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Abstract

We derive a structural model of the amount of private information that is conveyed to

the market via order flows. The model is a continuous-time Kyle model in which there

is public information arrival and in which the strategic trader may or may not have

private information. For empirical implementation, we treat each trading day as a

separate instance of the model. Monte Carlo analysis shows that the key parameters

are estimated well by maximum likelihood using intraday data over monthly time

periods, even in the presence of some misspecification. We illustrate the procedure

by estimating the model monthly for a single stock over a twenty-year time frame.
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1. Introduction

What fraction of security returns is due to public information and what fraction

is due to private information that is transmitted to the market via order flows? We

develop and estimate a structural model of informed trading to answer this question.

The model is a continuous-time Kyle (1985) model in which there may or may not

be a private information event and in which there is public information arrival in

addition to any information in order flows. The model can be estimated by maximum

likelihood using discretely sampled price and order flow data. We use Monte Carlo

analysis to assess the performance of the estimation procedure, and we implement

the model with monthly estimation for a single stock over a twenty-year period.

The equilibrium pricing rule and trading strategy are obtained in closed form, up

to evaluation of an integral. There is also a closed form expression for the market’s

conditional probability that an informed trader is present. The equilibrium aggre-

gate order process is a generalization of a Brownian bridge. It appears as a Brownian

motion to market makers. Their uncertainty about whether an informed trader is

present, and about the signal of the informed trader should one be present, mani-

fests itself as uncertainty about the ending point of the generalized Brownian bridge,

causing it to be a Brownian motion relative to their information.

The model parameters of primary interest are the variance of private information

(the probability of an information event multiplied by the variance of private infor-

mation conditional on an event) and the fraction of the return variance that is due to

private information. We treat each day as an independent realization of the theoret-

ical model. We pool days to form monthly estimates of the parameters. We perform

a Monte Carlo analysis to determine the reliability of the estimation procedure. The

analysis shows that the parameters are estimated reasonably well over a time period



as short as one month when hourly price and order flow data are used but would be

estimated much less reliably if only opening and closing prices and daily signed vol-

ume were used. We also use Monte Carlo analysis to assess how well the estimation

procedure performs when the distribution of the private signal is misspecified. We

find that it is robust to the misspecification we consider (a lognormal rather than

triangular distribution).

As an example, we estimate the model using hourly price and order flow data

over a twenty-year period for a single stock (Ashland, Inc.; ticker = ASH).1 The

mean estimate of the probability of an information event for ASH is 62%. The mean

estimate of the fraction of the variance of daily ASH returns that is due to information

in the order flow is 8.8%. The parameters appear roughly stationary over time, but

there is a spike in the public information component of ASH returns during the

financial crisis. The information in the order flow also increases during the crisis,

but not to the same extent, causing the mean estimate of the fraction of returns due

to order flow to drop to 3.4% during the crisis. This is consistent with information

in the order flow being idiosyncratic and with systematic risk being relatively more

important during the crisis.

The paper in the literature most closely related to ours is Odders-White and

Ready (2008), who also estimate the probability and magnitude of an information

event in the context of a Kyle (1985) model. In their model, as in ours, the signal of

the informed trader is drawn from a mixture distribution (mixing over whether there

was or was not an information event). However, Odders-White and Ready analyze a

single-period model rather than a dynamic model. In a single-period model, because

1Our choice is a nod to the previous work of Easley, Kiefer and O’Hara (1997), who estimate
their model using thirty trading days for ASH from 1990. ASH is also convenient because it traded
continuously and underwent no stock splits during the sample period.
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of the mixing, the conditional expectation of the asset value given the net order is

not a linear function of the net order. To make the model tractable, Odders-White

and Ready deviate from the usual Kyle model formulation and do not require the

asset price to equal its conditional expected value. Instead, they only require that

unconditional expected market maker profits are zero. They find the pricing rule that

is linear in the net order that has this “zero conditional expected profits on average”

property. Such a pricing rule would require commitment by market makers, because

it is not consistent with ex-post optimization by market makers.

There are two advantages to analyzing a continuous-time Kyle model rather than

a single period model. The first is tractability. Analytically solving a single period

Kyle model in which there are zero conditional expected profits state by state seems

to be impossible when the signal is drawn from a mixture distribution. However, as

we demonstrate, it is feasible in continuous time. The second advantage is empirical.

Like Odders-White and Ready, we estimate our model by assuming its duration cor-

responds to a day. Because we solve a dynamic Kyle model, we can use intraday data

to obtain more efficient estimates. The Monte Carlo analysis shows large efficiency

gains to using hourly rather than daily observations.

Our work is also related to the PIN model of Easley, Kiefer, O’Hara and Paper-

man (1996). A large literature in finance and accounting utilizes the PIN model to

study information asymmetry in financial markets.2 The PIN model estimates the

probability of an information event using only order flow data.3 Consequently, it does

2A portion of those papers assesses whether information risk is priced (e.g. Easley and O’Hara
(2004), Duarte and Young (2009), Mohanram and Rajgopal (2009), Easley, Hvidkjaer and O’Hara
(2002), Easley, Hvidkjaer and O’Hara (2010), Akins, Ng and Verdi (2012), Li, Wang, Wu and
He (2009), Hwang, Lee, Lim and Park (2013)) while others use PIN as a measure of information
asymmetry in a wide range of applications ranging from corporate finance (e.g. Chen, Goldstein
and Jiang (2007), Ferreira and Laux (2007)) to accounting (e.g. Frankel and Li (2004), Jayaraman
(2008)).

3In a paper introducing a concept called volume-synchronized PIN, Easley, Lopez de Prado and
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not address the importance of information events. Our model is similar to the PIN

model in that information events occur randomly, and we estimate the probability of

an information event, treating each day as a separate instance of the model. However,

we also use return data to assess the significance of information events.

Our work is also related to the literature that estimates the order-flow component

of returns using linear regressions or vector auto-regressions of returns and order

flows (see, for example, Glosten and Harris (1988), Hasbrouck (1991), Madhavan,

Richardson and Roomans (1997), and Hasbrouck (2007)). These models presume

that the coefficients that relate order flows to returns are time-invariant. In contrast,

in our structural model, the relation between orders and prices is locally linear, but the

linear coefficient (Kyle’s lambda) is time-varying and depends on cumulative orders.

Our theoretical model generalizes Back (1992), principally by allowing for the

possibility that there may be no private information. This causes the aggregate order

process to be a generalization of a Brownian bridge (called a Doob h-transform –

cf. Rogers and Williams (2000)) rather than a standard Brownian bridge as in Back

(1992). A precursor to our paper is Li (2012), which also solves a continuous-time

Kyle model in which the strategic trader may or may not be informed, by applying

filtering theory to a transformation of the aggregate order process. The filtering

solution produces a stochastic differential equation for the equilibrium rather than a

closed form.

Related theoretical work includes Rossi and Tinn (2010), Banerjee and Green

(2013), and Chakraborty and Yilmaz (2004). Rossi and Tinn solve a two-period Kyle

model in which there are two large traders, one of whom is certainly informed and one

O’Hara (2012) use price changes over short time intervals to estimate the proportions of buys and
sells. However, given the estimated order flows, they make no further use of prices. In contrast, we
use both order flows and prices to estimate our model.
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of whom may or may not be informed. In their model, unlike ours, there are always

information events. Banerjee and Green solve a rational expectations model with

myopic mean-variance investors, in which investors learn whether other investors are

informed. They show that variation over time in the perceived likelihood of informed

trading induces volatility clustering. While their model is quite different from ours,

our model also exhibits volatility clustering. Volatility follows the same pattern as

Kyle’s lambda, which varies over time due to variation in the market’s estimate of

whether an information event occurred. Chakraborty and Yilmaz study a discrete-

time Kyle model in which there may or may not be an information event. Their

main result is that the informed trader will manipulate (sometimes buying when she

has bad information and/or selling when she has good information) if the horizon is

sufficiently long. The primary differences between their model and ours are that in

their model the asset has only two possible values (high and low) and the noise trade

distribution has finite support. If the low type trader never buys in their model, then

an aggregate order larger than the maximum of the noise trade distribution implies

for certain that the low type trader is not present. When the horizon is sufficiently

long, it is optimal for the low type trader to deviate from a strategy of never buying

and to buy until the aggregate order in a period is large enough that market makers

put 100% probability on her not being a low type. Then, she can begin selling.

Consequently, it cannot be an equilibrium in their model for low types to never buy

and for high types to never sell, when the horizon is sufficiently long. In contrast,

market makers in our model can never rule out any type of the informed trader until

the end of the model, so it does not strictly pay for a low type to pretend to be

a high type or vice versa (as we will show, and as is true in other continuous-time

Kyle models, the informed trader in our model is locally indifferent about buying or

selling, so pretending to be a different type is not suboptimal, but it does not occur
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in equilibrium).

2. Theory

2.1. Model

Denote the time horizon for trading by [0, 1]. We identify it with a day in our

empirical analysis. We assume the daily interest rate is small enough to be negligible.

As is standard in Kyle models, we assume all traders are risk neutral. We assume

that, in the absence of an information event, there are value traders present in the

market who trade systematically against liquidity motivated traders, buying on price

drops and selling on price rises. For simplicity, we assume the informed and value

traders are organized as a monopoly and embodied in a single representative trader.

The issue of competition among and between informed and value traders is interesting

but beyond the scope of the paper.

Assume the single strategic trader receives a zero-mean signal S at time 0 with

probability α. Let ξ denote an indicator for whether the strategic trader is informed

(ξ = 1 if informed and ξ = 0 otherwise). Let V be a martingale that is independent

of S and publicly observable. The value of the asset at the end of the day conditional

on all available information is V1 + ξS. Assume the asset value becomes public

information at the close of trading each day, and positions can then be liquidated

frictionlessly. The standard continuous-time Kyle (1985) model is a special case of

this model in which α = 1, V is constant, and S is normally distributed.

In addition to the strategic trades, there are liquidity trades represented by a

Brownian motion Z with zero drift and instantaneous standard deviation σ.4 Let Xt

denote the number of shares held by the strategic trader at date t (taking X0 = 0

4In the proof of the proposition below, we assume that the Brownian motion Z is the projection
map on C[0, 1] equipped with Wiener measure. This ensures that the paths of Z are continuous
with probability one even when we make a non-equivalent change of measure.

6



without loss of generality), and set Yt = Xt+Zt. The process Y is observed by market

makers. Let FV,Yt denote the information of market makers at date t, which consists

of the history of the processes V and Y .

One requirement for equilibrium in this model is that the price equal the expected

value of the asset conditional on the market makers’ information and given the trading

strategy of the strategic trader:

Pt = E
[
V1 + ξS | FV,Yt

]
= Vt + E

[
ξS | FV,Yt

]
. (1)

We will show that there is an equilibrium in which Pt = Vt + p(t, Yt) for a function p.

This means that the conditional expectation of ξS depends only on cumulative orders

Yt and not on the entire history of orders. The other requirement for equilibrium is

that the strategic trades are optimal. Let θt denote the trading rate of the strategic

trader (i.e., dXt = θt dt). The process θ has to be adapted to the information pos-

sessed by the strategic trader, which is V , ξS, and the history of Z (in equilibrium,

the price reveals Z to the informed trader). The informed trader chooses the rate to

maximize

E

∫ 1

0

[V1 + ξS − Pt] θt dt = E

∫ 1

0

[ξS − p(t, Yt)] θt dt , (2)

with the function p being regarded by the informed trader as exogenous. In the

optimization, we assume that the strategic trader is constrained to satisfy the “no

doubling strategies” condition introduced in Back (1992), meaning that the strategy

must be such that

E

∫ 1

0

p(t, Yt)
2 dt <∞

with probability one.

Assume the signal S has a continuous distribution function G. Set s = inf{s |

G(s) > 0} and s̄ = sup{s | G(s) < 1}. Assume −∞ ≤ s < 0 < s̄ ≤ ∞. Assume
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G is strictly increasing on (s, s̄) except possibly on some interval containing zero. If

there is such an interval with zero in its interior, then there is zero probability of very

small good or bad news. Including this feature in the model would make it possible

to ensure that information events are nontrivial. Under these assumptions, G−1 is

uniquely defined on (0, 1), except possibly at G(0).

2.2. Brownian Bridge

Let F denote the distribution function of the normally distributed variable Z1.

Set zL = F−1(αG(0)) and zH = F−1(1− α + αG(0)). This means that

α prob(S ≤ 0) = prob(Z1 ≤ zL) ,

and

α prob(S > 0) = prob(Z1 > zH) .

Thus, the unconditional probability of bad news is equal to the probability that

Z1 ≤ zL, and the unconditional probability of good news is equal to the probability

that Z1 > zH .

Set

q(t, y, s) =


F−1(αG(s))− y if G(s) < G(0) ,

E[Z1 | Zt = y, zL ≤ Z1 ≤ zH ]− y if G(s) = G(0) ,

F−1(1− α + αG(s))− y if G(s) > G(0) .

(3)

Note that if G(s) < G(0), then z
def
= F−1(αG(s)) satisfies

F (z) = αG(s) < αG(0) = F (zL) .

Thus, the function s 7→ F−1(αG(s)) maps {s | G(s) < G(0)} to {z | z < zL}.

Symmetrically, the function s 7→ F−1(1 − α + αG(s)) maps {s | G(s) > G(0)} to
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{z | z > zH}.

Proposition. Let N denote the standard normal distribution function. Let FY =

{FYt | 0 ≤ t ≤ 1} denote the filtration generated by the stochastic process Y defined

by Y0 = 0 and

dYt =
q(t, Yt, ξS)

1− t
dt+ dZt . (4)

Then, the following are true:

(A) Y is an FY –Brownian motion with zero drift and standard deviation σ.

(B) With probability one,

ξ = 1 and S < 0 ⇒ Y1 = F−1(αG(S)) < zL , (5a)

ξ = 0 ⇒ zL ≤ Y1 ≤ zH , (5b)

ξ = 1 and S > 0 ⇒ Y1 = F−1(1− α + αG(S)) > zH . (5c)

(C) For each t < 1, the probability that ξ = 1 conditional on FYt is

N

(
zL − Yt
σ
√

1− t

)
+ 1− N

(
zH − Yt
σ
√

1− t

)
. (6)

The process Y described in the proposition is a variation of a Brownian bridge.

It differs from a Brownian bridge in that the endpoint is not uniquely determined

when there is no information event (ξ = 0). Part (C) of the proposition follows

immediately from the preceding parts, because the probability (6) is the probability

that Y1 /∈ [zL, zH ] calculated on the basis that Y is an FY –Brownian motion with zero

drift and standard deviation σ.
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2.3. Equilibrium

Let f(· | t, y) denote the density function of Z1 conditional on Zt = y, that is, the

normal density function with mean y and variance (1− t)σ2.

Theorem. There is an equilibrium in which the trading rate of the strategic trader is

θt =
q(t, Yt, ξS)

1− t
. (7)

The equilibrium asset price is Pt = Vt + p(t, Yt), where the pricing function p is given

by

p(t, y) =

∫ zL

−∞
G−1

(
F (z)

α

)
f(z | t, y) dz +

∫ ∞
zH

G−1
(
F (z)− 1 + α

α

)
f(z | t, y) dz .

(8)

The asset price evolves as dPt = dVt + λ(t, Yt) dYt, where Kyle’s lambda is

λ(t, y) =
1

σ2(1− t)

∫ zL

−∞
(z − y)G−1

(
F (z)

α

)
f(z | t, y) dz

+
1

σ2(1− t)

∫ ∞
zH

(z − y)G−1
(
F (z)− 1 + α

α

)
f(z | t, y) dz . (9)

There is convergence to strong-form efficiency in the sense that limt→1 Pt = V1 + ξS

with probability one.

The probability that an information event occurred, conditional on the market’s

information at any date t < 1, is given by (6). The probability is generally an

increasing function of the absolute net order imbalance at t; more precisely, it is an

increasing function of the distance of the net order imbalance from the midpoint of

zL and zH . The strong-form efficiency condition means that the market learns by

the close of trading whether the strategic trader is informed and, if so, what her
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information is. From the proposition, we know that if ξ = 1 and S < 0, then

Yt → F−1(αG(S)) < zL (10a)

with probability one as t→ 1. On the other hand, if ξ = 1 and S > 0, then

Yt → F−1(1− α + αG(S)) > zH (10b)

with probability one. In each case, the market learns S from Y as t → 1. If the

strategic trader is uninformed (ξ = 0), then

zL ≤ lim inf
t→1

Yt ≤ lim sup
t→1

Yt ≤ zH , (10c)

and the difference between Pt and Vt converges to zero as t→ 1.

The equilibrium is illustrated in Figure 1. The distribution of the signal S used

to generate the figure is the same that we will use in our empirical work. Conditional

on good news, the signal has a triangular distribution with lower limit 0, mode κ,

and upper limit 2κ. The distribution for bad news is symmetric. See Section 3

for further discussion. Figure 1 shows that the conditional probability (6) of an

information event is an increasing function of the absolute order imbalance Yt. High

trading in either direction is a signal to the market that an informed trader is present,

as in PIN models. Kyle’s lambda (9) is generally also an increasing function of the

absolute order imbalance. The region in which it is decreasing (the outer tails) has low

probability, being outside of a roughly two standard deviation band.5 The standard

deviation of price changes caused by order flows is proportional to Kyle’s lambda,

5Two factors cause lambda to be decreasing in the absolute order imbalance in the tails. The
first is that the conditional probability of an information event increases at a decreasing rate for
high order imbalances; thus, further orders in the same direction have lower information content.
The second is that the signal distribution is assumed to be bounded. If the market becomes quite
sure there is an informed trader with an extreme signal, then adverse selection becomes low, because
more extreme signals are unlikely or impossible.
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because the standard deviation of order flows is assumed to be constant. Thus, there

is stochastic volatility.

A sketch of the proof of the theorem is as follows. Market makers forecast the

ending value of Y regarding it as a Brownian motion, and they estimate the value

of S based on the Y forecast and based on the link (10) between the ending value

of Y and S. This calculation produces the formula (8) for the equilibrium pricing

function. In fact, the formula (8) is equivalent to

p(t, y) = E[π(Y1) | Yt = y] , (11)

where Y is taken to be a Brownian motion with zero drift and standard deviation σ

as established in part (A) of the proposition, and where π is defined as

π(y) =


G−1

(
F (y)
α

)
if y < zL ,

0 if zL ≤ y ≤ zH ,

G−1
(
F (y)−1+α

α

)
if y > zH .

(12)

Note that, by Part (B) of the proposition, π(Y1) = ξS with probability one. Therefore,

the price function (8) satisfies the equilibrium condition (1).

The process p(t, Yt) is a martingale given market makers’ information due to the

equilibrium condition (1). By Itô’s formula and the fact that Y is a Brownian motion

relative to market makers’ information, the drift of p(t, Yt) relative to their information

is

∂

∂t
p(t, Zt) +

1

2
σ2 ∂

2

∂z2
p(t, Zt) .

Equating this to zero, Itô’s formula yields

dp(t, Yt) =
∂p(t, Yt)

∂y
dYt .

12



Hence, Kyle’s lambda equals ∂p/∂y. The formula (9) for lambda follows from differ-

entiating (8).

The strategic trader takes the pricing rule as given and optimizes over her trading

rate. As in Back (1992), given the particular pricing rule (8), she is indifferent among

all strategies that exhaust all profit opportunities in the sense of not leaving a gap

between the ending price and the true value at the end of trading. Strategies that leave

such a gap are clearly inferior. Therefore, the convergence results (10) established in

the proposition imply the optimality of the strategy (7). A verification theorem is

provided in the appendix.

3. Maximum Likelihood Estimation

Assume the trading period [0, 1] corresponds to a day. This implies that any

private information becomes public before trading opens on the following day.6 We

can estimate the model parameters using intraday price and order flow information. If

we assume further that the model parameters are stable over time, then the price and

order flow information from multiple days can be merged to estimate the parameters

with greater precision.7

The opening price on each day i is Pi0
def
= E[Vi1 + ξiSi] = Vi0. To obtain

stationarity, we assume that the signal Si on day i is proportional to the observed

opening price Pi0. To be precise, we assume that Si/Pi0 is a sequence of iid random

variables with common distribution function G. This construction causes the pricing

6In contrast to Odders-White and Ready (2008), our estimation does not use overnight returns.
In our theoretical model, private information that is made public after the close of trading is in-
corporated into prices before trading ends (convergence to strong-form efficiency). Thus, overnight
returns in our model are due to arrival of new public information, which does not aid in estimating
the model.

7We estimate the model at a monthly frequency, so concerns about parameter instability should
be lower than with the annual estimation window used in, for example, Easley, Hvidkjaer and O’Hara
(2002), Odders-White and Ready (2008), and Duarte and Young (2009).
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function to be day-specific, and we denote it by pi(t, y). In fact,

pi(t, y) = Pi0 × p(t, y)

where p(t, y) is defined in the theorem in terms of the distribution function G. We

specify the function G used in our empirical implementation below.

The price at time t on day i is Vit + pi(t, Yit), so the gross return through time t is

Pit
Pi0

=
Vit
Vi0

+
pi(t, Yit)

Pi0
=
Vit
Vi0

+ p(t, Yit) . (13)

Assume

dVit
Vit

= δ dBit

for a constant δ and a Brownian motion Bi, so we have

Pit
Pi0

= p(t, Yit) + eδBit−δ
2t/2 .

Assume the price and order imbalance are observed at times t1, . . . , tk+1 each day

with tk+1 = 1 being the close and the other times being equally spaced: tj = j∆

for ∆ > 0 and j ≤ k. Let Pij denote the observed price and Yij the observed order

imbalance at time tj on date i. Define

Γ =



1

2

...

k

1/∆


, Σ =



1 1 · · · 1 1

1 2 · · · 2 2

...
...

...
...

...

1 2 · · · k k

1 2 · · · k 1/∆


.

On each day i, the vector Yi = (Yi,t1 , . . . , Yi,tk+1
)′ is normally distributed with
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mean 0 and covariance matrix σ2∆Σ. Set

Uij = log

(
Pij
Pi0
− p(tj, Yij)

)
(14)

and Ui = (Ui1, . . . , Ui,k+1)
′. The density function of (Pi1/Pi0, . . . , Pi,k+1/Pi0) condi-

tional on Yi is

f(Ui1, . . . Ui,k+1)e
−

∑k+1
j=1 Uij ,

where f denotes the multivariate normal density function with mean vector−(δ2∆/2)Γ

and covariance matrix δ2∆Σ.

Let Li denote the log-likelihood function for day i. Dropping terms that do not

depend on the parameters, we have

− Li = (k + 1) log σ +
1

2σ2∆
Y ′i Σ

−1Yi + (k + 1) log δ

+
1

2δ2∆

(
Ui +

δ2∆

2
Γ

)′
Σ−1

(
Ui +

δ2∆

2
Γ

)
+

k+1∑
j=1

Uij .

Using the facts that Γ′Σ−1 = (0, . . . , 0, 1) and Γ′Σ−1Γ = 1/∆, this simplifies to

− Li = (k + 1) log σ +
1

2σ2∆
Y ′i Σ

−1Yi + (k + 1) log δ

+
1

2δ2∆
U ′iΣ

−1Ui +
1

2
Ui,k+1 +

δ2

8
+

k+1∑
j=1

Uij .

Hence, the log-likelihood function L for an observation period of n days satisfies

− L = n(k + 1) log σ +
1

2σ2∆

n∑
i=1

Y ′i Σ
−1Yi + n(k + 1) log δ

+
1

2δ2∆

n∑
i=1

U ′iΣ
−1Ui +

nδ2

8
+

n∑
i=1

(
k∑
i=1

Uik +
3

2
Ui,k+1

)
. (15)

This can be minimized analytically in δ. The partial derivative of −L with respect
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to δ is

n(k + 1)

δ
+
nδ

4
− 1

δ3∆

n∑
i=1

U ′iΣ
−1Ui , (16)

so the first-order condition is

n(k + 1)δ2 +
nδ4

4
− 1

∆

n∑
i=1

U ′iΣ
−1Ui = 0 . (17)

This is a quadratic equation in δ2 with unique positive solution

δ2 = −2(k + 1) + 2

√√√√(k + 1)2 +
1

n∆

n∑
i=1

U ′iΣ
−1Ui . (18)

The sign of the partial derivative (16) for δ > 0 is the sign of the left-hand side of (17),

which is increasing in δ and therefore positive to the right of (18) and negative to the

left. Hence, (18) is the unique minimizer of −L. Substituting (18) into (15) gives the

reduced log-likelihood function, which we maximize in α and σ and in the parameters

of the distribution function G (which enter L because they affect the function p that

enters L via (14)).

The signal is assumed in the model to have a zero mean (without loss of generality,

because the mean can be embedded in V0). Therefore, in the interest of parsimony, we

use a one-parameter distribution for the signal in the estimation, with the parameter

being a scale parameter. The theoretical model can accommodate an interval of zero

probability around a signal value of zero. We do not exploit that generality, but we

do assume that the density of the signal distribution is zero at zero. Specifically, let

Si = Pi0χiWi ,

where χi ∈ {−1, 1} with equal probabilities and where Wi is drawn from a triangular
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distribution with lower limit 0, mode κ, and upper limit 2κ. Then,

G(s) =



0 if s ≤ −2κ ,

(2κ+s)2

4κ2
if −2κ < s ≤ −κ ,

1
2
− s2

4κ2
if −κ < s < 0 ,

1
2

if s = 0 ,

1
2

+ s2

4κ2
if 0 < s ≤ κ ,

1− (2κ−s)2
4κ2

if κ < s ≤ 2κ ,

1 if 2κ < s .

We show in the next section that the estimate of the fraction of return variance due

to order flow information is robust to misspecification of this signal distribution.

4. Monte Carlo

To assess the efficacy of the maximum likelihood procedure and to determine the

importance of using intraday data, we perform a Monte Carlo analysis. We simulate

hourly and closing prices and net order imbalances (∆ = 1/6.5 and k = 6) for 22

days and estimate the model parameters. We repeat this 1000 times.8 There are two

combinations of the parameters in which we are particularly interested. The first is

the standard deviation of the signal ξS. This equals√
7α

6
κ . (19)

8We use the Nelder-Mead algorithm to maximize the log-likelihood function. Each month, we
initialize both κ and δ as the sample standard deviation of that month’s log open-to-close price
changes. The volatility of order imbalances, σ, is initialized at the sample standard deviation
of the month’s closing order imbalances. We run the algorithm with various initial values for α
(α ∈ {0.25, 0.5, 0.75}) and choose the optimum.
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The second combination is the proportion of the return variance that is due to private

information. This is equal to

var(ξS)

var(ξS) + var(eδBi1−δ2/2)
=

ακ2

ακ2 + 6 (eδ2 − 1) /7
. (20)

The Monte Carlo results are reported in Figures 2 and 3. The true parameter

values are displayed in the figures (indicated by the dashed vertical lines). Clearly,

there is substantial benefit to using intraday data. The standard deviations of the

estimators are reduced substantially by using intraday data. The mean estimates

of the probability of an information event α, the signal scale parameter κ, and the

fraction (20) of the return variance due to order flow information are substantially

higher than the true values when only daily observations are used but are much closer

to the true values when intraday data is used. These improvements are reflected by

a reduction of approximately 70% in root mean square errors for the signal standard

deviation and the order flow component of returns.

We estimate the variance-covariance matrix of the estimates using the outer-

product method (Hamilton, 1994).9 The standard errors are quite accurate for the

parameters (19) and (20) that are of primary interest: the 90% confidence interval

contains the true parameter value in 90.3% and 89.4% of the simulations, respec-

tively.10 The standard errors are also quite accurate for σ and δ, for which the true

values lie within the confidence intervals in 92.0% and 91.5% of the simulations, re-

spectively. The standard errors are less accurate for α and κ, the true values of

which fall within the 90% confidence interval in 61.7% and 85.3% of the simulations,

respectively.

9 Under this method, the estimate of the information matrix is the average daily outer-product
of the gradient of Li, evaluated at the estimated parameter vector. The derivatives are calculated
numerically.

10We estimate standard errors for (19) and (20) using the delta method.
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We also test the robustness of our estimation procedure to a different underlying

signal distribution. To this end, we simulate hourly and closing prices and net order

imbalances (∆ = 1/6.5 and k = 6) for 22 days using a lognormal signal distribution

with Wi = κ1 exp(κ2εi − 0.5κ22) with κ1 = 0.5%, κ2 = 0.25%, and standard normal

εi. Again, we repeat 1000 times. The Monte Carlo results are reported in Figure 4.

While α is generally overestimated, the estimation procedure does reasonably well

capturing the parameters (19) and (20), with root mean square errors quite close

to those obtained with a correctly specified signal distribution. Misspecification of

the signal distribution also does not lead to large size distortions: 90% confidence

intervals contain the true signal standard deviation and order flow component values

in 91.9% and 90.5% of the simulations, respectively.

5. Empirics

We demonstrate the estimation procedure for a single firm, Ashland Incorporated

(ticker: ASH). We use TAQ data on stock trade and quote information for ASH from

1993 through 2012. We sign trades as buys and sells using the Lee and Ready (1991)

algorithm: trades above (below) the prevailing quote midpoint are considered buys

(sells). If a trade occurs at the midpoint, then the trade is classified as a buy (sell) if

the trade price is greater (less) than the previous differing transaction price. Order

imbalance is defined as shares bought less shares sold, expressed in units of one million

shares.

Open-to-close summary statistics for daily net returns, order flows, and volume

are shown in Table 1 for odd years in the sample. Total trading volume has in-

creased sharply for ASH, a trend representative of the broader market. However,

order imbalances appear stationary over the sample.

We sample the trading day on the half-hour and at the close, so k = 6 with
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∆ = 1/6.5. We estimate the model monthly using the same numerical method that

we use for the Monte Carlo analysis (see footnote 8). Figure 5 plots the histograms

of the monthly estimates. Key aspects of the estimates are that the average estimate

of the probability of an information event is 62%, and the average estimate of the

order flow component of returns is 9%.

Figure 6 plots the time series of monthly estimates. The parameters appear to

be roughly stationary. There were spikes in both private information κ and public

information δ during the financial crisis. The increase in public information was

especially pronounced, which led to a relatively low order flow component of returns

during the crisis. The mean estimate of the fraction of returns due to order flow

drops to 3.4% during the crisis. As noted before, this is consistent with information

in the order flow being idiosyncratic and with systematic risk being relatively more

important during the crisis. The volatility of liquidity trading experienced a spike

in 2000, around the time of the dot-com crash. Despite the well-documented rise

of high-frequency trading and the associated sharp increase in trading volume, the

estimated volatility of order imbalances has remained quite stable over the twenty

year sample, consistent with the summary statistics above.

We estimate the variance-covariance matrix of the estimates using the outer-

product method as in the Monte Carlo analysis.11 The 90% confidence intervals are

plotted in Figure 6. The estimates of σ and δ are quite precise while the estimates of

α and κ are noisier. In particular, the latter are less precisely estimated in the second

half of the sample. We estimate standard errors for (19) and (20) using the delta

method. For the first half of the sample, both the signal standard deviation and the

11See footnote 9. If the estimates of κ or α are very close to zero, the likelihood is invariant to
the value of the other parameter. This is the case for ten firm-months due to low κ estimates. In
these instances, we set the standard error of the α estimate equal to one.
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order flow component of returns are statistically different from zero in general. The

signal standard deviation is also statistically significant throughout the recent crisis.

6. Conclusion

We derive and estimate a structural model of the amount of private information

that is conveyed to the market via order flows. The model is a dynamic Kyle model in

which the strategic trader may or may not have private information and in which there

is also public information arrival. We show how to estimate the model by maximum

likelihood. Monte Carlo analysis demonstrates large efficiency gains to using intraday

data. Monte Carlo analysis also shows that the estimate of the proportion of returns

due to order flow information is robust to misspecification of the distribution of private

information. We illustrate the method by estimating the parameters monthly using

intraday price and order flow data for a single stock over a twenty-year time frame.

On average, approximately 9% of the daily return variance is due to information in

order flows.
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Appendix A. Proofs

Take the set of states of the world to be Ω
def
= R× C[0, 1], where C[0, 1] denotes

the set of continuous functions on [0, 1]. The probability distribution P on Ω (denoted

as prob in the text) is the product of the distribution of ξS ∈ R with Wiener measure

on C[0, 1]. Let G ≡ {Gt | 0 ≤ t ≤ 1} denote the product of the trivial σ–field on

R (namely, {∅,R}) with the usual complete filtration on C[0, 1], and let F = {Ft |

0 ≤ t ≤ 1} denote the product of the Borel σ–field on R with the same filtration on

C[0, 1]. The filtration F represents the informed trader’s information. The Brownian

motion Z is the usual projection map on C[0, 1]; more precisely, Zt(ω) = zt, where

ω = (a, z) ∈ R× C[0, 1]. The completed filtration generated by Z is G.

Proof of the Proposition. As stated earlier, f(· | t, y) denotes the normal density func-

tion with mean y and standard deviation σ
√

1− t. Set

k(t, y, s) =


f(F−1(αG(s)) | t, y) if s < 0 ,∫ zH
zL

f(z | t, y) dz if s = 0 ,

f(F−1(1− α + αG(s)) | t, y) if s > 0 .

Define

`(t, y, s) =
∂ log k(t, y, s)

∂y
.
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Then,

s < 0 ⇒ (1− t)σ2`(t, y, s) = F−1(αG(s))− y ,

s = 0 ⇒ (1− t)σ2`(t, y, s) =

∫ zH
zL

(z − y)f(z | t, y)∫ zH
zL

f(z | t, y)

= E [Z1 − y | Zt = y, zL ≤ Z1 ≤ zH ] ,

s > 0 ⇒ (1− t)σ2`(t, y, s) = F−1(1− α + αG(s))− y .

Thus, (1 − t)σ2`(t, y, s) = q(t, y, s), and the stochastic differential equation (4) can

be written as

dYt = σ2 `(t, Yt, ξS) dt+ dZt (A.1)

To put this in a more standard form, define the two-dimensional process Ŷt =

(ξS, Yt) with random initial condition Ŷ0 = (ξS, 0), and augment (A.1) with the

equation dξS = 0. The existence of a unique strong solution Ŷ to this enlarged

system follows from Lipschitz and growth conditions satisfied by `. See Karatzas and

Shreve (1988, Theorem 5.2.9).

The uniqueness in distribution of weak solutions of stochastic differential equations

(Karatzas and Shreve, 1988, Theorem 5.3.10) implies that we can demonstrate Prop-

erties (A) and (B) by exhibiting a weak solution for which they hold. To construct

such a weak solution, define a new measure Qτ on each σ–field Fτ for each deter-

ministic time τ < 1 using k(τ, Zτ , ξS)/k(0, 0, ξS) as the Radon-Nikodym derivative.

Because f(z | ·) satisfies the Kolmogorov backward equation

∂f(z | t, y)

∂t
+
σ2

2

∂2f(z | t, y)

∂y2
= 0 ,

it follows from Itô’s formula and the regularity of k that k(t, Zt, ξS) restricted to [0, τ ]
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is a martingale on the filtration F. Consequently, the measures Qτ are probability

measures and are consistent in the sense that Qτ restricted to Fτ ′ equals Qτ ′ for

τ ′ < τ . The filtration F is left-continuous at t = 1, meaning that F1 is the smallest

σ–field containing ∪t<1Ft. Caratheodory’s Extension Theorem therefore implies the

existence of a unique measure Q on F1 such that Q(A) = Qτ (A) if A ∈ Fτ for any

τ < 1. By Girsanov’s Theorem, the process Z∗ defined by Z∗0 = 0 and

dZ∗t = −σ2 `(t, Zt, ξS) dt+ dZt

is a Brownian motion (with zero drift and standard deviation σ) on the filtration F

relative to Q (Revuz and Yor, 1991, Theorem VIII.1.4). It follows that Z is a weak

solution of (A.1) relative to the Brownian motion Z∗ on the filtered probability space

(Ω,F,Q).

To establish Property (A) for the weak solution, we need to show that Z is a

Brownian motion on (Ω,G,Q). Because Z is a Brownian motion on (Ω,G,P), it

suffices to show that Q = P when both are restricted to G1. Because G is left-

continuous, it actually suffices to show that Q = P when both are restricted to Gτ for

arbitrary τ < 1. This holds if for all t1 < · · · < tn ≤ τ and all Borel B we have

P((Zt1 , . . . , Ztn) ∈ B) = Q((Zt1 , . . . , Ztn) ∈ B) . (A.2)

The right-hand side of (A.2) equals

E

[
k(tn, Ztn , ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn)

]
, (A.3)
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which can be represented as the following sum:

E

[
1{ξS<0}

k(tn, Ztn , S)

k(0, 0, S)
1B(Zt1 , . . . , Ztn)

]
+ E

[
1{ξS=0}

k(tn, Ztn , 0)

k(0, 0, 0)
1B(Zt1 , . . . , Ztn)

]
+ E

[
1{ξS>0}

k(tn, Ztn , S)

k(0, 0, S)
1B(Zt1 , . . . , Ztn)

]
(A.3′)

To evaluate the first term in (A.3′), define z̃ = F−1(αG(ξS)). Then,

1{ξS<0}
k(tn, Ztn , S)

k(0, 0, S)
= 1{z̃<zL}

f(z̃ | tn, Ztn)

f(z̃ | 0, 0)
. (A.4)

Furthermore, for any z < zL, the formula z̃ = F−1(αG(ξS)) implies that

P(z̃ ≤ z) = αP
(
S ≤ G−1

(
F (z)

α

))
.

It follows that the P–density function of z̃ on the interval (−∞, zL) is the derivative

of F (that is, the P–density function of Z1) which is f(· | 0, 0) in our notation. Hence,

the first term in (A.3′) is

∫
B

dzt1 · · · dztn ft1···tn(zt1 , . . . , ztn)

∫ zL

−∞
dz f(z | tn, ztn) ,

where ft1···tn denotes the joint P–density function of (Zt1 , . . . , Ztn). This equals

P((Zt1 , . . . , Ztn) ∈ B,Z1 < zL) . (A.5a)

An analogous calculation based on the definition z̃ = F−1(1 − α + αG(ξS)) shows

that the third term in (A.3′) equals

P((Zt1 , . . . , Ztn) ∈ B,Z1 > zH) . (A.5b)

25



The middle term in (A.3′) equals

E

[
1{ξS=0}

∫ zH
zL

f(z | tn, Ztn) dz∫ zH
zL

f(z | 0, 0) dz
1B(Zt1 , . . . , Ztn)

]
.

Using the P–independence of ξS and Z and the fact that

E
[
1{ξS=0}

]
=

∫ zH

zL

f(z | 0, 0) dz = 1− α ,

this simplifies to

∫
B

dzt1 · · · dztn ft1···tn(zt1 , . . . , ztn)

∫ zH

zL

dz f(z | tn, ztn) ,

which equals

P((Zt1 , . . . , Ztn) ∈ B, zL ≤ Z1 ≤ zH) . (A.5c)

Adding (A.5a)–(A.5c) yields (A.2).

To establish Property (B) for the weak solution of (A.1), we need to show that

Q
(
Z1 = F−1(αG(ξS)) | ξS < 0

)
= 1 , (A.6a)

Q
(
Z1 ∈ [zL, zH ] | ξS = 0

)
= 1 , (A.6b)

Q
(
Z1 = F−1(1− α + αG(ξS)) | ξS > 0

)
= 1 . (A.6c)

We will use the fact that, for any γ > 0,

f(z | t, y)1{|z−y|>γ} ≤
1√

2(1− t)σ2π
e
− γ2

2(1−t)σ2 → 0 (A.7)

as t→ 1.

Consider (A.6a). Set z̃ = F−1(αG(ξS)). Select an arbitrary γ > 0. Consider the
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event |Zt− z̃| > γ for any t < 1. From (A.4) and the fact that the P–density function

of z̃ is f(· | 0, 0), we obtain

Q (|Zt − z̃| > γ | ξS < P0) = E

[
f(z̃ | t, Zt)
f(z̃ | 0, 0)

1{|Zt−z̃|>γ}

∣∣∣∣ z̃ < zL

]
=

2

α

∫ ∞
−∞

dzt ft(zt)

∫ zL

−∞
dz f(z | t, zt)1{|zt−z|>γ} ,

where ft denotes the P–density function of Zt. This converges to 0 as t → 1, by

(A.7). Thus, Zt converges in Q–probability to z̃ as t → 1, conditional on ξS < P0.

This implies that a subsequence converges with Q–probability one. However, Z has

continuous paths, so Z1 = z̃ with Q–probability one when ξS < 0. An analogous

argument establishes (A.6c).

To verify (A.6b), note that

Q (Zt < zL − γ, ξS = 0) = E

[
1{ξS=0}

∫ zH
zL

f(z | t, Zt) dz∫ zH
zL

f(z | 0, 0) dz
1{Zt<zL−γ}

]
.

Using the P–independence of ξS and Z and the fact that

E
[
1{ξS=0}

]
=

∫ zH

zL

f(z | 0, 0) dz = 1− α ,

this simplifies to

∫ ∞
−∞

dzt ft(zt)

∫ zH

zL

dz f(z | t, zt)1{zt<zL−γ} ,

which converges to 0 as t→ 1 by virtue of (A.7). Likewise, Q (Zt > zH + γ, ξS = P0)→

0 as t→ 1. Due to the path continuity of Z, this implies (A.6b).
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Proof of the Theorem. It is explained in the text why the equilibrium condition (1)

holds and why the formula given for Kyle’s lambda is correct. It remains to show

that the strategy (7) is optimal for the informed trader. The value function J of

the informed trader depends on time, on ξS, and on Yt. We begin by defining it

at time t = 1. For each s < 0, set ω(s) = F−1(αG(s)). For s > 0, define ω(s) =

F−1(1−α+αG(s)). For s = 0, let ω(s) denote a fixed but arbitrary point in [zL, zH ].

Set

J(1, y, s) =

∫ ω(s)

y

(s− π(z)) dz . (A.8)

This definition is invariant to the choice of ω(0) ∈ [zL, zH ], because π(z) = 0 for

z ∈ [zL, zH ].

We have J(1, y, s) ≥ 0 with equality if and only if π(y) = s. Furthermore

∂J(1, y, s)

∂y
= π(y)− s .

For t < 1, set

J(t, y, s) = E[J(1, Z1, s) | Zt = y] =

∫ ∞
−∞

J(1, z, s)f(z | t, y) dz . (A.9)

This construction implies that J(t, Zt, s) is a martingale for each fixed s, so it has

zero drift. From Itô’s formula, its drift is

∂

∂t
J(t, Zt, s) +

σ2

2

∂2

∂z2
J(t, Zt, s) .

Equating this to zero, Itô’s formula implies

J(1, Y1, ξS) = J(0, 0, ξS) +

∫ 1

0

dJ(t, Yt, ξS) = J(0, 0, ξS) +

∫ 1

0

∂J(t, Yt, ξS)

∂y
dYt .
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Therefore,

E[J(1, Y1, ξS)− J(0, 0, ξS)] = E

∫ 1

0

∂J(t, Yt, ξS)

∂y
dYt . (A.10)

To calculate ∂J(t, y, s)/∂y, rewrite (A.9) as

J(t, y, s) =

∫ ∞
−∞

J(1, y + z, s)f(z | t, 0) dz .

From this and (A.8), we obtain

∂J(t, y, s)

∂y
=

∫ ∞
−∞

∂J(1, y + z, s)

∂y
f(z | t, 0) dz

=

∫ ∞
−∞

[π(y + z)− s]f(z | t, 0) dz

= p(t, y)− s ,

using (11) for the last equality. Therefore,

∂J(t, Yt, ξS)

∂y
= p(t, Yt)− ξS .

Combining this with (A.10) and using the fact that Y = X + Z yields

E[J(1, Y1, ξS)− J(0, 0, ξS)] = E

∫ 1

0

[p(t, Yt)− ξS]θt dt+ E

∫ 1

0

[p(t, Yt)− ξS] dZt .

The “no doubling strategies” condition implies that
∫
p dZ is a martingale, so the

second term on the right-hand side is zero. Rearranging gives

E

∫ 1

0

[ξS − p(t, Yt)]θt dt = E[J(0, 0, ξS)− J(1, Y1, ξS)] ≤ E[J(0, 0, ξS)] .

Thus, E[J(0, 0, ξS)] is an upper bound on the expected profit, and the bound is
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achieved if and only if E[J(1, Y1, ξS)] = 0, which is equivalent to π(Y1) = ξS with

probability one. By part (B) of the proposition, the strategy (7) is therefore optimal.
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Figure 1: Updating and Lambda in the Kyle Model.
This figure shows the probability (6) of an information event and Kyle’s lambda (9) conditional on
the order imbalance Yt at date t = 1/2, when the unconditional probability of an information event
is α = 0.3, the standard deviation of liquidity trading is σ = 0.3, and the signal scale parameter is
κ = 0.005. The range of the order imbalance in the plots is ±3 times the standard deviation of Yt.
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Figure 2: Monte Carlo with Daily Observations.
Estimates from 1000 simulated firm-months (22 trading days) using closing price/order flow observations only (k = 0). The model
parameters are α = probability of an information event, κ = signal scale parameter, σ = standard deviation of liquidity trading, and
δ = volatility of public information. The true parameters α = 30%, κ = 0.5%, σ = 30%, and δ = 1% are denoted by the dashed verti-
cal lines. Signal Standard Deviation is the unconditional signal standard deviation defined in (19). Its true value is 0.30%. Order Flow
Component is the fraction of the return variance due to order flow information defined in (20). Its true value is 8.05%.
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Figure 3: Monte Carlo with Intraday Observations.
Estimates from 1000 simulated firm-months (22 trading days) with hourly in addition to closing price/order flow observations (k = 6). The
model parameters are α = probability of an information event, κ = signal scale parameter, σ = standard deviation of liquidity trading, and
δ = volatility of public information. The true parameters α = 30%, κ = 0.5%, σ = 30%, and δ = 1% are denoted by the dashed vertical lines.
Signal Standard Deviation is the unconditional signal standard deviation defined in (19). Its true value is 0.30%. Order Flow Component is
the fraction of the return variance due to order flow information defined in (20). Its true value is 8.05%.
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Figure 4: Monte Carlo with Lognormal Signal
Estimates from 1000 simulated firm-months (22 trading days) with hourly in addition to closing price/order flow observations (k = 6).
The data are generated using a lognormal signal distribution with Wi = κ1 exp(κ2εi − 0.5κ22) with κ1 = 0.5%, κ2 = 0.25%, and standard
normal εi. The model is estimated using the triangular signal distribution with parameters α = probability of an information event, κ =
signal scale parameter, σ = standard deviation of liquidity trading, and δ = volatility of public information. The true parameters α = 30%,
σ = 30%, and δ = 1% are denoted by the dashed vertical lines. Signal Standard Deviation is the unconditional signal standard deviation
defined in (19). Its true value under the lognormal signal is 0.30%. Order Flow Component is the fraction of the return variance due to order
flow information defined in (20). Its true value under the lognormal signal is 6.98%.
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Figure 5: Histograms of ASH Estimates.
This figure plots the histograms of monthly maximum likelihood estimates for Ashland Inc. (ticker: ASH). The model is estimated from
January 1993 through December 2012 using six hourly intraday bins (k = 6) in addition to closing prices and order imbalances. The
model parameters are α = probability of an information event, κ = signal scale parameter, σ = standard deviation of liquidity trading, and
δ = volatility of public information. Signal Standard Deviation is the unconditional signal standard deviation defined in (19), and Order Flow
Component is the fraction of the return variance due to order flow information defined in (20).
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Figure 6: Time Series of ASH Estimates.
This figure plots the time series of monthly maximum likelihood estimates for Ashland Inc. (ticker: ASH). The model is estimated from
January 1993 through December 2012 using six hourly intraday bins (k = 6) in addition to closing prices and order imbalances. The
model parameters are α = probability of an information event, κ = signal scale parameter, σ = standard deviation of liquidity trading, and
δ = volatility of public information. Signal Standard Deviation is the unconditional signal standard deviation defined in (19), and Order Flow
Component is the fraction of the return variance due to order flow information defined in (20). The figure shows 90% confidence intervals
estimated using the outer-product method (Hamilton, 1994). Standard errors for Signal Standard Deviation and Order Flow Component are
estimated using the delta method.
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Table 1: Summary Statistics for ASH
This table presents summary statistics by odd years for daily returns, order imbalances, and volume
for ASH. Returns are open-to-close returns, expressed in percentage points. Order imbalance is
defined as shares bought less shares sold, expressed in units of one million shares. Volume is number
of shares traded, expressed in units of one million shares.

Panel A. Returns
Year Mean SD Min Q1 Q2 Q3 Max
1993 0.03 1.27 -3.85 -0.61 0.00 0.70 4.45
1995 0.01 1.05 -2.33 -0.68 0.00 0.57 3.93
1997 0.00 1.18 -3.64 -0.77 0.00 0.67 4.26
1999 -0.06 1.36 -3.77 -1.02 -0.11 0.82 3.30
2001 0.11 1.44 -4.67 -0.66 0.11 1.01 5.64
2003 0.29 1.44 -4.35 -0.51 0.11 1.06 6.52
2005 -0.03 1.41 -6.46 -0.92 0.00 0.85 4.79
2007 -0.13 1.50 -4.96 -0.96 -0.17 0.74 7.91
2009 0.41 4.00 -13.40 -1.97 0.15 2.71 11.43
2011 -0.09 1.91 -6.28 -1.27 -0.08 1.10 5.66

Panel B. Order Imbalances
Year Mean SD Min Q1 Q2 Q3 Max
1993 0.010 0.072 -0.379 -0.016 0.006 0.035 0.303
1995 0.008 0.073 -0.404 -0.022 0.007 0.035 0.227
1997 0.017 0.080 -0.299 -0.028 0.008 0.055 0.299
1999 -0.001 0.067 -0.223 -0.032 -0.004 0.032 0.284
2001 0.030 0.064 -0.281 -0.002 0.028 0.062 0.221
2003 0.044 0.071 -0.357 0.012 0.038 0.076 0.322
2005 0.077 0.135 -0.261 0.004 0.052 0.126 1.030
2007 -0.012 0.088 -0.309 -0.055 -0.003 0.033 0.291
2009 -0.003 0.152 -0.612 -0.077 -0.000 0.069 0.450
2011 -0.013 0.082 -0.394 -0.057 -0.017 0.035 0.318

Panel C. Volume
Year Mean SD Min Q1 Q2 Q3 Max
1993 0.147 0.115 0.016 0.073 0.108 0.188 0.729
1995 0.174 0.119 0.025 0.093 0.141 0.226 0.800
1997 0.244 0.132 0.061 0.154 0.208 0.304 0.735
1999 0.220 0.124 0.047 0.137 0.194 0.266 0.919
2001 0.275 0.108 0.080 0.199 0.253 0.334 0.767
2003 0.366 0.189 0.124 0.239 0.316 0.458 1.391
2005 0.862 0.470 0.262 0.558 0.743 1.025 3.293
2007 0.723 0.302 0.280 0.508 0.651 0.879 2.426
2009 1.740 0.962 0.376 1.035 1.470 2.166 5.735
2011 0.927 0.530 0.309 0.613 0.786 1.067 3.671
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