependent and inde-

pendent variables are all measured in GBPs. Within each venue, the displayed coeffi cients

represent the cumulative effect over time (the running sum). I only show the effect within

one tenth of a second, after 1 second and after 10 seconds. Intermediate lagged values

are estimated to improve the model fit, but for brevity not reported. Next I discuss the

findings for the DepthAsk only, as the results for the DepthBid are symmetric.

In line with the Proposition (4), the first column shows that a one pound buy trade at

Chi-X is immediately followed by cancellations on the LSE of -0.21 pounds (-21%). After ten

seconds, the effect is -0.61, meaning that more than half of the Chi-X trade size is cancelled

on the LSE. The coeffi cients for Bats are similar, -0.27 immediately and -0.54 after ten

seconds (all significant at the 1% level). This effect is economically very large, and implies

that trades on entrant venues are immediately followed by cancellations on the traditional

market. Note that the effect cannot be explained by investors who simultaneously place

trades on several venues, since the regression controls for trades on other venues. Also,

the regression controls for the execution of hidden limit orders. The effect of Nasdaq and

Turquoise trades on LSE liquidity are negative, but surprisingly small.21

The immediate effect of a one pound LSE buy trade on LSE DepthAsk is -0.83 pounds.

This implies that while the trade removed 1 pound, either 17 cents is immediately replen-

21I need to investigate the possibility that Nasdaq and Turquoise mainly attract trades when only they
offer the best price in the market. In this case, we would not expect cancellations.
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ished, or, first a new limit order is placed which immediately provokes the trade. The latter

explanation is consistent with the findings of Hasbrouck and Saar (2009). A Chi-X buy

trade reduces Chi-X DepthAsk with -1.31 (column (2)), implying that beyond the reduction

of 1 pound, an additional and significant 31 cents is cancelled. Coeffi cients of the other

venues lie between -0.70 and -1.26.

Consistent with the second part of Proposition (4), the LSE indeed responds more

strongly to Chi-X and Bats trades than vice versa. In column (2) and (3), LSE trades

reduce liquidity on Chi-X and Bats with -0.18 and -0.05 after ten seconds (compared to

-0.61 and -0.54 above).

The cancellation effect also holds particularly strong between Bats and Chi-X, in both

directions. Bats and Chi-X have immediate cross-coeffi cients of -0.58 and -0.18 (column

(2-3)), and are the most succesfull entrants in terms of market share. These findings

suggest that a fraction of high-frequency market makers operate on the LSE, Chi-X and

Bats simultaneously, generating the strong correlations of liquidity between these venues.

In contrast, Turquoise and Nasdaq seem more independent, as their liquidity does not

respond much to trades on the LSE, Chi-X and Bats and vice versa.22

The immediate effect of any venues sell trades on LSE DepthAsk(10) is economically

large and positive, with coeffi ents ranging from 0.10 to 0.30 (column (1), bottom panel).

This result is consistent with an information effect: the sell trade conveys negative informa-

tion about the stock, such that market makers improve prices (and quantities) of their ask

limit orders. In addition, the finding is consistent with selling investors who use algorithms

that optimally place market orders on the bid sides and new limit orders on the ask sides

(as predicted by theory of e.g., Parlour (1998)).

Concluding, the results confirm that consolidated liquidity is overstated in a fragmented

market, because a single transaction is followed by substantial cancellations of limit orders

on the other venues. In the model, these cancellations would not occur in a single venue

setting or when all traders use smart order routing technology.

22A possible explanation is that at times, Nasdaq and Turquoise offer zero DepthAsk(10). Obviously,
in such periods their liquidity does not respond to competitors trades, pushing the estimated coeffi cients
toward zero.
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3.6 Drivers of the cancellation effect

In this section I analyze the driving forces behind the cancellation effect. In particular, I

am interested in the variation in cancellation rates of the venues across stocks and over

time, and how they are influenced by observable market characteristics.

I estimate the previous model for hour t of stock i, but use as dependent variable the

change in ask (or bid) liquidity summed over all venues, i.e., the change in consolidated

Depth(10). These regressions represent the impact of a trade at venue v on market wide

depth, consistent with Proposition (3). In a new dataset I store the estimated coeffi cients

Coefv,it accumulated over one second after the trade, for buy trades on the ask side liquidity

and sell trades on the bid side liquidity. The sample size is extended from 10 to all 21 trading

days in November 2009 for the same 10 stocks used in the previous analysis, which results in

1890 observations. Next, I filter the data by dropping observations where the trading venue

v of Coefv,it has executed less than £ 10.000 or 50 transactions. Without this restriction,

the estimated coeffi cients on the cancellation rates have too high standard errors and are

not economically meaningful. As a consequence, we disregard the regressions of Turquoise

and Nasdaq OMX altogether because these venues are insuffi ciently active.23 In addition,

I winsorize Coefv,it at the 1% and 99% level to reduce the impact of outliers.

Based on the new dataset, I run the following two regressions for firm i, venue V =

{LSE,Chi-X,Bats}, and hour h

CoefV,ih = ci + δh + Fragih + LS_LSEih + εih, (12)

CoefV,ih = ci + δ(h) + Fragih + LS_LSEih + Ln(entrant trades)ih +Order Imbih +

V olatih + Ln(turnover)ih + Ln(Depth(10) cons)ih + εih. (13)

Using estimated coeffi cients as dependent variable in a second step regression does not

bias the coeffi cients of the second step.24 Frag is the degree of fragmentation of stock-

hour ih, defined as (1-HHI). HHI is the sum of squared market shares of the five venues

based on trading volume (also used in Degryse et al. (2011)). LS_LSE is the liquid-

ity share of the LSE, defined as the ratio of LSE Depth(10) over consolidated Depth(10).

Ln(entranttrades) is the logarithm of the number of transactions at entrant venues. Order

23We do incorporate these venues when calculating consolidated liquidity, although the results are
qualitatively unaffected when leaving them out.

24The measurement error from the first step only increases the standard errors of the coeffi cients in the
second step.
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imbalance (Order Imb) is the difference between the logarithm of buy volume and sell vol-

ume. V olat is the realized volatility based on 5-minute underlying stock returns, calculated

as the sum of 12 squared 5-minute returns, hour by hour. Ln(turnover) and Ln(Depth(10)

cons) are the logarithms of trading volume (in GBP) and consolidated Depth(10). We add

firm fixed effects and daily dummy variables δ(h) to absorb fixed stock and day character-

istics.

Summary statistics of the regression variables are presented in Table (6). The top panel

shows that the degree of fragmentation is fairly constant across stocks and over time, with

a mean of 0.59 and standard deviation of 0.09. This also holds for the LSE liquidity share,

with a standard deviation of 0.11. In contrast, the number of trades on the entrants vary

substantially, with a mean of 435 and a standard deviation of 485. The order imbalance

is highly volatile too, since a one standard deviation increase implies that buy volume is

43% larger than sell volume. The bottom panel shows the cancellation rates of trades at

the individual venues on consolidated liquidity. The impact on consolidated liquidity is

approximately equal to the sum of the impact on the individual venues, as reported in

Table (5). The standard deviations of Turquoise and Nasdaq are very large, which justifies

excluding them from further analysis.

The regression results for the three trading venues are presented in Table (7). Frag

should be a good proxy for the number of traders with SORT technology, which corresponds

to Proposition (3). In the model, market makers face higher adverse selection costs when

trading with SORT traders, because there is a risk that the SORT trader already bought

shares on the competing venue, which in turn implies a larger and more informed trade on

average. Thus, we expect that Frag correlates negatively with the amount of cancellations.

The coeffi cient on Frag is indeed negative for Chi-X and Bats (columns (2-3)), but not

for the LSE (column (1)). While this result seems contrasting, a likely explanation is that

Frag also proxies for the activity of market makers who operate on several venues. Then,

a higher level of fragmentation implies more cross-market activity and more cancellations.

This explanation mainly holds for trades on the LSE, which is always active, whereas Chi-

X and Bats are only active when the market is fragmented.25 When I control for other

variables that proxy for the activity of cross-market market makers (columns (4-6)), Frag

becomes strongly negative (and significant). Then, a one standard deviation increase in

25An alternative explanation is that some liquidity providers on the LSE do not operate on the entrant
venues, i.e., do not cancel their limit orders after they trade on the LSE.
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Frag (0.09) reduces cancellations of LSE trades by 5% and Chi-X and Bats trades by 30%

and 43%.

The liquidity share of the LSE is negatively correlated with the amount of duplicate

limit orders, and significant in all regressions. A large LSE liquidity share means that

market makers are less active on the entrants which results in fewer cross-market activity

and cancellations. These coeffi cients are economically large, as a one standard deviation

change reduces the cancellation rates with 20-40% (depending on the trading venue).

The remaining control variables in columns (4-6) have the expected signs. An increasing

number of entrant trades increases the cancellation rates, which is consistent with market

makers operating more actively on entrant venues. Similarly, more overall liquidity (con-

solidated depth) is consistent with a higher amount of duplicate limit orders. Turnover has

a negative sign, which means that in periods of high trading activity the market makers

place less duplicate limit orders.

The bottom panel of Table (7) shows the results using the cancellation effects of sell

trades on bid liquidity as dependent variable, and are highly symmetric.

4 Conclusion

Equity markets have evolved rapidly in recent years due to the increasing number of trading

venues and heavy investments in high-frequency trading technology. I show that a specific

type of high-frequency traders, those who operate like modern day market makers, might

in fact cause a strong overestimation of liquidity aggregated across trading venues. The

reason is that these market makers place duplicate limit orders on several venues, and after

execution of one limit order they quickly cancel their outstanding limit orders on competing

venues. As a result, a single trade on one venue is followed by reductions in liquidity on all

other venues.

The empirical analysis confirms that trades are followed by substantial cancellations

on competitors. That is, within 100 milliseconds after trades on some venues 39 − 85%

of the order size is cancelled on competitors. After one second this number increases to

98 − 125%, which shows that the impact of a trade on liquidity is in fact twice the trade

size. Note that the reduction in liquidity is due to cancellations of limit orders, since the

analysis controls for transactions on all individual trading venues.
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The analysis is executed on a sample of FTSE100 stocks, which are fairly fragmented in

the sample period. The main advantage of using these stocks is the rich data: I observe the

entire limit order books of the five trading venues that compete for these stocks. The data

represent all publicly displayed liquidity, which is the same information set available to the

general public. By sampling the data at one observation per tenth of a second, I study

high-frequency trading behavior. The paper contributes to the literature by analyzing the

impact of high-frequency trading strategies on the demand and supply of liquidity across

exchanges.

The results relate to the benefits and drawbacks of equity market fragmentation. While

previous research typically shows a beneficial effect of fragmentation on liquidity, the analy-

sis argues that the benefits, while still positive, are mitigated because of duplicate limit

orders. Note that duplicate limit orders will not arise when all investors use smart order

routing technology (SORT).

An additional result of the model is that liquidity shocks are highly correlated across

trading venues. Therefore, static measures of consolidated liquidity (and quoted depth)

overstate the liquidity available to investors, since a single trade reduces liquidity on all

venues. However, liquidity measures such as the quoted spread and effective spread are un-

affected by the duplicate limit orders. My results are particularly important to algorithms

designed to minimize execution costs by splitting up trades over time. Indeed, the strong

cancellations mitigate the benefits of order splitting– a result that cannot be observed by

static liquidity measures.

My model focusses on two exchanges only, but can already predict a substantial fraction

of duplicate limit orders. Therefore, the relevance of the model is only strenghtened by the

fact that most European stocks trade on more than four exchanges (with publicly displayed

limit order books) and some US stocks on so much as twelve exchanges. A larger number

of trading venues encourages market makers to duplicate their limit orders.

The predictions of the model are very relevant to US markets too. Indeed, it seems

that all US traders use SORT because the regulator prohibits the execution of trades at

prices inferior to the best available price. However, duplicate limit orders will still arise

when some traders are unable to split up trades simultaneously across venues. When a

trader leaves a millisecond delay between the split, high-frequency traders can observe the

first part of the trade and quickly cancel duplicate limit orders on other venues before the

second part of the trade arrives. Therefore, the results of the model also hold when the
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trading speeds varies across investors.

The main policy implication of the model is that fair markets require traders to have

simultaneous access to all trading venues. In any other case non-SORT or slow traders

pay a higher price for liquidity, which is transfered to the SORT traders. This result is

consistent with McInish and Upson (2011), who find that high-frequency traders are able to

exploit slower traders in other ways too (see also Biais et al. (2011) and Hoffmann (2011)).

A second implication is that the decision of a trader to acquire SORT increases the liquidity

she has access to, but also imposes a negative externality on other traders. The overall

welfare effects depend on the cost of acquiring smart routing technology, and are therefore

ambiguous.

A Appendix

A.1 Theory

This section summarizes the proofs of the propositions in the model.

• The consolidated liquidity in a fragmented market is strictly larger than liquidity in
a single exchange setting (Proposition (1)).

Proof. Denote the liquidity in a single exchange setting as Q1, which is the solution from

Sandås (2001). I repeat equation (7), and rewrite as

QA1 =
p1 − c−Xt − λφ

λ
− γ(1− π)QB1

γ(1− π) + (α + γπ) exp(QB1
φ

)
≡ Q1 − cB1QB1 A1(a)

QB1 =
p1 − c−Xt − λφ

λ
− γπQA1

γπ + (1− (α + γπ)) exp(QA1
φ

)
≡ Q1 − cA1QA1. A1(b)

I need to show that QA1 +QB1 > Q1, which is equivalent to cB1QB1 + cA1QA1 < Q1.

cB1QB1 + cA1QA1 = cB1QB1 + cA1Q1 − cA1cB1QB1

= cA1Q1 + (1− cA1)cB1QB1

< cA1Q1 + (1− cA1)Q1 = Q1.
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In the first equality I simply replace QA1 with the first line of equation A1(a); which I then

rewrite in the second line. The inequality holds because cB1QB1 < Q1, since cB1 < 1 and

QB1 ≤ Q1.

• Both venues co-exist when α < 1 and β < 1. Co-existence means that both venues

attract a positive amount of liquidity and market share.

Proof. It is suffi cient to show that liquidity on both venues is strictly positive, because

SORT traders will always use liquidity of both venues when the incoming order size is

suffi ciently large (i.e., when the size goes to infinity). This is proved in the last equality

above, that QA1 = Q1 − cB1QB1 > 0, and symmetrically for venue B.

• The first derivates of the solution of QA1 with respect to π, γ, α, β and QB1 are

straightforward and not reported, but available upon request (Proposition (2)).

• The market makers’profit of limit orders on price level 1 is given by

QA1∫
0

(α + γπ)
∞∫
q

Πi(x)dx+ γ(1− π)
∞∫

q+QB1

Πi(x)dxdq. (14)

Calculating the profit of market makers involves integrating over the profitability of

all marginal shares at each price level. I calculate the profit of each marginal share by

integrating over the incoming trade x, which are traders who either go immediately to

venue A, (α+ γπ), or traders that go to venue B first and then to A, γ(1−π). For brevity,

denote Πi(x) = (pi−Xt− c−λx)f(x), then the market makers profit of all limit orders on

price level 1 of venue A is

A.2 Empirical

This section shows that the methodology in section 3.4 measures cumulative effects over

time. That is, in regression (11) I add contemporeneous terms and lagged values of trading

volumes 100 periods ago (i.e., ten seconds). Instead of estimating 100 coeffi cients, I create

six variables representing the averaged lagged volumes of the current, 1, 2-4, 5-10, 11-20

and 21-100 periods away, per venue for buy and sell volumes. Define t as the current period,
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i as the start and j as the end of the intervals (e.g., i = 2 and j = 4). Then

V oli−j =
1

j − i+ 1

j∑
n=i

V olt−n.

The periods of lagged values are chosen such that they maximize the model fit. An

example of how the data looks like is shown in the table below, where a £ 1.00 trade occurs

on some venue at time t = 1. The first four columns show the values of the contemporeneous

and three lagged groups. The fifth column shows the cumulative effect of the regression

coeffi cients over time, calculated as a running sum of the individually estimated coeffi cients.

By constructing the variables as averages, the long-term effect of a trade is simply the sum

of the estimated coeffi cients. The standard errors are also calculated based on this sum.

Data example of a trade at time t = 1.
Each βt represents the estimated coeffi cient of lagged average volumes t periods away, as
described in regression (11).

Time Vol0 Vol1 Vol2−4 Vol5−10 Cumulative effect

0 0 0 0 0 0
1 1.00 0 0 0 β0
2 0 1.00 0 0 β0 + β1
3 0 0 0.33 0 β0 + β1 + 0.33β2−4
4 0 0 0.33 0 β0 + β1 + 0.66β2−4
5 0 0 0.33 0 β0 + β1 + β2−4
6 0 0 0 0.20 β0 + β1 + β2−4 + 0.2β5−10
7 0 0 0 0.20 β0 + β1 + β2−4 + 0.4β5−10
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Table (1) Numerical Example
We solve the model for the quantities offered on the four best ask price levels of venue
A (upper panel) and B (second panel). We vary the parameter values of the fraction of
investors with access to venue A only (α) and venue B only (β). The fraction of investors
with smart order routing technology (γ) varies accordingly, defined as 1−α−β. The lower
panels show the market shares and the per trade total expected profits to market makers
of each venue. The expected profits are expressed in basis points relative to the midpoint.
The remaining model parameters are held fixed. The average trade size is 1, with a per unit
price impact of 20 basis points. The best ask price is £ 10.00, the tick size is 0.5 pennies
and the fixed trading cost is one tenth of a cent. I specifically set the fundamental value
to £ 9.993943, such that offered liquidity is constant at each price level when all investors
use SORT (column 2). When both venues offer the best price, SORT traders are equally
likely to go to venue A or B first (π = 0.5).

(1) (2) (3) (4) (5) (6) (7)

α 1 0 0.1 0.1 0.4 0.5 0.5
β 0 0 0 0.1 0.4 0.5 0
γ 0 1 0.9 0.8 0.2 0 0.5
Venue A
QA1 1.53 1.25 1.29 1.30 1.46 1.53 1.42
QA2 2.50 1.25 1.78 1.87 2.47 2.50 2.37
QA3 2.50 1.25 2.49 2.86 2.58 2.50 2.55
QA4 2.50 1.25 2.64 2.94 2.52 2.50 2.50
Venue B
QB1 0 1.25 1.25 1.30 1.46 1.53 1.25
QB2 0 1.25 1.23 1.87 2.47 2.50 1.15
QB3 0 1.25 0.78 2.86 2.58 2.50 0.15
QB4 0 1.25 0.03 2.94 2.52 2.50 0.00
Market shares
A 1.00 0.50 0.58 0.50 0.50 0.50 0.78
B 0.00 0.50 0.42 0.50 0.50 0.50 0.22
Market maker profits in basis points
A 2.24 0.75 0.93 0.84 1.06 1.12 1.55
B 0.00 0.75 0.66 0.84 1.06 1.12 0.35
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Table (2) Summary statistics of sample firms.
Summary statistics are presented for the 10 FTSE100 sample stocks, calculated using data of
November 2009. Panel A shows market cap (in millions), price, average daily traded volume
(millions of shares), turnover (millions of pounds), realized volatility and the market shares of
the five trading venues. The trading venues are the London Stock Exchange (LSE), Chi-X, Bats
Trading, Turquoise and Nasdaq OMX Europe. Panel B shows limit order book data, where
statistics are equally weighted based on one observation per tenth of a second, per stock. For
each venue, statistics on the average number of transactions and limit order updates per minute
are shown, per venue. The stocks in our sample are Aviva, Hsbc Holdings Plc, Itv Plc, Kingfisher,
Lonmin, National Grid, Pearson, Sage group, Vedanta Resources and Xstrata.

Mean Stdev Max
Panel A: Stock characteristics

Market Cap 21,062 37,827 125,930
Price 8.06 7.13 23.3
Cumvolume 527 554 1,883
Turnover 3,104 4,188 13,650
Volatility 3.92 1.38 6.10
Share LSE 66.2 5.24 73.8
Share Chi-X 20.5 3.52 25.8
Share Bats 6.44 1.68 9.49
Share Turq. 5.17 1.07 6.29
Share Nasdaq 1.77 0.65 2.73

Panel B: Limit order book

Trades LSE 5.16 9.70 347
Trades Chi-X 4.32 7.46 283
Trades Bats 1.80 3.59 84
Trades Turq. 1.19 2.41 51
Trades Nasdaq 0.61 1.54 56
Limits LSE 159.84 216.31 6,999
Limits Chi-X 218.46 373.08 11,934
Limits Bats 123.92 231.60 7,308
Limits Turq. 98.25 146.95 3,296
Limits Nasdaq 75.63 154.66 7,081
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Table (3) Summary statistics of trading volume per minute.
Buy and sell volumes in GBPs are reported, showing averages of volume per minute, equal
weighted over 10 stocks and 10 trading days. The left panel shows all volume and the right
panel volume executed against hidden limit orders.

Volume Hidden

Mean Stdev Max Mean Stdev Max

Sell LSE 39,960 131,673 12,910,331 2,692 35,785 4,001,096
Sell Chi-X 17,492 43,216 990,636 578 3,501 155,871
Sell Bats 5,909 18,996 1,149,016 798 4,344 150,729
Sell Turq 4,082 12,535 349,188 425 2,719 86,744
Sell Nasdaq 1,429 6,667 482,222 8 358 30,040

Buy LSE 41,989 149,532 12,280,297 3,122 37,028 1,644,776
Buy Chi-X 17,674 44,352 1,186,893 625 3,944 318,701
Buy Bats 5,404 18,715 1,536,919 760 4,217 209,244
Buy Turq 4,088 13,377 396,196 532 3,317 126,089
Buy Nasdaq 1,553 7,034 342,203 26 845 65,950
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Table (4) Summary statistics Depth(X) measure.
Summary statistics are presented using limit order book data, containing one observation per tenth
of second per stock, for 10 trading days in November 2009. The statistics are equally weighted
over observations. The mean, standard deviation and maximum of Depth(10) and Depth(50) on
the ask and bid side are shown. The Depth(10) on the ask side reflects the available liquidity,
in pounds, offered with prices in the interval of Midpoint and Midpoint + 10bps. Similarly, the
Depth(10) on the bid side reflects the liquidity offered with prices between Midpoint - 10bps and
Midpoint. Depth(50) sums liquidity within 50 basis points from the midpoint. The trading venues
are LSE, Chi-X, Bats Trading, Turquoise and Nasdaq OMX Europe.

Ask side Mean Stdev Max

Depth(10) LSE 66,620 117,961 8,940,000
Depth(10) Chi-X 57,693 78,948 1,100,000
Depth(10) Bats 26,311 39,358 527,947
Depth(10) Turq. 14,915 18,817 411,974
Depth(10) Nasdaq 12,824 21,345 213,733
Depth(50) LSE 446,687 371,316 9,040,000
Depth(50) Chi-X 268,467 210,066 1,650,000
Depth(50) Bats 88,363 94,112 800,103
Depth(50) Turq. 71,495 47,170 570,524
Depth(50) Nasdaq 58,096 44,992 332,529

Bid side

Depth(10) LSE 63,244 90,327 4,420,000
Depth(10) Chi-X 55,907 77,345 1,020,000
Depth(10) Bats 25,404 38,187 553,743
Depth(10) Turq. 14,273 19,277 525,517
Depth(10) Nasdaq 13,241 22,891 538,609
Depth(50) LSE 431,658 339,853 5,100,000
Depth(50) Chi-X 270,657 213,624 1,790,000
Depth(50) Bats 85,748 92,792 1,170,000
Depth(50) Turq. 74,360 51,850 638,623
Depth(50) Nasdaq 61,156 51,443 664,181
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Table (5) The cumulative impact of turnover on Depth(10).
Each column represents one regression, showing the cumulative effect over time of buy and sell turnover on

changes in DepthAsk(10) and DepthBid(10) of one venue. Changes in the DepthAsk(10) reflect changes

in liquidity offered with prices in the interval of Midpoint and Midpoint + 10bps. These changes stem

from limit order book activity (placement, cancellations and execution of limit orders). The data consist

of one observation per tenth of a second, for each stock. The independent variables are contemporeneous

and lagged buy and sell trading volumes for each of the five venues, in GBP. We show the cumulative

effect over time (i.e., the running sum) of current trades, and trades one and ten seconds ago. Accordingly,

each panel shows the immediate, short and long-term effects of one venues transactions on another venues

liquidity. The regressions also contain executed hidden volume as control variables (not reported for

brevity). Standard errors are clustered per firm - halfhour, a single asterix indicates significance at the 1%

level.

Ask Side Bid Side

£ Buys Sec LSE Chi-X Bats Turq. Nasdaq LSE Chi-X Bats Turq. Nasdaq

LSE 0 -0.83* -0.25* -0.09* -0.02* -0.02* 0.28* 0.24* 0.09* 0.02* 0.01*
LSE 1 -0.80* -0.30* -0.14* -0.04* -0.05* 0.35* 0.31* 0.15* 0.05* 0.05*
LSE 10 -0.67* -0.18* -0.05* -0.03* -0.04* 0.33* 0.23* 0.09* 0.04* 0.04*
Chi-X 0 -0.21* -1.31* -0.18* -0.02* -0.03* 0.26* 0.68* 0.18* 0.03* 0.03*
Chi-X 1 -0.52* -1.47* -0.46* -0.09* -0.13* 0.50* 1.00* 0.45* 0.13* 0.12*
Chi-X 10 -0.61* -1.29* -0.37* -0.09* -0.13* 0.67* 1.11* 0.46* 0.15* 0.14*
Bats 0 -0.27* -0.58* -1.26* -0.04* -0.10* 0.37* 0.60* 0.51* 0.05* 0.08*
Bats 1 -0.46* -0.79* -1.21* -0.07* -0.17* 0.52* 0.88* 0.69* 0.09* 0.16*
Bats 10 -0.54* -0.83* -1.01* -0.08* -0.15* 0.87* 1.16* 0.81* 0.14* 0.16*
Turq 0 -0.04 -0.04* -0.05* -0.70* -0.03* 0.13* 0.11* 0.08* 0.14* 0.04*
Turq 1 -0.11* -0.08* -0.02 -0.69* -0.04* 0.22* 0.15* 0.06* 0.19* 0.08*
Turq 10 -0.13 -0.06 0.04 -0.68* -0.02 0.17 0.13 0.01 0.18* 0.07*
Nasdaq 0 -0.03 0.03 -0.01 0.01 -0.75* -0.05 -0.08 0.04 0.07* 0.14*
Nasdaq 1 -0.08 0.08 0.04 0.04 -0.63* 0.00 -0.18 -0.08 0.02 0.12*
Nasdaq 10 -0.24 0.02 0.07 0.06 -0.62* 0.43 -0.19 -0.11 0.06 0.19*

£ Sells
LSE 0 0.30* 0.27* 0.10* 0.02* 0.02* -0.78* -0.29* -0.10* -0.02* -0.02*
LSE 1 0.38* 0.35* 0.17* 0.06* 0.06* -0.75* -0.35* -0.16* -0.05* -0.06*
LSE 10 0.39* 0.29* 0.12* 0.05* 0.05* -0.65* -0.23* -0.06* -0.04* -0.04*
Chi-X 0 0.27* 0.70* 0.19* 0.02* 0.02* -0.24* -1.28* -0.20* -0.02* -0.03*
Chi-X 1 0.46* 0.99* 0.43* 0.12* 0.11* -0.51* -1.40* -0.43* -0.08* -0.13*
Chi-X 10 0.57* 1.08* 0.44* 0.13* 0.12* -0.53* -1.15* -0.31* -0.08* -0.13*
Bats 0 0.29* 0.56* 0.43* 0.04* 0.08* -0.21* -0.58* -1.15* -0.05* -0.10*
Bats 1 0.37* 0.81* 0.62* 0.07* 0.15* -0.38* -0.77* -1.11* -0.09* -0.16*
Bats 10 0.53* 1.00* 0.70* 0.09* 0.16* -0.41* -0.69* -0.88* -0.08* -0.15*
Turq 0 0.10* 0.08* 0.08* 0.13* 0.04* -0.06* -0.03 -0.07* -0.63* -0.05*
Turq 1 0.17* 0.12* 0.06* 0.18* 0.08* -0.08 -0.03 -0.06* -0.63* -0.03*
Turq 10 0.33* 0.11 -0.02 0.20* 0.09* -0.17 -0.02 0.00 -0.59* -0.04
Nasdaq 0 0.21* 0.04 0.12* 0.11* 0.16* -0.24* -0.04 -0.05 -0.03 -0.82*
Nasdaq 1 0.22 -0.01 0.07 0.11* 0.20* -0.43* -0.04 0.00 -0.03 -0.76*
Nasdaq 10 0.35 -0.14 -0.05 0.09* 0.23* -0.84* -0.18 -0.00 -0.03 -0.68*

R2 .123 .115 .069 .025 .026 .104 .113 .071 .022 .027
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Table (6) Descriptive statistics.
Descriptive statistics of the independent variables of regression (11) are shown. The variables are con-

structed per stock-hour. The top panel shows Frag, defined as 1 - HHI based on trading volume, and the

LSE liquidity share (the LSE Depth(10) divided by the consolidated Depth(10)). Next is the logarithm

of the number of trades on entrants, and the Order Imbalance, defined as the logarithm of buy volume

minus the logarithm of sell volume. Ln(Turnover) the logarithm of turnover summed over all venues, and

Ln(Depth(10) Cons) is the logarithm of the consolidated Depth(10). Last is the realized volatility, defined

as the sum of squared 5 minute returns measured hour-by-hour. The bottom panel shows the cancellation

effect of a buy (sell) trade of one venue on the consolidated ask (bid) liquidity. The cancellation effect is

the impact (summed over one second) of a 1 share buy-trade at one venue on market wide liquidity offered

on the ask sides. These variables are the coeffi cients of regression (11), estimed per stock-hour using as de-

pendent variable the consolidated Depth(10) on the ask or bid side. We only use estimates when the venue

in question executes >50 trades and >£ 100.000, and winsorize at the 99% level. The reported variables

are winsorized at the 1% level, and .

Mean Stdev Max

Frag 0.59 0.09 0.78
Liq Share LSE 0.40 0.11 0.95
Ln(entrant trades) 5.63 0.98 8.38
Order Imbalance -0.01 0.43 4.28
Ln(Turnover) 14.99 1.38 19.04
Ln(Depth(10) Cons) 12.43 1.01 16.09
Realized Vol 0.02 0.12 0.96

Cancellation effect

Buy-Ask LSE 1.44 0.71 3.70
Buy-Ask Chi-X 2.07 1.11 5.73
Buy-Ask Bats 1.96 1.74 7.19
Buy-Ask Turq 1.14 1.65 7.57
Buy-Ask Nasdaq 1.44 3.31 14.69
Sell-Bid LSE 1.53 0.77 4.18
Sell-Bid Chi-X 1.99 1.06 5.48
Sell-Bid Bats 1.91 1.68 7.20
Sell-Bid Turq 0.95 1.50 5.41
Sell-Bid Nasdaq 1.51 2.99 14.62

Observations 1890
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Table (7) Drivers of the cancellation effect.
We show the variables that determine the cancellation effect of trades on consolidated liquidity, per trading

venue. The cancellation effect is the impact (summed over one second) of a venues buy-trades on market

wide liquidity offered on the ask side (top panel). The bottom panel shows the impact of sell-trades on

liquidity on the bid side. This effect is estimated per stock-hour in regression (11), using as dependent

variable the consolidated Depth(10) on the ask (bid) side. These coeffi cients are the dependent variables

in the regressions below. We add the following independent variables. Frag is defined as 1 - HHI based

on trading volume, and Liq Share LSE is the LSE liquidity share (the LSE Depth(10) divided by the

consolidated Depth(10)). Ln(entrant trades) is the logarithm of the number of trades on entrant venues

and Ln(Turnover) the logarithm of market wide turnover. Ln(Depth(10) Cons) is the logarithm of the

consolidated Depth(10), and Realized Vol is the realized volatility defined as the sum of squared 5 minute

returns measured per hour-by-hour. We add firm and day fixed effects. We apply robust Newey-West

standard errors (HAC) with 9 lags, t-statistics are shown in parantheses.

LSE Chi-X Bats LSE Chi-X Bats
Buy trades on consolidated Ask liquidity

(1) (2) (3) (4) (5) (6)

Frag 1.147*** -1.087** -0.788 -0.520* -3.358*** -4.742***
(4.09) (-2.39) (-0.71) (-1.74) (-4.31) (-3.59)

Liq Share LSE -2.261*** -3.659*** -3.130*** -1.775*** -3.110*** -2.275**
(-9.05) (-8.84) (-3.36) (-7.79) (-7.21) (-2.49)

Ln(entrant trades) 0.585*** 0.927*** 1.750***
(7.10) (4.71) (4.97)

Order Imbalance -0.291*** -0.0314 -0.341*
(-7.00) (-0.43) (-1.85)

Ln(Turnover) -0.640*** -0.774*** -1.535***
(-9.10) (-4.21) (-5.05)

Ln(Depth(10) cons) 0.423*** 0.506*** 0.408**
(10.93) (6.62) (2.20)

Realized Vol -0.288** 0.0833 -1.107
(-2.33) (0.42) (-1.10)

Observations 1,718 1,689 1,058 1,718 1,689 1,058
R2 0.143 0.078 0.018 0.261 0.143 0.047

Sell trades on consolidated Bid liquidity
(7) (8) (9) (10) (11) (12)

Frag 1.175*** -1.296*** -0.981 -0.891** -3.028*** -4.790***
(3.55) (-2.86) (-0.81) (-2.37) (-4.42) (-3.03)

Liq Share LSE -1.413*** -3.911*** -3.001*** -0.602* -3.437*** -2.336**
(-3.98) (-10.33) (-3.32) (-1.77) (-8.93) (-2.46)

Ln(entrant trades) 0.572*** 0.625*** 1.654***
(6.02) (3.78) (4.47)

Order Imbalance 0.256*** 0.0803 -0.170
(4.04) (1.01) (-0.91)

Ln(Turnover) -0.651*** -0.597*** -1.461***
(-7.73) (-3.98) (-4.72)

Ln(Depth(10) cons) 0.607*** 0.467*** 0.277
(11.12) (6.89) (1.54)

Realized Vol -0.185 -0.374** 0.287
(-0.92) (-2.12) (0.17)

Observations 1,718 1,689 1,057 1,718 1,689 1,057
R2 0.067 0.090 0.017 0.211 0.139 0.043
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Introduction

Credit Default Swaps (CDS) have been one of the most significant financial innova-

tions in the last 20 years. They have become very popular among investment and

commercial banks, insurance companies, pension fund managers and many other eco-

nomic agents. As a result, the market has experienced enormous growth. According

to the Bank of International Settlements (BIS), the notional amount of single-name

CDS contracts grew from $5.1 trillion in December 2004 to $33.4 trillion in June 2008,

and was still $18.4 trillion in June 2010 following a decline in the aftermath of the

credit crisis.

The recent crisis put CDS in the spotlight, with policymakers now assigning them

a central role in many reforms. The success of these reforms depends on the efficient

functioning of the CDS market and on a thorough understanding of how it operates.

Recognizing this, much research has been dedicated to the valuation of CDS contracts,

econometric analysis of CDS premia, violations of the law of one price in the context

of basis trades, search frictions, counterparty risk, private information, and moral

hazard problems associated with holding both bonds issued by a particular entity

and CDS protection on this entity.1

In this paper we focus on another aspect of CDS. We study how the payoff of a

CDS contract is determined when a credit event occurs. Our theoretical analysis of the

unusual auction-based procedure reveals that this mechanism may lead to deviations

from fundamental value. The mispricing is attributable, in large part, to strategic

bidding on the part of investors holding CDS. Empirically, we find that CDS auctions

undervalue the underlying securities, by 10% on average. Because the magnitude of

this mispricing is economically large, our findings may have implications for how CDS

are valued, used and analyzed.

In a nutshell, a CDS is a contract that protects a buyer against the loss of a bond’s

principal in the case of a credit event (e.g., default, liquidation, debt restructuring,

etc.). Initially, CDS were settled physically with the cheapest-to-deliver option. Un-

der such settlement, the protection buyer was required to deliver any bond issued

1This work includes, but is not limited to, Acharya and Johnson (2007), Arora, Gandhi, and
Longstaff (2009), Bolton and Oehmke (2011), Duffie (1999), Duffie and Zhu (2011), Garleanu and
Pedersen (2011), Longstaff, Mithal, and Neis (2005), Pan and Singleton (2008), and Parlour and
Winton (2010).



by the reference entity to the protection seller in exchange for the bond’s par value.

But as a result of the rapid development of the CDS market, the notional amount of

outstanding CDS contracts came to exceed the notional amount of deliverable bonds

many times over. This made physical settlement impractical and led the industry to

develop a cash settlement mechanism. This mechanism is the object of our study.

While many derivatives are settled in cash, the settlement of CDS in this way is

challenging for two reasons. First, the underlying bond market is opaque and illiquid,

which makes establishing a benchmark bond price difficult. Second, parties with

both CDS and bond positions face recovery basis risk if their positions are not closed

simultaneously.2 The presence of this risk renders it necessary that the settlement

procedure include an option to replicate an outcome of the physical settlement.

In response to these challenges, the industry has developed a novel two-stage

auction. In the first stage of the auction, parties that wish to replicate the outcome of

the physical settlement submit their requests for physical delivery via dealers. These

requests for physical delivery are aggregated into the net open interest (NOI). Dealers

also submit bid and offer prices with a commitment to transact in a predetermined

minimal amount at the quoted prices. These quotations are used to construct the

initial market midpoint price (IMM). The IMM is used to derive a limit on the

final auction price, which is imposed to avoid potential price manipulation. The

limit is referred to as the price cap. The NOI and the IMM are announced to all

participants.

In the second stage a uniform divisible good auction is implemented, in which

the net open interest is cleared. Each participant may submit limit bids that are

combined with the bids of the dealers from the first stage. The bid that clears the

net open interest is declared to be the final auction price, which is then used to settle

the CDS contracts in cash.

We analyze the auction outcomes from both theoretical and empirical perspectives.

2Recovery basis risk can be illustrated as follows. Imagine a party that wishes to hedge a long
position in a bond by buying a CDS with the same notional amount. The final physically-settled
position is known in advance: the protection buyer delivers a bond in exchange for a predetermined
cash payment equal to par value. However, the cash-settled position is uncertain before the auction:
the protection buyer keeps the bond, pays the auction-determined bond value (unknown at the
outset) to the protection seller, and receives par value in exchange. The difference between the
market value of the bond held by the protection buyer and the auction-determined value is the
recovery basis.
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To study price formation, we follow Wilson (1979) and Back and Zender (1993). We

formalize the auction using an idealized setup in which all auction participants are

risk-neutral and have identical expected valuations of the bond, v. This case is not

only tractable, but also provides a useful benchmark against which to test whether

CDS auctions lead to the fair-value price. While Wilson (1979) shows that a standard

uniform divisible good auction can result in underpricing specifically, we demonstrate

that the current auction design can yield a final price either above or below v.

Our conclusion differs because participants of CDS auctions can have prior posi-

tions in derivatives on the asset being auctioned. If a participant chooses to settle

her entire CDS position physically, her final payoff is not affected by the auction

outcome. However, in the case of cash settlement, buyers of protection benefit if the

auction price is set below fair value, while sellers benefit if it is set above. Therefore,

an auction outcome depends on the size of the net CDS positions; that is, positions

that remain after participants submit their physical settlement requests.

To be specific, consider the case of positive NOI: a second-stage auction in which

the agents buy bonds. When the net CDS positions of protection sellers are less than

the NOI, the Wilson (1979) argument still holds. Underpricing occurs if the auction

participants choose not to bid aggressively. The current auction rule is such that

bids above the final price are guaranteed to be fully filled, so participants are not

sufficiently rewarded for raising their bids. On the other hand, when the net CDS

positions of sellers are larger than the NOI, bidding above the fair value and realizing

a loss from buying NOI units of bonds is counterbalanced by a reduction in the net

payoff of the existing CDS contracts. In the absence of a cap, the auction price would

be at least v.

Our theory delivers a rich set of testable predictions. Full implementation of such

tests requires data on individual CDS positions and bids, which are not available.

Nonetheless, we are able to analyse some aspects of the auction data and find evidence

that is consistent with our theoretical predictions. We use TRACE bond data to

construct the reference bond price. Using the reference bond price on the day before

the auction as a proxy for v, we find that the auction price is set at the price cap

whenever there is overpricing. Furthermore, the extent of overpricing does not exceed

the spread between the price cap and IMM . When the final auction price is uncapped

and the NOI is positive (a typical situation), the bonds are undervalued and the
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degree of undervaluation increases with the NOI. In addition, underlying bond prices

follow a V pattern around the auction day. In the 10 days before the auction, prices

decrease by 30% on average. They reach their lowest level on the day of the auction

(average underpricing of 10%), before reverting to their pre-auction levels over the

next 10 days. This evidence suggests that our conclusions are robust to the choice of

the reference bond price.

Our findings prompt us to consider ways to mitigate the observed mispricing. In

a standard setting, in which agents have no prior positions in derivative contracts

written on the asset being auctioned, Kremer and Nyborg (2004) suggest a likely

source of underpricing equilibria. They show that a simple change of allocation rule

from pro-rata on the margin to pro-rata destroys all underpricing equilibria. We show

that the same change of allocation rule would be beneficial in our setting. In addition,

we suggest that imposing an auction price cap conditional on the outcome of the first

stage could further reduce mispricing in equilibrium outcomes.

To our knowledge there are four other papers that examine CDS auctions, two of

which were carried out independently and contemporaneously with our work. Three

of the papers analyse the auctions empirically. Helwege, Maurer, Sarkar, and Wang

(2009) find no evidence of mispricing in an early sample of 10 auctions, of which only

four used the current auction format. Coudert and Gex (2010) study a somewhat

different sample of auctions, using Bloomberg data for reference bond prices. They

document a large gap between a bond’s price on the auction date and the final auction

price. However, they do not link the gap to the net open interest, nor do they provide

any theoretical explanations for their findings. Gupta and Sundaram (2011) also

document a V pattern in bond prices around the auction day. Under a simplifying

assumption that bidders in the second stage of the auction have zero CDS positions,

they find that a discriminatory auction format could reduce the mispricing. Finally,

Du and Zhu (2011) examine the outcome types that are possible in CDS auctions.

Their paper considers a special case of our model, in which they implicitly assume that

all market participants can buy and short-sell bonds of distressed companies at the fair

value v without any restrictions. This setup implies that only overpricing equilibria

can exist. Further, they treat physical settlement requests as given. We show that

this setup results in fair pricing if agents choose physical settlement optimally. We

allow for a more realistic setup, where there are constraints on short selling, and
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where some participants cannot hold distressed debt. We show that there can be

substantial underpricing in this case.

The remainder of the paper is organized as follows. Section 1 describes the CDS

auction methodology as it is currently employed. Section 2 describes the auction

model. Section 3 provides the main theoretical analysis. Section 4 relates the pre-

dictions of the theoretical model to empirical data from CDS auctions. Section 5

discusses modifications that could potentially improve the efficiency of the auction.

Section 6 concludes. The appendix contains proofs that are not provided in the main

text.

1 The Auction Format

This discussion is based on a reading of the auction protocols available from the

ISDA website. Initially, CDS auctions were designed for cash settlement of contracts

on credit indexes. The first auction that allowed single-name CDS to be settled in

cash was the Dura auction, conducted on November 28, 2006. The auction design

used in this case, and for all subsequent credit events, consists of two stages.

In the first stage, participants in the auction submit their requests for physical

settlement. Each request for physical settlement is an order to buy or sell bonds at the

auction price. To the best of the relevant party’s knowledge, the order must be in the

same direction as – and not in excess of – the party’s market position, which allows

the participants to replicate traditional physical settlement of the contracts. For

example, if a party is long one unit of protection and submits a request to physically

deliver one bond, the resulting cash flow is 100 and is identical to that of physical

settlement.

In addition, a designated group of agents (dealers) makes a two-way market in the

defaulted assets by submitting bids and offers with a predefined maximum spread and

associated quotation size. The spread and quotation sizes are subject to specification

prior to each auction and may vary depending on the liquidity of the defaulted assets.3

The first stage inputs are then used to calculate the net open interest (NOI) and

an ‘initial market midpoint’ (IMM), which are carried through to the second part

3The most common value of the spread is 2% of par. Quotation sizes range from $2 to $10 million;
$2 million is the most common amount.
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of the auction. The NOI is computed as the difference of the physical-settlement

buy and sell requests. The IMM is set by discarding crossing/touching bids and

offers, taking the ‘best half’ of each, and calculating the average. The best halves

would be, respectively, the highest bids and the lowest offers. If a dealer’s quotation

is crossed and is on the wrong side of the IMM , she must make a payment, called an

adjustment amount, to the ISDA. That is, she pays the adjustment amount if her bid

is higher than the IMM and the NOI is to sell, or if an offer is lower than the IMM

and the NOI is to buy. The adjustment amount itself is a product of the quotation

amount and the difference between the quotation and the IMM.

As an example, consider the Nortel Limited auction of February 10, 2009. Table

1 lists the market quotes submitted by participating dealers. Once these quotes have

been received, the bids are sorted in descending order and the offers in ascending

order. The highest bid is then matched with the lowest offer, the second highest bid

with the second lowest offer, and so on. Figure 1 displays the quotes from Table

1 which are organized in this way. For example, the Citibank bid of 10.5 and the

Barclays offer of 6.0 create a tradeable market.

The IMM is computed from the non-tradeable quotes. First, the ‘best half’ of

the non-tradeable quotes is selected (i.e., the first five pairs). Second, the IMM

is computed as an average of bid and offer quotes in the best half, rounded to the

nearest one-eighth of a percentage point. In our example there are nine pairs of such

quotes. The relevant bids are: three times 7.0 and two times 6.5. The relevant offers

are: two times 8.0; two times 8.5; and 9. The average is 7.6 and the rounded average

is 7.625.

Given the established IMM and the direction of open interest, dealers whose

quotes have resulted in tradeable markets pay the adjustment amount to the ISDA. In

the case of Nortel, the open interest was to sell. Thus, dealers whose bids crossed the

markets were required to pay an amount equal to (Bid-IMM) times the quotation

amount, which was $2 MM. Citigroup had to pay (10.5 − 7.625)/100 × $2MM =

$57500 and Banc of America Securities had to pay (9.5 − 7.625)/100 × $2MM =

$37500.

Finally, the direction of open interest determines the cap on the final price, where

the price itself is set in the second part of the auction. In the Nortel example the

open interest was to sell, which meant the final price could exceed the IMM by a

6



maximum of 1.0. Thus the price cap was 8.625, as depicted in Figure 1.

After the publication of the IMM , the NOI, and the adjustment amounts, the

second stage of the auction begins. If the NOI is zero, the final price is set equal

to the IMM. If the NOI is non-zero, dealers may submit corresponding limit orders

on behalf of their customers (including those without CDS positions) – and for their

own account – to offset the NOI. Agents submit ‘buy’ limit orders if the NOI is

greater than zero and ‘sell’ limit orders if it is less than zero. In practice, it is unlikely

that all agents involved in the first stage will participate in the second stage as well.

Participants in the CDS market are diverse in terms of their investment objectives

and institutional constraints. For example, many mutual and pension funds may not

be allowed to hold any of the defaulted bonds.

Upon submission of the limit orders, if the NOI is to buy, the auction adminis-

trators match the open interest against the market bids from the first stage of the

auction, and against the limit bids from the second stage of the auction. They start

with the highest bid, proceeding through the second highest bid, third highest bid,

and so on, until either the entire net open interest or all of the bids have been matched.

If the NOI is cleared, the final price is set equal to the lowest bid corresponding to

the last matched limit order. However, if this bid exceeds the IMM by more than

the cap amount (typically half of the bid-offer spread), the final price is simply set

equal to the IMM plus the cap amount. If all bids are matched before the NOI

clears, the final price will be zero and all bids will be filled on a pro-rata basis. The

procedure is similar if the NOI is to sell. If there are not enough offers to match the

net open interest, the final price is set to par.

2 The Auction Model

The main question we wish to address in this paper is whether the current auction

format may result in mispricing. Our approach is motivated by the classic work

of Wilson (1979) and Back and Zender (1993) who show how this can happen in

a standard divisible-good auction. As in Wilson (1979), we assume that all agents

are risk-neutral and have identical expectations about the value of the bonds. This

case is not only tractable, but also provides a useful benchmark from which to judge

whether the auction leads to the fair-value price. This approach is popular in the
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auction literature because if equilibria that result in mispricing can be found in this

admittedly basic setup, it is likely they will also be possible in more realistic scenarios.

The goal of this section is to formalize the auction process described in Section

1. There are two dates: t = 0 and t = 1. There is a set N of strategic players and

the total number of agents is |N | = N. A set of dealers Nd constitutes a subset of all

players, Nd ⊆ N , |Nd| = Nd. Each agent i ∈ N is endowed with ni ∈ R units of CDS

contracts and bi ∈ R units of bonds. Agents with positive (negative) ni are called

protection buyers (sellers). Because a CDS is a derivative contract, it is in zero net

supply,
∑

i ni = 0. One unit of bond pays ṽ ∈ [0, 100] at time t = 1. The auction

takes place at time t = 0 and consists of two stages.

2.1 First Stage

In the first stage, the auction initial market midpoint (IMM) and the net open

interest (NOI) are determined. Agent i may submit a request to sell yi (or buy if

yi < 0) units of bonds at par (100). Each protection buyer, ni > 0, is only allowed

to submit a request to sell yi ∈ [0, ni] units of bonds, while each protection seller,

ni < 0, may only submit a request to buy yi ∈ [ni, 0] units of bonds. Given these

requests, the NOI is determined as follows:

NOI =
N∑
i=1

yi. (1)

In addition, all dealers from the set Nd are asked to provide a price quote πi.

Given πi, dealer i must stand ready to sell or buy L units of bonds at bid and offer

prices πi + s and πi − s, s > 0. Quotes from dealers whose bids and offers cross

are discarded. The IMM , denoted by pM , is then set equal to the average of the

remaining mid-quotations.

2.2 Second Stage

At this stage, a uniform divisible good auction is held. If NOI = 0 then pA = pM . If

NOI > 0, participants bid to buy NOI units of bonds. In this case, each agent i may

submit a left-continuous non-increasing demand schedule xi(p) : [0, pM +s]→ R+∪0.

8



Let X(p) =
∑

i∈N xi(p) be the total demand. The final auction price pA is the highest

price at which the entire NOI can be matched:

pA = max{p|X(p) ≥ NOI}.

If X(0) ≤ NOI, pA = 0. Given pA, the allocations qi(p
A) are determined according

to the ’pro-rata at the margin’ rule:

qi(p
A) = x+

i (pA) +
xi(p

A)− x+
i (pA)

X(pA)−X+(pA)
× (NOI −X+(pA)), (2)

where x+
i (pA) = limp↓pA xi(p) and X+(p) = limp↓pA X(p) are the individual and total

demands, respectively, above the auction clearing price.

If NOI < 0, participants offer to sell |NOI| units of bonds. Each agent i may

then submit a right-continuous non-decreasing supply schedule xi(p) : [100, pM−s]→
R− ∪ 0.

As before, the total supply is X(p) =
∑

i∈N xi(p). And the final auction price pA

is the lowest price at which the entire NOI can be matched:

pA = min{p|X(p) ≤ NOI}.

If X(100) ≥ NOI, pA = 100. Given pA, the allocations qi(p
A) are given by:

qi(p
A) = x−i (pA) +

xi(p
A)− x−i (pA)

X(pA)−X−(pA)
× (NOI −X−(pA)),

where x−i (pA) = limp↑pA xi(p) and X−(p) = limp↑pA X(p) are the individual and total

supplies, respectively, below the auction clearing price.

2.3 Preferences

Two types of agents participate in the auction: dealers and common participants. In

our setup, all agents are risk-neutral and have identical expected valuations of the

bond payoff, v. The agents’ objective is to maximize their wealth, Πi, at date 1,
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where

Πi = (v − pA)qi
auction-allocated bonds

+ (ni − yi)(100− pA)
net CDS position

+ 100yi
physical settlement

+ v(bi − yi)
remaining bonds

. (3)

and qi is the number of auction-allocated bonds.

Dealers differ from common participants in that they submit quotes (πi) in the

first stage, which are made public after the auction. Thus, due to regulatory and

reputational concerns, dealers may be reluctant to quote prices that are very different

from v unless the auction results in a large gain. To model these concerns we assume

that dealers’ utility has an extra term −γ
2
(πi − v)2, γ ≥ 0.

2.4 Trading Constraints

So far we have assumed a frictionless world in which every agent can buy and sell

bonds freely. This is a very strong assumption which is violated in practice. Therefore,

we extend our setup to allow market imperfections. Specifically, we place importance

on the following two frictions.

First, some auction participants, such as pension funds or insurance companies,

may not be allowed to hold bonds of defaulted companies. To model this, we introduce

Assumption 1.

Assumption 1 Only a subset N+ ⊆ N , N+ 6= ∅ of the set of agents can hold a

positive amount of bonds after the auction.

Second, because bonds are traded in OTC markets, short-selling a bond is generally

difficult. To model this, we introduce Assumption 2.

Assumption 2 Each agent i can sell only bi units of bonds.

In what follows, we solve for the auction outcomes both in the frictionless world and

under Assumptions 1 and 2.
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3 Analysis

We now turn to a formal analysis of the auction described in the preceding section.

We solve for the auction outcomes using backward induction. We start by solving

for the equilibrium outcome in the second stage of the auction, for a given IMM

and NOI. We then find optimal dealer quotations πi and optimal physical settlement

requests in the first stage given the equilibrium outcomes of the second stage.

3.1 Second Stage

As previously noted, stage two consists of a uniform divisible good auction with the

goal of clearing the net open interest generated in the first stage. A novel feature

of our analysis is that we study auctions where participants have prior positions in

derivative contracts written on the asset being auctioned. We show that equilibrium

outcomes in this case can be very different from those realized in ‘standard’ auctions

(that is, auctions in which ni = 0 for all i).

We first consider the case in which all CDS positions are common knowledge.

(This assumption is relaxed later.) If this is the case, each agent i takes the following

as given: the NOI, a set of all CDS positions ni, a set of physical settlement requests

yi, i ∈ N , and the demand of other agents x−i(p). Therefore, from equation (3), each

agent’s demand schedule xi(p) solves the following optimization problem:

max
xi(p)

(v − p(xi(p), x−i(p))) qi(xi(p), x−i(p)) + (ni − yi) (100− p(xi(p), x−i(p))) . (4)

The first term in this expression represents the payoff realized by participating in

the auction, while the second term accounts for the payoff from the remaining CDS

positions, ni − yi, which are settled in cash on the basis of the auction results.

To develop intuition about the forthcoming theoretical results, consider the bid-

ding incentives of the auction participants. The objective function (4) implies that,

holding the payoff from the auction constant, an agent who has a short (long) re-

maining CDS position wishes the final price to be as high (low) as possible. However,

agents with opposing CDS positions do not have the same capacity to affect the auc-

tion price. The auction design restricts participants to submit one-sided limit orders

depending on the sign of the NOI. If the NOI > 0, only buy limit orders are allowed,
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and therefore agents with short CDS positions are capable of bidding up the price. By

contrast, all that an agent with a long CDS positions can do to promote her desired

outcome is not to bid at all. The situation is reversed when the NOI < 0.

Continuing with the case of the NOI > 0, consider an example of one agent with

a short CDS position. She has an incentive to bid the price as high as possible if the

NOI is lower than the notional amount of her CDS contracts (provided she is allowed

to hold defaulted bonds). This is because the cost of purchasing the bonds at a high

auction price is offset by the benefit of cash-settling her CDSs at the same high price.

In contrast, if the NOI is larger than the notional amount of her CDS position, she

would not want to bid more than the fair value of the bond, v. This is because the

cost of purchasing bonds at a price above v is not offset by the benefit of cash-settling

CDSs. In what follows, we show that this intuition can be generalized to multiple

agents, as a long as we consider the size of their aggregate net CDS positions relative

to the NOI.

Proposition 1 Suppose that NOI > 0 and Assumption 1 holds.

1. If ∑
i∈N+:ni<0

|ni − yi| ≥ NOI, (5)

and pM +s > v, then in any equilibrium the final auction price pA ∈ [v, pM +s].

Furthermore, there always exists an equilibrium in which the final price is equal

to the cap: pA = pM + s. If pM + s < v then the final price is always equal to

the cap: pA = pM + s.

2. If ∑
i∈N+:ni<0

|ni − yi| < NOI, (6)

then only equilibria with pA ≤ min{pM + s, v} exist.

Proof. Part 1. Intuitively, if condition (5) holds, there is a subset of agents for whom

a joint loss incurred by acquiring a number of bonds equal to the NOI, at a price

above v, is dominated by a joint gain from paying less on a larger number of short

CDS contracts that remain after the physical settlement. As a result, these agents
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bid aggressively and can push the auction price above v unless it is constrained by

the IMM. In the latter case, pA = pM + s.

Formally, suppose that pM + s > v, pA < v and condition (5) holds. We show

that this cannot be true in equilibrium. Let the equilibrium allocation of bonds to

agent i be qi. Consider a change in the demand schedule of player i from xi to x′i that

leads to the auction price p ∈ [pA, v]. Denote the new bond allocation of agent i by

q′i. Since demand schedules are non-decreasing, q′i ≥ qi. Agent i’s change in profit is

thus

δi =
[
(v − pA)qi − pA(ni − yi)

]
− [(v − p)q′i − p(ni − yi)] =

= (p− pA)(ni − yi + qi)− (v − p)(q′i − qi) ≤ (p− pA)(ni − yi + qi). (7)

Equilibrium conditions require that δi ≥ 0 for all i. Summing over all i such that

ni < 0, it must be that

0 ≤
∑
i:ni<0

δi ≤ (v − pA)
∑
i:ni<0

(ni − yi + qi) .

Because all qi ≥ 0,∑
i:ni<0

(ni − yi + qi) ≤
∑
i:ni<0

(ni − yi) +NOI ≤ 0, (8)

where we use (5). Thus in any equilibrium with pA < v, it must be that δi = 0 for

all i with ni < 0. (7) and (8) then imply that for any deviation x′i that leads to

p ∈ [pA, v], it must be that q′i = qi. Since this is true for any p ∈ [pA, v] the initial

total demand X(p) must be constant over [pA, v], and therefore pA = v. Thus we

arrive at a contradiction.

Next, consider the following set of equilibrium strategies:

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
j:nj<0(nj − yj)) if v < p ≤ pM + s,

xi = NOI if p ≤ v,

for agents with net negative CDS positions after physical settlement request submis-

sion, and xi(p) ≡ 0 for agents with positive CDS positions. It is not difficult to see
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that it supports pA = pM + s.

Part 2. Finally, suppose that condition (5) does not hold and there exists an

equilibrium with pA > v. Then there also exists an i such that agent i’s equilibrium

second stage allocation qi > |ni − yi|. Consider a variation of this agent’s demand

schedule, in which she submits zero demand at pA > v and demand equal to the NOI

at pA = v. Given this variation, the new auction price will be higher than or equal to

v. Thus her profit increases by at least (pA − v)(qi + ni − yi) > 0, so pA > v cannot

be an equilibrium outcome. QED.

The next lemma shows that when all agents are allowed to hold bonds after the

auction (that is, Assumption 1 does not hold), condition (5) always holds. As a result,

the final price is always at least v unless it is capped.

Lemma 1 If N+ = N then condition (5) holds.

Proof.∑
i:ni<0

(ni−yi)+NOI =
∑
i:ni<0

(ni−yi)+
∑
i

yi =
∑
i:ni<0

ni+
∑
i:ni>0

yi ≤
∑
i:ni<0

ni+
∑
i:ni>0

ni = 0.

QED.

Proceeding to the case where NOI < 0, we obtain the following result.

Proposition 2 Suppose that NOI < 0 and there are no short-selling constraints. If

pM−s < v, then in any equilibrium, pA ∈ [pM−s, v]. If pM−s > v then pA = pM−s.

This result is a natural counterpart of Part 1 of Proposition 1, and the proof

follows the same logic. Without Assumption 2, we do not have a counterpart to

Part 2 because all agents can participate in the second stage. With short-selling

constraints, equilibria in which the bond is overpriced and the price is not capped

can also exist. The conditions allowing for these equilibria are more stringent than

those in Part 2 of Proposition 1 because the short-selling constraints are assumed to

hold at the individual level. Proposition 3 characterizes these conditions.

Proposition 3 Suppose that NOI < 0 and Assumption 2 is imposed.

1. If for all i such that ni > 0,

bi ≥ −NOI ×
ni − yi∑

j:nj>0(nj − yj)
(9)
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then there exists an equilibrium in which pA = pM − s.

2. If ∑
i:ni>0

bi < −NOI, (10)

then only equilibria with pA ≥ max{pM − s, v} exist.

Proof. Part 2 is straightforward: under the assumption of short-sale constraints and

(10), NOI units of bonds cannot be sold solely by agents with long CDS positions.

Agents with non-positive CDS positions, however, will not sell bonds at a price below

v. Thus we only need to prove Part 1. To do this, consider the following set of

strategies (assuming that pM − s < v):

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
j:nj<0(nj − yj)) if pM + s ≤ p < v,

xi = −bi if p ≥ v,

for agents with net positive CDS positions after physical request submission, and

xi(p) :

{
xi = 0 if pM + s ≤ p < v,

xi = −bi if p ≥ v.

for agents with positive CDS positions. It is not difficult to see that this set of

strategies constitutes an equilibrium and supports pA = pM − s. QED.

3.2 First Stage

To solve for a full game equilibrium, the last step is to determine physical settlement

requests yi, the NOI and the IMM , given the outcomes in the second stage of the

auction. The IMM does not contain any information in our setup, which precludes

uncertainty. Nevertheless, it can still play an important role because it provides a cap

on the final price. We start our analysis by assuming that the second-stage auction

does not have a cap. After we solve for (and develop intuition about) the optimal

physical settlement requests and the NOI, we discuss the effect of the cap.
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3.2.1 Second-Stage Auction Without a Cap

First, we show that in a frictionless world, only equilibria with the auction price

different from v exist. Furthermore, in all of these equilibria agents obtain the same

utility.

Proposition 4 Suppose that there are no trading frictions, i.e. Assumptions 1 and

2 are not imposed. Then any equilibrium will be one of three types: (i) pA ∈ (v, 100]

and NOI ≥ 0, where agents with initial long CDS positions choose physical delivery

and receive zero bond allocation in the auction; (ii) pA ∈ [0, v) and NOI ≤ 0, where

agents with initial short CDS positions choose physical delivery and do not sell bonds

in the auction; and (iii) p = v. In each of the three cases, all agents attain the same

utility.

Proof. Suppose that pA ∈ (v, 100]. Lemma 1, Part 2 of Proposition 1, and Propo-

sition 2 imply that this can be the case only if NOI ≥ 0. Clearly, only agents with

negative remaining CDS positions after the first stage of the auction will be willing

to buy bonds at a price above v. Agents with initial long CDS positions receive zero

bond allocation. From (3) each of their utility functions will be

Πi = ni(100− v) + (yi − ni)(pA − v) + biv. (11)

If pA > v, utility (11) is maximized if yi is as large as possible. Therefore, yi = ni

and Πi = ni(100 − v) for ni > 0. Thus in any such equilibrium agents with initial

long CDS positions choose physical delivery, receive zero bond allocation, and attain

the same utility. The NOI is

NOI =
∑
i

yi =
∑
i:ni>0

ni +
∑
i:ni<0

yi = −
∑
i:ni<0

(ni − yi) ≥ 0. (12)

In other words, the NOI is equal to the sum of outstanding CDS positions (after

the first stage) held by agents with initial short CDS positions. As a result, any gain

from buying at a price above v (due to the existing CDS positions) is exactly offset

by the loss incurred by buying bonds at this price. From (3), the utility of agents
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with initial short CDS positions is given by

Πi = ni(100− v) + (yi − ni − qi)(pA − v) + biv. (13)

Because every agent can always guarantee utility Πi = ni(100−v) by choosing physical

delivery, qi cannot be higher than −(ni− yi). In addition, (12) implies that qi cannot

be lower than −(ni − yi). Therefore, qi = −(ni − yi) and Πi = ni(100 − v) for each

i : ni < 0. The proof when pA ∈ [0, v) is similar. QED.

Proposition 4 shows that in a frictionless world, all mispricing equilibria are unidi-

rectional – that is, there is no under- (over-) pricing if the NOI is positive (negative).

Furthermore, agents can undo any loss of utility resulting from auction mispricing by

optimally choosing between cash and physical settlement of their positions.

We now turn to more realistic setups that include trading frictions. Our analysis

in section 3.1 shows that there can be a continuum of equilibria in the second stage,

which makes solving for every equilibrium in a two-stage auction a daunting problem.

Instead of characterizing all of the equilibria, we show that in the presence of trading

frictions, as outlined in Section 2.4, there exists a subset of equilibria of the two-

stage game that results in bond mispricing. This result answers, in the affirmative,

our main question as to whether mispricing is possible in the auction. Proposition 5

characterizes sufficient conditions for underpricing to occur.

Proposition 5 Suppose that Assumption 1 holds,

(i)
∑
i:ni>0

ni +
∑

i∈N+:ni<0

ni > 0, (14)

and for any ni > 0,

(ii) ni >

∑
j:nj>0 nj +

∑
j∈N+:nj<0 nj

K + 1
, (15)

where K is a total number of agents with initial long CDS positions. Then there exist

a multitude of subgame perfect underpricing equilibria for the two-stage auction, in

which (i) NOI > 0,

(ii)
∂pA(NOI)

∂NOI
< 0, and (iii) 0 ≤ v− pA(NOI) ≤ NOI ×

∣∣∣∣∂pA(NOI)

∂NOI

∣∣∣∣ . (16)
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In particular, there exists a subset of full-game equilibria where for any NOI that can

be realized in the first stage, the second stage leads to a final price pA which is a linear

function of the NOI:

pA = v − δ ×NOI ≥ 0, δ > 0. (17)

Proof. See Appendix.

We give a formal proof by construction in the Appendix and merely describe the

intuition here. In the proof, we show that if optimal physical settlement requests

satisfy condition (6) instead then there exist second-stage equilibria with pA ≤ v,

where agents play the following strategies:

xi(p) = max{c(v − p)λ − ni + yi, 0}, (18)

c and λ are specified in the Appendix. A similar set of strategies is used in Back and

Zender (1993) to construct equilibria in a standard auction without CDS positions.

There could also be other classes of equilibrium second-stage strategies. We use

strategies (18) mainly because they lead to a closed form solution. The main challenge

in the rest of the proof is to solve jointly for equilibrium physical settlement requests

and the second-stage equilibrium price.

A closer inspection of (3) reveals that if the final auction price is lower than v

and is not affected by agents’ physical requests (i.e., participants always choose to

play same-price equilibria as long as the NOI is high enough to ensure second-stage

underpricing), agents with long (short) CDS positions only have an incentive to choose

full cash (physical) settlement in the first stage. This first-stage play implies that the

NOI must be negative. As a result, second-stage underpricing equilibria in which

∂pA/∂NOI = 0 cannot be equilibria of the full game. However, if the strategies

played in the second stage are such that the final auction price is a negative function

of the NOI, then the incentives of agents with long CDS positions become non-trivial.

Submission by such agents of a partial physical settlement request could lead to a

larger NOI and in turn to a lower final auction price, increasing the payoff they

receive from their partial cash settlement. The larger the initial positions of agents

with long CDS positions, the stronger the incentives to lower the price via partial

physical settlement. Condition (15) guarantees that the long positions of agents are
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sufficiently large to ensure that they choose physical settlement of enough positions

to render the resulting NOI positive.

The subset of equilibria characterized in Proposition 5 is the simplest and serves as

an example of underpricing. There may be other equilibria resulting in underpricing

that we have not found. While Lemma 1 implies that condition (14) is necessary for

an underpricing equilibrium to exist, condition (15) can be relaxed at the expense of

a more complicated proof.

Finally, notice that if there are short-sale constraints (that is, Assumption 2 is

imposed), the logic of Proposition 4 may also break down. In this case, agents with

initial long CDS positions are able to choose only bi units of bonds for physical

settlement. If for at least one such agent ni > bi, and sufficiently many agents

with remaining short CDS positions participate, the agents as a group could become

strictly better off by pushing the price above v. Proposition 6 characterizes the effect

of short-sale constraints on auction outcomes.

Proposition 6 Suppose that only Assumption 2 is imposed and there exists an i such

that

ni > bi > 0, (19)

and ∑
j:nj<0

|nj| >
∑
j:nj>0

max{bj, 0}. (20)

Then for the two-stage auction there exists a subgame perfect overpricing equilibrium

in which NOI =
∑

j:nj>0 max{bj, 0} > 0, pA = 100, and agents with initial short

CDS positions attain strictly greater utility than when pA = v.

Proof. The proof is by construction. As in Proposition 4, if pA = 100, agents who

are initially long CDS contracts will choose physical delivery, and only agents with

negative remaining CDS positions after the first stage will be willing to buy bonds in

the auction. Proposition 1 Part 1 shows that for any NOI > 0, if condition (5) holds

(which turns out to be the case in the constructed equilibrium), then pA = 100 is an

equilibrium of the second stage if agents play the following strategies:

xi(p) :

{
xi = NOI × (ni − yi)/(

∑
j:nj<0(nj − yj)) if v < p ≤ 100,

xi = NOI if p ≤ v.
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for agents with net negative CDS positions after physical request submission, and

xi(p) ≡ 0 for other agents. The profit earned by agent i with ni < 0 is therefore

Πi =

(
yi −NOI

ni − yi∑
j:nj<0(nj − yj)

)
(100− v) + biv. (21)

Taking the F.O.C. at yi = 0, one can verify that it is optimal for agents with initial

short CDS positions to choose cash settlement. Thus NOI =
∑

j:nj>0 max{bj, 0} and

the profit accruing to any agent i with an initial short CDS position ni < 0 is

Πi = −(100− v)ni ×
∑

j:nj>0 max{bj, 0}∑
j:nj<0 nj

+ biv > (100− v)ni + biv,

where the expression on the right hand side is the agent’s utility if pA is equal to v.

QED.

Propositions 5 and 6 show that there can be either underpricing or overpricing

equilibria in the two-stage game with NOI > 0, if there are trading frictions. A

similar set of results can be obtained for NOI < 0.

3.2.2 Second-Stage Auction with a Cap

We now discuss the implications of the second-stage price cap, which imposes an

upper bound of pM + s on the final price. In the presence of the cap, mispricing in

the auction depends on the bidding behavior of dealers in the first stage. The next

proposition shows that the IMM is equal to v when there are no trading frictions.

Proposition 7 Suppose that there are no trading frictions (Assumptions 1 and 2 are

not imposed) and γ > 0. Then IMM = v. Therefore, of the overpricing equilibria

described in Proposition 4 there can exist only equilibria with |pA − v| ≤ s.

Proof. Proposition 4 shows that in all possible equilibria, common participants

attain the same utility. Because dealers have regulatory and reputational concerns,

captured by the extra term −γ(πi − v)2, their optimal quotes, πi, are equal to v.

Thus, IMM = v. QED.
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This result further restricts the set of possible full-game equilibria. When there

are no frictions, the final auction price cannot differ from the fair value of the bond

by more than the size of the spread, s.

In the presence of frictions, there can be either underpricing or overpricing equi-

libria in the auction without a cap (Propositions 5 and 6). The cap cannot eliminate

underpricing equilibria.4 Additionally, if the cap is set too low it rules out equilibria

with pA = v.

The cap can, however, be effective at eliminating overpricing equilibria. As an

illustration, consider a simple example in which all dealers have zero CDS positions.5

Proposition 6 shows that when there are short-sale constraints, the final auction

price can be as high as 100 in the absence of a cap. Following the same logic as

in Proposition 6, one can show that if the cap is greater than v, then there exists

an equilibrium with the final price equal to the cap. Since in any such equilibrium

dealers do not realize any profit but have regulatory and reputational concerns, their

optimal quotes are equal to v. Thus, IMM = v and pA = v + s.

4 Empirical Evidence

Our theoretical analysis shows that CDS auctions may result in both overpricing and

underpricing of the underlying bonds. In this section, we seek to provide empirical

evidence indicating which outcomes occur in practice. Unfortunately, the true value

of deliverable bonds is never observed. Because of this, we use available bond prices

from the day before the auction to construct a proxy for the bond value v. Admittedly

this measure is not a perfect substitute for the true value of the bond, and so we also

consider a number of alternatives to show the robustness of our results. We first

describe our data before presenting the empirical analysis.

4For example, consider an extreme case in which all dealers have large positive CDS positions
and the conditions of Proposition 5 hold. Following the logic of Proposition 5, one can show that
there exists a subgame perfect equilibrium in which pA = 0 and IMM = v.

5While this is a simplification it is arguably also realistic, as dealers try to maintain zero CDS
positions in their capacity as market makers.
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4.1 Data

Our data come from two primary sources. The details of the auction settlement

process are publicly available from the Creditfixings website (www.creditfixings.com).

As of December 2010, there have been 86 CDS and Loan CDS auctions, settling

contracts on both US and international legal entities. To study the relationship

between auction outcomes and the underlying bond values, we merge these data with

bond price data from the TRACE database. TRACE reports corporate bond trades

for US companies only. Thus, our merged dataset contains 23 auctions.

Table 2 summarizes the results of the auctions for these firms. It reports the

settlement date, the type of credit event and the auction outcomes. Most of the

auctions took place in 2009 and were triggered by the Chapter 11 event. In only two

of the 23 auctions (Six Flags and General Motors) was the net open interest to buy

(NOI < 0). The full universe of CDS auctions contains 61 auctions in which the net

open interest was to sell, 19 auctions where the net open interest was to buy, and 6

auctions with zero net open interest.

Table 3 provides summary statistics of the deliverable bonds for each auction for

which we have bond data.6 Deliverable bonds are specified in the auction protocols,

available from the Creditfixings website. The table also reports the ratio of net

open interest to the notional amount of deliverable bonds (NOI/NAB). This shows

how many units of bonds changed hands during an auction, as a percentage of the

total amount of bonds. There is strong heterogeneity in NOI/NAB across different

auctions, with absolute values ranging from 0.38% to 56.81%. In practice, NOI has

never exceeded NAB.

We construct daily bond prices by weighing the price for each trade against the

trade size reported in TRACE, as in Bessembinder, Kahle, Maxwell, and Xuet (2009).

These authors advocate eliminating all trades under $100,000 as they are likely to be

non-institutional. The larger trades have lower execution costs; hence they should

reflect the underlying bond value with greater precision. For each company, we build

6A clarification regarding the auctions of Abitibi and Bowater is in order. AbitibiBowater is
a corporation, formed by Abitibi and Bowater for the sole purpose of effecting their combination.
Upon completion of the combination, Abitibi and Bowater became subsidiaries of AbitibiBowater
and the businesses that were formerly conducted by Abitibi and Bowater became the single business
of AbitibiBowater. The CDS contracts were linked to the entities separately, and, as a result, there
were two separate auctions.

22



a time-series of bond prices in the auction event window of -30 to +30 trading days.

Because all credit events occur no more than one calendar month before the CDS

auction, our choice of the event window ensures that our sample contains all relevant

data for the post-credit-event prices. The last column of Table 3 reports a weighted

average bond price on the day before the auction, p−1. We use this as our proxy for

the bond value v.

4.2 The Impact of the First Stage

The theoretical results of Section 3 imply that the first and the second stages of the

auction are not independent. The first stage yields the mid-point price, pM , which

determines a cap on the final settlement price. Our model shows that when the final

price, pA, is capped, it can be either above or below the true value of the bond, v,

depending on the initial CDS and bond positions of different agents.

Our analysis suggests a way of differentiating between the two cases. To be more

specific, consider outcomes in which NOI > 0 (outcomes in which NOI < 0 follow

similar logic). According to Proposition 1 Part 1, the price can be higher than v if,

after the first stage, the aggregate short net CDS position of agents participating in

the second stage is larger than the net open interest. In this case, protection sellers

have an incentive to bid above the true value of the bond to minimize the amount

paid to their CDS counterparties. Notice that while bidding at a price above v, they

would like to minimize the amount of bonds acquired at the auction for a given final

auction price. Thus, if the price is above v they will never bid to buy more than NOI

units of bonds.

The case in which pA is capped and lies below the true value of the bond is brought

about when dealers set pM so that pM + s is below v. This prevents the agents from

playing second-stage equilibrium strategies with the final price above the cap. In this

case, submitting a large demand at the cap price leads to greater profit. Thus, in the

presence of competition and sharing rules, agents have an incentive to buy as many

bonds as possible and would bid for substantially more than NOI units.

The final price is capped in 19 of the 86 credit-event auctions.7 Figure 2 shows the

entities and the individual bids at the cap price. The individual bids are represented

7Of these 19 auctions, only one (Ecuador) has a negative NOI. So the above discussion for the
case of positive NOI should be adjusted appropriately for Ecuador.
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by different colors, and bid sizes are scaled by NOI to streamline their interpretation.

For example, there are seven bids at the cap price in the case of General Growth

Properties. Six of these are equal to NOI and the seventh one is approximately

one-fourth of NOI.

We can see that in all but two auctions (Kaupthing Bank and Glitnir), the bids

at the price cap do not exceed NOI. The results suggest that in these cases the

final auction price is above the true bond value. Of the 19 auctions with a capped

price, we have bond data for only five companies: Smurfit-Stone, Rouse, Charter

Communications, Capmark and Bowater. Comparing the final auction price from

Table 2 with the bond price from Table 3, we can see that that the bond price (our

proxy for the true bond value) is below the final auction price for these five companies,

as expected.

We can compare the bond and auction prices for the rest of the companies for

which TRACE data are available. Figure 3 shows the ratio of final auction prices to

bond prices, pA/p−1. We see that in all but seven auctions, the final auction price, pA,

is below the bond price, p−1. It seems likely that underpricing equilibria were played

out in these auctions. The exceptions include the aforementioned five companies with

capped auction prices, as well as the General Motors and Six Flags auctions, where

the price was not capped but NOI < 0. In these last two cases, the auction prices

are expected to exhibit a reverse pattern.

4.3 Price Impact at the Second Stage

In the preceding section, our evidence showed that in the absence of a cap, the auction

yields a price below the bond value. According to Proposition 1, if NOI > 0 such

an outcome can occur only if the aggregate net short CDS position of the agents

who participate in the second stage,
∑

i∈N+:ni<0 |ni − yi|, is smaller than or equal to

the net open interest. But as we do not have data on individual bids and positions

we cannot test this proposition directly. Instead, we provide empirical evidence that

complements our theoretical analysis. Specifically, we study the effect of the NOI

on the degree of price discrepancy resulting from the auction. We scale the net open

interest by the notional amount of deliverable bonds, giving the quantity NOI/NAB,

to allow for a meaningful cross-sectional examination.
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Tables 2 and 3 reveal that NOI/NAB is greatest in the auctions with the largest

discrepancy in prices. At the same time, NOI/NAB is lowest in the auctions

where the final price is capped, which is again consistent with Propositions 1 and

5. We quantify this relationship using a simple cross-sectional regression of p−1/p
A

on NOI/NAB :

pA/p−1 = α + β ×NOI/NAB + ε. (22)

Figure 4 shows the results. The normalized NOI explains 55% of the variation in

the ratio of the lag of the market price of bonds to the final price. The β is signifi-

cantly negative. For every one-percentage-point increase in the normalized NOI, the

underpricing increases by 1.2%.

This evidence is consistent with Proposition 5, which shows that there exist

second-stage equilibria in which the final price, pA, depends linearly on the NOI

(equation (17)). Since the only theoretical restriction on the slope (δ) is its sign, the

linear relationship (17) can be written as

pA/v = 1 + β ×NOI/NAB, β < 0.

If agents play equilibrium strategies with the same β across auctions, the estimated

cross-sectional regression β will also be an estimate of the within-auction relationship.

While the assumption of the same linear dependence across auctions is admittedly

strong, it can be accommodated by the following argument. If all agents in an auc-

tion take historical information about previous types of equilibria into account when

forming their perceptions, then β is unlikely to vary much across auctions. Finally,

the estimated α is insignificantly different from one, which is again consistent with

the theory.

4.4 Robustness Checks

4.4.1 Fair Value Proxy

Our conclusions so far rest on the assumption that p−1 is a good proxy for the actual

fair value v. One could argue that auctions exist precisely because it is difficult to

establish a bond’s fair value by observing bond markets. Moreover, even if p−1 were

to reflect the bond value accurately, it would still be the value on the day before the
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auction. It is conceivable that the auction process establishes a v that differs from

p−1 simply due to the arrival of new information between time −1 and 0, and/or as

a result of the centralized clearing mechanism of the auction.

We expand the auction event window to check the robustness of our results to

these caveats. In our sample, the shortest time between a credit event and an auction

is 8 days. This prompts us to select an event window of -8 to +12 days. The choice

of boundary is dictated by liquidity considerations: liquidity generally declines after

the auction. Figure 5 (a) displays daily bond prices normalized by the auction final

price, pt/p
A, equally weighted across the 22 auctions for which we have reliable bond

data.8 We see that the price generally declines, reaches its minimum on the auction

day, then reverts to its initial level. The figure shows that no matter which day we

look at, the auction final price is, on average, at least 10% lower.

We have a sample of 22 auctions with reliable data. This small sample size may

raise concerns that our results are sensitive to outliers. In what follows, we discuss

the effects of two types of such outliers.

First, the Tribune auction stands out because of the large magnitude of the un-

derpricing it generated. This can be seen in Figure 4: the point in the lower right

corner of the plot. The normalized NOI was also the largest, so the magnitude of the

underpricing on its own is consistent with our theory. Nonetheless, to be sure that

the pattern of average prices is not driven by this one company, we remove Tribune

from our sample and recompute the pattern. Figure 5 (b) shows the results. We

see that the magnitude of the average smallest underpricing declines to 5%, but all

qualitative features remain intact.

Second, there are six auctions that resulted in overpricing. Four auctions (Smurfit-

Stone, Rouse, Capmark and Bowater) had positive NOI and final price equal to the

cap (see Section 4.2 for details). The two remaining auctions (GM and Six Flags)

had negative NOI. Therefore, the presence of these names in our average may only

bias our results against finding underpricing.

The documented V shape of the discrepancy alleviates the concern that the correct

value v differs from p−1 simply because the latter does not reflect the bond value

8We exclude the auction for Charter, which has only 10 trades in the [-10,0] window during
which our proxy for v is constructed. Of these 10 trades, only 6 are in sizes greater than $1M.
The second-worst company in terms of data reliability, Chemtura, has 35 trades and all of them are
above $1M.
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correctly. If this were the case, one would expect bond prices to remain in the region

of the auction price after the auction, whereas in practice they increase.

4.4.2 The Cheapest-to-Deliver Option

Another potential concern about using weighted daily bond prices as a proxy for the

underlying value of auctioned bonds is that agents will likely use only cheapest-to-

deliver bonds for physical delivery. As a result, our methodology may overestimate

the fair value. This argument is not applicable when the credit event is Chapter 11,

and all the deliverable bonds are issued by the holding company and cross-guaranteed

by all subsidiaries. In Chapter 11, bonds with no legal subordination are treated as

identical, see for example Guha (2002).9 The reasons for this are that all the bonds

stop paying coupons and mature (cease to exist) at the same time, with identical

terminal payouts to all bondholders. Hence there is no concern that some bonds are

cheaper to deliver due to the difference in their fundamental value.

As an example, Figure 6 shows weighted daily prices of each individual WaMu

bond issue, identified by its CUSIP. We see that there are large difference between

the prices of different bonds in the period leading to the credit event (trading day

-19). After this day the prices of all bonds are very similar. The prices cannot be

literally identical because trades may occur at different times of the day, and because

trades may be either buyer- or seller-initiated which means prices will be closer to

bid or ask prices, respectively.

In our sample, 13 out of 23 credit events are triggered by Chapter 11 bankruptcy

and have one issuer. These companies should not have bonds that diverge in value.

Nonetheless, we manually confirm that this is indeed the case. There are three com-

panies that filed for Chapter 11 and have multiple subsidiaries issuing bonds, but for

which TRACE contains trade data for only one subsidiary in the event window (CIT,

Lyondell, and Quebecor). We treat these three names the same way as the 13 firms

without subsidiaries.

There are four companies that filed for Chapter 11 and have multiple subsidiaries,

and where we have data for the bonds of these subsidiaries (Bowater, Charter, Nortel

and Smurfit-Stone). In all of these cases the bonds of the different subsidiaries are

9CDS contracts on bonds with different seniorities are settled in different auctions. Examples of
this in our data are the Dura/Dura Sub auctions.
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legally pari-passu with each other, but some of them may be structurally subordinated

to others and, therefore, could be cheaper. For this reason, we select the cheapest

bonds in the case of these four companies (however, the differences are not large

in practice). There are three companies with a credit event other than Chapter 11

(Abitibi, Capmark and Rouse) in which we also select the cheapest bonds.

Finally, to account for other potential deliverables selection issues that could work

against our findings, we treat the aforementioned differences in bond prices (due to

bid-ask spread and timing differences) as real differences, and select the lowest-priced

bonds. Specifically, we take representative daily prices of a company’s deliverable

bonds to be equal to the weighted daily prices of their bond issues with the lowest

pre-auction price, provided that these bond issues are relatively actively traded.10 The

results are displayed in Figure 5. It can be seen that even with these conservative

bond selection criteria, the average underpricing on the day of the auction is still

10%, and follows a V pattern as before.11

5 Extensions

Section 4 documents our finding that when NOI/NAB is large, the auction generally

results in a price considerably below fair value. We now suggest several modifications

to the auction design that can reduce mispricing, and discuss some of the assumptions

of the model.

5.1 Allocation Rule at the Second Stage

As usual, we focus on the case of NOI > 0. Proposition 1 shows that if condition (6)

holds, the CDS auction is similar to a ‘standard’ auction, so the price can be below v.

Kremer and Nyborg (2004) show that in a setting without CDS positions, a simple

change of the allocation rule from pro-rata on the margin (2) to ’pro-rata’ destroys

all underpricing equilibria, so that only pA = v remains. Under the pro-rata rule, the

10The requirement is that the trading volume over the five trading days before the auction con-
stitutes at least 5% of total trading volume for the company.

11Gupta and Sundaram (2011) address the cheapest-to-deliver issue using an alternative procedure
based on econometric modelling of issue-specific pricing biases, and arrive at similar conclusions.
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equilibrium allocations qi are given by

qi(p
A) =

xi(p
A)

X(pA)
×NOI.

That is, the total rather than marginal demand at pA is rationed among agents. The

next proposition extends the result of Kremer and Nyborg (2004) to our setting. We

demonstrate that if pM + s ≥ v, then the second-stage equilibrium price pA cannot

be less than v. This is true even if the agents are allowed to hold non-zero quantities

of CDS contracts.

Proposition 8 Suppose that the auction sharing rule is pro-rata. In this case, if

NOI > 0 then pA ≥ min{pM + s, v}. If NOI < 0 then pA ≤ max{pM − s, v}.

Proof. See Appendix.

To develop intuition for this result, consider the case of positive NOI. According

to Proposition 1 Part 2, if condition (6) holds, the pro-rata on the margin allocation

rule may inhibit competition and lead to underpricing equilibria. The presence of

agents who are short CDS contracts does not help in this case. The pro-rata allocation

rule (i) does not guarantee the agents their inframarginal demand above the clearing

price, and (ii) closely ties the proportion of allocated bonds to the ratio of individual

to total demand at the clearing price. Therefore, a switch to such a rule would increase

competition for bonds among agents. As a result, even agents with long positions

would bid aggressively. If pA < v, demanding the NOI at a price only slightly higher

than pA allows an agent to capture at least half of the surplus. As a result, only

fair-price equilibria survive.

5.2 The Price Cap

Our theoretical analysis in Section 4.2 shows that the presence of a price cap can

result in auction outcomes with either lower or higher mispricing. The cap is likely

to help when |NOI| is small and the temptation to manipulate the auction results is

highest. At the same time, the cap allows dealers to limit the final price to below v

in the second stage.
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These results suggest that making the cap conditional on the outcome of the first

stage of a CDS auction can lead to better outcomes. In our base model without

uncertainty, the optimal conditional cap is trivial. Again, we consider the case of

NOI > 0. If pM < v, setting s∗ = v − pM ensures that the set of second-stage

equilibria includes v. If pM ≥ v, it is best to set s∗ = 0. While the conditional

cap cannot eliminate the worst underpricing equilibria, it can ensure that agents who

want to bid aggressively will be able to do so.

In practice, v and ni are unobservable. Thus, making the cap conditional on NOI

and on the ratio pM/p−1 could lead to the final auction price being closer to the fair

bond value. For example, if pM/p−1 ≤ α, NOI is large and α < 1 is reasonably small,

the auctioneer can set a higher cap; if pM/p−1 > α and NOI is small, a lower cap

can be set.

5.3 Risk-averse agents

So far we have considered only risk-neutral agents. This allowed us to abstract from

risk considerations. If agents are risk-averse, the reference entity’s risk is generally

priced. Even though a CDS is in zero net supply, its settlement leads to a realloca-

tion of risk among the participants in the auction; hence it can lead to a different

equilibrium bond price. In particular, when NOI/NAB is large and positive, and

there are only a few risk-averse agents willing to hold defaulted bonds, the auction

results in highly-concentrated ownership of the company’s risk and can thus lead to

a lower equilibrium bond price.

Notice, however, that risk-aversion does not automatically imply a lower auction

price. For example, if marginal buyers of bonds in the auction are agents who pre-

viously had large negative CDS positions (as in Proposition 5), their risk exposure

after the auction may actually decrease. As a result they could require a lower risk

premium.

Due to the fact that we do not have data on individual agents’ bids and positions,

we cannot determine whether the observed price discrepancy is due to mispricing

equilibria or risk-aversion. It is likely that both factors work together in the same

direction. Data on individual agents’ bids and positions could help to quantify the

effect of the two factors on the observed relationship between the auction price and
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the size of net open interest.

5.4 Private information

Up to this point we have restricted our attention to the simplest case in which agents’

CDS positions are common knowledge. This may seem like a very strong assumption

given that CDS contracts are traded in the OTC market. Notice, however, that in the

type of equilibria constructed in Propositions 5 (linear case) and 6, conditions (14),

(15) and (19), (20) completely define the two equilibria. Therefore, Propositions 5

and 6 continue to hold with private CDS positions as long as (14), (15) and (19), (20)

are public knowledge.12 One can argue that this is likely to be the case. For example,

(20) assumes that total short CDS positions are larger than total bond holdings of

agents with long CDS positions. The aggregate net CDS positions are known to

market participants.13 Therefore, whether condition (20) holds can be easily verified

in every auction. Similarly, (19) assumes that there is an agent whose long position in

CDSs is larger than her bond holdings. Given the much larger size of CDS contracts

compared to the value of bonds outstanding, (19) holds as long aggregate long CDS

positions are larger than the value of the outstanding bonds. The latter is true for

most (if not all) of the auctions.

We also assume that agents value bonds identically, and that this value is common

knowledge. This assumption provides a stark benchmark: we are able to show that

the auction results in mispricing even in such a basic case. We conjecture that it

would be even harder for the current auction mechanism to arrive at the fair value

when agents have private or heterogeneous valuations.

6 Conclusion

We present a theoretical and empirical analysis of the settlement of CDS contracts

when a credit event takes place. A two-stage, auction-based procedure aims to es-

tablish a reference bond price for cash settlement and to provide market participants

12The formal proofs follow closely the original proofs for the full information case and are available
upon request.

13For example, they are available from Markit reports.
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with the option to replicate a physical settlement outcome. The first stage deter-

mines the net open interest (NOI) in the physical settlement and the auction price

cap (minimum or maximum price, depending on whether the NOI is to sell or to

buy). The second stage is a uniform divisible good auction with a marginal pro-rata

allocation rule that establishes the final price by clearing the NOI.

In our theoretical analysis, we show that the auction may result in either over-

pricing or underpricing of the underlying bonds. Our empirical analysis establishes

that the former case is more prevalent in practice. Bonds are underpriced by 10% on

average, and the amount of underpricing increases with the NOI (normalized by the

notional amount of deliverable bonds). We propose introducing a pro-rata allocation

rule and a conditional price cap to mitigate this mispricing.
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Appendix

Proof of Proposition 5

The proof is by construction. We construct a subgame perfect two-stage equilibrium

in which the final auction price is a decreasing function of the NOI. In a similar

fashion to Kremer and Nyborg (2004), it can be shown that one’s attention can be

restricted w.l.o.g. to equilibria in differentiable strategies. For simplicity, we provide

the proof for the case in which agents have large long CDS positions. Specifically, we

assume that for all i : ni > 0 :

ni ≥ NOI. (A1)

Under this additional assumption, we can solve for the equilibrium in closed form.

The general case follows similar logic, except that the number of the agents who

submit nonzero demand for bonds at the second stage depends on the configuration

of CDS positions. When A1 holds, only agents with non-positive CDS positions

receive nonzero allocations in the equilibrium.

The proof consists of several steps. In step 1, we derive the F.O.C. for the optimal

strategies at the second stage, given the remaining CDS positions of the agents after

the first stage. In step 2, we derive the F.O.C. for the optimal physical settlement

requests. In step 3, we show that the second-stage equilibrium with price pA can be

supported if agents play the following second-stage strategies:

xi(p) = max{c(v − p)λ − ni + yi, 0}

(c and λ are specified later). In step 4, we solve for optimal physical requests of

agents, given the above second-stage strategies. Finally, we solve for the NOI.

Step 1. Recall that at the second stage, player i solves problem (4):

max
xi(p)

(v − p(xi(p), x−i(p))) qi(xi(p), x−i(p)) + (ni − yi)× (100− p(xi(p), x−i(p))) .

In any equilibrium of the second stage, the sum of the demand of agent i, xi(p
A), and

the residual demand of the other players, x−i(p
A), must equal the NOI. Therefore,

solving for the optimal xi(p) is equivalent to solving for the optimal price, pA, given the

residual demand of the other players. Thus, the F.O.C. for agent i at the equilibrium
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price, pA, can be written as

(v − pA)
∂x−i(p

A)

∂p
+ xi(p

A) + ni − yi = 0 if xi(p
A) > 0, (A2)

(v − pA)
∂x−i(p

A)

∂p
+ xi(p

A) + ni − yi ≥ 0 if xi(p
A) = 0. (A3)

Step 2. Recall that agent i’s profit is given by equation (3):

Πi = (v − pA)qi
auction-allocated bonds

+ (ni − yi)× (100− pA)
remaining CDS

+ 100yi
physical settlement

+ v(bi − yi)
remaining bonds

.

Using the fact that ∂NOI/∂yi = 1, we have that the F.O.C. for the optimal settlement

amount, yi, for agent i, satisfies

∂Πi

∂yi
= 0 if yi 6= 0 and yi 6= ni, (A4)

∂Πi

∂yi
≤ 0 if yi = 0 and ni > 0, or yi = ni if ni < 0, (A5)

∂Πi

∂yi
≥ 0 if yi = 0 and ni < 0, or yi = ni if ni > 0, (A6)

where

∂Πi

∂yi
= −∂p

A(NOI)

∂NOI
(ni − yi + qi)− (v − pA(NOI))

(
1− ∂qi

∂yi

)
. (A7)

Step 3. Let M be the number of agents with nonpositive CDS positions who are

allowed to hold bonds, and let λ = 1/(M − 1). Then consider the following set of

strategies at the second stage:

xi(p) = max

{
NOI +

∑
j∈N+:nj<0 (nj − yj)
M

(v − p)λ

(v − pA(NOI))λ
− ni + yi, 0

}
. (A8)

Demand schedules (A8) imply that agents with non-positive CDS positions who
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are allowed to hold bonds receive, at p = pA, the following bond allocations:

qi =
NOI +

∑
j∈N+:nj<0 (nj − yj)
M

− (ni − yi). (A9)

Equation (A3) implies that agents with initial long CDS positions receive zero equi-

librium bond allocations at the second stage, as long as

ni − yi ≥
NOI +

∑
j∈N+:nj<0 (nj − yj)
M − 1

. (A10)

If this is the case, equation (A2) implies that strategies (A8) form an equilibrium at

the second stage, with the equilibrium price equal to pA.14

Step 4. Consider now the optimal physical settlement requests of agents with initial

short CDS positions. We need consider only those agents who are allowed to hold

bonds after the auction. As part of the equilibrium constructed in step 3, these agents

receive qi units of bonds, as given in (A9). So we can write condition (A7) as

∂Πi

∂yi
= −∂p

A(NOI)

∂NOI

NOI +
∑

j∈N+:nj<0 (nj − yj)
M

− v − pA(NOI)

M
. (A11)

For simplicity, we solve for the interior solution so that ∂Πi

∂yi
= 0. Direct computations

show that in such an equilibrium it must be the case that

NOI +
∑

j∈N+:nj<0

(nj − yj) =
(
v − pA(NOI)

)
/

∣∣∣∣∂pA(NOI)

∂NOI

∣∣∣∣ . (A12)

Now consider the optimal physical settlement requests of agents with initial long

CDS positions. If these agents receive a zero equilibrium bond allocation, conditions

14Technically, one extra condition is needed to ensure the existence of the constructed equilibrium.
Inequality (A10) must continue to hold for every possible deviation ŷj > yj by each participant
j ∈ N . If for some such ŷj this condition breaks down for agent i with a long CDS position, then
this agent will participate in the second stage of the auction, which could increase the profit earned
by agent j. (Of course, agent i could increase yi itself, in which case j = i). This extra condition does
not hold for ŷi > yi when M = 2, which leads to existence of pA = 0 underpricing equilibria only.
When M > 2 there exist underpricing equilibria with pA > 0, in which out-of-equilibrium submission
of physical settlement requests does not lead agents with long CDS positions to participate in the
second stage of the auction. The details are available upon request.
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(A4) and (A7) imply that their optimal physical requests satisfy

yi = max

{
ni −

(
v − pA(NOI)

)
/

∣∣∣∣∂pA(NOI)

∂NOI

∣∣∣∣ , 0} . (A13)

Using equilibrium condition (A12) together with condition (A10), we can see that

agents with initial long CDS positions will receive a zero equilibrium bond allocation

at the second stage if

ni ≥
(
v − pA(NOI)

)
/|∂p

A(NOI)
∂NOI

|
M − 1

. (A14)

Assumption (A1), along with condition (16), guarantee an interior solution for the

optimal physical requests of agents with initial long CDS positions.

Step 5. Finally, the optimal physical requests of the agents must sum to the NOI:

∑
i:ni>0

ni − v − pA(NOI)∣∣∣∂pA(NOI)
∂NOI

∣∣∣
+

∑
i∈N+:ni<0

yi = NOI. (A15)

Using (A12), we can write (A15) as

∑
i:ni>0

ni +
∑

i∈N+:ni<0

ni −
v − pA(NOI)∣∣∣∂pA(NOI)

∂NOI

∣∣∣ (K + 1) = 0, (A16)

where K is the number of agents with initial long CDS positions. Consider the case

where pA(NOI) = v − δ ×NOI. Under this specification,

v − pA(NOI)∣∣∣∂pA(NOI)
∂NOI

∣∣∣ = NOI.

Condition (A15) gives a simple formula for the NOI:

NOI =

∑
i:ni>0 ni +

∑
i∈N+:ni<0 ni

K + 1
> 0. (A17)

QED.

38



Proof of Proposition 8

As usual we focus on the case where NOI > 0. Note that the pro-rata allocation rule

satisfies the majority property (Kremer and Nyborg, 2004): an agent whose demand

at the clearing price is above 50% of the total demand is guaranteed to be allocated

at least (50% + η)×NOI, where η > 0.

First, suppose that v ≤ pM + s. The proof that pA cannot be above v is the same

as in Proposition 1. We now prove that pA cannot be below v. Suppose instead that

pA < v. The part of agent i’s utility that depends on her equilibrium allocation and

the final price is:

(v − pA)× qi − pA × (ni − yi).

Suppose first that there is at least one agent for which qi < 0.5. Suppose that this

agent changes her demand schedule to:

x′i(p) =

{
NOI, p ≤ pA + ε

0, otherwise,
(A18)

where 0 < ε < v − pA. After this deviation, the new clearing price is pA + ε. Since

X−i(p
A + ε) < NOI (otherwise pA + ε would have been the clearing price), agent i

demands more than 50% at pA + ε, and under the pro-rata allocation rule receives

q′i > 0.5×NOI. The lower bound on the relevant part of agent i’s utility is now:

(v − pA − ε)× 0.5×NOI − (pA + ε)× (ni − yi).

We can write the difference between agent i’s utility under deviation and her utility

under the assumed equilibrium as follows:

(0.5×NOI − qi)× (v − pA)− ε(ni − yi + 0.5×NOI). (A19)

For small enough ε and under the assumption that pA < v, (A19) is greater than zero

and hence equilibria with pA < v cannot exist.

If there are no agents with qi < 0.5×NOI we are in an auction with two bidders

only. In this case, each of them gets exactly 0.5 × NOI. At price pA + ε (0 < ε <

pM + s− v), there is at least one player (player i), for which xi(p
A + ε) < 0.5×NOI.
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Then, if the opposite agent uses demand schedule (A18), the new clearing price will

be pA + ε and this agent will receive at least (0.5 + η) × NOI. For small enough ε

the difference between agent i’s utility under the deviation and her utility under the

assumed equilibrium is:

η × (v − pA)− ε(ni − yi + (0.5 + η)×NOI) > 0. (A20)

Therefore, equilibria with pA < v cannot exist. We conclude that if v ≤ pM + s, then

pA = v is the only clearing price in any equilibrium under the pro-rata allocation rule.

Finally, suppose that pM + s < v. The proof for this case is the same, except that

there is no feasible deviation to a higher price if pA = pM +s. Hence, pA = pM +s < v

is the only clearing price in any equilibrium under the pro-rata allocation rule. QED.
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Tables and Figures

Table 1: Nortel Limited Market Quotes

Dealer Bid Offer

Banc of America Securities LLC 9.5 11.5

Barclays Bank PLC 4.0 6.0

BNP Paribas 7.0 9.0

Citigroup Global Markets Inc. 10.5 12.5

Credit Suisse International 6.5 8.5

Deutsche Bank AG 6.0 8.0

Goldman Sachs & Co. 6.0 8.0

J.P. Morgan Securities Inc. 7.0 9.0

Morgan Stanley & Co. Incorporated 5.0 7.0

The Royal Bank of Scotland PLC 6.5 8.5

UBS Securities LLC 7.0 9.0

Table 1 shows the two-way quotes submitted by dealers at the first stage of the Nortel

Ltd. auction.
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Table 2: Auction Summaries

Name Date Credit Event Inside Market Net Open Final

Quote Interest Price

Dura 28 Nov 2006 Chapter 11 24.875 20.000 24.125

Dura Subordinated 28 Nov 2006 Chapter 11 4.250 77.000 3.500

Quebecor 19 Feb 2008 Chapter 11 42.125 66.000 41.250

Lehman Brothers 10 Oct 2008 Chapter 11 9.750 4920.000 8.625

Washington Mutual 23 Oct 2008 Chapter 11 63.625 988.000 57.000

Tribune 6 Jan 2009 Chapter 11 3.500 765.000 1.500

Lyondell 3 Feb 2009 Chapter 11 23.250 143.238 15.500

Nortel Corp. 10 Feb 2009 Chapter 11 12.125 290.470 12.000

Smurfit-Stone 19 Feb 2009 Chapter 11 7.875 128.675 8.875

Chemtura 14 Apr 2009 Chapter 11 20.875 98.738 15.000

Great Lakes 14 Apr 2009 Ch 11 of Chemtura 22.875 130.672 18.250

Rouse 15 Apr 2009 Failure to pay 28.250 8.585 29.250

Abitibi 17 Apr 2009 Failure to pay 3.750 234.247 3.250

Charter 21 Apr 2009 Chapter 11 1.375 49.2 2.375

Communications

Capmark 22 Apr 2009 Failure to pay 22.375 115.050 23.375

Idearc 23 Apr 2009 Chapter 11 1.375 889.557 1.750

Bowater 12 May 2009 Chapter 11 14.000 117.583 15.000

R.H.Donnelly Corp. 11 Jun 2009 Chapter 11 4.875 143.900 4.875

General Motors 12 Jun 2009 Chapter 11 11.000 -529.098 12.500

Visteon 23 Jun 2009 Chapter 11 4.750 179.677 3.000

Six Flags 9 Jul 2009 Chapter 11 13.000 -62.000 14.000

Lear 21 Jul 2009 Chapter 11 40.125 172.528 38.500

CIT 1 Nov 2009 Chapter 11 70.250 728.980 68.125

Table 2 summarizes the auction results for 23 US firms for which TRACE data are available.

It reports the settlement date, type of credit event, inside market quote (per 100 of par),

net open interest (in millions of USD), and final auction settlement price (per 100 of par).
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Table 3: Tradable Deliverable Bond Summary Statistics

Name Number of Notional amount of NOI/NAB Average price

deliverable bonds outstanding (%) on the day before

bonds (NAB) the auction

Dura 1 350,000 5.71 25.16

Dura Subordinated 1 458,500 16.79 5.34

Quebecor 2 600,000 11.00 42.00

Lehman Brothers 157 42,873,290 11.47 12.98

Washington Mutual 9 4,750,000 20.80 64.79

Tribune 6 1,346,515 56.81 4.31

Lyondell 3 475,000 30.15 26.57

Nortel Corp. 5 3,149,800 9.22 14.19

Smurfit-Stone 5 2,275,000 5.65 7.77

Chemtura 3 1,050,000 9.40 26.5

Great Lakes 1 400,000 32.65 26.71

Rouse 4 1,350,000 0.63 29.00

Abitibi 10 3,000,000 7.81 4.61

Charter Communications 17 12,769,495 0.38 2.00

Capmark 2 1,700,000 6.79 22.75

Idearc 1 2,849,875 31.21 2.15

Bowater 6 1,875,000 6.27 14.12

R.H.Donnelly Corp. 7 3,770,255 3.81 5.12

General Motors 16 18,180,552 -2.91 11.17

Visteon 2 1,150,000 15.62 74.87

Six Flags 4 1,495,000 -4.14 13.26

Lear 3 1,298,750 13.28 39.27

CIT 281 22,584,893 3.29 69.35

Table 3 provides summary statistics of deliverable bonds for 23 US firms for which TRACE

data are available. Column three reports the ratio of Table 2’s net open interest (NOI) to

the notional amount outstanding of deliverable bonds. The last column shows a weighted

average bond price on the day before the auction, constructed as described in Section 4.1.
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Figure 1: IMM Determination: The Case of Nortel
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Figure 1 displays all bids (sorted in descending order) and all offers (sorted in ascending order).

Tradeable quotes (bid greater than offer) are discarded for the purposes of computing IMM. Dealers

quoting tradeable markets must pay a penalty (adjustment amount) to ISDA. The cap price is higher

than the IMM by 1% of par and is used in determining the final price. (If the open interest is to

buy, the cap price is set below the IMM.)
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Figure 2: Bids at the Cap Price
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Figure 2 shows individual bids scaled by the NOI at the cap price (in auctions where the price is

capped). Each bid within an auction is represented by a different color.
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Figure 3: Bond and Auction Prices

Figure 3 shows the final auction price, scaled by the weighted-average market price of the bonds a

day before the auction.

46



Figure 4: Price Discount
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y = 1.01−1.19x
t−stat      (5.32)
R2=55.4%

Figure 4 shows the result of an OLS regression where the dependent variable is the ratio of the
final auction price to the weighted-average market price of bonds a day before the auction, and the
explanatory variable is the scaled NOI:

yi = α+ β ×NOIi/NABi + εi.
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Figure 5: Price Impact
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(a) (b)

Figure 5 Panel (a) displays daily bond prices, normalized by the auction final price, pt/p
A, and

equally weighted across the 22 auctions reported in Table 2 (the Charter auction is excluded due to

a lack of reliable bond data). Panel (b) shows the same prices but excluding the Tribune auction,

which has the largest degree of underpricing. The blue line shows the prices based all available bond

issues. The green line shows prices based only on bond issues with the lowest price.
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Figure 6: Washington Mutual Bond Prices
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Figure 6 shows daily prices of Washington Mutual outstanding bond issues around the day of

bankruptcy (indicated by a vertical black line). The legend shows the maturity date of each is-

sue. The daily price at a given date is a volume-weighted average for all trades at this date. Further

details on the construction of this graph are given in Section 4.1.
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The Effect of Algorithmic Trading on Liquidity in the Options Market 

 

Abstract 

Algorithmic trading consistently reduces the bid-ask spread in options markets, 

regardless of firm size, option strike price, call or put option, or volatility in the 

markets. However, the effect on depth depends on the categorization of the data. 

The examination of the introduction of penny quotes provides a successful 

robustness test for the importance of algorithmic trading on liquidity. Overall, this 

study provides a controlled analysis of options with different levels of activity and 

different types of market participants across strikes/calls/puts/underlying stocks. 

Our findings also contribute to the extant literature on the characteristics of the 

liquidity of options markets during the growth period of algorithmic trading. 

 

During the past several years the widespread development of automated order execution 

systems (algorithmic or algo trading) has transformed the financial markets. In particular, the 

promulgation of Order Protection Rule 611 under Regulation NMS in 2005 promoted the use of 

electronic trading and subsequently computerized algorithms. According to Rule 611, limit 

orders that are “immediately and automatically accessible” via an “Immediate or Cancel” (IOC) 

order have their prices protected from another trade execution at an inferior price. Consequently, 

Regulation NMS leveled the playing field across all U.S. exchanges regarding order executions.
1
 

These rule changes caused exchanges to compete based on trading fees, the speed of order 

handling, and the quality of execution in order to obtain a greater share of trading volume 

(Palmer, 2009). Because of the proliferation of electronic trading across all exchanges, the use of 

algorithms became indispensable for the trading process of institutions, market makers, and 

                                                           
1
 On April 6, 2005, the Securities and Exchange Commission adopted Regulation NMS, a series of initiatives 

designed to modernize and strengthen the national market system for equities. Regulation NMS was published in 

Securities Exchange Act Release No. 51808 (Jun. 9, 2005), 70 FR 37496 (Jun. 29, 2005) (“NMS Release”). These 

initiatives include: (1) Rule 610, which addresses the access to markets; (2) Rule 611, which provides inter-market 

price priority for displayed and accessible quotations; (3) Rule 612, which establishes minimum pricing increments; 

and (4) amendments to the joint-industry plans and rules governing the dissemination of market data. Rule 611, 

among other things, requires a trading center to establish, maintain, and enforce written policies and procedures 

reasonably designed to prevent “trade-throughs” – the execution of trades at prices inferior to protected quotations 

displayed by other trading centers. In order to be protected a quotation must be immediately and automatically 

accessible. (See Palmer (2009)). 
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professional traders. This resulted in algorithmic trading taking over the market making function 

for smaller size trades in the stock market due to its speed and cost advantages (see Hendershott 

and Moulton (2007)). More generally, Hendershott, Jones and Menkveld (2011) explain the use 

of algorithmic trading as follows: 

Algorithms are used to supply as well as to demand liquidity. For example, liquidity 

demanders use smart order routers (SORs) to decide the placement of a liquidity order, 

whereas liquidity suppliers such as hedge funds and broker-dealers use algorithms to 

supply liquidity. Overall, as trading became more electronic, it became easier and cheaper 

to replicate a floor trader’s activity with a computer program doing algorithmic trading.  

 

The growth of algorithmic trading has spurred interest in its potential effects on market 

dynamics (Hendershott and Riordan, 2009). In particular, such mechanized trading systems 

potentially could both reduce liquidity and increase volatility, particularly in times of market 

stress.
2
 Two sides to the argument exist concerning the use of algorithmic trading. On the one 

hand, algos can increase competition and result in an increase in liquidity, thereby lowering the 

cost of immediacy. On the other hand, liquidity could decrease if algorithmic trades are used 

mainly to demand liquidity. For example, whereas limit order submitters supply liquidity by 

granting a trading option to others, liquidity demanders attempt to identify and pick-off 

beneficial trading opportunities by increasing the cost of submitting limit orders by causing 

spreads to widen. An example of liquidity demanders are algo traders executing large 

institutional blocks in short periods of time. Empirically, Hendershott et al. (2011) and 

Hendershott and Riordan (2009) find that the net effect of algo trading is to reduce bid-ask 

spreads and aid in the pricing efficiency in the stock market.  

                                                           
2
 The Flash Crash of May 6

th
, 2010 is an example of how algorithmic trading may have led to extreme volatility and 

the disappearance of liquidity. This potential liability of algorithmic trading has caused critics to support curbs to be 

placed on such trading. More recently, algorithmic trading also was criticized because of its “unfair” advantage over 

non-computerized traders, since algos possess a sub-second timing advantage in placing quotes and the related 

potential of front running of larger block orders. Here we concentrate on the effect of algorithmic trading on options 

market pricing for market scenarios other than the Flash Crash. 
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We extend the pioneering work of Hendershott et al. (2011) on the effects of algorithmic 

trading in the stock market to options. The importance of algorithmic trading for options on the 

demand side is found in the “Smart Routing” of options and the algorithmic execution of price 

improving multi-leg orders, as well as spread enhancing market-making activities across strikes, 

expirations, calls/puts, and on as many as seven options exchanges at once. Alternatively, the 

multitude of options challenges the ability of this market mechanism to generate liquidity for 

supply side activities. Supply side traders require execution of positions at current bid/ask prices 

such that the bid-ask spread widens and depth declines. Large supply side option orders 

challenge the ability of a potentially think market (such as options with many strikes, expirations, 

and exchanges) to consistently provide liquidity.  

Preliminary evidence on the extent of algorithmic trading in the options markets is found 

in Figure 1, which shows the growth of OPRA message traffic from 2006 to 2008. Such activity 

is clearly visible in 2007 and increases in 2008. We examine the relation between algorithmic 

trading and liquidity by analyzing the bid-ask spread and the best bid-ask depth values for the 

Options Price Reporting Authority (OPRA) data feed for the flow of option messages as a proxy 

of algo trading. We differentiate between “call” and “put” options, and among “in-”, “near-” and 

“out-of-the-money” options, as well as providing separate results by market capitalization, 

volume, and volatility quintiles. Given the liquidity differences among the various options 

groupings, we have the advantage of analyzing the effect of algo trading on liquidity for a wide 

range of instrumental characteristics. These results provide more definitive conclusions than 

stocks concerning the ability of algo trading to supply liquidity effectively across a wide range of 

different characteristics (option strikes/expirations/calls-puts), thereby determining to what 

extent bid-ask spreads and depth responds to non-human intervention. Such results and 
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conclusions are critical to regulators who make decisions concerning the benefit of algorithmic 

trading relative to the risk of liquidity disappearing during flash crashes.  

We find broad evidence to support the benefits of algorithmic trading to reduce the bid-

ask spread measure of liquidity, as well as providing an analysis of conflicting results for the 

depth of the market. We support our analysis with a robustness check by using the introduction 

of penny quotes as an exogenous event to support the liquidity impact of message traffic. Our 

findings also support the Cao and Wei (2009) results of the existence of a material liquidity 

factor in the options market. Moreover, our spread and depth analysis of the different strike 

categories ("in-”, “near-” and “out-of-the-money”), as well as both calls and puts, supports the 

breadth of liquidity in options. We also find a differential impact of the underlying stock market 

capitalization and volatility, and the option characteristic of volume, on option bid-ask spreads 

and depth. Thus, we provide evidence on liquidity commonalities in the options market. 

In conclusion, our results add to the developing literature on the liquidity of options, as 

well as more specifically substantiate the beneficial liquidity impacts of algo trading.
3
 

Consequently, potential regulatory restrictions on algorithmic trading should consider the 

benefits of such strategies on complex markets such as options, as well as the disadvantages of 

much slower human traders who enter the market for fundamental reasons separate from algo 

liquidity supply effects from market making and related strategies. 

 

I. Algorithmic Trading and Options 

Our study contributes to two related strands of academic literature: The impact of algorithmic 

                                                           
3
 Microstructure research in options is complicated by the multitude of strike prices and expirations dates, the 

number of revisions in the bid-ask quotes, and the difficulty in obtaining data. Our findings add to the relatively thin 

literature on this direction as well as the even smaller subset of literature on option market liquidity (Vijh, 1990; Cao 

and Wei, 2009).   
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trading on the market environment and its impact on option market liquidity. The literature on 

the impact of algo trading in general is still at its infancy (Hasbrouck and Saar, 2010). In 

addition, the area of option market liquidity is a relatively nascent area compared to liquidity 

research on the equity and debt markets (Cao and Wei, 2009). The benefit of examining 

exchange-traded options is that it provides a natural laboratory for studying how trading 

mechanisms and the competitive structure of the industry affect market quality, given the large 

number of strike prices per underlying stocks and the relatively large number of exchanges 

trading options (Mayhew, 2002). Our paper ties a knot between these two fields by studying the 

impact of algo trading on option market liquidity. 

 The first area of algo research is the examination of the characteristics of algorithmic 

trading and algo trading strategies (especially the effect of the speed of transmission on trading 

strategies). Riordan and Storkenmaier (2008), Easley, Hendershott, and Ramadorai (2009), and 

Hasbrouck and Saar (2010) examine the effect of the speed of order transmission and algo 

strategies. For example, Riordan and Storkenmaier state that algo traders increase liquidity by 

reducing latency in order transmission from 50 ms to 10 ms, thereby reducing trading costs by 1 

to 4 basis points.  

 The second area of research is the impact of algo trading on the market environment, 

such as information dissemination and the liquidity variables of bid-ask spread and depth. 

Hendershott and Riordan (2009), Brogaard (2010), Karagozoglu (2011), and Hendershott, Jones, 

and Menkveld (2011) are the primarily sources dealing with the impact of algo trading on market 

quality factors such as price discovery and liquidity. More specifically, Hendershott and Riordan 

examine the 30 DAX stocks, finding that algorithmic trades create a larger price impact than 

non-algorithmic trades and therefore tend to contribute more to price discovery. Brogaard 
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investigates the impact of algo trading on equity market quality by using a dataset of 26 high-

frequency traders in 120 stocks. He reports that high-frequency traders contribute to the liquidity 

provision in the market, that their trades improve price discovery more than trades of other 

market participants, and that their activity appears to lower volatility. Karagozoglu examines 

algorithmic trading in relation to futures markets, finding that spreads are decreased and market 

depth is increased in five different futures contracts. The only related liquidity study using 

options to examine market quality is Cao and Wei (2009), who show the existence of a material 

common liquidity factor in the options market, although they do not relate this common factor to 

algo trading; thus, option liquidity does have a factor that flows across the strike prices and calls 

and puts of an option series.
4
  

 Hendershott, Jones, and Menkveld (2011) is the most related research to this paper and 

forms the basis of the experimental design for our study. Hendershott, et al. uses a measure of 

NYSE message traffic as a proxy for algo trading to study its impact on the liquidity of stocks, 

without differentiating among the various strategies used by algo traders. They also include an 

event study approach around the introduction of autoquoting as an exogenous instrument to 

examine the effect of algorithmic trading. The authors document that an increase in the number 

of algorithmic trading messages affect the liquidity of only the largest stocks. For these stocks, 

liquidity improved in terms of a decline in the quoted and effective spreads, although quoted 

depth decreased. The use of the autoquoting period confirms the key results of their paper.  

 
                                                           
4
 Regarding the general research on options not directly related to algo trading, Biais and Hillion (1991) and John, 

Koticha and Subrahmanyam (1991) develop models that examine the equilibrium bid and ask prices for individual 

equity options markets. Ho and Macris (1984) analyze the transaction price and bid-ask spread relation for AMEX 

individual equity options; George and Longstaff (1993) determine the cross-sectional differences among individual 

equity options for different strikes; Mayhew (2002) examines the effects of competition and market structure using 

individual equity option bid-ask spreads; and Cai, Hudson, and Keasey (2004) examine equities on the London 

Stock Exchange (LSE) and find a L-shape in the bid-ask spread, a two-humped shape for volume, and a U-shape for 

volatility. 
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II. Data 

Options microstructure research provides several challenges related to data structure.  

First, the number of strike prices and expiration dates multiplies the number of data series, with 

the different strikes/expirations possessing differing price response characteristics. Second, the 

number of quote revisions (algo messages) has geometrically increased over the past few years, 

creating data analysis and storage issues. Finally, data availability for all quotations for all stock 

options for all exchanges is limited. Thus, unlike organized microstructure data for the equity 

markets, there is dearth of comprehensive microstructure research for exchange-traded options. 

The data for this study employs the Options Price Reporting Authority (OPRA) data feed. 

The OPRA feed consists of trade execution and the best bid and offer quotes and size from each 

of the seven U.S. equity options exchanges. OPRA flags each quote with an indicator stating the 

quote’s bid-ask relative to the national best bid and offer (NBBO). We employ the Baruch 

Options Data Warehouse database of options, which processes the full OPRA feed and generates 

data extracts and statistics on trade and quote messages.  

This paper uses data for calendar years 2007 and 2008, representing 2,328,185 unique 

options series on 5,100 underlying equities, ETFs and indexes. The two years of data contain 

311,567,675 trades and approximately 1.3 trillion quotes, requiring 65 terabytes of disk storage. 

We focus on 2007 and 2008 because algorithmic trading in options markets increased starting in 

2007 (as shown in Figure 1) and because 2008 provides a unique opportunity to examine how 

volatility affects both the spread and depth of options markets, especially in terms of the relation 

between algorithmic trading and the financial crisis. In addition, our research design and time 

interval includes the introduction of penny quotes for options markets, which was initiated in 

2007.  
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We compute the quoted spread for each option series for each stock employed in this 

study by determining the average National Best Bid and Offer (NBBO) bid-ask spread over the 

entire trading day for each day in both years, as well as the total dollar value for each options 

series traded. In this process we employ the traditional filters for spreads and depth. For example, 

we ignore negative spreads and stub quotes (a quote with a zero bid and a very large ask, such as 

199,999).
5
 The data on market capitalization, and equity returns for the calculation of the daily 

volatility, are obtained from COMPUSTAT and CRSP.  

 

III. Liquidity Measures and Methodology 

A. Liquidity, Algo Trading, and Control Measures 

Our goal is to examine the relation between algorithmic trading and the liquidity of the 

associated options market by using the number of messages as the measure of algorithmic 

trading in the market.
6
 Algorithmic trading is variously reported to account for 50% to 70% of 

the total volume in today’s equity market, implying that both the amount and changes in algo 

trading messages dominate the number of messages in a market.  

We examine the relation between message traffic and both the bid-ask spread and depth 

measures of liquidity in cross sectional panel regressions, where controls are established for the 

underlying firm size, volatility of the underlying stock, and the dollar volume of option trading. 

We examine panel regressions employing every intraday bid-ask quote and depth observation 

                                                           
5
 Only “eligible” quotes are employed. An eligible quote is a NBBO quote representing a firm (i.e. “executable”) 

quote that is neither a stub quote nor not a zero price bid quote; quotes with zero size bids or offers are also ignored. 

All stub quotes are removed from the database, which includes initial opening and closing stub quotes, as well as 

“non-firm” quotes at the start of the day. The messages include both quotes and trades; however, more than 99.95% 

of the option messages are quotes. Therefore, for options, messages and bid-ask quotes are effectively equivalent. 
6
 Hendershott et al. suggest either a measure of message traffic normalized by volume, or the use of raw message 

traffic to represent algorithmic trading. We employ raw message traffic; however, we do control for the volume of 

trading in the regression analysis. The results are unchanged when message traffic normalized by volume of trading 

is employed.  
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and accumulate this data into daily algo messages and daily average bid-ask spread and depth 

data.  The volume and volatility control variables are total values for the day. Separate values for 

the spread and depth are calculated for each option strike, expiration, and call/put for each 

underlying stock. The percentage spread is calculated as follows: 
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 We sort the options based on three different criteria: (1) by market capitalization of the 

underlying instruments (stocks and ETFs, generally referred to generically as “stocks”); (2) by 

dollar volume traded for the options over the entire year; and (3) by volatility of the underlying 

stocks. We sort the options based on the market capitalization of the underlying stocks into 

quintiles in descending order, choosing the largest forty stocks from each group. Therefore, we 

examine the option series data for 200 underlying equities of stratified capitalizations. As noted, 

we also sort the option series by the respective option trading volume generated by all of the 

exchanges for the entire year, as well as sorting independently by the volatility of the underlying 

stock, again in descending order.  

 We employ the Garman-Klass (1980) measure to calculate the daily stock volatility, as 

defined by: 
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The Garman-Klass measure allows for an examination of volatility within an interval as opposed 

to the traditional volatility measures that examine volatility between or across intervals. As noted 

by Garman and Klass, their measure is eight times more efficient than using a close-to-close 

measure of volatility.
7
   

 For each sort the first quintile represents stocks with the highest values for that variable, 

whereas quintile five represents stocks with the lowest quintile values for that variable. For each 

sort we classify the option series into “call” and “put” options, and further into “in-”, “near-” and 

“out-of-the-money” options. The “in-”, “near-” and “out-of the money” option groups are created 

by employing the following procedure: First, we calculate the difference between the stock price 

of the last trade and the strike price, labeled the “stock-strike difference.” The option is grouped 

as a near-the-money option if the stock-strike difference is within 2.5 (5) points for stocks below 

(above) $20. It is grouped as an out-of-the-money call option if the stock-strike difference is -2.5 

to -10 (-5 to -20) for stocks below (above) $20, and an in-the-money call option if the difference 

is 2.5 to 10 (5 to 20) for stocks below (above) $20. Signs are reversed for put options. Options 

outside these ranges possess little trading interest and therefore are removed from the analysis. 

 We call the above sample the general sample (or non-penny quote sample), since we 

remove the stocks with penny quote options from the sample in order to provide inferences on 

the impact of message traffic (algorithmic trading) independent of the effects of the penny pilot 

on option market activity.
8
 

B. Panel Regressions 

 For the general sample we estimate the following OLS regressions for each category as 

follows: 

                                                           
7
 Efficiency in this context refers to the reduction in the error of the estimate.  

8
 The penny pilot option project and its importance are described in the next sub-section.  
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                          (4) 

where  is the liquidity variable (either the bid-ask spread or the depth), is the message 

traffic representing algorithmic trading, and  is the set of control variables, i.e. market 

capitalization, the Garman-Klass volatility of the underlying stock, and the dollar trading volume 

of the stock’s options. 

We conduct our tests of option algorithmic trading in two phases. In the first phase we 

examine the relation between algorithmic trading and liquidity by examining the bid-ask spread 

and the depth of the market for the non-penny quote (general sample) options. For this step we 

filter the non-penny quote options so as to provide inferences of message traffic (algorithmic 

trading) and market quality on option market activity, independent of the consequences of 

moving from the five/ten cent quotes to penny quotes. In the second phase we design a model for 

a robustness check (and to establish causality) by picking the introduction of penny quotes in 

2007 and 2008 to option series affected by the penny quotes as an exogenous factor that could 

potentially increase the incidence of algorithmic trading. In fact, the reason to change to penny 

quotes for stock options was not to benefit algorithmic trading. However, a smaller tick size 

theoretically should create more quote changes using the penny quote procedure, especially for 

the more active stock options (American Stock Exchange, 2007; Louton, Saraoglu, and 

Holowczak, 2009). Moreover, more frequent quotes provide critical new information concerning 

the fair price of an option to algorithms. Thus, the immediate feedback traders receive from 

penny quotes should increase algorithmic trading activity, which is especially crucial to options 

given their extensive number of strikes and expiration dates.  

C. The Penny Pilot as a Robustness Check 

 Our approach to verifying the relevance of algorithmic trading is to explore the relation 
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between message traffic and option market liquidity by using stocks with option penny quotes. 

The penny quote sample period starts one month before the penny quote initiation date and ends 

one month after the penny quote initiation. Note that the transition to option penny quotes 

occurred in three phases during this time period; we examine each phase independently.
7
  

 We estimate the following regressions for the sample with penny quotes:  

                                                                  (5) 

where  is the liquidity variable (either bid-ask spread or depth), is the message traffic 

representing algorithmic trading, and is the set of control variables such as market 

capitalization, Garman-Klass volatility of the underlying stock, and the trading volume of the 

option. Equation (5) includes the additional variable  to represent the time dummy for before 

and after the penny quotes were introduced. Since our principal goal in this analysis is to 

understand the effects of algorithmic liquidity supply on market quality, we employ the penny-

quote dummy ( ) as an instrument for algorithmic trading in the panel regression framework. 

By including time dummies in the panel specification, we can employ non-penny quoted stocks 

as controls, comparing the penny-quoted stocks to the not-yet-penny-quoted stocks. The 

percentage spread and depth used in the penny quote analysis is measured in the same manner as 

with the total sample. The penny quote regression model is calculated using the GMM 

(Generalized Method of Moments) procedure. 

 

III. Results 

A. Basic Statistics 

 Tables 1 and 2 show the basic call and put statistics, respectively, by option category for 

each quintile for the spread, depth, and algorithmic messages, as well as for the control variables 

of market capitalization, Garman-Klass volatility, and dollar option volume. The average quoted 

                                                           
7
 We separate the general sample and the penny quote sample. This separation provides the opportunity to interpret 

the results and present inferences for each sample independently. We also examine an integrated sample (not shown 

here), finding that the results were not significantly different than the general and penny quote samples.  
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spread as a percentage of the option price is smallest for the in-the-money options, next largest 

for the near-the-money options, and largest for the out-of-the-money options. This is logical 

given the size of the prices for the in-, near-, and out-of-the-money option categories. An 

important characteristic of the option series is that the spreads are almost always higher for the 

2008 relative to 2007, with larger differences and spreads occurring for the smaller stocks (lager 

numbered quintiles). Moreover, the increase in the spread is larger for the “in-” and “out-of-the-

money” groups than for the “near-the-moneys.”  

 The depth in Tables 1 and 2 is substantially higher for the first quintile of stocks, which is 

associated with institutional interest in these options. The depth is much smaller for the other 

quintiles. Moreover, the near-the-money options possess the largest depth for quintiles one to 

three. The most striking depth results are for 2008, where the depth for quintile one is typically 

less than half of the depth existing in 2007; however, the depth for the other quintile is often 

larger in 2008 than in 2007. This result indicates the extent of evaporating liquidity in the 

options market for the largest stocks due to the financial crisis and increase in algorithmic 

trading. 

 The number of algorithmic messages is substantially higher for the first quintile, which is 

consistent with the underlying stocks for this quintile being the largest and potentially most 

active stocks. Moreover, the number of algo messages increase significantly from 2007 to 2008, 

especially for puts and quintile 1,with quintile 5 being the lone exception. In terms of the control 

variables, the Garman-Klass volatility for 2008 increases by a factor of six for the first quintile 

and by a factor of 2.3 for quintile five. The market capitalization and dollar volume variables 

remained relatively stable over the two year period for most categories.  
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B. Spread Results 

 This section examines the bid-ask spread results for the general sample for 2007 and 

2008. Our goal is to understand the effects of algorithmic trading on the liquidity of options. 

Tables 3 and 4 provide the quintile spread results sorted in terms of each of the control variables 

in quintile descending order for 2007 and 2008, respectively. Table 3 shows that the standardized 

spread decreases with increasing message traffic for all categories and both years for the market 

capitalization sort.
9
 The number of messages is larger for the larger capitalization firms (e.g. 

quintile 1), therefore the coefficients are smaller in these cases. More importantly, the statistical 

significance of the message traffic variable almost always is larger for the larger firms such as 

quintile one, showing that the consistency and reliability of the results is stronger for quintile 

one. Moreover, the decrease in the spread is significant for all quintiles and option categories. 

The volume ranking by quintiles shows the same decrease in spreads and decline in significance 

on the market capitalization results, although quintiles 4 and 5 often are not significant. The 

volume quintile results are consistent since the largest capitalized companies often possess the 

largest options dollar volume.  

 Tables 3 and 4 also show that the spread declines with message traffic for the volatility 

sorted groups. However, the significance level of the spread decrease for these results is 

consistently the greatest for the lowest volatility group (i.e. quintile five). This result is intuitive 

since the highest volatility group (quintile 1) should include active options for the more volatile 

smaller cap stocks in this group which would be more diverse in their response to algo trading as 

well as be less liquid, whereas the lowest volatility group (quintile 5) would include larger 

capitalized firms; thus, the largest significance for the spread decrease for the volatility grouping 

                                                           
9
 We also examine the spread and depth results after removing the data for the financial crisis time period in 2008.  

We follow Anand, Puckett, Irvine, and Venkataraman (2011) to determine the crisis time period. The results for the 

crisis period in 2008 are essentially equivalent to the entire 2008 year, and are available upon request.   
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is in quintile five whereas the most significant results for the market capitalization and volume 

sorted results discussed above are in quintile one.  

C. Depth Results 

 Depth as a measure of liquidity has received minimal attention in the literature. In 

particular, in relation to algo trading only Hendershott et al. (2011) examines the roll of depth, 

finding that depth actually declines as algo trading increases. Thus, this measure of liquidity may 

actually be reduced due to the frequent quote revisions associated with algo trading. The 

reasoning by Hendershott et al. is based on the smaller trade size created by certain strategies for 

algo trading, although the evidence is anecdotal.  

 Tables 5 and 6 show that our analysis of depth for options typically increases as algo 

trading increases, especially for the market capitalization and volatility groupings, contrary to the 

market capitalization results of Hendershott et al.. Unlike the spread results, there is no pattern in 

the size of the significance values across quintiles or option categories. For the volume grouping 

the results are mixed, both in terms of the sign and whether the quintiles are significant, although 

the quintile one results often are most significant. Overall, there is no conclusive pattern for the 

depth variable using the volume sorted quintiles. These results can be due to algorithmic trading 

orders being sliced into smaller orders and executed in batches rather than being executed as 

large volume orders.  

D. The Penny Pilot as an Exogenous Event 

We next examine the penny pilot quotation for options as an exogenous factor that could 

potentially increase the incidence of algorithmic trading. The penny pilot program for options 

was a Securities and Exchange Commission (SEC) initiative to quote stock options with the most 

activity in terms of pennies rather than nickels/dimes in order to decrease price spreads, provide 

http://www.marketswiki.com/mwiki/Securities_and_Exchange_Commission
http://www.marketswiki.com/mwiki/SEC
http://www.marketswiki.com/mwiki/Quote
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better prices to retail customers, and reduce the payment for order flow. For our purposes, the 

introduction of penny quotes for the options market during 2007 and 2008 provides an 

opportunity to examine the effects of an exogenous factor. In fact, although algorithmic trading 

is not the intentioned beneficiary of the penny pilot program, by design it promotes the practice 

of algorithmic trading. Thus, a smaller tick size caused by penny quotes should create more 

quote changes, especially for the more active stock options (American Stock Exchange, 2007). 

Moreover, more frequent quotes provide critical new information concerning the fair price of an 

option. Thus, the immediate feedback that traders receive from penny quotes is consistent with 

an increase in algorithmic trading activity, which is especially crucial for option trading because 

of the complexity of their strike/expiration/multiple exchange structure.  

Table 7 presents the basic statistics for the penny quote sample. The penny quote sample 

we employ possesses basic characteristics that are almost equivalent to the first volume sorted 

quintile in the general sample; the explanation for this similarity is that the stocks used for the 

penny pilot in 2007/2008 are large capitalization stocks that possess very actively traded options. 

As with the general sample, the average spread as a percentage of the price for the penny stocks 

is smallest for the in-the-money options, next largest for the near-the-money options, and largest 

for the out-of-the-money options. The depth is typically largest for the near-the-money options 

for calls and the out-of-the-money options for puts. The depth is consistent with the results for 

the first quintile of the market capitalization ranking for the general option sample. This is 

consistent with both the penny quote sample and the first quintile from the general sample being 

dominated by underlying stocks that are of interest to institutions. Also, the number of algo 

messages is substantially higher for the near-the-money group, since near-the-moneys are the 

most active category.  

http://www.marketswiki.com/mwiki/Retail
http://www.marketswiki.com/mwiki/Payment_for_order_flow
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 Phase I of the penny pilot program (PPP) was adopted by six options exchanges on 

January 26
th

 of 2007 and included 13 securities; Phase II of the PPP began on September 28, 

2007 and included 22 securities; and Phase III began on March 28, 2008 and covered 28 

securities. Our underlying general sample in 2007 and 2008 excludes these penny pilot 

securities. With the introduction of the penny pilot there were two major changes that could 

confound our results. First, penny quotes should increase the slicing and dicing of orders, since 

smaller-sized orders can be placed at better prices. Second, there could be more effective market 

making due to the existence of algo traders and their speed and number advantages. However, 

there could be less depth in the market due to less clustering of orders around the NBBO because 

of such slicing and dicing of algorithmic orders.  

 For each phase we examine one month before and one month after the penny quote is 

introduced. Thus, we generate daily panel regressions according to the specification in equation 

(2). Tables 8 presents the spread results for all three phases. In the penny quote sample the 

results for the “in-”, “near-” and “out-of-the-money” categories show interesting differences. the 

bid-ask spread declines with message traffic, consistent with the general sample, for all 12 

regressions (three penny pilot phases) for the near- and out-of-the-money option groups, but is 

not significant for the in-the-money regressions.  

 Table 9 presents the depth results for the penny quote sample. Except for one case the 

depth significantly decreases. These results contradict the depth results for the market 

capitalization and volatility groupings for the general sample.
10

 However, unlike the general 

sample, the decline in depth for the penny pilot sample is a natural consequence of the 

introduction of smaller penny quotes with more frequent quote revisions, as well as due to an 

                                                           
10

 Of course, the in-the-money results can be related to thin trading. 
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increase in the slicing of orders into smaller sizes.
11

  

 These penny quote results are consistent with the results for the volume ranking of the 

first quintile of the general sample. In addition, the penny quote sample results for both the 

spread and depth for the options are similar to those of Hendershott et al. (2011) for equities. In 

general, the penny quote stocks are the most active and/or liquid stocks in the market, and 

therefore the increase in message traffic means a smaller spread due to a greater liquidity supply 

because of a larger number of (algorithmic) market makers, and a decreased depth due to the 

slicing and dicing of orders. Therefore, with increased message traffic, both the trading cost and 

the depth is reduced.  

E. Discussion of Results 

Overall, our results differ from Hendershott et al. (2011) in obvious ways, especially in 

terms of the signs on the depth variable. These differences stem from the fact that our study 

examines stock options, whereas Hendershott et al. analyzes stocks. For example, Hendershott et 

al.’s discussion focuses o the most liquid stocks (quintile 1) of the market capitalization group, 

whereas our larger market capitalization group does not necessarily employ the most active 

options. In fact, the volatility of the underlying stocks is a predominant motivation for trading 

options, with the volatility grouping showing a positive increase in depth for both 2007 and 

2008. The volume of option trading is the most transparent method of determining the most 

active options. In fact, the volume sorting sample results closely mirror the Hendershott et al. 

results for both spreads and depth, i.e. the spread and depth these variables typically decline with 

higher message traffic, with this relation existing with less significance as the comparison 

changes from quintile one to quintile five. Finally, note that the decline in depth is consistent 

with the slicing and dicing of orders from buy side algorithms, as well as by the competition on 

                                                           
11

  See the “Penny Quoting Pilot Program Report” by the American Stock Exchange (2007).  
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the algorithmic liquidity supply side, which potentially can lead to a smaller size offered by each 

market maker at the best bid and offer. Moreover, for the penny quote sample the results mirror 

quintile one of Hendershott, et al.  

  

IV. Conclusions 

 Empirical research on the market impact of algorithmic trading is important for both 

policy makers and market participants because of the potential impact of algo trading on the bid-

ask spread and the depth of the market. Previous research examines the impact of algo trading on 

the stock and futures market. We extend this research on a market with various levels of trading 

activity due to different stocks, a range of strike prices, different expiration dates, and a 

multitude of exchanges. These factors make the application of algorithmic trading more difficult, 

as well as more useful. We employ the Options Price Reporting Authority (OPRA) data feed, 

using the flow of messages as a proxy of algo trading. Thus, our results offer evidence on the 

liquidity impacts of algorithmic trading in the options market. In addition, we employ the 

introduction of penny quotes in option markets as an exogenous event to test the liquidity impact 

of message traffic.  

 Given the liquidity differences among the various groups of options, we have the 

advantage of examining the effect of algorithmic trading on liquidity in a more in-depth context. 

Our analysis of the general sample for 2007 and 2008, and sorting them by the characteristics of 

the underlying stock (by market capitalization and volatility) as well as by dollar option volume, 

provides evidence that supports Hendershott et al. (2011). Moreover, we provide an explanation 

as to why a reduction in depth with algorithmic trading can exist, as with our penny quote sample 

and the results found in Hendershott et al.  
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 The issue of liquidity in financial markets is a timely and crucial factor. Additional 

analysis of more complicated and integrated markets such as options would provide crucial 

information to aid appropriate regulatory interests in making the markets “fair and efficient.” 

Moreover, further investigation of the impacts of algorithmic traders on the markets is essential 

in determining the tradeoffs between the additional liquidity algo traders provide in normal 

markets versus the potential for market crashes when algo traders remove their liquidity, as 

happened for the Flash Crash.  
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                                                                                             Figure 1 

OPRA Message Traffic per Month in Billions of Messages 

 

This figure examines the growth in option messages for before and during the study period. 
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Table 1: Summary Statistics for Calls 

  CALLS 2007  CALLS 2008 

 
Quoted Spread 

          Q1    Q2               Q3      Q4        Q5        Q1       Q2    Q3     Q4        Q5 

 in 0.0240 0.0520 0.0730 0.1040 0.1720  0.0390 0.0930 0.1240 0.2180 0.2200 

 near 0.0860 0.2060 0.2840 0.5090 0.5740  0.0760 0.2240 0.3480 0.4990 0.6990 

 out 0.2760 0.4060 0.6150 0.8140 0.7920  0.3180 0.4880 0.7480 1.0010 1.2810 
Quoted Depth             

 in          665         77            60            46             19           387            74           55          41             50  

 near      1,768       145            74            44             21           764         182           75          46             43  
 out      1,160       125            57            34             22           701         103           58          39             30  

Messages             
 in    32,713   8,025      4,064      1,653       1,494     42,865   14,107     4,866    1,906          909  

 near    41,861   7,331      3,434      1,573       1,206     74,134   11,998     4,542    1,992       1,098  

 out    26,916   4,140      1,776      1,018       1,550     46,271      7,811     2,973    1,386          873  

GK Volatility             

 in 7.01947 11.0200 11.9430 19.8429 33.9894  42.1542 37.9620 43.7990 51.9070 73.5807 

 near 7.01947 11.0200 11.9430 19.8429 33.9894  42.1542 37.9620 43.7990 51.9070 73.5807 

 out 7.01947 11.0200 11.9430 19.8429 33.9894  42.1542 37.9620 43.7990 51.9070 73.5807 

Market Cap             

 in 17.0658 14.9900 14.3680 13.5043 13.2806  16.8769 14.9660 13.9270 13.1640 12.6521 

 near 17.0658 14.9900 14.3680 13.5043 13.2806  16.8769 14.9660 13.9270 13.1640 12.6521 

 out 17.0658 14.9900 14.3680 13.5043 13.2806  16.8769 14.9660 13.9270 13.1640 12.6521 
Volume             

 in 1238.0480 299.2944 234.4949 282.4840 61.1345  632.8810 399.7656 235.3451 81.7114 181.8925 

 near 2831.8604 240.7275 109.7671 63.6481 45.7641  2257.5096 230.8528 72.1126 42.8126 26.0978 
 out 963.9726 78.8107 47.1090 31.2650 217.3550  708.951 95.1252 29.6912 16.3591 13.7386 

Based on the option code we divide the data into call and put options and then into in-, near-, and out-of-the-money strikes. The table provides daily averages for 

each variable for the call options for the general sample for 2007 and 2008. We group/rank the options by the underlying’s (equity’s) market capitalization. For 

each quintile we then provide averages for the quoted spread, quoted depth, number of messages, Garman-Klass volatility, market capitalization and dollar option 

volume by each equity subgroup and for calls and puts and “in-”, “near-” and ”out-of-the-money” options. The values for the market capitalization and volatility 

variables are equivalent for the in-, near-, and out-of-the-money categories since they are based on the underlying stocks. Dollar option volume is the average per 

strike price for each stock in the category and then divided by 100 (the strikes include those without a trade but with a quote).                                                                                                                                         
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Table 2: Summary Statistics for Puts 

  PUTS 2007  PUTS 2008 
        Q1      Q2      Q3     Q4     Q5        Q1       Q2      Q3      Q4       Q5 
Quoted Spread             

 in 0.0313 0.0677 0.1295 0.2514 0.2773  0.0371 0.0916 0.1226 0.1816 0.2768 

 near 0.0814 0.2022 0.2712 0.4329 0.5295  0.0632 0.1928 0.2921 0.4543 0.5843 

 out 0.2445 0.5072 0.6026 1.0273 0.7164  0.2089 0.3871 0.5737 0.8737 1.3039 
Quoted Depth             
 in 619 91 59 39 27  426 92 56 45 41 
 near 1,975 151 72 42 26  843 188 77 47 40 
 out 1,706 121 51 35 17  711 102 56 38 32 
Messages             
 in 36,700 8,187 3,973 1,411 905  47,843 13,609 4,771 2,444 1,335 

 near 40,163 7,027 3,549 1,499 1,285  69,149 11,585 4,620 2,094 1,256 
 out 25,143 3,537 1,718 1,872 954  41,296 7,107 3,009 1,551 1,169 

GK Volatility             

 in 7.01947 11.024 11.943 19.843 33.989  42.1542 37.96192 43.799 51.9068 73.5807 

 near 7.01947 11.024 11.943 19.843 33.989  42.1542 37.96192 43.799 51.9068 73.5807 
 out 7.01947 11.024 11.943 19.843 33.989  42.1542 37.96192 43.799 51.9068 73.5807 
Market Cap             
 in 17.0658 14.99 14.368 13.504 13.281  16.8769 14.96557 13.927 13.1639 12.6521 

 near 17.0658 14.99 14.368 13.504 13.281  16.8769 14.96557 13.927 13.1639 12.6521 
 out 17.0658 14.99 14.368 13.504 13.281  16.8769 14.96557 13.927 13.1639 12.6521 
Volume             

 in 2101.8805 368.0625 373.0354 91.5764 108.5181  897.4038 462.8728 254.1447 122.1596 72.5502 
 near 3529.1479 194.3081 99.5504 42.5228 87.6818  2831.0195 227.7973 85.5088 53.0268 30.8512 
 out 1011.6183 88.3165 39.2363 19.9890 16.2646  944.0373 97.2319 38.8053 26.3321 23.4810 

 
Based on the option code we divide the data into call and put options and then into in-, near-, and out-of-the-money strikes. The table provides daily averages for 

each variable for the put options for the general sample for 2007 and 2008. We group/rank the options by the underlying’s (equity’s) market capitalization. For 

each quintile we then provide averages for the quoted spread, quoted depth, number of messages, Garman-Klass volatility, market capitalization and dollar option 

volume by each equity subgroup and for calls and puts and “in-”, “near-” and ”out-of-the-money” options. The values for the market capitalization and volatility 

variables are equivalent for the in-, near-, and out-of-the-money categories since they are based on the underlying stocks. Dollar option volume is the average per 

strike price for each stock in the category and then divided by 100 (the strikes include those without a trade but with a quote).                                                                                                                      
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Table 3: The Effect of Algorithmic Trading on Bid-Ask Spreads (2007, Calls) 

 

                                                                                                                

 
CALLS (IN) 2007 
Group/Sorting Criteria            Q1          Q2      Q3          Q4  Q5  Volume Market Cap GK Volatility 
Qspread for Volume 
 

-0.0001 
(-55.21) 

-0.0011 
(-32.94) 

-0.0057 
(-17.71) 

-0.0032 
(-1.95) 

-0.0051 
(-0.62)  

-0.5043 
(-1.31) 

-3.7400 
(-77.93) 

0.1462 
(65.97) 

Qspread for Market Cap 
 

-0.0001 
(-66.69) 

-0.0004 
(-28.04) 

-0.0022 
(-22.80) 

-0.0017 
(-23.31) 

-0.0025 
(-2.28)  

-0.1478 
(-4.66) 

-3.1800 
(-56.65) 

0.0000 
(77.42) 

Qspread for GK Volatility 
 

-0.0004 
(-22.76) 

-0.0001 
(-10.37) 

-0.0001 
(-15.74) 

-0.0002 
(-19.99) 

-0.0002 
(-43.34) 

-14.400 
(-7.45) 

-13.4300 
(-45.20) 

6.9487 
(22.92) 

          

CALLS (NEAR) 2007          

          
Qspread for Volume 
 

-0.0008 
(-48.14) 

-0.0096 
(-49.88) 

-0.0231 
(-31.60) 

-0.0121 
(-8.02) 

-0.0104 
(-2.06)  

-29.4100 
(-101.58) 

3.8200 
(8.30) 

0.3635 
(13.57) 

Qspread for Market Cap 
 

-0.0007 
(-40.75) 

-0.0007 
(-13.67) 

-0.0132 
(-39.04) 

-0.0078 
(-18.92) 

-0.0141 
(-7.38)  

-34.1100 
(-107.77) 

13.6300 
(18.80) 

0.0000 
(14.29) 

Qspread for GK Volatility 
 

0.0003 
(2.46) 

-0.0002 
(-0.33) 

-0.0007 
(-0.96) 

-0.0008 
(-12.73) 

-0.0009 
(-40.47) 

-62.7400 
(-68.82) 

-39.5400 
(-27.54) 

2.1600 
(14.94) 

          

CALLS (OUT) 2007          

          
Qspread for Volume 
 

-0.0020 
(-40.68) 

-0.0271 
(-38.15) 

-0.0478 
(-16.34) 

0.0014 
(0.30) 

0.0060 
(1.09)  

-102.5100 
(-197.35) 

8.6900 
(9.92) 

1.0900 
(27.63) 

Qspread for Market Cap 
 

-0.0016 
(-28.93) 

-0.0022 
(-18.90) 

-0.0476 
(-27.06) 

-0.0120 
(-10.88) 

-0.0075 
(-1.96)  

-102.5100 
(-179.58) 

22.4400 
(15.48) 

0.0002 
(30.40) 

Qspread for GK Volatility 
 

-0.0019 
(-6.88) 

-0.0007 
(-8.02) 

-0.0007 
(-6.23) 

-0.0023 
(-16.28) 

-0.0031 
(-35.78) 

-122.2100 
(-85.85) 

-16.8200 
(-7.00) 

1.5600 
(10.15) 
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Table 3: The Effect of Algorithmic Trading on Bid-Ask Spreads (2007, Puts) Continued… 

PUTS (IN) 2007          
Group/Sorting Criteria Q1 Q2 Q3 Q4 Q5  Volume Market Cap GK Volatility 
Qspread for Volume 
 

-0.0002 
(-19.86) 

-0.0022 
(-15.85) 

-0.0136 
(-8.66) 

-0.0052 
(-0.80) 

-0.0219 
(-1.43)  

-4.6400 
(-28.72) 

-2.8500 
(-13.14) 

0.1606 
(20.39) 

Qspread for Market Cap 
 

-0.0002 
(-19.03) 

-0.0004 
(-18.61) 

-0.0038 
(-10.90) 

-0.0019 
(-9.27) 

-0.0111 
(-3.16)  

-4.39 
(-23.98) 

-5.0900 
(-13.50) 

0.0000 
(11.55) 

Qspread for GK Volatility 
 

-0.0004 
(-5.23) 

-0.0006 
(-10.40) 

-0.0001 
(-8.22) 

-0.0004 
(-13.88) 

-0.0002 
(-26.05) 

-18.51 
(-25.45) 

-22.5400 
(-21.06) 

-0.1015 
(-1.37) 

          
PUTS (NEAR) 2007          
          
Qspread for Volume 
 

-0.0007 
(-40.82) 

-0.0079 
(-37.29) 

0.0224 
(-25.32) 

-0.0069 
(-3.00) 

-0.0057 
(-0.91)  

-21.0900 
(-81.53) 

1.5700 
(3.71) 

0.3239 
(13.38) 

Qspread for Market Cap 
 

-0.0007 
(-36.93) 

-0.0007 
(-14.77) 

-0.0127 
(-29.50) 

-0.0071 
(-15.28) 

-0.0194 
(-8.97)  

-26.4800 
(-89.64) 

4.5200 
(6.68) 

0.0000 
(11.92) 

Qspread for GK Volatility 
 

-0.0005 
(-3.68) 

-0.0002 
(-3.37) 

0.0004 
(0.61) 

-0.0009 
(-13.78) 

-0.0008 
(-38.29) 

-51.7400 
(-56.49) 

-21.3000 
(-15.29) 

0.8620 
(7.50) 

          

PUTS (OUT) 2007          
          
Qspread for Volume 
 

-0.0019 
(-40.14) 

-0.0242 
(-24.05) 

-1.0000 
(-14.33) 

-0.0141 
(-1.79) 

-0.0092 
(-0.23)  

77.1800 
(-160.94) 

8.9500 
(9.97) 

1.0800 
(25.98) 

Qspread for Market Cap 
 

-0.0017 
(-30.92) 

-0.0025 
(-19.97) 

-0.0381 
(-15.02) 

-0.0158 
(-8.59) 

-0.1005 
(-3.97)  

-81.4500 
(-152.16) 

11.7900 
(8.60) 

0.0001 
(24.27) 

Qspread forGK Volatility 
 

-0.0011 
(-3.49) 

-0.0011 
(-10.37) 

-0.0008 
(-6.96) 

-0.0030 
(-16.15) 

-0.0026 
(-35.20) 

-109.2100 
(-65.25) 

-31.9200 
(-10.42) 

7.7900 
(20.07) 

 

The Table regresses the quoted Spread (QSpread) on a proxy for algorithmic trading (message traffic) and the three control variables of market capitalization, 
Garman-Klass volatility of the underlying stock, and the dollar volume of the stock’s options for the general sample for 2007. The control variable values given 

here are for quintile 1. The specification is:  where  is the liquidity variable (quoted spread in this case), is the 
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message traffic representing algorithmic trading, and is the set of control variables such as market capital, Garman-Klass volatility of the underlying stock, 

and the dollar volume of the option. Volume is the logarithm of the average volume per strike and per stock after dividing by 100. 
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Table 4: The Effect of Algorithmic Trading on Bid-Ask Spreads (2008, Calls) 

CALL(IN)2008          

Group/Sorting Criteria        Q1         Q2     Q3       Q4     Q5  Volume Market Cap GK Volatility 
Qspread for Volume 
 

-0.0003 
(-27.05) 

-0.0015 
(-19.07) 

-0.0027 
(-4.72) 

-0.0128 
(-3.62) 

0.0056 
(0.36)  

-3.3500 
(-16.11) 

1.7700 
(7.52) 

0.0069 
(8.59) 

Qspread for Market Cap 
 

-0.0004 
(-30.47) 

-0.0005 
(-31.04) 

-0.0013 
(-12.30) 

-0.0010 
(-22.64) 

-0.0077 
(-4.90)  

-5.0100 
(-19.65) 

2.0100 
(4.34) 

0.1516 
(44.10) 

Qspread for GK Volatility 
 

-0.0091 
(-5.99) 

-0.0007 
(-13.34) 

-0.0017 
(-7.25) 

-0.0014 
(-10.12) 

-0.0004 
(-18.49) 

-2.7500 
(-0.91) 

-17.2900 
(-2.04) 

0.0535 
(1.40) 

          
 
CALL(NEAR)2008          
          
Qspread for Volume 
 

-0.0005 
(-54.71) 

-0.0056 
(-44.77) 

-0.0138 
(-28.56) 

-0.0267 
(-14.22) 

-0.0243 
(-5.18)  

-14.3600 
(-59.11) 

4.5300 
(12.92) 

0.0186 
(16.56) 

Qspread for Market Cap 
 

-0.0007 
(-58.71) 

-0.0007 
(-39.11) 

-0.0078 
(-33.69) 

-0.0016 
(-22.80) 

-0.0352 
(-18.37) 

-22.6500 
(-76.17) 

1.2900 
(1.97) 

0.1008 
(40.89) 

Qspread for GK Volatility 
 

-0.0111 
(-3.38) 

-0.0012 
(-11.94) 

-0.0011 
(-4.97) 

-0.0015 
(-15.94) 

-0.0008 
(-9.72)  

-61.4200 
(-11.86) 

-282.5700 
(-28.69) 

-0.0889 
(-1.55) 

          

CALL(OUT)2008          

          
Qspread for Volume 
 

-0.0022 
(-83.72) 

-0.0158 
(-48.95) 

-0.0308 
(-20.89) 

-0.0640 
(-10.85) 

0.0018 
(0.14)  

-97.3200 
(-210.46) 

18.4100 
(23.40) 

0.0279 
(14.57) 

Qspread for Market Cap 
 

-0.0020 
(-59.49) 

-0.0023 
(-50.95) 

-0.0222 
(-29.43) 

-0.0049 
(-29.57) 

-0.0047 
(-10.87) 

-108.2300 
(-197.49) 

0.1238 
(0.08) 

0.1357 
(40.87) 

Qspread for GK Volatility 
 

-0.0170 
(-3.07) 

-0.0020 
(-12.08) 

-0.0080 
(-10.08) 

-0.0067 
(-19.20) 

-0.0040 
(-13.40) 

-123.3700 
(-19.09) 

-232.1600 
(-18.84) 

-0.1090 
(-1.58) 
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Table 4: The Effect of Algorithmic Trading on Bid-Ask Spreads (2008, Puts) Continued… 

PUT(IN)2008          
           Q1         Q2     Q3         Q4     Q5  Volume Market Cap GK Volatility 
          
Qspread for Volume 
 

-0.0003 
(-34.50) 

-0.0013 
(-16.0) 

0.0007 
(1.80) 

0.0016 
(0.94) 

0.0171 
(1.27)  

-0.2.6700 
(-16.80) 

-1.6200 
(-7.84) 

0.0050 
(13.95) 

Qspread for Market Cap 
 

-0.0004 
(-37.68) 

-0.0005 
(-36.23) 

-0.0011 
(-7.72) 

-0.0008 
(-22.41) 

-0.0048 
(-4.10)  

-4.2300 
(-21.67) 

-5.5400 
(-13.66) 

0.0139 
(20.19) 

Qspread for GK Volatility 
 

-0.0025 
(-1.92) 

-0.0008 
(-11.21) 

0.0005 
(0.46) 

-0.0003 
(-6.27) 

-0.0004 
(-6.59)  

-26.5300 
(-10.23) 

-21.3100 
(-4.26) 

-0.0017 
(-0.42) 

          

PUT(NEAR)2008          
          
Qspread for Volume 
 

-0.0003 
(-46.88) 

-0.0045 
(-38.59) 

-0.0095 
(-19.28) 

-0.0210 
(-10.58) 

-0.0263 
(-3.83)  

-9.1900 
(-47.72) 

3.3200 
(11.61) 

0.0083 
(9.40) 

Qspread for Market Cap 
 

-0.0005 
(-50.82) 

-0.0005 
(-32.5) 

-0.0073 
(-28.36) 

-0.0016 
(-23.16) 

-0.0120 
(-8.94)  

-15.1500 
(-64.18) 

-1.4600 
(-2.72) 

0.0316 
(15.43) 

Qspread for GK Volatility 
 

-0.0030 
(-1.37) 

-0.0014 
(-15.86) 

-0.0004 
(-2.56) 

-0.0010 
(-11.76) 

-0.0007 
(-9.36)  

-54.4300 
(-19.07) 

4.5400 
(0.79) 

0.2978 
(6.69) 

          

PUT(OUT)2008          
          
Qspread for Volume 
 

-0.0015 
(-59.43) 

-0.0077 
(-25.84) 

-0.0336 
(-12.89) 

-0.0185 
(-2.81) 

-0.0319 
(-1.62)  

-60.7000 
(-139.72) 

2.7200 
(3.89) 

0.0096 
(4.57) 

Qspread for Market Cap 
 

-0.0014 
(-41.43) 

-0.0018 
(-39.69) 

-0.0203 
(-17.14) 

-0.0047 
(-24.16) 

-0.0373 
(-5.37)  

-63.8900 
(-41.43) 

-9.2000 
(-6.55) 

0.3208 
(28.61) 

Qspread for GK Volatility 
 

-0.0771 
(-3.36) 

-0.0026 
(-12.65) 

-0.0071 
(-11.89) 

-0.0070 
(-17.74) 

-0.0042 
(-10.41) 

-90.0600 
(-6.28) 

62.7100 
(1.59) 

0.3808 
(2.20) 

 

The Table regresses the quoted Spread (QSpread) on a proxy for algorithmic trading (message traffic) and the three control variables of market capitalization, 
Garman-Klass volatility of the underlying stock, and the dollar volume of the stock’s options for the general sample for 2008. The control variable values given 

here are for quintile 1. The specification is:  where  is the liquidity variable (quoted spread in this case), is the 



32 
 

message traffic representing algorithmic trading, and is the set of control variables such as market capital, Garman-Klass volatility of the underlying stock, 

and the dollar volume of the option. Volume is the logarithm of the average volume per strike and per stock after dividing by 100. 
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Table 5: The Effect of Algorithmic Trading on Depth (2007, Calls) 

 

CALL(IN)2007          

Group/Sorting Criteria              Q1              Q2  Q3       Q4       Q5  Volume Market Cap GK Volatility 
Qdepth for Volume 
 

0.0036 
(27.30) 

-0.0006 
(-8.30) 

-0.0023 
(-8.92) 

-0.0005 
(-0.88) 

0.0012 
(1.81)  

-15.5500 
(-8.79) 

27.0500 
(12.30) 

-3.0200 
(-29.75) 

Qdepth for Market Cap 
 

0.0041 
(29.38) 

0.0094 
(43.00) 

0.0012 
(9.12) 

0.0012 
(11.87) 

0.0079 
(10.06)  

-4.2945 
(-0.24) 

68.4400 
(21.17) 

-6.1800 
(-31.94) 

Qdepth for GK Volatility 
 

0.0008 
(19.94) 

0.0008 
(36.52) 

0.0030 
(51.23) 

0.0008 
(10.076) 

0.0002 
(13.75)  

6.2269 
(1.48) 

3.6400 
(5.61) 

2.0100 
(30.030) 

          

CALL(NEAR)2007          

          
Qdepth for Volume 
 

-0.0010 
(-4.39) 

-0.0006 
(-6.28) 

-0.0010 
(-7.30) 

-0.0001 
(-0.88) 

0.0001 
(0.07)  

-90.1200 
(-23.19) 

33.5800 
(5.43) 

-11.5300 
(-32.06) 

Qdepth for Market Cap 
 

0.0031 
(10.64) 

0.0140 
(57.55) 

0.0025 
(20.36) 

-0.0005 
(-3.76) 

0.0048 
(15.74)  

6.2000 
(1.47) 

-101.7600 
(-10.50) 

-28.4900 
(-41.14) 

Qdepth for GK Volatility 
 

0.0004 
(5.83) 

0.0005 
(19.48) 

0.0033 
(46.17) 

-0.0006 
(-5.81) 

-0.0048 
(-15.83) 

-3.8693 
(-0.85) 

35.5300 
(49.64) 

2.1400 
(29.80) 

          

CALL(OUT)2007          

          
Qdepth for Volume 
 

0.0010 
(4.09) 

0.0001 
(0.60) 

-0.0001 
(-3.75) 

-0.0002 
(-1.34) 

0.0001 
(0.68)  

-104.0500 
(-40.41) 

173.4600 
(39.93) 

-4.4200 
(-22.54) 

Qdepth for Market Cap 
 

0.0034 
(11.67) 

0.0048 
(16.97) 

0.0073 
(17.07) 

0.0007 
(2.35) 

0.0026 
(5.18)  

-85.0300 
(-28.75) 

224.0500 
(29.84) 

-12.1300 
(-30.084) 

Qdepth for GK Volatility 
 

0.0003 
(0.034) 

0.0006 
(18.91) 

0.0012 
(10.69) 

0.0018 
(10.36) 

-0.0046 
(-10.09) 

-3.6600 
(-7.04) 

39.5800 
(45.12) 

0.87070 
(15.49) 
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Table 5: The Effect of Algorithmic Trading on Depth (2007, Puts) Continued… 

                                                                                                                                                                                          
PUT(IN)2007          
Group/Sorting Criteria       Q1          Q2         Q3          Q4      Q5  Volume Market Cap GK Volatility 
          
Qdepth for Volume 
 

0.0032 
(27.62) 

-0.0015 
(-11.58) 

-0.0016 
(-5.60) 

0.0009 
(1.76) 

0.0045 
(5.50)  

-30.8100 
(-18.11) 

24.9500 
(10.91) 

-2.0400 
(-24.58) 

Qdepth for Market Cap 
 

0.0040 
(32.34) 

0.0059 
(24.40) 

0.0011 
(5.72) 

0.0015 
(8.79) 

0.0063 
(7.92)  

-1.9800 
(-1.15) 

119.8600 
(33.84) 

-3.7700 
(-24.53) 

Qdepth for GK Volatility 
 

0.0004 
(7.37) 

0.0007 
(24.69) 

0.0039 
(44.68) 

0.0011 
(11.73) 

-0.0008 
(-0.54)  

7.6400 
(14.96) 

8.1900 
(10.90) 

0.7930 
(15.28) 

          

PUT(NEAR)2007          
          
Qdepth for Volume 
 

-0.0065 
(-23.57) 

-0.0006 
(-5.32) 

-0.0006 
(-3.41) 

0.0001 
(0.83) 

0.0003 
(0.61)  

55.0500 
(13.26) 

3.7600 
(0.055) 

-14.2200 
(-36.58) 

Qdepth for Market Cap 
 

-0.0039 
(-11.37) 

0.0087 
(31.04) 

0.0027 
(16.08) 

-0.0002 
(-1.38) 

0.0051 
(11.27)  

129.8600 
(27.11) 

-250.6500 
(-22.85) 

-36.1600 
(-46.40) 

Qdepth for GK Volatility 
 

0.0004 
(5.12) 

0.0003 
(12.88) 

0.0028 
(30.93) 

-0.0010 
(-7.25) 

-0.0133 
(-38.00) 

-0.99600 
(-1.87) 

38.1900 
(47.02) 

1.2800 
(19.07) 

         
PUT(OUT)2007          
          
Qdepth for Volume 
 

-0.0033 
(-9.63) 

0.0002 
(0.84) 

0.0064 
(10.43) 

0.0007 
(0.02) 

0.0022 
(2.61)  

-77.3100 
(-22.72) 

176.6200 
(27.73) 

-10.0700 
(-34.14) 

Qdepth for Market Cap 
 

0.0003 
(0.89) 

0.0049 
(10.16) 

0.0047 
(8.06) 

-0.0006 
(-1.62) 

0.0271 
(6.82)  

-55.6000 
(-14.11) 

115.4400 
(11.43) 

-23.7500 
(-43.58) 

Qdepth for GK Volatility 
 

0.0005 
(4.72) 

0.0003 
(9.50) 

0.0008 
(5.89) 

0.0012 
(4.82) 

-0.0136 
(-24.09) 

-6.5000 
(-10.41) 

46.3800 
(40.59) 

25.4000 
(17.55) 

The Table regresses the quoted depth (Qdepth) on a proxy for algorithmic trading (message traffic) and the three control variables of market capitalization, 
Garman-Klass volatility of the underlying stock, and the dollar volume of the stock’s options for the general sample for 2007. The control variable values given 

here are for quintile 1. The specification is:  where  is the liquidity variable (quoted spread in this case), is the 
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message traffic representing algorithmic trading, and is the set of control variables such as market capital, Garman-Klass volatility of the underlying stock, 

and the dollar volume of the option. Volume is the logarithm of the average volume per strike and per stock after dividing by 100. 
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Table 6: The Effect of Algorithmic Trading on Depth (2008, Calls) 

CALL(IN)2008          

Group/Sorting Criteria         Q1         Q2         Q3        Q4     Q5  Volume Market Cap GK Volatility 
Qdepth for Volume 
 

0.0004 
(71.29) 

-0.0000 
(-0.35) 

0.0000 
(0.87) 

-0.0000 
(-0.63) 

-0.0001 
(-0.44) 

-23.1000 
(-20.26) 

6.7500 
(5.24) 

-0.0332 
(-7.30) 

Qdepth for Market Cap 
 

0.0003 
(60.58) 

0.0000 
(50.68) 

0.0000 
(10.01) 

0.0002 
(74.84) 

0.0004 
(9.79)  

-16.9600 
(-15.99) 

4.9400 
(2.56) 

-0.3830 
(-26.76) 

Qdepth for GK Volatility 
 

0.0001 
(10.50) 

0.0000 
(12.25) 

0.0001 
(8.42) 

0.0001 
(19.18) 

0.0002 
(22.16)  

3.8400 
(1.68) 

13.9200 
(2.18) 

-0.0144 
(-0.50) 

          

CALL(NEAR)2008          

          
Qdepth for Volume 
 

0.0002 
(58.08) 

-0.0002 
(-21.18) 

-0.0000 
(-8.72) 

0.0000 
(2.31) 

-0.0000 
(-0.76) 

-67.1600 
(-63.08) 

-15.1800 
(-9.89) 

-0.0661 
(-13.43) 

Qdepth for Market Cap 
 

0.0003 
(86.76) 

0.0001 
(36.32) 

0.0002 
(24.85) 

0.0005 
(148.02) 

0.0001 
(12.01)  

-44.4800 
(-41.84) 

-61.8900 
(-26.47) 

-0.1959 
(-22.23) 

Qdepth for GK Volatility 
 

-0.0002 
(-7.08) 

0.0001 
(23.51) 

-0.0000 
(-0.00) 

0.0001 
(12.91) 

0.0002 
(23.77)  

46.8200 
(7.65) 

-73.8700 
(-6.35) 

-0.1554 
(-2.29) 

          

CALL(OUT)2008          

          
Qdepth for Volume 
 

0.0002 
(49.13) 

0.0000 
(0.99) 

-0.0000 
(-2.29) 

0.0001 
(6.40) 

-0.0000 
(-1.16) 

-65.9800 
(-67.27) 

27.0300 
(16.20) 

-0.0537 
(-13.20) 

Qdepth for Market Cap 
 

0.0006 
(85.02) 

0.0001 
(21.15) 

0.0001 
(9.50) 

0.0006 
(71.07) 

0.0001 
(5.12)  

-69.6600 
(-61.18) 

-76.7800 
(-24.70) 

-0.1389 
(-20.14) 

Qdepth for GK Volatility 
 

-0.0001 
(-3.87) 

0.0001 
(15.28) 

-0.0001 
(-4.28) 

0.0002 
(14.22) 

0.0002 
(13.20)  

24.7400 
(6.63) 

-45.2200 
(-6.36) 

-0.0657 
(-1.64) 
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Table 6: The Effect of Algorithmic Trading on Depth (2008, Puts) Continued… 

PUT(IN)2008          

Group/Sorting Criteria      Q1       Q2       Q3           Q4    Q5  Volume Market Cap GK Volatility 
          
Qdepth for Volume 
 

0.0003 
(62.76) 

-0.0000 
(-6.13) 

-0.0000 
(-3.71) 

-0.0000 
(-1.33) 

-0.0001 
(-1.07) 

-17.9800 
(-18.65) 

9.2044 
(0.73) 

-0.0120 
(-5.45) 

Qdepth for Market Cap 
 

0.0002 
(50.12) 

0.0005 
(66.79) 

0.0001 
(12.76) 

0.0002 
(53.57) 

0.0001 
(5.25)  

-14.7700 
(-15.14) 

26.08 
(12.86) 

0.0739 
(21.45) 

Qdepth for GK Volatility 
 

0.0005 
(5.68) 

0.0001 
(12.03) 

0.0000 
(0.28) 

0.0001 
(16.02) 

0.0001 
(21.19)  

18.2700 
(10.06) 

-28.02 
(-8.00) 

-0.00411 
(-1.38) 

          

PUT(NEAR)2008          
          
Qdepth for Volume 
 

0.0002 
(56.51) 

-0.0002 
(-17.02) 

-0.0000 
(-10.31) 

0.0000 
(3.02) 

-0.0003 
(-0.73) 

-60.5100 
(-52.97) 

-28.7300 
(-16.95) 

-0.0595 
(-11.33) 

Qdepth for Market Cap 
 

0.0004 
(84.84) 

0.0001 
(24.12) 

0.0002 
(19.19) 

0.0005 
(109.73) 

0.0017 
(11.54)  

-43.7000 
(-37.81) 

-98.9400 
(-37.56) 

-0.1910 
(-19.00) 

Qdepth for GK Volatility 
 

-0.0002 
(-1.83) 

0.0001 
(18.80) 

-0.0000 
(-4.62) 

0.0000 
(6.71) 

0.0020 
(16.41)  

-25.2000 
(-1.83) 

-13.5700 
(-4.20) 

-0.0803 
(-3.21) 

          

PUT(OUT)2008          
          
Qdepth for Volume 
 

0.0002 
(39.54) 

0.0000 
(3.39) 

0.0013 
(5.85) 

-0.0000 
(-0.66) 

0.0002 
(0.16)  

-71.0400 
(-58.48) 

-15.2700 
(-7.82) 

-0.0479 
(-8.13) 

Qdepth for Market Cap 
 

0.0005 
(60.85) 

0.0000 
(11.91) 

0.0014 
(4.37) 

0.0006 
(50.42) 

0.0013 
(2.43)  

-67.1700 
(-45.04) 

-229.1100 
(-58.38) 

-1.0800 
(-34.29) 

Qdepth for GK Volatility 
 

0.0002 
(6.52) 

0.0000 
(3.53) 

-0.0011 
(-3.99) 

0.0002 
(11.18) 

0.0052 
(16.04)  

-3.2500 
(-1.69) 

29.9000 
(5.64) 

-0.0203 
(-0.88) 

 
The Table regresses the quoted depth (Qdepth) on a proxy for algorithmic trading (message traffic) and the three control variables of market capitalization, 
Garman-Klass volatility of the underlying stock, and the dollar volume of the stock’s options for the general sample for 2008. The control variable values given 

here are for quintile 1. The specification is:  where  is the liquidity variable (quoted spread in this case), is the 
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message traffic representing algorithmic trading, and is the set of control variables such as market capital, Garman-Klass volatility of the underlying stock, 

and the dollar volume of the option. Volume is the logarithm of the average volume per strike and per stock after dividing by 100. 

Table 7: Summary Statistics for the Penny Quote Sample 

   
            

CALLS  
              

PUTS 

      

Quoted Spread     

 in  0.0213  0.0348 

 near  0.0989  0.1050 

 out  0.6063  0.5353 

Quoted Depth      

 in  692  584 

 near  1,322  1,447 

 out  1,126  1,593 

Messages      

 in  37,958  37,689 

 near  42,756  39,396 

 out  22,561  18,696 

GK Volatility      

 in  5.4287  5.4287 

 near  5.4287  5.4287 

 out  5.4287  5.4287 

Market Cap      

 in  16.9911  16.9911 

 near  16.9911  16.9911 

 out  16.9911  16.9911 

Volume      

 in  556.5453  708.1939 

 near  1767.2345  1960.4648 

 out  367.3980  358.2757 
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Based on the option code we divide the data into call and put options and then into in-, near-, and out-of-the-money options. The above table provides the 

averages for the call and put options for the penny quote sample for 2007 and 2008 for the variables of interest. Dollar option volume is the average per strike 

price for each stock in the category and then divided by 100 (the strikes include those without a trade but with a quote). 

 

Table 8: The Effect of Algorithmic Trading on Bid-Ask Spreads for the Penny Quote Sample (Calls) 

CALL(IN)2007     

 
          

Messages GK Volatility Market Cap Volume 
Qspread for phase1 
 

-0.0000 
(-0.06) 

0.0006 
(0.04) 

-0.0024 
(-0.09) 

0.0002 
(0.01) 

Qspread for phase2 
 

-0.0001 
(-0.09) 

0.0006 
(0.12) 

-0.0036 
(-0.18) 

0.0006 
(0.03) 

Qspread for phase3 
 

0.0000 
(0.07) 

-0.0004 
(-0.05) 

-0.0088 
(-0.07) 

-0.0013 
(-0.04) 

     

CALL(NEAR)2007     
     
Qspread for phase1 
 

-0.0002 
(-5.45) 

0.0029 
(2.36) 

0.0115 
(2.21) 

-0.0230 
(-2.58) 

Qspread for phase2 
 

-0.0002 
(-10.47) 

0.0030 
(8.65) 

0.0013 
(0.82) 

-0.0218 
(-11.16) 

Qspread for phase3 
 

-0.0000 
(-10.54) 

0.0034 
(10.95) 

0.0350 
(10.47) 

-0.0206 
(-6.18) 

     

CALL(OUT)2007     

     
Qspread for phase1 
 

-0.0001 
(-6.40) 

0.0567 
(7.63) 

-0.0061 
(-0.68) 

0.0258 
(0.92) 

Qspread for phase2 
 

-0.0000 
(-9.67) 

0.0079 
(11.16) 

0.0107 
(2.75) 

-0.0720 
(-16.65) 

Qspread for phase3 
 

-0.0000 
(-16.60) 

0.0070 
(15.15) 

0.0954 
(20.18) 

-0.0206 
(-2.98) 
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Table 8: The Effect of Algorithmic Trading on Bid-Ask Spreads for the Penny Quote Sample (Puts) 

PUT(IN)2007     

 
           

Messages GK Volatility Market Cap Volume 
     
Qspread for phase1 
 

0.0000 
(0.03) 

-0.0070 
(-0.03) 

0.0001 
(0.00) 

0.0005 
(0.01) 

Qspread for phase2 
 

-0.0000 
(-0.58) 

0.0006 
(0.49) 

-0.0006 
(-0.16) 

-0.0048 
(-1.54) 

Qspread for phase3 
 

0.0000 
(0.47) 

-0.0031 
(-0.46) 

-0.0465 
(-0.47) 

-0.0019 
(-0.36) 

     

PUT(NEAR)2007     
     
Qspread for phase1 
 

-0.0000 
(-5.55) 

0.0034 
(1.18) 

0.0066 
(1.77) 

0.0065 
(0.64) 

Qspread for phase2 
 

-0.0000 
(-9.32) 

0.0021 
(6.89) 

0.0022 
(1.68) 

-0.0209 
(-10.62) 

Qspread for phase3 
 

-0.0000 
(-8.13) 

0.0025 
(7.03) 

0.0293 
(6.88) 

-0.0119 
(-3.63) 

     

PUT(OUT)2007     
     
Qspread for phase1 
 

-0.0002 
(-4.39) 

0.0961 
(4.43) 

-0.0236 
(-1.80) 

0.1049 
(2.18) 

Qspread for phase2 
 

-0.0000 
(-12.07) 

0.0050 
(9.78) 

0.0042 
(1.32) 

-0.0482 
(-13.41) 

Qspread for phase3 
 

-0.0000 
(-13.88) 

0.0032 
(8.85) 

0.0548 
(13.99) 

0.0266 
(3.24) 

The Table regresses the quoted spread on a proxy for algorithmic trading (message traffic) and various controls such as market capitalization, the Garman-Klass 

volatility of the underlying stock, dollar trading volume of the stock’s options and a dummy variable which takes the value of 1 if it is after the penny quote 

introduction. The specification is: where  is the liquidity variable (either spread or depth), is the message 

traffic representing algorithmic trading, and is the set of control variables such as market capital, Garman-Klass volatility of the underlying stock, and the 
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trading volume of the option. The equation includes an additional variable to represent the time dummy for before and after the penny quotes were introduced. 

Volume is the logarithm of the average volume per strike and per stock after dividing by 100. 
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Table 9: The Effect of Algorithmic Trading on Depth for the Penny Quote Sample (Calls) 

 

CALL(IN)2007     

 
                

Messages GK Volatility Market Cap Volume 
Qdepth for phase1 
 

-0.0002 
(-12.92) 

-0.0440 
(-3.19) 

-0.5286 
(-16.86) 

0.2054 
(8.69) 

Qdepth for phase2 
 

-0.0000 
(-4.62) 

-0.0302 
(-6.23) 

-0.0089 
(-0.54) 

0.0581 
(2.67) 

Qdepth for phase3 
 

0.0000 
(1.36) 

-0.0111 
(-1.27) 

-0.1160 
(-1.04) 

-0.0250 
(-0.78) 

     

CALL(NEAR)2007     

     
Qdepth for phase1 
 

-0.0007 
(-13.14) 

-0.4652 
(-21.78) 

-1.5322 
(-16.98) 

2.2927 
(12.40) 

Qdepth for phase2 
 

-0.0000 
(-31.37) 

-0.0659 
(-27.81) 

0.0565 
(6.67) 

0.2299 
(20.29) 

Qdepth for phase3 
 

-0.0000 
(-38.63) 

0.0254 
(25.52) 

0.4499 
(33.76) 

0.3652 
(36.99) 

     

CALL(OUT)2007     

     
Qdepth for phase1 
 

-0.0009 
(-2.01) 

0.1309 
(1.03) 

-0.2900 
(-1.78) 

0.8277 
(1.65) 

Qdepth for phase2 
 

-0.0001 
(-26.22) 

-0.0189 
(-2.86) 

0.0960 
(7.08) 

0.4000 
(22.88) 

Qdepth for phase3 
 

-0.0001 
(-17.52) 

0.0038 
(1.92) 

0.1571 
(9.32) 

0.4254 
(16.16) 
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Table 9: The Effect of Algorithmic Trading on Depth for the Penny Quote Sample (Puts) Continued… 

PUT(IN)2007     

 
                 

Messages GK Volatility Market Cap Volume 
     
Qdepth for phase1 
 

0.0007 
(0.43) 

-0.3993 
(-0.46) 

0.0963 
(0.31) 

0.0276 
(0.15) 

Qdepth for phase2 
 

-0.0000 
(-3.24) 

-0.0272 
(-5.61) 

0.0153 
(0.58) 

0.0355 
(1.54) 

Qdepth for phase3 
 

0.0002 
(3.09) 

-0.0924 
(-3.19) 

-1.3156 
(-3.12) 

-0.0490 
(-1.78) 

     
PUT(NEAR)2007     
     
Qdepth for phase1 
 

-0.0007 
(-9.45) 

-0.3434 
(-5.57) 

-0.9793 
(-13.37) 

2.7788 
(10.60) 

Qdepth for phase2 
 

-0.0000 
(-40.61) 

-0.0581 
(-35.32) 

0.1101 
(15.71) 

0.3246 
(31.10) 

Qdepth for phase3 
 

-0.0000 
(-6.65) 

0.0210 
(3.05) 

0.4320 
(4.89) 

0.2901 
(5.53) 

     

PUT(OUT)2007     
     
Qdepth for phase1 
 

-0.0053 
(-4.75) 

1.6353 
(4.23) 

-1.3258 
(-5.88) 

3.8893 
(4.41) 

Qdepth for phase2 
 

-0.0000 
(-34.71) 

-0.0333 
(-6.75) 

0.1247 
(13.64) 

0.6238 
(34.68) 

Qdepth for phase3 
 

-0.0000 
(-13.09) 

0.0037 
(1.70) 

0.1642 
(8.45) 

0.5181 
(12.33) 

The Table regresses the quoted depth on a proxy for algorithmic trading (message traffic) and various controls such as market capitalization, the Garman-Klass 

volatility of the underlying stock, dollar trading volume of the stock’s options and a dummy variable which takes the value of 1 if it is after the penny quote 

introduction. The specification is: where  is the liquidity variable (either spread or depth), is the message 

traffic representing algorithmic trading, and is the set of control variables such as market capital, Garman-Klass volatility of the underlying stock, and the 
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trading volume of the option. The equation includes an additional variable to represent the time dummy for before and after the penny quotes were introduced. 

Volume is the logarithm of the average volume per strike and per stock after dividing by 100. 
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Adverse selection occurs in financial markets because certain investors have ei-

ther (a) more precise information, or (b) superior speed in accessing or exploiting

information. To disentangle the effects of precision and speed on market perfor-

mance, we compare two models in which a dealer and a more precisely informed

trader continuously receive news about the value of an asset. In the first model

the trader and the dealer are equally fast, while in the second model the trader

receives the news one instant before the dealer. Compared with the first model, in

the second model: (1) the fraction of trading volume due to the informed investor

increases from near zero to a large value; (2) liquidity decreases; (3) short-term

price changes are more correlated with asset value changes; (4) informed order flow

autocorrelation decreases to zero. Our results suggest that the speed component

of adverse selection is necessary to explain certain empirical regularities from the

world of high frequency trading.
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1 Introduction

The recent advent of high frequency trading (HFT) in financial markets has raised nu-

merous questions about the role of high frequency traders and their strategies.1 Because

of the proprietary nature of HFT and its extraordinary speed, it is difficult to character-

ize HFT strategies in general.2 Nevertheless, there is increasing evidence that at least

one category of high frequency traders exploits very quick access to public information

in an attempt to analyze the news and trade before everyone else. For example, in

their online advertisement for real-time data processing tools, Dow Jones states: “Tim-

ing is everything and to make lucrative, well-timed trades, institutional and electronic

traders need accurate real-time news available, including company financials, earnings,

economic indicators, taxation and regulation shifts. Dow Jones is the leader in providing

high-frequency trading professionals with elementized news and ultra low-latency news

feeds for algorithmic trading.”3 This category of HFT can also use public market data

to infer information from related securities. We call this category high frequency news

trading (HFNT) or, in short, news trading.

Clearly, news trading generates adverse selection.4 In general, adverse selection

occurs because some investors have either (a) more precise information, or (b) superior

speed in accessing or exploiting information. Traditionally, the market microstructure

literature, e.g., Kyle (1985), has mainly focused on the first type of adverse selection.

In contrast, the speed component of adverse selection has received little attention. Our

paper focuses on this second type of adverse selection in the context of news trading.

To separate the role of precision and speed, we consider two models of trading under

1In many markets around the world, high frequency trading currently accounts for a majority of
trading volume. Hendershott, Jones, and Menkveld (2011) report that in 2009 as much as 73% of
trading volume in the United States was due to high frequency trading. A similar result is obtained
by Brogaard (2011) for NASDAQ, and Chaboud, Chiquoine, Hjalmarsson, and Vega (2009) for various
Foreign Exchange markets. High frequency trading has been questioned espectially after the U.S.
“Flash Crash” on May 6, 2010. See, e.g., Kirilenko, Kyle, Samadi, and Tuzun (2011).

2SEC (2010) attributes the following characteristics to HFT: (1) the use of extraordinarily high-
speed and sophisticated computer programs for generating, routing, and executing orders; (2) use of
co-location services and individual data feeds offered by exchanges and others to minimize network and
other types of latencies.

3See http://www.dowjones.com/info/HighFrequencyTrading.asp.
4Hendershott and Riordan (2011) find that on NASDAQ the marketable orders of high frequency

traders have a significant information advantage and are correlated with future price changes.
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asymmetric information. In both models, a risk-neutral informed trader and a compet-

itive dealer (or market maker) continuously learn about the value of an asset. In both

models, the informed trader receives a more precise stream of news than that received

by the dealer. The only difference lies in the timing of access to the stream of news. In

the first model, the benchmark model, the informed trader and the dealer are equally

fast.5 In the second model, the fast model, the informed trader receives the news one

instant before the dealer. We show that even an infinitesimal speed advantage leads to

large differences in the predictions of the two models.

We further argue that the fast model is better suited to describe the world of high

frequency trading. For example, consider the recent increase in trading volume observed

in various exchanges around that world, which in part has been attributed to the rise of

HFT. At high frequencies, traditional models such as Kyle (1985), or extensions such as

our benchmark model have difficulty in generating a large trading volume of investors

with superior information. To see, this, consider Figure 1. As it is apparent from the

plot, the fast model can account for a significant participation rate of informed trading

at higher frequencies, while the informed trader in the benchmark model is essentially

invisible at high frequencies.6 Thus, accounting for adverse selection due to speed is

important if we want to explain the large observed trading volume due to HFT.

Why would a small speed advantage for the informed trader translate into such a

large different in outcomes? For this, we need to understand the difference in optimal

strategies of the informed trader in the two models. In principle, when the asset value

changes over time, there are two components of the optimal strategy:

(1) Level Trading (or the low-frequency, drift, or deterministic component). This is

a multiple of the difference between the asset value and the price, and changes

slowly over time. Also, it is proportional to the time interval between two trades,

thus it is small relative to the other component.

5The benchmark model is similar to that of Back and Pedersen (1998), except that in our model
the dealer also receives news about the asset value.

6In our benchmark model, as in Kyle (1985), there is a single informed trader. We have checked
that the pattern shown in the figure can be obtained in models with multiple informed traders, such as
Back, Cao, and Willard (2000).
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Figure 1: Informed participation rate at various trading frequencies. The
figure plots the fraction of the trading volume due to the informed trader in a discrete
time model for various lengths of time between trading periods (second, minute, hour,
day, month) in (a) the benchmark model, marked with “∗”; and (b) the fast model,
marked with “◦”. The parameters used are σu = σv = σe = Σ0 = 1 (see Theorem 1).
The liquidation date t = 1 corresponds to 10 calendar years.
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(2) Flow Trading (or the high-frequency, volatility, or stochastic component). This

is a multiple of the new signal, i.e., the innovation in asset value, and changes

every instant. This component is relatively much larger than the level trading

component.

With no asymmetry in speed, the informed trader in the benchmark model does not have

any incentive to trade on the asset value innovation, and trades only on the level of the

asset value: the price impact of flow trading would otherwise be too high. By contrast,

in the fast model the informed trader also engages in flow trading, in anticipation of a

price move in the next instant due to the incorporation of news by the public.

These two components of the optimal strategy of the informed trader drive all the

comparisons between the benchmark model and the fast model. To begin with, trading

volume is higher in the fast model: in addition to the noise trading which is assumed the

same in the two models, there is the large flow trading component from the informed

trader (the level component is too small to matter at high frequencies). As observed in

Figure 1, the fraction of trading volume due to the informed trader is much larger at
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high frequencies, due to the large flow trading component.

Liquidity is smaller in the fast model: besides the usual adverse selection coming from

the superior precision of the informed trader, anticipatory trading generates additional

adverse selection.

The comparison of price informativeness in the two models is more subtle. In the

fast model, trades are more correlated with current innovations in asset value because

of the flow trading component. Therefore, price changes are also more correlated with

innovations in asset value. However, the variance of the pricing error is the same in

both models. The reason is that there is a substitution between level trading and flow

trading: there is flow trading in the fast model, but level trading is less intense than

in the benchmark model. Therefore, in the fast model, trades are more correlated with

current innovations in asset value, but also less correlated with past innovations. These

two effects exactly offset and leave the variance of the pricing error identical in both

models.

The effect of fast trading on price volatility is similarly complex. Price volatility

arises from both trading and quote revisions, since the dealer also learns about the

asset value and updates quotes. In the fast model, the contribution of trades to price

volatility is larger, because of the volatile flow trading component of informed trading.

The flip side is that when the market maker receives information, part of it has already

been revealed through trading. Therefore, quote revisions are of a smaller magnitude,

and price volatility unrelated to trading is lower in the fast model. These two effect

on volatility exactly offset each other so that total price volatility is the same in both

models and equal to the volatility of the asset value.

In the benchmark model, the informed order flow is autocorrelated: there is only

the level trading component, which changes direction only very slowly over time. In the

fast model, the informed order flow has zero autocorrelation: at high frequencies, flow

trading dominates level trading, and the innovations in asset value are uncorrelated.

Our results suggest that the fast model is better suited than the benchmark model to

describe the strategies of high frequency traders: Brogaard (2011) observes that their

order flow is indeed volatile, and there is little evidence of autocorrelation.
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To discuss empirical implications of our paper, we start by arguing that the informed

trader of the fast model fits certain stylized facts about high frequency traders: (i) large

trading volume: the informed investor in the fast model trades in large quantities, while

in the benchmark model informed trading volume is essentially zero at high frequencies;

(ii) low order flow autocorrelation: the fast informed investor’s trades have low serial

correlation, compared to a large autocorrelation in the benchmark model; (iii) anticipa-

tory trading: the order flow of the fast investor has a significant correlation with current

price changes, compared to a low correlation in the benchmark model.

We stress that our model applies to the specific category of high frequency traders

who engage in flow trading, but not necessarily to other types of high-frequency trad-

ing strategies such as high-frequency market making.7 Recognizing this distinction is

important for testing the predictions of our model.

We have two types of empirical predictions: (i) the effect of HFNT on various market

outcomes; and (ii) the effect of various market characteristics on HFNT activity. For (i),

we analyze the causal effect of HFNT by comparing the equilibrium outcomes when one

moves from the benchmark model to the fast model. In the fast model, the informed

trader is able to access information before the public does. This can occur, for example,

by purchasing access to various high frequency news feeds, by co-location services offered

by the exchange, by increasing automation, etc. The converse move from the fast model

to the benchmark model is also of interest: it can represent, e.g., the effect of regulation

aimed at dampening high frequency trading. From the discussion above, we see that

eliminating the speed advantage of the informed trader (a) reduces trading volume; (b)

reduces overall adverse selection, and thus increases market liquidity.

The second type of empirical prediction can be obtained in the context of the fast

model, by studying the effect of various parameters on informed trading activity. For

example, we find that an increase in the precision of public news increases the amount

of flow trading, yet improves liquidity. To understand why, recall that flow trading

arises because the informed trader is willing to trade based on his signal just before

the market maker updates the quotes based on a correlated signal. The more precise

7See Jovanovic and Menkveld (2011) for a theoretical and empirical analysis of liquidity provision
by fast traders.
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the public news, the higher the correlation between the informed trader’s signal and

the market maker’s signal. This increases the benefits of trading in anticipation of the

quotes updates. Therefore, flow trading increases.8 At the same time, more public

news also improves liquidity. The reason is simple: having more precise public news

reduces adverse selection. Interestingly, it implies that if the amount of public news

changes (over time or across securities) then flow trading and liquidity move in the

same direction. This is not because flow trading improves liquidity; indeed, we saw that

the opposite is true when the informed trader acquires a speed advantage. Instead, this

is because more public news increases both flow trading and liquidity.

Another example is the effect of price volatility. Holding constant the relative preci-

sion of public news, an increase in price volatility can be modeled as an increase in the

volatility of the innovation of the asset value. Then, an increase in price volatility causes

both an increase in flow trading activity, and a reduction in liquidity. The intuition is

straightforward. When the asset is more volatile, the anticipation effect is stronger, and

thus the flow trading increases. Because flow trading is more intense, there is more

adverse selection due to speed, and liquidity is negatively affected.

Our paper is part of a growing theoretical literature on trading and speed. Biais,

Foucault, and Moinas (2011) analyze the welfare implications of the speed advantage

of HFTs in a 3-period model: HFTs raise trading volume and gains from trade, but

increase adverse selection. In a search model with symmetric information, Pagnotta

and Philippon (2011) show that trading platforms seeking to attract order flow have an

incentive to relax price competition by differentiating along the speed dimension. Pre-

viously, the market microstructure literature has focused on the precision component of

adverse selection, e.g., Kyle (1985), Back, Cao, and Willard (2000). In all these models,

the behavior of the informed traders is similar to that of the informed trader in our

benchmark model. In fact, we can describe our benchmark model as a mixture of Back

and Pedersen (1998) and Chau and Vayanos (2008). From Back and Pedersen (1998)

our benchmark model borrows the moving asset value; and from Chau and Vayanos

8This prediction can be tested in the cross-section of securities, if one has a proxy for the amount
of public news that is released over time. It can also be tested in the time-series of a specific security,
if there is time-variation in the amount of public news.
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(2008) it borrows the periodic release of public information. In neither of these models

the informed trader has a speed advantage. Our fast model contributes to the literature

by showing that even an infinitesimal speed advantage for the informed trader results

in a large difference in outcomes, e.g., speed causes a large participation rate of the

informed trader, and an uncorrelated informed order flow.

The paper is organized as follows. Section 2 describes our two models: the benchmark

model, and the fast model. The models are set in continuous time, but in Appendix A we

present the corresponding discrete versions. Section 3 describes the resulting equilibrium

price process and trading strategies, and compares the various coefficients involved.

Section 4 discusses empirical implications of the model. Section 5 concludes.

2 Model

Trading occurs over the time interval [0, 1]. The risk-free rate is taken to be zero. During

[0, 1], a single informed trader (“he”) and uninformed noise traders submit market orders

to a competitive market maker (“she”), who sets the price at which the trading takes

place. There is a risky asset with liquidation value v1 at time 1. The informed trader

learns about v1 over time, and the expectation of v1 conditional on his information

available until time t follows a Gaussian process given by

vt = v0 +

∫ t

0

dvτ , with dvt = σv dBv
t , (1)

where v0 is normally distributed with mean 0 and variance Σ0, and Bv
t is a Brownian

motion.9 We refer to vt as the asset value or the fundamental value, and to dvt as the

innovation in asset value. Thus, the informed trader observes v0 at time 0 and, at each

9This assumption can be justified economically as follows. First, define the asset value vt as the
full information price of the asset, i.e., the price that would prevail at t if all information until t were to
become public. Then, assume that (i) vt is a martingale (true, if the market is efficient), and (ii) vt is
continuous (technically, it has continuous sample paths). Then, vt can be represented as an Itô integral
with respect to a Brownian motion, by the Martingale Representation Theorem (see, e.g., Karatzas and
Shreve (1991, Theorem 3.4.2)); our representation (1) is a simple particular case, with zero drift and
constant volatility. But, even if vt has jumps (e.g., at Poisson-distributed random times), we conjecture
that our key result of a non-zero dvt component in the optimal trading strategy of the informed trader
stays the same.
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time t + dt ∈ [0, 1] observes dvt.

The aggregate position of the informed trader at t is denoted by xt. The informed

trader is risk-neutral and chooses xt to maximize expected utility at t = 0 given by

U0 = E

[∫ 1

0

(v1 − pt+dt) dxt

]
= E

[∫ 1

0

(v1 − pt − dpt) dxt

]
, (2)

where pt+dt = pt + dpt is the price at which the order dxt is executed.10

The aggregate position of the noise traders at t is denoted by ut, which is an exoge-

nous Gaussian process given by

ut = u0 +

∫ t

0

duτ , with dut = σv dBu
t , (3)

where Bu
t is a Brownian motion independent from Bv

t .

The market maker also learns about the asset value. At t + dt, she receives a noisy

signal of the innovation in asset value:

dzt = dvt + det, with det = σe dBe
t , (4)

where Be
t is a Brownian motion independent from all the others. She does not observe

the individual orders, but only the aggregate order flow

dyt = dut + dxt. (5)

Because the market maker is competitive and risk-neutral, at any time the price equals

the conditional expectation of v1 given the information available to her until that point.

In the following, we will refer to the conditional expectation of v1 just before trading

takes place at time t+dt as the quote, and we denote it by qt. One possible interpretation

for the quote qt is that it is the bid-ask midpoint in a limit order book with zero tick

size and zero bid-ask spread.11 The conditional expectation of v1 just after trading takes

10Because the optimal trading strategy of the informed trader might have a stochastic component,
we cannot set E(dptdxt) = 0 as, e.g., in the Kyle (1985) model.

11This interpretation is correct if the price impact is increasing in the signed order flow and a zero
order flow has zero price impact. These conditions are satisfied in the linear equilibrium we consider in
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place at time t + dt is the execution price and is denoted by pt+dt.

We consider two different models: the benchmark model and the fast model, which

differ according to the timing of information arrival and trading. A simplified timing of

each model is presented in Table 1. Figure 2 shows the exact sequence of quotes and

prices in each model.

Table 1: Timing of events during [t, t + dt] in the benchmark model and in
the fast model

Benchmark Model Fast Model
1. Informed trader observes dvt 1. Informed trader observes dvt

2. Market maker observes dzt = dvt + det 2. Trading
3. Trading 3. Market maker observes dzt = dvt + det

In the benchmark model, the order of events during the time interval [t, t + dt] is

as follows. First, the informed trader observes dvt and the market maker receives the

signal dzt. The market maker sets the quote qt based on the information set It ∪ dzt,

where It ≡ {zτ}τ≤t ∪ {yτ}τ≤t. The information set includes the order flow and the

market maker’s signal until time t, as well as the new signal dzt. Then, the informed

trader submits a market order dxt and noise traders also submit their order dut. The

information set of the market maker when she sets the execution price pt+dt is It∪dzt∪dyt

as it includes the new order flow.

In the fast model, the informed trader can move faster than the market maker.

First, the informed trader observes dvt. Then, the market maker posts quotes before

she observes her own signal. Therefore, the quote qt is based on the information set

It. The informed trader submits the market order dxt along with the noise traders’

orders dut. The execution price pt+dt is conditional on the information set It ∪ dyt.

After trading has taken place, the market maker receives the signal dzt and updates

the quotes based on the information set It ∪ dzt ∪ dyt. The new quote qt+dt will be the

prevalent quote in the next trading round.

The benchmark model is similar to models of the Kyle (1985) type. Formally, the

Section 3.
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Figure 2: Timing of events
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benchmark model is an extension of Back and Pedersen (1998) with the additional

assumption that the market maker also learns about dvt. In all these versions of the

Kyle model, the informed trader has more precise information than the market maker,

but no speed advantage. By contrast, in the fast model, the informed trader has a speed

advantage in addition to more precise information.

3 Equilibrium

The equilibrium concept is similar to that of Kyle (1985) or Back and Pedersen (1998).

We look for linear equilibria defined as follows.

In the benchmark model, we look for an equilibrium in which the quote revision is

linear in the market maker’s signal

qt = pt + µt dzt, (6)

and the price impact is linear in the order flow

pt+dt = qt + λt dyt. (7)

In the fast model, we look for an equilibrium in which the price impact is linear
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in the order flow as in equation (7), and the subsequent quote revision is linear in the

unexpected part of the market maker’s signal12

qt+dt = pt+dt + µt( dzt − ρt dyt). (8)

In both models, we look for a strategy of the informed trader of the form

dxt = βt(vt − pt) dt + γt dvt, (9)

i.e., we solve for βt and γt so that the strategy defined in equation (9) maximizes the

informed trader’s expected profit (2). In Appendix A, we use the discrete time version

of both models to show that, as long as the equilibrium has a linear pricing rule, the

optimal strategy of the informed trader has the same form as in (9).13

In what follows, we refer to the first term of trading strategy, βt(vt − pt) dt, as level

trading, as it consists in trading on the difference between the level of the asset value

and the price level. This term appears in essentially all models of trading of the Kyle

(1985) type, such as Back and Pedersen (1998), Back, Cao, and Willard (2000), etc.

The second term of the trading strategy, γt dvt, consists in trading on the innovation of

the asset value, and we call it flow trading. The next result shows that flow trading is

zero in the benchmark model, but nonzero in the fast model.

Theorem 1. In the benchmark model there is a unique linear equilibrium:

dxt = βB
t (vt − pt) dt + γB

t dvt, (10)

dpt = µB
t dzt + λB

t dyt, (11)

12In the fast model, the market maker’s signal dzt is predictable from the order flow dyt, thus the
quote update is done only using the unexpected part of dzt.

13In fact, in discrete time the optimal strategy has qt instead of pt. But because the difference
between pt and qt is infinitesimal, the difference vanishes in continuous time when multiplying by dt.
In the proof of Theorem 1, we use pt for the benchmark model, and qt for the fast model, since these
are well defined Itô processes with the same type of increment, λt dyt + µt( dzt − ρt dyt).
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In the fast model there is a unique linear equilibrium:14

dxt = βF
t (vt − qt) dt + γF

t dvt, (16)
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, (20)

µF
t =

1 + f

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

, (21)

ρF
t =

σ2
v

σu(Σ0 + σ2
v)

1/2

(1 + σ2
e

σ2
v
f)1/2

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

, (22)

and f is the unique root in (0, 1) of the cubic equation

f =

(
1 + σ2

e

σ2
v
f
)
(1 + f)2(

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f
)2

σ2
v

σ2
v + Σ0

. (23)

14Note that the level trading component in (16) has qt instead of pt. This is the same formula,
since (8) implies (pt − qt) dt = 0. We use qt as a state variable, because it is a well defined Itô process.
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In both models, when σv → 0, the equilibrium converges to the unique linear equilibrium

in the continuous time version of Kyle (1985).

Proof. See Appendix B.

To give some intuition for the theorem, note that in both models the optimal strategy

of the informed trader has a non-zero level trading component. This is because in both

models the informed trader receives more precise signals than the market maker: the

informed trader knows vt exactly, while the market maker’s best forecast is pt. Therefore,

it is optimal for the informed trader to trade on the forecast error of the market maker

vt − pt. This forecast error is slowly moving, because its change is of the order of

(dvt − dpt) dt, which at high frequencies is negligible. The informed trader trades

smoothly on the forecast error, in the sense that the level trading component is of the

order dt.

The key difference between the two models is that only in the fast model the informed

trader’s optimal strategy has a flow trading component. The reason is that in the

benchmark model, when the trader submits the order dxt, all the signals { dvτ}τ≤t that

he has received are given the same weight in the optimal strategy. By contrast, in the

fast model the marker maker has not incorporated the signal dzt = dvt +det in the price

yet. Therefore, it is optimal for the informed trader to trade aggressively on dvt before

the market maker receives information dzt.

The flow trading component is volatile since it is an innovation in a random walk

process. It also generates a much larger order flow than the level trading component,

because it is of order dt1/2.

We give some comparative statics for the coefficients from Theorem 1.

Proposition 1. In the context of Theorem 1, for all values of the parameters we have

the following inequalities:

βF
0 < βB

0 (24)

λF > λB (25)

µF < µB. (26)
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In both the benchmark equilibrium and the fast equilibrium,

β0 increases in σv, σu, σe; and decreases in Σ0;

λ increases in σv, σe, Σ0; and decreases in σu;

µ increases in σv; decreases in σe; and is constant in σu;

µ is constant in Σ0 in the benchmark, but decreases in Σ0 in the fast equilibrium.

Additionally, in the fast equilibrium,

γ increases in σv, σu; and decreases in σe, Σ0;

ρ increases in σv; and decreases in σu, σe, Σ0.

Proof. See Appendix B.

The intuition for some of these comparative statics is discussed in the next section.

4 Empirical Implications

4.1 High Frequency News Trading

In this section we argue that the informed trader of the fast model shares some of the

characteristics that are attributed to the broad category of High Frequency Traders

(HFTs). Specifically, we show that the informed trader (i) is responsible for a large

fraction of the order flow; (ii) his order flow exhibits low serial correlation; and (iii)

he engages in anticipatory trading. This is not to say that our model can be applied

to study all types of HFTs. Indeed, the spectrum of strategies which can be classified

under the umbrella of high frequency trading is quite large.15 Our paper focuses on

one of these strategies, namely, high frequency news trading (HFNT). Therefore, the

empirical predictions and policy implications of our model apply to HFNT, but not

necessarily to other categories of HFT.

15For instance, SEC (2010) places high frequency trading under four categories: (a) Passive Market
Making, which generates large volumes by submitting and canceling many limit orders; (b) Arbitrage,
which is based on correlation strategies (statistical arbitrage, pairs trading, index arbitrage, etc.); (c)
Structural, which involves identifying and exploiting other market participants that are slow; and (d)
Directional, which implies taking significant, unhedged positions based on anticipation of intraday price
movements.
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First, we define the Informed Participation Rate (IPR) as the contribution of the

informed trader to total order flow

IPRt =
Var( dxt)

Var( dyt)
=

Var( dxt)

Var( dut) + Var( dxt)
. (27)

Proposition 2. The informed participation rate is zero in the benchmark while it is

positive in the fast model,

IPRB
t = 0, IPRF

t =
f

1 + f
, (28)

where f is defined in Theorem 1.

Proof. See Appendix B.

In the benchmark model, the informed trader’s optimal strategy has only a level

trading component. The level trading component consists in a drift in the asset holding

xt. This generates a trading volume that is an order of magnitude smaller than the

trading volume generated by the noise traders. Formally, informed trading volume is of

the order dt while noise trading volume is of the order dt1/2. By contrast, in the fast

model, the informed trader’s optimal strategy includes a flow trading component. The

flow trading component is volatile (i.e., stochastic), which generates a trading volume

that is of the same order of magnitude as the noise trading volume.

In the discrete time version of the model, informed trading volume is non zero but

it converges quickly to zero as the trading frequency increases. In Figure 1 in the

Introduction, we have already seen that in the benchmark model the trading volume

is already small when trading takes place at the daily frequency. In the fast model,

informed trading volume converges to a limit between zero and one when the trading

frequency becomes very large.

Next, we consider the serial correlation of the informed order flow.

Proposition 3. The autocorrelation of the informed order flow is positive in the bench-
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mark while it is zero in the fast model: for τ > 0,

Corr( dxB
t , dxB

t+τ ) =

(
1− t− τ

1− t

) 1
2
+λBβB

0

> 0, (29)

Corr( dxF
t , dxF

t+τ ) = 0. (30)

Proof. See Appendix B.

The intuition behind Proposition 3 is that the level trading component is slowly

moving, i.e., it is serially correlated. This explains why the informed order flow is posi-

tively autocorrelated in the benchmark model. By contrast, the flow trading component

is not serial correlated as it only depends on the current innovation in the asset value.

Since the flow trading component generates a much larger order flow than the level

component, the autocorrelation of the informed order flow is zero in the fast model.

Note that the fact that the autocorrelation is exactly zero may depend on the specific

assumptions of the model, e.g., the informed trader has no inventory cost. The more

robust result related to Proposition 3 is that the serial correlation of the informed order

flow is lower in the fast model than in the benchmark.

The empirical evidence about HFT order flow autocorrelation is mixed. For in-

stance, using US stock trading data aggregated across all HFTs, Brogaard (2011) and

Hendershott and Riordan (2011) find a positive autocorrelation of the aggregate HFT

order flow. By contrast, Menkveld (2011) using data on a single HFT on the European

stock market, and Kirilenko, Kyle, Samadi, and Tuzun (2011) using data on the Flash

Crash of May 2010, find clear evidence of mean reverting inventories. These opposite

results reflect the fact that HFT strategies are diverse and may come in a wide variety of

autocorrelation patterns.16 Empirical studies which consider HFTs as a whole measures

the average autocorrelation across all types of HFT strategies, and HFNT is only one

of those.

Finally, we measure Anticipatory Trading (AT) by the correlation between the in-

16In addition, the definition of HFTs can introduce a bias. For instance, in Brogaard (2011), Hen-
dershott and Riordan (2011), and Kirilenko et al. (2011), one of the criteria to classify a trader as HFT
is that it keeps its inventories close to zero.
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formed order flow and the next instant return,

AT t = Corr( dxt, qt+ dt − pt+ dt), (31)

where we recall that pt+ dt is the price at which the order flow dxt is executed, and qt+ dt

is the next quote revision that takes place when the market maker receives her next

signal.

Proposition 4. Anticipatory trading is zero in the benchmark while it is positive in the

fast model

ATB
t = 0, ATF

t =
(1− ρF γF )σv√

(1− ρF γF )2σ2
v + σ2

e + (ρF )2σ2
u

> 0. (32)

There is anticipatory trading in the fast model because the flow trading component

of the strategy anticipates the very next quote revision. This is consistent with Kirilenko

et al. (2011) and Hendershott and Riordan (2011) who find that, on average over all

categories of high frequency trading strategies, HFTs’ aggressive orders are correlated

with future price changes at a short horizon.

4.2 The Effect of High Frequency News Trading

In this section we study the effect of HFNT on several market outcomes: liquidity, price

discovery, price volatility, and price impact. To do that, we compare the equilibrium of

the market when one moves from the benchmark to the fast model. Indeed, in the fast

model, the informed trader is able to access information and trade based on it quickly,

that is, before the information is incorporated into quotes. In practice, this can occur

because the exchange increases automation, offers co-location services, or implements

any other change that lowers the execution time for market orders. Alternatively, one

can view a shift from the fast model to the benchmark model as the result of a move by

the regulator or the trading platform to dampen HFNT.

We already proved the following result in Proposition 1:

Corollary 1. Liquidity is lower in the fast model than in the benchmark: λF > λB.
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The market is less liquid in the fast model since there is more adverse selection than

in the benchmark model. Indeed, the informed trader has more precise information in

both models, and, in the fast model only, the informed is also faster. This generates a

second source of adverse selection, coming from speed.

Previous empirical work has investigated the effect of high frequency trading in

general on liquidity. Some find evidence of a positive (e.g., Hendershott, Jones, and

Menkveld (2011), Hasbrouck and Saar (2010)) while others find the opposite (e.g., Hen-

dershott and Moulton (2011)). These papers have considered high frequency traders as

a group, and have therefore measured their average impact across the entire spectrum

of HFT strategies. We predict that HFNT reduces liquidity, but it may be the case

that high frequency market making improves the liquidity, and that the overall effect

on liquidity is positive.

Another measure of the price impact of trades is the Cumulative Price Impact (CPI)

defined as the covariance between the informed order flow trade per unit of time at t

and the subsequent price change over the time interval [t, t + τ ] for τ > 0:17

CPI t(τ) = Cov

(
dxt

dt
, pt+τ − pt

)
. (33)

Because the optimal strategy of the informed trader is of the type dxt = βt(vt−pt) dt+

γt dvt, the cumulative price impact can be decomposed into two terms:

CPI t(τ) = βt Cov(vt − pt, pt+τ − pt) +
1

dt
γt Cov( dvt, pt+τ − pt), (34)

and note that the second term is well defined, because Cov( dvt, pt+τ −pt) is of the order

of dt, since the asset value, vt, is a Gaussian process.

Proposition 5. In the benchmark model, the cumulative price impact is

CPI B
t (τ) = kB

1

[
1−

(
1− τ

1− t

)λBβB
0

]
, (35)

17Using pt or qt in the definition of CPI t(τ) is equivalent because the difference between the two is
smaller than pt+τ − pt by an order of magnitude.
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while in the fast model it is

CPI F
t (τ) = kF

0 + kF
1

[
1−

(
1− τ

1− t

)(λF−µF ρF )βF
0

]
, (36)

where

kB
1 = βB

0 Σ0, (37)

kF
0 = γF ((λF − µF ρF )γF + µF )σ2

v , (38)

kF
1 = βF

0 Σ0 + γF (1− (λF − µF ρF )γF − µF )σ2
v . (39)

Proof. See Appendix B.

One can see from the formulas, or from Figure 3, that in the benchmark model the

cumulative price impact starts from near-zero values when τ is very small, while in the

fast model it starts from a positive value, kF
0 . Then, the cumulative price builds up

over time in both models, because the level trading component is correlated with all

prices changes in the future. To sum up, the intercept in Figure 3 is evidence of flow

trading, while the positive slope is evidence of level trading. Note that the cumulative

price impact is a univariate covariance. If we want to obtain a causal impact of trades,

we need to control for the future order flow. This can be done using a VAR model, as

will be shown in Section 4.4.

Next, we consider the effect of HFNT on the price discovery process. We define price

informativeness at any given point in time t as the (squared) pricing error

Σt = E
(
(vt − pt)

2
)
. (40)

More insight can be gained by decomposing this pricing error into errors about the last

change in asset value and errors about the level of the asset value. First, we note that

(40) can rewritten as follows:
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Figure 3: Cumulative Price Impact at Different Horizons. The figure plots the

cumulative price impact at t = 0, Cov
(

dx0

dt
, pτ − p0

)
against the horizon τ ∈ (0, 1] in

(a) the benchmark model, with a dotted line; and (b) the fast model, with a solid line.
The parameters used are σu = σv = σe = Σ0 = 1 (see Theorem 1). The liquidation date
t = 1 corresponds to 10 calendar years.
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Lemma 1. In both the benchmark and the fast models,

Σt = (1 + t)Σ0 + 2tσ2
v − 2

∫ t

0

Cov( dpτ , vτ+ dτ ). (41)

Proof. See Appendix B.

Intuitively, if price changes are more correlated with the asset value (Cov(dpτ , vτ+ dτ )

is larger), the price ends up being closer on average to the asset value (Σt is smaller).

Moreover, we have the following decomposition:18

Cov( dpt, vt+dt) = Cov( dpt, vt) + Cov( dpt, dvt). (42)

Proposition 6. Cov(dpt, dvt) is higher in the fast model than in the benchmark; while

Cov(dpt, vt) is higher in the benchmark than in the fast model. Σt is the same in both

the benchmark and the fast models.

Returns are more informative about the level of the asset value in the benchmark

18In this equation, dpt denotes pt+dt − pt in the benchmark model, and qt+dt − qt in the fast model.
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model, while they are more informative about changes in the asset value in the fast

model. The reason for the latter comes from the flow trading component. In the

benchmark, the contemporaneous correlation between changes in the price and in the

asset value comes from quote revisions only:

Cov( dpB
t , dvt) = Cov(µB dzt, dvt) = µBσ2

v dt. (43)

In the fast model, flow trading adds to this covariance:

Cov(dpF
t , dvt) = Cov(λF dxF

t +µF (dzt−ρF dxt), dvt) =
(
µB+(λF−µF ρF )

)
σ2

v dt. (44)

It implies that returns are more correlated with the innovations of the asset value in the

fast model.

By contrast, the covariance of returns with the level of the asset value is higher in the

benchmark model. The reason is that the level component of informed trading is less

intense in the fast model than in the benchmark model. Indeed, there is a substitution

between flow trading and level trading. The intuition for this substitution effect is

that the informed trader competes with himself when using his information advantage.

Trading more on news now consumes the profit from trading on the level in the future.

Therefore, when flow trading increases in the fast model, level trading has to decrease.

In terms of total pricing error, these two effects—higher correlation of returns with

changes and lower correlation with levels—exactly cancel out, and the pricing error is

the same in both models. In the fast model, new information is incorporated more

quickly into the price while older information is incorporated less quickly, leaving the

total pricing error equal in both models. The more formal reason why these two effects

exactly offset each other is that, in both the benchmark and the fast models, the informed

trader finds it optimal to release information at a constant rate to minimize price impact.

Therefore, Σt decreases linearly over time in both models. Moreover, the transversality

condition for optimization requires that no money is left on the table at t = 1, i.e.,

Σ1 = 0. Since the initial value Σ0 is exogenously given, the evolution of Σt is the same

in both models.
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We now consider the effect of HFNT on price volatility. Following Hasbrouck (1991a,

1991b) we decompose price volatility into the volatility coming from trades and the

volatility coming from quotes:

Var(dpt) = Var(pt+ dt − qt) + Var(qt − pt). (45)

The first term of the decomposition if the variance of the price impact of trades (pt+dt−

qt). The second term of the decomposition is the variance of quote revisions unrelated

to trading (qt − pt).

Proposition 7. Var(pt+dt− qt) is higher in the fast model than in the benchmark; while

Var(qt − pt) is higher in the benchmark than in the fast model. V ar(dpt) is the same in

benchmark and in the fast models and it equals

Var( dpt) = σ2
v + Σ0. (46)

More information is incorporated through trading in the fast model. This is because

the informed trader acts on the news before the market marker revises the quotes.

Therefore, trading is more intense and price volatility coming from trades is higher in

the fast model. The flip side is that the quote revision is less intense, and the price

volatility coming from quotes is lower in the fast model.

In terms of total price volatility, these two effects cancel each other and price volatility

is the same in both models. The reason why the two effects exactly offset each other is

that in an efficient market price changes are not autocorrelated. Therefore, the short-

term price variance per unit of time is always equal to the long-term price variance per

unit of time, which is itself equal to the variance per unit of time of the (exoegenous)

asset value.

4.3 The Determinants of High Frequency News Trading

Because we identify HFNT with the activity of the informed trader in the fast model, in

this section we study the determinants of HFNT by doing comparative statics on various
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parameters in the fast model. We measure HFNT activity by the informed participation

rate defined in Equation (27).

Consider first the effect of the precision of public news. Holding constant the variance

of the innovation of the asset value σ2
v , more precise public news about the changes in

asset value amounts to a lower σ2
z = σ2

v + σ2
e , or, equivalently, a lower σ2

e .

Proposition 8. An increase in the precision of public news, i.e., a decrease in σe,

increases HFNT activity (increases IPRF
t ) and improves liquidity (decreases λF ).

Proof. By Propositon 2, IPRF = f
1+f

, thus the informed participation rate in the fast

model has the same dependence on σe as f . From (19), γF = σu

σv
f 1/2, thus f has the

same dependence on σe as γF . Therefore, IPRF has the same depdendence on σe as γF .

But Proposition 1 shows that γF is decreasing in σe. Finally, we use again Proposition 1

to show that λF is increasing in σe.

The fast trader needs a precise news environment in order to take advantage of antic-

ipatory trading. Otherwise, if the public signal is imprecise, i.e. σe is large, the market

maker does not adjust quotes by much (µF is small), the informed trader cannot benefit

much from his speed advantage and does not trade intensely on the news component.

This prediction can be tested in the cross-section of securities, if one has a proxy for the

amount of public news that is released over time. It can also be tested in the time-series

of a specific security, if there is time-variation in the amount of public news.

As stated in Proposition 8, more public news also improves liquidity because it

reduces adverse selection. Interestingly, it implies that if the amount of public news

changes (over time or across securities) then HFNT and liquidity move in the same

direction. This is not because HFNT improves liquidity; instead, this is because more

public news increases both HFNT and liquidity.

Next, we consider the effect of price volatility. From Equation (46), Var(dpt) =

σ2
v + Σ0, thus we model an increase in price volatility as an increase in the variance

of the innovation of the asset value, σ2
v , while holding costant the relative precision of

public news, i.e., the ratio σ2
e/σ

2
v . We can prove the following result.
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Proposition 9. An increase in price volatility (higher σv while holding σe/σv constant)

increases HFNT activity (increases IPRF
t ) and reduces liquidity (increases λF ).

Because the informed trader acts in anticipation of price changes, more volatility

increases the intensity of flow trading, and therefore the informed participation rate

(IPR), or HFNT activity. As a result, there is more adverse selection, and liquidity is

thus negatively affected.

4.4 Methodological Issues in Empirical Analysis of HFNT

Our framework can be used to shed light on some methodological issues in the empirical

analysis of HFNT. In order to make our model more comparable to econometric models,

we consider the discrete time version of our continuous time model, as in Appendix A.

It works very similarly to the continuous time model, the main difference being that

the infinitesimal time interval dt is replaced by a real number ∆t > 0. We also consider

that ∆t is small and we approximate the equilibrium variables (βt, γt, λt, µt, ρt) in

the discrete time model by their continuous time counterpart. Letting T = 1
∆t

be the

number of trading periods, time is indexed by t = 0, 1, . . . , T − 1. The informed order

flow at time t is equal to

∆xt = βt(vt − qt)∆t + γt∆vt, (47)

where qt is the quote just before the order flow arrives, and pt+1 is the execution price.

4.4.1 Timing Issues in Defining Returns

There are several issues when one measures returns empirically. For instance, when

returns are computed from trade to trade, the econometrician can either use the trans-

action price, or the mid-quote just after the trade, or the bid or the ask depending

on the direction of the order flow, or the mid-quote after the next quote revision, etc.

Lags in trade reporting and time aggregation of data can also impose constraints on

how trade-to-trade returns are defined. To emphasize the consequence of these timing

assumptions, we contrast two different definitions of returns in the context of our model.
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A first option is to compute returns using the quotes just after the order is filled (“post-

trade quotes”). With this assumption, the return contemporaneous to the order flow

∆xt + ∆ut is rt = pt+1− pt. A second possibility is to compute returns using the quotes

just before the next trade takes place (“pre-trade quotes”). In this case, the return

contemporaneous to the order flow ∆xt + ∆ut is rt = qt+1 − qt.

To illustrate the implications of these two assumptions for the empirical analysis, we

consider the following VAR model with K ≥ 1 lags in the spirit of Hasbrouck (1996):19

rt =
K∑

k=1

akrt−k +
K∑

k=0

bk dxt−k +
K∑

k=0

ck dut−k + εt, (48)

dxt =
K∑

k=1

dkrt−k +
K∑

k=1

ek dxt−k +
K∑

k=1

fk dut−k + ηt, (49)

dut =
K∑

k=1

gkrt−k +
K∑

k=1

hk dxt−k +
K∑

k=1

ik dut−k + ζt. (50)

We compute the coefficients of the VAR model under the two timing assumptions. To

allege the notations, we now omit the superscript F when we refer to the equilibrium

variables in the fast model.

Proposition 10. When post-trade quotes are used: b0 = c0 = λ, b1 = µ(1 − ργ)/γ,

c1 = −µρ, and all other coefficients are zero. When pre-trade quotes are used: b0 =

λ− µρ + µ/γ, c0 = λ− µρ, and all other coefficients are zero.

Proof. See Appendix B.

Depending on how returns are measured, the estimated b1 may be positive or equal

to zero. When returns are computed using post-trade quotes, the informed order flow

is positively related to the next period return (b1 > 0). The economic interpretation

is that the informed trader engages in anticipatory trading. By contrast, when returns

are measured using pre-trade quotes, b1 = 0 because the time t order flow is incorrectly

considered as being contemporaneous to the subsequent quote revision qt+1 − pt+1. In

this case, we fail to reject the incorrect null hypothesis of no anticipatory trading. This

19This specification is used, e.g., by Brogaard (2010).
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suggests that using the quotes immediately after trading takes place, or the price at

which the last unit of the order flow is executed, may be necessary to detect anticipatory

trading in the data.

4.4.2 Sampling Issues

It is customary to aggregate data over time. This can be due to limited data availability,

or it may be a deliberate choice of the econometrician to make data analysis more

manageable. In this section we look at the consequence of time aggregation and we

show that the time interval at which data are aggregated affects the results of the

empirical analysis. In particular, when the sampling frequency is low relative to the

trading frequency, the empirical moments are biased in the sense that they differ from

the theoretical moments of the model.

Assume that each observation in the data spans n ≥ 1 trading rounds. In this

case, the data are a time-series of length T/n. For j = 1, . . . , T
n
, the jth observation

corresponds to trading during the n trading rounds starting at time t = (j − 1)n. The

order flow of the informed trader is ∆xj(n) ≡ ∆xt + · · ·+ ∆xt+n−1, and, assuming that

prices are defined as post-trade quotes, the return is rj(n) ≡ pt+n − pt.

First, we consider the measure of anticipatory trading defined in equation (31). Its

empirical counterpart when data are sampled every n trading rounds is

AT j(n) = Corr(∆xj(n), rj+1(n)). (51)

Proposition 11. The empirical measure of anticipatory trading ATj(n) decreases with

n and converges to zero when n → +∞.

Proof. See Appendix B.

The aggregated order flow spans n trading periods. Moreover, each trade anticipates

news that is incorporated in the quotes in the next trading round. Therefore, only the

last trade of the aggregated order flow ∆xj(n) is correlated with the next aggregated

return rj+1(n). As a result, when n increases, the correlation between ∆xj(n) and

rj+1(n) decreases. When n becomes too large, the correlation becomes almost zero.
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This result suggests that sampling data at a sufficiently high frequency is important for

detecting anticipatory trading.

We now turn to the informed participation rate (27). Its empirical counterpart when

data are sampled each n trading periods can be defined as

IPRj(n) =
Var(∆xj(n))

Var(∆xj(n)) + Var(∆uj(n))
. (52)

In order to obtain closed-form formula solutions, we consider the limit case where the

trading frequency is large, holding fixed the time interval τ = n∆t at which data are ag-

gregated. In this case, the informed participation can therefore be written as a function

of τ : IPRj(τ) = lim∆t→0 IPRj(τ/∆t).

Proposition 12. The empirical informed participation rate IPRj(τ) increases with the

sampling interval τ .

Proof. See Appendix B.

The level trading component is positively autocorrelated over time. Therefore, the

variance of the informed order flow increases faster than the time horizon τ at which

the variance is computed. Since the noise trading order flow is serially uncorrelated,

the fraction of the order flow variance due to the informed trader increases with the

sampling interval τ .

Finally, consider Corr(∆xj(n), ∆xj+1(n)), the empirical autocorrelation of the in-

formed order flow. Again, in order to obtain closed-form formulas, we hold constant the

sampling interval τ = n∆t and we let ∆t → 0. As a result, the autocorrelation of the

informed order flow is now a function of τ .

Proposition 13. The informed order flow autocorrelation Corr(∆xj(τ), ∆xj+1(τ)) in-

creases with τ .

Proof. See Appendix B.

The level trading component of the informed order flow is positively correlated over

time, while the flow trading component is not. When data are sampled at a very high
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frequency, the flow trading component represents a large fraction of the informed order

flow variance. In this case, the autocorrelation of the informed order is therefore close

to zero. By contrast, at a lower frequency, the level trading component becomes a

larger part of the the variance of the informed order flow, and the autocorrelation of the

informed order flow increases.

5 Conclusions

We have argued that adverse selection has two components: a precision component,

and a speed component. To analyze the effect of speed on market quality, we have

proposed two models of trading with an informed trader who continuously observes a

stream of news. In the benchmark model, the informed trader learns about the asset

value at the same time as the market maker. In the fast model, the informed trader

has an infinitesimal speed advantage. We have shown that the difference in equilibrium

outcomes between the two models is large. In particular, we have shown that in the fast

model the optimal strategy of the informed trader has a flow trading component, which

is an order of magnitude larger and more volatile than the level trading component.

As a consequence, in the fast model the fraction of trading volume due to the in-

formed investor is large, while in the benchmark model this fraction is essentially zero

at high frequencies. As a result of an extra component of adverse selection, liquidity is

lower in the fast model, compared to the benchmark. Nevertheless, price volatility and

price informativeness are the same, due to a substitution effect. In the fast model, there

is more flow trading, but less level trading.

Our results are consistent with stylized facts about high frequency trading, and we

generate additional predictions about (i) the causal effect of high frequency trading on

various market performance measures; (ii) the effect of various determinants of high

frequency trading, both in the cross section and in the time series. For example, we find

that an increase in the precision of public news increases the amount of high frequency

trading, yet, surprisingly, liquidity is improved.
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A Models in Discrete Time

A.1 Discrete Time Fast Model

We divide the interval [0, 1] into T equally spaced intervals of length ∆t = 1
T
. Trading

takes place at equally spaced times, t = 1, 2, . . . , T − 1. The sequence of events is as

follows. At t = 0, the informed trader observes v0. At each t = 1, . . . , T − 1, the

informed trader observes ∆vt = vt − vt−1; and the market maker observes ∆zt−1 =

∆vt−1 + ∆et−1, except at t = 1. The error in the market maker’s signal is normally

distributed, ∆et−1 ∼ N (0, σ2
e∆t). The market maker quotes the bid price = the ask

price = qt. The informed trader then submits ∆xt, and the liquidity traders submit

in aggregate ∆ut ∼ N (0, σ2
u∆t). The market maker observes only the aggregate order

flow, ∆yt = ∆xt + ∆ut, and sets the price at which the trading takes place, pt. The

market maker is competitive, i.e., makes zero profit. This translates into the following

formulas:

pt = E(vt | Ip
t ), Ip

t = {∆y1, . . . , ∆yt, ∆z1, . . . , ∆zt−1}, (53)

qt+1 = E(vt | Iq
t ), Iq

t = {∆y1, . . . , ∆yt, ∆z1, . . . , ∆zt}. (54)

We also denote

Ωt = Var(vt | Ip
t ), (55)

Σt = Var(vt | Iq
t ). (56)

Definition 1. A pricing rule pt is called linear if it is of the form pt = qt + λt∆yt, for

all t = 1, . . . , T − 1.20 An equilibrium is called linear if the pricing rule is linear, and

the informed trader’s strategy ∆xt is linear in {vτ}τ≤t and {qτ}τ≤t.

The next result shows that if the pricing rule is linear, the informed trader’s strategy

is also linear, and furthermore it can be decomposed into a level trading component,

βt(vt−1 − qt), and a flow trading component, γt∆vt.

20We could defined more generally, a pricing rule to be linear in the whole history {∆yτ}τ≤t, but as
Kyle (1985) shows, this is equivalent to the pricing rule being linear only in ∆yt.
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Theorem 2. Any linear equilibrium must be of the form

∆xt = βt(vt−1 − qt)∆t + γt∆vt, (57)

pt = qt + λt∆yt, (58)

qt+1 = pt + µt(∆zt − ρt∆yt), (59)

for t = 1, . . . , T − 1, where βt, γt, λt, µt, ρt, Ωt, and Σt are constants that satisfy

λt =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

, (60)

µt =

(
σ2

u + β2
t Σt−1∆t− βtγtΣt−1

)
σ2

v

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

, (61)

mt = λt − ρtµt =
βtΣt−1(σ

2
v + σ2

e) + γtσ
2
vσ

2
e

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

, (62)

ρt =
γtσ

2
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

, (63)

Ωt = Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1 + 2βtγtΣt−1σ

2
v + γ2

t σ
4
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆t, (64)

Σt = Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1(σ

2
v + σ2

e) + β2
t Σt−1∆tσ4

v + σ4
vσ

2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

∆t.

(65)

The value function of the informed trader is quadratic for all t = 1, . . . , T − 1:

πt = αt−1(vt−1 − qt)
2 + α′t−1(∆vt)

2 + α′′t−1(vt−1 − qt)∆vt + δt−1. (66)
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The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtmt

2(λt − αtm2
t )

, (67)

γt =
1− 2αtmt(1− µt)

2(λt − αtm2
t )

, (68)

αt−1 = βt∆t(1− λtβt∆t) + αt(1−mtβt∆t)2, (69)

α′t−1 = αt(1− µt −mtγt)
2 + γt(1− λtγt), (70)

α′′t−1 = βt∆t + γt(1− 2λtβt∆t) + 2αt(1−mtβt∆t)(1− µt −mtγt), (71)

δt−1 = αt

(
m2

t σ
2
u + µ2

t σ
2
e

)
∆t + α′tσ

2
v∆t + δt. (72)

The terminal conditions are

αT = α′T = α′′T = δT = 0. (73)

The second order condition is

λt − αtm
2
t > 0. (74)

Given Σ0, conditions (60)–(74) are necessary and sufficient for the existence of a linear

equilibrium.

Proof. First, we show that Equations (60)–(65) are equivalent to the zero profit condi-

tions of the market maker. Second, we show that Equations (67)–(74) are equivalent to

the informed trader’s strategy (57) being optimal.

Zero Profit of Market Maker: Let us start with with the market maker’s update

due to the order flow at t = 1, . . . , T − 1. Conditional on Iq
t−1, the variables vt−1 − qt

and ∆vt have a bivariate normal distribution: vt−1 − qt

∆vt

 | Iq
t−1 ∼ N

 0

0

 ,

 Σt−1 0

0 σ2
v

 . (75)
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The aggregate order flow at t is of the form

∆yt = βt(vt−1 − qt)∆t + γt∆vt + ∆ut. (76)

Denote by

Φt = Cov

 vt−1 − qt

∆vt

 , ∆yt

 =

 βtΣt−1

γtσ
2
v

 ∆t. (77)

Then, conditional on It = Iq
t−1∪{∆yt}, the distribution of vt−1− qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | It ∼ N

 µ1

µ2

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (78)

where  µ1

µ2

 = Φt Var(∆yt)
−1∆yt =

 βtΣt−1

γtσ
2
v

 1

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆yt, (79)

and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var

 vt−1 − qt

∆vt

− Φt Var(∆yt)
−1Φ′

t (80)

=

 Σt−1 0

0 σ2
v∆t

− 1

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

 β2
t Σ

2
t−1 βtγtΣt−1σ

2
v

βtγtΣt−1σ
2
v γ2

t σ
4
v

 ∆t.

We compute

pt − qt = E(vt − qt | It) = µ1 + µ2 =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆yt, (81)

which proves Equation (60) for λt. Also,

Ωt = Var(vt − qt | It) = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1 + 2βtγtΣt−1σ

2
v + γ2

t σ
4
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆t, (82)

which proves (64).
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Next, to compute qt+1 = E(vt | Iq
t ), we start from the same prior as in (75), but we

consider the impact of both the order flow at t and the market maker’s signal at t + 1:

∆yt = βt(vt−1 − qt)∆t + γt∆vt + ∆ut, (83)

∆zt = ∆vt + ∆et. (84)

Denote by

Ψt = Cov

 vt−1 − qt

∆vt

 ,

 ∆yt

∆zt

 =

 βtΣt−1 0

γtσ
2
v σ2

v

 ∆t, (85)

V yz
t = Var

 ∆yt

∆zt

 =

 β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u γtσ
2
v

γtσ
2
v σ2

v + σ2
e

 ∆t. (86)

Conditional on Iq
t = Iq

t−1 ∪{∆yt, ∆zt}, the distribution of vt−1− qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | Iq
t ∼ N

 µ1

µ2

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (87)

where

 µ1

µ2

 = Ψt (V yz
t )−1

 ∆yt

∆zt

 =

 βtΣt−1(σ
2
v + σ2

e)∆yt − βtγtΣt−1σ
2
v∆zt

γtσ
2
vσ

2
e∆yt + (β2

t Σt−1∆t + σ2
u)σ

2
v∆zt


(β2

t Σt−1∆t + γ2
t σ

2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t + σ2
u)σ

2
v

, (88)

and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var

 vt−1 − qt

∆vt

−Ψt (V yz
t )−1 Ψ′

t

=

 Σt−1 0

0 σ2
v∆t

−
 β2

t Σ
2
t−1(σ

2
v + σ2

e) βtγtΣt−1σ
2
vσ

2
e

βtγtΣt−1σ
2
vσ

2
e (β2

t Σt−1∆t + γ2
t σ

2
e + σ2

u)σ
4
v


(β2

t Σt−1∆t + γ2
t σ

2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t + σ2
u)σ

2
v

∆t.

(89)
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Therefore,

qt+1 − qt = µ1 + µ2

=

(
βtΣt−1(σ

2
v + σ2

e) + γtσ
2
vσ

2
e

)
∆yt +

(
σ2

u + β2
t Σt−1∆t− βtγtΣt−1

)
σ2

v∆zt

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

(90)

= mt∆yt + µt∆zt = (λt − ρtµt)∆yt + µt∆zt, (91)

which proves Equations (61), (62), and (63). Also,

Σt = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1(σ

2
v + σ2

e) + β2
t Σt−1∆tσ4

v + σ4
vσ

2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e

(β2
t Σt−1 + (βt + γt)2σ2

v + σ2
u) σ2

e + (β2
t Σt−1 + σ2

u) σ2
v

∆t,

(92)

which proves (65).

Optimal Strategy of Informed Trader: At each t = 1, . . . , T − 1, the informed

trader maximizes the expected profit: πt = max
∑T−1

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by

backward induction that the value function is quadratic and of the form given in (66):

πt = αt−1(vt−1− qt)
2 +α′t−1(∆vt)

2 +α′′t−1(vt−1− qt)∆vt + δt−1. At the last decision point

(t = T − 1) the next value function is zero, i.e., αT = α′T = α′′T = δT = 0, which are the

terminal conditions (73). This is the transversality condition: no money is left on the

table. In the induction step, if t = 1, . . . , T − 1, we assume that πt+1 is of the desired

form. The Bellman principle of intertemporal optimization implies

πt = max
∆x

E
(
(vt − pt)∆x + πt+1 | Iq

t , vt, ∆vt

)
. (93)

Equations (58) and (59) show that the quote qt evolves by qt+1 = qt + mt∆yt + µt∆zt,

where mt = λt − ρtµt. This implies that the informed trader’s choice of ∆x affects the
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trading price and the next quote by

pt = qt + λt(∆x + ∆ut), (94)

qt+1 = qt + mt(∆x + ∆ut) + µt∆zt. (95)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(
∆x(vt−1 + ∆vt − qt − λt∆x− λt∆ut)

+ αt(vt−1 + ∆vt − qt −mt∆x−mt∆ut − µt∆vt − µt∆et)
2 + α′t∆v2

t+1

+ α′′t (vt−1 + ∆vt − qt −mt∆x−mt∆ut − µt∆vt − µt∆et)∆vt+1 + δt

) (96)

= max
∆x

∆x(vt−1 − qt + ∆vt − λt∆x)

+ αt

(
(vt−1 − qt −mt∆x + (1− µt)∆vt)

2 + (m2
t σ

2
u + µ2

t σ
2
e)∆t

)
+ α′tσ

2
v∆t

+ 0 + δt.

(97)

The first order condition with respect to ∆x is

∆x =
1− 2αtmt

2(λt − αtm2
t )

(vt−1 − qt) +
1− 2αtmt(1− µt)

2(λt − αtm2
t )

∆vt, (98)

and the second order condition for a maximum is λt − αtm
2
t > 0, which is (74). Thus,

the optimal ∆x is indeed of the form ∆xt = βt(vt−1 − qt)∆t + γt∆vt, where βt∆t and γt

are as in Equations (67) and (68). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1− λtβt∆t) + αt(1−mtβt∆t)2

)
(vt−1 − qt)

2

+
(
αt(1− µt −mtγt)

2 + γt(1− λtγt)
)
∆v2

t (99)

+
(
βt∆t + γt(1− 2λtβt∆t) + 2αt(1−mtβt∆t)(1− µt −mtγt)

)
(vt−1 − qt)∆vt

+ αt

(
m2

t σ
2
u + µ2

t σ
2
e

)
∆t + α′tσ

2
v∆t + δt.

This proves that indeed πt is of the form πt = αt−1(vt−1−qt)
2 +α′t−1(∆vt)

2 +α′′t−1(vt−1−

qt)∆vt + δt−1, with αt−1, α′t−1, α′′t−1 and δt−1 as in Equations (69)–(72).

We now briefly discuss the existence of a solution for the recursive system given in

36



Theorem 2. The system of equations (60)–(72) can be numerically solved backwards,

starting from the boundary conditions (73). We also start with an arbitrary value of

ΣT > 0.21 By backward induction, suppose αt and Σt are given. One verifies that

Equation (65) implies

Σt−1 =
Σt

(
σ2

vσ
2
u + σ2

v(σ
2
u + γ2

t σ
2
e)

)
− σ2

vσ
2
uσ

2
e∆t(

σ2
uσ

2
e + σ2

v(σ
2
u + γ2

t σ
2
e) + β2

t ∆t2σ2
vσ

2
e − 2γtβt∆tσ2

vσ
2
e

)
− Σtβ2

t ∆t
(
σ2

v + σ2
e

) .

(100)

Then, Equations (60)–(62) can be rewritten to express λt, µt, mt as functions of (Σt, βt, γt)

instead of (Σt−1, βt, γt). Next, we use (67) and (68) to express λt, µt, mt as functions of

(λt, µt, mt, αt, Σt). This gives a system of polynomial equations, whose solution λt, µt, mt

depends only on (αt, Σt). Numerical simulations show that the solution is unique under

the second order condition (74), but the authors have not been able to prove theo-

retically that this is true in all cases. Once the recursive system is computed for all

t = 1, . . . , T − 1, the only condition left to do is to verify that the value obtained for

Σ0 is the correct one. However, unlike in Kyle (1985), the recursive equation for Σt is

not linear, and therefore the parameters cannot be simply rescaled. Instead, one must

numerically modify the initial choice of ΣT until the correct value of Σ0 is reached.

A.2 Discrete Time Benchmark Model

The setup is the same as for the fast model, except that the market maker gets the

signal ∆z at the same time as the informed trader observes ∆v. The sequence of events

is as follows. At t = 0, the informed trader observes v0. At each t = 1, . . . , T − 1,

the informed trader observes ∆vt = vt − vt−1; and the market maker observes ∆zt =

∆vt + ∆et, with ∆et ∼ N (0, σ2
e∆t). The market maker quotes the bid price = the ask

price = qt. The informed trader then submits ∆xt, and the liquidity traders submit

in aggregate ∆ut ∼ N (0, σ2
u∆t). The market maker observes only the aggregate order

flow, ∆yt = ∆xt + ∆ut, and sets the price at which the trading takes place, pt. The

21Numerically, it should be of the order of ∆t.

37



market maker is competitive, i.e., makes zero profit. This implies

pt = E(vt | Ip
t ), Ip

t = {∆y1, . . . , ∆yt, ∆z1, . . . , ∆zt}, (101)

qt = E(vt | Iq
t ), Iq

t = {∆y1, . . . , ∆yt−1, ∆z1, . . . , ∆zt}. (102)

We also denote

Σt = Var(vt | Ip
t ), (103)

Ωt = Var(vt | Iq
t ). (104)

The next result shows that if the pricing rule is linear, the informed trader’s strategy

is also linear, and furthermore it only has a level trading component, βt(vt − qt).

Theorem 3. Any linear equilibrium must be of the form

∆xt = βt(vt − qt)∆t, (105)

pt = qt + λt∆yt, (106)

qt = pt−1 + µt−1∆zt, (107)

for t = 1, . . . , T − 1, where by convention p0 = 0, and βt, γt, λt, µt, Ωt, and Σt are

constants that satisfy

λt =
βtΣt

σ2
u

, (108)

µt =
σ2

v

σ2
v + σ2

e

, (109)

Ωt =
Σtσ

2
u

σ2
u − β2

t Σt∆t
, (110)

Σt−1 = Σt +
β2

t Σ
2
t

σ2
u − β2

t Σt∆t
∆t− σ2

vσ
2
e

σ2
v + σ2

e

∆t. (111)

The value function of the informed trader is quadratic for all t = 1, . . . , T − 1:

πt = αt−1(vt − qt)
2 + δt−1. (112)
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The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtλt

2λt(1− αtλt)
, (113)

αt−1 = βt∆t(1− λtβt∆t) + αt(1− λtβt∆t)2, (114)

δt−1 = αt

(
λ2

t σ
2
u + µ2

t (σ
2
v + σ2

e)
)
∆t + δt. (115)

The terminal conditions are

αT = δT = 0. (116)

The second order condition is

λt(1− αtλt) > 0. (117)

Given Σ0, conditions (108)–(117) are necessary and sufficient for the existence of a

linear equilibrium.

Proof. First, we show that Equations (108)–(111) are equivalent to the zero profit condi-

tions of the market maker. Second, we show that Equations (113)–(117) are equivalent

to the informed trader’s strategy (105) being optimal.

Zero Profit of Market Maker: Let us start with with the market maker’s update

due to the order flow at t = 1, . . . , T−1. Conditional on Iq
t , vt has a normal distribution,

vt|Iq
t ∼ N (qt, Ωt). The aggregate order flow at t is of the form ∆yt = βt(vt−qt)∆t+∆ut.

Denote by

Φt = Cov(vt − qt, ∆yt) = βtΩt∆t. (118)

Then, conditional on Ip
t = Iq

t ∪ {∆yt}, vt ∼ N (pt, Σt), with

pt = qt + λt∆yt, (119)

λt = Φt Var(∆yt)
−1 =

βtΩt

β2
t Ωt∆t + σ2

u

, (120)

Σt = Var(vt − qt)− Φt Var(∆yt)
−1Φ′

t

= Ωt −
β2

t Ω
2
t

β2
t Ωt∆t + σ2

u

∆t =
Ωtσ

2
u

β2
t Ωt∆t + σ2

u

.
(121)
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To obtain Equation (108) for λt, note that the above equations for λt and Σt imply

λt

Σt
= βt

σ2
u
. Equation (110) is obtained by solving for Σt in Equation (121).

Next, consider the market maker’s update at t = 1, . . . , T−1 due to the signal ∆zt =

∆vt + ∆et. From vt−1|Ip
t−1 ∼ N (pt−1, Σt−1), we have vt|Ip

t−1 ∼ N (pt−1, Σt−1 + σ2
v∆t) .

Denote by

Ψt = Cov(vt − pt−1, ∆zt) = σ2
v∆t. (122)

Then, conditional on Iq
t = Ip

t−1 ∪ {∆zt}, vt|Iq
t ∼ N (qt, Ωt), with

qt = pt−1 + µt∆zt, (123)

µt = Ψt Var(∆zt)
−1 =

σ2
v

σ2
v + σ2

e

, (124)

Ωt = Var(vt − pt−1)−Ψt Var(∆zt)
−1Ψ′

t

= Σt−1 + σ2
v∆t− σ4

v

σ2
v + σ2

e

∆t = Σt−1 +
σ2

vσ
2
e

σ2
v + σ2

e

∆t.
(125)

which proves Equation (109) for µt. Note that Equation (125) gives a formula for Σt−1

as a function of Ωt, and we already proved (110), which expresses Ωt as a function of

Σt. We therefore get Σt−1 as a function of Σt, which is (111).

Optimal Strategy of Informed Trader: At each t = 1, . . . , T − 1, the informed

trader maximizes the expected profit: πt = max
∑T−1

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by

backward induction that the value function is quadratic and of the form given in (112):

πt = αt−1(vt− qt)
2 + δt−1. At the last decision point (t = T − 1) the next value function

is zero, i.e., αT = δT = 0, which are the terminal conditions (116). In the induction step,

if t = 1, . . . , T − 1, we assume that πt+1 is of the desired form. The Bellman principle

of intertemporal optimization implies

πt = max
∆x

E
(
(vt − pt)∆x + πt+1 | Iq

t , vt, ∆vt

)
. (126)

Equations (106) and (107) show that the quote qt evolves by qt+1 = qt+mt∆yt+µt∆zt+1.

This implies that the informed trader’s choice of ∆x affects the trading price and the
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next quote by

pt = qt + λt(∆x + ∆ut), (127)

qt+1 = qt + λt(∆x + ∆ut) + µt∆zt+1. (128)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(
∆x(vt − qt − λt∆x− λt∆ut)

+ αt(vt + ∆vt+1 − qt − λt∆x− λt∆ut − µt∆zt+1)
2 + δt

) (129)

= max
∆x

∆x(vt − qt − λt∆x)

+ αt

(
(vt − qt − λt∆x)2 + (λ2

t σ
2
u + µ2

t (σ
2
v + σ2

e))∆t
)

+ δt.
(130)

The first order condition with respect to ∆x is

∆x =
1− 2αtλt

2λt(1− αtλt)
(vt − qt), (131)

and the second order condition for a maximum is λt(1 − αtλt) > 0, which is (117).

Thus, the optimal ∆x is indeed of the form ∆xt = βt(vt − qt)∆t, where βt∆t satisfies

Equation (113). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1−λtβt∆t)+αt(1−λtβt∆t)2

)
(vt− qt)

2 + αt

(
λ2

t σ
2
u +µ2

t (σ
2
v +σ2

e)
)
∆t + δt.

(132)

This proves that indeed πt is of the form πt = αt−1(vt − qt)
2 + δt−1, with αt−1 and δt−1

as in Equations (114) and (115).

Equations (108)–(111) and (113)–(115) form a system of equations. As before, it is

solved backwards, starting from the boundary conditions (116), and so that Σt = Σ0 at

t = 0.
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B Proofs

B.1 Proof of Theorem 1

Benchmark model: We compute the optimal strategy of the informed trader at

t + dt. As we have seen in the discrete version of the model, in Appendix A, we need to

consider only strategies dxτ of the type dxτ = βτ (vτ − pτ ) dτ + γτ dvτ . Recall that Ip
t

is the market maker’s information set immediately after trading at t. If we denote by

J p
t = Ip

t ∪ {vτ}τ≤t+dt the trader’s information set before trading at t + dt, the expected

profit from trading after t is

πt = E

(∫ 1

t

(v1 − pτ+ dτ ) dxτ | J p
t

)
. (133)

From (11), pτ+ dτ = pτ + µτ (dvτ + deτ ) + λτ (dxτ + duτ ). For τ ≥ t, denote by

Vτ = E
(
(vτ − pτ )

2 | J p
t

)
. (134)

Then the expected profit is

πt = E

(∫ 1

t

(vτ + dvτ − pτ − µτ dvτ − λτ dxτ ) dxτ | J p
t

)
(135)

=

∫ 1

t

(
βτVτ + (1− µτ − λτγτ )γτσ

2
v

)
dτ. (136)

Vτ can be computed recursively:

Vτ+ dτ = E
(
(vτ+ dτ − pτ+ dτ )

2 | J p
t

)
= E

(
(vτ + dvτ − pτ − µτ dvτ − µτ deτ − λτ dxτ − λτ duτ )

2 | J p
t

)
= Vτ + (1− µτ − λτγτ )

2σ2
v dτ + µ2

τσ
2
e dτ + λ2

τσ
2
u dτ − 2λtβtVτ dτ.

(137)

therefore the law of motion of Vτ is a first order differential equation

V ′
τ = −2λtβtVτ + (1− µτ − λτγτ )

2σ2
v + µ2

τσ
2
e + λ2

τσ
2
u, (138)
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or equivalently βτVτ = −V ′
τ+(1−µτ−λτ γτ )2σ2

v+µ2
τ σ2

e+λ2
τ σ2

u

2λτ
. Substitute this into (133) and

integrate by parts. Since Vt = 0, we get

πt = − V1

2λ1

+

∫ 1

t

Vτ

( 1

2λτ

)′
dτ

+

∫ 1

t

(
(1− µτ − λτγτ )

2σ2
v + µ2

τσ
2
e + λ2

τσ
2
u

2λτ

+ (1− µτ − λτγτ )γτσ
2
v

))
dτ.

(139)

This is essentially the argument of Kyle (1985): we have eliminated the choice variable

βτ and replaced it by Vτ . Since Vτ > 0 can be arbitrarily chosen, in order to get an

optimum we must have
(

1
2λτ

)′
= 0, which is equivalent to

λτ = constant. (140)

For a maximum, the transversality condition V1 = 0 must be also satisfied.

We next turn to the choice of γτ . The first order condition is

−(1− µτ − λτγτ ) + (1− µτ − λτγτ )− λτγτ = 0 =⇒ γτ = 0. (141)

Thus, there is no flow trading in the benchmark model. Note also that the second order

condition is λτ > 0.22

Next, we derive the pricing rules from the market maker’s zero profit conditions.

The equations pt = E(v1|Ip
t ) and qt = E(v1|Ip

t , dzt) imply that qt = pt + µt dzt, where

µt =
Cov(v1, dzt | Ip

t )

Var( dzt | Ip
t )

=
Cov(v0 +

∫ 1

0
dvτ , dvt + det | Ip

t )

Var( dvt + det | Ip
t )

=
σ2

v

σ2
v + σ2

e

. (142)

The equations qt = E(v1|Iq
t+dt) and pt+dt = E(v1|Iq

t+dt, dyt) imply that pt+dt = qt +λtdyt,

where

λt =
Cov(v1, dyt | Iq

t+dt)

Var( dyt | Iq
t+dt)

=
Cov(v1, βt(vt − pt) dt + dut | Iq

t+dt)

Var(βt(vt − pt) dt + dut | Iq
t+dt)

=
βtΣt

σ2
u

, (143)

22The condition λτ > 0 is also a second order condition with respect to the choice of βτ . To see
this, suppose λτ < 0. Then if βτ > 0 is chosen very large, Equation (138) shows that Vτ is very large
as well, and thus βτVτ can be made arbitrarily large. Thus, there would be no maximum.

43



where Σt = E
(
(vt − pt)

2|Ip
t

)
.23 The information set of the informed trader, J p

t , is a

refinement of the market maker’s information set, Ip
t . Therefore, by the law of iterated

expectations, Σt satisfies the same equation as Vt:

Σ′
t = −2λtβtΣt + (1− µt − λtγt)

2σ2
v + µ2

t σ
2
e + λ2

t σ
2
u, (144)

except that it has a different initial condition. One can solve this differential equation

explicitly and show that the transversality condition V1 = 0 is equivalent to
∫ 1

0
βt dt =

+∞, and in turn this is equivalent to Σ1 = 0. Since λt, µt and γt = 0 are constant,

by (143) βtΣt is also constant. Equation (144) then implies that Σ′t is constant. Since

Σ1 = 0, Σt = (1− t)Σ0, and βt = β0

1−t
. Finally, we integrate (144) between 0 and 1, and

substituting for λ = β0Σ0

σ2
u

, µ = σ2
v

σ2
v+σ2

e
, and γ = 0, we obtain β0 and λ as stated in the

Theorem.

Fast model: The informed trader has the same objective function as in (133):

πt = E

(∫ 1

t

(v1 − pτ+ dτ ) dxτ | J p
t

)
. (145)

but here we use qt instead of pt as a state variable. From (7), pt+dt = qt + λtdyt. Also,

from (17), qτ+ dτ = qτ + µτ (dzτ − ρτdyτ ) + λτ (dyτ ), and we obtain

qτ+ dτ = µτ dzτ + mτ dyτ , with (146)

mτ = λτ − µτρτ . (147)

As we have seen in the discrete version of the model, in Appendix A, we need to consider

only strategies dxτ of the type (16), dxτ = βτ (vτ − qτ ) dτ + γτ dvτ . For τ ≥ t, denote by

Vτ = E
(
(vτ − qτ )

2 | J p
t

)
. (148)

23Because Iq
t+dt = Ip

t ∪ {dzt}, the two information sets differ only by the infinitesimal quantity dzt,
and thus we can also write Σt = E

(
(vt − pt)2|Iq

t+dt

)
= E

(
(vt − pt)2|Ip

t

)
.
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The expected profit is

πt = E

(∫ 1

t

(vτ + dvτ − qτ − λτ dxτ ) dxτ | J p
t

)
(149)

=

∫ 1

t

(
βτVτ + (1− λτγτ )γτσ

2
v

)
dτ. (150)

Vτ is computed as in the benchmark model, except that λτ is replaced by mτ :

Vτ+ dτ = E
(
(vτ+ dτ − qτ+ dτ )

2 | J p
t

)
= Vτ + (1− µτ −mτγτ )

2σ2
v dτ + µ2

τσ
2
e dτ + m2

τσ
2
u dτ − 2mtβtVτ dτ.

(151)

therefore the law of motion of Vτ is a first order differential equation

V ′
τ = −2mtβtVτ + (1− µτ −mτγτ )

2σ2
v + µ2

τσ
2
e + m2

τσ
2
u, (152)

or equivalently βτVτ = −V ′
τ+(1−µτ−mτ γτ )2σ2

v+µ2
τ σ2

e+m2
τ σ2

u

2mτ
. Substitute this into (133) and

integrate by parts. Since Vt = 0, we get

πt = − V1

2m1

+

∫ 1

t

Vτ

( 1

2mτ

)′
dτ

+

∫ 1

t

(
(1− µτ −mτγτ )

2σ2
v + µ2

τσ
2
e + m2

τσ
2
u

2mτ

+ (1− λτγτ )γτσ
2
v

))
dτ.

(153)

Since Vτ > 0 can be arbitrarily chosen, in order to get an optimum we must have(
1

2mτ

)′
= 0, which is equivalent to mτ = constant. For a maximum, the transversality

condition V1 = 0 must be also satisfied.

We next turn to the choice of γτ . The first order condition is

−(1− µτ −mτγτ ) + (1− λτγτ )− λτγτ = 0 =⇒ γτ =
µτ

2λτ −mτ

=
µτ

λτ + µτρτ

.

(154)

Thus, we obtain a nonzero flow trading component. The second order condition is

λτ + µτρτ > 0. There is also a second order condition with respect to β: mτ > 0: see

Footnote 22.

Next, we derive the pricing rules from the market maker’s zero profit conditions. As
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in the benchmark model, we compute

λt =
Covt(v1, dyt)

Vart( dyt)
=

Covt(v1, βt(vt − pt) dt + γt dvt + dut)

Var(βt(vt − pt) dt + γt dvt + dut)
=

βtΣt + γtσ
2
v

γ2
t σ

2
v + σ2

u

, (155)

ρt =
Covt( dzt, dyt)

Vart( dyt)
=

γtσ
2
v

γ2
t σ

2
v + σ2

u

, (156)

µt =
Covt(v1, dzt − ρt dyt)

Vart( dzt − ρt dyt)
=

−ρtβtΣt + (1− ρtγt)σ
2
v

(1− ρtγt)2σ2
v + ρ2

t σ
2
u + σ2

e

. (157)

By the same arguments as for the benchmark model, Σt = (1− t)Σ0, βt = β0

1−t
, and βtΣt,

λt, ρt, µt are constant. Since Σt satisfies the same Equation (152) as Vt, and Σ′
t = −Σ0,

we obtain

−Σ0 = −2mtβtΣt + (1− µτ −mτγτ )
2σ2

v + µ2
τσ

2
e + m2

τσ
2
u. (158)

We now define the following constants:

a =
σ2

u

σ2
v

, b =
σ2

e

σ2
v

, c =
Σ0

σ2
v

, (159)

f =
γ2

a
, λ̃ = λγ, ρ̃ = ργ, ν =

β0Σ0

σ2
u

γ, m̃ = mγ. (160)

With these notations, Equations (154)–(158) become

λ̃ = µ(1− ρ̃), λ̃ =
ν + f

1 + f
, ρ̃ =

f

1 + f
, µ =

1− ν

1 + b(1 + f)

c =
2ν

f
− (1− µ− m̃)2 − µ2b− m̃2

f
.

(161)

Substitute λ̃, ρ̃, µ in λ̃ = µ(1− ρ̃) and solve for ν:

ν =
1− (1 + b)f − bf 2

2 + b + bf
=

1 + f

2 + b + bf
− f. (162)

The other equations, together with m̃ = λ̃− µρ̃, imply

λ̃ =
1

2 + b + bf
, ρ̃ =

f

1 + f
, µ =

1 + f

2 + b + bf
, m̃ =

1− f

2 + b + bf
,

1 + c =
(1 + bf)(1 + f)2

f(2 + b + bf)2
.

(163)
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Putting together (162) and the last equation in (163), we compute

β0 =
a

cγ
ν =

a1/2

cf 1/2
ν =

a1/2

cf 1/2(1 + c)

1

(1 + f)1/2

(
c + (1− f)

1 + b + bf

2 + b + bf

)
. (164)

Now substitute a, b, c from (159) in Equations (163)–(164) and use γ = a1/2f 1/2 to obtain

Equations (18)–(23). One can also check that the second order conditions λ+µρ > 0 and

m > 0 are equivalent to f ∈ (−1, 1). Next, we show that the equation 1+c = (1+bf)(1+f)2

f(2+b+bf)2

has a unique solution f ∈ (−1, 1), which in fact lies in (0, 1). This can be shown by

noting that

Fb(f) = 1 + c, with Fb(x) =
(1 + bx)(1 + x)2

x(2 + b + bx)2
. (165)

One verifies F ′
b(x) = (x+1)(x−1)(2+b+3bx)

x2(2+b+bx)2
, so Fb(x) decreases on (0, 1). Since Fb(0) = +∞

and Fb(1) = 1
1+b

< 1, there is a unique f ∈ (0, 1) so that Fb(f) = 1 + c.24

B.2 Proof of Proposition 1

We use the notations from the proof of Theorem 1. We start by showing that µF < µB;

by computation, 1+f
2+b+bf

< 1
1+b

is equivalent to f < 1, which is true since f ∈ (0, 1).

We show that λF > λB, i.e., (c+1)1/2

a1/2
1

(1+bf)1/2(1+f)
> c1/2

a1/2

(
1+ b

c(1+b)

)1/2
. After squaring

the two sides, and using 1 + c = (1+bf)(1+f)2

f(2+b+bf)2
, we need to prove that 1

f(2+b+bf)2
> c +

1− 1
1+b

, or equivalently 1
1+b

> (1+bf)(1+f)2

f(2+b+bf)2
− 1

f(2+b+bf)2
. This can be reduced to proving

1 + b + (1− f)(1 + bf) > 0, which is true.

The same type of calculations can be used to show that βF
0 < βB

0 , or to prove the

other comparative statics.

B.3 Proof of Proposition 2

In the benchmark model, V ar(dxt) = (βB
t )2Σtdt2 and V ar(dut) = σ2

udt. Therefore,

IPRB
t = 0.

In the fast model, V ar(dxt) = (γB
t )2σ2

vdt. Therefore, IPRF
t = (γB

t )2σ2
v/((γ

B
t )2σ2

v +

24One can check that Fb(x) = 1 + c has no solution on (−1, 0): When b ≤ 1, Fb(x) < 0 on (−1, 0).
When b > 1, Fb(x) attains its maximum on (−1, 0) at x∗ = − 2+b

3b , for which Fb(x∗) = (b−1)3

b(b+2)3 < 1.
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σ2
u) = f/(f + 1), using the equation for γF

t in Theorem 1.

B.4 Proof of Proposition 3

We start with a useful preliminary result:

Lemma 2. In the benchmark model and in the fast model, for all s < u, we have

Cov(vs − ps, vu − pu) = Σs

(
1− u

1− s

)mβ0

, (166)

Cov(dvs, vu − pu) = (1−mγ − µ)σ2
v

(
1− u

1− s

)mβ0

ds, (167)

where m ≡ λ− µρ.

Proof. We start from

Cov(vs − ps, vu − pu) = Cov(vs − ps, vs − ps)−
∫ u

s

Cov(vs − ps, dph) dh

= Σs −
∫ u

s

Cov(vs − ps, mβh(vh − ph)) dh

Differentiating with respect to u we obtain

∂

∂u
Cov(vs − ps, vu − pu) = −mβuCov(vs − ps, vu − pu),

which rewrites as

∂

∂τ
log Cov(vs − ps, vu − pu) = −mβu = −mβ0

1

1− u
= mβ0

∂

∂u
log(1− u).

Integrating between s and u and using Cov(vs − ps, vs − ps) = Σs, we obtain equation

(166).

Similarly, we have

Cov(dvs, vu − pu) = Cov(dvs, dvs − dps)−
∫ u

s

Cov(dvs, dph) dh

= (1−mγ − µ)σ2
vds−

∫ u

s

mβhCov(dvs, vh − ph) dh.
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Proceeding as above we obtain (167).

We can now prove Proposition 3. The formula in the benchmark model follows

immediately from Equation (166). In the fast model, the auto-covariance of the order

flow is of order dt2 while the variance is of order dt, therefore the autocorrelation is of

order dt, which is zero in continuous time.

B.5 Proof of Proposition 5

Follows immediately from Lemma 2.

B.6 Proof of Lemma 1

We start from

Σt = V ar(vt − pt) = V ar(vt) + V ar(pt)− 2Cov(vt,

∫ t

0

dpτ ).

We have V ar(vt) = Σ0 + tσ2
v . Since the price is a martingale and given that we prove

in the proof of Proposition 7 that the volatility of the price is equal to the volatility of

the asset value, we have V ar(pt) = t(Σ0 + σ2
v). Finally, using that price change cannot

be correlated with future innovation in asset value, we obtain equation (41).

B.7 Proof of Proposition 7

In the benchmark model, V ar(pt+dt−qt) = (λB)2σ2
udt and V ar(qt+dt−pt+dt) = (µB)2σ2

vdt.

Using the equilibrium parameter values of Theorem 1 we obtain V ar(dpt) = Σ0 + σ2
vt.

Similarly, in the fast model, V ar(pt+dt−qt) = (λF )2((γF )2σ2
v +σ2

u)dt and V ar(qt+dt−

pt+dt) = (µB)2((1 − ρF γF )2σ2
v + σ2

e + (ρF )2σ2
u)dt. Using the equilibrium parameter

values of Theorem 1, we obtain that V ar(pt+dt − qt) is higher than in the benchmark,

V ar(qt+dt− pt+dt) is lower than in the benchmark, and V ar(dpt) = Σ0 +σ2
vt is the same

as in the benchmark.
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B.8 Proof of Proposition 10

When returns are computed using post-trade quotes, we have

rt = µt−∆t(∆zt−∆t − ρt−∆t∆yt−∆t) + λt∆yt.

Using that ∆xt−∆t ≈ γt−∆t∆vt−∆t when ∆t → 0, and that γt, λt, µt, and ρt are constant

over time, the above equation rewrites as

rt ≈ λ∆xt + λ∆ut + µ(1/γ − ρ)∆xt−∆t − µρ∆ut−∆t + µ∆et−∆t.

Similarly, when pre-trade quotes are used, we have

rt = λt∆yt + µt(∆zt − ρt∆yt)

= (λ− µρ + µ/γ)∆xt + (λ− µρ)∆ut + µ∆et.

B.9 Proof of Proposition 11

In the limit ∆t → 0, we have

Cov(∆xj(n), rj+1(n)) = µγ(1− ργ)σ2
v∆t,

V ar(∆xj) = nγ2σ2
v∆t,

V ar(rj+1) = (σ2
v + Σ0)n∆t.

Therefore

Corr(∆xj, rj+1) =
µ(1− ργ)σv

n
√

σ2
v + Σ0

is decreasing in n and goes to 0 when n goes to infinity.
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B.10 Proof of Proposition 12

We consider the limit ∆t → 0 and n → +∞ such that n∆t = τ is fixed. In this case,

we have V ar(∆xj) = V ar(xt+τ − xt), where t = (j − 1)τ . Then, we can write

V ar(xj) = V ar(

∫ t+τ

s=t

βs(vs − ps)ds + γsdvs)

=

∫ t+τ

s=t

γ2
sV ar(dvs)

+2

∫ t+τ

s=t

∫ t+τ

u=s

βsβuCov (vs − ps, vu − pu) ds du

+2

∫ t+τ

s=t

∫ t+τ

u=s

γsβuCov (dvs, vu − pu) du.

It then follows from Lemma 2 that

V ar(xj) = γ2σ2
vτ + βt(β0Σ0 + γ(1−mγ − µ)σ2

v)τ
2 + o(τ 2)

when τ is small and where m ≡ λ− µρ. Using that V ar(uj) = σ2
uτ , we obtain

IPRj =
γ2σ2

v

γ2σ2
v + σ2

u

+
σ2

u

(γ2σ2
v + σ2

u)
2
βt(β0Σ0 + γ(1−mγ − µ)σ2

v)τ + o(τ).

B.11 Proof of Proposition 13

We consider the limit ∆t → 0 and n → +∞ such that n∆t = τ is fixed. In this case,

we have

Cov(∆xj, ∆xj+1) = βt(β0Σ0 + γ(1−mγ − µ)σ2
v)τ

2 + o(τ 2),

V ar(∆xj) = V ar(∆xj+1) = γ2σ2
vτ + βt(β0Σ0 + γ(1−mγ − µ)σ2

v)τ
2 + o(τ 2).

Therefore

Corr(∆xj, ∆xj+1) =
β2

t Σt + βtγt(1−mγ − µ)σ2
v

γ2σ2
v

τ + o(τ).
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Abstract 

We estimate a structural model of strategic trader behavior that sheds light on the determinants 

of trading volume and stock returns. Our novel identification approach exploits enormous 

empirical variation in trading and volatility associated with the time of day and public news 

arrival. Over 95% of trading occurs during regular market hours (9:30am to 4pm), even though 

prices exhibit considerable volatility during extended hours, especially when news arrives. For 

the model to explain the data, discretionary liquidity trading must constitute the bulk of trading 

volume and must increase significantly after news arrives. However, from 2001 to 2010, 

informed trading increasingly contributes to volume and stock price discovery because our 

estimate of the cost of acquiring private information falls by a factor of 12 in this decade. 
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DeBondt and Thaler (1995) argue that the high trading volume observed in financial 

markets “is perhaps the single most embarrassing fact to the standard finance paradigm.” Since 

then, Chordia, Roll, and Subrahmanyam (2011) show that turnover in US markets has actually 

increased fivefold, implying annual volume is now tens of trillions of dollars. Although they 

argue that informed trading drives the recent trend, a complete characterization of traders’ 

motives remains elusive. This paper attempts to fill this void by estimating a structural model 

with strategic informed and uninformed traders. The model sheds light on the determinants of 

trading volume and the relative importance of private and public information in price discovery. 

In our model, as in Admati and Pfleiderer (1988), both informed and (uninformed) 

“liquidity” traders optimally choose to trade when others are trading because such clustering 

behavior minimizes traders’ impact on prices. As in standard models, informed traders choose to 

enter by weighing the cost of acquiring and acting on information (c parameter) against their 

expected trading profits. The novel feature is that we allow liquidity traders’ net benefits of 

learning and acting on their trading needs (h parameter) to vary with the time of day and the 

occurrence of news. This parameterization captures variation in traders’ awareness of data, 

portfolio monitoring costs, rebalancing needs, and opportunity costs. Such variation causes trader 

attention to the market, and thus trading volume, volatility, and liquidity, to fluctuate as well. 

To identify the model parameters, we exploit enormous empirical variation in trading and 

volatility associated with the time of day and news arrival in the electronic trading era. This 

study is the first to adopt this promising approach. Since 2000, revolutions in information and 

trading technology have enabled virtually round-the-clock market-related activity in US stocks. 

Newswires now arrive continuously throughout the day. Electronic communication networks 

give any institution or retail trader with a brokerage account the ability to trade outside regular 
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market hours (from 9:30am to 4pm). Despite having this ability, few choose to trade in extended 

hours. Less than 5% of total trading in our sample takes place in the pre-market (7am to 9:30am 

in our study) and the after-market (4pm to 6:30pm). In contrast, stock return volatility during 

extended hours periods is more than half of that during the regular market. In fact, in periods 

when news arrives, extended hours volatility is on par with regular hours volatility. 

We use these strong contemporaneous relationships between volume, volatility, and news 

arrival in each intraday period to estimate our structural model’s parameters. Our estimates of the 

parameter (h) designed to measure time-varying trader attention to the market are highest during 

regular trading hours and trading periods soon after news arrives, which accords with intuition. 

In the model, these high h values motivate liquidity traders to enter the market and indirectly 

spur informed traders to enter by increasing their expected profits. Our estimates of the 

parameter (c) designed to measure the cost of acquiring private information are low enough so 

that dozens of informed traders choose to acquire information and trade during the regular 

market, but sufficiently high so that few opt to participate during extended hours sessions. When 

news occurs, more informed traders choose to enter because more liquidity traders enter the 

market and increase liquidity. 

For the model to explain the data, liquidity trading must account for the bulk of trading 

activity, particularly during regular market hours. The central reason is that compared to 

extended hours periods, the level of trading volume is quite high in relation to volatility, 

suggesting non-informational trading is important. Our parameter estimates imply that non-

informational trading accounts for about 95% of regular market volume in 2001-2005, though it 

declines to 85% in 2006-2010. This modest decline is matched by an increase in informed 

trading: from 3.6% to 11.4% of volume in the regular period. In large cap stocks (with size over 
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$10B), informed trading accounts for much more of regular, pre-, and after-market trading (18%, 

41%, and 37%, respectively). These patterns are consistent with the qualitative findings in 

Chordia, Roll, and Subrahmanyam (2011) who analyze how empirical proxies for informed 

trading vary over time and across firms. 

Our estimates indicate that dramatic changes in the information cost parameter (c) 

explain these patterns in informed trading. Whereas the attention parameter (h) is quite stable 

over time, information costs fall by a factor of 12 in the past decade. The decline in c is most 

pronounced for large cap stocks, where it falls by a factor of 30. These estimates are consistent 

with the theory that the widespread adoption of new information gathering and trading 

technologies has transformed trading, especially in large stocks. 

 The stark reduction in the cost of acquiring information has important implications for 

price discovery, too. In 2001 to 2005, private information revealed through trading explains just 

8% of the variance in returns during the regular market, whereas it explains 76% of variance 

from 2006 to 2010. This change is again most stark for large cap stocks, though it pervades small 

caps (under $1B) and mid caps (between $1B and $10B) as well. These results arise because it is 

far less costly to gather and trade on value-relevant information in the later time period. By the 

time this information is publicly observable, most of it is already incorporated in prices. As a 

result, we find that the role of public information in price discovery has diminished over time. 

Next we test our model’s predictions for how prices and volume will respond in periods 

after news arrival. In the model, to mimic the 24-hour news cycle, we assume news affects 

business activities and awareness of data (h) for one full trading day. We find that this simple 

model correctly predicts the price response to news is immediate whereas the volume response 

can be delayed. Intuitively, because prices respond to information while volume arises primarily 
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from non-informational motives, the two need not coincide.
1
 For example, when public news 

arrives during the after-market period, price responds immediately, but the bulk of abnormal 

trading occurs during the regular market on the following trading day. The delayed and 

prolonged trading after news contrasts with the timing in models that generate trading mainly 

through differences in beliefs, such as those based on pre-event or event-period information (e.g., 

Kim and Verrecchia (1991, 1994, and 1997)) or those based purely on differences in opinion 

(e.g., Harris and Raviv (1993), Kandel and Pearson (1995), and Banerjee and Kremer (2010)). 

Such models make the counterfactual prediction that the impacts of news on volume and 

volatility coincide because both are caused by changes in investors’ beliefs. 

 We further distinguish our model of liquidity trading from belief-based models of trading 

by investigating market activity around news events sorted on the basis of changes in analysts’ 

beliefs about quarterly earnings. We separately consider news events in which analyst forecast 

dispersion decreases, remains similar, and increases within one week after the news. Although 

news events in which dispersion either increases or decreases are associated with the highest 

return volatility, such events are actually associated with slightly lower trading activity. This lack 

of trading when beliefs change appears inconsistent with the disagreement models of trading 

volume, but it can be reconciled with models of discretionary liquidity traders. Such traders may 

expect their trades to have more impact on prices when news has greater impact on the belief 

distribution, thereby deterring them from entering the market and trading. 

 We organize the paper as follows. Section 1 reviews the relevant literature. Section 2 

presents the structural model of market activity and explains which empirical moments identify 

                                                           
1
 These predictions are not mechanically generated by the fact that we allow trader attention to vary with news. We 

also estimate a version of our model in which news does not affect attention but it does affect the extent of 

acquirable private information. This version makes nearly identical equilibrium predictions: volume after news 

again arises primarily from discretionary liquidity traders, who in this case choose to enter because news reduces 

information asymmetry and lowers their trading costs. 
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the key model parameters. Section 3 describes how we apply the model to the empirical data. It 

also describes the features of our databases on trading activity and news and provides summary 

statistics of the key moments. Section 4 presents our estimates of the model parameters, along 

with estimates of two alternative parameterizations. Section 5 analyzes decompositions of return 

variance and trading volume under the main parameterization. Section 6 tests the distinct 

predictions of the discretionary liquidity trader model and belief-based models of trading. 

Section 7 concludes and suggests directions for future research. 

 

1. Literature Review 

 In this section, we briefly review three strands of literature: the determinants of trading 

volume, the roles of private and public information in stock price formation, and the extended 

hours markets. Readers with knowledge of these areas may prefer to skip this section. 

 

A. Determinants of Trading 

Classic models such as Milgrom and Stokey (1982) and Kyle (1985) consider two 

motives for trading: information and liquidity, where liquidity is simply an exogenous demand to 

transact for some reason other than information. While these models form the basis for most 

theory and intuition in market microstructure, they do not explain important stylized facts such 

as the tendency of trading to cluster near the beginning and ending of trading periods (Jain and 

Joh, 1986) or following information releases such as earnings announcements (Beaver, 1968). In 

light of this, Admati and Pfleiderer (1988) introduce discretionary liquidity traders who 

endogenously choose when to trade with the goal of minimizing their expected trading losses. To 
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minimize the price impact of trading, each uninformed trader prefers to trade when other 

uninformed traders choose to enter the market, leading to clustering in trading volume.  

 In most other theories, changes in traders’ relative beliefs cause trading around 

information releases. Kim and Verrecchia (1991) introduce a model in which a public signal 

resolves trader disagreement initially caused by noisy private signals about firm value. In 

contrast, Kim and Verrecchia (1994) model public signals that generate new private information 

and thus disagreement. Kim and Verrecchia (1997) allow for both types of public signals—that 

resolve or generate disagreement—and show that both can generate trading. Harris and Raviv 

(1993) offer an alternative model in which traders have different opinions about the impact of a 

public signal, which causes trading when the signal is informative. Similarly, Kandel and 

Pearson (1995) model volume that occurs when traders update their estimates of firm value using 

different likelihood functions, motivated by different prior beliefs. A recent model by Banerjee 

and Kremer (2010) presents a simple characterization of volume in differences in opinion models 

as resulting from changes in the level of investor disagreement. 

 Empirical work attributes most of the increase in trading volume in US stocks from $3.5 

trillion in 1994 to $32.0 trillion in 2010 to institutional trading, which is often perceived as 

informed (Chordia et al. (2011)). There is also some support for the numerous theories based on 

information or differences in opinion in conjunction with information releases (see Bamber, 

Barron, and Stevens, 2011 for a thorough review). However, the notion of discretionary liquidity 

traders emphasized in our model has received almost no attention in the empirical literature. One 

notable exception is Kross, Ha, and Heflin (1994) who find that absolute change in beta around 

earnings announcements is positively related to announcement-period trading and attribute this 

trading to portfolio rebalancing, a specific type of discretionary liquidity trading. A second is 
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Chae (2005), who finds that trading volume declines before and then increases after scheduled 

earnings announcements. He interprets this pattern as discretionary liquidity traders postponing 

their orders until the information release resolves information asymmetry. 

 

B. The Roles of Private and Public Information on Price Formation 

Related research studies the roles of public and private information in price formation. 

French and Roll (1986) compare trading and non-trading periods and provide evidence that 86% 

of stock return variance is not caused by the arrival of public news and is not transitory. By 

process of elimination, one could infer that private information is the chief driver of price 

movements. Bolstering this view, evidence in Barclay, Litzenberger, and Warner (1990) and Ito, 

Lyons, and Melvin (1998) shows that hourly stock return variance is several times higher during 

trading hours, when informed trading can occur, as compared to non-trading hours. Taking a 

different approach, Roll (1988), Cutler, Poterba, and Summers (1989), Berry and Howe (1994), 

and Mitchell and Mulherin (1994) consider the volatility-news relationship. These studies 

complement the message of French and Roll (1986) by showing that public information arrival is 

only weakly linked to market activity. 

In contrast, Jones, Kaul, and Lipson (1994) compare return variance during endogenously 

determined non-trading periods to variance when trading occurs. They find that a large 

proportion of variance occurs in the absence of trading, providing “evidence that public (versus 

private) information is the major source of short-term return volatility.” Ultimately, the relative 

importance of private and public information in market activity remains unknown both because 

these constructs are difficult to measure and because the world has changed dramatically since 

the initial studies. In the past 15 years, news production and trading volume have increased by an 
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order of magnitude and return variance has risen sharply and fallen precipitously, as shown by 

Tetlock (2010), Chordia et al. (2011), and Brandt et al. (2009), respectively. Our model provides 

a simple variance decomposition into private and public information components that speaks 

directly to these issues. 

 

C.  The Extended Hours Markets 

 Finally, a small literature investigates extended hours markets, which many view as less 

liquid and important than the regular market. Barclay and Hendershott (2004) find that bid-ask 

spreads outside normal trading hours are about three or four times those during normal trading 

and attribute the difference to greater adverse selection. Barclay and Hendershott (2003) show 

that information asymmetry and price discovery per trade are highest during the pre-market. 

Two other papers are more closely related to our work. Zdorovtsov (2004) finds that 

volatility in both extended and regular hours increases in the presence of public news. Jiang, 

Likitapiwat, and McInish (2011) report higher trading volume and lower quoted and effective 

spreads during extended hours periods containing earnings announcements than in periods 

without announcements. They also find that earnings announcement periods contribute more to 

24-hour price changes than do non-announcement periods. We build on this literature by 

providing a comprehensive analysis of the relationship between volume, volatility, and news 

arrival during regular and extended trading hours in the context of a structural model. 

 

2. Structural Model of Market Activity 

A. Theory 

 Inspired by Admati and Pfleiderer (1988), we model prices and volume in a market for a 
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single risky asset (hereafter “stock”), where liquidity traders and informed traders endogenously 

choose to participate. Each trading round in the model corresponds to an intraday period, such as 

the pre-market period. Because all traders choose whether to participate in each period, time 

variation in market activity can be rich even though there is effectively only one period in the 

model. The timing in each period is that public information arrives, traders choose whether to 

enter the market, private signals are realized, and trading occurs at a price set by the market 

maker. 

 The stock’s value (F) at some distant future trading round T is given by: 

 
1 1

,
T T

t t
t t

F F d 
 

     (1) 

where F  is the initial value of the stock in period 0, t indexes periods, and dt and εt are 

independently distributed with means of zero and variances of 
2

dt  and 
2

t . In period t, both dt 

and εt are revealed publicly. The key difference is that informed traders can acquire information 

about dt one period in advance, whereas information about εt cannot be acquired. Thus, dt and εt 

represent tractable and intractable information, respectively, in the sense of Mendelson and 

Tunca (2004). We assume that public news (newst  {0,1}) is the sole mechanism for releasing 

intractable information, implying that εt = 0 in non-news periods when newst = 0. 

 In each period, each informed trader (i) chooses whether to enter the market based on 

whether her expected trading profits exceeds her information gathering and processing costs (c). 

By paying c, informed traders can observe dt+1, which is normally distributed. Each informed 

trader is risk neutral and thus selects demand to maximize expected profits given her signal. The 

number of informed traders (mt) is determined endogenously by free entry subject to a zero 

trading profit condition. 

 Each discretionary liquidity trader (j) enters the market if his expected benefit of 
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rebalancing net of entry costs exceeds his expected trading losses. The main entry cost is the 

opportunity cost of time and attention required to monitor his portfolio exposures and determine 

his optimal trade (yjt). If he enters the market, discretionary liquidity trader j buys yjt shares, 

where yjt is normally distributed with mean zero and variance 
2

yt . We allow opportunity costs of 

time, attention, and rebalancing needs to vary across traders and summarize these considerations 

using a simple function ht/j. This implies that liquidity traders (j) are indexed by their expected 

rebalancing benefit net of entry costs, which decrease from ht to 0 as j increases. The number of 

discretionary liquidity traders (kt) is determined endogenously by the free entry of liquidity 

traders who choose to participate. There are no non-discretionary liquidity traders, though 

liquidity traders with low j values exhibit strong desires to trade—especially when ht is high. 

 News not only releases intractable information in the current intraday period, but it also 

may have longer-term impacts on trader attention and rebalancing needs, as captured by ht. 

Motivated by the modern day 24-hour news cycle, we allow ht to depend on whether news has 

arrived in the past 24 hours. Sequences of related news stories about a firm may unfold during a 

24-hour period, bringing the news and the stock to the attention of more traders who may realize 

their current stock holdings differ significantly from their optimal allocation. Formally, we 

assume ht = h(RecentNewst, t), where recent news is defined as:  

 1 2 31 (1 )(1 )(1 )(1 ).t t t t tRecentNews news news news news         (2) 

 The risk neutral market maker only observes total order flow and thus cannot distinguish 

between orders from each trader. Assuming market making is competitive, the stock price is set 

such that the market maker’s expected profit is zero conditional on total order flow. We suppose 

further that the market maker's pricing function is linear in total order flow: 

 
1 1

( ),  where .
t t

t t t t t t it jt t s s
s s

p F Q F x y F F d  
 

            (3) 
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In this equation, Ft represents expectation of F conditional on public information, λt is the 

sensitivity of price to net order flow (Qt). 

 We solve the model by conjecturing an equilibrium and evaluating whether agents have 

an incentive to deviate using backward induction. We suppose that the mt informed traders select 

their demands (xit) to depend linearly on their signals, implying xit = βtdt+1, where βt measures 

trader aggressiveness. In the Appendix, we characterize the unique (symmetric) equilibrium in 

which informed traders and market makers follow the (same) linear strategies above and both 

informed and liquidity traders endogenously choose to participate in the market. The key 

endogenous parameters are the equilibrium sensitivity of prices to order flow (λt), trader 

aggressiveness (βt), and the number of informed (mt) and liquidity traders (kt): 

 
1 2 2

1( / 1)t t dtc h c  

   (4) 

 
2

1( )t t dth c  

   (5) 

 /t tm h c  (6) 

 
2 2 2

1( / 1) .t t t dt ytk ch h c   

   (7)  

 

B. Empirically Identifying the Model 

 We identify the exogenous parameters in the model, 
2

dt , 
2

t , ht, and c, using return 

variance (Var(rt)) and average volume (E(vt)) conditional on news (newst  {0,1}) in the four 

periods. We allow 
2

dt  and 
2

t  to vary only across the four intraday periods. Intuitively, return 

variances in news and non-news periods provide estimates of 
2

dt  and 
2

t , which are measures 

of tractable and intractable information. Examining volume in news and non-news periods 

allows us to isolate the changing net benefits of entry (ht) for liquidity traders, as well as the cost 

(c) of informed traders acquiring information.  

 We compute simple returns (rt) using: 

 1 1 1 .t t t t t t t t tr p p Q Q d           (8) 
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The variance of returns is then: 

 

2 2

1 1

2 1 2 1 2

1 1

( ) ( ) ( )

( / )( / 1) ( / 1) .

t t t t t t t

t t t dt t dt

Var r Var Q Var d Q

h c h c h c





  

  

 

 

 

   

    
 (9) 

   We define volume as in Admati and Pfleiderer (1988) using 

 max( , ),v buys sells    (10) 

where buys and sells are measured using quantities of shares. We can decompose expected 

volume into one half of the sum of buys and sells plus the absolute value of net buying by the 

market maker, which can be written as: 

 

1 1

1 1

1

1

1 1
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2
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h h c
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 (11) 

The first two terms in brackets come from trading between liquidity and informed traders and 

among liquidity traders, while the third term accounts for trades involving the market maker. 

 To eliminate confounding impacts of repeated news stories, we define each firm’s first 

news event in a 24-hour period as 1 2 3(1 )(1 )(1 )t t t t tFirstNews news news news news      . This 

means that FirstNewst = 1 if newst = 1 and there was no news in the prior three intraday periods. 

We compare firm return variance in situations where there is first news to that in situations 

where there has been no recent news. We use the variable subscript nt to denote periods t in 

which FirstNewst = RecentNewst = n. Thus, Var(r1t) is the firm’s return variance in periods t 

when the firm has first news (and thus recent news), whereas Var(r0t) is return variance in 

periods when the firm has no recent news (and thus no first news). By varying the n and t 

subscripts, we separately measure return variance and trading volume depending on whether 

news occurs during the regular market, pre-market, overnight, and after-market periods. 

Hereafter, we refer to periods with FirstNewst = RecentNewst = 1 as news periods and those with 

FirstNewst = RecentNewst = 0 as non-news periods. 
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 The lack of overnight trading activity has implications for the model parameters. Because 

overnight volume is zero, regardless of whether news occurs, overnight ht is zero for news (h1t) 

and non-news (h0t) periods. Similarly, we assume that no tractable information is available 

overnight while no trading occurs. This implies that 
2 0dt   for the pre-market period (following 

the overnight period) when such tractable information would have become public. 

 After imposing these restrictions, we estimate the remaining 14 parameters: 
2

dt  in the 

three trading periods, 
2

t  in all four intraday periods, one c parameter, three h1t parameters, and 

three h0t parameters.
2
 Fortunately, the four intraday return variance equations and three intraday 

expected trading volume equations for news and non-news periods (Var(r1t), Var(r0t), E(v1t), and 

E(v0t)) provide 14 empirical moments that can be used to exactly identify the 14 parameters 

above. The next two sections describe the data and procedures used in this estimation. 

 

3. Data and Empirical Moments 

 Our eligible sample spans 2001 to 2010 and includes NYSE, AMEX, and NASDAQ 

stocks. We pool intraday observations across similarly-sized firms each year in the sample and 

separately estimate the 14 moments described above for each intraday period (pre-market, 

regular hours, after-market, and overnight). Then we average across size groups and years to 

obtain a set of moments for each intraday period. This procedure mitigates measurement error 

resulting from firm-level estimates, assigns each size group and year equal weight, and allows us 

to analyze and control for differences across size groups. Throughout the paper, we compute 

standard errors based on 1,000 block bootstrap samples. The samples are stratified by year, 

where each year consists of 50 randomly drawn one-week blocks of return and volume data for 

                                                           
2
 Because the impact of news lasts for 24 hours, the values h1t and h0t not only denote the parameters in periods 

when FirstNewst = RecentNewst = 1 and  FirstNewst = RecentNewst = 0, respectively, but they also characterize the 

parameter values in all periods when  RecentNewst = 1 and RecentNewst = 0, regardless of whether first news occurs. 
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all firms and intraday periods in that week. The standard error is the standard deviation of the 

estimate of interest—e.g., empirical moment or model parameter—across these 1,000 samples. 

This procedure assumes independence of returns and volume across weekly blocks of data, but it 

allows for arbitrary correlation of returns and volume at higher frequencies and across firms. The 

next subsection introduces the data on stock prices, trading volume, and news releases that forms 

the basis for the moment estimation.  

 

A. Data 

For the pre-market, regular market, and after-market, we obtain trade-by-trade price and 

volume data from the NYSE TAQ database.
3
 We do not include any trades during the overnight 

period because few trades are reported for most of our sample period. We adjust for non-standard 

opening and closing times such that the regular trading period only includes the hours in which 

the market is open, and we consider weekends and weekdays in which the market is closed as 

part of the overnight period. As discussed in the Appendix, we employ several standard 

techniques from the microstructure literature to compute an accurate trade-based return for each 

intraday period. We adjust all firm returns for market returns by subtracting the 

contemporaneous intraday return of the SPDR S&P 500 ETF (SPY). We compute share turnover 

from each period as the market value of share volume scaled by market cap at the end of the 

prior calendar year. 

We measure firm-specific news using the Dow Jones archive. These data include all DJ 

newswire and Wall Street Journal stories from 2001 to 2010. For each story, DJ provides stock 

codes indicating which firms are meaningfully mentioned and a timestamp indicating when the 

                                                           
3
 Barclay and Hendershott (2008) argue that extended hours trades and quotes are adequately represented in the 

TAQ database. See their section 2.1 for a detailed analysis. 
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story became publicly accessible. To focus on firm-specific news, we only consider stories that 

mention at most two publicly trades U.S. stocks. The variable newsit equals one when news 

mentions firm i during intraday period t and zero otherwise. For small and mid cap (large cap) 

firms, we require at least one (two) story mention(s) to constitute news. This convention does not 

count isolated stories for large cap stocks as news because large firms frequently receive news 

coverage even when no new public information exists. 

We employ additional sample filters based on size, news coverage, and extended hours 

trading activity from the prior calendar year. First, we retain only stocks having market 

capitalizations above $100 million and share prices greater than $1 at the end of the prior year. 

Second, we require a firm to have a news story in a minimum of four pre-market periods and 

four after-market periods. Third, firms must also have trading in at least 20 pre-market periods 

and 20 after-market periods. Finally, we divide the firms into three size subsamples based on 

market capitalization from the prior year-end. We define “large cap,” “mid cap,” and “small cap” 

stocks as those with market capitalizations within the intervals [$10B,͵∞), [$1B,$10B), and 

[$100M,$1B), respectively. These size groups contain an average of 95, 245, and 237 firms per 

year, respectively. 

 

B. Empirical Moments 

For each of the four intraday periods, Table 1 and Figure 1 describe the probability of 

news arrival for the full sample and separately for each size group. Three general patterns are 

noteworthy. First, while the regular period has the highest probability of news, the majority of 

news stories occur in the other three periods. The unconditional probability of news in a regular 

period is about 0.15. The probabilities of news in the pre-market, overnight, and after-market 

periods are 0.10, 0.12, and 0.08, respectively. Furthermore, measured as an hourly arrival rate 
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(not shown), the probability of news is actually highest during the pre-market and after-market 

periods. Second, regardless of the period, news occurs more frequently for large cap stocks than 

for mid or small caps. Third, as shown in Figure 1, the probability of news arrival in every 

intraday period increases substantially around 2003 and plateaus through 2010. These patterns 

generally hold for the variable FirstNewst (the probability of the first news occurrence in a 24-

hour period) as well. 

[Insert Table 1 here.] 

[Insert Figure 1 here.] 

Table 2 presents conditional return variance moments used in the estimation along with 

unconditional variances that serve as a benchmark. We account for spurious reversal due to 

transitory noise in the period price t by computing Var(rt)
*
 = Var(rt) + Cov(rt, rt-1) + Cov(rt, rt+1). 

Interestingly, this adjustment affects return variance by less than 15% in each intraday period, 

implying that microstructure noise is not too severe. To ease comparison across periods, we 

report hourly volatilities in percent by dividing each variance by the number of hours in the 

intraday period and then taking the square root. 

[Insert Table 2 here.] 

The upshot of Table 2 is that news is consistently associated with higher volatility—

volatility conditional on FirstNews=1 always exceeds that conditional on RecentNews=0, and the 

difference is economically staggering. In the regular period, volatility on news days is about 

130% of that on non-news days. In the pre-market, overnight, and after-market periods, this ratio 

is even higher at 293%, 200%, and 364%, respectively. Qualitatively similar patterns appear 

within each size group. 

We also note that hourly volatility during extended trading hours is of a similar 

magnitude as that during regular trading, especially when comparing periods with news. This 
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finding is surprising in light of earlier evidence from French and Roll (1986) that volatility when 

the regular market is open far exceeds volatility when the regular market is closed. Our results 

may differ from theirs because new technologies have changed the nature of trading and news 

dissemination. 

Table 3 presents conditional volume moments for the pre-, regular, and after-market 

periods. Numbers in the table are hourly turnover expressed in basis points. Similar to the 

conditional variance results, there is far more trading in periods with news than in periods 

without news. For the regular, pre-, and after-market periods, respectively, turnover with news is 

145%, 723%, and 688% of that without news. However, unlike the variance patterns, almost all 

trading takes place during regular market hours irrespective of the occurrence of news. These 

stark patterns in variance and trading volume are key to identifying the model in Section 2. 

[Insert Table 3 here.] 

We summarize the volatility and volume results over time in Figure 2. The four panels 

represent the intraday periods. The bars depict the difference in turnover during news and non-

news periods, while the lines depict differences in volatility. This figure reveals that the positive 

associations between news arrival and volatility and between news arrival and volume are quite 

robust over time. In the next section, we estimate our structural model’s exogenous parameters. 

[Insert Figure 2 here.] 

 

4. Estimates of the Model Parameters 

A. Mapping the Model into the Data 

 To facilitate comparisons of empirical moments and parameter estimates across firms and 

over time, we defined scaled versions (denoted by *) of the moments and parameters in terms of 

each firm’s shares outstanding (θ) and share price (p): 
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With these definitions, one can verify that the equations expressing the parameter estimates in 

terms of the empirical moments remain virtually identical to the original equations in Section 3. 

The only differences are that simple returns become percentage returns, share volume becomes 

share turnover, and all parameters in the new equations have asterisks. For practical purposes, we 

measure shares outstanding and share price at the end of the previous period.
4
 In what follows, 

model parameters are scaled as in Equations (12) to (20), but we suppress the asterisk 

superscripts to economize on notation. 

 To obtain a conservative estimate of the importance of liquidity trading, we set the 

volatility of each liquidity trader’s demand (σy) equal to the maximum value subject to the 

constraint that at least one liquidity trader must trade in each period. At least one liquidity trader 

is necessary for the model to predict that trading will occur, which holds empirically in each 

period. This maximum value for liquidity trading size is approximately σy = 0.2 bps of firm 

value. In the smallest sample firms with market capitalizations of $100M, this σy = 0.2 bps trade 

size corresponds to $2,000, which is empirically reasonable for a single retail trade. In the largest 

firms with market capitalizations of $100B, this implies a typical liquidity trade size of $2M. 

One could interpret this large liquidity trade as either a single large institutional investor or as a 

                                                           
4
 Technically, this timing induces a tiny approximation error in the parameter estimates, but it is typically negligible 

because the average intraday gross return is very close to 1.0. 



19 

group of 100 perfectly correlated retail trades of $20,000 each.
5
 

 

B. Parameter Estimates 

 We estimate the model using the efficient generalized method of moments (GMM). 

Specifically, we minimize the model’s squared prediction errors for each moment using a 

weighting matrix equal to the inverse of the covariance matrix of the empirical moments. Hansen 

(1982) shows that this weighting scheme is efficient. As explained in Section 3, we obtain the 14 

by 14 covariance matrix of the 14 empirical moments using a block bootstrap technique. 

 This efficient GMM procedure yields a solution for the 14 model parameters that exactly 

fits the 14 empirical moment equations. This demonstrates that our modeling assumptions do not 

impose any restrictions on parameters that are infeasible given the empirical moments.
6
 Table 4 

presents point estimates and standard errors for the key model parameters, h, c, σd, and σε1 

(σε(news)) for each of the four intraday periods. We compute the parameters’ standard errors 

using the standard GMM formula based on the delta method—i.e., using the moments’ 

bootstrapped covariance matrix and the sensitivity of each moment to each parameter. Panel A 

shows the estimates for the full sample, while Panels B and C show results for the 2001 to 2005 

and 2006 to 2010 periods. Panels D, E, and F present results for firms in the three size groups. 

 [Insert Table 4 here.] 

 Focusing on Panel A, one sees the estimated expected benefits of rebalancing net of entry 

costs (h values) range within an order of magnitude of $1 per $1 million in market capitalization. 

The estimated net benefit of entry is $1,000 for a typical $1B firm, which is in the range of 

                                                           
5
 If we use smaller σy values, we obtain results indicating that liquidity trading is more important than in our base 

case with σy = 0.2 bps. 
6
 Technically, the model is over-identified if we also restrict each of the parameters to be non-negative. These 

overidentifying restrictions are satisfied even when we do not impose this restriction on the parameters. 
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plausible values for certainty equivalents of hedging needs and opportunity costs of time for 

wealthy investors. Comfortingly, this estimated $1,000 benefit from entry is considerably smaller 

than typical retail order sizes of $10,000 and is far smaller than common institutional order sizes. 

In addition, the estimated h value is the expected benefit of the first trader who would choose to 

enter, whereas the benefit for the j
th

 trader is only h/j, which is orders of magnitude lower than h 

if j is high. As discussed below, our parameter estimates imply that far more liquidity traders 

enter during the regular market period and in periods when news occurs. 

 The h parameter is dramatically higher during the regular market period, as compared to 

the pre- or after-market. This suggests either rebalancing is less necessary or market participation 

is more costly (lower h) during extended market hours—both of which are plausible. The values 

of investors’ other asset holdings probably change most during normal business hours. 

Monitoring portfolio exposures and attending to the market is presumably more costly when the 

regular market is closed. 

 Both data accessibility and rebalancing needs can also help explain why h is higher in 

periods with news. By providing information about the stock and bringing attention to it, news 

lowers investors’ costs of monitoring and evaluating the stock’s suitability in their portfolios. If 

investors have not rebalanced their positions in a long time, their desired holdings may have 

changed since their last portfolio evaluation. In addition, news about a stock can affect its risk. 

Changes in a stock’s idiosyncratic risk can affect investors’ desired holdings if they hold non-

market weights on the stock. Changes in systematic risk could affect investors’ desired holdings 

if their other asset holdings are exposed to similar risks.  

 In contrast to the dramatic differences across intraday periods, the h parameters are 

remarkably stable over time, as shown in Panels B and C. Mechanically, this is somewhat 

surprising because higher h values (all else equal) are associated with more trading activity; and 
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such activity has increased significantly over time. However, there is no economic reason to 

expect that traders’ entry costs have increased, which is consistent with the fact that h estimates 

in Panel C are similar or lower than those in Panel B. Panels D, E, and F show that the h 

estimates across the size groups accord with intuition, too. For traders with large stakes, 

rebalancing needs measured as a fraction of firm value are likely to be greater in small firms. In 

addition, the difference between h in news and non-news periods is larger in small firms, which 

could happen because relevant data about small firms is less widely available. 

 The second key model parameter is the cost of acquiring private information (c), which is 

estimated to be approximately $2.13 per $1 million in market capitalization or 0.0213 bps of firm 

value. This value is plausible in light of the French (2008) estimate of the cost of active 

management as a percent of firm value, which is stable at roughly 67 bps per year or 0.27 bps per 

trading day. Comparing our cost of acquiring information about a firm in one intraday period to 

the French (2008) daily estimate for an entire portfolio, one would infer that the typical active 

portfolio manager acquires information about 13 firms (0.27 / 0.0213) in at least one intraday 

period, which is in the realm of plausibility. 

 A comparison of Panels B and C in Table 4 reveals that the cost of acquiring and trading 

on private information (c) fell by a factor of 12 (from 4.0*10
-6

 to 3.3*10
-7

) across the two 5-year 

samples. In the model, lowering c induces informed traders to enter and increases volume in all 

periods, though it affects regular market volume most. The reason is that the number of informed 

traders is highest in the regular market and such traders do not internalize their impacts of 

entering the market on existing traders’ profits. More subtly, because entry by informed traders 

affects variance more when there are fewer informed traders, lowering c increases regular market 

variance relatively less than it increases variance in other periods. In the past decade of data, we 

observe a relative increase in regular market volume and a relative decrease in regular market 
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variance, which corresponds to a reduction of c in the model. The observed overall decrease in 

variance across all periods in the past decade corresponds to an even larger reduction in c. 

 Panels D, E, and F show that the cost of acquiring information as a percentage of firm 

value is over 5 times lower for large firms (9.1*10
-7

) than it is for small firms (4.9*10
-6

). This 

makes sense if there is some fixed cost of acquiring information. In unreported results, we find 

that the cost of acquiring information declines even more sharply for large firms in the 2006 to 

2010 period (from 2.2*10
-6

 to 7.4*10
-8

, a factor of 30). As a basis for comparison, a recent Wall 

Street Journal story provides a direct estimate of the cost of informed trading in large firms.
7
 

Several hedge funds paid up to $10,000 each to acquire private information about a December 

8th, 2009 health care law that affected four large health care stocks. As in the model, the 

information was acquired during the regular market, one intraday period in advance of its release 

during the after-market period. Based on the cumulative market capitalization of the stocks 

(about $100B), the estimated model cost of 7.4*10
-8

 would imply that each hedge fund would 

need to pay $7,440, which is similar to the reported cost of the meeting. 

 Lastly, the model estimates the amounts of tractable (σd) and intractable information (σε1) 

to be of the same order of magnitude in the pre-, regular, and after-markets. It is somewhat 

surprising that similar price discovery occurs in these three intraday periods even though just 1% 

of trading activity takes place during extended market hours. We analyze this phenomenon 

further in Section 5 when we decompose return variance and volume. There we also discuss the 

general implications of all of our structural estimates for the nature of trading and the role of 

private and public information in price discovery. 

 

                                                           
7
 Wall Street Journal, December 20, 2011, “Inside Capital, Investor Access Yields Rich Tips” by Brody Mullins and 

Susan Pulliam.  
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C. Alternative Parameterization of the Model 

 This subsection demonstrates that the model’s key parameters are not sensitive to two of 

our assumptions. First, we consider the impact of our preferred parameterization in which news 

affects trader attention (h) rather than the amount of tractable information (sd) that can be 

acquired. Here we estimate an alternative model in which news does not affect trader attention 

(h) but it does affect the extent of learnable private information (sd). In this alternative model, 

only the subscripts on sd and h in the predicted moment equations (9) and (11) change. As 

before, we estimate the model using efficient GMM and obtain an exact fit to the 14 empirical 

moments. Panel A in Table 5 presents the results of this estimation for the full sample. 

 [Insert Table 5 here.] 

 The main result in Table 5A is that the parameter estimates look very similar to those in 

Table 4A, implying both versions of the model make similar equilibrium predictions. 

Specifically, the estimates of h(no news) in Table 4A are nearly identical to the estimates of h in 

Table 5A; and the estimates of sd in Table 4A are nearly identical to the estimates of sd(no news) 

in Table 5A. The parameter estimates in Table 5A indicate that news reduces information 

asymmetry between traders by lowering tractable private information (sd(news) < sd(no news)).
8
 

 The economic explanations for trading around news are slightly different in the models in 

Tables 4A and 5A. In the model where h varies with news, discretionary liquidity traders choose 

to enter because either their direct costs of entry decrease or their rebalancing needs increase 

(h(news) > h(no news)). In the model where sd varies with news, discretionary liquidity traders 

choose to enter because news reduces information asymmetry (sd(news) < sd(no news)) and 

lowers their trading costs. However, in both models, the ultimate effect is that discretionary 

                                                           
8
 Tetlock (2010) studies return predictability around news and argues that news reduces information asymmetry. 
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liquidity traders enter in massive quantities around news, so most of the testable predictions of 

the two models are indistinguishable.
9
 

 Next, we consider the impact of our assumption that liquidity trading is independent 

across traders. We do this by increasing the assumed size of each liquidity trader (sy). This 

effectively increases the correlation among liquidity trades because each trader’s demand is 

perfectly correlated with itself. We can increase the correlation in liquidity trading only in the 

regular market period because it is already near one in the extended hours periods when few 

traders choose to enter—e.g., in the pre-market period without news, only one trader enters. 

Panel B in Table 5 presents estimates from the model in which the regular market trade size is 

now sy = 2 bps, while it remains at sy = 0.2 bps during extended hours. 

 Table 5B shows that this tenfold increase in liquidity trader size almost doubles implied 

liquidity needs (h), while reducing implied information costs (c) and the amount of tractable 

information (sd) by factors of 4 and 2. The main impact is that liquidity (informed) trading 

becomes a smaller (larger) component of overall trading. However, informed trading contributes 

less to price discovery because of the decline in tractable information. Despite these nontrivial 

quantitative changes, none of the qualitative statements in the forthcoming volume and variance 

decomposition would be affected by this increase in correlation. Moreover, a single liquidity 

trade of 2 bps of firm value is quite large, exceeding the typical trade size of an institutional 

portfolio transition, which Obhizhaeva (2009) estimates to be 1.5 bps. Such transitions represent 

unusually large liquidity-motivated trades and thus provide a reasonable upper bound. In fact, 

Obhizhaeva (2009) documents that only 19% of such trades is executed on the first day, 

suggesting that 0.19 * 1.5 bps = 0.29 bps is a more realistic trade size for a single day. 

                                                           
9
 In the model in Table 4, there is also some entry by informed traders around news, but we will see in Section 5 that 

this effect is small compared to the influx of non-informational traders around news. 
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5. Implications of the Model for Price Discovery and Trading Activity 

A. Theoretical Volume and Variance Decompositions 

 The model in Section 2 allows one to analyze the relative contributions of informed and 

liquidity traders to market activity. To decompose trading volume, we separately consider the 

quantities of buy and sell orders that transact between traders and the net order flow (Q) in which 

market makers take the other side of the trade. We assign half the volume arising from a trade to 

each counterparty participating in the trade. Thus, the volume attributable to market makers (vMt) 

is half of the expected net order flow aggregated across both trader groups, which is: 
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 The trading volume attributable to each group of traders is then half of the sum of their 

buy orders and sell orders plus half of their proportion of trading with market makers. The 

proportion of variance in net order flow (Q) arising from informed traders is 
1( )t th h c  . 

Expected trading volume arising from informed traders (vI) is given by: 
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where the first term reflects trades with liquidity traders and the second reflects trades with 

market makers. Lastly, the expected volume from liquidity traders (vLt) is: 
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The first term comes from trading among liquidity traders as well as between liquidity and 

informed traders, while the second term accounts for trading with the market maker. Because 

these three components equal total expected volume, we can express each as a fraction of the 

total using: 
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This equation is the basis for the volume decompositions that we report. 

 We can also decompose return variance in Equation (9) into three components. We report 

variance decompositions in which each component is expressed as a fraction of the total variance 

as described below: 
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The first term reflects intractable information, which only arrives in periods with public news. 

The second term represents price discovery arising from trading on private information. The 

third term measures the revelation of tractable information that the previous period’s price did 

not fully reveal. This term comprises public information revealed by sources other than Dow 

Jones news, including softer information sources, such as social media, television, radio, and 

word of mouth. 

 

B. Estimated Volume Decomposition 

 In Figures 3A to 3C, we report the decomposition of expected volume from Equation 

(24) for the regular market (3A), pre-market (3B), and after-market (3C) periods. Table 6 shows 

more detailed volume decompositions. The four panels represent the intraday periods, while the 

six rows in each panel indicate the sample used: full sample, two 5-year subperiods, and the three 

firm size groups. To construct the tables and figures, we substitute our parameter estimates for 

news and non-news periods from Table 4 into Equations (21) to (23), weighting the periods by 

the probability of news occurring in the past 24 hours.
10

 

 [Insert Figure 3 here.] 

                                                           
10

 Recall that the h parameter depends on whether news occurs in the past 24 hours.  
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 [Insert Table 6 here.] 

 The most striking fact in the figures is that discretionary liquidity trading accounts for the 

vast majority of volume in each of the three intraday periods, especially in the regular market 

where it is 92% of volume. One can infer the importance of discretionary liquidity trading from 

the fact that regular market volatility is comparable to volatility in the other periods, whereas 

regular market volume is nearly 100 times higher. This implies that liquidity is high in the 

regular market, which motivates many liquidity traders seeking to minimize their price impact to 

enter the market. For the same reason, many informed traders enter the market and trade 

aggressively on their information. However, such intense trading reveals their information 

almost perfectly, which lowers informed trading profits and deters further entry. Because there is 

no such counterbalancing force stopping liquidity traders from entering, discretionary liquidity 

trading constitutes the lion’s share of volume. 

 Subperiod analysis reveals the implications of the decline in the cost of acquiring 

information documented in Table 4. In the regular market, informed trading accounts for 3.6% of 

trading volume from 2001 to 2005 and 11.4% from 2006 to 2010. Although the percentage of 

informed trading volume appears low even in the more recent period, one must remember that 

total volume is $32 trillion in 2010. This implies that informed volume exceeds $3.5 trillion. 

While the percentage of informed volume is slightly higher at 25% in the pre- and after-market 

periods (from 2006 to 2010), the dollar amount of informed trading in these periods pales in 

comparison to the tens of trillions traded in the regular market. 

 

C. Estimated Variance Decomposition 

 Figures 4A to 4D show the decomposition of return variance in Equation (25) for each of 

the four intraday periods, again based on the model parameters shown in Table 4. The last three 
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columns in Table 6 report the variance decomposition results. The dramatic difference between 

the variance and volume decomposition results is that a large fraction of return variance comes 

from trading on private information, particularly in the second half of the sample. In the 2006 to 

2010 period, 77% of return variance during the regular market comes from informed trading. The 

sharp decrease in information acquisition costs causes this increase in price discovery coming 

from informed trading. 

 [Insert Figure 4 here.] 

 A second notable finding is that the fraction of variance (e.g., in the regular market) 

attributable to public news (7%) is far lower than the fraction of variance coming from the 

delayed public release of undiscovered tractable information (60%), shown in the second column 

of Table 6 labeled “other public.” In the regular market, the difference between these two 

components of variance is largest (6% versus 86%) from 2001 to 2005, when high information 

acquisition costs deterred the collection of tractable information. In 2006 to 2010, when 

information acquisition costs fell by an order of magnitude, the difference narrowed to 7% 

versus 16%. Only in the after-market period is the fraction of variance coming from measurable 

(DJ) public news similar to the “other public” fraction. This happens both because after-market 

news is particularly important and because informed traders choose to collect most tractable 

information that is available during the (prior) regular market period. 

 

6. Testing Predictions from Competing Models 

A. Discretionary Liquidity Trader Model Predictions 

 We now use the main model presented in Table 4A for predictive analyses. Given a set of 

parameter estimates, the model makes testable predictions about return variance and trading 

volume in the a = 1, 2, 3 periods after news occurs in period t: 
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The first term in Equation (26) reflects a simplifying assumption that the variance of intractable 

information is independent of whether first news occurred in the preceding period.
11

 Figures 5A, 

5B, 5C, and 5D report the predicted hourly return volatility and trading volume from Equations 

(26) and (27) in event time after news occurs. The lines in the figures represent return volatility 

and the bars represent volume. The period in which news occurs (t) varies across the figures and 

the number of periods after news (a) varies along the x-axis within each figure. Each figure 

shows the actual return volatility and trading volume observed in the data for comparison 

purposes. Predicted and actual values are all reported in excess of unconditional expectations. 

 [Insert Figure 5 here.] 

 Although the model’s predictions are simplistic, they can explain two key stylized facts: 

1) prices respond to news primarily in the period when news arrives; and 2) volume responds 

mainly during the regular period, regardless of when news arrives. The most stark and surprising 

demonstrations of these facts appear in Figures 5B and 5D, which show market activity after 

news arrives in the pre-market and after-market periods. In both figures, return volatility is by far 

the highest in the period when news arrives (event period 0), whereas turnover peaks during the 

regular market period (event period 1 for pre-market news; and period 3 for after-market news). 

 Although it makes some quantitative errors, the model correctly predicts these qualitative 

patterns in the figures. Variance is highest when news arrives because news releases intractable 

information, which is immediately incorporated in prices, and most periods following news do 

not release additional intractable information. Volume is highest during the regular market 

                                                           
11

 The variance of intractable information following a non-news period comes solely from first news, so it is the 

probability of first news arriving multiplied by the variance of intractable information in first news periods—i.e., the 

first term in Equation (26). 
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period even though news immediately lowers entry costs for discretionary liquidity trades. Still, 

because their entry costs remain lowest during the regular market period, more discretionary 

liquidity traders choose to enter at this time. Quantitatively, the model does not predict 

sufficiently large trading volume in the regular market following after-market news arrival in 

Figure 5D. One could reconcile this with the model by allowing after-market news to exert an 

especially large impact on h, which is reasonable because after-market news releases the most 

intractable information—i.e., the after-market σε1 values are the highest in Table 4. The other 

notable model error is that actual regular market volatility is higher than predicted following pre-

market news arrival (in Figure 5B). This error could arise from the simplifying assumption that 

the variance of intractable information is unaffected by the presence of recent news, which is 

violated if regular market news is especially informative following pre-market news. 

 The empirical patterns observed for regular market and overnight news in Figures 5A and 

5C are quite similar to those in 5B and 5D, though two differences arise. First, after regular 

market news in Figure 5A, return volatility is unusually high in the following pre-market period 

(event period 3). Surprisingly, the model correctly predicts this delayed increase in variance 

because expected rebalancing needs net of entry costs are especially high in the pre-market 

period after news occurs, which induces more informed traders to acquire and trade on private 

information. A simple economic story is that liquidity traders may read the news in the morning, 

which would lower their cost of trading in the pre-market period. Second, after overnight news in 

Figure 5C, pre-market variance is actually slightly higher than overnight variance. The same 

idea—that discretionary liquidity traders may read the news in the morning—could explain this 

fact, too, which is why the model is again able to qualitatively match the empirical data. 

 Lastly, we briefly consider the model’s predictions for market liquidity, though we do not 

quantitatively test them because liquidity in the model’s one-shot call auction structure is 
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unlikely to be directly comparable to liquidity observed in continuous double auctions. Previous 

empirical research shows that market liquidity is higher in the regular market period (Barclay 

and Hendershott, 2004); b) after news occurs (Tetlock, 2010); and c) in large stocks (Hasbrouck, 

2009). The model predicts each of these three features in liquidity data mainly because of 

variation in the model parameters h and c, neither of which is estimated using liquidity data. 

Higher rebalancing needs (h) clearly increase liquidity by reducing adverse selection. Lower 

information acquisition costs (c) also promote liquidity by enticing more informed traders to 

enter the market, which increases competition and leads to aggressive trading, thereby revealing 

more private information and improving liquidity. 

 

B. Differences in Opinion Model Predictions 

 Here we contrast predictions from our model of liquidity trading with those from belief-

based models of trading, such as Kim and Verrecchia (1991), Harris and Raviv (1993), Kandel 

and Pearson (1995), Hong and Stein (2003), and Scheinkman and Xiong (2003). As discussed in 

Section 2, these theories predict that changes in traders’ relative beliefs cause trading, as those 

with relatively optimistic interpretations of news buy from those with pessimistic interpretations. 

To test this idea, we analyze market activity around news events sorted on the basis of changes in 

analysts’ beliefs about quarterly earnings. 

 To measure changes in relative beliefs about news, we consider only news events in 

which at least two analysts updated an earnings forecast in the four weeks prior to the news and 

at least one of this same set of analysts updates within one week after the news as recorded in the 

I/B/E/S database. We compute relative belief changes using the difference between analyst 

forecast dispersion before and after the news scaled by the firm’s stock price four weeks before 

the news. We use earnings forecasts and stock prices that are adjusted to account for splits. We 
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group news events by terciles ranked by whether analyst beliefs converge (the bottom tercile of 

relative belief changes), remain similar (middle tercile), or diverge (top tercile). 

 For news in each tercile of belief changes, we measure hourly return volatility and 

turnover in the period when news arrives and the following three periods. Figures 6A, 6B, 6C, 

and 6D report these measures for news events arriving in each of the four intraday periods. The 

three bars in each figure depict turnover occurring after each type of news event—convergence, 

no change, or divergence in analysts’ relative beliefs—while the three lines represent volatility 

after each type of news. 

 [Insert Figure 6 here.] 

 The patterns in the four figures do not support belief-based models of trading activity. 

For example, in Figure 6B showing responses to pre-market news, turnover is very similar in 

each event period regardless of whether analysts’ relative beliefs changed significantly around 

news. The same observation applies to Figures 6A, 6C, and 6D. This finding casts doubt on the 

idea that investor disagreement is a major determinant of trading activity after news. An 

alternative interpretation is that analysts’ beliefs are such a poor proxy for investors’ beliefs that 

their relationship with trading activity cannot be observed. However, this latter interpretation 

would call into question a voluminous empirical literature that uses analyst forecast dispersion as 

a proxy for investor disagreement—e.g., Diether, Malloy, and Scherbina (2002) and Chordia, 

Huh, and Subrahmanyam (2007) among many others.
12

 

 Like the previous figures, Figures 6A through 6D show that return volatility after news 

typically occurs immediately in event period 0, whereas most trading volume that follows news 

events occurs in the regular market. This delayed volume response is difficult to reconcile with 

                                                           
12

 A recent paper by Giannini and Irvine (2012) advocates using a novel difference of opinion measure based on 

disagreement between the tone of media coverage and posts on stocktwits.com. 
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differences in opinion models. The timing of volatility implies that market prices aggregate most 

traders’ beliefs in event period 0, which suggests that most belief-based trading occurred in event 

period 0, too. But most trading following news occurs in the regular market, which is not 

typically event period 0, implying that most trading is not driven by beliefs. In contrast, the 

timing of volatility and volume can be reconciled with models of discretionary liquidity traders. 

If these traders expect their trades to have less impact on prices when news has less impact on 

beliefs, they would choose to enter the market and trade after such news events. 

 

7. Concluding Discussion 

 We estimate a structural model of strategic trader behavior to match the rich relationships 

between volume, volatility, and news arrival in the electronic trading era. For the model to fully 

explain the magnitude of the volume and volatility patterns across the intraday periods, 

discretionary liquidity trading must constitute the vast majority of overall trading volume—e.g., 

92% in the regular market. Although the model is a simplification of reality, it suggests that 

policymakers should carefully consider the welfare of such uninformed traders when evaluating 

alternative market structures and regulations. In the model, because there is perfect competition 

among market makers and among informed traders, welfare is solely determined by the surplus 

received by liquidity traders. The inframarginal traders with the highest rebalancing needs net of 

entry costs receive aggregate surplus given by: 

 
1 1

/ ( / ) ( 1/ 1) ln(2 / 3) for 1.
t tk k

t t t t t t t t

j j

h j k h k h j h k k
 

       (28) 

 This surplus increases with the number of liquidity traders who enter the market, 

suggesting broad participation in trading is a reasonable proxy for welfare. Because the number 

of liquidity traders is proportional to market liquidity in equilibrium, improvements in liquidity 
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also signify improvements in welfare. Thus, our model provides a theoretical basis for the 

participation and liquidity objectives that the SEC often cites among its central goals. 

 Furthermore, our parameter estimates imply the cost of acquiring and acting on 

information fell sharply in the past decade, causing increases in participation and liquidity and 

thus trader welfare. This positive account of the impact of advances in trading technology on 

trader welfare contrasts with more negative populist arguments. Such arguments typically ignore 

the possibilities that uninformed agents can choose whether to trade and that informed traders 

aggressively compete against each other. Because it includes these two key features, our model 

predicts that technological advances can improve liquidity and price discovery, both of which 

can be socially beneficial. 

 We show that this model correctly predicts that stock prices respond immediately to 

news, while trading volume typically responds with a delay. News not only releases intractable 

information, which is priced immediately, but it also triggers trader attention for an extended 

period of time. During this window, uninformed traders choose to enter the market when it is 

cheapest to trade—usually in regular trading hours—regardless of when news arrives. 

 This emphasis of the role of discretionary liquidity traders and trading frictions contrasts 

with recent models that highlight the importance of changes in traders’ relative beliefs. Although 

many patterns in volume, volatility, and news can be explained without resorting to trader 

disagreement, a model that includes both trading frictions and disagreement is likely to produce 

an even richer set of predictions. The welfare implications of a model in which traders’ 

sometimes act on irrational beliefs are also likely to differ from those discussed above. Future 

researchers could estimate and test such a model using data on individual traders, which could 

allow for separate estimates of disagreement, attention constraints, and rebalancing needs.  
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Appendix 

Solving the Model 

 Here we solve for the equilibrium strategies and endogenous outcomes in the model 

introduced in Section 2. For an informed trader i who acquires a signal dt+1 and chooses to trade 

an amount xit, her expected profits (πit) are given by: 

 
2

1 1 1 1[ | ] [ ( ) | ] [1 ( 1) ] .it t it t t t it t t t t t itE d E x F p d x m d x             (29) 

Maximizing this quadratic equation in xit gives: 

 
1

1
[1/ ( 1) ] .

2
it t t t tx m d      (30) 

To identify a symmetric equilibrium, we equate the βt coefficient in the optimal xit strategy with 

the conjectured linear strategy above: 

 
1(1/ )( 1) .t t tm     (31) 

The equilibrium market depth can be found from the zero profit condition for the market maker: 
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The second-order condition for informed traders’ maximization problem is λ > 0, which is 

always satisfied when there are some liquidity traders—i.e., ktσyt > 0. 

 Based on their benefits from rebalancing and information acquisition costs, the 

discretionary liquidity traders and informed traders simultaneously choose whether to enter the 

market, which endogenously determines mt and kt in equilibrium. After substitutions and 

simplification, the expected trading profit of each informed trader is: 

 
1
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Entry of informed traders occurs until the marginal trader attains zero profits, which occurs when  

E[πit|dt+1] = c or: 

 
2 2 2 2

1( 1) .t t t yt dtc m m k      (34) 
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This implies that equilibrium illiquidity is: 
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The (negative) expected trading profit (πjt) of each discretionary liquidity traders is: 
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where the second equality uses the equilibrium entry condition for informed traders. 

 Entry of discretionary liquidity traders occurs until the marginal trader’s expected trading 

loss is equal to his expected benefit from rebalancing (ht/kt), when the equilibrium number of 

liquidity traders will be 

 
2 2 2

1( 1) .t t t dt ytk ch m   

   (37) 

Substituting this condition into the informed trader’s zero profit condition, we obtain the 

equilibrium number of informed traders: 

 / .t tm h c  (38) 

Substituting this value of mt into the kt equation gives the equilibrium solution for kt reported in 

the text, which then allows one to compute the reported equilibrium values of λ t and βt. 

 

Measuring Returns Using TAQ Data 

 During regular trading, we only keep trades and quotes meeting standard filters used in 

the microstructure literature. We drop trades with non-positive price or size and those with 

correction codes not equal to zero or condition code of M, Q, T, or U. For the pre-market and 

after-market periods, however, the filters for trades necessarily differ. Most importantly, we do 

not exclude trades with a condition code of T, which explicitly identifies extended hours trades. 

For extended hours periods, we exclude those that occur at prices probably determined within the 

trading day (e.g., crosses and block trades), appear out of sequence, or contain non-standard 
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delivery options. This filter eliminates any trades from NYSE, AMEX, or CBOE and trades with 

“cond” codes B, G, K, M, L, N, O, P, W, U, Z, 4, 5, 6, 8, or 9. We drop trades of at least 10,000 

shares or $200,000 regardless of their “cond” codes as these are likely pre-negotiated blocks. 

Finally, we drop all trades and quotes in the final minute of the pre-market and in the first minute 

of the after-market period to mitigate effects of bid-ask bounce.  

 Within each of the pre-market, regular, and after-market periods, we construct a 

beginning and ending trade price as the volume-weighted average price (VWAP) based on the 

first and last minute of trades in the dataset and then compute trade-based returns. Using a 

VWAP instead of a single trade price further mitigates the effects of bid-ask bounce in returns. 

The overnight period return is the percent change from the last after-market price to the first pre-

market price on the subsequent trading day, accounting for dividends and stock splits when the 

subsequent trading day is the ex date. When there is only one trade observation in an intraday 

period, its return is computed from the last price from the most recent intraday period. When 

there is no trading in a period, the return is zero. CRSP computes a stock return on trading day t 

based on the last regular hours transaction (or quote, in the event of non-trading) prices on day t 

and t – 1. Ignoring our 1-minute buffers at the end of the pre-market and the beginning of the 

after-market periods, day t CRSP return is approximated by compounding our after-market 

return from day t – 1 and our overnight, pre-market, and regular period returns on day t. 
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Table 1: Probability of News Arrival 

 

This table presents probabilities of news arrival during 2001-2010 for each of four intraday 

periods: the Regular Market (9:30 AM to 4:00 PM), the Pre-Market (7:00 AM to 9:30 AM), 

Overnight (6:30 PM to the following 7:00 AM), and the After-Market (4:00 PM to 6:30 

PM). The variable news is 1 if there is at least one story (two stories) in the Dow Jones 

Newswires mentioning a particular Small or Mid Cap (Large Cap) firm and 0 otherwise.  

The variable FirstNews is 1 if news=1 for the current period and news=0 for each of the past 

three intraday periods, and 0 otherwise. All probabilities are calculated by pooling 

observations for all firms within each year and size group and then averaging across groups. 

Panels A-D provide results for All, Large Cap, Mid Cap, and Small Cap firms with market 

capitalizations in the intervals [$100M, ∞), [$10B,͵∞), [$1B,$10B), and [$100M,$1B), 

respectively.  

     

Panel A: All Firms Regular Pre-Market Overnight After-Market 

P(news=1) 0.1476 0.1013 0.1189 0.0750 

P(FirstNews=1) 0.1015 0.0743 0.0850 0.0532 

Firms Per Year/Size Group 192       

     Panel B: Large Caps         

P(news=1) 0.2565 0.1295 0.1612 0.1008 

P(FirstNews=1) 0.1632 0.0733 0.0855 0.0529 

Firms Per Year 95       

     Panel C: Mid Caps         

P(news=1) 0.1225 0.1036 0.1206 0.0747 

P(FirstNews=1) 0.0927 0.0860 0.1021 0.0619 

Firms Per Year 245       

     Panel D: Small Caps         

P(news=1) 0.0639 0.0707 0.0750 0.0496 

P(FirstNews=1) 0.0485 0.0635 0.0675 0.0449 

Firms Per Year 237       

  



42 

Table 2: Hourly Return Volatility 

 

This table presents hourly stock return volatilities during 2001-2010 for each of four 

intraday periods: the Regular Market, the Pre-Market, Overnight, and the After-

Market. Variances are calculated by pooling observations for all firms within each 

year and size group and then averaging across groups. Conditional measures are 

based only on observations meeting the condition FirstNews=1 or RecentNews=0. 

Panels A-D provide results for All, Large Cap, Mid Cap, and Small Cap firms, 

respectively. Intraday periods, variables, and subsamples are as defined above. 

Numbers in the table are converted to hourly volatilities by dividing the variance by 

the number of hours in the intraday period and then taking the square root. 

Bootstrapped standard errors appear in parentheses. 

 

    

Panel A: All Firms Regular Pre-Market Overnight After-Market 

Unconditional 1.275 0.698 0.344 0.811 

 

(0.019) (0.013) (0.007) (0.016) 

FirstNews=1 1.569 1.405 0.611 2.380 

 

(0.023) (0.029) (0.022) (0.059) 

RecentNews=0 1.192 0.479 0.305 0.653 

  (0.018) (0.011) (0.006) (0.018) 

     Panel B: Large Caps         

Unconditional 0.954 0.625 0.271 0.599 

 

(0.025) (0.025) (0.012) (0.028) 

FirstNews=1 0.987 1.003 0.408 2.050 

 

(0.035) (0.060) (0.039) (0.142) 

RecentNews=0 0.901 0.459 0.236 0.445 

  (0.025) (0.018) (0.013) (0.030) 

     Panel C: Mid Caps         

Unconditional 1.177 0.663 0.318 0.760 

 

(0.018) (0.014) (0.006) (0.018) 

FirstNews=1 1.419 1.307 0.511 2.160 

 

(0.029) (0.047) (0.020) (0.060) 

RecentNews=0 1.082 0.450 0.281 0.593 

  (0.018) (0.015) (0.006) (0.020) 

     Panel D: Small Caps         

Unconditional 1.606 0.794 0.425 1.018 

 

(0.019) (0.013) (0.007) (0.019) 

FirstNews=1 2.097 1.790 0.831 2.851 

 

(0.033) (0.052) (0.033) (0.067) 

RecentNews=0 1.511 0.526 0.380 0.854 

  (0.019) (0.012) (0.007) (0.020) 
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Table 3: Hourly Turnover 

     

This table presents hourly turnover during 2001-2010 for each of four intraday periods: 

the Regular Market, the Pre-Market, Overnight, and the After-Market. Average 

turnover is calculated by pooling observations for all firms within each year and size 

group and then averaging across groups. Conditional measures are based only on 

observations meeting the condition FirstNews=1 or RecentNews=0. Panels A-D 

provide results for All, Large Cap, Mid Cap, and Small Cap firms, respectively. 

Intraday periods, variables, and subsamples are as defined above. Numbers in the table 

are converted to hourly turnover by dividing the average turnover by the number of 

hours in the intraday period. Bootstrapped standard errors appear in parentheses.  

     

Panel A: All Firms Regular Pre-Market After-Market 

Unconditional 25.62 0.34 0.46 

 

(0.257) (0.009) (0.009) 

FirstNews=1 32.50 0.94 2.27 

 

(0.430) (0.044) (0.085) 

RecentNews=0 22.39 0.13 0.33 

  (0.218) (0.003) (0.006) 

    Panel B: Large Caps       

Unconditional 17.60 0.17 0.24 

 

(0.181) (0.004) (0.008) 

FirstNews=1 18.16 0.34 1.45 

 

(0.329) (0.019) (0.093) 

RecentNews=0 16.72 0.09 0.17 

  (0.167) (0.002) (0.003) 

    Panel C: Mid Caps       

Unconditional 29.38 0.29 0.48 

 

(0.258) (0.008) (0.009) 

FirstNews=1 35.10 0.74 2.25 

 

(0.384) (0.037) (0.106) 

RecentNews=0 25.38 0.11 0.35 

  (0.217) (0.002) (0.006) 

    Panel D: Small Caps       

Unconditional 29.88 0.55 0.66 

 

(0.437) (0.024) (0.017) 

FirstNews=1 44.25 1.72 3.12 

 

(0.968) (0.125) (0.170) 

RecentNews=0 25.06 0.18 0.47 

  (0.361) (0.006) (0.011) 
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Table 4: Estimates of Model Parameters When h Varies with News 

  

This table presents efficient GMM estimates of exogenous parameters of the model described in 

Section 2. Where appropriate, the table reports separate estimates of parameters for each of four 

intraday periods—the Regular Market, the Pre-Market, Overnight, and the After-Market—and 

conditional on news=1 or 0. Panels A-C provide results based on the Full Sample (2001-2010), 2001-

2005, and 2006-2010, respectively. Panels D-F provide results based on Large Cap, Mid Cap, and 

Small Cap firms, respectively. Intraday periods and subsamples are as defined above. GMM standard 

errors appear in parentheses. 

 

    

Panel A: Full Sample Regular Pre-Market Overnight After-Market 

h(news) x 10
-6

 8.262 1.094 
 

0.741 

 
(0.248) (0.055) 

 
(0.045) 

h(no news) x 10
-6

 7.116 0.206 
 

0.140 

 
(0.229) (0.005) 

 
(0.017) 

c x 10
-6

 2.132 
   

 
(0.288) 

   
sd 2.552 

 
1.113 2.071 

 
(0.130) 

 
(0.027) (0.157) 

se(news) 2.580 1.650 1.870 3.586 

 
(0.061) (0.064) (0.084) (0.095) 

     
Panel B: 2001-2005 

    
h(news) x 10

-6
 6.376 1.320 

 
0.654 

 
(0.362) (0.084) 

 
(0.041) 

h(no news) x 10
-6

 5.168 0.277 
 

0.101 

 
(0.308) (0.010) 

 
(0.008) 

c x 10
-6

 4.037 
   

 
(0.254) 

   
sd 3.338 

 
1.120 1.325 

 
(0.077) 

 
(0.034) (0.089) 

se(news) 2.975 1.676 2.249 4.359 

 
(0.088) (0.095) (0.133) (0.147) 

     
Panel C: 2006-2010 

    
h(news) x 10

-6
 5.550 0.529 

 
0.802 

 
(0.153) (0.023) 

 
(0.033) 

h(no news) x 10
-6

 4.962 0.117 
 

0.285 

 
(0.136) (0.004) 

 
(0.009) 

c x 10
-6

 0.333 
   

 
(0.025) 

   
sd 1.292 

 
1.427 2.492 

 
(0.045) 

 
(0.049) (0.063) 

se(news) 2.135 1.812 1.392 2.560 

 
(0.081) (0.071) (0.070) (0.082) 
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Table 4 (continued) 

              

 

    

Panel D: Large Caps Regular Pre-Market Overnight After-Market 

h(news) x 10
-6

 4.273 0.449 

 

0.481 

 

(0.274) (0.047) 

 

(0.046) 

h(no news) x 10
-6

 4.136 0.145 

 

0.082 

 

(0.264) (0.007) 

 

(0.020) 

c x 10
-6

 0.908 

   

 

(0.312) 

   sd 1.957 

 

0.869 1.550 

 
(0.242) 

 

(0.053) (0.291) 

se(news) 1.022 1.117 1.178 3.133 

  (0.149) (0.135) (0.164) (0.227) 

     Panel E: Mid Caps 

    h(news) x 10
-6

 7.558 0.759 

 

0.784 

 

(0.274) (0.107) 

 

(0.065) 

h(no news) x 10
-6

 6.683 0.167 

 

0.203 

 

(0.225) (0.008) 

 

(0.050) 

c x 10
-6

 1.138 

   

 

(0.456) 

   sd 1.991 

 

1.078 2.203 

 
(0.295) 

 

(0.061) (0.255) 

se(news) 2.328 1.638 1.511 3.238 

  (0.085) (0.103) (0.082) (0.097) 

     Panel F: Small Caps 

    h(news) x 10
-6

 12.007 2.062 

 

0.903 

 

(0.320) (0.103) 

 

(0.053) 

h(no news) x 10
-6

 9.395 0.298 

 

0.153 

 

(0.267) (0.009) 

 

(0.010) 

c x 10
-6

 4.947 

   

 

(0.275) 

   sd 3.489 

 

1.365 2.263 

 
(0.068) 

 

(0.026) (0.094) 

se(news) 3.672 2.105 2.612 4.275 

  (0.104) (0.109) (0.125) (0.110) 
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Table 5: Alternate Estimates of Model Parameters 

  

This table presents efficient GMM estimates of exogenous parameters of the model described in Section 2. 

Where appropriate, the table reports separate estimates of parameters for each of four intraday periods—the 

Regular Market, the Pre-Market, Overnight, and the After-Market—and conditional on news=1 or 0. In Panel 

A, the sd parameter varies with news. In Panel B, the sy parameter is 2 basis points in the Regular period and 

0.2 basis points in other periods. Intraday periods and subsamples are as defined above. GMM standard 

errors appear in parentheses. 

Panel A: sd Varies with News 

 

Regular Pre-Market Overnight After-Market 

h x 10
-6

 7.125 0.206 

 

0.141 

 

(0.228) (0.005) 

 

(0.017) 

c x 10
-6

 2.119 

   

 

(0.292) 

   sd(news) 0.759 

 

0.373 1.711 

 

(0.049) 

 

(0.012) (0.131) 

sd(no news) 2.547 

 

1.113 2.078 

 

(0.133) 

 

(0.027) (0.159) 

se(news) 2.800 2.209 1.870 3.629 

  (0.069) (0.045) (0.084) (0.094) 

Panel B: sy = 2 Basis Points for the Regular Period 

 
h(news) x 10

-6
 12.797 0.636 

 

0.924 

 

(0.372) (0.027) 

 

(0.024) 

h(no news) x 10
-6

 10.994 0.171 

 

0.311 

 

(0.326) (0.005) 

 

(0.008) 

c x 10
-6

 0.502 

   

 

(0.040) 

   sd 1.505 

 

1.372 2.809 

 

(0.045) 

 

(0.033) (0.050) 

se 2.592 1.915 1.871 3.550 

  (0.060) (0.050) (0.084) (0.096) 
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Table 6: Trading Volume and Return Variance Decompositions 

 

This table decomposes trading volume and return variance using the model introduced in 

Section 2. The values below result from substituting the estimates of the model parameters in 

Table 4 into Equations (21) to (25). Panels A-D provide sets of decompositions for the Regular 

Market, Pre-Market, Overnight, and After-Market periods, respectively. Each panel contains 

results for the Full Sample (2001-2010), 2001-2005, and 2006-1020 as well as Large Cap, Mid 

Cap, and Small Cap firms. Numbers in the sample are fractions of either trading volume or 

return variance. 

  Volume Decomposition   Variance Decomposition 

Panel A: Regular 
Liquidity 

Market 

Maker 
Informed   News 

Other 

Public 
Private 

Full Sample 0.921 0.022 0.057 

 

0.068 0.598 0.334 

        2001-2005 0.947 0.017 0.036 

 

0.060 0.857 0.083 

        2006-2010 0.846 0.040 0.114 

 

0.072 0.163 0.765 

        Large Caps 0.892 0.030 0.079 

 

0.031 0.607 0.362 

        Mid Caps 0.902 0.026 0.072 

 

0.062 0.426 0.513 

        Small Caps 0.943 0.017 0.040 

 

0.042 0.739 0.219 

                

        Panel B: Pre-Market               

Full Sample 0.738 0.123 0.138 

 

0.174 

 

0.826 

        2001-2005 0.769 0.123 0.107 

 

0.151 

 

0.849 

        2006-2010 0.614 0.134 0.252 

 

0.298 

 

0.702 

        Large Caps 0.633 0.168 0.199 

 

0.110 

 

0.890 

        Mid Caps 0.690 0.135 0.175 

 

0.229 

 

0.771 

        Small Caps 0.802 0.103 0.095 

 

0.191 

 

0.809 
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Table 6 (continued) 

       

          Volume Decomposition   Variance Decomposition 

Panel C: Overnight 
Liquidity 

Market 

Maker 
Informed   News 

Other 

Public 
Private 

Full Sample 

    

0.204 0.796 

 

        2001-2005 

    

0.230 0.770 

 

        2006-2010 

    

0.147 0.853 

 

        Large Caps 

    

0.146 0.854 

 

        Mid Caps 

    

0.191 0.809 

 

        Small Caps 

    

0.203 0.797 

                 

        Panel D: After-Market               

Full Sample 0.838 0.084 0.077 

 

0.379 0.547 0.074 

        2001-2005 0.876 0.079 0.046 

 

0.494 0.469 0.037 

        2006-2010 0.638 0.115 0.247 

 

0.222 0.209 0.569 

        Large Caps 0.781 0.100 0.119 

 

0.485 0.404 0.111 

        Mid Caps 0.795 0.088 0.117 

 

0.405 0.439 0.156 

        Small Caps 0.877 0.077 0.046 

 

0.306 0.658 0.036 
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Figure 1: News Probabilities Over Time 

This figure shows how probabilities of news arrival for each of four intraday periods (the 

Regular Market, the Pre-Market, Overnight, and the After-Market) vary by year during 2001-

2010. The indicator variable news is 1 if there is at least one story (two stories) in the Dow Jones 

Newswires mentioning a particular Small or Mid Cap (Large Cap) firm and 0 otherwise. All 

probabilities are calculated by pooling observations for all firms within each year and size group 

and then averaging across size groups. Intraday periods are as defined above. 
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Figure 2: Differences in News and Non-news Hourly Turnover and Volatility. 

This figure shows how hourly turnover (bars) and volatility (lines) for news and non-news periods vary by year during 2001-2010. News (non-news) 

periods are intraday periods with FirstNews = 1 (RecentNews=0). Panels A-D represent the Regular Market, Pre-Market, Overnight, and After-

Market periods, respectively. Intraday periods and variables are as defined above. 
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Figure 3: Trading Volume Decompositions 

This figure decomposes trading volume during 2001-2010 according to Equations (21) to (24). Panels A-C provide decompositions for the Regular 

Market, Pre-Market, and After-Market periods, respectively. 
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Figure 4: Return Variance Decompositions 

This figure decomposes return variance during 2001-2010 according to Equation (25). Panels A-D provide decompositions for the Regular Market, 

Pre-Market, Overnight, and After-Market periods, respectively. 

 

Panel A. Regular Period Variance Panel C. Overnight Variance 
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Figure 5: Event-Time Hourly Turnover and Volatility Following News 

This figure presents predicted and actual hourly turnover and volatility for intraday periods surrounding news arrival (FirstNews=1). The predictions 

come from Equations (26) and (27) in Section 6, using the model parameters from the Full Sample estimates in Table 4. The horizontal access is the 

period, in event time, relative to the arrival of news. Panels A-D represent news that arrives in the Regular Market, Pre-Market, Overnight, and After-

Market periods, respectively. Predicted and actual values are all reported in excess of unconditional expectations. Intraday periods and variables are 

as defined above. 
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Figure 6: Event-Time Hourly Turnover and Volatility Following News Sorted by Change in Analyst Forecast Dispersion 

This figure presents predicted and actual hourly turnover and volatility during 2001-2010 for intraday periods surrounding news arrival 

(FirstNews=1). The predictions come from Equations (26) and (27) in Section 6, using the model parameters from the Full Sample estimates in Table 

4. The horizontal access is the period, in event time, relative to the arrival of news. Panels A-D represent news that arrives in the Regular Market, 

Pre-Market, Overnight, and After-Market periods, respectively. Predicted and actual values are all reported in excess of unconditional expectations. 

Each panel provides separate analysis using news events associated with convergence, no change, or divergence in analysts’ quarterly earnings 

forecasts. These three groups are based on news events in which at least two analysts provide updates in the four weeks prior to the news and at least 

one updates in the week following the news. Intraday periods and variables are as defined above. 
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