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Abstract

I document evidence that equity options with different maturities do not embed the same
type of stock information with the same strength. Long-dated options not only embed long-
horizon stock information, but also short-horizon information, even if a cheaper and more
liquid short-dated option is available. More surprisingly, options can even embed stock in-
formation beyond their expiration dates. I call these unique patterns horizon timing effects. These
effects can arise in a stylized setting when informed investors optimally pick from a menu
of option maturities in face of uncertainty in the timing or speed of price discovery, and the
stylized predictions are matched closely with data. Specifically, I show that the differential
information across options of different maturities can be operationally extracted and decom-
posed using option-based variables, revealing a clear and robust pattern of horizon timing
effects. Validation tests are further performed to strengthen the information-based origin of
these effects. The results are also robust to other confounding factors, such as microstructure
effects and volatility effects. Overall, these findings suggest that informed investors form
expectations not only on directional stock returns, but also on when returns will be realized,
and accurately do so up to an impressive 6-month period in the future.
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1 Introduction

The presence of informed trading in the option market has been widely documented, confirming

that options can indeed embed stock return information.1 However, does the strength or type

of information vary across options of different maturities? If so, how should these differences in

information sets across maturities be interpreted? This paper addresses these questions by pro-

viding evidence that options with different maturities do not embed the same type of information

with the same strength, and suggests that these effects should be interpreted as informed investors

trying to time the horizon. By horizon timing, I mean that investors form expectations of when

returns will be realized. The implications of horizon timing are summarized by two predictions

in my model. First, longer-dated options should predict not only long-horizon returns, but also

short-horizon returns, even if a cheaper and more liquid short-dated option is available. Second,

shorter-dated options should predominately predict short-horizon returns, but may predict re-

turns beyond their expiration dates with a low but non-zero probability. Since these predictions

arise from investors trying to time the horizon, I call these predictions horizon timing effects. The

contribution of this paper is to test and confirm that the specific predictions of horizon timing

effects are matched closely with data.

Unlike stock investors, informed investors in the option market are forced to take a view on when

information will be reflected in stock returns by choosing among a menu of option contracts with

different maturities. Being right in horizon timing is as important as being right in the direction

of stock price movements, because otherwise, their options can expire worthless. In contrast,

informed investors in stocks who is wrong about horizon timing can simply hold onto their

position a little longer, as long as their directional prediction is correct. This unique property of

the derivatives market provide a natural venue to identify horizon timing behavior of investors.

The option market can be preferred to the stock market for a few reasons, including the ability to

1E.g. Easley, O’Hara and Srinivas (1998), Lee and Yi (2001), Chakravarty, Gulen and Mayhew (2004), Cao, Chen and
Griffen (2005), Pan and Poteshman (2006), Goyal and Saretto (2009), Cremers and Weinbaum (2010), Xing, Zhang and
Zhao (2010), An et. al. (2013), Lin, Lu and Driessen (2013), etc.
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short, to take leverage, or to hide trades when the option market is liquid. If investors with private

information trade in options rather than stocks, information will be impounded into option premi-

ums through trades and order flows in the option market before the stock market, assuming price

discovery is not instantaneous. Easley, O’Hara and Srinivas (1998) build an asymmetric informa-

tion model in which this lead-lag relationship between options and stocks results. If informed

investors who believe that information will be impounded quickly into prices choose to trade

shorter-dated options and vice versa, one would expect longer-dated options to embed longer-

horizon information and shorter-dated options to embed shorter-horizon information. However,

there are at least a few issues that complicate this seemingly intuitive story. First, shorter-dated

options allow for a more levered position due to their cheaper premium and are more liquid with a

lower transaction cost. Second, a conservative trader with private information may err on the side

of choosing a longer-dated option, to hedge against the possibility that price discovery may be

slower than they expect. These two opposing factors create a sweet spot for the optimal maturity.

A third complication is that even if informed investors choose a shorter-dated option and "miss"

(i.e. the private information has not yet been impounded into prices by the expiration date), they

can still roll to the next option by paying additional transaction costs. A fourth complication can

arise if an investor is highly confident that a piece of private information will not be leaked to the

market before a certain date, she may well choose to wait till that date to invest in the then more

liquid shorter-dated option. This would confound long-dated options’ ability to predict long-

dated returns. Section 2 discusses the economic intuition of these considerations, and Appendix

B formalizes the intuition with a stylized model.

My baseline empirical results match the predictions closely, and also survive a battery of robust-

ness tests and control variables. I operationally extract and decompose the differential information

across options of different maturities by using an option-based predictor documented by Cremers

and Weinbaum (2010). Their predictor, called put-call parity deviation (denoted PCPD), is com-

puted as the difference between implied volatilities of the calls (CIV ) and puts (PIV ). They claim

that investors with private positive information can either buy calls or sell puts, but both actions

increase PCPD as defined, and vice versa for investors with private negative information. They
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find that a higher PCPD strongly predicts a cross-sectionally higher stock return, and show that

this is due to information-based trading in the option market.

The horizon timing effects can be observed up to an impressive 6-month horizon, suggesting that

part of the information gap is not closed quickly. This is not surprising if this information is private

to informed investors. However, even if some of this information is public, it needs not contradict

market efficiency in light of recent literature on slow-moving capital or optimal inattention with

transaction cost [Abel, Eberly and Panageas (2007, 2013), Duffie (2010), Alvarez, Guiso and Lippi

(2013)]. On the other hand, delayed response to information that persists for a few months has

been documented, such as the post-earnings announcement drift [Bernard and Thomas (1989,

1990), Jegadeesh and Livnat (2006)].

The information-based origin of horizon timing effects can be validated by certain conditioning

variable tests. Roll, Schwartz and Subrahmanyam (2010) investigate the option-to-stock volume

ratio (O/S), and find that when O/S is high, a stronger presence of information should be found

in options. I build on these prior works to show that horizon timing effects also strengthen for

higher O/S, a trend consistent with information-based interpretations. Similarly, I condition on

an option turnover measure (O/SHROUT ), computed as option volume divided by number of

shares outstanding. Intuitively, it captures how fast the option market can turnover the inventory

of stocks in the market, which is an alternate proxy for option liquidity. I find that the horizon

timing effects strengthen with option turnover, as expected.

The rest of this paper is organized as follows. Section 2 theoretically motivates the horizon timing

effects and forms testable predictions. Section 3 describes the data. Section 4 presents my baseline

empirical results with validation tests. Section 5 confirms the robustness of these observations.

Section 6 explicitly rejects alternative explanations. Section 7 concludes.
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2 Motivation

The economic intuition underlying the horizon timing effects can be explained in a simple setting.

These intuitions are formalized into a simple model in Appendix B. The intent here is not to

motivate why options embed stock information, which has already been done,2 but rather, to

motivate why there could be differential information across options of different maturities on

various horizon returns. I assume that an informed investor has private information regarding

future stock returns, but is uncertain about when returns will be realized. This uncertainty comes

from at least two different sources: (1) uncertainty in news-release timing, and (2) uncertainty in

price-discovery timing or speed. Therefore, even if a news-release date is known in advance, there

is still uncertainty in how long it takes for information to be impounded into prices. Although I

am not aware of any existing models that focus on a stochastic speed or timing of price discovery,

the assumption does not seem hard to justify. Previous studies claim that the speed of price ad-

justment to news is a function of size, analyst coverage, institutional ownership, trading volume,

relative order of news announcement, and foreign ownership [Brennan et al. (1993), Badrinath

et al. (1995), Chordia and Swaminathan (2000), Andersen et. al. (2003), Hou (2007), Cai et. al.

(2013)]. Many of these variables can be stochastic. Andersen et. al. (2007) even find evidence that

the stock market reacts to the same news differently depending on the state of the economy. All

these previous works support a stochastic price-discovery time and speed.

Consider a 2-period setting with a short horizon T1 and a long horizon T2, with 0 < T1 < T2.

Suppose a risk-neutral informed investor has private information that a stock will payoff R > 0

within the period t ∈ [0, T2], but is otherwise uncertain about whether the payoff will arrive in the

short or long-horizon. In particular, the agent knows at time t = 0 that the stock will either payoff

R in period t ∈ [0, T1] with probability p or period t ∈ (T1, T2] with probability 1− p. If the payoff

R comes in the first period, the payoff in the second period is zero, and vice versa. Risk-free rate

is normalized to zero to eliminate discounting across the two periods. At time t = 0, the agent is

2Easley, O’Hara and Srinivas (1998) provides a classic model to explain the lead-lag effects between option and stock
market. An et. al. (2013) extend their model to explain similar effects in their first-difference IV-based predictors.
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endowed with wealth W , and makes a decision to either: (1) invest in long-dated at-the-money

(ATM) call options, (2) invest in short-dated ATM call options, or (3) not invest in either.3 At time

t = T1, the agent re-decides again whether she will continue to hold the option (if she invested

in the long-dated option), roll her option to the next short-dated option (if she invested in the

short-dated option), or invest in the short-dated option (if she did not invest before).

According to bid-ask spread statistics (to be presented in Section 3.2), transaction cost of options

increases in maturity. Without loss of generality, I assume that transaction cost is not incurred

when an option expires naturally. Let ∆1 and ∆2 denote the deltas, c1 and c2 denote the premiums,

and F1 and F2 denote the one-way transaction costs of short and long-dated options respectively,

therefore c2 > c1 and F2 > F1. Using a first-order approximation, option value will change by ∆R

when stock price changes by R. In this simplified setting, the core intuition can be summarized as

follows. When p is small (p < Plow), she prefers to wait till the second period to re-decide. When

p is non-extreme (p ∈ [Plow, Phigh]), she wants to buy the long-dated option. When the probability

of payoff in the first period p is high (p > Phigh), the informed investor wants to buy the short-

dated option. Appendix B formalizes these arguments and show that under certain parameter

conditions, 0 < Plow < Phigh < 1, and thus, three regions of investment decisions are created.

These observations are captured in two stylized facts below.

Stylized Fact 1: Informed investors will trade long-dated options specifically when the timing of payoff is

uncertain (i.e., when p is not extreme), provided payoff R is sufficiently large. Therefore, long-dated options

should embed stock information of both periods.

The fact that longer-dated options embed second-period information may be intuitively obvious.

What is less obvious is that it also contains short-horizon information, even if a cheaper and more

liquid short-dated option is available. In fact, the content of Stylized Fact 1 is that long-dated options

must contain both short and long-horizon information, not just solely long-horizon information.

Further, short-dated options can be chosen even when the informed investor believes that there is

3Call options are used for explanation here, but the argument works for either buying calls or selling puts when
R > 0, and buying puts or selling calls when R < 0.
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some probability (i.e., 1 − p > 0) that payoff will occur in the second period. This is captured in

the second stylized fact.

Stylized Fact 2: Short-dated options contain predominantly short-horizon stock information, but may,

with a low but non-zero probability, contain long-horizon information. In other words, short-dated options

investor can be "wrong" in the sense that payoff may occur beyond the chosen maturity.

Again, the fact that short-dated options embed first-period information is intuitive. The more

interesting prediction of Stylized Fact 2 is that short-dated options can also embed a small amount

of second-period information. Taken together, these two stylized facts provide an operational

definition of horizon timing effects—the central claim of interest in this paper—and their specific

predictions can be tested using option and stock data. These predictions form a "lower diagonal"

pattern, as summarized in this table.

Horizon Timing Effects in a 2-period Model

Short-horizon Return Long-horizon Return

Short-dated Options Strong Weak, but non-zero

Long-dated Options Strong Strong

Define γ ≡ c1+F1
c2+F2

to be the ratio of the costs of acquiring the short to long-dated options assuming

that we buy the options.4 The ratio γ is interesting here because it is the relative leverage across

the short and long-dated options. For example, if the long-dated option is 30% less levered than

the short-dated option, but the probability of the second-period payoff is 40%, then the long-

dated option is still preferred since the forgone second-period payoff is more penalizing to the

short-dated option than the extra leverage achieved. This intuition, however, does not take into

account of the fact that a long-dated option can be sold with a residual time value at t = T1.

Taking the residual time value of the long-dated option into account will result in a slightly higher

indifference probability than γ, i.e. Phigh & γ.

4This assumes that we buy the options at the ask price. The argument also works if we sell instead of buy the
options, but γ would be defined as c1−F1

c2−F2
in that case.
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2.1 Calibration

I next calibrate these parameters with some empirical data. In Section 4.2, I use 3 and 6-month

options to empirically test these horizon timing effects, so T1 = 3 and T2 = 6 months respectively.

The goal is to calibrate the parameters F1, F2, c1 and γ, and express the optimal investment

decision based on parameter region in the (p,R) space. Based on Panel C of Table 2 (detailed in

Section 3), the median bid-ask spread of options is roughly $0.37. I take this as an approximation of

3-month spreads. I calibrate F2/F1 from Figure 1, which shows that the 6-month bid-ask spread is

on average 19% bigger than F1. Under this calibration, F2/F1 = 1.19 and the one-way transaction

cost F1 is half of bid-ask spread, which is F1 ≈ 0.37/2 = 0.185, and F2 ≈ F1 × 1.19 = $0.22.

Based on the standard Black-Scholes formula, γ ≡ c1+F1
c2+F2

≈ c1
c2
≈ 0.7 (stock price S = $50,

strike K = Se(r+σ
2/2)T for ATM options explained in previous footnote, interest rate r = 3%,

and volatility σ = 30%), and is in fact quite insensitive to the exact parameters used. These

parameters also imply that c1 ≈ $2.7. The figure below (on next page) illustrates how the optimal

investment decision changes across the parameter regions, for different p and R. The leftmost

region represents the decision to wait till t = T1, the middle region represents the decision to

invest in the long-dated option, and the rightmost region represents the decision to invest in the

short-dated option.

3 Data

Stock price and volume data are from CRSP, stock fundamental data come from Compustat,

and options data are from OptionMetrics. OptionMetrics provides implied volatility surfaces of

individual equity options based on standardized expirations that correspond to 1-6, 9, 12, 18, and

24 months and standardized moneyness that correspond to deltas of 0.20, 0.25, 0.30, 0.35, . . . ,

0.80. Therefore, ATM options are defined by an (absolute) delta of 0.55 and OTM options are
5From standard Black-Scholes formula and notations, this implies that ∆ ≡ ∂C

∂S
= N(d1) = 0.5, or d1 = 0,

where d1 = 1

σ
√
T

[
ln
(
S
K

)
+
(
r + σ2

2

)
T
]
. In other words, at-the-money call options have strike K = Se

(
r+σ2

2

)
T

,
and similarly for puts.
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defined by an (absolute) delta of 0.2. Even though the volatility surface goes up to 24 months, I

will show in Section 3.2 that liquidity is extremely limited for options beyond eight months. As

a result, I will only use options up to 6 months to expiration in this study. Implied volatilities are

provided for calls and puts separately. The OptionMetrics volatility surface is computed in two

steps. First, implied volatilities are computed using a classic binomial tree method [Cox, Ross and

Rubinstein (1979)], taking into account of dividends and early exercise premiums of each equity

option, which are American options. For each strike and maturity, the mid price (average of last

bid and ask of the day) is used to compute the implied volatilities for each option contract traded.

Second, to obtain the implied volatility surface on the standardized grid, kernel smoothing is

performed at each standardized point based on a weighted sum of all points that are in proximity,

where proximity is defined in terms of (1) distance in log maturity, (2) distance in deltas, and (3)

an indicator function of whether call-put type matches. Further, a standardized option is included

only if a sufficient number of option data points are available for interpolation. The volatility

surface data is particularly convenient for this analysis because it contains implied volatility for

a fixed set of deltas and maturities, obviating the need to standardize for proper comparisons
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across individual options. The volatility surface data provided is complete in the sense that once an

individual firm is selected for a particular date, implied volatility data of all standardized deltas

and expirations are guaranteed to be non-missing for that firm-date.

Option volume and open interest data are obtained from the daily Option Price tables in Option-

Metrics. Daily option volume and open interests are aggregated over each month by summing

daily volumes and open interests to obtain monthly option volume and open interests respectively.

Monthly stock returns, stock volume, and market value of equity are from standard CRSP files.

Since the options data have the shortest history among the three data sources, starting in 1996,

the merged data cover the period of 1996 to 2011. The last year of data in 2012 is excluded

becauseN -month forward returns (N = 1, 2, . . . , 12) are needed in my computations defined later.

To construct the universe of securities, I include only common stocks from NYSE, NYSE MKT

(formerly AMEX) and NASDAQ in CRSP that are matched to an option in OptionMetrics. ADRs,

ETFs, and closed-end funds are all excluded. The merged dataset has 273, 487 observations, with

the number of securities averaging around 1, 700 per year. Table 1 shows the number of securities

in the merged dataset by year.

3.1 Put-call Parity and PCPD

Put-call parity [Stoll (1969)] is a no-arbitrage relationship for European options that requires min-

imum asset-pricing assumptions to hold. It states that a long position in a European call and

a short position in a European put of identical strike can be replicated by holding a unit of the

underlying stock and borrowing the present value of the strike. However, call and put prices may

deviate from this relationship for at least a number of reasons, including dividends (Div) and early

exercise premium (EEP). Cremers and Weinbaum (2010) point out that the following relationship

is no longer a no-arbitrage relationship because of the explicit incorporation of the early exercise

premium in the equation.

C − P = S − PV (K)− PV (Div)− EEP (P ) + EEP (C) (1)
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Since individual equity options are American options, the implied volatilities of calls and puts

that take into acount of dividends and early exercise premiums should be identical. Other market

imperfections can further affect the validity of this relationship, including bid-ask spread, price

impact, tax, availability of stock borrows, difference between borrowing and lending rates, margin

requirements, etc. Therefore, the put-call parity as in (1) is not a strict equality in reality, but

rather, has some "thickness", within which no arbitrage opportunities exist. Therefore, deviations

from the put-call parity relation do not imply that put-call parity is being violated. Assuming

that informed investors trade in the option market, bullish investors will buy calls or sell puts,

both actions widening the gap between call and put implied volatilities (CIV and PIV ). I define

put-call parity deviations (PCPD) as the difference between the implied volatilities of at-the-

money (ATM) call and put. The subscript "ATM" is dropped whenever there is no ambiguity in

the context. Option predictors based on the last trading day of each month are extracted for the

purpose of computing a predictive measure for next month’s stock returns.

PCPDATM ≡ CIVATM − PIVATM (2)

Other studies also propose other IV-based predictors of stock returns. Xing, Zhang and Zhao

(2010) define "smirk" as the IV of out-of-the-money put minus that of ATM call, and show that this

measure predicts significantly negative stock returns. They argue that bearish investors not only

tend to buy puts, but especially OTM puts, a strategy that is cheaper to implement and allows for

a higher leverage. Their skew measure can be reinterpreted as a PCPD and a slope component:

SMIRK ≡ PIVOTM − CIVATM

= (PIVOTM − PIVATM )︸ ︷︷ ︸
PSKEW

− (CIVATM − PIVATM )︸ ︷︷ ︸
PCPDATM

Figure 2 depicts these IV-based measures qualitatively in an IV smile diagram. In Appendix C, I

provide empirical evidence that the predictive power of SMIRK comes from PCPD but not from

PSKEW . This is consistent with Conrad, Dittmar and Ghysels (2013), who also finds SMIRK
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to be a noisy measure. An et. al. (2013) further investigate the predictive power of the change

in CIV , PIV , and PCPD over time (i.e. ∆CIV , ∆PIV and ∆PCPD) and conclude significant

predictive power in these first-differences. Their interpretation is that these first-differences proxy

news arrival. PCPD is suitable for use in this paper instead of other IV-based measures because

it is the most robust and persistent predictor of the three, as demonstrated in Appendix C.

3.2 Summary Statistics

Figure 1 presents option volume distribution and bid-ask spreads across maturities. The top figure

shows a distribution of option volume across maturities, and the bottom figure shows the ratio

of median bid-ask spreads between the N th month and the first month.6 I confirm the well-

known fact that longer dated options have lower volume (liquidity) and higher transaction cost

on average. In fact, options beyond eight months maturity are so thinly traded that information is

not expected to be present for those maturities. For this reason, I use only options up to 6 months

to maturity in this study.

Panel A of Table 2 summarizes the mean, standard deviation, skewness and correlation matrix

for both implied volatilities (IV) of ATM calls and puts (CIV , PIV ) of three different maturities:

1-month, 3-month, and 6-month. Since this is a panel dataset, all summary statistics are first

computed for individual cross-sections, and then averaged over time. The correlation of CIV

and PIV is quite high at 0.91, giving some support that put-call parity is at least approximately

true. This is consistent with the results reported in An et. al. (2013). The IV’s across different

maturities are also highly correlated. However, Panel B of Table 2 verifies that the correlations of

PCPD’s across different maturities are less correlated than before, at 0.81. On average, PCPD

has a negative mean and skewness, meaning that the IV of puts are generally higher. The mean

absolute deviation (MAD) is also displayed in the bottom row, indicating that the IV’s of calls

and puts deviate from each other by about 2-3% on average. It is this deviation that embeds

6The volume distribution and median bid-ask spread ratio are first calculated for each firm-date, then averaged over
all firm-dates. There are alternate ways to summarize the data, but the qualitative results do not change.

12



stock return information. PCPD6⊥3 is the orthogonalization of PCPD6 with respect to PCPD3,

computed as the residuals of regressing PCPD6 on PCPD3 with an intercept, resulting in a

(manufactured) correlation of zero between PCPD6⊥3 and PCPD3. Despite the correlation of

0.81 between PCPD3 and PCPD6, I note that the residual standard deviation in PCPD6⊥3 is still

about half of PCPD6, meaning that residual variability remains to explain future stock returns.

Section 4 gives a more detailed interpretation on this orthogonalization procedure.

Panel C of Table 2 reports the summary statistics of bid-ask spreads in stocks and options. The

stock’s bid-ask spread is defined as SBAS = Ask− Bid with a median of $0.13, and proportional

bid-ask spread is defined as %SBAS = SBAS/
(

Ask−Bid
2

)
with a median of 51 basis points.

The option market is more expensive to trade, with OBAS having median around $0.37. Not

surprisingly, all spreads are right-skewed, indicating the presence of abnormally high spreads for

some very illiquid stocks and options.

4 Empirical Results

4.1 Methodology

I first clarify some relevant notations. Appendix A contains a more complete list of notations. RN

denotes the N th-month percentage stock return, R1−N denotes the cumulative N -month percent-

age return divided by the number of months N , and RN−M denotes the N th-to-M th month per-

centage stock return, divided by the number of months N −M + 1. The subscript of PCPDN,ATM

means that this PCPD measure is computed based on at-the-money N -month options. The

subscript "ATM" is sometimes suppressed. Finally, predictors computed based on long-dated and

short-dated options are called "long-dated predictors" and "short-dated predictors" respectively.

Fama-MacBeth regressions is performed on the panel data, with all standard errors and t-statistics

being Newey-West adjusted with 6 lags in this paper [Newey and West (1987)]. In the first stage,

coefficients are obtained by running cross-sectional regressions of next-period stock return on the
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option-based predictor PCPD with controls, as follows:

R1−N,i = δt + βt · PCPDi,t + λt · Controlsi,t + εi,t (3)

These coefficients are then averaged over time to obtain the Fama-MacBeth coefficients. The

subscripts i and t indexes stock and month respectively. Similar to other studies in this literature

[An et. al. (2013), Xing, Zhang and Zhao (2010)], I control for some common asset-pricing factors.

For each month, BETA is computed by regressing daily excess returns of individual stocks on

the daily excess returns of the market. SIZE is the log of market capitalization. B2M is the

log of book-to-market ratio. MOM is past 2-to-12 month cumulative return, i.e. momentum.

ILLIQ is Amihud’s illiquidity, computed by dividing absolute monthly stock return by monthly

stock volume. Short REV is short-term reversal, proxied by past 1-month return. RV OL is the

standard deviation of daily returns within each month. PSKEW is the left-skew based on puts

discussed in Section 3.1, computed as PIVOTM − PIVATM . Vc/Vp and OIc/OIp are the call/put

volume and open-interest ratios respectively. These are my standard controls.

My baseline results will be based on the following Fama-MacBeth regression, where the depen-

dent variable is now RN−M,i, as defined before.

RN−M,i = δt + βt · (PCPD3)i,t + γt · (PCPD6⊥3)i,t + λt · Controlsi,t + εi,t (4)

PCPD3 is the 3-month predictor. PCPD6⊥3 represents PCPD6 orthogonalized to PCPD3, com-

puted as the residual of regressing PCPD6 on PCPD3 with an intercept. Interpreting PCPD as a

signal, this orthogonalization gives the marginal information of one signal net of another. The two

stages of Fama-Macbeth regressions imply that this orthogonalization procedure is performed at

each cross-section independently.7

7In Section 5, I confirm that my results are robust to various orthogonalization methods, and that my conclusions
are not driven by the specifics of how I orthogonalize these signals.
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4.2 Baseline Results

In column 1 of Table 3, I regress R1 on PCPD1,ATM without any controls. The coefficient of

PCPD1,ATM is 5.90 with a t-statistic of 7.01, which is significant at the 1% level, confirming the

predictive power of PCPD in Cremer and Weinbaum (2010). In column 2, this predictive power

continues to hold with controls. Columns 3-4 confirm analogous results by regressing R1−3 on

PCPD3. All results are significant at 1% level. None of these is surprising given what has been

documented previously. The coefficient of Short REV is negative and significant in column 2,

but this significance disappears in column 4, indicating that short-term reversal is a short-lived

effect that quickly dissipates beyond 1 month. The coefficient of realized volatility (RV OL) is

negative and marginally significant in columns 2 and 4, which is consistent with the cross-sectional

volatility effects found by Ang et. al. (2006, 2009), although they focus on idiosyncratic volatility.

Table 4 serves as the baseline result of horizon timing effect. In columns 1-2 of Panel A, I regress

R1−3 and R4−6 on both PCPD3 and PCPD6⊥3 without any controls. As discussed before, this

decomposition tests for any extra predictive power coming from PCPD6 on top of PCPD3.

PCPD3 in this case can be interpreted as the base, and its coefficient value of 4.69 is unchanged

from Table 3.8. This empirical result matches closely the stylized facts discussed in Section 2 First,

in columns 1-2, the coefficients of PCPD6⊥3 are 6.14 and 6.16 respectively. These coefficients

have comparable magnitudes and significance, which imply that PCPD6⊥3 embed information

in both the short and long horizons. This is precisely Stylized Fact 1. It also suggests that informed

investors take into consideration of horizon timing in their options trading activities. Indeed, the

predictive power of longer-dated options is so impressively persistent that it can predict return

4 to 6 months in the future. Second, the coefficients of PCPD3 are 4.69 and 0.99 respectively,

implying that the predictive power of the PCPC3 is dramatically weaker beyond the 3-month

maturity date. This matches closely with Stylized Fact 2, with a distinct lower-diagonal pattern

in the coefficients. Columns 3-4 confirm similar facts and pattern by including controls. The

weaker but significant coefficient (1.32) in the upper-right corner does not contradict my predic-

8The coefficient of PCPD3 in column 3 of Table 4 differs slightly from that of column 4 of Table 3 because the
orthogonalization procedure is not done with controls.
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tions, but actually attests to the fact that shorter-dated options can embed information beyond its

maturity with a small probability. Since the orthogonalization procedure can shrink the variance

of PCPD6⊥3, as discussed in Section 3.2, one may worry that this result is biased by scaling

differences between the two predictors. To confirm that this is not the case, I hereafter normalize

each regressor to a unit standard deviation and zero mean to ensure comparable scaling across

PCPD3 and PCPD6⊥3. The results in columns 5-6 shows that the magnitude of the coefficients

changes due to the normalization as expected, but PCPD6⊥3 can still predict both R1−3 and

R4−6 with significance at comparable magnitudes. The lower-diagonal structure is once again

clearly observed. Finally, Panel B of Table 4 shows the regression of individual N th-month return

(RN for N = 1, 2, · · · , 6) on the predictors. It is clear that the predictability of PCPD3 decays

dramatically from 0.47 to 0.03, whereas the predictability of PCPD6⊥3 stays strong at around

0.12-0.13 throughout the 6 months. The statistical significance of PCPD3 also decays quickly

compared to PCPD6⊥3.

A more refined decomposition of this horizon timing effect is also possible using 2/4/6-month op-

tions. Table 5 parallels the previous result using PCPD2, PCPD4⊥2, and PCPD6⊥4,2. PCPD6⊥4,2

is computed by taking the residuals of regressing PCPD6 on both PCPD4 and PCPD2 with

an intercept. Columns 1-3 of Panel A display results without controls, columns 4-6 include the

standard controls, and columns 7-9 normalize the regressors as before. Once again, the 3-by-3

matrix of coefficients has significant lower-diagonal elements (Stylized Fact 1). The upper diago-

nal coefficients are occasionally statistically significant, but much smaller in magnitudes (Stylized

Fact 2). Panel B of Table 5 also parallels that of Table 4 with RN as the dependent variable, and

a differential persistence can be similarly identified as before. However, there is a limit to how

refined this decomposition can go. For example, I find that a decomposition with 1/2/3/4/5/6-

month options may be overly demanding for the current regression specification, and the results

become too noisy to yield observable pattern. This may suggest that informed investors can only

time the horizon up to an accuracy of a 2-month wide window, but not more refined.

Figure 3 presents a compelling plot that shows predictors of different maturity have different
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speed of decay of predictive power. Each line in the figure represents using a separate predictor

PCPDT as a standalone regressor. Each point on a line is a separate regression of R1−N on each

PCPDT . The x-axis is N -month return, and the y-axis is the Fama-MacBeth regression coefficient

of the respective PCPDT . From this figure, shorter-dated predictors clearly decay faster than

longer-dated predictors.

4.3 Validations

4.3.1 Validation Test #1: Effects of O/S Ratio

The results so far document the existence of horizon timing effects, but it is not clear that these

effects necessarily come from informed trading. This section presents two additional evidences

to strengthen the information-based origin of horizon timing effects. In their seminal paper,

Easley, O’Hara and Srinivas (1998) present a model to explain how lead-lag effects can arise

between the option and stock market. One intuition captured in their model is that informed

traders prefer to trade in the option market when the option market is relatively liquid, the

stock market is relatively illiquid, and the presence of informed traders is high. As a result,

if the horizon timing effects are driven by informed trading activities, one would expect that

the strength of the effects correlate negatively with stock volume and positively with option

volume. However, volume measures are frequently too noisy when used alone. The option-to-

stock volume ratio (O/S) measure reduces the noise by canceling out shocks that occur to both

markets. Roll, Schwartz and Subrahmanyam (2010) find that the O/S ratio spikes before earnings

announcement, and varies with analyst coverage or institutional ownership, suggesting that it is

a potential measure of the informed trading in the option market.9 My following validation test is

based on these insights. I compute O/S using the aggregate monthly option-to-stock volume, and

explore whether horizon timing effects become stronger for higher values of O/S. In the Fama-

MacBeth regression, I separate each cross-section into three terciles sorting on O/S, and report the

9Johnson and So (2012) also investigate the O/S measure, and find that it not only reflect the presence of private
information, but also predicts significant negative stock return. They relate O/S to short-sale costs.
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Fama-MacBeth coefficients by tercile. Table 6 presents these results. Control variables have been

excluded for these tests to avoid potential trending or interaction between the O/S and any of

the control variates. In columns 1-3, R1−3 is the dependent variable, and the three terciles of O/S

increase from left to right. Column 4 shows the difference between the top and bottom tercile,

or (3)-(1). The interpretation of columns 5-7 and 8 are analogous, but for the R4−6 horizon. All

coefficients trend upwards from left to right in columns 1-3 and 5-7, and the difference column is

significant in column 8 at 10% level. Overall, these results strengthen the information-based origin

of horizon timing.

4.3.2 Validation Test #2: Effects of Turnover

Another conditioning variable is option turnover (O/SHROUT ), defined as the ratio of option

volume to the number of shares outstanding in the stock. It captures the liquidity or tradability

of options for each stock. The normalization by number of shares outstanding allows for a more

comparable liquidity measure cross-sectionally and adjusts for some of the noise in volume. Al-

though I am not aware of option turnover being used as a conditioning variable in this literature,

stock turnover (S/SHROUT ) has been used. In particular, Xing, Zhang and Zhao (2010) as an

interaction variable with their IV-based predictor, with a hope to find that a lower stock liquidity

implies stronger predictability. However, their results struggle with statistical significance. One

possible problem with S/SHROUT is that stock volume can be ambiguous in identifying the

presence of informed trading in options. On the one hand, a lower stock volume could drive

informed traders away from stocks to options, thus a stronger effect. On the other hand, the low

stock volume can also be explained by a small presence of informed traders in that asset in general

for both markets. This ambiguity makes S/SHROUT ill-suited as a conditioning variable, but this

ambiguity does not apply for O/SHROUT . Table 7 confirms this argument. Panel A of Table 7

parallels Table 6, but the conditioning variable is now O/SHROUT . Once again, the coefficients

are clearly trending upwards from left to right for both columns 1-3 and 5-7, suggesting that a

more liquid option market strengthens the horizon timing effect. In Panel B of Table 7, I check and
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confirm that S/SHROUT is indeed ambiguous, by noting that no identifiable trends exist from

left to right. Another reason of showing this invalid sort on S/SHROUT is to demonstrate that

the previous effective sorts on O/SHROUT or O/S were not just fortunate coincidences. These

evidences once again support the information-based origin of horizon timing effects.

5 Robustness

Table 8 presents various robustness tests. In columns 1-2, I run the Fama-Macbeth regression

with normalized coefficients, except that extreme observations of CIV and PIV are trimmed at

the 1% and 99% levels. Stylized Facts 1 and 2 remain, indicating that the current results are not

driven by some outliers.10 In columns 3-4, instead of excluding low-priced stocks below $5, all

stocks are included. The results survive, indicating that horizon timing effects are not due to

price filters. In columns 5-6 and 7-8, the sample period is divided into two equal sub-periods

from 1996-2003 and 2004-2011. The results indicate that the predictability of PCPD is stronger

in the earlier sub-period, and weaker in the latter, although still significant in both periods. In

contrast, Cremers and Weinbaum (2010) find that the significance disappears in the later years,

and explains that this is due to the mispricing being gradually eliminated by market participants.

I agree with their general interpretation, but note that the significance of the latter sub-period in

my results differ from theirs because I specifically separate out the PCPD of longer-dated options

(3 and 6-month), whereas they perform a weighted average of put-call parity deviations across all

strikes and maturities. My results indicate that for longer-dated predictors, this mispricing is not

completely eroded even 6 years after their sample. Finally, different orthogonalization procedures

are also tested. In columns 9-10, a simple subtraction PCPD6 − PCPD3 is used to replace the

current orthogonalization. In columns 11-12, orthogonalization of PCPD6 is done with respect to

PCPD3 and all standard controls (PCPD6⊥3,controls). Horizon timing effects are robust to both

changes, indicating that they are not sensitive to the orthogonalization procedure used.

10It is important to remember that PCPD3 is the base of decomposition while PCPD6⊥3 represents the marginal
information on top of that. Thus, even if the magnitude of PCPD3 (0.07) is getting closer to PCPD6⊥3 (0.09) in the
R4−6 regression (column 2), the long-dated predictor is still significantly stronger than the short-dated predictor.
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5.1 Portfolio Sorts

My findings can be verified with portfolio sorting techniques. Portfolio sorting is useful for several

reasons. First, portfolio alphas can give a more direct measurement of economic significance.

Second, it is another way to verify that the previous regression-based results are not driven by

outliers. Third, it offers an extra robustness check. In particular, firms in the top decile of PCPD

should outperform the bottom decile of PCPD, after controlling for the Fama-French three factors

and momentum.11 In column 1 of Table 9, I confirm this by reconstructing the portfolio every

month by sorting on PCPD1. All numbers reported in the table are annualized portfolio alphas

in percentage after controlling for the Fama-French three factors and momentum. The last row

presents the portfolio alphas for decile 10 (high PCPD) minus decile 1 (low PCPD), which yields

a large and significant annualized alpha of 21.78%,12 again confirming its predicative power.

The portfolio sorting approach can also be used to test for horizon timing effects. To test for

predictability in the R4−6 horizon, I skip S = 3 months, then hold the portfolio for another

H = 3 months, rebalancing only 1/H of the portfolio every month. This portfolio construction

methodology is similar to momentum [Jegadeesh and Titman (1993)]. In particular, Chen and

Lu (2013) investigate how information in the option market can strengthen momentum returns.

However, my result is different from momentum because I am sorting on PCPD, as opposed to

past stock returns. In this section, I merely borrow the portfolio construction methodology from

momentum to verify horizon timing effects. Columns 2-3 of Table 9 sort on PCPD3 and show the

annualized 4-factor alphas for both horizons, whereas the next two columns sort on PCPD6⊥3.

Not surprisingly, sorting on PCPD3 gives a large outperformance of 11.7% in R1−3, but a much

smaller outperformance of 3.6% in R4−6 (Stylized Fact 2). Sorting on PCPD6⊥3 generates an

outperformance of 6.4% in the first 3 months, and 4.2% in the next 3 months (Stylized Fact 1).

The outperformance of PCPD3 in R4−6 (3.6%) is also the weakest of all (lower-diagonal pattern).

11Fama-French and momentum factors are obtained from Kenneth French’s web site:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

12Consistent with Cremers and Weinbaum (2010), they report 45 basis points per week in alpha (or 23% annually).
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Therefore, informed investors time the horizon by forming expectations of when they believe

returns will be realized, which is also observed in portfolio results.

6 Alternative Explanations

Since PCPD can be sensitive to nonsynchronicity of quotes between the puts and calls, or between

the option and stock market, microstructure effects may confound the current information-based

interpretations. For example, Battalio and Schultz (2006) argues that nonsynchronicity of quotes

can be mistaken for deviations from put-call parity. A second confounding factor is that IV-based

measures may embed ex-ante volatility information in addition to return information [Ni, Pan and

Poteshman (2008), Puhan (2014)]. I specifically address and reject these two concerns.

6.1 Market Microstructure

I rule out alternative microstructure explanations one by one in this subsection. First, I rule out

the confounding effects of bid-ask spread in either market (SBAS and OLBAS). In columns 1-2

of Table 6.1, I explicitly control for bid-ask spread of the options on the last day of the month as

well as the bid-ask spread of the underlying stock, and find that my results are robust to bid-ask

spreads. Second, since PCPD takes the difference of implied volatilities of the last call and put

traded on the last trading day of each month, the put-call pair should ideally be traded around

the same time, if not the same instant. To the extent that liquidity of many equity options can

be thin over a day, measurement errors exist in the PCPD measure. To alleviate this concern,

I re-run my baseline analysis from Table 4, but including only options that are traded on the

last day of the month to avoid stale quotes in options.13 Doing so reduces the sample size from

273, 487 to 231, 972 observations. Columns 3-4 of Table 10 show that the baseline conclusion is

not affected by this filter. The lower diagonal pattern in the 2-by-2 table of coefficients is still

13Van Binsbergen, Brandt and Koijen (2012) also measure deviations from put-call parity in index options. They match
calls and puts that are traded on the same minute of the last trading day of each month. In contrast, some equity options
are very limited in volume, but ensuring activity on the last trading day of the month at least tightens the analysis.
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clearly observed. Third, quotes may also be nonsynchronous across the option and stock market.

Nonsynchronous quotes are well known to induce cross-autocorrelation in assets and potentially

across markets [Lo and MacKinlay (1990), Ahn et. al. (2002)], so the predictive power of PCPD

can confounded by this. Battalio and Schultz (2006) specifically pointed out that nonsynchronicity

in option and stock quotes can lead to erroneous conclusions. They also claim that the option

market ceases trading at 4:02pm—2 minutes after the stock market. However, this does not match

the Product Specifications of Equity Options on CBOE’s website, 14 which states that trading hours

of equity options are 8:30am-3pm (CST) [9:30am-4pm (EST)]. Regardless of the ambiguity, my

results are robust to an extra-day lag in stock returns15. I re-run my analysis based on PCPD

predictors constructed on the second-last day of the month. This effectively lags all stock returns

by a day. Columns 5-6 show that the lower-diagonal pattern survives this 1-day lag. As a result,

the empirical observations in this paper cannot be explained by microstructure effects.

6.2 Volatility Effects

Previous studies document that equity options embed volatility information, in addition to returns

information. Ni, Pan and Poteshman (2008) find that option market demand for volatility predicts

future realized volatility. Puhan (2014) uses straddle positions to investigate volatility information

in index options. On the flip side, stocks with different volatility expectations may also have

different expected returns in the cross-section. Ang et al. (2006, 2009) document that stocks with

higher idiosyncratic volatility have lower cross-sectional returns. Conrad, Dittmar and Ghysels

(2013) document the cross-sectional relationship between higher moments of stock returns and

expected stock returns. Johnson (2012) uses the VIX term structure to predict S&P 500 returns.

I address these volatility-related concerns with two approaches, both of which control for the

the level of implied volatility. First, I separate forward-looking volatility information from return

14https://www.cboe.com/Products/EquityOptionSpecs.aspx
15Note that this does not contradict the fact that the predictive power should be strongest in the first few days. Indeed,

some previous studies [Chan, Chung and Fong (2002), Chakravarty, Gulen and Mayhew (2004), Pan and Poteshman
(2006)] have documented using intraday data that the information gap between the two markets tends to close very
quickly even in the first day of trading.

22



information by controlling for a straddle position consisting of half a call and half a put. STRAD

is defined as (CIV +PIV )/2. Since the straddle position consists of longing half a call and longing

half a put, its payoff will be positive only if stock prices experience big movements in either

direction, i.e. a large volatility. Since RV OL is already in my standard controls, adding STRAD

also effectively controls for RV OL− STRAD, which is investigated by Goyal and Saretto (2009),

although their paper has a different focus on option portfolio returns rather than stocks. In Table

11, columns 1-2 include STRAD with standard controls, and horizon timing effects are robust

to the straddle. Second, the volatility level can also distort the PCPD measure if put-call parity

deviations are generally larger for more volatile options. Columns 3-4 use the proportional PCPD

(%PCPD = PCPD/STRAD) as regressors, and columns 5-6 include both %PCPD and STRAD

as regressors. Finally, columns 7-8 control for both the straddle and bid-ask spreads from Section

6.1. In summary, volatility effects do not confound the horizon timing effects.

7 Conclusion

My contribution in this paper is to document robust evidence that horizon timing effects exist in

equity option market. I find that long-dated options embed both short and long-horizon infor-

mation despite the availability of a cheaper short-dated option, while short-dated options mainly

embed short-horizon information, but can also contain information beyond their expiration dates.

This forms a lower-diagonal pattern discussed in the paper. These results are especially consistent

with the existence of uncertainty in price discovery speed or timing, and that informed investors

not only take this uncertainty into consideration, but are also successful in their timing prediction.

My results are also consistent with information-based interpretations because the strength of the

predictability trends in an expected fashion in accordance with existing asymmetric information

models for information flow between the stock and option markets.

The current motivating model in Section 2 and Appendix B is quite simple, and some theoretical

extensions are possible. First, risk-neutrality assumption can be relaxed. One challenge is that
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common normality assumption (e.g. with a CARA utility) is not reasonable due to the non-linear

payoff structure of options. Some previous works have tackled this challenge with various levels

of complexities [Liu and Pan (2003), Jones (2006), Faias and Santa-Clara (2011), Eraker (2013)].

Second, it may be interesting to combine features of the horizon timing effects with existing

information asymmetry models. In particular, my simplified setting currently takes transaction

cost and option price as exogenously given, but investment activities of the traders can of course

endogenously affect both price and liquidity [Kyle (1985), Back (1992)]. Thus, closing the model

with equilibrium considerations may be a promising avenue of future work.
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Appendix A List of Acronyms

Acronym Meaning or Definition

ATM/ITM/OTM At-the-money/In-the-money/Out-of-the-money

CIV Call Implied Volatility

PIV Put Implied Volatility

RN N th-month Stock Return

RN−M N th to M th-month Stock Return

PCPD Put-call Parity Deviation = PIVATM − CIVATM

PCPDT2⊥T1 PCPDT2 orthogonalized to PCPDT1

∆PCPD Change in PCPD Over 1 Month

%PCPD PCPD/STRAD

STRAD (CIV + PIV )/2

SMIRK PIVOTM − CIVATM

PSKEW PIVOTM − PIVATM

O/S Monthly Option-to-stock Volume Ratio

O/SHROUT Monthly Option Volume / Num. of Shares Outstanding

BETA Monthly Betas

SIZE Log of Market Capitalization

B2M Book-to-Market Ratio

MOM Past 2-12 Month Momentum

Short REV Past Month Stock Return

ILLIQ Amihud’s illiquidity (Monthly Stock Return/Monthly Volume)

RV OL Realized Volatility (Sum of squared daily stock returns)

Vc/Vp Call/Put Volume Ratio

OIc/OIp Call/Put Open Interest Ratio

SBAS Stock Bid-ask Spread

%SBAS BAS / Mid Price

OBAS Option Bid-ask Spread

OLBAS Option Bid-ask Spread on last trading day of the month

%OBAS OBAS / Mid Premium
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Appendix B A Simple Model of Horizon Timing

Using the notations and simplifying assumptions described in Section 2, I will derive the optimal

investment decision using a backward induction approach. I enforce the following participation

constraint to ensure that it is profitable for the informed agent to act on her information, at least

when payoff is certain in the short-horizon:

Participation Constraint: ∆1R ≥ c1 + F1

Since the informed trader is risk-neutral, I only maximize the expected payoff of each scenario.

Risk-neutrality also implies that a mixed portfolio of two or more investment alternatives is never

optimal, except on the indifference boundary. At t = 0, by backward induction, the first-order

terms in the risk-neutral agent’s expected payoff (π0) is:

π0 =



W
c2+F2

[p∆2R+ p(c1 − F1) + (1− p)∆1R] if invest in long-dated option at t = 0

W
c1+F1

p∆1R+ 0 if invest in short-horizon option at t = 0

0 + pW + (1− p) W
c1+F1

∆1R if decide to wait till t = T1

For simplicity, I normalize to unit wealth W = 1 for this analysis. In the first case, the agent

invests in 1
c2+F2

long-dated option at t = 0, where F2 is the one-way transaction cost, for each

option traded, in return for an expected payoff of p∆2R in the first period. At t = T1, if the

payoff did not occur in the first period, she is then certain that the payoff will come in the second

period, and so will continue to hold the same option. However, if the payoff occurred in the first

period, she would want to sell the option (as a short-dated option at a price of c1 − F1) to reap the

remaining time-value of the option.16 The second case is similar except that if the payoff did not

occur in the first period (with probability 1−p) and the option expires worthless, the agent would

have exhausted her wealth at t = T1. The third case is the simplest in that the agent will only

16A risk-averse agent would also want to take profit and sell the option at t = T1 to avoid extra risk, conditional on
the payoff having already been realized in the first period.
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invest in the short-horizon option in the second period, conditional on the payoff not arriving in

the first period. The participation constraint ensures that it is profitable to do so. If the payoff

occurs in the first period, then the agent would simply hold the wealth W without investing in

anything for both periods.

Since my empirical strategy currently involves ATM options only, I restrict attention to ATM

options in the current analysis, which I define as ∆1 = ∆2 = 0.5. Define γ ≡ c1+F1
c2+F2

to be the ratio

of short-dated to long-dated option premiums, including the one-way transaction cost incurred.

Since premium and transaction cost of long-dated options are higher (c2 > c1 and F2 > F1),

therefore γ < 1. The optimal investment decision can be solved as a function of these parameters:

p, R, c1, γ, F1, and F2. I solve for the parameter boundaries below:

• The agent prefers long-dated option to waiting if p >
1
2
R(1−γ)

1
2
R−γ(c2+F2−c1+F1)

≡ Plow.

• The agent prefers short-dated to long-dated option if p >
1
2
Rγ

1
2
R−γ(c1−F1)

≡ Phigh.

• The agent prefers short-dated to waiting if p >
1
2
R

R−(c1+F1)
≡ Pmed.

The following results are easily derived with some algebra:

Result 1: When payoffR is sufficiently large (specificallyR > R∗ ≡ 2γ
1−γ (c1−F1)) and γ > 1

2 , three

regions of investment decisions are created. This result can be proven by imposing 0 < Plow <

Pmed < Phigh < 1, and then simplify each inequality. This result motivates the stylized facts and

empirical observations in this paper. (The core intuition of this result is described in Section 2 and

is not repeated here.)

Result 2: Ignoring transaction costs of options (F1 = 0, F2 = 0), Phigh → c1
c2

as R → ∞ and

Plow → 1− c1
c2

as R →∞. This result can be proven easily from the expressions of Phigh and Plow,

and their intuitive interpretations are discussed in Section 2.
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Appendix C Persistence of Three Documented Predictors

The persistence of three documented IV-based predictors of stock returns are compared. Cremers

and Weinbaum (2010) document that higher PCPD predicts a higher stock return. Xing, Zhang

and Zhao (2010) find that higher SMIRK predicts a lower stock return. An et. al. (2014) document

that higher ∆PCPD predicts higher stock return. The definitions of these predictors are given in

Appendix A. Using Fama-Macbeth regressions as described in Section 4, I test the persistence

of each 6-month predictor, by regressing RN (N = 1, 2, · · · , 6) on each predictor alone with

an intercept. The regressors are normalized to have zero-mean and unit standard deviation to

facilitate comparisons. For this analysis, 6-month options are chosen to give the predictor the best

chance of having a persistent predictability, but the conclusions about their relative persistence

remain unchanged even with options of other maturities, and with or without controls. The table

below display the results. First, the statistical significance of all three documented predictors are

confirmed for theR1 horizon. Second, PCPD6 is the most persistent, with statistically significance

throughout the next 6 months. SMIRK6 also seems persistent, but its persistence actually comes

from PCPD6, since PSKEW6 is not persistent as shown in the third row. ∆PCPD is also not

persistent as well. This actually does not contradict An et. al. (2014), since they use R1−N as

dependent variable as opposed to RN . In other words, most of the predictability of ∆PCPD on

R1−N actually comes from R1. As a result, PCPD is the only measure that is persistent enough

for a decomposition of horizon timing effects up to a 6-month period.

Dependent Var. R1 R2 R3 R4 R5 R6

(1) (2) (3) (4) (5) (6)
PCPD6,ATM 0.46*** 0.17*** 0.20*** 0.12** 0.12** 0.10**

(7.1959) (3.9497) (4.9368) (2.5758) (2.395) (2.1298)
SMIRK6 -0.43*** -0.17*** -0.16** -0.14** -0.10 -0.0739

(-4.8168) (-2.5702) (-2.2859) (-2.0817) (-1.4858) (-1.0718)
PSKEW6 -0.0110 -0.0534 0.0031 -0.0351 0.0031 -0.0078

(-0.15182) (-0.67061) (0.040622) (-0.51026) (0.047101) (-0.11384)
∆PCPD6,ATM 0.26*** -0.0215 0.0622 0.0184 0.0061 0.0154

(5.8332) (-0.58509) (1.4438) (0.58475) (0.15557) (0.41835)
Controls No No No No No No
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
# Obs. 273,487 273,487 273,487 273,487 273,487 273,487
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Figure 1: Volume Distribution and Bid-ask Spreads across Different Option Maturities.
The top figure plots the option volume distribution across 1-12 month maturities. The bottom
figure plots the ratio of median bid-ask spreads between N th month and the first month. Both
graphs are first computed for each firm-date, then averaged over all firm-dates. Both graphs
indicate that the liquidity decreases in maturity. Options beyond eight months have very little
liquidity, making them prohibitive to trade.
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Figure 2: PCPD and SMIRK Measures on a Typical Volatility Smile

OTM (Put) ATM ITM (Put)
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Table 1: Number of firms and firm-month observations by year in the merged dataset.

Year Number of Firms Number of Observations
1996 1,270 11,474
1997 1,561 15,036
1998 1,714 16,544
1999 1,690 16,413
2000 1,610 14,429
2001 1,515 14,105
2002 1,586 15,992
2003 1,538 15,913
2004 1,646 17,119
2005 1,707 18,000
2006 1,813 18,744
2007 1,839 19,967
2008 1,925 19,727
2009 1,854 19,026
2010 1,920 20,248
2011 2,028 20,750
Average 1,701 17,093
Total 273,487
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Table 2: Summary Statistics of Option-based Measures across Different Maturities.
Panel A is based on the implied volatility of at-the-money calls (CIV ) and puts (PIV ) with 1,
3, and 6 months to expiration. Panel B is based on the put-call parity deviation (PCPD =
CIV − PIV ) measure computed using options of 3 and 6 months to expiration. PCPD6⊥3 is
PCPD6 orthogonalized with respect to PCPD3, computed as the residuals of regressing PCPD6

on PCPD3 with an intercept. Therefore, the zero correlation between PCPD3 and PCPD6⊥3
is by construction. All summary statistics are computed based on the entire panel, first in the
cross-section and then averaged over time. Mean, standard deviation, skewness, median, and
mean absolute deviation (MAD) are reported in the bottom rows. MAD is omitted from Panel A,
because CIV and PIV are positive values by definition.

Panel A: Summary Statistics of CIV and PIV across Different Maturities
CIV1 CIV3 CIV6 PIV1 PIV3 PIV6

CIV1 1.00 0.94 0.93 0.92 0.91 0.89
CIV3 0.94 1.00 0.98 0.91 0.95 0.94
CIV6 0.93 0.98 1.00 0.90 0.94 0.96
PIV1 0.92 0.91 0.90 1.00 0.95 0.93
PIV3 0.91 0.95 0.94 0.95 1.00 0.98
PIV6 0.89 0.94 0.96 0.93 0.98 1.00
Mean 0.47 0.46 0.45 0.48 0.47 0.46
Std 0.19 0.18 0.17 0.19 0.18 0.17
Skewness 1.56 1.17 1.03 1.72 1.33 1.18
Median 0.44 0.43 0.43 0.45 0.44 0.43

Panel B: Summary Statistics of PCPD across Different Maturities
PCPD3 PCPD6 PCPD6⊥3

PCPD3 1.00 0.81 0.00
PCPD6 0.81 1.00 0.56
PCPD6⊥3 0.00 0.56 1.00
Mean -0.0072 -0.0075 0.00
Std 0.0533 0.0471 0.0264
Skewness -1.80 -2.61 0.40
Median -0.0048 -0.0047 0.000681
MAD 0.0260 0.0227 0.0120

Panel C: Summary Statistics of Bid-ask Spreads in Stocks and Options
SBAS OBAS %SBAS %OBAS

SBAS 1.00 0.20 0.35 -0.14
OBAS 0.20 1.00 -0.0672 0.0915
%SBAS 0.35 -0.0672 1.00 0.39
%OBAS -0.14 0.0915 0.39 1.00
Mean 0.16 0.67 0.0064 0.51
Std 0.12 4.61 0.0047 0.18
Skewness 4.18 7.58 3.39 0.59
Median 0.13 0.37 0.0051 0.49
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Table 3: Documented Predictability of PCPD.
Coefficients and t-statistics are reported based on Fama-Macbeth regressions of 1-month forward
return on the respective regressor(s) with an intercept. All t-statistics are adjusted with Newey-
West adjustment of 6 lags. The standard control variables used in this paper include market
beta (BETA), log of market capitalization (SIZE), log of book-to-market ratio (B2M ), past 2-
to-12 month momentum (MOM ), Amihud’s illiquidity (ILLIQ), 1-month past return to proxy
for short-term reversal (Short REV ), realized volatility (RV OL) computed as the sum of squared
daily returns over the past month, left-skew computed based on puts (PSKEW = PIVOTM −
PIVATM ), call/put volume ratio (Vc/Vp), and call/put open-interest ratio (OIc/OIp). R2 is
reported at the bottom. 10%/5%/1% significance levels are marked with */**/***.

Dependent Var. R1 R1 R1−3 R1−3
(1) (2) (3) (4)

PCPD1,ATM 5.90*** 5.06***
(7.0125) (6.1089)

PCPD3,ATM 4.69*** 4.31***
(7.7013) (7.5645)

BETA -0.0339 0.0932
(-0.20452) (0.95734)

SIZE -0.0749 -0.0480
(-1.0254) (-0.78162)

B2M 0.12 0.13
(0.99007) (1.1374)

MOM 0.0028 0.0019
(0.75072) (0.59559)

ILLIQ 0.13 0.0425
(0.77114) (0.374)

Short REV -0.0189** -0.0061
(-2.4766) (-1.05)

RVOL -0.14* -0.14*
(-1.8651) (-1.9118)

PSKEW3 -1.10 -1.49
(-0.88783) (-1.4969)

Vc/Vp 0.0021 -0.000970
(0.92353) (-0.81235)

OIc/OIp -0.0011 -0.0033
(-0.26508) (-1.074)

Controls No Yes No Yes
Intercept Yes Yes Yes Yes
Normalized Coeff. No No No No
R2 0.30% 9.11% 0.32% 9.02%
# Obs. 273487 273487 273487 273487
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Table 4: Baseline Results—Horizon Timing Effect Based on 3/6-month PCPD.
In the first two columns, I run Fama-Macbeth regressions of 1-3 and 4-6 month forward return
respectively on the two regressors with an intercept. PCPD6⊥3 means that PCPD6,ATM is
orthogonalized with respect to PCPD3,ATM , so PCPD3,ATM is interpreted as the base. In the
third and fourth column, I add standard controls to the regression. In the fifth and sixth column,
same regressions are done except the regressors are standardized to have zero mean and unit
standard deviation for better comparability across coefficients. Panel B is the result of Fama-
Macbeth regressions of the Lth month forward return (L = 1, 2, 3, 4, 5, 6) on the regressors with an
intercept without controls. Similar pattern also exists with the standard controls (not reported).
R2 is reported on at the bottom. 10%/5%/1% significance levels are marked with */**/***.

Panel A: Horizon Timing Effect Grouped by 3-month Returns

Dependent Var. R1−3 R4−6 R1−3 R4−6 R1−3 R4−6
(1) (2) (3) (4) (5) (6)

PCPD3,ATM 4.69*** 0.99 4.29*** 1.32*** 0.22*** 0.0602**
(7.7013) (1.5563) (7.5063) (2.6151) (7.8549) (2.384)

PCPD6⊥3 6.14*** 6.16*** 5.06*** 5.26*** 0.13*** 0.12***
(4.3982) (4.5831) (4.6489) (4.6745) (5.0378) (5.0668)

Controls No No Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. No No No No Yes Yes
R2 0.50% 0.39% 9.16% 8.50% 9.16% 8.50%
# Obs. 273,487 273,487 273,487 273,487 273,487 273,487

Panel B: Horizon Timing Effect Month-by-month
Dependent Var. R1 R2 R3 R4 R5 R6

(1) (2) (3) (4) (5) (6)

PCPD3,ATM 0.42*** 0.0959*** 0.14*** 0.0531 0.0540 0.0734**
(7.7058) (3.0013) (3.5355) (1.4174) (1.4126) (2.159)

PCPD6⊥3 0.13*** 0.13*** 0.12*** 0.11*** 0.13*** 0.12***
(3.5393) (3.9326) (4.0487) (3.584) (3.4804) (3.7769)

Controls Yes Yes Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
R2 9.30% 8.53% 8.13% 8.05% 7.62% 7.50%
# Obs. 273,487 273,487 273,487 273,487 273,487 273,487
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Table 5: Horizon Timing Effect Based on 2/4/6-month PCPD.
In the first two columns, I run Fama-Macbeth regressions of 1-2, 3-4, and 5-6 month forward
return respectively on the three regressors with an intercept. PCPD6⊥4,2 is computed by taking
the residual of regressing PCPD6 on PCPD4 and PCPD2 with an intercept. In columns
4-6, I add standard controls to the regression. In columns 7-9, same regressions are done
except the regressors are standardized to have zero mean and unit standard deviation for better
comparability across coefficients. Panel B is the result of Fama-Macbeth regressions of the Lth

month forward return (L = 1, 2, 3, 4, 5, 6) on the regressors with an intercept without controls.
Similar pattern also exists with the standard controls (not reported). R2 of each regression is also
reported on the last row. 10%/5%/1% significance levels are marked with */**/***.

Panel A: Horizon Timing Effect Grouped by 2-month Returns

Dependent Var. R1−2 R3−4 R5−6 R1−2 R3−4 R5−6 R1−2 R3−4 R5−6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

PCPD2,ATM 4.25*** 0.90 1.23*** 3.79*** 0.75 1.57*** 0.23*** 0.0551* 0.0670**
(8.452) (1.2159) (2.6416) (7.4446) (1.3002) (3.4491) (7.4286) (1.7414) (2.501)

PCPD4⊥2 4.01*** 4.48*** 0.88 3.79*** 3.88*** 1.56 0.13*** 0.12*** 0.0476*
(2.9158) (3.3168) (0.6461) (3.0332) (3.3913) (1.322) (4.1135) (4.4553) (1.7747)

PCPD6⊥4,2 6.56*** 9.19*** 8.12*** 5.48*** 7.60*** 6.70*** 0.10*** 0.10*** 0.11***
(3.2005) (4.069) (3.6318) (3.0793) (4.0024) (3.6469) (3.9933) (4.3033) (4.1621)

Controls No No No Yes Yes Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes
Normalized Coeff. No No No No No No Yes Yes Yes
R2 0.59% 0.53% 0.51% 9.36% 8.64% 8.13% 9.36% 8.64% 8.13%
# Obs. 273,487 273,487 273,487 273,487 273,487 273,487 273,487 273,487 273,487

Panel B: Horizon Timing Effect Month-by-month
Dependent Var. R1 R2 R3 R4 R5 R6

(1) (2) (3) (4) (5) (6)

PCPD2,ATM 0.38*** 0.0693** 0.0937** 0.0165 0.0543 0.0798**
(6.9984) (2.0057) (2.4405) (0.34923) (1.5582) (2.1586)

PCPD4⊥2 0.18*** 0.0887*** 0.14*** 0.0914*** 0.0529 0.0422
(4.0113) (2.7057) (3.8299) (2.7818) (1.5205) (1.3146)

PCPD6⊥4,2 0.0838** 0.12*** 0.0982*** 0.11*** 0.11*** 0.11***
(2.5832) (3.9164) (3.5671) (3.3096) (2.7257) (3.4703)

Controls Yes Yes Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
R2 9.41% 8.62% 8.22% 8.18% 7.75% 7.59%
# Obs. 273,487 273,487 273,487 273,487 273,487 273,487
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Figure 3: Decay of predictive power of PCPD over 12-month horizon.
Each point on each line correspond to a Fama-Macbeth regression of T-month cumulative forward
return on each regressor standalone (e.g. PCPD1,ATM ). The eight lines correspond to using
predictors computed based on options with eight different maturities: 1, 2, 3, 4, 5, 6, 9, and 12
months respectively.
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Table 6: Evidence of Information-based Explanation: Sort on Option-to-stock Volume Ratio.
I sort on option/stock volume ratio (O/S) in each cross-section of Fama-MacBeth regression. This
result confirms that O/S is an effective conditioning variable. It strengthens the information-
origin of horizon timing effect. R2 of each regression is also reported on the last row. 10%/5%/1%
significance levels are marked with */**/***.

Dependent Var. R1−3 R1−3 R1−3 R4−6 R4−6 R4−6
(1) (2) (3) (4) (5) (6) (7) (8)

PCPD3,ATM 0.21*** 0.25*** 0.28*** 0.0738 -0.0236 0.0638 0.15** 0.17***
(4.6603) (5.6086) (4.7324) (0.93075) (-0.72187) (1.4411) (2.4444) (2.651)

PCPD6⊥3 0.11*** 0.15*** 0.16*** 0.0463 0.0766* 0.15*** 0.16*** 0.0789*
(3.2333) (3.7413) (3.0567) (0.78835) (1.9491) (3.6701) (4.1404) (1.842)

Controls No No No No No No
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
R2 0.92% 0.88% 1.33% 0.77% 0.97% 1.06%
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Table 7: Evidence of Information-based Explanation: Sort on Turnover Measures.
In Panel A, I sort on option turnover (O/SHROUT ), defined as the ratio of option volume to
number of shares outstanding, in each cross-section of the Fama-MacBeth regression. In Panel
B, I sort on stock turnover (S/SHROUT ), which I argue is ambiguous in Section 4.3.2. This
result confirms that O/SHROUT is an effective conditioning variable, but S/SHROUT is not.
In particular, Panel A strengthens the information-origin of horizon timing effect. R2 of each
regression is also reported on the last row. 10%/5%/1% significance levels are marked with
*/**/***.

Panel A: Sorting on O/SHROUT

Dependent Var. R1−3 R1−3 R1−3 R4−6 R4−6 R4−6
(1) (2) (3) (4) (5) (6) (7) (8)

PCPD3,ATM 0.21*** 0.23*** 0.29*** 0.0852 -0.0006 0.0608 0.11* 0.11*
(5.2462) (5.8161) (5.5244) (1.3065) (-0.021001) (1.3592) (1.8396) (1.6968)

PCPD6⊥3 0.10*** 0.13*** 0.16*** 0.0554 0.0500* 0.15*** 0.16*** 0.11**
(2.9374) (4.0164) (3.6697) (1.121) (1.7126) (3.3278) (3.5026) (2.4011)

Controls No No No No No No
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
R2 0.94% 0.93% 1.09% 0.81% 1.04% 0.96%

Panel B: Sorting on S/SHROUT (Should be Ambiguous)

Dependent Var. R1−3 R1−3 R1−3 R4−6 R4−6 R4−6
(1) (2) (3) (4) (5) (6) (7) (8)

PCPD3,ATM 0.22*** 0.25*** 0.24*** 0.0230 0.0671* 0.0574 0.0332 -0.0338
(6.8053) (6.5283) (5.1425) (0.47457) (1.7763) (1.551) (0.56391) (-0.54315)

PCPD6⊥3 0.11*** 0.16*** 0.16*** 0.0531 0.0654** 0.10*** 0.20*** 0.13**
(3.3446) (3.8021) (4.3694) (1.1496) (2.1751) (3.1178) (3.4603) (2.1408)

Controls No No No No No No
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
R2 1.18% 0.96% 0.87% 1.10% 0.78% 0.83%
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Table 8: Robustness Tests of Horizon Timing Effect.
This table presents various robustness checks. Columns 1-2 trim outliers of PIV and CIV at 1% and 99% levels. Columns 3-4
include all low-priced stocks below $5. Columns 5-6 and 7-8 presents individual sub-period analysis for 1996-2003 and 2004-2011
respectively. Columns 9-10 alters the orthogonalization procedure to a simple subtraction PCPD6−PCPD3 of signals. Columns
11-12 include the controls in the orthogonalization procedure. The horizon timing effect and lower-diagonal pattern are robust to
all different specifications. R2 of each regression is also reported on the last row. 10%/5%/1% significance levels are marked with
*/**/***.

Trim PIV and CIV Include Low-priced Subperiod 96-03 Subperiod 04-11 Orth by Diff Orth to Controls
Dependent Var. R1−3 R4−6 R1−3 R4−6 R1−3 R4−6 R1−3 R4−6 R1−3 R4−6 R1−3 R4−6

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PCPD3,ATM 0.21*** 0.0746*** 0.22*** 0.0692*** 0.28*** 0.0412 0.16*** 0.0790** 0.30*** 0.13*** 0.22*** 0.0601**
(7.1369) (3.3006) (8.5497) (2.8108) (6.6942) (1.1471) (5.479) (2.2517) (7.9005) (3.9943) (7.8769) (2.366)

PCPD6⊥3 0.12*** 0.0909*** 0.13*** 0.10*** 0.19*** 0.16*** 0.0665*** 0.0788***
(4.3883) (3.7089) (4.1869) (3.4692) (4.8421) (4.2931) (2.84) (3.1641)

PCPD6 − PCPD3 0.15*** 0.14***
(5.1795) (5.0685)

PCPD6⊥3,controls 0.12*** 0.11***
(5.0676) (5.1318)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 9.09% 8.37% 9.32% 8.67% 11.15% 10.46% 7.19% 6.56% 9.16% 8.50% 9.16% 8.50%
# Obs. 267072 267072 285675 285675 119906 119906 153581 153581 273,487 273,487 273,487 273,487
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Table 9: Horizon Timing Effects using Portfolio Sorts.
The column header in the top row indicates the variable on which sorting is done. S/H represents
the number of months to skip (S) and number of months to hold the portfolio (H) respectively. For
example, S = 3, H = 3 means skip 3 months and hold 3 months, so it is analogous to a 4-6 month
forward return. I sort firms into 10 deciles, and report portfolio alphas for each decile, controlled
for the Fama-French three factors and momentum factor. The bottom row shows the portfolio
alpha resulted by longing decile 10 (high predictor value) and shorting decile 1 (low predictor
value). All portfolio alphas are annualized and already in percentages. 10%/5%/1% significance
levels are marked with */**/***.

Sort on: PCPD1 PCPD3 PCPD6⊥3
Skip/Hold S = 0, H = 1 S = 0, H = 3 S = 3, H = 3 S = 0, H = 3 S = 3, H = 3

(1) (2) (3) (4) (5)

(1) -9.39 -4.63 1.14 -1.66 0.82
(2) -3.26 0.36 4.07 1.75 2.97
(3) -3.69 1.18 3.51 2.08 3.77
(4) 1.80 1.91 3.01 2.43 3.62
(5) 1.70 2.19 3.13 2.67 3.30
(6) 2.77 3.30 4.02 3.05 3.78
(7) 3.60 4.24 3.38 2.44 3.64
(8) 4.50 4.69 4.68 4.11 4.72
(9) 7.90 5.15 4.47 3.80 4.55
(10) 12.39 7.06 4.77 4.76 5.02

Diff 21.78 11.69 3.63 6.42 4.20
(6.67***) (6.82***) (1.93*) (5.01***) (2.87***)
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Table 10: Rejecting Microstructure Effects.
This table presents evidence to rule out microstructure effects. Columns 1-2 control for stock and
option bid-ask spreads. Columns 3-4 avoid stale quotes by including only options that have been
traded on the last trading day of the month. Columns 5-6 construct PCPD measures from the
second-last trading day of the month, effectively providing a 1-day lag in stock returns. All these
specifications control for microstructure effects. The horizon timing effects and the lower-diagonal
pattern in the coefficients survive all tests. R2 of each regression is also reported on the last row.
10%/5%/1% significance levels are marked with */**/***.

Control for Spreads Avoid Stale Quotes 1-day Lag in Stock Returns
Dependent Var. R1−3 R4−6 R1−3 R4−6 R1−3 R4−6

(1) (2) (3) (4) (5) (6)

PCPD3,ATM 0.22*** 0.0598** 0.24*** 0.0564* 0.18*** 0.0596**
(7.9005) (2.3581) (7.8106) (1.8755) (6.375) (2.5681)

PCPD6⊥3 0.13*** 0.12*** 0.13*** 0.12*** 0.12*** 0.0852***
(5.0099) (5.0012) (4.8652) (4.5067) (4.2522) (3.7247)

SBAS -0.0450 -0.0217
(-1.01) (-0.5177)

OLBAS -0.0310 0.0061
(-0.66668) (0.15228)

Controls Yes Yes Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes
R2 9.58% 8.87% 9.72% 9.05% 9.17% 8.48%
# Obs. 273,487 273,487 231,972 231,972 273,330 273,330
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Table 11: Rejecting Volatility Effects.
This table presents evidence to rule out volatility effects. Columns 1-2 control for the straddle
(STRAD), defined as (CIV + PIV )/2. Columns 3-4 uses %PCPD = PCPD/STRAD as
regressors. Columns 5-6 uses %PCPD and control for STRAD at the same time. Columns 7-
8 finally include both volatility and microstructure controls in one regression. The horizon timing
effects and the lower-diagonal pattern in the coefficients survive all tests. R2 of each regression is
also reported on the last row. 10%/5%/1% significance levels are marked with */**/***.

Control for Volatility Control for Volatility Both %PCPD and Control for Both
with Straddle using %PCPD Straddle Microstructure and

Volatility
Dependent Var. R1−3 R4−6 R1−3 R4−6 R1−3 R4−6 R1−3 R4−6

(1) (2) (3) (4) (5) (6) (7) (8)

PCPD3,ATM 0.20*** 0.0648*** 0.20*** 0.0617***
(6.3695) (3.0418) (6.3635) (2.8594)

PCPD6⊥3 0.12*** 0.11*** 0.12*** 0.11***
(4.9128) (4.2606) (4.8862) (4.2562)

%PCPD3,ATM 0.20*** 0.0570*** 0.19*** 0.0592***
(7.6486) (2.7291) (6.8958) (3.2695)

%PCPD6⊥3 0.0990*** 0.0870*** 0.0939*** 0.0851***
(4.7617) (4.4704) (4.8127) (4.0509)

STRAD3,ATM -0.13 -0.0565 -0.16 -0.0671 -0.15 -0.0632
(-0.67672) (-0.30097) (-0.83001) (-0.35816) (-0.761) (-0.34489)

SBAS -0.0584* -0.0194
(-1.8083) (-0.6048)

OBAS -0.0160 -0.0094
(-0.31002) (-0.22059)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Intercept Yes Yes Yes Yes Yes Yes Yes Yes
Normalized Coeff. Yes Yes Yes Yes Yes Yes Yes Yes
R2 10.35% 9.44% 9.06% 8.41% 10.25% 9.35% 10.68% 9.76%
# Obs. 273,487 273,487 273,487 273,487 273,487 273,487 273,487 273,487
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