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Abstract

We develop a noisy rational expectations model of financial trade featuring investors who

acquire information and trade at a range of different frequencies. In the model, a restriction on

high-frequency trading affects effi ciency of prices at high frequencies, but leaves low-frequency

effi ciency unaffected. In a particular equilibrium of the model, traders specialize into trading

at individual frequencies. We show that high- and low-frequency investors coexist, trade with

each other, and make money from each other. The model matches numerous basic features of

financial markets: investors endogenously specialize into strategies distinguished by frequency;

volume is disproportionately driven by high-frequency traders; and the portfolio holdings of

informed investors forecast returns at the same frequencies as those at which they trade.

Investors in financial markets follow many different strategies, including value investing, techni-

cal analysis, macro strategies, and algorithmic trading. These strategies differ in two salient ways.

First, they require investors to learn about different aspects of asset prices; market-makers or algo-

rithmic traders care more about the high-frequency movements of prices, while value investing puts

more emphasis on their slow-moving features. These investors all understand that their information

sets may not overlap, and yet they trade with each other, presumably making some money in the

process. Second, these strategies differ in the frequency at which they require investors to trade,

or equivalently the rate at which they turn over their positions.

This paper proposes an equilibrium model in which investors endogenously specialize in acquir-

ing information and trading at different frequencies. There is a single fundamentals process, and a

continuum of investors who trade forward contracts on the fundamental. These investors also learn

about different aspects of asset dynamics. An example of the fundamentals process is the spot

price of oil: investors are able to acquire information that tells them about the future path of oil

prices, allowing them to potentially earn profits on the forward contracts. As is common elsewhere,

in order to grease the wheels of the market, we assume that investors trade against an exogenous

flow of demand for forward contracts that fluctuates stochastically over time.

We show that in such a model, there exists a natural (though not necessarily unique) equi-

librium in which individual investors endogenously choose to focus on specific frequencies of the
∗Crouzet: Northwestern University. Dew-Becker: Northwestern University and NBER. Nathanson: Northwestern
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fundamentals. Some investors learn about low-frequency aspects of oil prices in the sense that

they get a signal about their average path over, say, a period of decades, while others learn about

higher-frequency behavior, receiving a signal about how oil prices vary from day to day or month

to month. This occurs despite the fact that the learning technology is fully general, and in no way

tilts investors towards frequency specialization ex-ante.

Given attention allocation —what aspect of fundamentals investors choose to learn about —in

equilibrium we show that their positions fluctuate at the frequency at which they receive signals.

That is, investors who learn about long-run fundamentals hold positions in forward contracts that

fluctuate slowly over time, whereas those who do high-frequency research have positions that vary

at high frequencies. So we have a model in which people choose to learn about high- or low-

frequency aspects of fundamentals, and that learning causes them to endogenously become high-

or low-frequency traders.

While there is other research on investors who trade at different frequencies, that work typically

endows investors with investment horizons that differ exogenously.1 In our setting, all investors

have the same objective, maximizing utility over identical horizons. We view this as an important

restriction in our setting because it is obviously not the case that people who trade at high fre-

quencies, e.g. turning over their portfolios once per day, really have investment horizons of only 24

hours. Rather, all investors want to maximize the same utility function over wealth, they just go

about it in different ways.

What is particularly interesting about the equilibrium that we obtain is that it is not the case

that the informed investors trade only with the exogenous demand (i.e. liquidity traders). In

fact, high- and low-frequency traders trade with each other. The simple reason is that a high-

frequency trader cannot distinguish uninformative demand shocks from the orders of informed

low-frequency traders (and vice versa). So in periods when fundamentals are persistently strong,

low-frequency traders tend to hold persistently more forward contracts than high-frequency traders

and earn profits from them. Similarly, if there is a very transitory increase in fundamentals, the

high-frequency traders tend take advantage and earn profits while the low-frequency traders lose,

as they ignore the temporary trading opportunity. In that sense, then, everybody is a noise trader

sometimes, and they all understand that, but they still participate and make money on average.

The model has a number of predictions for observable features of financial markets. First,

as we have already discussed, it predicts that there are traders who can be distinguished by the

frequencies at which their asset holdings change over time, and they do research about fundamentals

at the same frequencies. So we obtain endogenous high- and low-frequency traders with a specific

prediction for how research aligns with trade.

The model also matches salient facts about differences in volume across investors. We can
1See, e.g., Amihud and Mendelson (1986), who assume that investors are forced to sell after random periods of

time; Hopenhayn and Werner (1996), who assume that investors vary in their rates of pure time preference, and
Defusco, Nathanson, and Zwick (2016) who assume that there are sets of investors who are exogenously forced to
sell at determinstic horizons that vary across groups. Turley (2012), like us, studies a setting in which investors
endogenously choose to learn about high- or low-frequency information, though he studies only a two-period case.
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very easily show analytically that high-frequency investors account for a fraction of aggregate

volume that is out of proportion to their fraction of total asset holdings. An interesting implication

of that result is that incorporating trading costs into the model can have substantial effects on

optimal information acquisition strategies. Since high-frequency trade requires paying much larger

transaction costs than low-frequency trade, any trading costs cause prices to naturally be less

effi cient and for there to be less liquidity at high than low frequencies.2 Moreover, as transaction

costs fall, we expect to see a shift towards higher-frequency trade and for prices to become more

effi cient at high frequencies (see also Turley (2012)).

The model is fundamentally about differences in information across investors. People obtain

information in order to make money, and so their asset holdings in general should forecast returns.

We see that both in the model and in the data.3 But different investors’holdings do not forecast

returns in the same way. The frequency at which an investor’s portfolio holdings forecasts returns is

the same as the frequency at which they trade: high-frequency investors’positions forecast returns

at very short horizons, while buy-and-hold investors’portfolios forecast returns over much longer

periods.

The idea that an investors’asset holdings should forecast returns over a period related to how

long those assets will be held is perhaps not surprising. Studies of the holdings of mutual funds

and other institutional investors typically examine returns over a period of perhaps 3—12 months.

At the other extreme, Brogaard, Hendershott, and Riordan (2014) show that the holdings of high-

frequency traders (as defined by NASDAQ) forecast returns over periods of 1—5 seconds —a horizon

7 orders of magnitude smaller than a calendar quarter.

To empirically test our model, we provide novel evidence on the relationship between turnover

and asset return predictability. Using form 13F data on institutional asset holdings, we first show

that asset turnover within funds is highly persistent over time, suggesting that it is a salient feature

of investor strategies. Next, after confirming past results that institutional holdings predict returns,

we show that the predictive power of the holdings of high-turnover funds decays much more quickly

than those of low-frequency funds, consistent with the model.

Finally, we use the model to study the effects of a policy that restricts high-frequency trade.

Such a policy has the obvious effect of reducing the informativeness of prices at high frequencies,

but it has no effect at low frequencies. The practical implication is that while prices at any single

moment contain less information than without the policy, moving averages of prices remain almost

equally informative about moving averages of dividends. So to the extent that economic decisions

are made based on an average of prices over time, rather than a price at a single moment, the

model implies that restricting high-frequency trade will not reduce the information available for

those decisions.
2Gârleanu and Pedersen (2013) also discuss how high-frequency information is less valuable in the presence of

trading costs, while Dávlia and Parlatore (2016) study in a related setting how trading costs can affect information
acquisition, but without our focus on differences across frequencies.

3See, e.g., the literature on the predictive power of mutual fund and institutional investor asset holdings for future
returns, such as Carhart (1997) and Yan and Zhang (2009), among many others.
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To summarize, we develop a model that matches a number of major features of trade in financial

markets: investors can be distinguished by the frequencies at which they trade; volume is accounted

for by high-frequency traders; and the holdings of investors forecast returns at horizons similar to

their holding periods. The model can then be used to analyze the effects of restricting trade at

specific frequencies.

In general models with dynamic trade are extremely diffi cult to solve; solutions typically require

some kind of restriction, such as to a very narrow class of driving processes (e.g. AR(1) and

Ornstein—Uhlenbeck processes studied in Wang (1993, 1994) and He and Wang (1995)), or to only

two or three period horizons. We allow for a very long investment horizon and place only technical

constraints on the fundamental processes driving the model and obtain fully analytic solutions. The

sacrifice that we make is that information sets are fixed on date 0 —investors only obtain signals

once. The model should be thought of as essentially a stationary equilibrium: it gives a steady-

state description of trade, volume, and returns. It is not well suited to studying how investors and

markets respond to shocks to information sets.

The major advantage of our particular information structure is that it allows us to take a long-

horizon dynamic model and solve it as a series of parallel scalar problems. In particular, solving

our model is only marginally more diffi cult than solving a standard single-period/single asset noisy

rational expectations model — it reduces to a parallel set of such equilibria. The paper thus has

useful methodological contributions for analyzing models of trade over time.

This paper builds on a growing recent literature that tries to understand optimal informa-

tion acquisition in financial markets. The most important building blocks are the models of van

Nieuwerburgh and Veldkamp (2010) and Kacperczyk, van Nieuwerburgh, and Veldkamp (2016) in

that we use a highly similar information and market structure and build on their results on optimal

information acquisition (their reverse water-filling solution, in particular). Those papers themselves

build critically on work by Grossman and Stiglitz (1980), Hellwig (1980), Diamond and Verrecchia

(1981), and Admati (1985) on rational expectations equilibria. More recently, research has tried

to understand the effects on the equilibria developed in those earlier papers of various limits on

information gathering ability (e.g. Banerjee and Green (2015) and Dávila and Parlatore (2016)).

There is also a literature on price dynamics in rational expectations equilibria, though it is

relatively small given how diffi cult dynamic models are to solve. In particular, a series of papers

by Wang (1993, 1994) and He and Wang (1995) study the implications of dynamic equilibria on

prices and volume. Those papers are based around AR(1) or Ornstein—Uhlenbeck-type dynamics

to maintain tractability (see also Wachter (2002)), whereas we study a setting in which the various

exogenous time series may follow processes with minimally constrained autocorrelations. Further-

more, we focus on how investment strategies differ across investors, whereas those papers focus on

symmetric strategies. A number of papers also study overlapping generations models, which can

help alleviate some of the diffi culties with dynamic trade.4

There is also a large literature on disagreement in financial markets. In addition to the above

4See Spiegel (1998), Watanabe (2008), and Banerjee (2011), among others.
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work, see, e.g., Townsend (1983), Basak (2005), Hong and Stein (2007), and Banerjee and Kremer

(2010), who focus, like us, on dynamics. In our setting, disagreement arises not just because agents

receive signals that have random errors, but also because their signals have different relationships

with fundamentals. High-frequency and low-frequency investors will often disagree about the price

path of the asset over time because they learn about different characteristics of fundamentals —the

path over the next few minutes, say, versus the path over the next several years.

Our desire to develop a model that can match salient features of the cross-section of investment

strategies follows from a large empirical literature that documents the behavior of many different

types of investors and how it affects the aggregate behavior of financial markets. Chen, Jegadeesh,

and Wermers (2000), Gompers and Metrick (2001), Nagel (2005), Griffi n and Xu (2009), Yan and

Zhang (2009), and Brogaard, Hendershott, and Riordan (2014), for example, study the behavior of

institutional investors and how their holdings relate to asset returns. Turley (2012), Bai, Philippon,

and Savov (2016), and Weller (2016) study how price informativeness has changed over time and

how it is affected by trading costs and the number of investors who trade at different frequencies.

Finally, our work is related to a small literature that studies the properties of asset returns

and portfolio choice in the frequency domain including Bandi and Tamoni (2014), Chinco and Ye

(2016), Chaudhuri and Lo (2016), and Dew-Becker and Giglio (2016).

The remainder of the paper is organized as follows. Section 1 describes the basic environment,

and we solve for optimal information acquisition in section 2. Section 3 examines the implications

of the model for the behavior of individual investors in a setting that features investors who spe-

cialize in trade at a particular frequency. Section 4 presents empirical evidence on the behavior of

institutions consistent with out model of specialization. Finally, section 5 presents our key results

on the effects of restrictions on high-frequency trade on return volatility and price effi ciency at

different frequencies, and section 6 concludes.

1 Asset market equilibrium

We begin by describing the basic market structure and the asset market equilibrium. This section

introduces the description of trading strategies in terms of frequencies and shows how the frequency

transformation makes multi-period investment a purely scalar problem. the problem is solved from

the perspective of date 0.

1.1 Market structure

Time is denoted by t ∈ {−1, 0, 1, ..., T}, with T even, and we will focus on cases in which T may be
treated as large. There is a fundamentals process Dt that investors make bets on with realizations

on all dates except −1 and 0. The time series process is stacked into a vector D ≡ [D1, D2, ..., DT ]′

(variables without subscripts denote vectors) and is distributed as

D ∼ N(0,ΣD). (1)
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The fundamentals process is assumed to be stationary, meaning that it has constant uncondi-

tional autocovariances. Stationarity implies that ΣD is Toeplitz (all diagonals are constant), and

we further assume that the eigenvalues of ΣD are finite and bounded away from zero.5

On date 0, there is a market for forward claims on Dt for all t > 0. A unit mass of investors

indexed by i ∈ [0, 1] meets on date 0 and commits to a set of trades of futures contracts maturing

on all dates. Pt denotes the price of a claim to the fundamental Dt.

There is an exogenous supply of futures, Z, which is distributed as

Z ∼ N(0,ΣZ). (2)

Zt may be thought of as either exogenous liquidity demand or noise trading. The time series process

for supply is also assumed to be stationary. For markets to clear, the net demand of the investors

for the fundamental on date t must equal Zt,6

∀t :

∫
i
Qi,tdi = Zt, (3)

where Qi,t is the number of date-t forward claims agent i buys.

A concrete example of a potential process Dt is the price of crude oil: oil prices follow some

stochastic process and investors trade futures on oil at many maturities. Dt can also be interpreted

as the dividend on a stock, in which case Pt is the price of a forward claim on a single dividend.

1.1.1 Modeling equities

While the concept of a futures market on the fundamentals will be a useful analytic tool, we can

also obviously price portfolios of futures. We model equity as a claim to the stream of fundamentals

over time. To purchase such a claim, one would enter into futures contracts for the fundamental

on each date t + j. Since futures contracts specify that money only changes hands at maturity,

the money that must be set aside on date t for a futures contract that expires at t+ j is Pt+jR−j ,

where R is the discount rate (which is assumed here to be a constant). The date-t cost of a claim

to the entire future stream of fundamentals is therefore

P equityt ≡
T−t∑
j=1

R−jPt+j (4)

Holding any given combination of futures claims on the fundamental D is therefore also equiva-

lent to holding futures contracts on equity claims (i.e. committing to a trading strategy in equities

at prices that are agreed on at date 0). Any desired set of exposures to fundamentals over time

5The analysis is similar if a transformation of Dt (e.g. its first difference) is stationary. See appendix section A.
6 It is also possible to assume that there is an exogenous downward-sloping supply curve of the fundamental that

shifts stochastically over time; our results go through similarly. This case is treated as part of the analysis of appendix
6.
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can be obtained either through purchases of futures or through suitable trading strategies for the

equity claim (assuming prices can be committed to or that they are predetermined, which will be

the case in our equilibrium).

Our analysis of pricing will focus on futures as they will give the most direct analog to past

work. When we discuss volume and trading costs, though, we will take advantage of the equity-

based implementation.

1.2 Information structure

The realization of the time series of fundamentals, {Dt}Tt=1, can be thought of as a single draw from

a multivariate normal distribution. Investors are able to acquire signals about that realization. The

signals are a collection {Yi,t}Tt=1 observed on date 0 with

Yi,t = Dt + εi,t, εi ∼ N (0,Σi) , (5)

Information sets in the model are fixed on date 0. Through Yi,t, investors can learn about funda-

mentals potentially arbitrarily far into the future. εi,t is a stationary error process in the sense that

cov (εi,t, εi,t+j) depends on j but not t (again, Σi is Toeplitz).

The information structure here is obviously stylized. One interpretation is that we are collapsing

to date 0 all the realizations of a stationary process. That is, agents have a machine that gives them

signals about fundamentals plus an error, and that machine reports all of its output on date 0. The

information structure is meant to generate two important features in the model. First, obviously on

any particular date agents can choose to learn about fundamentals on more than just a single date

in the future —they can potentially get information about fundamentals in many different periods

(e.g. next quarter vs. over the next five years). Second, by restricting εi,t to be “stationary”, we

are forcing agents to choose a fixed policy for information. They build a machine (or a research

department) that, rather than yielding information about only a single date, returns information

about the entire fundamentals stream over time in a way that places no particular emphasis on any

single date.

In choosing Σi agents will have two choices to make. First, they will be able to choose how

informative their signals are by choosing the variance of εi. Second, though, they will be able to

choose how accurate the signals are about fundamentals over different horizons. some choices for

Σi will yield signals that are informative about transitory variation in fundamentals, while others

will yield signals that are more useful for forecasting trends.

1.3 Investment objective

All trading decisions are made on date 0. Investors choose demands {Qi,t}Tt=1 conditional on their

observed signals, {Yi,t}Tt=1, and the set of futures prices, {Pt}
T
t=1. That is, as in past work, agents

submit to a central auctioneer demand curves that condition on prices.
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We assume that investors have mean-variance utility over cumulative excess returns. Investor

i’s objective is

U0,i = max
{Qi,t}

E0,i

[
T−1

T∑
t=1

Qi,t (Dt − Pt)
]
− (ρT )−1 V ar0,i

[
T∑
t=1

Qi,t (Dt − Pt)
]
, (6)

where E0,i is the expectation operator conditional on agent i’s date-0 information set, {P, Yi}.
V ar0,i is the variance operator conditional on {P, Yi}. ρ is risk-bearing capacity per unit of time.

The assumption that all plans are made on date 0 only restricts information sets in a very

specific way: it means that investors are not able to condition demand on the realized history of

fundamentals. That is, it is not free to condition on the history of Dt, even when that history has

already been realized. Instead, what agents must condition on is noisy signals about fundamentals,

Yi,t.

An important implication of that assumption is that agents have no desire to change their

investment choices after date 0 since they receive no further information. Agents’trading strategies

can thus be equivalently implemented either through a set of purchases of futures contracts or

through a dynamic plan for trading the equity claim, as described above.

We interpret the objective as representing a target that an institutional investor might have.

Rather than aiming to maximize the discounted sum of returns, as a person who consumes out of

wealth might, the investors we study maximize a measure of their performance. The objective can

be thought of as representing CARA or quadratic preferences over the sum of excess returns, so it

would appear if a manager were paid on date T a fee proportional to total excess returns up to that

time. Bhattacharya and Pfleiderer (1985) and Stoughton (1993) also argue that a quadratic contract

(which would induce mean-variance preferences) can appear optimally in delegated investment

problems. The important characteristic of (6) is that it yields a stationary problem in the sense

that there is no discounting to make returns in some periods more important than others.

Finally, note that all investors have the same investment horizon. We show in appendix F that

the investment horizon as defined here by T has no effect on information choices in the model —

two investors with different T will be equally likely to be high- or low-frequency investors. The

simplest way to confirm that fact is to simply note, when we obtain the equilibrium strategies, that

T has no effect on the type of information that investors optimally obtain.

1.4 Equilibrium

Conditional on the information choices of the agents — that is, taking the set of Σi (which may

differ across agents) as given —we study a standard asset market equilibrium.

Definition 1 An asset market equilibrium is a set of demand functions, Qi (P, Yi), and a vector

of prices, P , such that investors maximize utility, U0,i, and all markets clear,
∫
iQi,tdi = Zt ∀t.
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The equilibrium concept is that Grossman and Stiglitz (1980), Hellwig (1980), Diamond and

Verrecchia (1981), and Admati (1985). Investors submit demand curves for each futures contract

to a Walrasian auctioneer who selects equilibrium prices to clear all markets.

The structure is in fact mathematically that of Admati (1985), who studies investment across

a set of assets that might represent stocks in different companies, and the solution from that

paper applies directly here. Here we are considering investment across a set of futures contracts

that represent claims on some fundamentals process across different dates. We simply rotate the

Admati (1985) structure from a cross-section to a time series.

1.5 Trading frequencies

This paper is fundamentally about the behavior of markets at different frequencies, so we need a

rigorous concept of what frequencies are. We use the fact that fluctuations at different frequencies

represent an (asymptotic) orthogonal decomposition of any time series.

Define a set of vectors of cosines and sines at the fundamental frequencies ωj = 2πj/T for

j ∈ {0, 1, ..., T/2}

cj ≡
√

2/T [cos (2πj (t− 1) /T ) ; t = 1, 2, ..., T ]′ (7)

sj′ ≡
√

2/T [sin (2πj (t− 1) /T ) ; t = 1, 2, ..., T ]′ . (8)

A cycle at frequency ωj has an associated wavelength 2π/ωj . ω0 = 0 thus corresponds to an infinite

wavelength, or a permanent shock (a constant vector). ω1 corresponds to a cycle that lasts as long

as the sample —c1 is a single cycle of a cosine. ωT/2 = π, the highest frequency, corresponds to a

cycle that lasts two periods, so that cT/2 oscillates between ±
√

2/T .

The frequency-domain counterpart to the vector of fundamentals, D, is then

d = Λ′D (9)

where Λ ≡
[
c0/
√

2, c1, ..., cT/2/
√

2, s1, s2, ..., sT/2−1

]
, (10)

we use the notation dj = c′jD and dj′ = s′jD to refer to fundamentals at particular frequencies.

When the distinction is necessary, we use the notation j to refer to a frequency associated with a

cosine transform and j′ to refer to one with a sine transform. In what follows, lower-case letters

denote frequency-domain objects. Note that Λ is orthonormal with Λ′ = Λ−1.

Since d is a linear function of D, it can be thought of as a vector of payoffs on portfolios of

futures given by Λ —portfolios with weights on Dt that fluctuate over time as sines and cosines.

For our purposes, the key feature of Λ is that it approximately diagonalizes all Toeplitz matrices

and thus orthogonalizes stationary time series.7

7This is a textbook result that appears in many forms, e.g. Shumway and Stoffer (2011). Brillinger (1981) and
Shao and Wu (2007) give similar statements under weaker conditions.
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Definition 2 fX is the spectrum of X with elements fX,j, defined as

fX,j ≡ σX,0 + 2

T−1∑
s=1

σX,j cos (ωjs) (11)

fX ≡
[
fX,0, fX,1, ...fX,T/2, fX,1, fX,2, ..., fX,T/2−1

]′
. (12)

Lemma 1 For a stationary time series Xt ∼ N (0,ΣX) with autocovariances σX,j ≡ cov (Xt, Xt−j),

x ≡ Λ′X ⇒ N (0, diag (fX)) (13)

where ⇒ denotes convergence in the sense that

∣∣Λ′ΣXΛ− diag (fX)
∣∣ ≤ cXT−1/2 (14)

for a constant cX and for all T .8 diag (fX) is a matrix with the vector fX on its main diagonal

and zero elsewhere.

Proof. This is a textbook result (e.g. Brockwell and Davis (1991)). See appendix B for a derivation
specific to our case.

For any finite horizon, the matrix Λ does not exactly diagonalize the covariance matrix of D.

But as T grows, the error induced by ignoring the off-diagonal elements of the covariance matrix

Λ′D becomes negligible (it is of order T−1/2), and x is well approximated as a vector of independent

random variables.9 The spectrum of X, fX , measures the variance in X coming from fluctuations

at each frequency. It also represents an approximation to the eigenvalues of ΣX .10

To see why this lemma is useful, consider the vector of fundamentals in the frequency domain,

d = Λ′D. Given that D ∼ N(0,ΣD), where ΣD is Toeplitz, we have

Λ′D = d⇒ N (0, diag (fD)) . (15)

Λ thus approximately diagonalizes the matrix ΣD, meaning that the elements of d —the fluctuations

in fundamentals at different frequencies (with both sines and cosines) are jointly asymptotically

independent. Moreover, the same matrix Λ asymptotically diagonalizes the covariance matrix of

any stationary process. That result will allow us to massively simplify the study of investment over

8Two technical points may be noted here. First, as a technical matter, the spectrum fX must be extended as T
grows. A simple way to do that is to suppose that there is a true process for X with a spectrum that is a continuous
function fX , and in any finite sample of length T , there is then an associated spectrum fX,T defined in (11). The
second point is that the constant cX is then a function of that true spectrum fX ; the appendix elaborates on that
fact.

9For all the stationary processes studied in the paper, we assume that the autocovariances are summable in the
sense that

∑∞
r=1 |jσX,j | is finite (which holds for finite-order stationary ARMA processes, for example).

10fX represents an approximation to the eigenvalues only in the sense that Λ′ΣXΛ ≈ diag (fX). Providing a sense
in which fX is actually close to the true eigenvalues of ΣX is a subtler problem that we do not address here. The
specific result in lemma 1 is all that we actually need for our results.

10



many horizons. It says that set of orthogonal factors underlying all stationary processes is (nearly)

the same.

1.6 Market equilibrium in the frequency domain

The approximate diagonalization induced by Λ allows us to solve the model through a series of

parallel scalar problems that can be easily solved by hand. Using the asymptotic approximation

that d and z are independent across frequencies (and across sines and cosines), we obtain the

following frequency-by-frequency solution to the asset market equilibrium.11

Solution 1 Under the approximations d ∼ N (0, diag (fD)) and z ∼ N (0, diag (fZ)), the prices of

the frequency-specific portfolios, pj, satisfy, for all j, j′

pj = a1,jdj − a2,jzj (16)

a1,j ≡ 1−
f−1
D,j(

ρf−1
avg,j

)2
f−1
Z,j + f−1

avg,j + f−1
D,j

(17)

a2,j ≡
a1,j

ρf−1
avg,j

(18)

where f−1
avg,j ≡

∫
i
f−1
i,j di (19)

where pj, dj, and zj represent the frequency-j components of prices, fundamentals, and supply,

respectively. fi is the spectrum of the matrix Σi. See appendix C for the derivation.

The price of the frequency-j portfolio depends only on fundamentals and supply at that fre-

quency. As usual, the informativeness of prices, through a1,j , is increasing in the precision of the

signals that investors obtain, while the impact of supply on prices is decreasing in signal precision

and risk tolerance. The frequency domain analog to the usual demand function is

qi,j = ρ
E [dj − pj | yi,j , pj ]
V ar [dj − pj | yi,j , pj ]

. (20)

These solutions for the prices and demands are the standard results for scalar markets. What is

novel here is that the choice problem refers to trades over time. pj is the price of a portfolio whose

exposure to fundamentals fluctuates over time at frequency 2πj/T . Both prices and demands at

frequency j depend only on signals and supply at frequency j —the problem is completely separable

across frequencies.

The appendix shows that the frequency domain solution provides a close approximation to the

true solution in the time domain. Specifically, the true time domain solution from Admati (1985)

11A simple way to see where this solution comes from is to note that, under the asymptotic approximation, Λ′A1Λ
and Λ′A2Λ from the Admati solution can be written purely in terms of diagonal matrices, for which addition,
multiplication, and inversion are simply scalar operations on the main diagonal.
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(with no approximations) can be written as

P = A1D −A2Z (21)

for a pair of matrices A1 and A2 defined in the appendix that are complicated matrix functions of

ΣZ , ΣD, and the precisions of the signals agents obtain.

Proposition 1 The difference between calculating the prices directly in the time domain using the
Admati (1985) solution in the time domain and rotating the frequency domain solution back into

the time domain is small in the sense that

∣∣A1 − Λdiag (a1) Λ′
∣∣ ≤ c1T

−1/2 (22)∣∣A2 − Λdiag (a2) Λ′
∣∣ ≤ c2T

−1/2 (23)

for constants c1 and c2. Furthermore, while prices and demands are stochastic, the time- and

frequency-domain solutions are related through an even stronger result

emax [V ar (Λp− P )] ≤ cPT
−1/2 (24)

emax [V ar (Λqi −Qi)] ≤ cQT
−1/2 (25)

where the operator emax [·] denotes the maximum eigenvalue of a matrix (that is, the operator norm),
for constants cP and cQ.

In other words, among portfolios whose squared weights sum to 1, the maximum variance of

the pricing and demand errors —the difference between the truth from the time domain solution

and the frequency-domain approximation that assumes that Λ diagonalizes the covariance matrices

—is of order T−1/2 (that is, the bound holds for any portfolio of futures, not just the frequency- or

time-domain claims). We note also that these are not limiting results —they are true for all T .

Result 1 shows that for large T , the standard time-domain solution for stationary time series

processes becomes arbitrarily close to a simple set of parallel scalar problems in the frequency do-

main. The time domain solution is obtained from the frequency domain solution by premultiplying

by Λ.

2 Optimal information choice

We now model a constraint on information acquisition and characterize optimal strategies. The

objective, constraint, and solution are drawn from van Nieuwerburgh and Veldkamp (2009) and

Kacperczyk, van Nieuwerburgh, and Veldkamp (2016; KvNV). Our analysis follows theirs closely,

except that we are studying a time-series model and a frequency transformation. Whereas KvNV

study a symmetric equilibrium in which all investors follow the same information acquisition strat-

egy, we will subsequently argue for the relevance of a separating equilibrium in our setting.
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2.1 Objective

Following KvNV, we assume that investors choose information to maximize the expectation of their

mean-variance objective (6) subject to a linear constraint on total precision:

max
{fi,j}

E−1

[
Ui,0 | Σ−1

i

]
such that T−1tr

(
Σ−1
i

)
≤ f̄−1 (26)

where E−1 is the expectation operator on date −1, i.e. prior to the realization of signals and

prices (as distinguished from Ei,0, which conditions on P and Yi). The trace function tr
(
Σ−1
i

)
measures the total cost of acquiring a private signal with precision matrix Σ−1

i and is subject to the

bound f̄−1.12 This cost function is also equal to the sum of the eigenvalues of the precision matrix.

Since the eigenvalues represent the precisions of the orthogonalized signals, it can be thought of

as measuring the total precision of the independent parts of the signals. Moreover, since the trace

operator is invariant under rotations, this measure of information is invariant to the domain of

analysis, time or frequency.13 That is,

T−1tr
(
Σ−1
i

)
= T−1

∑
j,j′

f−1
i,j (27)

The information constraint is linear in the frequency-specific precisions. Investors also face the

constraint that fi,j = fi,j′ , which ensures that the variance matrix of εi is symmetric and Toeplitz.14

The appendix shows that, given the optimal demands, an agent’s expected utility is linear in

the precision they obtain at each frequency.

Lemma 2 Under the frequency domain representation, when informed investors optimize, each
investor’s expected utility may be written as a function of their own precisions, f−1

i,j , and the average

across other investors, f−1
avg,j ≡

∫
i f
−1
i,j di, with

E−1 [U0,i | {fi,j}] =
1

2
T−1

∑
j,j′

λj

(
f−1
avg,j

)
f−1
i,j + constants (28)

λj (x) is a function determining the marginal benefit of information at each frequency with the

properties λj (x) > 0 and λ′j (x) < 0 for all x ≥ 0. The fact that λ′j < 0 says that the marginal

benefit to an investor of allocating attention to frequency j is decreasing in the amount of attention

that other investors allocate to that frequency —attention decisions are strategic substitutes. If

12Our main analysis considers the case where signals about fundamentals are costly but investors can condition on
prices freely. Appendix I considers a case where it is costly to condition expectations on prices and shows that model’s
predictions results go through similarly with the caveat that investors never choose to become informed about prices,
as in Kacperczyk, van Nieuwerburgh, and Veldkamp (2016).
13This result relies on the approximation Σi ≈ Λ′diag (fi) Λ.
14KvNV show that the solution of the optimal attention allocation problem (26) are identical if one assumes

that the cost of information is measured by the entropy of the investor’s signals, which corresponds to the function
ln
∣∣Σ−1i ∣∣ ≈∑j,j′ log f−1i,j . The key feature of the two cost functions is that they are non-convex in precision.
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f−1
avg,j , the average precision of the signals obtained by other agents, is high, then prices are already

effi cient at frequency j, so there is little benefit to an investor from learning about that frequency.

The frequency-domain transformation is what allows us to write utility as a simple sum across

frequencies. An investor’s utility depends additively on the amount of information that they obtain

at each frequency. In the time domain, utility is a complicated function of matrices.

2.2 Characterizing the optimum

The critical feature of (28) is that expected utility is linear in the set of precisions that agent i

chooses,
{
f−1
i,j

}
. Since the both the objective (28) and the constraint (27) are linear in the choice

variables, it immediately follows that agents either allocate all attention to a single frequency, or

that they are indifferent between allocating attention across some subset of the frequencies. We

then obtain the following solution for attention allocation.

Solution 2 Information is allocated so that

f−1
avg,j =

{
λ−1
j

(
λ̄
)
if λj (0) ≥ λ̄

0 otherwise
(29)

where λ̄ is obtained as the solution to

T−1
∑

j,j′:λ−1j (λ̄)>0

λ−1
j

(
λ̄
)

= f̄−1. (30)

This is the reverse water-filling solution from KvNV. While it may appear mathematically

complicated, the intuition is simple: investors allocate attention to signals in such a way that the

marginal benefit is equalized to the extent possible across frequencies. It is impossible to allocate

negative attention, though, so if the marginal benefit of paying attention to a particular frequency,

λj (0), is below the cutoff λ̄, then f−1
i,j = 0 there for all investors.

The intuition is easiest to develop graphically. Figure 1 plots the functions λj (0) and λj
(
f−1
avg,j

)
across frequencies ωj , where

λj (0) = fD,j
(
1 + ρ−2fD,jfZ,j

)
. (31)

The initial marginal benefit of allocating attention is increasing in the amount of fundamental

information and the volatility of supply.

The details of the calibration are reported in appendix J. What is important here is simply

that λj (0) has peaks at low, middle, and high frequencies. Those are the frequencies at which Dt

or Zt is more volatile, so there is more information to potentially be gathered and a larger reward

for doing so. For a given value of f̄−1, λj
(
f−1
avg,j

)
is a flat line for all j such that λj (0) ≥ λ̄. Those

are the frequencies that investors learn about. The term “reverse water filling”refers here to the

idea that the curve λj (0) is inverted and one pours water into it. λ̄ is then the level of the water’s
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surface.15 As the information constraint is relaxed, λ̄ falls and potentially more frequencies receive

attention.

Given the calibration, we see that there are investors acquiring information in three disconnected

ranges of frequencies. At the places where λj (0) is farther above λ̄, there is more information

acquisition, whereas the locations where λj (0) = λ̄ are marginal in the sense that they are the next

to receive attention if λ̄ falls.

Another way to interpret the results is to observe the following

Result 1 The return at frequency j has variance

V ar [rj ] = λj

(
f−1
avg,j

)
(32)

where rj ≡ dj − pj . (33)

The marginal benefit of acquiring information at a particular frequency is exactly equal to

the unconditional variance of returns at that frequency. When returns have high variance, there

are potentially large profits to be earned from acquiring information. When returns have zero

variance, on the other hand, prices are already perfectly informative, so there is no reason to study

fundamentals at such a frequency. So agents desire to learn at the frequencies where returns are

most volatile.

The solution derived here characterizes aggregate information acquisition — the sum of the

precisions obtained by all the agents at each frequency —but it does not describe exactly what

strategy each agent follows; and in fact there are infinitely many strategies for individual investors

consistent with the aggregate solution. We now examine one particular solution that leads to the

existence of traders who can be characterized by their trading frequencies.

3 Specialization

3.1 The separating equilibrium

Given the assumptions we have made so far, the only restrictions on information allocation are those

that ensure that the information allocation condition (29) holds. There are numerous equilibria

with that characteristic, though. KvNV focus on the symmetric equilibrium in which all investors

allocate their attention in proportion to f−1
avg,j at each frequency. There are also many asymmetric

and mixed-strategy equilibria.

Since one of our goals is to understand the potential existence and behavior of high-and low-

frequency treaders, we now focus on equilibria in which all investors learn about only a single

frequency. Specifically, we assume that for every agent i, there is a frequency j∗i such that f
−1
i,j∗i

=

15Again, each frequency (except 0 and π) has an associated sine and cosine. The same amount of precision is
required to be allocated to both the sine and cosine at each frequency.
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f̄−1/2, and f−1
i,j = 0 for all other j

fi,j = fi,j′ =


f̄−1/2 if j = j∗i and j

∗
i 6∈ {0, T/2}

f̄−1 if j = j∗i and j
∗
i ∈ {0, T/2}

0 otherwise

(34)

(f̄−1 is divided by 2 in the first case because the agent pays attention to both the sine and the cosine

at frequency j∗i ). Specialization here means that agents obtain information at a single frequency

and are uninformed at all other frequencies.

We offer two potential explanations for why specialization would be natural. First, it could be

the case that people must pay a fixed cost for each frequency that they learn about. That is, just

starting to learn about some aspect of fundamentals might be costly. In that case people would

naturally choose to learn about only a single frequency, since all frequencies pay the same marginal

benefit, so learning about more than one frequency requires an extra payment of the fixed cost with

zero benefit.

Another motivation for specialization is that people might simply have different natural apti-

tudes or desires for learning about fluctuations at different frequencies. The appendix develops a

simple example of such a case that can generate specialization. The basic idea is that if the pref-

erence for learning about particular frequencies is suffi ciently small (i.e. it is second-order or in

a sense lexicographic) then the equilibrium described in the previous section still holds, but with

each investor focusing their attention on only a single frequency.

Now obviously in reality nobody learns about just a single aspect of the world. It is also not the

case, though, that everybody learns about everything. We focus here on the case with specialization

as it is consistent with the evidence discussed above and with new results presented below on the

wide divergences in behavior and research across investors.

3.2 Specialization model predictions

We now examine the implications of the model with specialization for the behavior of individual

investors, obtaining the following results:

1. Investors can be distinguished by the frequencies at which their portfolio positions fluctuate,

and those fluctuations match the frequencies at which they obtain information.

2. The average volume accounted for by an investor is proportional to the frequency at which

they trade. In the presence of quadratic trading costs, costs can be linearly decomposed across

frequencies and are quadratic in frequency.

3. Investors’positions are correlated with returns most strongly at the frequency they learn

about.

4. Investors earn money from liquidity provision, they earn money from trading at the frequency

at which they are informed, and they lose money to other investors from trading at frequencies at

which they are uninformed.
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3.2.1 Fluctuations in positions

Result 2 Investor i’s demand at frequency j is

qi,j = zj + ρ
[(
f−1
i,j − f

−1
avg,j

)
rj + f−1

i,j ε̃i,j

]
(35)

where ε̃i,j is equal to the jth column of Λ multiplied by εi, i.e. the noise in investor i’s signal at

frequency j, and rj is the realized return on the jth frequency portfolio.

Investor i’s demand depends on three terms. zj is the stochastic supply at frequency j. Each

investor is equally willing to absorb supply, so they all take equal fractions, giving them a common

component zj .

The second term, ρ
(
f−1
i,j − f

−1
avg,j

)
rj reflects investor i’s information. At the frequency that

investor i pays attention to, f−1
i,j − f−1

avg,j is positive, so investor i’s demand covaries positively

with returns at that frequency. That is, investors who learn about low-frequency dynamics hold

portfolios that are long when returns are high over long periods, while high-frequency investors hold

portfolios that covary positively with transitory fluctuations in returns. At the other frequencies,

where investor i does not pay attention, f−1
i,j = 0, so the investor’s demand actually covaries slightly

negatively with returns, holding zj fixed.

The third term, ρf−1
i,j ε̃i,j is the idiosyncratic part of demand that is due to the random error in

the signal that agent i receives. Note that the standard deviation of f−1
i,j ε̃i,j is equal to f

−1/2
i,j , so

these errors are equal to zero at the frequencies that the investor ignores (i.e. all but one).

When the number of active frequencies (i.e. with f−1
avg,j > 0) is large, f−1

avg,j becomes small

relative to f̄−1. That means that the term
(
f−1
i,j − f

−1
avg,j

)
is close to zero at all frequencies except

for the one that the agent pays attention to, j∗i . Since
(
f−1
i,j − f

−1
avg,j

)
≈ 0 for all other frequencies,

we have

Qi,t ≈ Zt + cos
(
ωj∗i t/T

) (
f̄−1rj∗i + ε̃j

)
+ sin

(
ωj∗i t/T

) (
f̄−1rj∗′i + ε̃j′

)
(36)

Investor i’s demand on date t thus is approximately equal to supply on that date plus a multiple

the part of returns depending on frequency ωj∗i , rj∗i and rj∗′i , plus an error. The second line shows

that what is really going on is that investor i’s information can be thought of as a signal about

returns interacted with a cosine and a sine.

The important feature of equations (35) and (36) is that they show that each agent’s position

is equal to Zt plus fluctuations that come primarily at the frequency that they pay attention to.16

That is, if some agent allocates all attention to frequency ωj∗i , then their relative position, Qi,t−Zt,
16More formally, the variance of Qi,t − Zt can be decomposed as V ar (Qi,t − Zt) =∑
j

(
ρ2
(
f−1i,j − f−1avg,j

)2
fR,j + f−1i,j

)
. Now consider a simple case where there are N frequencies that receive

equal allocations of information. Furthermore, denote the spectrum of returns as fR,j . Then we have

lim
N→∞

V ar (Qi,t − Zt) = ρ2f̄−2fR,j∗i + f−1i,j (37)

which shows that Qi,t − Zt is driven by fluctuations at a single frequency.
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fluctuates over time at frequency ωj∗i . This can be seen by noting that the sum of a sine and a cosine

at frequency ωj∗i , even with different coeffi cients, remains a cosine that fluctuates at frequency ωj∗i ,

just shifted by a constant. Specifically,

Qi,t ≈ Zt +

√√√√√ (
f̄−1rj∗i + ε̃j∗i

)2
+
(
f̄−1rj∗′i + ε̃j∗′i

)2 cos
(
ωj∗i t/T + Ci,j

)
(38)

where Ci,j is a function of
(
f̄−1rj + ε̃j

)
and

(
f̄−1rj′ + ε̃j′

)
. So agent i’s excess demand is approxi-

mately a cosine with a random translation and amplitude.

As a numerical example, figure 2 plots a hypothetical history for a particular agent’s position

Qi,t in the same calibration that we studied above. We see that Qi,t looks like a sinusoid with noise

added; the noise is from the Zt term in (38). The noise in the agent’s signal, ε̃j∗i and ε̃j∗′i , simply

changes the amplitude and translation of the cosine in (38).

So equations (35) and (36) deliver our first two basic results for the behavior of individual

specialized investors: the investors can be distinguished by the frequencies at which their asset

holdings fluctuate, and those frequencies are linked to the type of information that they acquire.

The first result, that there are traders at different frequencies, is essentially obtained by design: it

follows from the assumption that agents specialize across frequencies. Nevertheless, the finding is

interesting for its novelty in a theoretical setting.

The fact that the frequency of trading is related to information acquisition, while not surprising,

is certainly not obtained by assumption. In past work, different trading behavior has sometimes

been obtained by simply assuming that different agents have different exogenously specified trad-

ing horizons. In our case, any investor can potentially trade at any frequency. That choice is

entirely endogenous —investors are not forced to trade any particular frequency by assumption (the

assumption is that they gather information at a single frequency).

The reason that buy-and-hold investors in our model buy and hold is that they have persistent

low-frequency information about fundamentals —they have signals that fundamentals will be strong

or weak over long time spans. Similarly, high-frequency investors have transitory high-frequency

information. So the model provides a testable prediction that we should observe investors doing

research about asset return dynamics that aligns in terms of frequency or time horizon with their

average holding periods.

3.2.2 How do investors earn money?

Investors earn returns in the model through two basic mechanisms: providing liquidity and trading

on private signals. We can see from the results on demand above that the liquidity function is

spread equally across investors. The effects of private information are more interesting.

Result 3 Investor i’s expected profits (which are also equal to the covariance of their positions with
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returns) are

E
[
Q′iR

]
=

∑
j

E [qi,jrj ] (39)

=
∑
j

E [zjrj ] + ρ
(
f̄−1 − f−1

avg,j∗i

)
fR,j∗i −

∑
j 6=j∗i

ρf−1
avg,jfR,j (40)

where the spectrum of returns is (from (32) )

fR,j = max
(
λ̄, λj (0)

)
(41)

The first term on the right-hand side is the contribution from each investor’s liquidity provision.

The second term is the positive covariance of the investor’s holdings with returns at the frequency

they are informed about. In informed investors have demands that covary positively with returns

at a particular frequency, then the investors who are uninformed about that frequency must have

demands that covary negatively with returns (after accounting for E [zjrj ]). That is the third term

above: there is a negative contribution to the correlation of the investor’s demands with returns

from the frequencies they do not pay attention to.

It is not the case that trading from frequencies j 6= j∗i is unprofitable. Investors still earn profits

from liquidity provision. It is just the case that some of their profits at those frequencies are taken

by investors who are more informed. In some sense, this result is inevitable. The total profits that

the informed investors earn as a group come from trading with liquidity demand. If an investor

earns more money by becoming informed at some frequency, that must come at the cost of other

investors.

Now since the information allocation we find is an optimum, obviously investors must be in some

sense comfortable with the losses we see here. Intuitively, the slight trading losses they bear at

frequencies other than j∗i are offset by their gains at j
∗
i . But obviously any trading that informed

investors do that is not related to exogenous supply must ultimately come at the cost of other

informed investors.

So the model has the feature that high-frequency investors earn money at high frequencies, but

they lose money at lower frequencies relative to other investors. Low-frequency investors might

know that oil prices are on a long-term downward trend. In such a situation, the high-frequency

investors can still earn profits by betting on day-to-day movements in oil prices, but they will lose

money to those who understand that prices are generally drifting down. Similarly, low-frequency

investors will tend to lose out at high frequencies by, for example, failing to trade at precisely the

right time, buying slightly too high and selling slightly too low compared to where they would if

they had high-frequency information.
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3.2.3 Volume and trading costs

We study volume in the representation of the model in terms of equity holdings. Recall that equity

is modeled as a discounted claim to dividends on all future dates. An investor’s position Qi,t can

be acquired either by holding Qi,t units of forwards or Qi,t units of equity. In modeling volume, we

consider trading in equity. Using equity to measure volume ensures that a person who has position

that does not change between dates t and t+ 1 (Qi,t = Qi,t+1) induces no trade volume, whereas if

we assumed that every forward position required volume, then each investor’s contribution would be

|Qi,t| each date, meaning, unrealistically, that buy-and-hold investors would contribute constantly
to volume.

The equity volume contributed by investor i is

Vi,t = |∆Qi,t| (42)

where ∆Qi,t ≡ Qi,t −Qi,t−1 (43)

Recall that investors’positions can be written as functions of cosines and sines. The appendix

derives the following result for volume for each investor.

Result 4 The volume induced by investor i, |∆Qi,t|, may be approximated as

|∆Qi,t| ≈ |∆Zt|+ ωj∗i f̄
−1ρ

∣∣∣∣∣ sin
(
ωj∗i t

) (
rj∗i + ε̃i,j∗i

)
+ cos

(
ωj∗i t

) (
rj∗′i + ε̃i,j∗′i

) ∣∣∣∣∣ (44)

and has expectation

E [|∆Qi,t|]− E [|∆Zt|] ≈ ωj∗i

√
2

π
ρ
(
f̄−1λ̄+ 1/2

)
. (45)

The approximations converge to true equalities as T →∞.

So we find that agent i’s contribution to volume depends on the volume induced by exogenous

supply and also the magnitude of returns at frequency ωj∗i (λ̄).

Agent i’s contribution to aggregate volume is also exactly proportional to the frequency they

allocate attention to, ωj∗i . High-frequency investors contribute relatively more to aggregate volume

because they have portfolios than change most rapidly. An investor at the very lowest frequency,

ω = 0, contributes zero volume beyond that induced by exogenous supply, since their position is

nearly constant. Investors at ω = π, on the other hand, contribute the maximum possible volume

as they approximately turn over their entire portfolios in each period.

Not surprisingly, it is also straightforward to show that high-frequency investors typically

will face larger trading costs. As an example, consider quadratic trading costs proportional to∑T
t=2 (Qi,t −Qi,t−1)2. The appendix shows that trading costs can, just like volume, be decom-

posed across frequencies.
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Result 5 The quadratic variation in an investor’s position can be approximated (with convergence
as T →∞) by

T∑
t=2

(Qi,t −Qi,t−1)2 =
∑
j,j′

(2πj)2 T−1q2
i,j . (46)

The quadratic trading costs associated with a given demand vector Qi can be written as a

simple sum across frequencies. Trading costs are proportional to the frequency squared. It is thus

immediately apparent from our frequency-domain analysis that changes in the magnitude of trading

costs have the largest effects on the highest frequencies.

4 Institutional portfolio turnover and return forecasting

In this section, we demonstrate empirically that investment funds specialize in the frequency at

which they trade, and we show that the portfolio holdings of high turnover funds forecast returns

at relatively shorter horizons than those of lower turnover funds.

4.1 Data

We obtain data on institutional asset holdings from SEC form 13F. These forms list the identities

and quantities of securities held by each institution at the end of the filing quarter.17 The data

cover the period 1980—2015. Data on monthly stock returns is taken from CRSP and is aggregated

to a quarterly frequency with delisting returns included. We obtain data on the risk-free rate,

market return, and Fama—French (1993) factors from Kenneth French’s website.

4.2 Fund specialization

Yan and Zhang (2009) define the churn rate ci,t of institution i in quarter t as

ci,t ≡
min

( ∑
s|∆Si,s,t>0

Ps,t∆Si,s,t,
∑

s|∆Si,s,t≤0

Ps,t |∆Si,s,t|
)

1
2

∑
s
Ps,t−1Si,s,t−1 + 1

2

∑
s
Ps,tSi,s,t

, (47)

where Ps,t is the price and Si,s,t is the number of shares of stock S held by institution i at the end

of quarter t. The churn rate is equal to the minimum of net purchases and sales during quarter t

as a fraction of the institution’s average value over the two quarters, and it is used to measure the

turnover of each institution’s portfolio. Due to the presence of the minimum operator, institutions

17 Institutions are required to report only their holdings of 13(f) securities, a category defined by the SEC that
includes exchange-traded equities and some securities that can be converted to equity. Only institutions holding more
than $100,000,000 in 13(f) securities at the end of the quarter must file form 13F, and each institution is required to
report only securities for which its holdings exceed $200,000 or 10,000 shares. Gompers and Metrick (2001) provide
more information on these filings. We use Thompson Reuters’s database of these filings, which includes the price of
each security at the filing date.
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must both buy and sell large fractions of their portfolios to register a high churn rate. The mean

churn rate is 0.12 and the standard deviation is 0.14, indicating a high degree of right skewness as

the minimum churn rate is zero.

If institutions specialize in the rate at which they trade, then the churn rate should be persistent

over time within institutions. Figure 5 plots the sample autocorrelations corr(ci,t, ci,t−∆t) for ∆t ≥
2. The churn rate strongly persists over time, with an autocorrelation of 0.51 over 10 years and

0.21 over 30 years.18 We also find that institution fixed effects (δi) account for 65 percent of the

variance in the churn rate in the regression ci,t = δi + εi,t, where εi,t a residual.

4.3 Fund performance

To separate institutions according to their trading frequency, at each quarter t we divide institutions

into deciles, denoted d, based on the mean of ci,t over the previous five years.19 For simplicity, we

restrict attention to top and bottom deciles (d = 10 and d = 1). Table 1 lists several institutions

in these extreme deciles during the most recent quarter in our data. The top decile contains

several well-known quantitative and high-frequency trading firms, whereas the bottom contains

endowments and insurance companies.

Table 1: Institutions in the top and bottom deciles of churn rate in the fourth quarter of 2015

Top decile Bottom decile

Arrowstreet Capital Berkshire Hathaway

Citadel Bill & Melinda Gates Foundation

Dynamic Capital Management Lilly Endowment

Ellington Management Group Longview Asset Management

Quantlab MetLife

Renaissance Technologies New York State Teachers’Retirement System

Soros Fund Management University of Notre Dame

Virtu Financial University of Chicago

At the beginning of quarter t, we average the portfolio holdings of all the funds in each decile

d at the end of quarter t− 1 (with equal weight on each fund) and then track the returns on that

aggregate decile-level portfolio over subsequent quarters, reinvesting proceeds from any delistings

in the remaining stocks in the portfolio according to their value weights at that time. The return

during quarter t of the decile d portfolio formed in quarter t− k is denoted rd,k,t.
We measure the performance of each portfolio by its alpha,

rd,k,t − rft = αd,k + βd,kFt + εd,k,t, (48)

18 Institution identifiers can be reassigned over time in the 13F data, leading to measurement error that biases the
longer-term autocorrelations towards zero.
19We restrict attention to institutions for which the t + 1 return on some of their holdings appears in CRSP, as

these are the only institutions that can be analyzed in our return regressions.
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Ft is a vector of market risk factors; Ft = rmt −r
f
t in the CAPM specification and Ft =

(
rmt − r

f
t rsmbt rhmlt

)′
in the Fama-French specification (rsmbt and rhmlt are returns on the SMB and HML portfolios, re-

spectively). We focus on returns over the first two years after portfolio formation by estimating

(48) only for k ≤ 8.

Figure 6 displays alphas in the two specifications. For simplicity, we compare the alphas in the

first quarter (αd,1) to those in the following seven quarters, αd,>1 ≡ 1
7

∑8
j=2 αd,j . The holdings of

high-turnover funds out-perform more during the first quarter, while those of low-turnover funds

out-perform more during subsequent quarters. The difference in differences (α10,1 − α10,>1) −
(α1,1−α1,>1), which measures the relative out-performance of high churn holdings versus low churn

holdings at short versus long horizons, is equal to 0.005 in both specifications and is significant at the

5 percent level.20 So, consistent with the model, high-turnover funds hold stocks that outperform

relatively more in the short-run, while low-turnover funds hold assets that display more persistent

outperformance.

5 The effects of eliminating high-frequency trade

Recently there has been interest in policies that might restrict high-frequency trading. Some of

those policies are aimed at investors who trade at the very highest frequencies (such as the CFTC’s

recently proposed Regulation AT; see CFTC (2016)). But there are also proposals to discourage

even portfolio turnover at the monthly or annual level.21 There are two ways to interpret such

policies. One would be that regulators might impose a tax on trading, which would simply represent

a transaction cost. Such a regulation would obviously have the strongest effects on high-frequency

traders (that result can be derived in an extension to the present setting with trading costs), but

it would ultimately affect all trading strategies. A more targeted policy would be one that simply

outlawed following a trading strategy in which positions fluctuate at frequencies above some bound.

Such a policy is straightforward to analyze in our framework.

We show in this section that a policy that restricts high-frequency trading by professional

investors (as opposed to liquidity traders) reduces liquidity and price informativeness and increases

return volatility at high frequencies. At the frequencies not targeted by the policy, though, price

informativeness is, if anything, increased.

5.1 The policy

If elimination of high-frequency trading means that investors cannot hold portfolios with compo-

nents that fluctuate rapidly, it means that those investors are restricted to setting qi,j = 0 for ωj in

20Yan and Zhang (2009) similarly find that the fraction of the outstanding shares of a stock held by high-churn
institutions predicts subsequent returns, while the fraction held by low-churn institutions does not.
21The US tax code, for example, encourages holding assets for at least a year through the higher tax rates on short-

term capital gains. There have been recent proposals to further expand such policies (a plan to create a schedule of
capital gains tax rates that declines over a period of six years was attributed to Hillary Clinton during the 2016 US
Presidential election; see Auxier et al. (2016)).
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the relevant frequency range. But when qi,j must equal zero at some set of frequencies, obviously

no trader will allocate attention to those frequencies.

In cases where the sophisticated investors must set qj = 0, there can obviously be no equilibrium

since liquidity demand is perfectly inelastic. We therefore consider a simple extension to the baseline

model where the exogenous supply curve is elastic,

Zt = Z̃t + kPt (49)

zj = z̃j + kpj (50)

where Z̃t is the exogenous supply process and k is the response of supply to prices.

The appendix solves this extended version of the model. We obtain the same water filling

equilibrium. For this section, what is most important is the volatility of returns.

For the frequencies that are restricted

for qi,j = 0: prestrictedj = −k−1z̃j . (51)

That is, prices at the restricted frequencies are now completely uninformative, depending only on

supply, with no relationship with fundamentals. Moreover, the market is completely illiquid in the

sense that when exogenous supply increases, there is no change in trade —prices just move so that

trade remains at zero. In other words, prices equilibrate the market instead of quantities.

5.2 Return volatility

Result 6 Given an information policy f−1
avg,j, the variance of returns at frequency j, when trade is

unrestricted (i.e. in the benchmark model from above), is

fR (ωj) ≡ V ar (rj) (52)

= λj

(
f−1
avg,j

)
(53)

= min
(
λ̄, λj (0)

)
. (54)

where

λj (0) = fD,j +
fZ̃,j(

k + ρf−1
D,j

)2 (55)

Recall that fR is also the spectrum of returns, Rt ≡ Dt − Pt.

So the spectrum of returns inherits exactly the water-filling property of the marginal benefits

of information. In the context of our benchmark calibration, the spectrum of returns is exactly the

λj

(
f−1
avg,j

)
curve plotted in figure 1.

That result does not apply when the sophisticated investors are restricted from trading, though.
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Result 7 The variance of returns at any restricted frequency, where qi,j must equal zero, is

f restrictedR,j = fD,j +
fZ̃,j
k2

(56)

and

f restrictedR,j > λj (0) . (57)

The volatility of returns at a restricted frequency is higher than it would be if the sophisticated

investors were allowed to trade, even if they gathered no information. Intuitively, when the active

investors have risk-bearing capacity (ρ > 0), they can absorb some of the exogenous supply. The

greater is the risk-bearing capacity, the smaller is the effect of supply volatility on return volatility.

We examine the quantitative implications of restricting trade in the context of the calibration

used above. The top panel of figure 3 plots f−1
avg,j in the restricted and unrestricted scenarios. The

restriction is that investors are not allowed to trade at frequencies above ω = 3 (cycle lengths

shorter than 2.1 periods). We see, then, that no information is acquired at those frequencies.

That means, though, that investors can allocate their attention elsewhere, so we observe more

information acquisition at other frequencies.

The bottom panel of figure 3 plots return volatility in the two regimes and also when investors

can trade at all frequencies, but they are just restricted from gathering information at high fre-

quencies. At high frequencies, we see that the restrictive policy has two separate effects that both

strongly affect return volatility. First, when investors can trade but do not gather information, there

is a jump in return volatility at the frequencies where f−1
avg is constrained to zero (up to λj (0)). But

under the full restriction, where they cannot trade at all, we see that the effect on return volatility

is much larger, due to the reduced risk bearing capacity. At the unrestricted frequencies, return

volatility actually weakly declines, again due to the fact that more attention is allocated to those

frequencies.

Restricting sophisticated investors (such as dealers or proprietary trading firms) from trading at

high frequencies in this model can thus substantially raise asset return volatility at high frequencies —

it can lead to, for example, large minute-to-minute fluctuations in prices and returns. Sophisticated

traders typically play a role of smoothing prices over time, essentially intermediating between excess

inelastic demand in one minute and excess inelastic supply in the next. When they are restricted

from holding positions that fluctuate from minute to minute, they can no longer provide that

intermediation service. Such behavior has no impact on low-frequency volatility in prices, though.

Even when there is no high-frequency trading, changes in average prices between one year and the

next are essentially unaffected.

5.3 Price informativeness and effi ciency

The fact that the sophisticated investors choose to allocate no attention to high frequencies under

the trading restriction obviously has implications for price effi ciency there. To see precisely how, we
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measure price informativeness as the precision of a person’s prediction of fundamentals conditional

on observing prices only, V ar (Dt | P ). In the frequency domain we have

τ̄ j ≡ V ar (dj | p)−1 (58)

=
(
ρf−1
avg,j

)2
f−1
Z,j + f−1

D,j (59)

price-based precision, τ̄ j is higher at frequencies where there is less fundamental uncertainty (f−1
D,j

is lower), where there is less variation in liquidity demand (f−1
Z,j is lower) or where investors acquire

more information (f−1
avj,j is higher). So when trading strategies are restricted and f

−1
avg,j endogenously

falls to zero at the restricted frequencies, price informativeness clearly falls. In fact, when f−1
avg,j = 0,

the ex-post precision at each frequency is exactly f−1
D,j , which is the prior precision; prices contain no

information. The decline in informativeness happens, though, only at the restricted frequencies.22

Result 8 If trade is restricted at some set of frequencies, prices become (weakly) less informative
at those frequencies (τ̄ j falls) but informativeness is unaffected or increased at all other frequencies.

5.3.1 Informativeness for moving averages of Dt

If a person is making decisions based on estimates of fundamentals from prices and they are worried

that prices are contaminated by high-frequency noise, a natural response would be to examine an

average of fundamentals and prices over time. For averages of fundamentals, we have the following:

Result 9 The variance of an estimate of the average of fundamentals over dates t to t + n − 1

conditional on observing the vector of prices, P , is

V ar

(
1

n

n−1∑
m=0

Dt+n | P
)

=
1

nT

∑
j,j′

Fn (ωj) τ̄
−1
j (60)

where Fn (ωj) ≡
1

n

1− cos (nωj)

1− cos (ωj)
(61)

and τ̄ j is defined in (58).

Fn is the Fejér kernel. F1 = 1, and as n rises, the mass of the Fejér kernel migrates towards the

origin. That is, it places progressively less mass on high frequencies and more on low frequencies

(it always integrates to 1). Specifically,

1

T

∑
j,j′

Fn (ωj) = 1 (62)

lim
n→∞

Fn (ω) = 0 for all ω 6= 0 (63)

22To see that result in the time domain, the appendix shows that V ar (Dt | P ) = 1
T

∑
j,j′ τ̄

−1
j . The variance of an

estimate of fundamentals conditional on prices at a particular date is equal to the average of the variances across all
frequencies. So when uncertainty, τ̄−1j , rises at some set of frequencies, the informativeness of prices for fundamentals
on every date falls by an equal amount.
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The total weight allocated across the frequencies always sums to 1, and as n rises, the mass becomes

allocated eventually purely to frequencies local to zero.

This result shows that the informativeness of prices for moving averages of fundamentals places

relatively more weight on low- than high-frequency informativeness. So even if prices have little

or no information at high frequencies — τ̄ j is small for large j, there need not be any degradation

of information about averages of fundamentals over multiple periods, as they depend primarily on

precision at lower frequencies (smaller values of j).

The top panel of figure 4 plots the Fejér kernel, Fn, for a range of values of n. One can see

that even with n = 2, the weight allocated to frequencies above the cutoff of ω = 3 that we use

in the example in figure 3 is close to zero. As n rises higher, the weight falls towards zero at a

progressively wider range of frequencies. Equation (60) therefore shows that while a reduction in

precision at high frequencies due to trading restrictions will reduce the informativeness of prices

about fundamentals on any single date, it has quantitatively small effects on the informativeness

of prices for fundamentals over longer periods.

Moving averages of fundamentals depend less on the precise high-frequency details of the world,

so when high-frequency information is reduced, we would not expect to see a reduction in the

informativeness of prices for moving averages. More concretely, going back to our example of oil

futures, when high-frequency trade is not allowed, prices become noisier, making it more diffi cult

to obtain an accurate forecast of the spot price of oil at some specific moment in the future. If one

is interested in the average of spot oil prices over a year, on the other hand, then we would expect

futures prices to remain informative, even when high-frequency trade is restricted.

5.3.2 How should one forecast Dt conditional on prices?

As an alternative to estimating an average of fundamentals over some number of periods, one’s

goal might alternatively be to specifically forecast fundamentals on just one date. In that case, we

see that the effect of high-frequency trade restrictions is to cause investors to focus on averages of

prices over multiple periods. That is, to forecast the spot oil price in one particular month, one

might use an average of futures prices over neighboring months.

In general, the expectation of the full time series of fundamentals, D, is

E [D | P ] = Λdiag
(
φj (favg,j)

)
Λ′P (64)

φj is a function of only favg,j and the behavior of fundamentals and liquidity demand at frequency

j with φj (0) = 0. Intuitively, this equation says that dividends are obtained from prices using a

filter: prices are transformed into the frequency domain (Λ′P ), a filter is applied that depends on

the informativeness of prices at each frequency (φj (favg,j)), and then D is obtained by transforming

back into the time domain.

The effect of eliminating information —setting f−1
avg,j = 0 —at high frequencies is then simple

to analyze. The frequency domain step sets to zero the weight on any frequencies at which there
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is no information. That is, in obtaining the expectation of dividends, one first applies a low-pass

filter to prices (e.g. Christiano and Fitzgerald (2003)).

Result 10 When information acquisition is set to zero for frequencies above a cutoff j̄, so that

f restrictedavg,j = favg,j1 {j ≤ j̄} (where 1 {·} is the indicator function) the expectation of fundamentals
conditional on prices is

E [D | P ] = Λdiag
(
φj (favg,j)

)
diag (1 {j ≤ j̄}) Λ′P (65)

Specifically, E [Dt | P ] is equal to the t’th row of Λdiag
(
φj (favg,j)

)
diag (1 {j ≤ j̄}) Λ′ multiplied by

the vector of prices, P .

Under the restriction on information acquisition (which, as we saw above, happens when in-

vestors may not trade at frequencies above j̄), expectations are now calculated by first applying a

filter to prices that eliminates high-frequency fluctuations (that is, it sets to zero all components

of the price vector P that are spanned by high-frequency (j ≥ j̄) sines and cosines). That filter

is implemented by multiplying prices by diag (1 {j ≤ j̄}) Λ′, which eliminates the high-frequency

components. Intuitively, since those components are completely devoid of information, they should

be filtered out before estimating fundamentals.

A simple benchmark case is where the variance of fundamentals and liquidity demand is con-

stant across frequencies, so that favg,j is also constant across frequencies in the absence of trading

restrictions and diag
(
φj (favg,j)

)
is a multiple of the identity matrix. The question, then, is how

investors estimate fundamentals on some date t based on the history of prices.

When there is no restriction on prices and φj (favg,j) is constant, we see immediately that

E [D | P ] ∝ P , so that the expectation of fundamentals on date t depends only on the price on

date t (for any t).

When trade is restricted, we have E [D | P ] ∝ Λdiag (1 {j ≤ j̄}) Λ′P . The bottom panel of

figure 4 therefore plots a representative row of Λdiag (1 {j ≤ j̄}) Λ′ for different values of j̄ (the

interior rows are all highly similar; the boundaries induce some differences). We see that with the

trading restriction, the estimate of fundamentals on date t now depends on prices on t and its

neighbors. Moreover, the smaller is j̄ —the more frequencies that are restricted —the wider is the

set of weights applied to prices. Intuitively, then, figure 4 confirms the natural result that when

prices are less informative at high frequencies, the simple response is to estimate fundamentals

based on a moving average of prices.

5.3.3 Summary

In the end, this section shows that the model has two key predictions for the effects of restrictions

on high-frequency trade. First, at the frequencies at which trade is restricted, price informative-

ness falls and return volatility rises (due to both information effects and liquidity effects). Second,

though, price informativeness at low frequencies is, if anything, improved by the policy. So if a
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manager is making investment decisions based on fundamentals only at a particular moment, then

that decision will be hindered by the policy since prices now have more noise. But if decisions are

made based on averages of fundamentals over longer periods, e.g. over a year, then the model pre-

dicts that there need not be adverse consequences. If anything, low-frequency price informativeness

may increase as investors reallocate attention to lower frequencies.

6 Conclusion

This paper develops a model in which there are many different investors who all trade at different

frequencies. Investors in real-world markets follow countless strategies that are associated with

rates of turnover that differ by multiple orders of magnitude. We show that in fact it is entirely

natural that investors would differentiate along the dimension of investment frequency.

It has been standard in the literature for decades to focus on factors or principal components

when studying the cross-section of asset returns. For stationary time series, the analog to factors or

principal components is the set of fluctuations at different frequencies. So just as it seems natural for

investors to focus on particular factors in the cross-section of returns, e.g. value stocks, a particular

industry, or a particular commodity, it is also natural for investors to focus on fluctuations in

fundamentals at a particular frequency, like quarters, business cycles, or decades.

Such an attention allocation problem can be solved using a combination of standard tools from

time series econometrics and the literature on equilibria in financial markets. We show that the

model fits a wide range of basic stylized facts about financial markets: investors can be distinguished

by turnover rates; trading frequencies align with research frequencies; volume is driven primarily by

high-frequency traders; and the positions of informed traders forecast returns at a horizon similar

to their holding period.

Since the model has a rigorous concept of what being a high- or low-frequency entails, it is

particularly useful for studying the effects of regulatory policies that would restrict trade at certain

frequencies, whether by outlawing it or by simply making it more costly. We find that not only do

such policies reduce the informativeness of prices at those frequencies, they also reduce liquidity

and increase return volatility. In fact, return volatility will in general be raised even above where it

would be in the complete absence of information, since eliminating active traders from the market

removes their risk-bearing capacity.

At this point, the primary drawback of the model in our view is that it is not fully dynamic. In

a certain sense we have to assume that investors do not update information sets over time. While

that simplification does not interfere with the model’s ability to match a wider range of basic facts

about financial markets, a simple desire for realism suggests that incorporating dynamic learning

is an obvious next step.
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A Non-stationary fundamentals

If fundamentals are non-stationary, e.g. if Dt has a unit root, then ΣD is no longer Toeplitz and

our results do not hold. In that case, we assume that D0 is known by all agents and that the

distribution of ∆Dt ≡ Dt −Dt−1 is known, with covariance matrix Σ∆D. Then the entire problem

can simply be rescaled by defining P̃t ≡ Pt −Dt−1, so that

Rt = Dt − Pt (66)

= ∆Dt − P̃t (67)

Our analysis then applies to P̃t and ∆Dt, with Qi,t continuing to represent the number of forward

contracts on Dt that agent i buys. That is, we are allowing agents to condition demand Qi,t not

just on signals and prices, but also the level of Dt−1, simply through differencing.

B Proof of lemma 1

Gray (2006) shows that for any circulant matrix (a matrix where row n is equal to row n − 1

circularly shifted right by one column, and thus one that is uniquely determined by its top row),

the discrete Fourier basis, uj = [exp (iωjt) , t = 0, ..., T − 1]′ for j ∈ {0, ..., T − 1}, is the set of
eigenvectors.

Let Σ be a symmetric Toeplitz matrix with top row [σ0, σ1, ..., σT−1]. Define the function

circ (x) to be a circulant matrix with σcirc as its top row. Define a vector σ

σ ≡ [σ0, σ1 + σT−1, σ2 + σT−2, ..., σT−2 + σ2, σT−1 + σ1]′ (68)

Following Rao (2016), we “approximate”Σ by the circulant matrix Σcirc ≡ circ(σcirc). Since Σcirc

is symmetrical, one may observe that its eigenvalues repeat in the sense that u′jΣcirc = u′T−jΣcirc

for 0 < j < T . Since pairs of eigenvectors with matched eigenvalues can be linearly combined to

yield alternative eigenvectors, it immediately follows that the matrix Λ from the main text contains

a full set of eigenvectors for Σcirc. The associated eigenvalues are

fΣcirc(ωj) = σ0 + 2
T−1∑
t=1

σtcos(ωjt) (69)

We can write this relationship more compactly as:

ΣcircΛ = ΛfΣ

Λ′ΣcircΛ = fΣ
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where the T × T diagonal matrix fΣ is given by:

fΣ = diag
(
fΣ (ω0) , fΣ (ω1) , ..., fΣ

(
ω T

2

)
, fΣ(ω1), fΣ(ω2), ..., fΣ

(
ω T

2
−1

))′
.

The approximate diagonalization of the matrix Σ consists in writing:

Λ′ΣΛ = fΣ +RΣ

where RΣ ≡ Λ′ (Σ− Σcirc) Λ

By direct inspection of the elements of Σ−Σcirc, one may see that the m,n element of RΣ, denoted

Rm,nΣ satisfies (defining λm to be the mth column of Λ and λm,n to be its m,n element)

Rm,nΣ ≡ λ′m (Σ− Σcirc)λn (70)

=
T∑
i=1

T∑
j=1

λm,iλn,j (Σ− Σcirc)
m,n (71)

≤
T∑
i=1

T∑
j=1

2

T
(Σ− Σcirc)

m,n (72)

≤ 4

T

T−1∑
j=1

j |σj | (73)

where (Σ− Σcirc)
m,n is the m,n element of (Σ− Σcirc). So RΣ is bounded elementwise by a term

of order T−1. One may show that the weak norm satisfies |·| ≤
√
T |·|max, where |·|max denotes the

elementwise max norm, which thus yields the result that |ΛΣΛ′ − diag (fΣ)| ≤ bT−1/2 for some b.

B.1 Convergence in distribution and Ō bounds

Define the notation ⇒ to mean that ΛX ⇒ N
(

0, Σ̂X

)
if ΛX ∼ N (0,ΣX) and

∣∣∣Σ̂X − ΣX

∣∣∣ =

Ō
(
T−1/2

)
.

The notation Ō indicates

|A−B| = Ō
(
T−1/2

)
⇐⇒ |A−B| ≤ bT−1/2 (74)

for some constant b and for all T . This is a stronger statement than typical big-O notation in that

it holds for all T , as opposed to holding only for some suffi ciently large T .

Trigonometric transforms of stationary time series converge in distribution under more general

conditions. See Shumway and Stoffer (2011), Brillinger (1981), and Shao and Wu (2007).
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C Derivation of solution 1

Since the optimization is entirely separable across frequencies (confirmed below), we can solve

everything in scalar terms. To save notation, we suppress the j subscripts indicating frequencies in

this section when they are not necessary for clarity. So in this section fD, for example, is a scalar

representing the spectral density of fundamentals at some arbitrary frequency.

C.1 Statistical inference

We guess that prices take the form

p = a1d− a2z (75)

The joint distribution of fundamentals, signals, and prices is then d

yi

p

 ∼ N
0,

 fD fD a1fD

fD fD + fi a1fD

a1fD a1fD a2
1fD + a2

2fZ


 (76)

The expectation of fundamentals conditional on the signal and price is

E [d | yi, p] =
[
fD a1fD

] [ fD + fi a1fD

a1fD a2
1fD + a2

2fZ

]−1 [
yi

p

]
(77)

= [1, a1]

[
1 + fif

−1
D a1

a1 a2
1 + a2

2fZf
−1
D

]−1 [
yi

p

]
(78)

and the variance satisfies

τ i ≡ V ar [d | yi, p]−1 = f−1
D

1−
[

1 a1

] [ 1 + fif
−1
D a1

a1 a2
1 + a2

2fZf
−1
D

]−1 [
1

a1

]−1

(79)

=
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (80)

We use the notation τ to denote a posterior precision, while f−1 denotes a prior precision of one

of the basic variables of the model. The above then implies that

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z p

)
(81)
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C.2 Demand and equilibrium

The agent’s utility function is (where variables without subscripts here indicate vectors),

Ui = max
{Qi,t}

ρ−1E0,i

[
T−1Q′i (D − P )

]
− ρ−2V ar0,i

[
T−1/2Q′i (D − P )

]
(82)

= max
{Qi,t}

ρ−1E0,i

[
T−1q′i (d− p)

]
− ρ−2V ar0,i

[
T−1/2q′i (d− p)

]
(83)

= max
{Qi,t}

ρ−1T−1
T−1∑
j=0

qi,jE0,i [(dj − pj)]− ρ−2T−1
T−1∑
j=0

q2
i,jV ar0,i [dj − pj ] (84)

where the last line follows by imposing the asymptotic independence of d across frequencies (we

analyze the error induced by that approximation below). The utility function is thus entirely

separable across frequencies, with the optimization problem for each qi,j independent from all

others.

Taking the first-order condition associated with the last line above for a single frequency, we

obtain

qi = ρτ iE [d− p | yi, p]

= ρi

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
p

)
Summing up all demands and inserting the guess for the price yields

z =

∫
i
ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
(a1d− a2z)

)
di (85)

=

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z − τ i

)
(a1d− a2z)

)
di (86)

Where the second line uses the law of large numbers. Matching coeffi cients then yields∫
i
ρ

(
a1

a2
2

f−1
Z − τ i

)
di = −a−1

2 (87)∫
i
ρf−1
i + ρ

(
a1

a2
2

f−1
Z − τ i

)
a1di = 0 (88)

and therefore

ρ

∫
i
f−1
i di =

a1

a2
(89)

Inserting the expression for τ i into (87) yields

a1 =

a1
a2

+ ρ
(
a1
a2

)2
f−1
Z

ρ

(∫
i f
−1
i di+ f−1

D +
(
a1
a2

)2
f−1
Z

) (90)
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Now define aggregate precision to be

f−1
avg ≡

∫
i
f−1
i di (91)

We then have

τ i =
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (92)

τavg ≡
∫
τ idi =

(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D (93)

a1 = τ−1
avg

(
f−1
avg +

(
ρf−1
avg

)2
f−1
Z

)
= 1− f−1

D

τavg
=
τavg − f−1

D

τavg
(94)

a2 =
a1

ρf−1
avg

(95)

C.3 Proof of proposition 1

In the time domain, the solution from Admati (1985) is

P = A1D −A2Z (96)

A1 ≡ I − S−1
avgΣ

−1
D (97)

A2 ≡ ρ−1A1Σavg (98)

Standard properties of norms yield the following result. If |A−B| = Ō
(
T−1/2

)
and |C −D| =

Ō
(
T−1/2

)
, then

|cA− cB| = Ō
(
T−1/2

)
(99)∣∣A−1 −B−1

∣∣ = Ō
(
T−1/2

)
(100)

|(A+ C)− (B +D)| = Ō
(
T−1/2

)
(101)

|AC −BD| = Ō
(
T−1/2

)
(102)

In other words, convergence in weak norm carries through under addition, multiplication, and

inversion. Since A1 is a function of Toeplitz matrices using those operations, it follows that

|Λ′A1Λ− diag (a1)| = Ō
(
T−1/2

)
, and the same holds for A2.

For the variance of prices, we define

R1 = A1 − Λdiag (a1) Λ′ (103)

R2 = A2 − Λdiag (a2) Λ′ (104)
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|V ar [P − Λp]| ≤
∣∣R1ΣDR

′
1

∣∣+
∣∣R2ΣZR

′
2

∣∣ (105)

≤ |R1ΣD| |R1|+ |R2ΣZ | |R2| (106)

≤ ‖ΣD‖ |R1|2 + ‖ΣZ‖ |R2|2 (107)

≤ K
(
|R1|2 + |R2|2

)
(108)

The first line follows from the triangle inequality; the second line comes from the sub-multiplicativity

of the weak norm; the third line uses the fact that, as indicated by Gray (2006), for any two square

matricesG,H, ||GH||2 ≤ ‖G‖ |H|; and the last line follows from the assumption that the eigenvalues
of ΣD and ΣZ are bounded by some K.

Since the weak norm is invariant under unitary transformations,

|R1| =
∣∣Λ′R1Λ

∣∣ =
∣∣Λ′AiΛ− diag (a1)

∣∣ , i = 1, 2.

Therefore,

|V ar [P − ΛP ]| ≤ K
(∣∣Λ′A1Λ− diag (a1)

∣∣2 +
∣∣Λ′A2Λ− diag (a2)

∣∣2) (109)

= Ō

(
1

T

)
(110)

Since ‖·‖ ≤
√
T |·|, ‖V ar [P c − P ]‖ = Ō

(
T−1/2

)
.

D Proof of lemma 2

Inserting the optimal value of qi,j into the utility function, we obtain

E−1 [Ui,0] ≡ 1

2
E

T−1
T−1∑
j=0

τ i,jE [dj − pj | yi,j , pj ]2
 (111)

Ui,0 is utility conditional on an observed set of signals and prices. E−1 [Ui,0] is then the expectation

taken over the distributions of prices and signals.

V ar [E [dj − pj | yi,j , pj ]] is the variance of the part of the return on portfolio j explained by
yi,j and pj , while τ−1

i,j is the residual variance. The law of total variance says

V ar [dj − pj ] = V ar [E [dj − pj | yi,j , pj ]] + E [V ar [dj − pj | yi,j , pj ]] (112)

where the second term on the right-hand side is just τ−1
i,j and the first term is E

[
E [dj − pj | yi,j , pj ]2

]
since everything has zero mean. The unconditional variance of returns is

V ar [dj − pj ] = (1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ,j (113)
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So then

E−1 [Ui,0] =
1

2
T−1

T−1∑
j=0

(
(1− a1,j)

2 fD,j +
a2

1,j(
ρf−1
avg

)2 fZ,j
)
τ i,j −

1

2
(114)

We thus obtain the result that agent i’s expected utility is linear in the precision of the signals that

they receive (since τ i,j is linear in f−1
i,j ).

Furthermore,

(1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ,j = τ−2
avg,jf

−1
D,j + ρ−2f2

avg,jτ
−2
avg,j

(
τavg,j − f−1

D,j

)2
fZ,j (115)

= τ−2
avg,jf

−1
D,j + ρ−2τ−2

avg,j

(
ρ2f−1

avgf
−1
Z + 1

)2
fZ,j (116)

= τ−2
avg,j

(
f−1
D,j + ρ−2

(
ρ2f−1

avgf
−1
Z + 1

)2
fZ,j

)
(117)

So

E−1 [Ui,0] =
1

2
T−1

T−1∑
j=0

τ−2
avg,j

(
f−1
D,j + ρ−2

(
ρ2f−1

avgf
−1
Z + 1

)2
fZ,j

)((
ρf−1
avg,j

)2
f−1
Z,j + f−1

i,j + f−1
D,j

)
− 1

2

(118)

E Derivation of solution 2

Investors allocate attention, f−1
i,j , to maximize E−1 [Ui,0] subject to the constraint∑

j,j′

f−1
i,j ≤ f̄

−1 (119)

and that f−1
i,j = f−1

i,j′ . Since the investors are maximizing a linear objective subject to a linear

constraint, the optimal policy is clearly to allocate attention f−1
i,j only to the frequencies j at which

the marginal benefit is equal to the maximum available marginal benefit.

Define the function λj

λj (x) ≡
(

(ρx)2 f−1
Z,j + x+ f−1

D,j

)−2
(
f−1
D,j + ρ−2

(
ρ2xf−1

Z,j + 1
)2
fZ,j

)

then λj
(
f−1
avg,j

)
is the marginal benefit from attention to frequency j. Note that dλj (x) /dx < 0.

In equilibrium, then, there is a number λ̄ such that

λj

(
f−1
avg,j

)
≤ λ̄ for all j (120)

Now define J
(
λ̄
)
to be the set of frequencies j such that λ−1

j

(
λ̄
)
> 0.23 That is the set of

23Technically, it is the set of frequencies for which λ−1j
(
min

(
λ̄, λj (0)

))
> 0.
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frequencies for which there is positive attention.

For any frequency that investors allocate attention to,

f−1
avg,j = λ−1

j

(
λ̄
)

(121)

f−1
avg,j =

∫
f−1
i,j di (122)

Now ∑
j,j′∈J

∫
f−1
i,j di =

∫ ∑
j,j′∈J

f−1
i,j di (123)

=

∫
f̄−1di = f̄−1 (124)

So then ∑
j,j′∈J (λ̄)

λ−1
j

(
λ̄
)

=
∑

j,j′∈J (λ̄)

f−1
avg,j = f̄−1 (125)

So λ̄ is obtained by solving
∑

j,j′∈J (λ̄) λ
−1
j

(
λ̄
)

= f̄−1.

F Time horizon and investment

At first glance, the assumption of mean-variance utility over cumulative returns over a long period

of time (T →∞) may appear to give investors an incentive to primarily worry about long-horizon
performance, whereas a small value of T would make investors more concerned about short-term

performance. In the present setting, that intuition is not correct —the T → ∞ limit determines

how detailed investment strategies may be, rather than incentivizing certain types of strategies.

The easiest way to see why the time horizon controls only the detail of the investment strategies

is to consider settings in which T is a power of 2. If T = 2k, then the set of fundamental frequencies

is {
2πj/2k

}2k−1

j=0
(126)

For T = 2k−1, the set of frequencies is

{
2πj/2k−1

}2k−2

j=0
=
{

2π (2j) /2k
}2k−2

j=0
(127)

That is, when T falls from 2k to 2k−1, the effect is to simply eliminate alternate frequencies.

Changing T does not change the lowest or highest available frequencies (which are always 0 and

π, respectively). It just discretizes the [0, π] interval more coarsely; or, equivalently, it means that

the matrix Λ is constructed from a smaller set of basis vectors.

When T is smaller — there are fewer available basis functions —Q and its frequency domain

analog q ≡ Λ′Q have fewer degrees of freedom and hence must be less detailed. So the effect
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of a small value of T is to make it more diffi cult for an investor to isolate particularly high- or

low-frequency fluctuations in fundamentals (or any other narrow frequency range). But in no way

does T cause the investor’s portfolio to depend more on one set of frequencies than another. While

we take T → ∞, we will see that the model’s separating equilibrium features investors who trade

at both arbitrarily low and high frequencies, and T has no effect on the distribution of investors

across frequencies.

G Proofs of specialization model predictions

G.1 Results 2 and 3

qi = ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
p

)
The coeffi cient on ε̃i is f−1

i . Straightforward but tedious algebra confirms that the coeffi cient

on d is

ρ
(
f−1
avg − f−1

i

)
(a1 − 1)

The coeffi cient on z is

1 + ρ
(
f−1
i − f

−1
avg

)
a2

We thus have

qi = ρ
(
f−1
avg − f−1

i

)
(a1 − 1) d+

(
1 + ρ

(
f−1
i − f

−1
avg

))
a2z (128)

Now note that

r = (1− a1) d+ d2z (129)

So then

qi = ρ
(
f−1
i − f

−1
avg

)
r + ρε̃i + z (130)

The result on the covariance then follows trivially.

G.2 Result 4

Approximating first differences with derivatives, we obtain

∆Qi,t −∆Zt ≈ −
T/2∑
j=0

2πj

T

 sin (2πjt/T )
(
ρ
[(
f−1
i,j − f

−1
avg,j

)
rj + f−1

i,j ε̃i,j

])
+ cos (2πjt/T )

(
ρ
[(
f−1
i,j − f

−1
avg,j

)
rj′ + f−1

i,j ε̃i,j′
])  (131)

where the approximation becomes a true equality as T → ∞. Now if we furthermore use the

approximations f−1
i,j∗i
− f−1

avg,j∗i
≈ f̄−1/2 and suppose that the exogenous supply process is small

enough that it rarely causes a trader’s demand to change signs, then we have

|∆Qi,t| ≈ |∆Zt|+ ωj∗i f̄
−1ρ

∣∣∣∣∣ sin
(
ωj∗i t

) (
rj∗i + ε̃i,j∗i

)
+ cos

(
ωj∗i t

) (
rj∗′i + ε̃i,j∗′i

) ∣∣∣∣∣ . (132)
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G.3 Result 5

QV {qj} ≡
T∑
t=2

(Qi,t −Qi,t−1)2 ≈
T∑
t=2

∑
j

2πj

T

[
qj sin (2πjt/T )

+qj′ cos (2πjt/T )

]2

(133)

=

T∑
t=2

∑
j,k

(
2π

T

)2

jk

[
qj sin (2πjt/T ) qk sin (2πkt/T ) + qj′ cos (2πjt/T ) qk sin (2πkt/T )

qj sin (2πjt/T ) qk′ cos (2πkt/T ) + qj′ cos (2πjt/T ) qk′ cos (2πkt/T )

]
(134)

≈
∑
j,j′

(2πj)2 T−1q2
j (135)

where the equality in the first line is approximate in assuming that cos (2πjt/T )−cos (2πj (t− 1) /T ) ≈
2πj
T sin (2πjt/T ) and the same for the differences in the sines. The third line uses the fact that sines

of unequal frequencies are orthogonal (it is approximate because t = 1 is not included in the sum

inserts the integral for sin2 and cos2, rather than the exact finite sums. All the approximations

here are accurate for large T .

H Proofs of trading restriction results

H.1 Results 6 and 7

If trade by the investors is not allowed at certain frequencies, then obviously markets cannot clear

at those frequencies when supply is inelastic. In this section we therefore first solve the model for

the case with an upward sloping supply curve and then analyze the effect of eliminating trade on

asset prices and returns.

H.1.1 Equilibrium with elastic supply

We now assume that there is exogenous supply on each date of

Zt = Z̃t + kPt (136)

where k is a constant determining the slope of the supply curve. One could imagine allowing k

to differ across frequencies, which would be equivalent to allowing supply to depend on prices on

multiple dates (intuitively, maybe supply increases by more when prices have been persistently

high than when they are just temporarily high). Here, though, we simply leave k constant across

frequencies. Multiplying by Λ′ yields

zj = z̃j + kpj (137)

Solving the inference problem as before, we obtain
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τ i ≡ V ar [d | yi, p]−1 (138)

=
a2

1

a2
2

f−1
Z̃

+ f−1
i + f−1

D (139)

and

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z̃
p

)
(140)

H.1.2 Demand and equilibrium

The investors’demand curves are again

qi = ρi

(
f−1
i yi +

(
a1

a2
2

f−1
Z̃
− τ i

)
p

)
Summing up all demands and inserting the guess for the price process yields

z̃ + k (a1d− a2z̃) =

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z̃
− τ i

)
(a1d− a2z̃)

)
di (141)

Matching coeffi cients yields ∫
i
ρ

(
a1

a2
2

f−1
Z̃
− τ i

)
di = −a−1

2 (1− ka2) (142)∫
i
ρf−1
i + ρ

(
a1

a2
2

f−1
Z̃
− τ i

)
a1di = ka1 (143)

Combining those two equations, we have

ρf−1
avg = a1

(
k + a−1

2 (1− ka2)
)

(144)

=
a1

a2
(145)

a1 =
f−1
avg +

(
ρf−1
avg

)2
f−1
Z̃

τavg + ρ−1k
(146)

=
τavg − f−1

D

τavg + ρ−1k
(147)

a2 =
a1

ρf−1
avg

(148)
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H.1.3 Utility

As before, the contribution to optimized utility from frequency j is(
(1− a1,j)

2 fD,j +
a2

1,j(
ρf−1
avg

)2 fZ,j
)
τ i,j (149)

Furthermore,

(1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ̃,j =

(
ρ−1k + f−1

D

τavg + ρ−1k

)2

fD,j + ρ−2f2
avg,j

(
τavg − f−1

D

τavg + ρ−1k

)2

fZ̃,j

=
(
τavg + ρ−1k

)−2
((
ρ−1k + f−1

D

)2
fD,j + ρ−2f2

avg,j

((
ρf−1
avg

)2
f−1
Z̃

+ f−1
avg

)2
fZ̃,j

)
=

(
τavg + ρ−1k

)−2
((
ρ−1k + f−1

D

)2
fD,j + ρ−2

(
ρ2f−1

avgf
−1
Z̃

+ 1
)2
fZ̃,j

)
So

E−1 [Ui,0] =
1

2
T−1

T−1∑
j=0


(
τavg,j + ρ−1k

)−2
((

ρ−1k + f−1
D,j

)2
fD,j + ρ−2

(
ρ2f−1

avg,jf
−1
Z̃,j

+ 1
)2
fZ̃,j

)
×
((

ρf−1
avg,j

)2
f−1
Z,j + f−1

i,j + f−1
D,j

)
− 1

2

(150)

When there are no active investors and just exogenous supply, we have

0 = z̃j + kpj (151)

pj = −k−1z̃j (152)

rj = dj − k−1z̃j (153)

We then have

fR = fD +
fZ
k2

(154)

fR,0 = fD,j +
fZ̃,j(

k + ρf−1
Dj

)2 (155)

H.2 Result 9

We have

D | Y, P ∼ N
(
D̄,Λdiag

(
τ−1

0

)
Λ′
)

(156)
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where τ0 is a vector of frequency-specific precisions conditional on prices. Now consider some

average over D, F ′D, where F is a column vector. Then

V ar (Dt) = 1′tΛdiag
(
τ−1

0

)
Λ′1t (157)

=
(
Λ′1t

)′
diag

(
τ−1

0

) (
Λ′1t

)
(158)

=
∑
j,j′

λ2
t,jτ
−1
0,j (159)

= λ2
t,0τ
−1
0,0 + λ2

t,T/2τ
−1
0,0 +

T/2−1∑
n=1

(
λ2
t,n + λ2

t,n′
)
τ−1

0,n (160)

where 1t is a vector equal to 1 in its tth element and zero elsewhere and λt,j is the jth trigonometric

transform evaluated at t, with

λt,j =
√

2/T cos (2πj (t− 1) /T ) (161)

λt,j′ =
√

2/T sin (2πj (t− 1) /T ) (162)

λt,0 =
√

1/T (163)

λt,T/2 =
√

1/T cos (π (t− 1)) =
√

1/T (−1)t−1 (164)

More generally, then

V ar

(
1

s

s−1∑
m=0

Dt+m

)
=

1

s2

(
s−1∑
m=0

1t+m

)′
Λdiag

(
τ−1

0

)
Λ′

(
s−1∑
m=0

1t+m

)
(165)

=
1

s2

(
s−1∑
m=0

λt+m,0

)2

τ−1
0,0 +

1

s2

(
s−1∑
m=0

λt+m,T/2

)2

τ−1
0,T/2 (166)

+
1

s2

T/2−1∑
n=1

( s−1∑
m=0

λt+m,n

)2

+

(
s−1∑
m=0

λt+m,n′

)2
 τ−1

0,n (167)

where τ0,n is the frequency-n element of τ0. For 0 < n < T/2

(
s−1∑
m=0

λt+m,n

)2

+

(
s−1∑
m=0

λt+m,n

)2

=
s−1∑
m=0

s−1∑
k=0

2

T

[
cos (2πn (t+m− 1) /T ) cos (2πn (t+ k − 1) /T )

+ sin (2πn (t+m− 1) /T ) sin (2πn (t+ k − 1) /T )

]
(168)

Now note that

2 cos (x) cos (y) + 2 sin (x) sin (y) = 2 cos (x− y) (169)

45



So we have (
s−1∑
m=0

λt+m,n

)2

+

(
s−1∑
m=0

λt+m,n

)2

=
2

T

s−1∑
m=0

s−1∑
k=0

cos

(
2πn

T
(m− k)

)
(170)

= 2
s

T

s−1∑
m=−(s−1)

s− |m|
s

cos

(
2πn

T
m

)
(171)

= 2
s

T
Fs

(
2πn

T

)
(172)

=
2

T

1− cos
(
s2πn
T

)
1− cos

(
2πn
T

) (173)

where Fs denotes the sth-order Fejér kernel. Note that when s = T , the above immediately reduces

to zero, since cos (2πn) = 0. That is the desired result, as an average over all dates should be

unaffected by fluctuations at any frequency except zero.

For n = 0, (
s−1∑
m=0

ft+m,0

)2

=

(
s−1∑
m=0

√
1/T

)2

(174)

=

(
s

1

T 1/2

)2

(175)

=
s

T
Fs (0) (176)

Since Fs (0) = s (technically, this holds as a limit: limx→0 Fs (x) = s).

For n = T/2, (
s−1∑
m=0

ft+m,T/2

)2

=
1

T

(
s∑

m=1

(−1)m
)2

=

{
1
T for odd s

0 otherwise
(177)

=
s

T

1

s

(
sin (sπ/2)

sin (π/2)

)2

=
s

T
Fs (π) (178)

So we finally have that

V ar

(
1

s

s−1∑
m=0

Dt+m

)
=

1

sT

∑
j,j′

Fs (ωj) τ
−1
0,j (179)
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I Costly learning about prices

I.1 Generic result: no learning from prices

Lemma 3 Assume that learning from prices is costly. At that at time −1, if agent i decides to

infer information from prices, then their capacity constraint is:

Tr(f−1
i + f−1

P ) ≤ f̄−1,

where f−1
P is inverse of the variance-covariance matrix of signals contained in prices, and f−1

i is

the variance-covariance of the private signals of agent i. On the other hand, if agent i decides not

to infer information from prices, then his capacity constraint is:

Tr(f−1
i ) ≤ f̄−1.

Then, agents always prefer not to learn from prices.

Proof. If agent i has decided not to learn from prices, then at time 0, their posterior distribution

over d is:
d|yi ∼ N

(
µ(yi), τ

−1
i

)
τNPi = f−1

D + f−1
i

µ(yi) = (τNPi )−1f−1
i yi

(180)

Agent i still observes prices; their first-order condition leads to the demand schedule:

qi = ρτNPi (µ(yi)− p) .

His time-0 utility is:

UNP0,i (yi; p) = 1
2T (µ(yi)− p)′ τNPi (µ(yi)− p) . (181)

Since τNPi is symmetric, this implies:

E−1,i

[
UNP0,i

]
= 1

2T tr(τ
NP
i V NP

i ) + 1
2T (µNPi )′τNPi µNPi , (182)

where as before:
µNPi = E−1,i [µ(yi)− p]

V NP
i = V ar−1,i [µ(yi)− p]

(183)

As before, because all fundamentals are mean 0, µi = 0. Moreover, by the law of total variance:

Vi = V ar−1 [d− p]︸ ︷︷ ︸
≡V−1

−(τNPi )−1
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Therefore,

E−1,i

[
UNP0,i

]
= 1

2T tr(τ
NP
i Vi)

= 1
2T tr(τ

NP
i V−1)− 1

2T tr(I)

= 1
2T tr

(
f−1
D V−1

)
− 1

2T tr(I) + 1
2T tr(f

−1
i V−1)

(184)

The time-(−1) attention allocation problem of such an agent is therefore:

UNP−1,i

(
f−1
avg

)
= −1

2 + 1
2T tr

(
f−1
D V−1

)
+

1

2T
max
f−1i

tr(f−1
i V−1)

s.t. f−1
i,j ≥ 0 ∀j ∈ [0, ..., T − 1]

tr(f−1
i ) ≤ f̄−1

(185)

For an agent who does learn from prices (but shares the other agent’s ex-ante distribution over p

and d, summarized by V−1), the attention allocation problem has already been derived; it is given

by:

U−1,i

(
f−1
avg

)
= −1

2 + 1
2T tr

((
f−1
D + f−1

P

)
V−1

)
+

1

2T
max
f−1i

tr(f−1
i V−1)

s.t. f−1
i,j ≥ 0 ∀j ∈ [0, ..., T − 1]

tr(f−1
i + f−1

P ) ≤ f̄−1

(186)

Since f−1
i is diagonal, f−1

i → tr(f−1
i V−1) can be thought of as a linear map on RT . By the Riesz

representation theorem, there is λ ∈ RT such that ∀f−1
i , tr(f−1

i V−1) =
∑T−1

j=0 f
−1
i,j λj . Let λ̃ denote

the element-wise maximum of λ. Note, in particular, that:

tr(f−1
P V−1) =

T−1∑
j=0

f−1
P,jλj .

Moreover, after optimization, not learning through prices yields utility:

UNP−1,i

(
f−1
avg

)
= −1

2
+

1

2T
tr
(
f−1
D V−1

)
+

1

2T
λ̃f̄−1.

Learning through prices yields utility:

U−1,i

(
f−1
avg

)
= −1

2
+

1

2T
tr
((
f−1
D + f−1

P

)
V−1

)
+

1

2T
λ̃
(
f̄−1 − tr(f−1

P )
)

The difference between the two is:

UNP−1,i

(
f−1
avg

)
− U−1,i

(
f−1
avg

)
= 1

2T λ̃tr(f
−1
P )− 1

2T tr
(
f−1
P V−1

)
= 1

2T λ̃tr
(
f−1
P

)
− 1

2T

∑T−1
j=0 f

−1
P,jλj

≥ 0

(187)
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Therefore, the agent always prefer not to learn from prices.

I.2 The equilibrium when agents do not learn about prices

Guess:

p = a3d− a4z

with a3, a4 diagonal matrices of size T × T . Straightforward derivations lead to:

a3 = I − (τavg + kI)−1
(
f−1
D + kI

)
= (τavg + kI)−1f−1

avg

a4 = 1
ρa3favg

= 1
ρ(τavg + kI)−1

τavg = f−1
avg + f−1

D

τ i = f−1
i + f−1

D

(188)

Moreover, expected utility is given by:

E−1,i

[
UNP0,i

]
= CNP + 1

2T tr(V
NP
−1 f−1

i )

V NP
−1 = fD

(
(I + kfD)2 + fZfD

ρ2

)
(I + kfD + fDf

−1
avg)

−2

CNP = 1
2T tr

(
f−1
D V NP

−1

)
− 1

2

(189)

J Calibration

f̄−1 = 0.01

T = 1000

fD (ω) = 1
4

∣∣1− 1
2e
iω
∣∣−2

+ 1− .55 cos (2ω) + 7
16

∣∣1 + 1
2e
iω
∣∣−2

fZ (ω) = 1
10

∣∣1− 1
2e
iω
∣∣−2

ρ = 1
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Figure 5: Persistence of the churn rate over time
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Figure 6: Out-performance of institution holdings at different horizons
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