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High Frequency Quotation, Trading, and the Efficiency of Prices 

 

 

Abstract 

 

 

We examine the relation between high frequency quotation and the behavior of stock prices 

between 2009 and 2011 for the full cross-section of securities in the U.S. On average, higher 

quotation activity is associated with price series that more closely resemble a random walk, and 

significantly lower cost of trading.  We also explore market resiliency during periods of 

exceptionally high low-latency trading: large liquidity drawdowns in which, within the same 

millisecond, trading algorithms systematically sweep large volume across multiple trading 

venues.  Although such large drawdowns incur trading costs, they do not appear to degrade the 

subsequent price formation process or increase the subsequent cost of trading.  In an out-of-

sample analysis, we investigate an exogenous technological change to the trading environment 

on the Tokyo Stock Exchange that dramatically reduces latency and allows co-location of 

servers.  This shock also results in prices more closely resembling a random walk, and a sharp 

decline in the cost of trading. 
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1. Introduction 

Electronic trading has dramatically changed the way that liquidity is demanded and 

supplied.  Market-making has been re-defined.  The NYSE specialist has been replaced with 

Designated Market Makers (DMMs) and Supplemental Liquidity Providers (SLPs), who do not 

receive preferential information, and are not subject to negative obligations.  Traditional market 

makers on NASDAQ and other exchanges now use low-latency technology.  Other market 

participants, primarily high frequency trading firms, may also serve as liquidity providers.  All 

participants operate in a fragmented market with multiple exchanges, electronic communications 

networks (ECNs), alternative trading systems (ATSs) and dark pools, under a regulatory 

framework provided by Regulation NMS and Regulation ATS.   

In this market structure, the returns to liquidity provision are earned through two 

channels: (a) the liquidity provider takes on inventory, bearing adverse selection risk, and 

releasing inventory, and/or (b) earning the difference between make/take fees paid by exchanges.  

The former is reflected in classic market microstructure models such as Ho and Stoll (1981), 

Glosten and Milgrom (1985) and Kyle (1985).  The latter is a more recent market feature, studied 

by Colliard and Foucault (2012), and Foucault, Kadan and Kandel (2012).  A hallmark of the 

current market structure is that the supply curve(s) offered by liquidity providers are endogenous 

and can change very quickly.  The ability of liquidity suppliers to change the price and quantity 

of liquidity offered is measured in the nanoseconds at NASDAQ, and in microseconds at 

NYSE/Arca, BATS and EDGA/X.  High frequency changes in the supply curve are frequently 

lumped under the term “high frequency trading” (HFT) and “algorithmic trading”, although they 

are more often changes in high frequency quotations – while supply curves can move for a 

variety of reasons, for a trade to occur, demand and supply curves must intersect.   

High frequency quotation and trading can have important economic consequences – 

although the direction of the impact is still being debated.  For example, Budish, Cramton and 

Shim (2013) build a model in which the ability to continuously update order books generates 

technical arbitrage opportunities and a wasteful arms race in which fundamental investors bear 

costs through larger spreads and thinner markets.  Han, Khapko and Kyle (2014) argue that since 

fast market makers can cancel faster than slow market makers, this causes a winner’s curse 
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resulting in higher spreads.  In contrast, in Aϊt-Sahalia and Saglam (2013), lower latency 

generates higher profits and higher liquidity provision.  However, in their model, high-frequency 

liquidity provision declines when market volatility increases, which can lead to episodes of 

market fragility.  And in Baruch and Glosten (2013), frequent order cancellations are a standard 

part of liquidity provision, and are generated by limit order traders mitigating the risk that their 

quotes will be undercut (through rapid submissions and cancellations) rather than “a nefarious 

plan to manipulate the market”.  While all of these mechanisms are plausible, ultimately, the net 

effect of high frequency quotation changes on markets is an empirical question. 

Different interpretations of the consequences of high-frequency quotation and trading 

underlie the SEC’s (2010) concept release on market structure, which explicitly asks whether 

high frequency quoting represents “phantom liquidity (which) disappears when most needed by 

long-term investors and other market participants”.
1
  These issues are of obvious importance to 

trading and market microstructure, but are also relevant from a larger economic perspective; that 

is, measures of value are not unrelated to the architecture of the markets on which assets trade.  

Duffie (2010) points out that equilibrium asset pricing theories can and perhaps should include 

the capitalization and willingness of intermediaries to participate in the market.  The efficacy of 

the price formation process is also critical for empirical work in asset pricing: if noise related to 

market microstructure is too large, the resulting biases overwhelm attempts to understand the 

dynamics of asset prices (Asparouhova, Bessembinder and Kalcheva (2010)).  Finally, non-

execution risk related to market microstructure has welfare consequences in that mutually 

profitable trades may be missed.  Bessembinder, Hao and Lemmon (2011), for instance, 

explicitly study allocative efficiency and price discovery and argue that affirmative obligations 

can improve social welfare relative to endogenous liquidity provision.  Stiglitz (2014) also 

highlights the welfare debate and expresses skepticism that high frequency quotation/trading is 

welfare improving.  Our purpose is to bring additional data and evidence to bear on these issues 

                                                           
1
 Filings with regulatory bodies, exchanges, trade groups and press accounts, as well as some academic papers, 

contain numerous suggestions to slow the pace of quotation and trading to what is determined to be a “reasonable” 

pace.  See, for example, the testimony of the Investment Company Institute to the Subcommittee on Capital 

Markets, US House of Representatives, in which the testifier argues for meaningful fees on cancelled orders as a 

mechanism to prevent high frequency changes in the supply curve (http://www.ici.org/pdf/12_house_cap_mkts.pdf). 

http://www.ici.org/pdf/12_house_cap_mkts.pdf
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using a comprehensive cross-section of securities, across multiple markets and with a relatively 

long time-series, while investigating both ‘average’ and stressed market environments.   

We examine the effect of rapid changes in the supply curves of over 3,000 individual 

securities on the behavior of prices between 2009 and 2011.  Our measure of a change in the 

supply curve is a “quote update”, which we define as any change in the best bid or offer (BBO) 

quote or size across all quote reporting venues.  Changes in the supply curve can come from the 

addition of liquidity to the limit order book at the BBO, the cancellation of existing unexecuted 

orders at the BBO, or the extraction of liquidity via a trade.  We examine the relation between 

quote updates and variance ratios over short horizons.  If high frequency activity merely adds 

noise to security prices, then we should observe variance ratios substantially smaller than one for 

securities in which high frequency activity is more prevalent, as high frequency quotation-

induced price changes are reversed; Brunnermeier and Pedersen (2009) describe this possibility 

as “liquidity-based volatility”, which might be observed in short-horizon variance ratio tests.  

The more quickly reversals occur, the quicker variance ratios should converge to one.  In 

contrast, if high frequency quotation is associated with persistent swings away from fundamental 

values, variance ratios in securities with higher levels of quotations may rise above one.   

There is significant variation in update activity across securities.  Between 2009 and 

2011, in the smallest size quintile of stocks, there is less than one quote update per second.  In 

large capitalization stocks, there are on average over 20 updates to quotes per second.  

Controlling for firm size and trading activity, average variance ratios (based on 15-second and 5-

minute quote midpoint returns) are reliably closer to one for stocks with higher updates.  In a 

robustness check, we examine variance ratios for a subset of securities at higher frequencies (100 

milliseconds and 1 second) and the results are unchanged.  In addition, the time series average of 

the cross-sectional standard deviation of variance ratios is lower for stocks with higher updates.  

The implication is that higher update activity is associated with improved price formation.   

Higher updates are also associated with lower costs of trading.  Again controlling for firm 

size and trading activity, average effective spreads (that is, deviations of transaction prices from 

quote midpoints) are lower for stocks with higher quote updates by 0.5 to 6 basis points.  To put 

this in economic perspective, make or take fees of $0.003 per share for a $60 stock correspond to 
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0.5 basis points.  Make/take fees are important enough to drive algorithmic order routing 

decisions between venues, indicating that the differences in effective spreads that we observe are 

at least as economically important.   

Effective spreads could narrow because of lower revenue for liquidity providers (lower 

realized spreads) or smaller losses to informed traders (changes in price impact).  Most of the 

difference in effective spreads in our sample appears to come from a reduction in realized 

spreads, suggesting that competition between liquidity providers provides incentives to update 

quotes.  Regardless of the source, updates appear to be economically meaningful, rather than 

merely “quote stuffing” that obfuscates trading intentions.  Overall, the data appear to be 

consistent with the Baruch and Glosten (2013) argument that there is nothing “nefarious” about 

high frequency quote updates; rather, these updates reflect the way that liquidity is provided in 

electronic markets. 

A common complaint of the current market structure is that it is fragile in the sense that 

the price of liquidity rises too rapidly, or that liquidity disappears entirely when traders need it 

most (Stiglitz (2014)).  Such episodes, as exemplified by the Flash Crash and individual security 

“mini-crashes”, naturally concern market participants and regulators.  We investigate fragility (or 

rather its mirror image, resilience) by examining price formation and trading costs surrounding 

large and extremely rapid drawdowns of liquidity.  In fragile markets, such liquidity drawdowns 

should cause price series to deviate from a random walk and future trading costs to rise.  We 

identify liquidity sweeps as multiple trades in a security across different reporting venues with 

the same millisecond timestamp.  Such trades are quite common and are simultaneous 

algorithmic sweeps off the top of each venue’s order book, designed to quickly extract liquidity.  

There are often successive sweeps that, within short periods of time, extract substantial amounts 

of liquidity.  We design a simple algorithm to aggregate successive sweeps into singular liquidity 

drawdowns and restrict our attention to drawdowns in which at least 10,000 shares are traded.  

Unsurprisingly, both buyer- and seller-initiated drawdowns incur substantial costs.  The average 

total effective spread paid by liquidity extractors ranges from over 100 basis points in microcap 
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stocks to 17 basis points for securities in the largest size quintile.
2
  However, average variance 

ratios 300 seconds before and after such events are indistinguishable from each other.  We 

similarly see no evidence that effective spreads increase after large buyer- or seller-initiated 

liquidity drawdowns.  On average, the market appears resilient. 

Of course, quote updates and prices are endogenous and jointly determined, so that the 

above set of results do not imply causation.  That is, high frequency traders may be more likely 

to participate, and hence we would be more likely to observe heavy quote updating, in more 

liquid securities.  We perform two tests that help with identification, while not abandoning a 

large sample approach. 

First, we exploit the daily time series variation in quote updates.  The daily average 

number of quote updates closely tracks the VIX.  A reduced-form vector autoregression shows 

that changes in updates are related to lagged innovations in the VIX but not vice-versa, implying 

that update activity is not merely noise (“servers talking to servers”) but related to economic 

fundamentals.  Related, Nagel (2012) uses daily data and finds a predictive connection between 

return reversals (interpreted as returns to liquidity provision) and the VIX, and argues that the 

VIX likely proxies for state variables that influence both the demand for liquidity and its supply.  

To the extent that spreads represent the return to endogenous liquidity supply, quote updates are 

the tool used by liquidity providers to manage their intraday risk. Given this evidence, it seems 

unlikely that variance ratios in day t are endogenously related to quotation activity in day t-1. 

The implication is that if we use the prior day’s updates to sort stocks into low and high update 

groups, this will mitigate the possibility that an omitted factor is driving both the lagged update 

measure, and current spreads and variance ratios.  Using the previous day’s update measures, we 

continue to find that higher updates are associated with variance ratios closer to one.   

Second, we examine an exogenous technological change to trading practices in the Tokyo 

Stock Exchange.  On January 4, 2010 the Tokyo Stock Exchange replaced its existing trading 

infrastructure with a new system (Arrowhead) that reduced the time from order receipt to 

posting/execution from one-to-two seconds to less than 10 milliseconds.  At that time, the TSE 

                                                           
2
 In comparison, Madhavan and Cheng (1997) report average price impact (measured as the price movement from 

20 trades prior to a block print) of between 14 and 17 basis points in Dow Jones stocks for 30 days in 1993-1994. 
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also permitted co-location services and started reporting data in millisecond time stamps (down 

from minutes).  This large change in latency provides us with an exogenous shock that helps 

identify the impact of high frequency quoting on the price formation process.  The fact that it 

takes place in a non-U.S. market is advantageous in that it serves an out-of-sample purpose.  We 

find that the introduction of Arrowhead resulted in large increases in updates.  As with the U.S., 

spikes in updates correspond to economic fundamentals and uncertainty, such as the earthquake 

and tsunami that hit Japan in March 2011.  Unlike the U.S. our Japanese data allows us to 

directly observe new order submissions, cancellations and modifications.  We find similar 

increases in all three components of updates after the introduction of Arrowhead, along with 

similar spikes related to economic shocks.  Most importantly, we find a systematic improvement 

in variance ratios between the three-month period before and after the introduction of Arrowhead 

in every part of the trading day.  There are also beneficial effects on the cost of trading: effective 

spreads decline by 20 percent on the date of the introduction of the new trading system.   

Various studies in this area investigate what high frequency traders do, whether they are 

profitable, whether they improve or impede price discovery, and other questions of importance 

(see, e.g., Brogaard, Hendershott and Riordan (2012), Hendershott and Riordan (2012), and 

Menkveld (2012)).  Empirical studies often focus on specific exchanges (e.g., Nasdaq, or 

Deutsche Borse), a subsample of stocks, or exchange-identified high frequency traders (the so-

called Nasdaq dataset).  The above papers generally find that, although liquidity-demanding HFT 

may impose adverse selection costs on other traders, high frequency traders in aggregate either 

do no harm or occasionally improve liquidity.  However, better identification sometimes comes 

at the cost of generality; we believe there is an advantage to examining a comprehensive cross-

section of stocks over a relatively long time-series when drawing conclusions about the effect of 

high-frequency trading.  In addition, our interest is not just in high frequency trading per se but 

more broadly in supply curves.  In that sense, the two empirical papers most similar to ours are 

Hendershott, Jones, and Menkveld (2011) and Hasbrouck (2013).  Hendershott et al. (2011) 

study 1,082 stocks between December 2002 and July 2003 and, using the start of autoquotes on 

the NYSE as an exogenous instrument, find that algorithmic trading improves liquidity for large 

stocks.  They observe increases in realized spreads in their sample and speculate that electronic 
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liquidity providers may initially have had market power relative to human traders, although they 

conclude that this power was temporary (see their Figure 3)).  Our data show that if anything, 

increased quotation activity is associated with decreases in realized spreads, suggesting 

competition between electronic liquidity providers during our sample period.   

Both Hendershott et al. (2011), and our analysis of the Arrowhead introduction, analyze 

the transition from one microstructure equilibrium to another, where the transition facilitates 

electronic trading.  In comparison, our US analysis is an investigation of the effects of cross-

sectional variation in electronic trading across securities.  Hasbrouck (2013) is also concerned 

about the effects of electronic trading on short-term volatility in quotes, since excessive volatility 

reduces their informational content and can increase execution price risk for marketable orders.  

Using a sample of 100 stocks in April 2011, he examines variances over time scales as low as 1 

millisecond, and finds that these short horizon variances appear to be approximately five times 

larger than those attributable to fundamental price variance.  Like us, Hasbrouck (2013) 

concludes that it is important to understand the nature of this volatility and its impact on the price 

formation process. 

The remainder of the paper is organized as follows.  In Section 2, we describe our sample 

and basic measurement approach.  We discuss the cross-sectional results in Section 3, and 

present alternative tests, including those based on liquidity sweeps and Japanese data in Section 

4.  Section 5 concludes. 

 

2. Sample Construction and Measurement 

2.1 U.S. Data and Sample  

For 2009 we use the standard monthly TAQ data in which quotes and trades are time-

stamped to the second.  For 2010 and 2011, we use the daily TAQ data (NBBO and CQ files) in 

which quote and trades contain millisecond timestamps.  There are obvious advantages of 

working with data that have millisecond resolution.  For example, we avoid conflation in signing 

trades, a process necessary for computing effective spreads.  In addition, these data are also 

necessary for identifying liquidity sweeps. 



 8 

In processing TAQ data, we remove quotes with mode equal to 4, 7, 9, 11, 13, 14, 15, 19, 

20, 27, 28 and trades with correction indicators not equal to 0, 1 or 2.  We also remove sale 

condition codes that are O, Z, B, T, L G, W, J and K, quotes or trades before or after trading 

hours, and locked or crossed quotes.  In the millisecond data, we also employ BBO qualifying 

conditions and symbol suffixes to filter the data.  We use an algorithm provided by WRDS 

(TAQ-CRSP Link Table, Wharton Research Data Service, 2010) that generates a linking table 

between CRSP Permno and TAQ Tickers.  We keep only firms with CRSP share codes 10 or 11 

and exchange codes 1, 2, and 3.  To ensure that small infrequently traded firms do not unduly 

influence our results, we remove firms with a market value of equity less than $100 million or a 

share price less than $1 at the beginning of the month.  Although we remove ETFs from the main 

sample, we retain information on two ETFs (SPY & IWM) for separate tests.   

Many of our tests are based on size quintiles because of systematic effects between small 

and large capitalization firms.  We employ the prior month’s NYSE size breakpoints from Ken 

French’s website to create quintiles.  Using NYSE breakpoints obviously causes the quintiles to 

have unequal numbers of firms in them, but we end with a better distribution of market 

capitalization across groups.  This method also facilitates comparisons for those interested in the 

relevance of our results for investment performance and portfolios.  On average, we sample more 

than 3,000 stocks which represent over 95 percent of aggregate U.S. market capitalization. 

 

2.2 Japanese Data and Sample 

During our sample period, trading on the TSE is organized into a morning session 

between 9:00 am and 11:00 am, and an afternoon session from 12:30 to 3:00 pm.  Each session 

opens and closes with a single price auction (known as “Itayose”), and continuous trading 

(known as “Zaraba”) takes place between the auctions.  Under certain conditions (e.g. trading 

halts), price formation can take place via the Itayose method even during continuous trading. 

The Tokyo Stock Exchange provided us with two proprietary datasets.  The first is for the 

six months prior to the introduction of Arrowhead (July 1, 2009 to December 31, 2009), and the 

second is for 15 months after the introduction of Arrowhead (January 4, 2010 to March 31, 

2011).  The data are organized as a stream of messages that allow us to rebuild the limit order 
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book in trading time.  Prior to the introduction of Arrowhead, time stamps are in minutes but 

updates to the book within each minute are correctly sequenced.  After Arrowhead, time stamps 

are in milliseconds.  For each change to the book, we observe the trading mechanism and the 

status of the book (Itayose, Zaraba, or trading halts).  We also observe the nature of each 

modification to the book.  Specifically, we observe new orders, modifications which do not 

discard time priority, modifications which result in an order moving to the back of the queue, 

cancellations, executions and expirations.  We also observe special quote conditions and 

sequential trade quotes.  Each dataset is for the largest 300 stocks in First Section of the Tokyo 

Stock Exchange by beginning-of-month market capitalization.  As a result, the sampling of 

stocks varies slightly over time.  Lot sizes for stocks vary cross-sectionally and change over 

time.  The TSE provided us with a separate file that contains lot sizes as well as changes in these 

sizes, allowing us to compute share-weighted statistics. 

 

2.3 Measuring Changes in the Supply Curve 

In a perfect world in which trading occurs in a single market and is entirely transparent, 

one might observe a complete quote montage that provides a trader with bid and ask prices, and 

their associated depths.  Of course, this would be a static snapshot of a supply curve, but it 

nonetheless constitutes a complete representation of the extant supply curve.  Trading protocols 

and market structure lead to deviations from this ideal.  In the U.S., there are three important 

considerations.  First, securities can trade in multiple venues, rather than just the primary 

exchange.  The implication is that there are multiple supply curves which need to be aggregated 

to obtain a true supply curve that conforms to price and time priority rules.  The Order Protection 

Rule of Regulation NMS requires that brokers respect the best price across protected venues, 

giving it importance over any other attribute of best execution, including speed.  This effectively 

aggregates the best price point across multiple supply curves, rather than the entire curve.
3
  

Second, only supply curves from registered exchanges can be aggregated.  Dark pools that do not 

                                                           
3
 Such fragmentation also gives rise to latency issues.  Exchanges supply data feeds to the Consolidated Quote 

System/Service (CQS) and the Consolidated Tape System (CTS), which is then used to determine the official 

NBBO.  This NBBO is slower than that generated by a manual consolidation of direct exchange feeds, implying that 

investors who use the slower official feed can be subject to latency arbitrage.   
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provide quotations are part of the latent supply curve but do not currently show up in official 

exchange or consolidated feeds.  For example, a stock that shows an aggregated depth (across 

exchanges) of 500 shares at the ask price might have another 200 shares available in a dark pool 

pegged to the ask quote, so that the true supply is for 700 shares.  Third, hidden orders on 

exchanges do not show up on the displayed supply curve. 

With the above structure in mind, we build our main measure (“quote updates”) as the 

number of changes that occur in the best bid or offer price, or in the quoted sizes at these prices, 

within a specified time interval across all registered exchanges.  There are several advantages to 

using this method.  A venue choice is a decision element common to both liquidity extraction 

and provision algorithms.  Venue choices are often dynamic in nature and can be changed for 

different child orders generated from the same parent.  As a result, inferences from datasets from 

a particular exchange are subject to potential selection biases.
4
  Moreover, under Regulation 

NMS, flickering quotes, defined as quotes that change more than once per second, are not 

eligible to set the NBBO.
5
  By using the BBO across all exchanges, we include quote changes 

that are legitimate changes to the supply curve, regardless of whether the change is eligible to set 

a new NBBO.  This is an underestimate of true changes in the supply curve – it does not include 

dark venues, and also does not include hidden orders.  In addition, it does not consider changes 

to the supply of liquidity outside the best bid or ask prices, the “Level II” of the quote book.   

Changes in updates occur as orders are added to each exchange’s book, removed from the 

respective books due to cancellation, or removed due to executions.  The first two represent 

changes to the supply curve through quotation activity.  The last is a change in the supply curve 

caused by intersection with a demand curve through a trade.  In deciding to trade, traders likely 

endogenize the tradeoff between the cost and benefit of monitoring the market (Foucault, Kadan 

and Kandel (2012)).  Trades, by virtue of their capital commitment, have important 

                                                           
4
 For example, suppose one observes trades from a high frequency trader from Exchange X that is known to be 

cheaper for extracting liquidity for a particular group of stocks.  Such a high frequency trader may be providing 

liquidity in Exchange Y, but a researcher only observing trades on Exchange X would erroneously draw the 

conclusion that this high frequency trader is a liquidity extractor.  There are a variety of reasons why there may be a 

non-random distribution of trades across trading venues, ranging from concerns about adverse selection to 

systematic differences in make-take fees.  Sampling a larger number of high frequency traders does not necessarily 

make this potential bias disappear. 
5
 Exchanges are free to ignore flickering quotes for trade through protection and many exchanges have rules that 

explicitly prohibit quote manipulation (e.g. NYSE/Arca Rule 5210). 
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consequences for the price formation process, impounding information into prices and also 

demanding/supplying liquidity.  We therefore conduct tests controlling for trade frequency. 

In Japanese data, we calculate updates in a manner similar to that for the U.S. but without 

the need to deal with venue fragmentation.  There is an added advantage in that, in addition to 

updates, we separately observe submissions, modifications, cancellations, executions, and 

expirations.  As we show later, these are highly correlated, suggesting that even though updates 

are the summation of these different behaviors, they are a good proxy for cancellations. 

 

2.4 Measuring Price Efficiency and Execution Quality 

2.4.1 Variance Ratio  

Following the notation in Lo and MacKinlay (1988), define Xt as the log price process, 

where Xt = X0, X1, …, Xnq, each interval is equally spaced and there are nq+1 time series 

observations.  We refer to the price process in generic terms, although in implementation we use 

NBBO quote midpoints to avoid negative autocorrelation induced by bid-ask bounce.  For cross-

sectional tests, we measure prices/returns over 15 second and 5 minute intervals.  There are 120 

15-second returns in a half-hour and we require at least 20 non-zero 15-second returns, to 

calculate a variance ratio.  This ensures that variances, and therefore their ratios, are not 

degenerate.  Our choice of measurement interval is determined by two tradeoffs.  The interval 

needs to be short enough to measure high frequency changes in the supply curve, while 

preserving time of day effects.  The interval also needs to be long enough to reliably measure 

contemporaneous variance ratios across a large sample of securities.  A half hour interval is a 

reasonable balance between capturing high frequency activity and this econometric necessity. 

Given the speed of the quote updating process, it is possible that 15 seconds is too long 

an interval.  In a robustness check, we also measure variance ratios using 100 millisecond and 

one or two second returns for stocks in the largest size quintile.  We do so only for large cap 

stocks because in other securities, quote midpoints do not change enough in successive 100 

millisecond intervals to provide a reliable measure of the variance of returns.  In addition, for 

calculating variance ratios around liquidity sweeps, we use the variability of quote midpoints at 1 

and 15 second intervals, in a 300 second period before and after each sweep.   
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There are T-q+1 (where T = nq) overlapping returns in the data.  Comparing midpoint 

sampling intervals, we generally have q = 10 or 20 in our tests (see Lo and MacKinlay (1989) for 

a discussion of the choice of q).  Given this, the estimate of the mean drift in prices is  

 ̂  
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Lo and MacKinlay (1989) recommend estimating variances as follows with a bias correction. 
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The variance ratio test is then the ratio of the two variance estimates, which should be linear in 

the measurement interval. 
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Lo and MacKinlay (1988) show that   ( ) is a linear combination of the first q-1 

autocorrelation coefficients with arithmetically declining weights.   

 

2.4.2 Execution Quality 

We measure liquidity using effective (percentage) half spreads in standard ways, defined 

as follows. 

        (       )     
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where qjt is equal to +1 for buyer-initiated trades and -1 for seller-initiated trades, pjt is the 

transaction price and mjt is the prevailing quote midpoint.  Signing trades in a high frequency 

quoting and trading environment is extremely noisy if timestamps are in seconds.  In calculating 

effective spreads for trades in 2010 and 2011, there is no mis-measurement because we use data 

with millisecond timestamps.  For some tests that include data from 2009, we use the approach 

advocated by Holden and Jacobsen (2012) to minimize errors.  For tests that require absolute 

precision in timestamps (such as identifying liquidity sweeps), we only use data from 2010-2011.  

We also decompose effective spreads into their components: realized spreads and price 

impact.  Realized spread is computed as follows: 

        (          )     

where mj,t+τ is the quote midpoint τ periods after the trade.  The realized spread is a measure of 

revenue to market makers that nets out losses to better-informed traders.  It is conventional in 

prior studies to set τ to 5 minutes after the trade, under the assumption that liquidity providers 

close positions after 5 minutes.  Given the nature of high frequency quoting and trading in our 

sample period, a 5 minute interval to close out a position seems exceptionally long for a high-

frequency market maker.  However, since one can never know the true trading horizons of high-

frequency liquidity providers, we estimate realized spreads from one second to 20 seconds after 

each trade.  While computationally challenging, this allows us to examine the full term-structure 

of realized spreads over a range of intervals.  Analogously, we calculate the losses to better-

informed traders, or price impact, as follows. 

        (           )     

Realized spreads and price impact represent a decomposition of effective spreads: the 

identity describing their relationship is exact at particular points in this term structure (values of 

τ), such that esjt = rsjt + pijt. 

 

3. Cross-Sectional Results 

3.1 Quotation and Trading Activity 
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We calculate the average number of trades and quote updates across securities in a size 

quintile in a half hour interval, and then average over the entire time series.  We also perform the 

same calculation for SPY and IWM.  Panel A of Table 1 shows the average number of trades per 

second and Panel B shows the average number of quote updates per second.  Given our data 

filters in section 2.1, each quintile is well diversified across a large number of firms.  The 

smallest size quintile has the largest number of firms due to the use of NYSE size breaks, and 

typically contains micro-cap stocks.  Generally, quintiles 4 and 5 contain over 80 percent of the 

aggregate market capitalization.  For readers interested in efficiency outside of small stocks, 

focusing on these quintiles is adequate to conduct inferences. 

The average number of trades and quote updates increases monotonically from small to 

large firms.  The magnitude of the increases is notable.  For instance, between 1:00 and 1:30 PM, 

there are 0.03 trades per second (or 54 trades in the half hour) for the smallest market 

capitalization securities.  In contrast, for stocks in the largest size quintile there is almost one 

trade per second.  The speed of trading in the two ETFs is extremely high.  In IWM, there are 

over four trades per second and in SPY there are almost 14 trades per second.  This velocity of 

trading increases sharply at the beginning and end of the trading day, consistent with an 

extensive literature in market microstructure.  In the last half hour of the trading day when 

liquidity demands are particularly high, there are over two trades per second in the stocks in the 

largest size quintile and 39 trades per second in SPY. 

Panel B shows the number of quote updates.  There are monotonic increases in quote 

updates across size quintiles.  Focusing again on the 1:00 to 1:30 PM window, there are 0.5 

quote updates per second in the smallest size quintile and over 12 quote updates per second in 

the largest size quintile.  In IWM and SPY, there are 136 and 91 updates per second.  In general, 

the data show that changes in the supply curve are quite rapid – an order of magnitude more than 

trades.  Their speed underscores the importance of execution risk and latency.     

 

3.2 Quote updates and variance ratios 

We sort all stocks within a size quintile into low and high update groups in each half hour 

based on the median number of updates in the prior half hour.  Although we refrain from 
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providing further statistics in a table, we can report that there is ample variation in quote update 

groups within size quintiles.  We calculate the cross-sectional average variance ratio in each half 

hour and report the time series mean of these cross-sectional averages in Table 2.  The standard 

errors of these means are extremely small because of the smoothing of average variance ratios 

over large numbers of stocks.  To provide a sense of variability, we report time series averages of 

the cross-sectional standard deviations of variance ratios in parentheses. 

Outside of microcap stocks (size quintile 1), average variance ratios are quite close to 

one.  For all intents and purposes, an investor seeking to trade securities in these groups can 

expect prices to behave, on average, as a random walk over the horizons that we examine.  We 

also calculate but do not report first order autocorrelations of 15 second quote midpoint returns.  

These autocorrelations are largely indistinguishable from zero.  In addition, average variance 

ratios for SPY and IWM are remarkably close to one.
6
 

Our interest is in the difference in variance ratios between high and low update groups.  

In the vast majority of cases, variance ratios in the high update groups are closer to one than in 

the low update group.  For example, in the two largest size quintiles, which contain the majority 

of the market capitalization of the U.S. equity markets, average variance ratios are closer to one 

in high update groups for 17 out of 24 half-hour estimates.  In two cases, the average variance 

ratios are identical and there are 5 cases where high update groups have variance ratios which are 

further from one.  Average cross-sectional standard deviations are also systematically lower for 

high update groups.  In the two largest size quintiles, the cross-sectional standard deviation is 

lower for high update groups in all 24 cases.   

 

3.3 Separating Quote Updates from Trades 

Quote updates can come from additions and cancellations of orders to the order book, or 

from trades that extract liquidity.  One could argue that controlling for trading is unnecessary 

because all changes to the supply curve are legitimate, regardless of whether they are due to 

submissions/cancellations or trading.  Nonetheless, it is important to understand whether it is 

                                                           
6
 We also calculate but do not report variance ratios and autocorrelations based on transaction prices.  As expected, 

they are influenced by bid-ask bounce.  Estimates are available upon request.   
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differences in the trading frequency across these groups that drive the relationship we observe.  

Within each size quintile, we sort all stocks in a half hour interval into quintiles based on the 

number of trades in that interval.  Then, within each trade quintile, we further separate stocks 

into low and high update groups based on the median number of quote updates in the prior half 

hour.  This dependent sort procedure results in 50 groups (5x5x2), and allows us to see the effect 

of increased quotation activity, holding size and trading activity roughly constant.   

Displaying such a large number of estimates is an expositional challenge so we employ 

two approaches to describe our results.  Figure 1 shows average variance ratios for each size and 

trade quintile, with separate bars for low and high update groups.  The three-dimensional graph 

is tilted to allow the reader to see differences in variance ratios and departures from one.  The 

graph shows that across all size and trade quintiles, average variance ratios are generally closer 

to one for high update groups.  Figure 2 shows a similarly constructed bar graph for the average 

cross-sectional standard deviation of variance ratios.  Cross-sectional standard deviations are 

systematically lower for high update groups in every size and trade quintile.   

Table 3 contains formal statistics for these differences.  Since we are interested in 

departures of variance ratios from one, we calculate the absolute value of the difference in each 

stock’s variance ratio from one (|VRi-1|), and then compute cross-sectional averages for low and 

high update groups.  Panel A shows times series means of the differences in cross-sectional 

averages (high minus low).  The average differences in the distance of variance ratios from one 

are negative for every size and trade quintile, indicating that high update groups consistently 

have variance ratios which are closer to one.  The magnitudes of the differences are between 0.02 

and 0.03, which are sizeable given the average variance ratios in Table 2.  Standard errors, which 

are conservative and based on the time series distribution of differences, are quite small. 

It may be that 15 seconds is too long an interval for the purpose at hand.  Therefore, we 

also measure variance ratios by sampling quote midpoints at 100 millisecond and 1 second 

intervals (q=10), as well as 100 millisecond and 2 second (q=20) intervals.  This is only feasible 

for large stocks because quote midpoints have to change enough over 100 milliseconds to 

calculate variances.  As in our previous tests, we calculate average variance ratios across trade 

quintiles, and then report differences in the high versus low update groups in Panel B of Table 3.  
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In trade quintile 1, the differences in variance ratios are statistically indistinguishable from zero.  

In trade quintiles 2 through 4, the differences are reliably negative, implying that high update 

groups have variance ratios closer to one even at this higher frequency.  In trade quintile 5, the 

difference in average variance ratios is positive when sampling midpoints at 1 second but 

indistinguishable from zero when using 2 seconds.   

We also calculate average effective spreads across update groups.  To compute these, we 

first calculate share-weighted effective spreads for each stock in a half hour interval, and then 

average across stocks in a group.  These results are presented in Figure 3 and Panel C of Table 3.  

In every size and trade quintile, the differences are negative; effective spreads are lower for high 

update quintiles.  With the exception of the smallest trade quintile in microcap stocks, all of the 

reported differences across groups have small standard errors.  The magnitude of the differences 

varies across size and trade quintiles, ranging from 0.25 to 6.10 basis points.  In large cap stocks 

(size quintile 5) and the highest trade quintile, the difference in effective spreads is 1.12 basis 

points, which we regard as economically large. 

Overall, controlling for market capitalization and the level of trading, securities which 

have increased quotation activity tend to have price processes that more closely resemble random 

walks and have lower effective spreads.    

 

3.4 Spread Decompositions 

Reduction in effective spreads could come from changes in realized spreads to liquidity 

providers, changes in losses to informed trades (i.e. a change in price impact), or some 

combination of the two.  Changes in price impact could occur either because of a change in the 

information environment, or because liquidity providers are less likely to be adversely selected.  

Realized spreads could decline because of competition between liquidity providers, which seems 

plausible given the investment in infrastructure and trading technology.
7
   

The classic Glosten (1987) decomposition of effective spreads into realized spreads and 

price impact is typically implemented by looking at quote midpoints 5 minutes after each trade.  

                                                           
7
 See, for example, “Raging bulls: How Wall Street got addicted to light speed trading”, Wired Magazine, August 

2012. 
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The intuition behind this choice of horizon is that liquidity providers can reasonably offload 

inventory 5 minutes after acquiring it.  While such a horizon is sensible in floor trading 

dominated by specialists and floor brokers, or in OTC markets operated by traditional market 

makers, it seems excessively long for high frequency liquidity providers who may take offsetting 

trades much more quickly.  In addition, it is unlikely that horizons over which liquidity-driven 

return reversals take place are similar across securities with different trading and quoting 

frequencies.  Since we are necessarily agnostic about horizons, we calculate realized spreads 

over one second intervals ranging from one to 20 seconds after the transaction.  An added 

advantage of doing so is that it allows us to see the full term-structure of realized spreads.  With 

realized spreads in place, price impact over each horizon is simply the difference between 

effective spreads and realized spreads (pijt = esjt - rsjt). 

Implementing this approach in millisecond data is computationally non-trivial because of 

the enormous volume of within-second quotes.  Since full cross-sectional coverage is important 

to our tests, we sample the time series by randomly selecting two days in each month for 2010-

2011.  For these 48 days, we calculate share-weighted effective spreads, realized spreads and 

price impact for each stock, and then average across low and high update groups within size and 

trade quintiles.  As in Table 3, we calculate differences between each of these measures by 

subtracting the low update group average from its high update group counterpart.  Table 4 shows 

the time series of average differences in basis points.  In the interest of space, we only show 

realized spreads and price impact for one, five, ten and twenty seconds after the transaction. 

Consistent with the full sample results in Table 3, average differences in effective half 

spreads are negative for most size and trade quintiles.  In size quintiles 1 through 3, most of the 

reduction in effective spreads comes from decreases in realized spreads.  In size quintiles 4 and 

5, the reductions in effective spreads themselves are smaller, but are still due to declines in 

realized spreads.  These results are in contrast to those reported by Hendershott et al. (2011) who 

report increases in realized spreads between 2001-2005, suggesting that liquidity providers (at 

least temporarily) earned greater revenues after the advent of autoquoting.  Our results suggest 

that between 2009 and 2011, competition between electronic liquidity providers appears to be 

sufficient to generate permanent reductions in realized spreads.   
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3.5 Liquidity Drawdowns and Market Resiliency 

In resilient markets, large drawdowns of liquidity should minimally influence prices.  The 

millisecond TAQ data afford the possibility of such a test.
8
  We employ a three-step procedure to 

isolate large liquidity drawdowns.  In the first step, we identify multiple trades in a stock with the 

same millisecond timestamp across more than one reporting venue.  We then aggregate these 

individual sweeps that occur within short durations of each other into “collapsed” sweeps, and 

focus exclusively on those that extract large amounts of liquidity.  Details of the process are 

described below. 

In the first step, we isolate multiple trades with the same millisecond time stamp that 

originate from different reporting venues.
9
  It is critical that trades take place in different venues 

to ensure that multiple trades with the same millisecond time stamp are not a mechanical artifact 

of trade reporting and splitting procedures – as would be generated by one large order interacting 

with multiple small counterparty orders on a single limit order book.  Trades across multiple 

venues in the same millisecond are algorithmic in nature, sweeping the top of various order 

books in dark and/or lit markets, and therefore represent attempts to rapidly extract liquidity.  

During our sample period, there are 764 million such liquidity sweeps, comprising $17.6 trillion 

in volume.  Market volume over this period (2010-2011) is approximately $70 trillion, so 

individual sweeps represent about 25 percent of total volume.   

Panel A of Table 6 shows three measures of the size and nature of these sweeps.  In each 

half hour, we calculate the sum of shares traded in all individual sweeps, scaled by total share 

volume.  We then average across stocks in a size quintile and then over time. In small stocks, 

sweeps represent 13 percent of total volume, rising almost monotonically to 22 percent for large 

                                                           
8
 One could look, ex post, at cases in which there are dramatic changes in price seemingly caused by innocuously 

small trades.  This is the approach that some market participants take to highlight aspects of market structure to 

either regulators or the press.  A good example is individual stock “flash crashes” systematically documented by 

Nanex on its website (http://www.nanex.net/FlashCrashEquities/FlashCrashAnalysis_Equities.html).  While there 

are certainly advantages to such small sample detection methods, we prefer to use a larger sample and a more 

agnostic approach to draw inferences.  
9
 Although millisecond timestamps may be the same, this does not necessarily mean that the execution times of such 

trades are identical.  Venues operate on micro and nanosecond time scales so that latency differences between direct 

feeds from exchanges and the CQS may cause trades to look as though they occur at the same exact time.  That is 

not a problem for our identification, however, because from an economic perspective, the liquidity sweep is still 

extremely rapid. 

http://www.nanex.net/FlashCrashEquities/FlashCrashAnalysis_Equities.html
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stocks.  Given fragmentation and the speed at which quotes change, trading algorithms that 

attempt to extract liquidity quickly across multiple venues must exercise particular care to not 

violate the trade-through rule of Reg NMS.  It is therefore common to employ Intermarket 

Sweep Orders (ISOs).  The second and third columns in Panel A show the number of ISO trades 

in individual sweeps, scaled by the total number of trades and the total number of ISOs, 

respectively.  Both measures show considerable use of ISOs.  ISO usage is higher in large 

capitalization stocks, often representing over 13 percent of all trades in an interval and over 27 

percent of all ISO trades.  Figure 4 shows the time series distribution of the size of the sweeps 

(the relative volume ratio in percent) and the ISO percentage for small and large cap stocks.  The 

graph shows an increase in the size of sweeps and the use of ISOs over time.   

We separate our sample of sweeps into buyer- and seller-initiated sweeps, so that the 

trading we analyze represents rapid drawdowns on either the bid or ask side of the limit order 

book (and not just fast random trades on both sides of the market).The bottom part of Panel A in 

Table 6 shows the distribution of the time difference in seconds between successive individual 

sweeps.  At the 25
th

 percentile, the inter-sweep difference in time, across both buys and sells, is 

less than 1/20
th

 of a second.  The median time difference between successive sweeps in small cap 

stocks is 22 seconds, falling monotonically across size quintiles to only 0.8 seconds in large cap 

stocks.  It is unlikely that sweeps on one side of the market, which occur so closely to one 

another, are independent.  Typical trading algorithms generate waves of child orders that are 

conditioned on prior executions and desired volume (among other parameters).  Therefore, the 

second step of the procedure we use aggregates closely timed sequential sweeps.  To do so, we 

first calculate the expected time between trades as the median time between trades for each 

stock-half-hour in the prior month.  We then cumulate consecutive buy or sell sweeps together if 

the time between adjacent sweeps is less than its expected value.   

This process summarizes 746 million individual sweeps into 434 million aggregated 

buyer- and seller-initiated sweeps.  By construction, aggregated sweeps are larger and inter-

sweep time differences are greater.  Since our interest is in resiliency, we further restrict the 

sample to those sweeps that extract large amounts of liquidity.  We use 10,000 shares as a 

breakpoint to establish large drawdowns of liquidity for two reasons.  First, it corresponds to the 
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cutoff for block trades in the upstairs market in the era of pre-electronic trading.  Second, it 

allows for comparisons with the extensive literature on the liquidity and price discovery effects 

of such block trades.
10

  Our final sample consists of about 4.4 million aggregated sweeps each 

for buyer- and seller-initiated trades. 

Panel B shows the distribution of inter-sweep time differences for buyer and seller-

initiated aggregated sweeps.  If a stock has only one sweep in a day, we cannot calculate an inter-

sweep time difference.  The first column, labeled “% Unique” show the percentage of such 

sweeps across size quintiles.  In microcaps, over 30 percent of all sweeps are the only sweep in 

that day.  That percentage declines monotonically so that in size quintile 5, less than 4 percent of 

sweeps are unique to the day.  For the remainder of the sample, inter-sweep time differences are 

large.  There is considerable skewness in both distributions, but the average time between sweeps 

ranges from 2,456 seconds for size quintile 1 to 454 seconds for size quintile 5.   

Our interest is in resiliency, the extent to which the market is able to absorb such liquidity 

shocks without experiencing significant changes in the price formation process.  To that end, we 

estimate variance ratios before and after these large liquidity sweeps.  This poses implementation 

challenges.  We need an appropriate time horizon over which to measure returns.  To preserve 

independence, the overall pre- and post- measurement interval needs to be short enough so that 

there is minimal overlap in successive sweeps in the same stock.  Given these considerations, 

and the distribution of the time differences between consecutive sweeps in Table 6, we define 

pre- and post-sweep periods as 300 seconds.  For measuring variance ratios, this allows us to 

sample quote midpoints at 1 second and 15 second intervals (q=15).  We impose the additional 

constraint that there be at least 15 non-zero returns in each 300 second interval in order to 

calculate variance ratios. 

Panel A of Table 7 shows average values of |VRt-1| before and after large liquidity 

sweeps.  Average pre- and post-sweep estimates of variance ratios are quite different from one, 

and from the unconditional averages in Table 2.  The relatively high variance over short horizons 

                                                           
10

 We also identify large sweeps using a stock specific approach.  Specifically, we define the relative size of each 

sweep as the number of shares traded in the collapsed sweep, scaled by average trade size (in shares) in the same 

stock in the prior month multiplied by the number of trades in the collapsed sweep.  We then consider large sweeps 

as those above the 95
th

 percentile in the distribution of this relative volume ratio.  Such a definition includes many 

liquidity sweeps that are smaller than 10,000 shares.  The results from this exercise are available upon request. 
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that these variance ratios imply is consistent with the “liquidity-based volatility” that 

Brunnermeier and Pedersen (2010) describe.   More importantly, the average post-sweep 

estimates of |VRt-1| are remarkably similar to variance ratios calculated prior to the aggregated 

sweeps.  As a consequence, the values of ∆|VRt-1| are very close to zero.   Note that paired t-

statistics reject the null that ∆|VRt-1| is different from zero; the significant t-statistics are not 

surprising, since the sample sizes are enormous.  However, the point estimates consistently show 

that variance ratios improve slightly after large drawdowns in liquidity. 

Panel B shows share-weighted average effective spreads in the 300 seconds before and 

after these large sweeps.  We also report the total effective spread paid by all trades within the 

sweep itself.  Effective spreads before sweeps decline with firm size from roughly 20 basis 

points to 3 basis points.  The average total effective spread, paid by those executing the sweep 

orders, ranges from around 120 basis points (in size quintile 1) to 17 basis points (for quintile 5).  

The latter is roughly similar in magnitude to the total price of block trades in Dow Jones stocks 

reported by Madhavan and Cheng (1997).  Post-sweep effective spreads are quite similar to those 

prior to the liquidity drawdown.  Once again, paired t-statistics reject the null of equality (albeit 

with large sample sizes) and, in all cases, the direction of the difference is one in which effective 

spreads are lower after the liquidity event.  It appears that investors are able to extract large 

amounts of liquidity from the market, with markets replenishing that liquidity quickly and the 

price discovery process experiencing no significant ill effects. 

 

4. Alternative Tests 

The above tests suggest that, in the cross-section, increased quotation activity is 

associated with variance ratios closer to one and with lower costs of trading. Of course, price 

efficiency, quotation activity and trading are all endogenous.  Although we measure quotation 

activity (in the half hour) prior to measuring variance ratios, this endogeneity may affect 

inferences.  In this section, we report results from tests that allow for sharper conclusions. 

 

4.1 Exploiting Time Series Variation in Updates 
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Nagel (2012) reports that the returns to supplying liquidity are strongly related to 

measures of fundamental volatility, such as VIX.  If quote updates are the tool that market 

makers use to manage their intraday risk exposure (and hence affect the returns that they earn), 

then updates should also be related to the VIX.  We sum the number of updates for each firm-day 

and then average across firms in a size quintile.  Figure 5 plots the daily time series, along with 

the VIX over the sample period.  The graph shows two things.  First, the time series variation in 

updates is large.  Although the difference in number of updates across large-cap and small-cap 

firms causes the variation in updates for smaller size quintiles to be dwarfed when presented in a 

single figure, separate plots for each size quintile (not shown to conserve space) show similar 

time series variation in all size quintiles and there is little evidence of a secular trend.  Second, 

the correlation of variation in updates with variation in the VIX is clear.  For example, the high 

volatility period in August 2011 is accompanied by large increases in updates.  The local peak in 

the average number of updates across all firms and VIX on August 8 coincides with a 6.7 percent 

drop in the S&P 500.  This suggests that aggregate uncertainty has a role to play in the intensity 

of changes in the supply curve.   

We investigate these relations more formally using a simple reduced form bivariate 

vector autoregression of the following form. 
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where all changes are in percentages.  The system is estimated on daily data from 2009-2011 

separately for each size quintile.  Simple specification checks (not reported) show that four lags 

are adequate to capture the dependence structure.   

Table 5 reports coefficients with Z-statistics in parentheses.  The regressions indicate that 

changes in updates are positively related to lagged innovations in VIX, suggesting that liquidity 

suppliers react to changes in the risk environment.  Beyond a one-day lag, the influence of VIX 

wanes quite quickly.  Interestingly, the VIX equation shows no connection between changes in 



 24 

the VIX and quote update activity at any lag.  This is inconsistent with the belief that high 

frequency quoting/trading either generates or exacerbates measures of market volatility. 

The results of the VAR suggest another test that may help control for endogeneity.  

Recall that despite the fact that we measure variance ratios (in the half hour) after calculating 

quote updates, improvements in variance ratios may attract quote updates rather than be caused 

by them; alternatively, another variable, such as the management of inventory risk, could be 

driving both variance ratios and quote updates on day t.  As another control for this, we perform 

a robustness check and employ quote updates from the prior day in assigning securities to update 

groups – it seems unlikely  that high-frequency variance ratios in day t affect, or are driven by 

the variables that cause, quotation activity in day t-1.
11

  Since the results in Table 5 indicate that 

changes in updates are negatively related to their lagged values, this allows for still larger 

separation between the two.  We replicate the tests in Tables 2 and 3 using quote update groups 

assigned from the prior day.
12

  The results are not reported in tables to conserve space but they 

lead to the same conclusion – higher levels of quote updates are associated with variance ratios 

closer to one.   

 

4.2 An Out-of-Sample Exogenous Shock: The Introduction of Arrowhead on the TSE 

4.2.1 Changes to Trading Protocols 

On January 4, 2010, the Tokyo Stock Exchange changed its trading infrastructure 

(hardware, operating system and software) in a way that facilitates high frequency quoting and 

trading.  Under the prior system, the time between order submission and posting on the book 

and/or execution ranged between 1 to 2 seconds.  In the new system, referred to as Arrowhead, 

latency dropped to roughly 2 milliseconds.  This infrastructure change was accompanied by 

several other changes, some of which have a bearing on the design of our tests.  First, the TSE 

permitted co-location services so that trading firms were permitted to install servers on the TSE 

                                                           
11

  Inventory positions may affect both quotation activity and variance ratios.  If that were the case, however, using 

the previous day’s updates to rank stocks should mitigate this effect – HFT’s by definition attempt to end a day’s 

trading with a zero inventory position.  Related, evidence presented in Hendershott and Menkveld (2013) suggests 

that the average inventory half-life for NYSE securities, measured in a sample period prior to the widespread use of 

high-frequency trading, is relatively short (0.92 days).   
12

 We check composition of low and high update groups using both the prior half hour and the prior day.  On 

average, in about 25 percent of data, securities fall into different groups based on the different grouping procedures. 
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Primary Site for Arrowhead.  Second, time stamps for data reported to traders and algorithms 

changed from minutes to milliseconds.  Third, the TSE changed its tick size grid.  Pre-

Arrowhead, stocks were bracketed into 13 price buckets with separate tick sizes.  Post-

Arrowhead, both the breakpoints and the minimum price variation were changed.  For example, 

pre-Arrowhead, stocks between ¥30M and ¥50M had a tick size of ¥100,000.  After Arrowhead, 

this tick size was reduced to ¥50,000.  Importantly, tick size reductions did not take place in all 

stocks/price grids.  Fourth, the TSE instituted a new rule, termed the “sequential trade quote” in 

which a single order that moves prices beyond a certain price band (referred to as the special 

quote renewal price interval) triggers a quote/trade condition for one minute.  This condition is 

designed to inform market participants and attract contra-side orders.
13

  Fifth, the TSE 

implemented changes to its procedures designed to slow down trading when there is an order 

imbalance.  Pre-Arrowhead, the TSE employed price limits to trigger special price quote 

dissemination that would (presumably) attract contra order flow.  At the introduction of 

Arrowhead, these price limits were raised (allowing prices to move more freely), and the 

allowable range of the next price (the “renewal price interval”) was also raised.  These changes 

were not across the board but were based on the prior stock price. 

 

4.2.2 Results 

We calculate the average daily number of updates, new order submissions, trades, 

cancellations, modifications to orders that lose time priority, and modifications to orders that 

retain time priority.  The time series of these cross-sectional averages are displayed in Figure 6.  

Recall that in the U.S., we do not observe submissions, cancellations and modifications, and can 

only calculate total updates.  In Japan, the correlation between updates and submissions, trades, 

cancellations and modifications is easily observable, implying that updates are a good instrument 

for the activity we are interested in.  In addition, the spikes in the graph correspond to economic 

uncertainty.  For instance, there is a local spike in updates and their constituents on May 7, 2010, 

the calendar day after the Flash Crash in the U.S. (recall that the time difference between NY and 

                                                           
13

 These conditions are triggered minimally in our sample period.  We reproduce our estimates after removing such 

quotes and find no difference in results. 



 26 

Tokyo is 14 hours).  We also observe a sharp increase in updates and their components on the 

Monday (and subsequent days) after the earthquake, tsunami and Fukushima nuclear disaster in 

March 2011.  These easily identifiable spikes reinforce our conclusion from U.S. data that 

updates respond to real economic uncertainty.  Finally, there is a shift in update levels before and 

after the introduction of Arrowhead.  As a formal test, we compute the average number of 

updates for each security in a three month interval before and after the Arrowhead introduction.  

The average percentage increase in updates is 18 percent with a paired t-statistic of 10.75.   

Our primary interest is in whether the shift to systems designed to accommodate high 

frequency activity is associated with changes in variance ratios and the cost of trading.  To be 

consistent with our U.S. analysis, we continue to calculate variance ratios based on 15 second 

and 5 minute returns.  In the pre-Arrowhead data, time-stamps are at the minute frequency.  

However, since the sequence of changes to the limit order book is preserved in the data series, 

we use linear interpolation to calculate prices changes at 15 second intervals (similar to the 

process used by Holden and Jacobsen (2014) for U.S. markets).  Because Figure 6 suggests 

substantial changes in the information environment over long periods, and because we wish to 

focus purely on the effects of the Arrowhead introduction, we calculate variance ratios in the 

three month interval before and after the introduction.  We do so only for securities that do not 

experience a change in tick size so that autocorrelations (and hence variance ratios) are not 

affected by changes in minimum price variation.  For each security, we calculate the deviation in 

variance ratios from one (|VR-1|) and average over the three month pre- or post-Arrowhead 

period for each half-hour of trading.  We then compute paired differences between the pre and 

post-period averages for each security.  The second column of table 8 shows the cross-sectional 

average of these paired differences, along with their t-statistics.  In every half-hour of the trading 

day, the change in the deviations of variance ratios from one is negative, implying an 

improvement in variance ratios.  The magnitude of the changes in average variance ratios ranges 

from 0.01 to 0.03, similar to the differences between high update and low update groups in the 

U.S. (Table 3). 

We also calculate share-weighted effective spreads for each stock, again restricting the 

sample to securities with no changes in tick size.  As with variance ratios, we calculate weighted 
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effective spreads in each half hour interval, and then average three months before and after the 

introduction of Arrowhead.  Average paired changes in effective spreads are in the 3
rd

 column of 

Table 8.  In each half hour interval, effective spreads decline by about 2 basis points.  An 

exception is the first half hour in the afternoon trading session, in which the decline is even 

larger (3.6 basis points).  All changes are highly statistically significant.  Since pre-Arrowhead 

effective spreads are approximately 10 basis points, a decline of between two to three basis 

points is economically meaningful.   

The 4
th

 and 5
th

 columns of the table show changes in realized spreads and price impact 

based on midpoints 10 second after a trade.
14

  The results show a substantial decline in realized 

spread, varying from 5 to almost 9 basis points, and a sharp increase in price impacts, varying 

from 3 to 7 basis points (see Figure 7).  Recall that the relation between effective spreads, 

realized spreads and price impact is mechanical: if effective spreads decline by about 2 basis 

points and realized spreads also decline, it must be the case that price impact increases.   

The increase in price impact associated with an increase in high frequency activity in this 

market is not consistent with the decline in price impact after autoquote in the U.S. market, 

observed in Hendershott, Jones and Menkveld (2011).  We speculate that this difference is 

related to different rules on price continuity in the two markets.  As described earlier, prior to 

Arrowhead, the TSE’s trading protocols smoothed price paths when an order imbalance occurred 

– in effect, changes in spread midpoints were suppressed, reducing measured price impacts.  

Post-Arrowhead, the magnitude of the smoothing is substantially reduced, which would present 

as an increase in price impact.    To verify this, we calculate the frequency of special price quote 

dissemination before and after the introduction of Arrowhead.  We do so for each stock in the 

three month interval before and after Arrowhead and find that special quote dissemination 

decreases by an average of 50 percent (t-statistic=12.72). 

Summarizing, the introduction of Arrowhead trading was designed to reduce the latency 

of trading on the TSE.  Following its introduction, the evidence indicates that variance ratios 

move closer to 1.  The magnitude of this change is very similar to the difference in variance 

                                                           
14

 As with U.S. data, we compute realized spreads and price impact using a variety of horizons but only show one 

horizon for brevity. 
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ratios observed in high update and low update groups in the U.S.  In addition, effective spreads 

also decline sharply immediately around the shift to Arrowhead, with the magnitude of this 

decline roughly similar to the difference in effective spreads in high and low update groups in the 

U.S.  Overall, evidence from this exogenous change in trading platforms in Japan confirms the 

evidence found in U.S. equity markets, with higher levels of high frequency activity associated 

with improvements in the price discovery process and lower costs of trading. 

 

5. Conclusion 

Market structure in the U.S has undergone a fundamental shift, replacing old-style market 

makers who had affirmative and negative obligations with intermediaries who provide liquidity 

endogenously, electronically, and at higher frequency.  The U.S. is not unique in experiencing 

this shift, as markets around the world have similarly transformed themselves.  The switch to 

high frequency quoting and high frequency trading has generated much debate with a long list of 

researchers, market professionals, and regulators concerned that price discovery and efficiency 

may be fundamentally harmed. 

In this paper, we investigate whether high frequency changes in supply curves have a 

detrimental effect on the efficiency of prices.  On average, the evidence suggests that high 

frequency quotation activity does not damage market quality.  In fact, the presence of high 

frequency quotes is associated with modest improvements in the efficiency of the price discovery 

process and reductions in the cost of trading.  Even when high frequency trading is associated 

with a large extraction of liquidity from the market for individual securities, the price discovery 

process in those securities appears to be quite resilient.  

To us, the data broadly show that the electronic trading market place is liquid and, on 

average, serves investors well.  Obviously, some caution in interpretation is warranted.  First, 

although the evidence here suggests that high frequency activity is associated with some 

improvements in the market’s function, these results do not imply that the market always 

functions in this way.  An obvious case in point is the Flash Crash.  Market practitioners also 

refer to “mini-crashes” in individual securities in which there are substantial increases or 

decreases in prices as liquidity disappears and market orders result in dramatic changes in prices.  
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However, while dislocations are harmful to market integrity, it is important to recognize that they 

have always occurred in markets (even before the age of electronic trading), just as flickering 

quotes have existed well before the advent of high frequency quotation (Baruch and Glosten 

(2013)).  If liquidity provision is not mandated by law, liquidity providers can always exit 

without notice, exposing marketable orders to price risk.
15

  From an economic perspective, one 

key issue is whether markets provide efficient price discovery on average and whether, in 

expectation, investors can hope to get fair prices.  That appears to be the case in our sample.  Of 

course, it is also important to consider whether a particular market structure increases or 

decreases the propensity for dislocations to occur, as well as how it affects the severity of the 

dislocation. 

We also urge caution in drawing conclusions given potential externalities that we cannot 

measure.  There is a tradeoff between the cost and benefit of monitoring high frequency 

quotation activity (Foucault, Roëll and Sandas (2003), and Foucault, Kadan and Kandel (2012)).  

If liquidity suppliers change supply curves in microseconds and liquidity extractors bear the cost 

of monitoring supply curves, this can have a negative effect on welfare.  We provide no evidence 

on the extent to which high frequency quotation/trading affects welfare.  But broadly 

understanding the influence of rapidly changing supply curves on price formation and the cost of 

trading is critical because, as Stiglitz (2014) points out, these are ‘intermediate’ variables that are 

necessary (but not sufficient) for understanding the role of high frequency quoting/trading on 

welfare.   

 

 

                                                           
15

 The Brady Report (1988) notes that for 31 stocks for which detailed trade data is available, 26% of specialists did 

not take counterbalancing trades, and their trading reinforced market trends on October 19, 1987.  Some specialists 

in large capitalization securities were short those stocks on that day.  On Tuesday, October 20, 1987, 39% of 

specialists in those 31 securities had trading which reinforced (negative) market trends.   
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Table 1 

 

Average Number of Trades and Quote Updates in Size Quintiles and Selected ETFs 

The sample consists of all common stocks (not including ETFs), with a stock price greater than $1 and a market capitalization 

greater than $100m at the beginning of the month.  The sample period is 2009-2011, excluding May 6, 2010.  Each firm is 

placed in a size quintile at the beginning of the month using NYSE breakpoints taken from Ken French’s website.  A quote 

update is defined as any change in the prevailing best bid or offer price (BBO), or any change in the displayed size (depth) for 

the best bid or offer, across all exchanges.  For each firm and half hour interval, we calculate the total number of trades and the 

total number of quote price or quote size changes in that interval.  These are averaged across firms in a quintile and then 

averaged over the time series.  Statistics are reported on a per second basis.  Separate statistics are shown for two ETFs, SPY 

(the S&P 500 “spider”) and IWM (the iShares Russell 2000 Index ETF). 

Size 
9:30 

10:00 

10:00 

10:30 

10:30 

11:00 

11:00 

11:30 

11:30 

12:00 

12:00 

12:30 

12:30 

1:00 

1:00 

1:30 

1:30 

2:00 

2:00 

2:30 

2:30 

3:00 

3:00 

3:30 

3:30 

4:00 

Panel A: Average number of trades per second 

Small 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.10 

2 0.15 0.14 0.12 0.11 0.10 0.09 0.08 0.08 0.01 0.10 0.11 0.14 0.28 

3 0.33 0.32 0.27 0.24 0.21 0.18 0.17 0.18 0.19 0.22 0.24 0.31 0.60 

4 0.65 0.62 0.50 0.44 0.38 0.34 0.32 0.32 0.34 0.40 0.44 0.56 1.06 

Large 2.05 1.77 1.41 1.22 1.05 0.92 0.85 0.86 0.90 1.05 1.14 1.42 2.62 

SPY 39.28 32.54 24.05 20.43 17.52 14.79 13.36 13.99 14.62 17.92 18.88 22.35 39.01 

IWM 13.45 10.88 7.67 6.42 5.43 4.62 4.28 4.40 4.61 5.67 6.07 7.24 13.12 

Panel B: Average number of quote updates per second 

Small 1.42 0.98 0.79 0.69 0.62 0.56 0.52 0.52 0.52 0.59 0.61 0.70 1.09 

2 3.57 2.85 2.33 2.04 1.79 1.60 1.48 1.49 1.55 1.78 1.82 2.13 3.27 

3 6.49 5.82 4.82 4.21 3.64 3.23 3.00 3.04 3.17 3.72 3.81 4.51 6.85 

4 10.81 10.79 9.08 7.92 6.70 5.84 5.42 5.49 5.72 6.70 6.99 8.28 12.42 

Large 25.52 26.02 21.80 18.80 15.93 13.76 12.69 12.87 13.27 15.45 16.18 19.00 27.55 

SPY 376.40 315.86 249.11 211.02 181.34 152.05 135.89 136.48 138.14 158.88 165.07 188.99 288.95 

IWM 252.90 219.86 172.82 141.70 120.81 101.24 91.12 91.42 93.30 107.87 113.11 127.48 186.53 
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Table 2 

 

Average Variance Ratios for Size Quintiles and Selected ETFs 

The sample consists of all common stocks, with a stock price greater than $1 and a market capitalization greater than $100m 

at the beginning of the month from 2009-2011, excluding May 6, 2010.  A quote update is defined as any change in the 

prevailing best bid or offer price (BBO), or any change in the displayed size (depth) for the best bid or offer, across all 

exchanges.  For each firm and half hour interval, we use the median number of quote updates to separate firms into low and 

high update groups (within each size quintile).  For each firm and subsequent half hour interval, we calculate variance ratios 

based on 15 second and 5 minute quote (NBBO) midpoints.  The table shows time series averages of these group variance 

ratios.  The time series average of the cross-sectional standard deviation in parentheses.  Separate statistics are shown for two 

ETFs, SPY and IWM. 

Quint./ETF 
Upd. 

Group 

10:00-

10:30 

10:30-

11:00 

11:00-

11:30 

11:30-

12:00 

12:00-

12:30 

12:30-

1:00 

1:00-

1:30 

1:30-

2:00 

2:00-

2:30 

2:30-

3:00 

3:00-

3:30 

3:30-

4:00 

Small Low 0.81 0.78 0.77 0.76 0.74 0.73 0.74 0.74 0.74 0.75 0.76 0.79 

  (0.61) (0.60) (0.60) (0.59) (0.58) (0.57) (0.58) (0.57) (0.56) (0.57) (0.57) (0.57) 

 High 0.87 0.87 0.86 0.84 0.82 0.80 0.80 0.80 0.80 0.81 0.82 0.84 

  (0.60) (0.60) (0.59) (0.59) (0.58) (0.57) (0.56) (0.56) (0.55) (0.55) (0.55) (0.56) 

2 Low 0.99 0.98 0.97 0.97 0.94 0.94 0.94 0.94 0.91 0.94 0.93 0.91 

  (0.63) (0.64) (0.63) (0.63) (0.61) (0.61) (0.60) (0.60) (0.58) (0.59) (0.58) (0.58) 

 High 0.99 1.00 0.98 0.99 0.95 0.94 0.94 0.93 0.90 0.92 0.90 0.88 

  (0.60) (0.61) (0.61) (0.62) (0.60) (0.59) (0.58) (0.58) (0.54) (0.55) (0.54) (0.54) 

3 Low 1.06 1.06 1.06 1.06 1.04 1.02 1.02 1.02 0.97 0.98 0.96 0.92 

  (0.65) (0.66) (0.66) (0.66) (0.65) (0.64) (0.63) (0.63) (0.58) (0.59) (0.57) (0.56) 

 High 1.04 1.05 1.06 1.08 1.04 1.02 1.01 1.01 0.95 0.95 0.92 0.91 

  (0.62) (0.63) (0.63) (0.65) (0.63) (0.61) (0.60) (0.60) (0.55) (0.55) (0.53) (0.53) 

4 Low 1.09 1.10 1.10 1.11 1.08 1.06 1.05 1.04 1.00 0.99 0.97 0.95 

  (0.66) (0.68) (0.68) (0.69) (0.67) (0.65) (0.65) (0.63) (0.59) (0.59) (0.57) (0.56) 

 High 1.05 1.05 1.08 1.10 1.07 1.05 1.04 1.03 0.97 0.98 0.95 0.96 

  (0.62) (0.62) (0.64) (0.65) (0.64) (0.62) (0.60) (0.60) (0.55) (0.55) (0.53) (0.54) 

Large Low 1.09 1.09 1.11 1.12 1.09 1.07 1.06 1.05 1.00 0.99 0.99 1.01 

  (0.65) (0.65) (0.67) (0.68) (0.65) (0.64) (0.62) (0.62) (0.57) (0.57) (0.55) (0.56) 

 High 1.04 1.03 1.06 1.08 1.06 1.05 1.04 1.03 0.98 0.99 0.99 1.02 

  (0.58) (0.59) (0.60) (0.62) (0.60) (0.59) (0.58) (0.57) (0.53) (0.53) (0.52) (0.53) 

SPY  0.97 0.94 0.99 0.99 0.96 0.97 1.00 0.99 0.96 0.97 1.00 1.03 

IWM  1.00 0.99 1.00 1.03 0.97 0.98 1.01 1.00 096 0.96 0.98 0.97 
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Table 3 

 

Average Differences in Deviations of Variance Ratios from One and Effective Half Spreads 

between Low and High Update Groups for Size and Trade Quintiles 

Stocks are first sorted into size quintile based on prior month NYSE breakpoints, and within size 

groups into quintiles based on the number of trades in each half hour.  Within these groups, stocks are 

further sorted into low and high update groups, using the median number of updates.  We calculate the 

deviation in variance ratios from one (|VR-1|) for all securities with a group.  Similarly, we calculate 

effective half spreads for all trades in each stock as the scaled difference between the transaction price 

and prevailing quote mid-point.  For each half hour in the day, we then calculate share-weighted 

average effective half spreads for each stock. We calculate the cross-sectional average effective spread 

across all stocks in each of these 50 groups.  For both variance ratios and effective spreads, we 

calculate the difference in the cross-sectional average of the low and high update groups (high minus 

low).  The table shows the time series average of these cross-sectional differences.  The variance ratios 

in Panel A are based on sampling midpoints at 15 second and 5 minute intervals.  The variance ratios in 

Panel B are based on sampling midpoints at 100 milliseconds and 1 second, as well as 100 milliseconds 

and 2 sections.  These are for stocks in size quintile 5 only.  Differences in effective spreads are in basis 

points.  The sample period is 2009-2011.  Standard errors appear in parentheses and are based on the 

time-series of the cross-sectional averages.  

 Quintiles Formed on Number of Trades in Prior Half Hour 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Panel A: Differences in Average Variance Ratios (15 seconds, 5 minutes) 

Small -0.033 -0.028 -0.021 -0.017 -0.018 

 (0.002) (0.001) (0.001) (0.001) (0.001) 

2 -0.018 -0.012 -0.019 -0.020 -0.026 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

3 -0.017 -0.020 -0.022 -0.030 -0.035 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

4 -0.022 -0.028 -0.033 -0.037 -0.034 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

Large -0.027 -0.031 -0.032 -0.031 -0.034 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

Panel B: Differences in Average Variance Ratios (Size Quintile 5 only) 

100ms, 1sec. 0.0005 -0.0066 -0.0036 -0.0051 0.0064 

 (0.0006) (0.0005) (0.0006) (0.0006) (0.0006) 

100ms, 2sec. 0.0019 -0.0117 -0.0081 -0.0100 0.0007 

 (0.0010) (0.0007) (0.0007) (0.0007) (0.0007) 

Panel C: Differences in Effective Spreads 

Small -6.10 -0.70 -3.68 -4.23 -1.58 

 (5.81) (0.25) (0.19) (0.07) (0.08) 

2 -1.27 -0.96 -0.77 -0.66 -0.62 

 (0.18) (0.04) (0.04) (0.05) (0.07) 

3 -2.00 -0.12 0.06 -0.31 -0.58 

 (0.05) (0.04) (0.04) (0.05) (0.06) 

4 -1.27 0.15 -0.22 -0.91 -1.20 

 (0.05) (0.04) (0.04) (0.05) (0.06) 

Large -0.61 -0.28 -0.46 -1.13 -1.12 

 (0.04) (0.03) (0.04) (0.04) (0.05) 
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Table 4 

 

Average Differences in Effective Half-Spreads, Realized Spreads and Price Impact between Low 

and High Update Groups for Size and Trade Quintiles 

Effective spreads are calculated as the scaled difference between the transaction price and prevailing 

quote mid-point.  Realized spreads are computed as the price movement from transaction prices to a 

future quote midpoint, scaled by the midpoint prevailing at the time of the transaction.  We use quote 

midpoints 1, 5, 10 and 20 seconds after the trade.  Price impact is the difference between the effective 

spread of the transaction and its realized spread.  For each stock, we calculate share-weighted average 

effective spreads, realized spreads and price impact.  We compute cross-sectional averages for stocks in 

each size quintile, trade quintile and update group.  We then calculate the differences between these 

cross-sectional averages between low and high update groups (high minus low).  The table shows the 

time series averages of these differences for each size and trade quintile.  All estimates are in basis 

points.  The sample consists of all stocks in these groups for two randomly selected trading days in each 

month for 2010-2011. 

Size 

Quintile 

Trade 

Quintile Eff. Spreads  Realized Spreads  Price Impact 

    t+1 t+5 t+10 t+20  t+1 t+5 t+10 t+20 

Small 1 -36.7  -14.0 -14.6 -14.2 -13.8  -22.7 -22.1 -22.5 -22.9 

 2 -11.5  -4.9 -5.5 -5.4 -5.3  -6.6 -6.0 -6.1 -6.2 

 3 -7.2  -5.3 -5.4 -5.2 -5.0  -1.9 -1.8 -2.0 -2.2 

 4 -7.5  -5.5 -5.3 -5.1 -4.8  -2.0 -2.2 -2.4 -2.7 

 5 -4.7  -3.7 -3.7 -3.6 -3.4  -1.0 -1.0 -1.1 -1.3 

             

2 1 -4.3  -2.4 -2.7 -2.6 -2.5  -1.9 -1.6 -1.7 -1.8 

 2 -1.0  -0.9 -0.9 -0.9 -0.9  -0.1 -0.1 -0.1 -0.1 

 3 -1.1  -0.8 -0.8 -0.8 -0.8  -0.3 -0.3 -0.3 -0.3 

 4 -1.0  -0.9 -0.9 -0.9 -0.8  -0.1 -0.1 -0.1 -0.2 

 5 -0.7  -0.5 -0.8 -0.7 -0.7  -0.2 0.1 0.0 0.0 

             

3 1 -2.7  -1.6 -1.6 -1.6 -1.5  -1.1 -1.1 -1.1 -1.2 

 2 -0.4  -0.5 -0.5 -0.5 -0.5  0.1 0.1 0.1 0.1 

 3 -0.4  -0.4 -0.4 -0.4 -0.4  0.0 0.0 0.0 0.0 

 4 -0.3  -0.3 -0.4 -0.4 -0.4  0.0 0.1 0.1 0.1 

 5 -0.4  -0.4 -0.6 -0.5 -0.5  0.0 0.2 0.1 0.1 

             

4 1 -0.7  -0.6 -0.5 -0.5 -0.4  -0.1 -0.2 -0.2 -0.3 

 2 -0.1  0.0 -0.1 -0.1 -0.1  -0.1 0.0 0.0 0.0 

 3 0.00  0.0 -0.1 -0.1 -0.1  0.0 0.1 0.1 0.1 

 4 -0.1  -0.1 -0.2 -0.2 -0.2  0.0 0.1 0.1 0.1 

 5 -0.3  -0.3 -0.5 -0.4 -0.4  0.0 0.2 0.1 0.1 

             

Large 1 -0.1  -0.1 -0.1 -0.1 -0.1  0.0 0.0 0.0 0.0 

 2 0.1  0.1 -0.1 -0.1 -0.1  0.0 0.2 0.2 0.2 

 3 -0.1  0.0 -0.1 -0.1 -0.1  -0.1 0.0 0.0 0.0 

 4 -0.2  -0.2 -0.2 -0.2 -0.1  0.0 0.0 0.0 -0.1 

 5 -0.2  -0.1 -0.1 0.0 0.0  -0.1 -0.1 -0.2 -0.2 
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Table 5 

 

Bivariate Vector Autoregressions of Daily Changes in Quote Updates and VIX 

Each day, we sum the number of updates (Updt) for each firm and then average across firms in size quintiles.  Using 

daily data, we estimate bivariate reduced form vector autoregressions of the form 
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∑              

 

   

 

 

where all changes are in percentages.  The equations are estimated separately for each size quintile using daily data from 

2009-2011.  Z-statistics appear in parentheses. 

               

 Small  Size Quintile 2  Size Quintile 3  Size Quintile 4  Large 

 ∆Updt ∆VIXt  ∆Updt ∆VIXt  ∆Updt ∆VIXt  ∆Updt ∆VIXt  ∆Updt ∆VIXt 

∆Updt-1 -0.500 

(12.67) 

0.001 

(0.07) 

 -0.493 

(12.19) 

0.008 

(0.48) 

 -0.488 

(11.93) 

0.010 

(0.61) 

 -0.487 

(11.81) 

0.006 

(0.42) 

 -0.474 

(11.43) 

0.008 

(0.54) 

∆Updt-2 -0.264 

(6.11) 

0.017 

(0.86) 

 -0.306 

(6.94) 

0.012 

(0.63) 

 -0.302 

(6.81) 

0.016 

(0.90) 

 -0.313 

(6.96) 

0.010 

(0.58) 

 -0.312 

(6.93) 

0.009 

(0.56) 

∆Updt-3 -0.208 

(4.80) 

0.015 

(0.74) 

 -0.250 

(5.66) 

-0.011 

(0.06) 

 -0.258 

(5.81) 

0.001 

(0.09) 

 -0.239 

(5.32) 

-0.004 

(0.25) 

 -0.235 

(5.21) 

0.001 

(0.08) 

∆Updt-4 -0.026 

(0.67) 

0.031 

(1.65) 

 -0.073 

(1.82) 

0.023 

(1.33) 

 0.075 

(1.85) 

0.031 

(1.82) 

 -0.071 

(1.74) 

0.024 

(1.50) 

 -0.079 

(1.90) 

0.028 

(1.74) 

∆VIXt-1 0.427 

(5.18) 

-0.102 

(2.59) 

 0.503 

(5.40) 

-0.108 

(2.67) 

 0.531 

(5.45) 

-0.110 

(2.69) 

 0.581 

(5.59) 

-0.106 

(2.59) 

 0.571 

(5.49) 

-0.110 

(2.65) 

∆VIXt-2 0.107 

(1.27) 

-0.075 

(1.86) 

 0.166 

(1.73) 

-0.073 

(1.76) 

 0.209 

(2.09) 

-0.080 

(1.91) 

 0.239 

(2.23) 

-0.073 

(1.72) 

 0.212 

(1.98) 

-0.072 

(1.71) 

∆VIXt-3 0.029 

(0.35) 

-0.111 

(2.78) 

 0.144 

(1.52) 

-0.098 

(2.37) 

 0.201 

(2.02) 

-0.101 

(2.43) 

 0.196 

(1.84) 

-0.094 

(2.23) 

 0.183 

(1.72) 

-0.101 

(2.38) 

∆VIXt-4 -0.028 

(0.34) 

-0.054 

(1.37) 

 0.027 

(0.29) 

-0.051 

(1.26) 

 0.066 

(0.67) 

-0.061 

(1.50) 

 0.065 

(0.63) 

-0.056 

(1.37) 

 0.078 

(0.75) 

-0.062 

(1.51) 
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Table 6 

 

Liquidity Sweeps: Size and Inter-Sweep Time Differences 

Individual liquidity sweeps are multiple trades from more than one reporting venue with the same millisecond 

time stamp.  The top part of Panel A shows three statistics.  We sum the number of shares traded in all liquidity 

sweeps in a half hour and divide by the total number of shares traded in the same security.  The resulting ratio 

represents the volume of trading in individual liquidity sweeps scaled by market volume.  We similarly sum the 

number of ISO trades employed in sweeps and scale by the number of market trades (in the second column) or 

market ISOs (in the last column).  The second part of Panel A shows the distribution of the difference in time 

between successive sweeps.  In Panel B, individual liquidity sweeps are cumulated if the time difference between 

successive individual sweeps in the same stock is less than the median inter-trade time in the same half hour in the 

prior month.  This aggregating procedure is employed separately for buyer- and seller-initiated sweeps.  The panel 

shows the distribution of difference in time between successive collapsed sweeps (separately for buyer- and seller 

initiated trades) in which more than 10,000 shares are traded. 

        

Panel A: Individual Liquidity Sweeps (trades in the same millisecond) 

Ratios of Sweeps to Market Statistics 

  Sweep Shrs / Market Shrs Sweep ISOs / Market Trades Sweep ISOs / Market ISOs 

Small  13.61 7.92 19.72 

2  13.45 7.40 18.41 

3  26.54 13.48 29.99 

4  18.42 10.37 23.03 

Large  22.15 12.99 28.01 

Time difference in seconds between successive sweeps in the same stock-day 

  10
th
 Perc. 25

th
 Perc. Median Mean 75

th
 Perc. 90

th
 Perc. 

Small  0.01 0.05 22.92 341.29 190.24 751.83 

2  0.01 0.02 10.85 133.95 80.03 288.51 

3  0.01 0.02 6.85 66.49 46.68 154.04 

4  0.00 0.01 3.99 34.39 26.68 84.49 

Large  0.00 0.01 0.80 12.46 19.41 31.62 

Panel B: Time difference in seconds between successive collapsed liquidity sweeps greater than 10,000 shares 

 % Unique 10
th
 Perc. 25

th
 Perc. Median Mean 75

th
 Perc. 90

th
 Perc. 

Collapsed Buyer-Initiated Sweeps  

Small 30.80 32.32 147.00 748.17 2456.94 2913.31 7498.26 

2 18.47 18.52 87.42 432.55 1695.96 1689.12 4868.18 

3 11.06 11.67 53.69 271.23 1171.53 1034.32 3074.75 

4 8.68 8.21 36.49 173.30 886.61 653.04 2100.75 

Large 3.64 3.62 15.20 68.17 454.26 259.13 874.68 

Collapsed Seller-Initiated Sweeps  

Small 31.06 34.30 161.83 811.03 2569.59 3125.52 7854.48 

2 18.71 18.77 90.37 454.65 1753.06 1774.13 5063.75 

3 11.19 11.77 55.33 278.62 1183.89 1055.01 3134.42 

4 8.73 8.29 37.06 175.91 892.54 663.33 2117.95 

Large 3.64 3.55 15.04 67.67 453.29 258.93 1903.30 
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Table 7 

 

Average Variance Ratios and Effective Half Spreads Before and After Large Liquidity Drawdowns 

The sample consists of all collapsed buyer- and seller-initiated liquidity sweeps in which more than 

10,000 shares are traded. We calculate variance ratios and share-weighted effective spreads 300 seconds 

before the beginning of the aggregated sweep and 300 seconds after the end of the sweep.  We also 

calculate the sum of effective spreads for all trades within the sweep.  Panel A reports the absolute value 

of the distance of the variance ratios from one, as well as the difference between the post- and pre-sweep 

variance ratios.  Panel B reports simple averages of share-weighted pre- and post-sweep effective spreads, 

the intra-sweep effective spread, and the difference between the post- and pre-sweep effective spreads.  

All effective spreads are in basis points. 

Panel A: |VR-1| Before and After Liquidity Sweeps Greater than 10,000 shares 

 Pre-Sweep Post-Sweep ∆|VR-1| t-statistic  

Buyer-Initiated      

Small 0.3133 0.3038 -0.0095 -2.88  

2 0.3046 0.2948 -0.0097 -5.33  

3 0.2991 0.2919 -0.0072 -5.11  

4 0.3013 0.2946 -0.0066 -6.37  

Large 0.2696 0.2648 -0.0047 -14.90  

      

Seller-Initiated      

Small 0.3114 0.3085 -0.0028 -0.85  

2 0.3034 0.2930 -0.0103 -5.86  

3 0.2953 0.2899 -0.0054 -3.84  

4 0.2950 0.2919 -0.0030 -2.99  

Large 0.2681 0.2642 -0.0039 -12.38  

Panel C: Average Effective Half-Spreads Around Liquidity Sweep Greater than 10,000 shares 

 Pre-Sweep Intra- Sweep Post- Sweep ∆ Effec. Spread t-statistic 

Buyer-Initiated      

Small 20.10 121.59 17.80 -2.29 -3.41 

2 10.16 65.30 9.30 -0.80 -8.05 

3 7.61 49.73 6.93 -0.68 -8.21 

4 6.08 34.26 5.24 -0.83 -7.38 

Large 3.04 17.18 2.68 -0.36 -9.68 

Seller-Initiated      

Small 19.59 115.22 17.77 -1.85 -3.48 

2 10.35 65.73 9.41 -0.93 -7.74 

3 7.77 48.08 6.98 -0.71 -5.84 

4 6.29 33.61 5.27 -1.02 -5.13 

Large 3.08 17.37 2.70 -0.38 -14.18 
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Table 8 

 

Average Paired Differences in Deviations of Variance Ratios from One, Effective Spreads, Realized 

Spread and Price Impact around the introduction of Arrowhead on the Tokyo Stock Exchange 

The sample consist of the 300 largest stocks on the 1
st
 Section of the Tokyo Stock Exchange, minus 

stocks which experience changes in tick size during the introduction of Arrowhead.  We calculate 

variance ratios over half hour intervals based on 15-second and 5 minute returns, and compute the 

absolute deviation from one (|VR-1|).  For each stock, we average these deviations in each half hour 

interval in the three months before and after the introduction of Arrowhead, and compute a paired 

difference.  The column labeled |VR-1|pre - |VR-1|post shows average paired differences.  We compute 

share-weighted effective, realized spreads (using quote midpoints 10 seconds after the trade), and price 

impact in each stock-day and half hour interval.  We average these in the three months before and after 

the introduction of Arrowhead, and reported a paired difference (before minus after) in basis points.  T-

statistics appear in parentheses. 

     

 |VR-1|pre - |VR-1|post ∆ Effective Spread ∆ Realized Spread ∆ Price Impact 

9:00 - 9:30 -0.016 

(1.80) 

2.06 

(16.67) 

9.15 

(54.89) 

-7.09 

(40.49) 

9:30 - 10:00  -0.037  

(3.18) 

2.00 

(12.83) 

8.16 

(46.79) 

-6.15 

(36.34) 

10:00 - 10:30 -0.020 

(1.97) 

1.94 

(12.18) 

7.36 

(46.75) 

-5.43 

(38.29) 

10:30 - 11:00  -0.015 

(1.02) 

1.90 

(11.81) 

6.85 

(42.75) 

-4.95 

(37.06) 

12:30 - 1:00 -0.019 

(1.85) 

3.65 

(23.48) 

7.25 

(48.65) 

-3.60 

(22.33) 

1:00 - 1:30 -0.025 

(2.25) 

1.93 

(11.73) 

6.72 

(42.52) 

-4.79 

(36.20) 

1:30 - 2:00 -0.019 

(1.13) 

1.94 

(11.64) 

6.45 

(44.13) 

-4.51 

(34.19) 

2:00 - 2:30 -0.027 

(1.97) 

1.95 

(11.62) 

6.52 

(43.97) 

4.48 

(37.93) 

2:30 - 3:00 -0.026 

(1.54) 

1.92 

(11.85) 

5.76 

(39.23) 

3.47 

(37.94) 
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Figure 1: Stocks are sorted into size quintile based on prior month NYSE breakpoints, and within size groups 

into quintiles based on the number of trades in each half hour.  For example, Size1Trade1 contains firms in 

the smallest size and trade quintile.  Within these 25 (5x5) groups, stocks are further sorted into low and high 

update groups, using the median number of updates.  We calculate average variance ratios for all stocks 

within a group and plot the time series average of these cross-sectional means.   
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Figure 2: Stocks are sorted into size quintile based on prior month NYSE breakpoints, and within size groups 

into quintiles based on the number of trades in each half hour.  For example, Size1Trade1 contains firms in 

the smallest size and trade quintile.  Within these 25 (5x5) groups, stocks are further sorted into low and high 

update groups, using the median number of updates.  We calculate the cross-sectional standard deviation of 

variance ratios for all stocks within a group and plot the time series average of these cross-sectional standard 

deviations. 
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Figure 3: Stocks are sorted into size quintile based on prior month NYSE breakpoints, and within size groups 

into quintiles based on the number of trades in each half hour.  For example, Size1Trade1 contains firms in 

the smallest size and trade quintile.  Within these 25 (5x5) groups, stocks are further sorted into low and high 

update groups, using the median number of updates.  We calculate share-weighted effective half-spreads for 

all stocks within a group and plot the time series average of these cross-sectional means. 
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Figure 4: We identify a liquidity sweep as one in which there are multiple trades in the same stock with the 

same timestamp (to the millisecond) across more than one trade reporting venue.  We calculate the 

cumulative size of sweeps in a stock and half-hour interval as number of shares traded in all sweeps scaled it 

by the total number of shares traded in that stock-interval.  We calculate ISO percentage as the total number 

of ISO trades in all sweeps in a stock-interval scaled by the total number of ISO trades in that stock-interval.  

We average across stocks in a size quintile and intervals in a day to obtain daily averages.  The figure shows 

the time series of sweep sizes and ISO percentages for size quintile 1 (small stocks) and size quintile 5 (large 

stocks).
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Figure 5: Each day, we sum the number of updates for each firm and then average across firms in size 

quintiles.  Daily closing values of the VIX index are plotted using the right vertical axis. 
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Figure 6: The figure shows the cross-sectional average of the number of updates, cancellations, trades, 

modifications that lose time priority, modifications that keep time priority and submissions between July 1, 

2009 and March 31, 2011.  The sample consists of the largest 300 stocks in the first section of the TSE at the 

beginning of each month. 
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Figure 7: For each stock, we calculate the share-weighted average effective spread, realized spreads and price 

impact for each day.  Realized spreads and price impact are based on quote midpoints 10 seconds after a 

trade.  The figure shows the cross-sectional average on each day from July 1, 2009 to March 31, 2011. 
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