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Abstract

Exchanges nowadays routinely operate multiple limit order markets for the same

security that are almost identically structured. We study the effects of such fragmen-

tation on market performance using a dynamic model of fragmented markets where

agents trade strategically across two identically-organized limit order books. We show

that fragmented markets, in equilibrium, offer higher welfare to intermediaries at the

expense of investors with intrinsic trading motives, and lower liquidity than consoli-

dated markets. Consistent with our theory, we document improvements in liquidity

and lower profits for liquidity providers when Euronext, in 2009, consolidated its order

flow for stocks traded across multiple, country-specific, and identically-organized limit

order books onto a single order book. Our results suggest that competition in mar-

ket design, not fragmentation, drives previously documented improvements in market

quality when new trading venues emerge; in the absence of such competition, market

fragmentation is harmful.
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When you split these liquidity pools [. . . ] what happens is that overall volumes

tend to go up because the market starts to arbitrage and tries to put the market

back together, the value of data goes up. And the whole thing for us turns out to

be very good business [. . . ] we don’t think it’s in the best interest of the market

[. . . ]

– Jeffrey Sprecher, Chairman and CEO, Intercontinental Exchange during the

Q1 2017 Earnings Call dated 03 May 2017

1. Introduction

Increased fragmentation of trading activity has been one of the most significant changes

experienced by equity markets in recent years. Equity markets in the United States, the

European Union, and elsewhere have evolved from national/regional stock exchanges being

the dominant liquidity pools to a fragmented multi-market environment where a stock now

trades on multiple exchanges. These markets have simultaneously also experienced a process

of consolidation as a result of national and international mergers of exchanges such that only a

small number of operators, each running several exchanges, now compete with one another.

For example, in the United States, the three large exchange operators – Intercontinental

Exchange, Nasdaq OMX, and BATS – currently operate a total of ten lit equity exchanges.

While it is possible that exchange operators allow a certain degree of competition between

the different exchanges they own, it appears implausible that such competition would be

similar to that between exchanges run by different operators. In most cases, the individual

exchanges operated by a single operator employ almost identical rules and use the same

technology such that differences between exchanges are minimal. This raises the question as

to the effects of fragmentation when competition between venues is absent or minimal.

In this paper, we examine the effects of fragmentation on market performance through

a dynamic equilibrium model which characterizes such a multi-market environment. Our
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model is set up as a stochastic trading game in which a single asset can be traded in two

identically-organized limit order markets. Agents, who are heterogeneous in terms of their

intrinsic economic reasons to trade the asset, enter the market following a Poisson process,

and make endogenous trading decisions depending on market conditions (e.g. where to

submit an order, the type of order, and the limit price). Agents can reenter the market to

revise or cancel previously submitted limit orders. They make optimal decisions depending

on the state of both limit order books, the stochastically evolving fundamental value of the

asset, their private values, and costs of delaying order execution. Limit orders in both order

books are independently executed based on price and time priority. By comparing a multi-

market environment to a consolidated market setup, we analyze the effects of fragmentation

across multiple venues when these venues do not actively compete with each other.

Our model builds on those developed by Goettler et al. (2005, 2009) to characterize a sin-

gle limit order market. They present a dynamic model in which investors make asynchronous

trading decisions based on the prevailing market conditions. We extend their model to de-

scribe a fragmented limit order market setting. This is a non-trivial task as the diversity

of trading options and trading rules in this setting significantly increases the decision-state

space. Furthermore, in contrast to Goettler et al. (2005, 2009), we do not rely on model

simplifications to reduce this large state space.

We focus on liquidity, price efficiency, and welfare. In the model, agents endogenously

decide whether they provide or consume liquidity. Agents who have an intrinsic motive to

trade balance the delay costs associated with submitting limit orders and immediacy costs

associated with submitting market orders when determining their optimal strategy. Agents

with large absolute private values are more likely to submit market orders because of the

proportionally higher expected delay costs. Agents with no intrinsic trading motives generate

their profits solely from the trading process. Consequently, they are more patient and hence

act as intermediaries by either submitting new limit orders, or sniping mispriced limit orders

as in Budish et al. (2015).
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In a fragmented environment, agents who provide liquidity submit less aggressive limit

orders than in a consolidated market because they can submit an order to one market

in order to avoid the time priority of standing limit orders in the second market. This

reduction in competition among liquidity providers in a fragmented market translates into

higher immediacy costs for liquidity demanding agents.

A comparison of welfare observed in the two different market setups shows that aggregate

welfare does not differ markedly between a consolidated and fragmented market. However,

the distribution of welfare between the different agent types changes, primarily due to lower

price competition in fragmented markets. Agents without any intrinsic trading motive are

better off in a fragmented market; their expected payoffs are significantly higher as they

obtain better terms of trade. Conversely, fragmented markets are welfare-reducing for agents

with exogenous trading motives due to higher costs of obtaining immediacy.

Agents’ order submission strategies in fragmented versus consolidated markets have a

direct impact on liquidity and price discovery. We find that quoted spread and top-of-book

depth are higher in the multi-market environment. We also observe that actual trading costs,

proxied using effective spreads, and liquidity providers trading gains, proxied using realized

spreads, are lower in a single market setup. At the same time, microstructure noise, defined

as the absolute difference between quote midpoint and the fundamental value of the asset, is

also higher when markets are fragmented. The above results hold irrespective of whether we

measure liquidity and microstructure noise using local or inside quotes. These results also

assume exogenous market entry and constant agent populations in both scenarios.

If we were to endogenize market entry of different agent types by allowing them to make

entry decisions based on the trade-off between expected trading profits and participation

costs, the higher profits in fragmented markets earned by agents without any intrinsic motive

should lead to their increased participation. In a computationally simpler alternative, we

re-parameterize the model by doubling the number of such agents in the fragmented market

and compare its outcomes to those observed under the original parameterization. We find

5



that quoted bid-ask spreads – albeit lower than in the earlier discussed fragmented market

– remain higher than in the single market. Quoted depth in this setup is also highest across

the three scenarios. Effective and realized spreads remain higher than in the single market.

Conversely, price efficiency improves in this setup because the presence of a higher number

of intermediaries leads to prices reacting faster to the arrival of public information. Finally,

we obverse an incremental shift in welfare towards agents without intrinsic trading motives

when their arrival rate is doubled, while aggregate welfare does not change significantly.

We empirically test the model predictions by examining a unique event in which Euronext,

starting 14 January 2009, implemented a single order book per asset for their Paris, Amster-

dam, and Brussels markets. Euronext previously operated multiple independent order books

for stocks cross-listed on these markets. The event led to a decrease in fragmentation for

the affected stocks. Existing empirical studies, such as Foucault and Menkveld (2008), Hen-

gelbrock and Theissen (2009) and Chlistalla and Lutat (2011), examining the effects of new

exchange operators entering a market can be viewed as joint tests of fragmentation and com-

petition. This is because the entry of a new market, in addition to increasing fragmentation,

also materially alters the competitive environment. The new operator typically attempts to

differentiate its platform along critical features such as trading speed, transaction fees, or the

ability to execute large blocks. In contrast, the multiple order books operated by Euronext

had exactly identical trading protocols before the implementation of a single order book.

The empirical analysis broadly confirms the theoretical results. We find quoted spreads

in the consolidated market to be lower by 30% than local spreads in an individual order book

before the event. Quoted depth (both local and at the inside quotes) is also higher after

consolidation but the results are statistically insignificant. This is consistent with the em-

pirical level of intermediation in fragmented markets being in between the two theoretically

modeled scenarios. Consistent with our theoretical results, effective spreads, both measured

using local and inside quotes, are smaller after consolidation. Higher competition in the

single order book reduces the potential for rent extraction by liquidity providers, resulting
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in 35% lower realized spreads after consolidation. Price impact, the other component of the

effective spread, in the absence of private information measures the extent of trading at stale

prices, and remains unchanged when compared to the price impact based on inside quote

midpoints in the fragmented market. Price efficiency, measured using autocorrelations and

variance ratios, also improves after consolidation, although the improvements are weakly

significant at best.

While we are unable to empirically compute welfare effects, we find that the introduction

of a single order book leads to a weakly significant increase in trading volume, This is

despite the elimination of arbitrage trades between the multiple Euronext markets, which

are responsible for up to 7.8% of the trading volume before the introduction of a single order

book. This is likely due to reduced transaction costs allowing more participation by investors

with intrinsic trading motives and is consistent with our theoretical results.

Our results contribute to the literature on equity market fragmentation.1 Early theories

on fragmentation such as Mendelson (1987), Pagano (1989), Chowdhry and Nanda (1991)

highlight the positive network externalities generated by consolidating trading on a single

venue. Harris (1993) argues that fragmentation can emerge as a consequence of real-world

frictions and heterogenous trading motives. Even in some of the above models, a consolidated

market is no longer the equilibrium outcome when the fragmented markets differ in their

absorptive capacity and institutional mechanisms (Pagano, 1989), and when traders are

allowed to split their orders over time (Chowdhry and Nanda, 1991). Madhavan (1995)

argues that markets fragment only if there is a lack of trade disclosure. Fragmentation in his

model benefits dealers and large traders, and increases volatility and price inefficiency. In

possibly the most relevant study to today’s competitive landscape of equity markets, Foucault

and Menkveld (2008) model competition between two limit order books and predict that the

entry of a second market increases consolidated depth, and that increased use of smart order

routers leads to an increase in liquidity in the entrant market.

1 See Gomber et al. (2016) for a detailed survey of this literature.
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The empirical study closest to our paper is Amihud et al. (2003) who study the reduc-

tion in fragmentation on the Tel Aviv Stock Exchange resulting from the exercise of deep

in-the-money share warrants and find an increase in stock price and improvement in liquid-

ity. However, their results cannot be extended to modern equity markets because: (i) the

stocks and warrants traded periodically in single or multiple batch auctions as opposed to

continuously in limit order markets; (ii) the warrant and the underlying stock cannot be

considered as perfectly fungible assets such that investors are indifferent between holding

the two.

Hengelbrock and Theissen (2009) and Chlistalla and Lutat (2011) analyze the market

entry of Turquoise and Chi-X, respectively, in the European markets and find positive effects

on liquidity in the main market. Boehmer and Boehmer (2003) and Nguyen et al. (2007)

examine the impact of NYSE’s entry in the ETF market and also find improvements in

different measures of liquidity. Riordan et al. (2010) find that new entrants contribute to

the majority of quote-based price discovery for the FTSE100 stocks in the UK. Kohler and

von Wyss (2012) and Hellström et al. (2013) find that fragmentation in the Swedish market

increases liquidity, for all but large stocks, and price efficiency for all stocks. O’Hara and

Ye (2011) analyze overall fragmentation in the US equity markets and find that it is not

harmful to market quality. Degryse et al. (2015) and Gresse (2017) differentiate between

lit and dark fragmentation and find that the former improves liquidity, but disagree on the

effects of the latter.

We contribute to this literature by analyzing the impact of fragmentation across multiple,

identically-organized limit order books on market performance. We consider a dynamic

model of multiple limit order markets that incorporates several real-world features and allows

for more flexible agent behavior as compared to previous models (see for example Mendelson,

1987; Pagano, 1989; Chowdhry and Nanda, 1991; Biais, 1993; Parlour and Seppi, 2003). We

provide evidence that fragmentation has detrimental effects on market quality and welfare,

benefiting intermediaries at the expense of agents who trade for intrinsic motives.
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The remainder of the paper is structured as follows. Section 2 describes the theoretical

model central to our analyses. In Section 3, we analyze the theoretical implications of

consolidated versus fragmented markets on welfare and market quality. In Section 4 we

present the empirical results from the event study. Finally, we conclude in Section 5.

2. Multi-Market Model

2.1 Model Setting

Consider an economy in continuous-time with a single financial asset that is traded on two

independent financial markets. The economy is populated by risk-neutral agents trading the

asset. Agents arrive sequentially following a Poisson process with intensity λ, and they can

use either of the two financial markets to trade the asset. Agents do not cooperate, and they

make trading decisions based on a maximization of expected payoffs. Hence, trading activity

in the two financial markets reflects a sequential non-cooperative game, where agents make

asynchronous decisions by taking into account private reasons to trade the asset, market

conditions and the potential strategies employed by other agents arriving in the future.

The two financial markets in the economy, denoted by m ∈ {1, 2}, are organized as

limit order markets. Agents can submit limit orders and market orders. A limit order is

a commitment made by an agent to trade the asset at a price p in the future, where the

value of p is decided by the agent at order submission time. A market order is an order

to buy or sell immediately at the best available price, where this price is provided by a

previously submitted limit order. Hence, a buy (sell) market order submitted by an agent is

always matched with a sell (buy) limit order previously submitted by another agent. Agents

submitting limit orders are liquidity providers, whereas agents submitting market orders are

liquidity consumers.

As in limit order markets found in the real world, the order books are described by a

discrete set of prices at which orders can be submitted. The limit order book at time t and in
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market m, Lm,t, is characterized by the set of prices denoted by {pim}
Nm

i=−Nm
, where pim < pi+1

m

and N is a finite number. Let d be the distance between any two consecutive prices, which

will be referred to as tick size (i.e. d = pi+1
m − pim). The tick size is assumed to be equal for

both limit order books. In both limit order books, there is a queue of unexecuted buy or sell

limit orders associated with each price. Let lim,t be the queue in the limit order market m

at time t associated with price pim. A positive (negative) number in lim,t denotes the number

of buy (sell) unexecuted limit orders, and it represents the depth of the book Lm,t at price

pim. Thus, in the book Lm,t at time t, the best bid price is B(Lm,t) = sup{pim|lim,t > 0}

and the best ask price is A(Lm,t) = inf{pim|lim,t < 0}. If the order book Lm,t is empty at

time t on the buy side or on the sell side, B(Lm,t) = −∞ or A(Lm,t) =∞, respectively. All

agents observe both limit order books (i.e. prices and depths at each price) before making

any trading decision.

In each market, the limit order book respects price and time priority for the execution

of limit orders. In the book Lm,t, limit orders submitted earlier at the same price pim are

executed first, and buy (sell) limit orders at higher (lower) prices have priority in the queue,

even if other orders with less competitive prices are submitted earlier. Time and price priority

apply independently for each limit order book.2 The limit order price determines whether an

order is a market order: an order to buy (sell) at a price equal to or above (below) the best

ask (bid) price is a market order and is executed immediately at the best ask (bid) price.

Agents can monitor both limit order books. However, due to limited cognition, they

cannot immediately modify their unexecuted limit orders after a change in market conditions.

In that sense, decisions regarding limit order submissions are sticky. Traders re-enter the

market to modify unexecuted limit orders according to a Poisson processes with parameter

λr, which is the same for both markets and is independent of the arrival process.

Agents are heterogeneous in terms of their intrinsic economic motives to trade the asset.

2 The existence of an order protection rule ensuring price priority across order books does not affect the
outcomes of the model.
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These motives are reflected in their private values. Each agent has a private value, α, which

is known by the agent. α is drawn from the discrete vector Ψ={α1, α2, ..., αg} using a

discrete distribution, Fα, where g is a finite integer. Private values reflect the fact that

agents would like to trade for various reasons unrelated to the fundamental value of the

asset (e.g. hedging needs, tax exposures and/or wealth shocks). They are idiosyncratic and

constant for each agent.

Agents face a cost when they cannot immediately trade the asset, which is called a

delaying cost. The delaying cost is reflected by a discount rate ρ applied to the agent’s

payoff (with 0 < ρ < 1). The value ρ is constant and has the same value whether orders are

executed in L1,t or L2,t. This delaying cost does not represent the time value of the money.

Instead, it reflects opportunity costs and the cost of monitoring the market until an order is

executed.

The fundamental value of the asset, vt, is stochastic and known by agents; its innovations

follow an independent Poisson process with parameter λv. In case of an innovation, the

fundamental value increases or decreases by d, both with an equal probability of 0.5, where

d is the tick size of the limit order books.

The heterogeneity of agents (in terms of private values), the delaying costs and the

fundamental value of the asset all play an important role in agents’ trading behavior. On

the one hand, suppose agent x with a positive private value (i.e. α > 0) arrives at time

tx. This agent has to be a buyer because she would like to have the asset to obtain the

intrinsic benefit given by α. In this case, the agent’s expected payoff of trading one share is:

(α+vt′−p)e−ρ(t′−tx), where p is the transaction price, t′ is the expected time of the transaction,

and vt′ is the expected fundamental value of the asset at time t′. Moreover, if the value of α

is very high, the agent may also prefer to buy the asset as soon as possible in order to avoid

a high delaying cost (i.e. the agent has a discount on the level of α given by (e−ρ(t′−tx)−1)α).

She may even prefer to buy the asset immediately using a market order. Consequently, an

agent with a high positive private value will probably be a liquidity consumer. However,
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there is no free lunch for the liquidity consumer. The agent will probably have to pay an

immediacy cost that is given by (vt′ − p)−ρ(t′−tx), since it is likely that vt′ − p < 0. The agent

will accept this immediacy cost because she is mainly generating her profits from the large

private value, α, rather than from the transaction per se.3

On the other hand, suppose an agent y with a private value equal to zero (i.e. α = 0)

arrives at time ty. This agent needs to find a profitable opportunity purely in the transaction

process because she does not obtain any intrinsic economic benefits from trading. Conse-

quently, she is willing to wait until she obtains a good price relative to the fundamental

value. Thus, this agent will probably act as a liquidity provider and receive the immediacy

cost paid by the liquidity consumer. It is important to note that agents with α = 0 are

indifferent with respect to taking either side of the market because they can maximize their

benefits by either selling or buying (i.e. by respectively maximizing (p − vt′′)e
−ρ(t′′−ty) or

(vt′′ − p)e−ρ(t′′−ty), where t′′ is the expected time of the transaction).

Liquidity providers are also affected by the so-called picking-off risk because limit orders

can also generate a negative payoff if they are in an unfavorable position relative to the

fundamental value. A limit buy (sell) order executed above (below) the fundamental value

of the asset generates a negative economic benefit in the transaction. For example, suppose

that the agent I with α = 0 first arrives at time t = 0. Additionally, suppose that this agent

has a standing limit buy order at the best bid price, B in market m = 1. Suppose that the

current time is t∗ and vt∗ is the current fundamental value of the asset, such that vt∗ > B. In

this case, the agent can make a positive profit if the order is executed immediately at time t∗;

this potential profit is given by (vt∗−B)e−ρt
∗
. Now suppose at time t∗∗, the fundamental value

of the asset decreases to level vt∗∗ , which is below B (i.e. vt∗∗ < B) and simultaneously agent

II with private value α = 0 arrives in the market. Since agent I cannot immediately modify

her unexecuted limit order, agent II can submit a market sell order, and pick off the limit

3 A similar example can be explained in the other direction in case of an agent with a negative private
value (i.e. α < 0) having a preference to sell.
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buy order submitted by agent I. Agent II is thus able to generate an instantaneous profit

equal to (B− vt∗∗) whereas agent I has a negative realized payoff given by (vt∗∗ −B)e−ρt
∗∗

.4

Consequently, limit buy orders generally have prices below vt while limit sell orders have

prices above vt. If that were not the case, a newly arriving agent could pick off limit buy

(sell) orders above (below) vt. This also implies that limit orders in unfavorable positions

should disappear quickly from both limit order books.

We center each limit order book at the contemporaneous fundamental value of the asset,

i.e. by setting p0
m = vt. Suppose at time t = 0 the fundamental value is v0, but after a

period τ the fundamental value experiences some innovations and its new value is vτ , with

vτ − v0 = qd, where q is a positive or negative integer. In this case, we shift both books

by q ticks to center them at the new level of the fundamental value vτ . Thus, we move the

queues of existing limit orders in both books to take the relative difference with respect to

the new fundamental value into account. This implies that prices of all orders are always

relative to the current fundamental value of the asset. This transformation allows us to

greatly reduce the dimensionality of the state-space because agents always make decisions

in terms of relative prices regarding the fundamental value of the asset.5

Each agent can trade one share and has to make three main trading decisions upon

arrival: i) to submit an order either to L1,t or L2,t; ii) to submit either a buy or a sell order;

and iii) to choose the limit price, which implies the decision to submit either a market or a

4 A similar example, but in opposite direction, can be explained for the cost of being picked off with a
limit sell order below the fundamental value of the asset.

5 It is important to note that under this normalization, we can still observe limit orders being picked-off.
For example, suppose that the current time is t and the fundamental value is vt; hence p0

m = vt. Suppose,

that the current bid price is B(Lm,t) = p−1
m and the ask price is A(Lm,t) = p

2
m. Subsequently, at time tpo,

if the fundamental value decreases by twice the amount of the tick size (i.e. q = −2), after re-centering the

book, the bid and ask prices are B(Lm,tpo) = p1
m and A(Lm,tpo) = p

4

m
, respectively. Thus, a newly arriving

agent can submit a market order against the limit order at the bid price to generate a profit. Subsequently,
the limit order at p1

m will disappear, and the new bid price will be below the price at the center of the book
(i.e. B(Lm,tpo+∆t) = p0

m, where ∆t is the time until the limit buy order above the fundamental value is
picked-off).
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limit order, depending on whether the price is inside or outside the quotes.6,7 As mentioned

above, an agent can re-enter the market and modify her unexecuted limit order. Hence,

she has to make the following additional trading decisions after re-entering: i) to keep her

unexecuted limit order unchanged or to cancel it; ii) in case of a cancellation, to submit a

new order to L1,t or L2,t; iii) to choose whether the new order will be a buy or a sell order;

and iv) to choose the price of the new order.

The decision to leave the order unchanged has the advantage of maintaining the it’s time

priority in the respective queue. The negative side of leaving an order in any of the books

unchanged is the potential costs agents can incur when the fundamental value of the asset

moves in directions that affect the expected payoff. For example, in the case of a reduction

in vt, a limit buy order could be priced too high. This possibility represents an implicit cost

of being picked off. Conversely, when the asset value increases, a buy limit order has the

risk of waiting for a long period before being executed.

Therefore, agents have to take the possibility of re-entry into account when they make

their initial decision after arriving in the economy. Once an agent submits a limit order, she

remains part of the trading game until her order is executed; she exits the market forever

after trading the asset.

2.2 Agents’ Dynamic Maximization Problem and Equilibrium

There is a set of states s ∈ {1, 2, . . . , S} that describes the market conditions in the economy.

These market conditions are observed by each agent before making any decision. The state

s that an agent observes is described by the contemporaneous limit order books, L1 and L2;

the agent’s private value α; and in the case that the agent previously submitted a limit order

6 We can include additional shares per agent in the trading decision. However, similarly to Goettler et al.
(2009), we assume one share per trader to make the model computationally tractable.

7 A potential decision to wait outside any of the markets (without submitting an order) is not optimal
because there are no transaction fees, submission fees or cancellation fees. An agent can always submit a
limit order far away from the fundamental value such that it is unlikely to be executed, but if executed, the
potential economic benefit is high.
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to any of the books, the status of that order in L1 or L2, i.e. its original submission price,

its queue priority in the book, and its type (i.e. buy or sell). The fundamental value of the

asset, v, is implicitly part of the variables that describe the state s, since agents interpret

limit prices relative to the fundamental value. For convenience, we set the arrival time of an

agent to zero in the following discussion.

Let a ∈ Θ(s) be the agent’s potential trading decision, where Θ(s) is the set of all possible

decisions that an agent can take in state s. Suppose that the optimal decision given state s

is ã ∈ Θ(s). Let η(h|ã, s) be the probability that an optimally submitted order is executed

at time h. The probability η(·) depends on future states and potential optimal decisions

taken by other agents up to time h. The probability η(0|ã, s) is equal to one if the agent

submits a market order, while η(h|ã, s) converges to zero as the agent submits a limit order

further away from the fundamental value. Let γ(v|h) be the density function of v at time

h, which is exogenous and characterized by the Poisson process of the fundamental value of

the asset at rate λv. Thus, the expected value of the optimal order submission ã ∈ Θ(s), if

the order is executed prior to the agent’s re-entry time hr, is:

π(hr, ã, s) =

∫ hr

0

∫ ∞
−∞

e−ρh ((α + vh − p̃)x̃) · γ(vh|h) · η(h|ã, s)dvhdh (1)

where p̃ and x̃ are components of the optimal decision ã, in which p̃ is the submission price

and x̃ is the order direction indicator (i.e. x̃ = 1 if the agent buys and x̃ = −1 if the agent

sells). The expression (α+ vh− p̃)x̃ is the instantaneous payoff, which is discounted back to

the trader’s arrival time at rate ρ.

Let ψ(shr |hr, ã, s) be the probability that state shr is observed by the agent at her re-entry

time hr, given her decision ã taken in the previous state s. The probability ψ(·) depends on

the states and potential optimal decisions taken by other agents up to time hr. In addition,

let R (hr) be the cumulative probability distribution of the agent’s re-entry time, which is

exogenous and described by the Poisson process governing agents’ re-entry with rate λr..

Thus, the Bellman equation that describes the agent’s problem of maximizing her total
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expected value, V (s), after arriving in state s is given by:

V (s) = max
ã ∈Θ(s)

∫ ∞
0

[
π(hr, ã, s) + e−ρhr

∫
shr∈S

V (shr) · ψ(shr |hr, ã, s)dshr

]
dR(hr) (2)

where S is the set of possible states. The first term is defined in Equation (1), and the

second term describes the subsequent payoffs in the case of re-entries.

The intuition for the equilibrium is that each agent behaves optimally by maximizing

her expected utility, based on the observed state that describes market conditions (as in

Equation (2)). In this sense, optimal decisions are state dependent. They are also Markovian,

because the state observed by an agent is a consequence of the previous states and the

historical optimal decisions taken in the trading game. We obtain a stationary and symmetric

equilibrium, as in Doraszelski and Pakes (2007). In such an equilibrium, optimal decisions

are time independent, i.e., they are the same when an agent faces the same state in the

present or in the future.

The trading game is also Bayesian in the sense that an agent knows her intrinsic private

value to trade (α), but she does not know the private values of other agents that are part

of the game. Hence, our solution concept is a Markov perfect Bayesian Equilibrium (see

Maskin and Tirole, 2001). In the trading game, there is a state transition process where

the probability of arriving in state shr from state s is given by ψ(shr |ã, s, hr).8 Thus, two

conditions must hold in the equilibrium: agents solve equation (2) in each state s, and the

market clears.

As mentioned earlier, the state s is defined by the four-tuple (L1,t, L2,t, α, status of

previous limit order), where all variables that describe the state are discrete. Moreover, each

agent’s potential decision a is taken from Θ(s), which is the set of all possible decisions that

can be taken in state s. This set of possible decisions is discrete and finite given the features

of the model. Consequently, the state space is countable and the decision space is finite; thus

8 It is important to note that ψ(shr
|ã, s, hr) = ψ(shr

|s), since optimal decisions are state dependent and
Markovian, and we focus on a stationary and symmetric equilibrium.
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the trading game has a Markov perfect equilibrium (see Rieder, 1979). Despite the fact that

the model does not lend itself to a closed-form solution, we check whether the equilibrium

is computationally unique by using different initial values.

2.3 Solution approach and model parametrization

Given the large dimension of the state space, we use the Pakes and McGuire (2001) algorithm

to compute a stationary and symmetric Markov-perfect equilibrium. The intuition behind

the Pakes and McGuire (2001) algorithm is that the trading game by itself can be used, at

the beginning, as a learning tool in which agents learn how to behave in each state. At the

beginning, we set the initial beliefs about the expected payoffs of potential decisions in each

state. Agents take the trading decision that provides the highest expected payoff conditional

on the state they observe. Subsequently, agents dynamically update their beliefs by playing

the game and observing the realized payoffs of their trading decisions. Thus, the algorithm

is based on agents following a learning-by-doing mechanism.

The equilibrium is reached when there is nothing left to learn, i.e., when beliefs about

expected payoffs have converged. We apply the same procedure used by Goettler et al.

(2009) to determine whether the equilibrium is reached. The Pakes and McGuire (2001)

algorithm is able to deal with a large state space because it reaches the equilibrium only on

the recurring states class. Once we reach the equilibrium after making agents play in the

game for at least 10 billion trading events, we fix the agents’ beliefs and simulate a further

600 million events. Therefore, all theoretical results presented in this paper are calculated

from the last 600 million simulated events, after the equilibrium has already been reached.

The multi-market model involves a higher level of complexity than a single market setup.

First, the state space increases enormously in a multi-market environment, because all com-

binations of variable values across the two order books have to be considered. Second, in

contrast to Goettler et al. (2005, 2009), we do not use model simplifications to reduce the

large state space generated by our multimarket model. Goettler et al. (2005) assume that
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cancellations are exogenous, and Goettler et al. (2009) reduce the dimension of the state

space by using information aggregation (in the spirit of Krusell and Smith, 1998 and Ifrach

and Weintraub, 2016). Goettler et al. (2009) also describe the limit order book by only

considering the bid and ask prices, the depth at the top of the book, and the cumulative

buy and sell depths in the book. We avoid such model simplifications as they may induce

the kernel of state variables to be non-Markovian. We instead solve the model by only em-

ploying the Pakes and McGuire (2001) algorithm.9 While parameterizing our model, we use

the same market characteristics for both limit order markets. In addition, since our model

is an extension of the dynamic model of a single market presented in Goettler et al. (2009),

we use the same parameters as in their study.

We set the intensity of the Poisson process followed by the agents’ arrivals to one. A unit

of time in our model is equal to the average time between new trader arrivals. The intensity

of the Poisson process followed by the agents’ re-entry is set to 0.25; the intensity of the

Poisson process followed by the innovations of the fundamental value is set to 0.125. We set

the tick size in both order books to one, and the number of discrete prices available on each

side of the order book on both markets to N1 = N2 = 31. The delaying cost reflected by the

rate ρ is set to 0.05. The private value α is drawn from the discrete vector Ψ={−8,−4, 0, 4, 8}

using the cumulative probability distribution Fα = {0.15, 0.35, 0.65, 0.85, 1.0}.10

While market entry is exogenous in our model, we posit that, if entry were exogenous,

higher profits generated by any agent type in fragmented markets would likely increase their

participation.In a computationally simpler alternative, we create an additional parameter

configuration by keeping the arrival rates of agents with non-zero private value unchanged

9 The implementation of the Pakes and McGuire (2001) algorithm, applied to our multi-market model,
requires between 600GB and 800GB of RAM, depending on the parameters used. We relied on a high
performance computing facility with latest generation processors and 1TB of RAM, which ran over 5-6
weeks to obtain the equilibrium.

10 As a robustness check, we multiply the following original Goettler et al. (2009) parameters by 0.8 and
1.2: the delaying cost, ρ; the agents’ arrival intensity λ; the innovation arrival intensity of the fundamental
value, λv; and the re-entering intensity λr. The results obtained are qualitatively similar to the results
presented here.
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and doubling the arrival rate of agents with private value equal to zero. In other words, we

set the intensity of agent arrival to 1.3 and draw the different agent types from the cumula-

tive distribution Fα = {0.15/1.3, 0.35/1.3, 0.95/1.3, 1.15/1.3, 1.0}. In addition to the above

rationale, this alternative configuration allows to proxy for a second empirical fact observed

in real-world markets. It is often the case that liquidity providers are active in multiple

limit order books. van Kervel (2015) describes a model of order cancellations in fragmented

markets where high-frequency liquidity providers duplicate their orders across multiple order

books to improve execution probabilities while simultaneously managing adverse selection

risk. A comparison of the different market outcomes across the three (two fragmented and

one consolidated) scenarios allows us to highlight potential effects, if any, associated with

increased intermediation in fragmented markets.

3. Theoretical Implications

We are interested in examining the theoretical implications of the effects of market fragmen-

tation on trading behavior, welfare, and market quality. To do so, we generate a dataset

of trades and order book updates by simulating 10 million events for the following three

specifications: (i) a consolidate market with one limit order book; (ii) a fragmented market

with two limit order books; and (iii) a fragmented market with two limit order books and

twice as many agents with no intrinsic value as the first two specifications. We compute

mean levels of the measures of interest under all three market settings.

3.1 Trading Behavior

The order submission strategy determines the price formation of an asset and the liquidity

of the market, and as a consequence, it has a direct effect on the welfare of individuals and

society. Hence, it is important to analyze how the introduction of a second limit order book

affects the trading behavior of agents. We study the trading patterns of agents in single and
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fragmented markets. For the latter, we provide results for two scenarios: when the arrival

rate of agents without exogenous reasons to trade is the same as in a single market and when

the rate is twice as large. Table 1 presents the results.11,12

We find that agents submit more aggressive limit orders in a single market compared

to a fragmented market. In a single market setting, about 36% of the orders are placed at

the best ask price, whereas this is the case for only about 28% of orders in the fragmented

market. If the arrival rate of traders without exogenous reasons to trade is doubled, almost

33% of limit order are submitted at the best ask price, probably because of the higher degree

of competition among limit order traders in this setup. More aggressive limit orders in

a single market compared to a multiple market setting with same arrival rates lead to a

higher picking-off risk, i.e., the share of executed limit orders that are picked off, inducing

agents to cancel their orders more often. We find that the picking-off risk is indeed lower

in a fragmented market. The results in Table 1 indicate that the picking-off risk declines

from 21.80% in a single market to 20.82% in multiple markets. When the arrival rate

of intermediaries is doubled, the picking-off risk is even lower. Untabulated results reveal

that the picking-off risk, in this setting, is higher for each agent type, which is consistent

with a higher competition between speculators. However, this measure decreases on average

compared to a single setting, because of the higher share of agents of type α = 0, who have

the lowest picking-off risk. A higher picking-off risk induces agents to cancel their limit order

more often, increasing the execution time from her arrival time until the execution of her

limit order. Consistent with this intuition, the average number of limit order cancellations

per trader is 1.2 in a single order book as compared to 1.01 when there is a second book.

We also corroborate that limit orders execute faster in a multi-market setting. The average

execution time is 8.61 in a single market, whereas in a fragmented market the time is reduced

11As the model is symmetric we focus on the sell side of the market. The results for the buy side of the
market are analogous.

12We do not report standard errors because the large number of trader arrivals implies that the standard
errors on the sample means are sufficiently low such that a difference in means of an order of 10−2 is
significantly different from zero.
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to 7.15 units of time in a fragmented market with the same distribution of agents.

If we double the arrival rate of market-makers, the number of cancelations is 1.58 and

the execution time is 13.10, which is also consistent with higher competition of limit orders

inducing agents to cancel more often, increasing, in turn, their execution time. The much

longer time until execution can be explained by the fact that an overwhelming share of limit

order traders in this setup are intermediaries, who are patient traders.

Table 2 shows the proportions of limit orders and market orders submitted by each trader

type. We report the distribution of limit orders and market orders for a given trader type.

As expected, we find that agents with intrinsic motives to trade (i.e., |α| 6= 0) act as liquidity

demanders, whereas agents with no intrinsic motives to trade (i.e., |α| = 0) act as liquidity

suppliers. Almost all of the agents without intrinsic motive to trade (i.e., |α| = 0) act as

speculators submitting limit orders. Only about 5% of them submit market orders to take

advantage of mispriced limit orders. Conversely, about 72% agents with private value |α| = 8

submit market orders.

The behavior of agents with private value |α| = 4 is in between those of the other types.

The choice between limit and market orders does not markedly differ between the single and

multi-market setups with the same trader populations. However, differences in order choice

between the trader types are more pronounced when we doubled the arrival rates of zero

private value agents, as traders with non-zero α use limit orders much less frequently.

Our findings are consistent with the study of Goettler et al. (2009) who examine the

trading behavior in a single market setting. They also find that agents with |α| = 0 supply

liquidity to the market, agents with extreme valuation (|α| = 8) are more likely to demand

liquidity, and the behavior of agents with |α| = 4 is in between that of the more extreme

types.

Although our findings reveal that fragmentation does not change the main strategies

adopted by traders, it is interesting to notice that, assuming an unchanged population of
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traders, agents with private value |α| = 8 submit a higher proportion of limit orders when

there are two limit order markets. We will show later that market fragmentation leads to

wider spreads. As market orders are more expensive in such a setting, some agents with

exogenous reasons to trade prefer to submit more limit orders when there are two limit order

books. However, when we increase the arrival rate of market makers, the latter appear to

crowd out the limit order submissions of other types of traders.

3.2 Market Quality

In this subsection, we compare consolidated and fragmented markets in terms of the major

determinants of market quality, i.e., liquidity and price efficiency.

We begin by estimating the effect of market fragmentation on various measures of quoted

and traded liquidity. We calculate liquidity measures employing either local or inside quotes.

Local quotes comprise the bid and ask prices of one of the markets whereas inside quotes

are combine the highest bid and the lowest ask across the two limit order books.

We measure daily quoted liquidity by time-weighted quoted spreads and time-weighted

top-of-book depth. We also report the total number of limit orders waiting to be executed

on the sell side of the market. Panel A of Table 3 provides the results. Our theoretical

findings indicate that fragmentation by and large impairs liquidity. This is illustrated by

wider spreads and lower depth when there are two limit order markets. In particular, both

local and inside quoted spreads decrease about 1.04 and 0.34 ticks, respectively, when the

market moves from a fragmented to a single market and the arrival rates of all trader types

are the same as in the single market. Spreads are also reduced in the single market compared

to when the arrival rate of zero private value agents in the fragmented market is twice as

large, although the effect is smaller.

Naturally, because of order flow fragmentation between the two markets, fragmented

markets also show a decrease in the top-of-book depth. Local top-of-book depth is reduced
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by more than 30% in a fragmented market. Inside depth is also lower as compared to the

single market. The results change if we double the participation of agents of type α = 0: the

increased number of liquidity providers leads to a substantial increase in inside depth, and

local depth is also slightly higher than in the single market scenario. Thus, our results with

respect to quoted liquidity show that spreads are unambiguously smaller in a single market

whereas the results for depth are ambiguous.

Improvements in quoted liquidity do not necessarily translate into actual transaction cost

savings for traders submitting market orders. Thus, we next compare differences in traded

liquidity in single and fragmented markets. We measure traded liquidity by the trade-

weighted effective spreads, which capture the actual transaction costs incurred by traders

submitting marketable orders. The effective spread is calculated as follows:

effective spread = xt(pt −mt)/mt, (3)

where xt is +1 for a buyer-initiated order, pt is the traded price, and mt is the mid-quote. We

further decompose effective spread into realized spread and price impact (adverse selection).

The former is calculated as follows:

realized spread = 2xt(pt −mt+k)/mt, (4)

where k is the number of seconds in the future. As the results are qualitatively similar,

we only report the findings for 30 seconds. Finally, price impact is effective spread minus

realized spread. The price impact captures the level of information in a trade, whereas

the realized spread measures liquidity providers’ compensation after accounting for adverse

selection losses associated with informed orders. As our model does not contain private

information, the price impact measure captures picking-off risk associated with stale limit

orders when new (public) information arrives in the market. Just like quoted liquidity, we

compute local and inside variants of all three measures using the inside quote midpoints

across the two books and local quote midpoints in the order book where a transaction is
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executed.

Panel B of Table 3 reports the results. Transaction costs in terms of effective spread and

realized spread are higher when there are two limit order books. When the arrival rate of

zero private value agents remains the same, effective spreads decrease from 1.80 ticks and

1.45 ticks based on local and inside quotes, respectively, in fragmented markets, to 1.31 ticks

in the single market. The differences are even larger if we double the arrival rate of agents

of type α = 0.

Realized inside and local spreads are higher in the fragmented market by approximately

0.15 ticks with the same population of agents, and higher by about one half of a tick if we

double the participation of intermediaries.

Price impact measured relative to local quotes is lower in the single market whereas it

is similar when measured relative to inside quotes. This is because, in fragmented markets,

a newly arriving trader is more likely to trade in an order book containing a stale quote,

leading to a higher local price impact. The inside price impact is smaller because the inside

quote midpoint already reflects part of the information. Price impacts are lower if we double

the arrival rate of agents of type α = 0, likely because the increased arrival rates leads to

the exploitation of even mispricing of even small magnitudes. The local price impact in this

scenario is still slightly larger than that in the single market, though the inside price impact

is substantially smaller.

Finally, we analyze the degree of inefficiency in prices when the market consists of one

order book as opposed to multiple ones. If an asset is traded on multiple markets, the degree

of price dislocations may be exacerbated ceteris paribus, making prices on each book less

efficient than they would be if all demand and supply were to meet on a single order book. In

the context of our model, the effect of these frictions is measured as the deviation of the quote

midpoint from the fundamental value vt. In Panel C, we present the mean absolute difference

between the quote midpoint and the fundamental value. This value changes from 0.67 ticks
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in a fragmented market to 0.46 ticks in a single market. The corresponding differences based

on inside quotes are in the same direction although the magnitudes are lower. However, in

fragmented markets with doubled arrival rate of zero private value agents, microstructure

noise is lower than in the single market, suggesting that prices are more efficient in this

case. This result is expected as in the absence of private information, a higher number of

traders with no intrinsic reasons to trade results in a faster adjustment of quotes when public

information arrives. Thus, the degree of mispricing depends on the number of intermediaries

in the market and, because their number in real fragmented markets is likely larger but not

twice as large as it is in consolidated markets, our model makes no strong predictions about

differences in price efficiency between such markets.

3.3 Welfare Analysis

In order to analyze the potential economic benefits per agent and for the whole market, we

examine the effect on welfare of both single and fragmented markets. Welfare is measured

as the average realized payoff per agent. In addition, we decompose the realized payoffs of

investors to analyze the gains and losses from the trading process.

Suppose that an agent with a private value α and delaying discount rate of ρ arrives on

the market at time t. She submits an order (i.e., a limit order or a market order) to any of

the books at price p̃ with order direction x̃ (i.e., to buy or to sell). Suppose that the agent

does not modify the order, and it is finally executed at time t′ when the fundamental value

is vt′ (in the case of a market order t = t′). Then the realized payoff of the agents from the

order execution is given by:

Π = e
−ρ

(
t
′−t

)
(α + vt′ − p̃) x̃. (5)
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We can decompose the agents’ payoffs and rewrite (5) as:

Π = Gains from private value+Waiting cost +Money Transfer, where

Gains from private value = αx̃

Waiting cost = (e−ρ(t′−t) − 1)αx̃

Money Transfer = e−ρ(t′−t)(vt′ − p̃)x̃

(6)

The first term in (6), gains from private value, represents the gains obtained directly

from the exogenous reasons to trade for each agent, αx̃. Agents initially submitting a limit

order do not trade immediately after arriving on the market. and, thus have to wait until

they obtain their private values. This waiting process is costly due to the delaying cost ρ.

The second term in (6), waiting cost, reflects the cost paid by agents in terms of delaying

the gains from private value.

The realized payoff in (5) results from a transaction in which one agent buys the asset

and another agent sells it at a price that may differ from the fundamental value. The third

term in (6), money transfer, reflects the difference between the fundamental value vt′ and the

transaction price p̃, and thus the money gained (or lost) in the transaction. It is discounted

depending on the arrival time of the trader. In general, the money transfer is associated to

the immediacy cost incurred when an agent wants to immediately realize her private value.

For example, an agent who submits a market order realizes her intrinsic private value without

delay. Thus, this trader does not have any waiting cost, but she may have to pay a cost for

demanding immediacy, which would be reflected in a negative money transfer.

Table 4 presents the results. In the first set of columns, we present the results of (5),

i.e., the average payoff for each trader type in each market scenario. We find a similar global

welfare in the three setups. While the aggregate welfare effects are altogether negligible, the

shifts among categories of agents are substantial. Agents with non intrinsic motives to trade

(i.e., |α| = 0) take more advantages from fragmented markets and, as a consequence, have
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higher profits. When we double the arrival rate of agents without intrinsic motive to trade,

the welfare for each such agent decreases, but their aggregate welfare is larger than in the

other two scenarios. In a single market scenario, agents place more aggressive orders to jump

the queue and thus to raise their probability of execution. This fact generates competition

on price due to the consolidation of all order flow in a single trading venue. Contrarily, in

the presence of multiple markets, as there is no time priority across order books, traders

can, with a positive probability, jump ahead of the standing limit orders in one market by

submitting an order to the other market. The lack of time priority reduces competition on

price such that agents with |α| = 0 obtain better terms of trade.

As aggregate welfare effects in the model are not quantitatively meaningful, any inter-

pretation regarding the overall desirability of fragmentation needs to go beyond the model.

Market participation in the model is exogenous. In real markets, one would expect that

traders endogenously decide about their market entry based on the trade-off between ex-

pected trading profits and participation costs. Thus, the higher profit earned by liquidity

providers in fragmented markets should lead to an increased participation of this group of

traders. If participation in markets is costly - a realistic assumption considering the invest-

ments made by intermediaries in modern equity markets - these additional traders incur costs

that do not increase aggregate welfare, i.e., the privately optimal decisions are not socially

optimal. This suggests there are welfare losses resulting from market fragmentation.

Next we analyze the second and third components of total payoff described in (6). In the

next set of columns, we report the waiting cost and money transfer per trader.13 Agents with

intrinsic motives to trade (i.e., |α| 6= 0) exhibit a reduction in absolute waiting costs in the

fragmented market, even more so if market maker participation is doubled. However, they

obtain worse terms of trade, which is reflected in high money transfer costs. For example,

13Note that in Table 4, the total money transfer do not add up to zero because they are discounted back
to time t and t′ − t is different for the trader who submits the market order and the trader who submits the
corresponding limit order due to traders’ asynchronous arrivals. However, the instantaneous money transfer
not discounted back does add up to zero.
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agents with private value |α| = 8 experience smaller money transfer losses in consolidated

markets as compared to fragmented markets (−0.572 ticks versus −0.626 or −0.835 ticks).

This is because lower waiting costs do not compensate for the losses associated with money

transfer. Finally, agents with |α| = 0 obtain higher gains from trading in fragmented markets

primarily through higher money transfer gains.

In conclusion, the welfare of agents with non intrinsic motives to trade is increased under

the presence of a second limit order book and this gain is to the detriment of traders with

non-zero private values, likely because price competition in fragmented markets is less severe.

Hence, they pay the cost associated with higher profit for agents with |α| = 0 in fragmented

markets.

4. Empirical Application

In this section, we test the empirical predictions generated by our model in Section 3.2. We

also indirectly address the predictions about welfare described in Section 3.3.14 To this end,

we conduct an event study based on Euronext’s decision to implement a single order book

per asset for their Paris, Amsterdam, and Brussels markets. Pagano and Padilla (2005) and

Nielsson (2009) analyze the effects of integrating trading on Euronext for stocks listed in

these three markets.

4.1 Euronext’s Institutional Background

We begin by describing Euronext’s institutional arrangements leading up to the introduction

of the Single Order Book. Euronext was formed in 2000 following a merger of the Paris,

Amsterdam and Brussels stock exchanges. In 2002, the Lisbon Stock Exchange became

the fourth exchange to merge with Euronext.15 Stock listings on Euronext pertain to a

14 We cannot empirically test the predictions from Section 3.1 pertaining to trading behavior due to data
limitations.

15 In 2007, Euronext merged with the NYSE to form NYSE Euronext, which was taken over by Intercon-
tinental Exchange in 2012. In 2014, Euronext was spun off through an IPO.
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listing on one or more national markets.16 Until 13 January 2009, each national listing

corresponded to the operation of one limit order book. For example, a stock listed on the

Paris market would be traded on the limit order book of Euronext Paris. Firms cross-listed in

multiple Euronext markets traded in parallel on multiple Euronext order books, besides other

competing markets. On 16 August 2007, the exchange announced its intention to eliminate

this arrangement for their Paris, Amsterdam and Brussels markets by unifying all trading in

these markets on to a single order book, the so-called “Market of Reference” (MoR). Cross-

listed firms had to choose one MoR that continued operating after the implementation of a

single order book. This new arrangement was implemented on 14 January 2009.

The existence of multiple order books led to fragmentation of order flow routed to Eu-

ronext. As the rules and trading protocols governing the individual order books were iden-

tical, the introduction of a single order book decreased fragmentation for the stocks without

any corresponding change in the competitive environment. Pagano and Padilla (2005) de-

scribe the steps taken by Euronext to standardize its trading protocols and technological

platform as the source of the efficiency gains generated through the merger. This is par-

ticularly relevant as it allows us to test the isolated effects of fragmentation. Euronext, in

its press release announcing the event, made clear that the trading environment remained

unchanged: “The Single Order Book will have no impact on the NSC system as the market

rules and order book management will remain unchanged [. . . ] In practice, from a trading

perspective, Single Order Book implementation simply means the end of order book trad-

ing on marketplaces other than the market of reference.”17 Moreover, as it was based on

a business decision by Euronext, all multi-listed stocks received the same treatment such

that there was no selection bias. Finally, the announcement was made more than one year

before the event date in order to allow market participants to adapt and test their trading

systems. This eliminates potential concerns about the event date confounding with other

16 With the implementation of the Markets in Financial Instruments Directive (MiFID), all rules prohibit-
ing trading outside the national markets were repealed such that investors can now trade these stocks in any
regulated market.

17 See Euronext press release dated 14 January 2009.
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market events around the same time.18 Thus, this empirical analysis of a transition from a

multi-market environment to a single market setup can be viewed as a natural experiment,

allowing us to compare the outcomes with those obtained from our theoretical model.

4.2 Sample Selection

A total of 45 instruments, cross-listed on at least two of the three Euronext markets, are

affected by the event. However, we reduce the sample of treated stocks used in our study for

several reasons. First, we remove stocks whose primary listing is not on Euronext. These

include stocks whose main trading activity takes place in other European markets or in

the United States. Second, we eliminate exchange-traded mutual funds because we do not

expect their trading activity to be comparable to that of listed firms. Finally, we require

that there not only exist multiple Euronext order books before the event, but also that the

total share of trading activity on the less active order books is at least equal to 1% of the

respective stock’s total Euronext trading volume. This reduces the list of instruments to

ten. We further exclude one additional stock due to data errors, reducing our final sample

to nine stocks.19 The number of stocks is small due to the unique nature of the event we

study. Nonetheless, our sample consists of the whole population of stocks affected by the

event, except a subset of stocks which are excluded through objective criteria.

We construct a matched control group of stocks based on stock price and market capital-

ization obtained from Compustat Global using the distance metric employed by Huang and

Stoll (1996), and subsequently, in many other market microstructure studies. Specifically,

for each stock in our treatment group, we identify the stock that is its closest match in terms

of these two criteria as on the last trading day of 2008 (30 December 2008). The population

of stocks from which the control group is constructed comprises all stocks with a primary

18Although the original date of implementation was postponed, this was due to technical reasons as opposed
to concerns about market conditions. The final implementation date was announced more than 60 days in
advance.

19One stock in our sample was listed in all three Euronext markets. However, we exclude the least active
limit order book as it had a market share of 0.3%.

30



listing on Euronext not affected by the event.

Davies and Kim (2009) simulate the matching performance of a control group constructed

using multiple criteria such as price volatility, trading volume and industry classification, in

tests of differences for variables typically used in the microstructure literature, and conclude

that one-to-one sampling without replacement based on stock price and market capitalization

provides the best results. They also show that results obtained by matching based on the

distance metric employed by Huang and Stoll (1996) are similar to those obtained when

using the Mahalanobis distance measure.

Using a control group allows us to identify the effects of reduced fragmentation, implicitly

controlling for market-wide changes in variables such as liquidity and volatility. It also allows

us to control for two additional market-wide changes implemented by Euronext close in time

to the introduction of a single order book. First, a harmonized settlement platform known

as the Euroclear Settlement for Euronext-zone Securities for all French, Dutch and Belgian

stocks was implemented on 19 January 2009. Second, the Universal Trading Platform,

having “superior functionality, faster speed and much greater capacity”, was introduced

on 16 February 2009.20 These were market-wide events that affected both the control and

treatment stocks. Consequently, we can attribute any difference in trading activity and

market quality between the two groups exclusively to market consolidation resulting from

the introduction of a Single Order Book.

For the purpose of our analysis, we define all days from the beginning of December 2008

to 13 January 2009 as the pre-event period and all days from 26 January 2009 to the end

of February 2009 as the post-event period. We exclude all trading days from the event date

until the end of the subsequent calendar week in order to eliminate any effect associated

with the transition.

20See press release titled “NYSE Euronext’s European Equities Trading Successfully Migrates to the
Universal Trading Platform” dated 17 February 2009.
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4.2.1 Data Description and Summary Statistics

We use high-frequency data from Thomson Reuters Tick History between December 2008

and February 2009 for the purpose of our analysis. This data contains trades and order book

updates time-stamped with a millisecond resolution. We apply two filters to the data. First,

we eliminate all order book updates where the best bid or ask prices are zero or the bid-ask

spread is negative. Next, we exclude trades that are executed during the opening and closing

auctions as well as trades within the first and last minute of the continuous trading session.

Table 5 describes the characteristics of stocks in the treatment and Huang and Stoll (1996)

control group. The average market capitalization across stocks in the treatment (control)

group of e 4.4 (e 4.8) billion and the average stock price of e 18.4 (e 18.2) are suggestive

of high matching quality based on these two variables. The share of the more active venue

as a percentage of total Euronext volume across all the days before the event ranges from

54% to 98% across the nine stocks in the treatment group. The simple (volume-weighted)

average across all stocks is 78% (62%). This implies that almost 40% of the total Euronext

volume was executed on the less active market. The market share of the sole listing Euronext

venue for the stocks in the control group is, by construction, 100%. Trading activity when

measured in terms of number of trades also provides a similar picture.

4.2.2 Estimation Methodology

In order to test the main implications of our model, we compute several variables capturing

the trading activity, liquidity and price efficiency of the stock, as described in Section 3.2.

Similar to our numerical results, we calculate both local and inside measures. Unsophisti-

cated investors who choose to trade only on a single order book are likely to select the more

active and liquid one. Hence, we compute the local measures for the market having higher

trading volume during the pre-event period. The inside measures use the highest bid and

the lowest ask across the two limit order books. We estimate a panel difference-in-differences
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regression with stock and day fixed effects and standard errors double clustered by stock and

day. We estimate the regression for levels and natural logarithms of the variables of interest

in order to account for the wide dispersion in the levels of these variables across the stocks

in our sample.

4.3 Empirical Results

4.3.1 Quoted Liquidity

We begin by analyzing the effect on quoted spread and top-of-book depth. Table 6 presents

the results. Consistent with our theoretical findings, we observe an overall improvement in

quoted spreads on Euronext after the introduction of a single order book. The more active

of the two Euronext markets experiences a significant reduction in local spreads of 81bps or

approximately 30%. The effect on inside spreads depends on the test specification and is

statistically insignificant. The absence of a significant improvement in the inside spread can

be explained by the fact that in real markets, different from our model, market participants

do not always route their orders optimally, i.e. to the market offering the highest bid or

lowest ask.21 Thus, while in the model inside spreads correctly reflects the gains, before

adverse selection, that liquidity providers expect to earn, a non-zero probability of traders

routing their orders to the market not offering the best price means expected gains earned by

liquidity providers are in reality larger. This effect of suboptimal order routing vanishes after

consolidation, ceteris paribus leading to an increase in inside quoted spreads. Conversely, an

increase in price competition among liquidity providers, as predicted by the theory, leads to

a decrease in quoted spreads after consolidation. These effects empirically cancel out such

that the coefficients for inside spreads appear insignificant.

21In European markets, best execution requirements allow brokers to consider other criteria besides price
when making order routing decisions. In contrast to the US, European markets also do not have an order
protection rule that requires exchanges to re-route orders to venues offering a superior price. Even in the US,
communication latencies between geographically dispersed exchanges and exceptions to the order protection
rule result in liquidity takers obtaining sub-optimal prices.
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We observe a positive though statistically insignificant effect of order flow consolidation

on local and inside top-of-book depth. These results lie in between those observed in the

simulations with different participation rates of market makers. In other words, they are

consistent with an amount of market-making in fragmented markets that is larger than, but

less than twice as large as that in a consolidated market. The results for local and inside depth

do not markedly differ, which is in contrast to the theoretical predictions where inside depth

in the fragmented market is relatively higher. Differences between the tick sizes on Euronext

as compared to those in the theory may drive this result. The empirical tick size, relative

to the price fluctuation, is substantially smaller than that in the simulations,22 such that

instances with the same best prices offered on the two order books are infrequent, leading to a

relatively smaller inside depth than in a large-tick market. Ye (2017) illustrates the negative

relationship between flickering quotes and tick size in a single market setup. Extending this

argument to fragmented markets, prices across multiple markets will be synchronized less

frequently when the tick size is small.

4.3.2 Traded Liquidity

Table 7 presents the results for effective spreads and their decomposition. Effective inside

(local) spreads decrease by an economically large 14.5% (37.5%) after the introduction of a

single order book, though only the results for local spreads are unambiguously statistically

significant. Realized inside spreads significantly decrease by 31.3%, 42.1%, and 45.9%, at

the 10-, 30-, and 60-second horizon, respectively. The corresponding decrease in realized

local spreads is larger in magnitude and also significant. Local price impacts decrease across

all specifications, even though the statistical significance varies. All the above mentioned

results on traded liquidity are consistent with our theoretical predictions.

The empirically observed change in inside price impacts differs depending on the empirical

22Tick sizes on Euronext during our sample period are smaller than in most international markets. A
simulation applying parameters that would closely match Euronext tick sizes is infeasible because the large
number of possible prices would lead to a corresponding increase of the state space.
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specification and is never significant, whereas our theory tells us the effect should be near-

zero or positive. The previously-mentioned fact that liquidity takers empirically sometimes

do not trade on the market offering the best price may explain why inside price impacts are

not larger in the fragmented market. An order trading against a standing limit order at a

price inferior to the lowest ask or highest bid does not mechanically generate an inside price

impact even if it executes against the entire limit order, leading to a relatively smaller inside

price impact compared to the theoretical predictions. Additionally, the empirical results, in

contrast to the model, also capture the effects associated with private information possessed

by traders. Lower transaction costs potentially allow traders with small amounts of private

information to profitably participate, leading to a decrease in average price impact. The

latter channel may cancel out the positive effect of consolidation on price impact predicted

by our theory.

4.3.3 Price Efficiency

In our numerical simulation, we examine the price efficiency by measuring the extent to

which the mid quote deviates from the fundamental value vt. Empirically, as we cannot

observe the fundamental value, we measure price efficiency using return autocorrelations and

variance ratios. Return autocorrelations are measured at 30 second and 5 minute intervals.

Variance ratios capture the deviation between long-term and short-term return variance and

are calculated as one minus the ratio of long-term and short-term return variance, each

scaled by the respective time periods. We calculate variance ratios between 30 second and

5 minute returns variances. As in Boehmer and Kelley (2009), we measure the impact of

consolidation on absolute values of both measures because we are interested in departures

from a random walk in either direction. The closer these measures are to zero, the more

closely does the price path resemble a random walk. Similar to the liquidity measures, we

calculate price efficiency based on local and inside quotes.
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Table 8 presents the results.23 The variance ratio becomes closer to one after the im-

plementation of the single order book, though the change is statistically insignificant. The

results for autocorrelations also point to improved price efficiency although only results for

the 5-minute autocorrelation are significant at the 10% level. These results generally provide

evidence for unchanged or higher price efficiency in consolidated markets. When compared

to the theoretical results, this appears consistent with a fragmented market containing more

but less than twice as much intermediation as a consolidated market.

4.3.4 Trading Volume and Arbitrage

The existence of multiple order books empirically allows market participants to earn arbitrage

profits by exploiting occasions of crossed markets, i.e. situations where the bid price on one

order book is higher than the ask price on the other. These situations would otherwise be

immediately resolved by the adjustment of limit order prices. In other words, such trades

do not contribute to an increase in price efficiency, but only result in losses for limit order

traders who consequently impose higher trading costs on liquidity seekers. This arbitrage-

driven rent extraction may lead to welfare losses if otherwise beneficial trades are crowded

out (Foucault et al., 2017; Budish et al., 2015).

We measure trades associated with such “toxic” arbitrage and the resulting costs to

market-makers in the empirical data as follows. We start by identifying instances of a crossed

order book. Such a situation can arise as a result of new order(s) submitted to either or both

order book(s). Next, we identify whether these instances are resolved through a trade, quote-

update, or both. This approach is similar to Foucault et al. (2017) who define the resolution

through trades as toxic arbitrage if the following two conditions are fulfilled: (i) prices offered

in different markets allow aggressive traders to earn a profit by trading against the bid on

one market and ask on the other; (ii) they are able to do so because of liquidity providers’

slow reaction to new information, rather than them offering attractive prices to manage their

23The empirical results based on returns measured at other frequencies are qualitative similar to those
reported here and are available upon request.
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inventories. Fragmentation is an obvious precondition for such arbitrage trades to occur. For

each stock-day, we calculate the number of unique crossed instances, the fraction of a day

when inside spreads are on average negative, and the total trading volume contributing to

the resolution of a crossed market. Panel A of Table 9 reports the mean values for each

stock across all days in the pre-event period. The frequency of unique instances of a crossed

market for an average day ranges from 0.3 to 622 across all stocks, with an average value of

124, which corresponds to one instance every four minutes. An average stock has a negative

inside spread for 6.4% of the continuous trading session. Finally, 7.8% of the total trading

volume on Euronext for an average stock can be attributed to the resolution of instances

where the two markets are crossed. Approximately 50% of this, or almost 4% of the total

Euronext trading volume, is associated with toxic arbitrage as defined in Foucault et al.

(2017).

Since, by construction, arbitrage trades between multiple Euronext order books are elim-

inated after the introduction of a Single Order Book, trading volume should, everything else

equal, be reduced. Panel B of Table 9 shows that the actual change in trading volume is in

fact weakly positive. This suggests that the volume transacted by investors with intrinsic

motives to trade increases in the consolidated order book. This welfare gain is consistent

with our theory. The amount of volume traded by agents with intrinsic reasons to trade is

constant in the model because private values are assumed to be sufficiently large such that

they never refrain from trading. The increase in trading by such agents suggested by our

empirical results indicates that some traders who were earlier crowded out in a less liquid

fragmented market, now participate, leading to an overall welfare gain after consolidation.

5. Conclusion

We examine the effects of market fragmentation when competition between markets is non-

existent or at best minimal. Such fragmentation is routinely observed after exchange mergers,
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when a single exchange operator continues operating multiple order books to trade the same

asset post merger. In an attempt to extract synergies from the merger, the operator typically

eliminates structural and technological differences across the merging markets resulting in

operator-level order flow fragmenting across (nearly) identical limit order books.

Our model allows us to examine the effects on several aspects of market performance such

as liquidity, price efficiency, agents’ payoffs and overall welfare. As limit order priority is not

enforced across markets, fragmentation leads to reduced competition between intermediaries.

This results in the deterioration of liquidity in fragmented markets as compared to the

consolidated market benchmark. While overall welfare remains largely unchanged under

both market setups, the distribution of welfare across the heterogeneous agent types in the

model is markedly different. Agents with intrinsic trading motives extract lower payoffs in

fragmented markets whereas agents acting as intermediaries are better off in fragmented

markets.

These higher intermediation gains should, under conditions of endogenous entry, lead to

more intermediaries entering the market. We mimic these conditions by doubling the pop-

ulation of intermediaries in the model while keeping all other market parameters constant.

We observe that under these conditions the allocation of trading gains between interme-

diaries and non-intermediaries shift further in favour of the former while still not altering

overall market welfare materially. These results point to fragmentation-induced investment

in intermediation capacities, such as high-speed connections required to access the trading

systems and real-time data feeds from multiple venues, being socially wasteful.

We empirically test the model implications by investigating the effects of Euronext’s de-

cision to introduce a single order book for their Paris, Amsterdam, and Brussels markets.

As opposed to existing empirical research on this question which necessarily investigates the

joint impact of changes in fragmentation and competition (say, when a new trading center

venue the market), this event allows us examine the effects associated with the consolida-

tion of multiple non-competing order books. The empirical analysis broadly confirms the
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theoretical predictions related to the effects on liquidity, price efficiency, and market makers’

profits. Additionally, we also obtain evidence that trading volume after consolidation does

not decrease even though the amount of arbitrage trading in the market mechanically reduces

after the event. This suggests that, while the (substantial) revenues generated by modern

exchanges’ from the sale of market data may decrease after consolidation, improvements

in market quality need not come at the expense of reduced trading fees for the exchange

operators.

Overall our results suggest that the positive externalities associated with consolidating

order flow in a single location (or fewer locations) still exist and are substantial. This is

true even in modern electronic limit order markets where the activities of high-frequency

traders serve to integrate fragmented order books. The adverse effects of fragmentation are

significantly larger for unsophisticated investors who do not possess the technological ability

to route their trades to the most advantageous trading center. For such investors consolida-

tion of order flow, at least between non-competing markets, likely results in transaction cost

reductions.

Our results also have important policy implications. Regulators may be able to improve

the welfare of investors who trade for intrinsic motives by: (i) preventing individual market

operators from keeping an artificially high(er) level of order flow fragmentation in the absence

of commensurate benefits; and (ii) limiting excessive investment in intermediation capacities

necessary to link multiple order books which come at a cost to end investors.

39



References

Amihud, Y., B. Lauterbach, and H. Mendelson (2003). The value of trading consolidation: evidence

from the exercise of warrants. Journal of Financial and Quantitative Analysis 38 (04), 829–846.

Biais, B. (1993). Price Formation and Equilibrium Liquidity in Fragmented and Centralized Mar-

kets. Journal of Finance 48 (1), 157–185.

Boehmer, B. and E. Boehmer (2003). Trading your neighbor’s ETFs: Competition or fragmenta-

tion? Journal of Banking and Finance 27 (9), 1667–1703.

Boehmer, E. and E. K. Kelley (2009). Institutional Investors and the Informational Efficiency of

Prices. Review of Financial Studies 22 (9), 3563–3594.

Budish, E., P. Cramton, and J. Shim (2015). The High-Frequency Trading Arms Race: Frequent

Batch Auctions as a Market Design Response. Quarterly Journal of Economics 130 (4), 1547–

1621.

Chlistalla, M. and M. Lutat (2011). Competition in securities markets: the impact on liquidity.

Financial Markets and Portfolio Management 25 (2), 149–172.

Chowdhry, B. and V. Nanda (1991). Multimarket trading and market liquidity. Review of Financial

Studies 4 (3), 483–511.

Davies, R. J. and S. S. Kim (2009). Using matched samples to test for differences in trade execution

costs. Journal of Financial Markets 12 (2), 173–202.

Degryse, H., F. de Jong, and V. v. Kervel (2015). The Impact of Dark Trading and Visible

Fragmentation on Market Quality. Review of Finance 19 (4), 1587–1622.

Doraszelski, U. and A. Pakes (2007). A framework for applied dynamic analysis in io. Handbook

of industrial organization 3, 1887–1966.

Foucault, T., R. Kozhan, and W. W. Tham (2017). Toxic Arbitrage. Review of Financial Stud-

ies 30 (4), 1053–1094.

Foucault, T. and A. J. Menkveld (2008). Competition for Order Flow and Smart Order Routing

Systems. Journal of Finance 63 (1), 119–158.

Goettler, R. L., C. A. Parlour, and U. Rajan (2005). Equilibrium in a Dynamic Limit Order

Market. Journal of Finance 60 (5), 2149–2192.

Goettler, R. L., C. A. Parlour, and U. Rajan (2009). Informed traders and limit order markets.

Journal of Financial Economics 93 (1), 67–87.

40



Gomber, P., S. Sagade, E. Theissen, M. C. Weber, and C. Westheide (2016). Competition Between

Equity Markets: A Review Of The Consolidation Versus Fragmentation Debate. Journal of

economic surveys. forthcoming.

Gresse, C. (2017). Effects of Lit and Dark Market Fragmentation on Liquidity. Journal of Financial

Markets. forthcoming.

Harris, L. E. (1993). Consolidation, Fragmentation, Segmentation and Regulation. Financial

Markets, Institutions & Instruments 2 (5), 1–28.
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Table 1. Impact on Trading Behavior
This table shows measures of trader behavior, such as, the percentage of limit orders executed
among all limit orders submitted, the probability of being picked-off after submitting a limit order,
the number of limit orders submitted per trader, the number of limit order cancellations per trader,
the average time between the instant in which a trader arrives and his execution (in time units of
our model), the time between the instant in which a trader arrives and the execution of his limit
order (in time units of our model) and the probability of submitting a limit sell order at the ask
price (i.e., an aggressive limit sell order). All the measures are calculated for a consolidated market
and two versions of fragmented market: one with the same distribution of zero private value agents
as in a single market and the other one with double arrival rate of zero private value agents. Since
the model is symmetric on both sides of the book it is not necessary to also report the probability
of submitting a limit buy order at the bid price. The probability of being picked-off is calculated
with executed limit orders: we take the number of limit sell (buy) orders that are executed when
their execution price is below (above) the fundamental value of the asset, which is divided by all
the limit orders executed in the market. All trading behavior measures are determined as mean of
20 million market new entries in equilibrium. Standard errors for all trader behavior measures are
small enough since we use a large number of simulated events. The Markov equilibrium is obtained
independently for each scenario.

Single Fragmented Fragmented
Market Markets Markets

Double α = 0

Prob. of submitting a limit sell order at the ask price 35.87% 28.45% 32.62%
Execution time of a limit order 8.61 7.15 13.10
Prob. of being picked-off for a limit order 21.80% 20.82% 10.92%
Number of limit order cancelations per trader 1.20 1.01 1.58
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Table 2. Impact on Trading Behavior by Agent’s Type
This table shows the distribution of limit orders and market orders separated by private value α.
The results are reported for a consolidated market and two versions of fragmented market: one
with the same distribution of zero private value agents as in a single market and the other one
with double arrival rate of zero private value agents. The first three columns show the proportion
of limit orders and market orders for a given agents’ type α. The next set of columns present
how the orders are distributed through the different private values |α| = 0, 4, 8. LO denotes limit
orders, whereas MO market orders. All trading behavior measures are determined as mean of 20
million market new entries in equilibrium. Standard errors for all trader behavior measures are
small enough since we use a large number of simulated events. The Markov equilibrium is obtained
independently for each scenario.

|α| 0 4 8

Single Market LO 94.6% 68.6% 27.7%

MO 5.4% 31.4% 72.3%

Total 100% 100% 100%

Fragmented Market LO 93.9% 67.8% 29.2%

MO 6.1% 32.2% 70.8%

Total 100% 100% 100%

Fragmented Market LO 97.7% 34.8% 7.4%
(Double α = 0)

MO 2.3% 65.2% 92.6%

Total 100% 100% 100%
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Table 3. Impact on Liquidity
Panel A shows the quoted spread and depth for a market containing a single order book and two
order books considering arrival rates of zero private value agents being the same and double as in a
single market. We present both local and inside liquidity measures. The former refers to measures
employing local quotes, i.e., the bid and the ask prices of a local market, whereas the latter refers to
liquidity measures using inside quotes, i.e., the highest bid and the lowest ask across the two limit
order books. Panel B describes the difference in traded liquidity in consolidated and fragmented
markets. We report the level of effective spread, and its decomposition into realized spreads and
price impact based on 30 second future quote midpoints. We calculate effective spread as defined in
(3) and realized spread as defined in (4). The price impact is then given by the difference. Finally.
Panel C presents the difference in price (quote midpoint) efficiency in consolidated and fragmented
markets. We report the mean and the standard deviation of the microstructure noise which is
defined as the absolute difference between quote midpoint and fundamental value vt.

Panel A: Quoted Liquidity

Single Fragmented Fragmented
Market Market Market

Double (α = 0)

Quoted Spread: Local 1.565 2.601 2.240
Quoted Spread: Inside 1.565 1.904 1.860

Quoted Depth: Local 1.584 1.082 1.692
Quoted Depth: Inside 1.584 1.445 2.751

Panel B: Traded Liquidity

Single Fragmented Fragmented
Market Market Market

Double (α = 0)

Effective Spread: Local 1.312 1.799 1.862
Effective Spread: Inside 1.312 1.452 1.613

Realized Spread 30: Local 0.865 1.013 1.372

Realized Spread 30: Inside 0.865 1.011 1.371

Price Impact 30: Local 0.441 0.789 0.487

Price Impact 30: Inside 0.441 0.442 0.242

Panel C: Price Efficiency

Single Fragmented Fragmented
Market Market Market

Double (α = 0)

Microstructure Noise Local: Mean |vt − pt| 0.464 0.670 0.369
Microstructure Noise Inside: Mean |vt − pt| 0.464 0.570 0.350
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Table 5. Stock Characteristics
This table reports the characteristics of the treatment stocks and the corresponding control stocks generated based
on Huang and Stoll (1996). Market Capitalization is the product of shares outstanding and Stock Price as on
31 December 2008, Trading Volume and Number of Trades is the average daily trading volume and number of
trades for each stock between 1 December 2008 and 13 January 2009. We also report the market share of the two
Euronext order books. Large (Small) order book is the order book with higher (lower) trading volume.

Panel A: Treatment Stocks

Market Cap Stock Trading Volume Number of Trades

e million Price (e ) e ’000 % Large % Small Count % Large % Small

DEXI 3,355 2.9 8,514 54.3% 45.7% 2,843.1 52.6% 47.4%
FOR 2,187 0.9 25,239 71.5% 28.5% 6,613.4 71.7% 28.3%
ISPA 24,985 17.2 180,346 55.6% 44.4% 18,231.8 52.7% 47.3%

UNBP 8,598 104.9 37,687 87.7% 12.3% 4,268.1 86.4% 13.6%
GLPG 80 3.8 183 77.1% 22.9% 67.9 27.9% 72.1%

ONCOB 87 6.6 23 90.7% 9.3% 3.5 73.5% 26.5%
RCUS 193 6.2 119 98.0% 2.0% 68.3 98.5% 1.5%
VRKP 105 20 43 94.4% 5.6% 19.5 94.3% 5.7%
THEB 59 3.5 11 68.4% 31.6% 7.5 77.1% 22.9%

MEAN 4,405 18.4 28,018 77.5% 22.5% 3,569.2 70.5% 29.5%

Panel B: Control Stocks (Huang and Stoll, 1996)

Market Cap Stock Trading Volume Number of Trades

e million Price (e ) e ’000 % MoR % Alternate Count % MoR % Alternate

STM 3,355 4.6 15,157 100.0% 0.0% 2,635.1 100.0% 0.0%
CNAT 3,635 1.3 5,333 100.0% 0.0% 2,265.3 100.0% 0.0%
ABI 25,439 15.9 75,884 100.0% 0.0% 7,245.6 100.0% 0.0%

HRMS 10,652 101 12,193 100.0% 0.0% 1,546.2 100.0% 0.0%
OMT 84 4 15 100.0% 0.0% 9.2 100.0% 0.0%
TAM 81 6.8 29 100.0% 0.0% 23.5 100.0% 0.0%
AMG 184 6.9 2,989 100.0% 0.0% 903.5 100.0% 0.0%

SMTPC 117 20 20 100.0% 0.0% 9.4 100.0% 0.0%
DEVG 63 3.5 156 100.0% 0.0% 111.0 100.0% 0.0%

MEAN 4,846 18.2 12,420 100.0% 0.0% 1,638.8 100.0% 0.0%
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Table 6. Empirical Findings: Impact on Quoted Liquidity
This table presents the results on the impact of the introduction of a single order book on quoted
liquidity. We calculate quoted spread and depth in single and fragmented markets. We present
both local and inside liquidity measures. The former refers to measures employing local quotes, i.e.,
the bid and the ask prices of a local market, whereas the latter refers to liquidity measures using
inside quotes, i.e., the highest bid and the lowest ask across the two limit order books. We estimate
a difference-in-difference regression for quoted spread and quoted depth, in level and logarithm, and
report the coefficient of the variable interacting the event dummy (which equals one for all days on
or after 26 January 2009 and zero otherwise) with the treatment dummy (which equals one for all
treatment stocks and zero for all control stocks). We employ stock and day fixed effects and double
cluster standard errors by stock and day. In order to calculate local liquidity we choose one of the
two order books in the simulated data and the venue with the larger trading volume in the pre-event
period in the empirical analysis. Inside liquidity, in fragmented markets, is measured based on the
best quotes (highest bid and lowest ask) across the two order books, and in consolidated markets,
it is equal to the local liquidity. *, **, *** denote significance at 10%, 5%, and 1%, respectively.

Treatment Control Effect Size

Post-Pre Post-Pre Levels Logs

Quoted Spread: Local −0.542 0.266 −0.808** −0.322**
Quoted Spread: Inside −0.056 0.266 −0.323 0.090

Quoted Depth: Local −878 −5,435 4,589 0.017
Quoted Depth: Inside −485 −5,435 4,979 0.005
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Table 7. Empirical Findings: Impact on Traded Liquidity
This table describes the difference in traded liquidity in consolidated and fragmented markets. We
report the impact of the introduction of single order book on traded liquidity. We estimate a
difference-in-difference regression for effective spreads, realized spreads, and price impact, in level
and logarithm, and report the coefficient of the variable interacting the event dummy (which equals
one for all days on or after 26 January 2009 and zero otherwise) with the treatment dummy (which
equals one for all treatment stocks and zero for all control stocks). We employ stock and day fixed
effects and double cluster standard errors by stock and day. In both panels, we compute local and
inside traded liquidity. We measure local liquidity based on quotes on the order books where a a
transaction is executed. Inside liquidity, in fragmented markets, is measured based on the inside
quotes across the two order books, and in consolidated markets, it is equal to the local liquidity. *,
**, *** denote significance at 10%, 5%, and 1%, respectively.

Treatment Control Effect Size

Post-Pre Post-Pre Levels Logs

Effective Spread: Local −1.228 0.151 −1.394* −0.375**
Effective Spread: Inside −0.764 0.151 −0.926* −0.145

Realized Spread 10: Local −1.115 0.079 −1.211* −0.517***
Realized Spread 30: Local −1.110 0.064 −1.190* −0.643***
Realized Spread 60: Local −1.109 0.031 −1.153 −0.725***

Realized Spread 10: Inside −0.803 0.079 −0.894 −0.376***
Realized Spread 30: Inside −0.817 0.064 −0.893 −0.547***
Realized Spread 60: Inside −0.796 0.031 −0.836 −0.615***

Price Impact 10: Local −0.112 0.072 −0.183 −0.164
Price Impact 30: Local −0.118 0.086 −0.204* −0.133
Price Impact 60: Local −0.120 0.121 −0.241** −0.214

Price Impact 10: Inside 0.040 0.072 −0.032 0.123
Price Impact 30: Inside 0.053 0.086 −0.033 0.161
Price Impact 60: Inside 0.032 0.121 −0.090 0.024
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Table 8. Empirical Findings: Impact on Price Efficiency
This table describes the difference in price (quote midpoint) efficiency in consolidated and frag-
mented markets. We report the impact of the introduction of single order book on price efficiency.
We estimate a difference-in-difference regression for absolute values of return autocorrelation mea-
sured at 30-second and 5-minute intervals and the variance ratio based on 30-second and 5-minute
returns, in level and logarithm, and report the coefficient of the variable interacting the event
dummy (which equals one for all days on or after 26 January 2009 and zero otherwise) with the
treatment dummy (which equals one for all treatment stocks and zero for all control stocks). We
employ stock and day fixed effects and double cluster standard errors by stock and day. In order
to calculate local price efficiency measures we choose one of the two order books in the simulated
data and the venue with the larger trading volume in the pre-event period in the empirical analysis.
Inside price efficiency, in fragmented markets, is measured based on the inside quotes across the
two order books, and in consolidated markets, it is equal to the local price efficiency. *, **, ***
denote significance at 10%, 5%, and 1%, respectively.

Treatment Control Effect Size

Post-Pre Post-Pre Levels Logs

Autocorrelation 30: Inside −0.007 0.007 −0.015 0.201
Autocorrelation 30: Local −0.014 0.007 −0.021∗ −0.233

Autocorrelation 300: Inside −0.013 −0.002 −0.011 −1.444∗

Autocorrelation 300: Local −0.022 −0.002 −0.020 −1.545∗

Variance Ratio 30/300: Inside −0.045 −0.017 −0.028 −0.224
Variance Ratio 30/300: Local −0.052 −0.017 −0.035 −0.206
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Table 9. Impact on Trading Volume and Cross Market Arbitrage Analysis
Panel A reports the impact of the introduction of single order book on total Euronext trading
volume. We estimate a difference-in-difference regression for the trading volume, in level and
logarithm, and report the coefficient of the variable interacting the event dummy (which equals one
for all days on or after 26 January 2009 and zero otherwise) with the treatment dummy (which
equals one for all treatment stocks and zero for all control stocks). We employ stock and day fixed
effects and double cluster standard errors by stock and day. Panel B summarizes the arbitrage
opportunities arising on the two Euronext order books during the pre-event period i.e., between
1 December 2008 and 13 January 2009, and their resolution. Section 4.3.4 describes how we
identify each abitrage opportunity. Unique Instances are the average daily frequency of arbitrage
opportunities on the two order books betwen 08:01 and 16:29, Negative Spread Time is the total
amount of time during a trading session when the markets are crossed, Magnitude of Negative
Spread is the frequency with which the negative bid-ask spread is equal to one tick, two ticks, three
ticks, four ticks, and five or more ticks, and Trading Volume is the average daily volume which can
be attributed towards resolution of the arbitrage opportunities. *, **, *** denote significance at
10%, 5%, and 1%, respectively.

Panel A: Arbitrage Analysis

Stock Unique Instances Negative Spread Time Trading Volume

DEXI 138.1 12.8% 1,145,164
FOR 183.8 11.5% 2,361,274
ISPA 622.0 6.0% 14,185,211
UNBP 166.1 3.0% 1,968,394
GLPG 2.4 4.3% 7,558
ONCOB 0.3 1.6% 990
RCUS 0.8 9.5% 9,020
VRKP 1.2 6.7% 4,351
THEB 0.6 2.6% 1,553

MEAN 123.9 6.4% 2,187,057

Panel B: Trading Volume

Treatment Control Effect Size

Post-Pre Post-Pre Levels Logs

Total Volume 2,628 -948 3,638* 0.080
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discreteness but toward a full continuity.

Keywords: Market microstructure, smooth trading, auction design, market design.

*Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA;
akyle@rhsmith.umd.edu. Kyle has worked as a consultant for various companies, exchanges, and gov-
ernment agencies. He is a non-executive director of a U.S.-based asset management company.

†Olin Business School, Washington University, St. Louis, MO 63130, USA; jlee89@wustl.edu.

mailto:akyle@rhsmith.umd.edu
mailto:jlee89@wustl.edu


About half a century ago, Fischer Black (1971a,b) made bold predictions about how

stock market trading would change if the design of the stock market moved from the

human-dominated specialist system to a system in which trading and market-making

used computers. He predicted that liquidity would not be supplied cheaply, especially

over short periods of time. Realizing that trading large quantities over a short horizon

was expensive, customers would spread large trades out over time to reduce tempo-

rary price impact costs. He believed an efficient market design could reduce bid-ask

spreads on small trades to a vanishingly small level while providing practical ways for

large traders to reduce impact by trading gradually over time.

The purpose of this paper is to show how to implement Fischer Black’s vision of

an efficient market design using a new order type that we call “continuous scaled limit

orders.” Continuous scaled limit orders eliminate the rents that high frequency traders

earn at the expense of other traders and thus also eliminate resulting inefficiencies in

today’s markets. To illustrate this point, let us first describe how the current markets

work.

Since the late 1990s, human beings have been replaced by computerized limit order

books. The trading of equities in the U.S. and Europe has in recent decades become

dominated by continuous limit order books which handle millions of buy and sell or-

ders each day. A continuous limit order book is, however, hardly continuous. A stan-

dard limit order is a message conveying an offer to buy or sell a discrete quantity at a

discrete price, where the quantity is an integer multiple of minimum lot size and the

price is an integer multiple of a minimum tick size. In most U.S. stocks, the minimum

lot size is one share or one hundred shares and the minimum tick size is $0.01 or one

cent per share. A limit order book then processes discrete orders sequentially in the or-

der of their arrivals. Because sending, receiving, and processing messages take time, no

trader can trade in continuous time. Thus, a continuous limit order book has elements

of discreteness in price, quantity, and time.

In today’s markets, high frequency traders who expend real resources to acquire

technological advantages earn rents exploiting artifacts of the current market design

related to the discreteness of prices, quantities, and time. When several traders want

to purchase shares at the same price at the same time, exchanges often allocate trades
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based on time priority; the first trader in line to buy or sell at a given price is the first

to receive quantities traded at that price. High frequency traders use their speed to

take advantage of time priority by placing orders quickly to be the first in the queue.

High frequency traders also use their speed to “pick off” slow traders orders by hitting

or lifting stale bids or offers before the slow traders can cancel them. Furthermore, to-

day’s limit order book requires an allocation rule because discrete prices and quantities

prevent the market clearing price from being uniquely defined. The allocation rule pro-

vides additional rents high frequency traders can earn from gaming it.

A continuous scaled limit order is a message conveying an offer to buy or sell grad-

ually at a specific trading rate over a specific range of the prices. With such orders,

traders’ inventories are piecewise differentiable functions of time, with the rates of buy-

ing or selling changing when the price changes. Traders can buy at a faster rate when

prices fall and sell at a faster rate when prices rise. Continuous scaled limit orders make

price, quantity, and time continuous.

With continuous scaled limit orders, all orders are treated symmetrically and ex-

ecuted simultaneously. Because slow traders spread their orders over time, high fre-

quency traders can pick off only a small quantity before slow traders cancel their orders.

With the market clearing price uniquely defined, an allocation rule is no longer neces-

sary. This automatically eliminates the rents high frequency traders would have earned

from gaming it. More importantly, there is no time priority. The market is no longer

the fastest-takes-all. High frequency traders with varying speeds and bandwidths com-

pete with one another. This increased competition among high frequency traders has

a broader implication for economic efficiency. Today’s market structure encourages

arms race among fast traders to become the fastest as emphasized by Harris (2013); Li

(2014); Biais, Foucault and Moinas (2015); Budish, Cramton and Shim (2015). Continu-

ous scaled limit orders deter over-competition in technology by increasing competition

in trading, which further benefits slow traders who experience price improvements.

Fischer Black was remarkably prescient. Large institutional traders around the world

nowadays spread their trading out over time exactly like he said they would. Widespread

algorithmic trades are often executed by breaking large intended trades into many small

pieces and trading the many small pieces over time. For example, some algorithms try
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to achieve the volume-weighted average price (“VWAP”) of trades during a day by trad-

ing gradually along with the rest of the market. Our proposal for continuous scaled

limit orders allows traders to do this without incurring large bandwidth costs for plac-

ing, modifying, and canceling thousands of orders throughout the day so that all traders

regardless of their technological capacity can implement their trading strategies in an

efficient manner.

Theoretical models of dynamic trading are also consistent with traders optimally

choosing to trade gradually using continuous scaled limit orders. In the model of Kyle,

Obizhaeva and Wang (2017) traders face temporary and permanent price impacts. Be-

cause traders have private information, the price moves against the trader, meaning

that the price goes up when the trader wants to buy, and the price goes down when the

trader wants to sell. Moreover, the extent to which the price moves against the trader

increases in the speed with which the trader buys or sells because more urgency sig-

nals stronger private information. Therefore, traders smooth their trading over time

with optimal trading strategies that almost perfectly map into continuous scaled limit

orders.

Such gradual trading directly opposes to the model of Grossman and Miller (1988),

in which continuously present market makers must satisfy urgent trading needs of buy-

ers and sellers. In their model, traders demand urgency because they do not take into

account their own price impact costs; instead, they trade as perfect competitors. In a

one-period model, Kyle and Lee (2017) show that fully strategic traders restrict quanti-

ties they trade whenever they face price impacts and may even completely refrain from

trading, foregoing gains from trade. This suggests that strategic traders do not demand

urgency and choose to trade gradually over time.

We believe that trading with continuous scaled limit orders dominates the current

market design. While we cannot prove continuous scaled limit orders are an optimal

mechanism, this new order type eliminates rents high frequency traders earn from ex-

ploiting the discreteness in today’s markets. By allowing all traders to trade gradually

without being picked off, continuous scaled limit orders make rapid trading more ex-

pensive compared to slower trading. As a result, traders are deterred from acquiring

ultra short-term information with little to no social value and are encouraged to pro-
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duce more long-term information. Future exchanges should move not toward more

discreteness but toward full continuity.

The plan of this paper is as follows. Section 1 describes the difference between con-

tinuous scaled limit orders and standard limit orders. Section 2 explains how contin-

uous scaled limit orders benefit long-term traders by eliminating socially counterpro-

ductive games high-frequency traders play using their speed to pick off resting limit or-

ders and exploit time and price priority when the tick size is economically meaningful.

It also shows how our proposal addresses the efficiency costs of a high-frequency trad-

ing arms race better than the proposal of Budish, Cramton and Shim (2015). Section 3

discusses remaining issues such as transparency and trust, execution of market orders,

flash crashes, speed bumps, privately arranged trades, minimum resting times, market

fragmentation, dark pools, and clock synchronization. Section 4 show that our proposal

is deeply grounded in relevant economic theory. Continuous scaled limit orders allow

traders to implement with greater message efficiency the gradual trading strategies that

they are implementing today.

1 Continuous Scaled Limit Orders

Today’s exchanges operate as “continuous limit order books” which process discrete

limit orders arriving sequentially in continuous time. Each limit order is a message con-

veying a contractually binding offer to buy or sell a specific quantity at a specific price.

The message also includes information about time stamps, the identities of traders, and

routing. Traders send messages to exchanges to place, cancel, or modify limit orders.

Exchanges log messages and send traders additional messages to confirm receipt of the

messages and to update prices and quantities for shares bought or sold. Encryption and

decryption of messages is computationally costly. Sending, receiving, and processing

messages takes time and consumes real resources such as telecommunications band-

width and computer processing power.

A continuous limit order book has elements of discreteness with respect to price,

quantity, and time. Standard limit orders are discrete in both price and quantity in the

sense that the price is an integer multiple of a minimum tick size and the quantity is
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an integer multiple of minimum lot size. Whether orders are processed one-at-a-time

or in batches, continuous limit order books are discrete in time in the sense that finite

quantities are exchanged at specific points in time based on the arrival of orders rather

than exchanged gradually over time. For example, a standard limit order to buy 100

shares at a price of $40.00 per share will be executed immediately when an order to sell

100 shares at a price of $40.00 arrives; it is not executed at a rate of one share per second

over a time period of 100 seconds.

Although messages are sent and received in continuous time, no trader can effec-

tively trade continuously because there are time lags associated with sending, receiving,

and processing orders. The degree to which a trader can participate continuously de-

pends on the speed of the trader’s technology and is ultimately limited by the speed of

light. From a trader’s perspective, the market operates more continuously if the trader

can send, receive, and process messages at a faster speed than others. A trader who can

easily and cheaply send 100 limit orders to buy or sell one share of stock each over a

time period of 100 seconds (or milliseconds) can effectively participate more continu-

ously than a trader who cannot do so because it is technologically impractical or too

costly. The discreteness of today’s continuous limit order books in price, quantity, and

time gives faster traders advantages with respect to slower traders.

In this section, we introduce dynamic trading with continuous scaled limit orders

to achieve continuity in price, quantity, and time. Continuous scaled limit orders are

different from standard limit orders in two respects. First, prices and quantities vary

continuously. Second, trades are executed continuously over time. Continuous scaled

limit orders allow traders to participate continuously while consuming fewer real re-

sources.

We begin by describing how current exchanges work using standard limit orders.

Sequential Auctions of Standard Limit Orders. Currently, exchanges process stan-

dard limit orders sequentially in the order in which they arrive. A limit order is a mes-

sage with three parameters: a buy-sell indicator, a quantity Q, and a price P , where Q
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and P are multiples of a minimum lot size and a minimum tick size respectively.1 In the

U.S. market, the stated minimum tick size for most actively traded stocks is currently

one cent per share. It was reduced from 1/8 of a dollar (12.5 cents per share) to 1/16

of a dollar (6.25 cents per share) in the late 1990s and reduced again to its current level

of one cent per share in 2001. There is also a distinction between “round lots” of 100

shares for most stocks and “odd lots” of fewer than 100 shares. Historically, odd lots

have been subject to different order execution and price reporting rules.

A standard buy limit order conveys the message “Buy up to Q shares at a price of P

or better.” Let X denote the number of shares purchased and let p(t ) denote the market

clearing price. Then X always satisfies

X =


Q if p(t ) < P,

αQ if p(t ) = P, where α ∈ [0,1],

0 if p(t ) > P.

(1)

If the market price p(t ) is above the limit price P , nothing is bought; if it is below the

market price p(t ), the order is fully executed (X = Q). If the market clearing price p(t )

exactly equals the limit price P , X depends on the rule of assigning market clearing

quantities α. Depending on α, the order receives a full execution (α= 1), a partial exe-

cution (0 <α< 1), no executed quantity (α= 0).2

An allocation rule to determine α is necessary because of discreteness in the limit

price and quantity. The market demand schedule calculated from aggregating all buy

orders and the market supply schedule calculated by aggregating all sell orders are dis-

continuous step functions. Although the market demand schedule is weakly downward

1An order may also contain additional time parameter T1 defining the time when the order begins
execution. We assume for simplicity that orders are for immediate execution and are good until canceled.

2The notation in equation (1) is meant to convey intuition; it is not meant to be mathematically pre-
cise. With more formal notation, the quantities Q, P , α, and X would have superscripts indicating the
identity of the specific message, which could be mapped to a specific trader. The price p(t ) is the same
for all traders and changes over time. If a limit order rests in the market for some period of time, then
α and X would become functions of time α(t ) and X (t ). The quantity X (t ) would be a monotonically
increasing step function of time indicating the cumulative number of shares bought or sold as of time t .
The fractionα(t ) could be interpreted as the fraction of the remaining quantity Q−X (t ) executed at time
t .
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sloping and the market supply schedule is weakly upward sloping, there may not be

a unique point of intersection. Instead, there is typically a pair of best bid and offer

prices with excess demand at the best bid and excess supply at the best offer. The ex-

change typically chooses as the market clearing price the price at which trading volume

is maximized. Since there is typically excess supply or demand at this price, some rule

is needed to allocate prices and quantities.

Orders are matched according to rules specifying price and time priority. Price pri-

ority matches incoming executable limit orders against the lowest sell prices and high-

est buy prices in the limit order book. When there is more than sufficient quantity at a

given price to satisfy an incoming limit order, time priority executes the oldest limit or-

der at the best price first. Traders have strategic incentives to place orders in a manner

which exploits price and time priority at the expense of other traders. Obviously, fast

traders have an incentive to place orders quickly, to get ahead of other traders in the

time priority queue at a given price.

Conceptually, one way to get around the need for an allocation rule is to allow

traders to submit orders which are not discontinuous step functions but rather arbi-

trary weakly monotonic functions which specify quantity demanded or supplied as a

function of price. If traders choose continuous upward-sloping supply schedules and

continuous downward sloping demand schedules, then there is a unique market clear-

ing price at which the market exactly clears and all traders’ quantities demanded and

supplied are fulfilled (α = 1). This is typically what happens in theoretical models of

market equilibrium. In rational expectations model with exponential utility and nor-

mally distributed random variables—or models with quadratic storage costs—the de-

mand and supply schedules are linear.

This approach makes limit orders continuous in quantities and prices but not con-

tinuous in time by eliminating minimum tick size and minimum lot size. It does not

make quantities continuous functions of time. Our approach makes trading continu-

ous in price, quantity, and time. We explain first how to make trading continuous in

time, then explain later how to make trading continuous in price and quantity.
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Auctions of Continuous Standard Limit Orders. Quantities traded can be made con-

tinuous functions of time by adding to each limit order an urgency parameter specify-

ing the maximum rate at which to buy or sell. We define a “continuous standard limit

order”as an order which conveys the message, “Buy up to a cumulative total of Qmax

shares at a price of Pmax or better at maximum rate Umax shares per hour.” The quan-

tities Qmax and Umax are multiples of a minimum lot size and Pmax is a multiple of a

minimum tick size. The speed parameter Umax defines the maximum of the derivative

of the trader’s inventory as a continuous function of time.3 The trading speed U
(
p (t )

)
is a function of the the market clearing price p (t ) at time t ; it is given by

U
(
p (t )

)
:=


Umax if p (t ) < Pmax,

α ·Umax if p (t ) = Pmax, where α ∈ [0,1]

0 if p (t ) > Pmax.

(2)

For an order placed at time t0 and canceled or filled at time Tmax, the cumulative quan-

tity executed by time t is given by the integral

Q (t ) :=
∫ t0+t

t0

U
(
p (τ)

)
dτ, for t ∈ [0,Tmax] . (3)

If the order is canceled at time Tmax without being filled, then Q (Tmax) < Qmax; if the

order is filled at time Tmax, then Q (Tmax) =Qmax.

When the price is strictly below Pmax, the trader buys at rate U . When the price

is strictly above Pmax, the inventory does not change, implying dQ(t )/dt = 0. If the

price remains low enough so that that order is executed at maximum rate U , the order

will be fully executed exactly after Tmax =Q/U . If the price fluctuates above and below

P , the full execution will take longer than Q/U . If the price stays above P , the order

will not be executed. Since U (p(t )) changes only when p(t ) changes and p(t ) changes

only when discrete events like order arrivals, executions, and cancelations occur, the

cumulative quantity executed Q(t ) is a piecewise continuously differentiable function

of time. A standard limit order corresponds to U → ∞, which allows the cumulative

3We conjecture that future exchanges could develop additional order types which allow Umax to be a
function of other market characteristics such as trading volume, price volatility, or “market liquidity”.
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quantity executed to be a discontinuous step function.

When the market clearing price is exactly equal to the limit price P during order

execution, the trader’s inventory changes at a rate such that 0 ≤ dQ(t )/dt ≤Umax. The

exact rate αUmax depends on the rule for allocating market-clearing quantities.4

While Qmax, and Umax are multiples of minimum lot size, the cumulative quantity

traded Q(t ) is an arbitrary real number. To settle market clearing quantities, we propose

the following approach. Let X denote the net purchases or sales a trader makes, calcu-

lated at the end of the day based on full or partial execution of all orders the trader has

submitted. The quantity X can be expressed as the sum of an integer portion fraction

part ε by writing X = int(X )+ ε. To clear the fractional part of X , we propose cash-

settling the fraction ε by buying 1−ε shares or selling ε shares in a manner such that the

expected fractional share traded is approximately zero. This insures that traders have

little incentive to game the end-of-day settlement of these fractional shares.

Continuous orders allow traders to slice their orders into small pieces and gradu-

ally trade toward their target inventories. As discussed below, economic theory implies

that such order shredding is an optimal trading strategy. Nowadays large institutional

investors by in the manner implied by theory. They shred large orders into small pieces

and trade numerous small quantities more or less continuously throughout the day.

Implementing such strategies in today’s markets requires sending numerous messages,

which is more costly for traders with low technological capacity. Continuous limit or-

ders allow all traders to trade smoothly without being equipped with large bandwidth

and processing power. To the extent that price impact depends not only the quantity

traded but also the speed with which the same quantity is traded, traders can optimally

choose their trading speed by trading off the price impact against the impatience of

their trading needs.

Continuous orders do not eliminate the need for an allocation rule which deter-

mines the fractional rate of order execution α when there is excess flow demand or

supply at the market clearing price. To deal with the possibility that faster traders may

4The notation in equations (2) and (3) is also meant to be intuitive, not mathematically rigorous. More
formally, the quantities Umax, Pmax, U (p(t )), and α should have subscripts indicating the order to which
they apply. The quantities U (p(t )) and α are functions of time t .
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be able to profit at the expense of slower traders by gaming the allocation rule with

continuous limit orders, we propose continuous scaled limit orders, which we discuss

next.

Market Design with Continuous Scaled Limit Orders. We define a “continuous scaled

limit order” as a generalization of a continuous limit order. Instead of one price Pmax,

a continuous scaled limit order conveys the message, “Buy up to Qmax total shares at

prices between PL and PH at maximum rate Umax,” where Qmax and Umax are multiples

of a minimum lot size and PL and PH are multiples of a minimum tick size satisfying

PL < PH .If PL = PH , the order corresponds to a continuous (unscaled) limit order. Then

the trading speed U
(
p (t )

)
is a function of the the market clearing price p (t ) given by

U
(
p (t )

)
:=


Umax if p (t ) < PL ,(

PH−p(t )
PH−PL

)
Umax if PL ≤ p (t ) ≤ PH ,

0 if p (t ) > PH .

(4)

A continuous scaled limit buy order defines a piecewise linear demand schedule ac-

cording to which the derivative of a trader’s inventory U
(
p (t )

)
is equal to Umax when

the price is less than PL , is equal to zero when the price is greater than PH , and de-

creases linearly when the price is between PL and PH . The trader’s inventory Q (t ) is

defined by equation (3).

A set of continuous scaled limit buy orders defines an aggregate flow demand sched-

ule, denoted D
(
p

)
, as the sum of the trading speed U (p) of all buy orders. An aggre-

gate demand schedule is the graph of a continuous, weakly monotonically decreasing,

piecewise linear function of price p, with possible kinks at integer multiples of the min-

imum tick size. An aggregate supply schedule, denoted by S
(
p

)
, is defined analogously

to a demand schedule and is the graph of a continuous, weakly monotonically increas-

ing, piecewise linear function.

Suppose the aggregate demand and supply schedules to intersect at a point where

either of the two is not flat. Then the excess demand schedule D
(
p

)−S
(
p

)
is strictly

decreasing in the neighborhood of the intersection, and, thus, there exist P0 and P1,
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where P1 is one tick size larger than P0, such that

D (P0)−S (P0) ≥ 0 and D (P1)−S (P1) < 0. (5)

Define the relative order imbalance ω ∈ [0,1] by

ω := D (P0)−S (P0)

D (P0)−S (P0)−D (P1)+S (P1)
. (6)

Then the market clearing price p(t ) is uniquely defined by

p (t ) = P0 +ω (P1 −P0) . (7)

Intuitively, the price is a weighted average of the two prices P0 and P1, with weights 1−ω
and ω proportional to the excess demand and supply at these prices.

If the demand and supply schedules intersect at overlapping flat sections, then we

adopt the convention that the market clearing price is the midpoint of the overlapping

interval. We do not expect this to be the case. Suppose the demand and supply sched-

ules intersect over a horizontal interval. Then each buyer could increase a minuscule

amount of demand at the lower price of the interval, forcing the price down. Similarly,

each seller could increase a minuscule quantity of supply at the higher price of the in-

terval, forcing the price up. Since a flat demand schedule around the intersection is not

an optimal response to a flat supply schedule and vice versa, we expect the demand and

supply schedules almost always to intersect at a single point which uniquely defines the

market clearing price p (t ) as above.

Requiring the price limits PH and PL to be multiples of minimum tick size makes

both the aggregate demand and supply schedules to be piecewise linear functions of

price p with all kinks occurring at integer multiples of the minimum tick size. This fea-

ture simplifies algorithmically the calculation of the market clearing price p(t ). The

aggregate demand schedule and the aggregate supply schedule can both be described

as vectors of fixed length, with each vector entry corresponding to the demand or sup-

ply at a particular price. The vectors are monotonic in in quantities. This makes it easy

to calculate the two prices P0 and P1 at which the difference between quantity sup-
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plied and quantity demanded changes sign. The price can then be calculated as a real

number from , which is an arbitrary real number from equation (7). Given the speed of

modern computers, these calculations are nowadays trivial. Since the calculations are

performed at the exchange, they do not involve sending and receiving extra messages.

Furthermore, since the price p(t ) and thus the trading rates U
(
p (t )

)
are uniquely

defined, an allocation rule α is no longer necessary; it does not appear in equation (4).

Since the allocation rule is not necessary, traders can accurately infer the quantities they

trade from a public feed of prices, or equivalently from P0, P1, and ω. Exchanges need

not send constant updates of prices and quantities for each fractional share bought

on each order. Sending confirmation messages at infrequent time intervals, like one

second or one minute, would be sufficient. This conserves bandwidth and computation

costs because sending and receiving messages is computationally costly.

With continuous scaled limit orders, a trader is likely to place, modify, and can-

cel orders much less frequently than with standard limit orders. A continuous scaled

limit order automatically implements a strategy to buy patiently over time, as Fischer

Black (1971a) suggest traders would want to do. The patient strategies which traders

use today can be implemented with small number of continuous scaled limit orders

rather than a gigantic number of standard limit orders. As we discuss next, such orders

not only conserve the real resources needed to operate an organized exchange but also

level the playing field between fast and slow traders.

2 Practical Implications for High Frequency Trading

High frequency traders expend real resources to acquire technological advantages over

other traders related to lower latency, larger bandwidth, and more processing power.

As we discuss in this section, this technological advantage allows fast traders to make

profits exploiting artifacts of the current market design related to discreteness of prices,

quantities, and time. Although such rents may have great private value, such rents have

little to no social value; they are earned at the expense of other traders with less ad-

vanced technology.

Slow traders often seek to profit by uncovering long-term information about the
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value of assets. This long-term information tends to create a positive externality by giv-

ing the market signals about value which can steer resource allocation decisions related

to investment and corporate strategy. To the extent that the fast traders increase the

trading costs of slow traders, the fast traders discourage production of socially valuable

long-term information. Continuous scaled limit orders create long-term social value

by reducing the incentives high frequency trader have to engage in a costly technology

arms race..

High frequency traders may also perform socially useful services by using their speed

to arbitrage prices better and to hold inventories temporarily for short periods of time.

Continuous scaled limit orders improve the efficiency with which these services are

formed by making it cost effective for slower traders to participate in providing trad-

ing services which would otherwise be too technologically expensive for slow traders to

provide.

This section first discusses how continuous scaled limit orders eliminate artificial

discreteness in price, quantity, and time in the current markets. This not only dimin-

ishes the rents earned by fast traders but also changes the nature of competition among

fast and faster traders to make the market more competitive. We then compare contin-

uous scaled limit orders to frequent batch auctions proposed by Budish, Cramton and

Shim (2015) and random delays proposed by Harris (2013).

2.1 How Fast Traders Earn Rents in Today’s Markets.

Fast traders earn rents in today’s market by using their speed to process information

and submit messages faster. This allows them to profit by arriving early, canceling early,

and taking advantage of the allocation rule when there is time and price priority.

To illustrate these ideas, consider a hypothetical stock with a price of about $40.00

per share and volume of about one million shares per day. Suppose the return volatility

of the stock is 2.00 percent per day. Thus, a one standard deviation event represents a

price change of 2.00 percent of $40.00 or 80 cents per share. This price, share volume,

and volatility are typical for a stock just below the median of the S&P 500.

Suppose a portfolio manager desires to buy 10000 shares of this stock over the course
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of one day. Such an order represents one percent of one day’s trading volume, a typi-

cal amount that an institutional investor might want to trade in one day. Buying 10000

shares will likely incur significant, unavoidable price impact costs related to adverse

selection. Now suppose that the trader submits a 10000 share limit order and leaves

it resting in the market. Such a strategy exposes the order to being exploited by faster

traders in several ways. We examine these next.

Arriving Early and Canceling Early. Fast traders can access, process, and act on short-

term information than unfolds over short periods of time like fractions of a second.

They can learn the price in other markets before others and attempt to take a cross-

market arbitrage. Alternatively, fast traders may be able to use public information within

a market, such as quantities and prices of active bids and offers, to infer others’ trading

motives and anticipate their orders to the advantage of the fast traders themselves.

For example, suppose that the institutional investor entered the 10000 share order

in reaction to some fast-unfolding piece of information. Suppose a fast trader entered

an order to purchase 4000 shares at the same price based on reacting to the same in-

formation. If the fast trader’s arrives one microsecond earlier than the slower trader’s

order, then the fast trader gains time priority in the limit order book. If there are incom-

ing orders to sell 4000 shares at $40.00, the fast traders takes the other side of all 4000

shares because of time priority. If the price rises substantially immediately after these

4000 share finish executing, the fast trader gains all of the benefit from the purchase of

4000 shares and the slower trader gains nothing. The slow trader loses the entire trading

opportunity by being one microsecond slower than the fast trader.

If there is an infinitesimal tick size, then the fast trader does not need to be fast to

step in front of the 10000 share order. He can place a limit order to buy at $40.000 000 001

and thereby gain price priority at negligible cost. With this slight modification, the ex-

ample plays out in the same way.

Now suppose there is no order ahead of the 10000 order in the time priority queue

at $40.00 per share. Suppose new short-term information, observed simultaneously

by all traders, suddenly changes the expected future price of the stock from $40.00 per

share to $39.80 per share. Fast traders will race to hit the 10000 share buy order while
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the slower buyer simultaneously will try to cancel the 10000 share order first. The likely

outcome is that the fastest trader hits the 10000 share order before it can be canceled,

earning an instantaneous profit of 20 cents per share on 10000 shares, or $2000. The

slow trader, whose order is “picked off,” loses $2000.

The expected losses associated with being picked off are proportional to the size of

the order, the frequency with which relevant information events occur, and the price

movement associated with the events conditional on their occurring. If prices follow a

martingale, there are some interesting connections between the frequency of informa-

tion events and the size of the price movements that result from them. Suppose that

20 cents per share of return standard deviation results from such information events.

This corresponds to one information event which results in a 20 cent per share price

change. The same 20 cents of standard deviation can also result from 4 events which

move prices 10 cents each (since 10×p
4) = 20) or 16 events which move prices 5 cents

each (since 5×p
16 = 20). Clearly, holding constant the size of resting limit orders, the

total losses to resting limit orders are greater when a given standard deviation of returns

volatility is associated with many small information arrivals. Total losses per share of

resting limit orders are 20 cents when there is one information event (1×20 = 20), 40

cents when there are 4 events (10 × 4 = 40), and 80 cents when there are 16 events

(16× 5 = 80). Since market prices tend to change in very small increments, the pre-

sumption must be that costs of being picked off are significant when measured in cents

per resting-order share. In the limit as prices follow geometric Brownian motion, leav-

ing a resting limit order of any size continuously in the market, replacing it with a new

order every time it is picked off, results in infinite losses on infinite trading volume with

infinitesimal losses on each order.

Clearly, this logic suggests that the potential net gains from following a market-

making strategy of continuously place limit orders to buy at the bid price and sell at

the offer price are going to be greater for a fast trader than a slow trader since the fast

trader can more easily avoid losses from being picked off. This logic does not imply

that a slow trader who only wants to buy or only wants to sell should never place resting

limit orders. A slow trader who wants to trade in one direction must weigh the losses

from being picked off against the bid-ask spread costs from placing executable limit or-
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ders to sell at the bid price or buy at the offer price. In equilibrium, it is possible that

these costs are about the same for slow traders, with slow traders therefore following

mixed strategies of sometimes placing executable orders which hit bids and lift offers

while other times placing non-executable orders to attempt to buy at the bid or sell at

the offer before being picked off. Another possible equilibrium is that high frequency

traders are so competitive among themselves and so adept at avoiding being picked off

that the bid-ask spread is very tight, due to numerous fast traders competing at the best

bid and offer prices, that slower traders always find it optimal to sell at the bid and buy

at the offer.

A fast trader may also use the 10000 share buy order as a free “liquidity option”

as discussed by Cohen et al. (1978). A fast trader may place another 10000 share buy

order at a price of $40.01 per share. Price priority places the face trader at a better

position in the queue. Suppose there are some incoming sell orders executable at a

price of $40.00 per share. The fast trader’s order will begin to execute at a price of $40.01

per share before the slow trader’s order executes at all. If the price rises after the fast

trader has bought some shares, he makes profits but the slow trader earns nothing. If

the price looks like it might fall after the fast trader has bought some shares, he can

cancel his order early and place a new order to sell the shares he just bought to the slow

trader by hitting his resting order. The fast trader loses only $0.01 per share on up to

10000 shares, or $100. The possible gains if the price rises would likely be much greater,

thereby stacking the odds in favor of the fast trader and against the portfolio manager.

The portfolio manager’s order will likely execute when prices move against him and will

likely not execute when prices move in his favor. If negative information arrives before

the fast trader has bought any shares at $40.01, he avoids losses by canceling early. The

slow trader may limit the losses of fast traders by placing small orders.

To summarize, fast traders earn gains by arriving early to pick off resting orders and

canceling early to avoid being picked off. These advantages of arriving early and can-

celing early do not specifically take advantage of tick size and allocation rules.

Gaming the Allocation Rule with Minimum Tick Size. As discussed in Section 1, the

discreteness in the limit price and quantity makes some allocation rule necessary be-
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cause multiple combinations of the price and quantity may clear the market. Different

allocation rules determine the fractional allocation α in different ways. For example,

time priority specifies that before newer orders receive any execution (α > 0), older

orders must receive full execution (α= 1). Instead of time priority, some markets use a

“pro rata” or proportional allocation rule according to which all orders receive the same

fractional allocation α. Both time priority and pro rata allocation create incentives for

gaming which benefit fast traders at the expense of slow traders.

In addition to using their speed to arrive early and pick off resting limit orders or

cancel early to avoid being picked off, fast traders can also use their speed to make

profits by gaming the allocation rule.

The reason is, essentially, that both the time priority and the pro-rata allocation re-

ward traders from providing liquidity. At first, this might seem fair. Placing large orders

before everyone else gives everyone else opportunities to hit the order and thus exposes

the trader to being picked off. Not all traders, however, have the same ability to provide

liquidity. It is more costly for slow traders to provide liquidity as they are more likely to

be picked off. Furthermore, if fast traders can cancel their orders before everyone else

can hit them, fast traders do not have to provide any liquidity. Therefore, an allocation

rule that results from discrete prices produces additional rents that fast traders can earn

at the expense of the rest of the market.

To illustrate how fast traders might game the allocation with a nontrivial tick size,

consider the following example. There are two portfolio managers, a buyer and a seller.

A buyer wants to buy 10000 shares and a seller wants to sell 10000 shares. They both

would be happy to trade at a price of $40.0050. With a one cent tick size, however, the

allocation rule must determine the price at the bid of $40.00 or the ask of $40.01. Now a

fast trader can place orders to sell at the offer price of $40.01 and to buy at the bid price

of $40.00 as well. It depends on the allocation rule whether the buyer and the seller can

trade with each other or not.

If the allocation rule is based on time priority, the fast trader may gain the best po-

sition in time priority queue by being at the best bid or offer first. For example, if the

market recently changed from being offered at $40.00 to being bid at $40.00, this change

may have occurred as a result of an incoming executable limit buy order trading against
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an existing offer. After this trade occurred, there may have momentarily been no bid or

offer at $40.00. If traders realize that a new best bid is likely to be established at $40.00,

then fast traders may be the first to establish this bid, thereby obtaining time priority. If

there is uncertainty about whether $40.00 is going to be the bid price or the offer price,

then slow traders may avoid placing either a buy or sell limit order at this price for fear

of being picked off.

With the pro-rata allocation, a fast trader can gain a larger allocation by placing a

large order. For example, suppose a fast trader places orders to sell 90000 shares at

$40.01 and to buy 90000 shares at $40.00, even though there are only 10000 shares

available on the other side of his trades. Now suppose the limit price on the buy order at

$40.00 is increased to $40.01. This order will fully execute at a price of $40.01. The pro-

rata allocation rule assigns the fast trader 9000 shares while the slow seller will trade

only 1000 shares. It is more economically advantageous for the fast trader to submit

large orders than a slow trader because the fast trader can cancel orders more quickly

to avoid being picked off when conditions change. If the market clearing price falls one

tick and begins to bounce back and forth between $39.99 and $40.00, then the fast buy-

ers will cancel their bids at $40.00, leaving the buyer to buy at the new offer price of

$40.00. This is, of course, what prevents slow traders from gaming the allocation rule

like fast traders in the first place.

By placing arbitrarily gigantic large orders, the fast trader can have almost all of the

10000 shares allocated to him. As prices bounce back and forth between $40.00 and

$40.01, the fast traders earned $0.01 in spread profits on each share bought at $40.00

and sold at $40.01. These profits are proportional to the minimum tick size. A large tick

size provides economic incentives for fast traders to place large orders at the bid and

offer, forcing slow traders to incur a high bid-ask spread cost when they buy or sell.

In sum, fast traders earn rents at the expense of portfolio managers by exploiting the

time priority, the price priority, and the minimum tick size. The discreteness in time,

price, and quantity in today’s exchanges rewards traders who can submit and cancel

orders quickly, making the market winner-takes-all, where only the fastest wins.
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Message Costs. One way for the portfolio manager to protect himself from fast traders

is to buy 10000 shares gradually over time by placing many small orders, none of which

leaves large quantities resting in the market for a significant period. Nowadays large

traders shred orders into small pieces, one share each, several price points, change

prices as needed to keep close to market. For example, a traders may choose to par-

ticipate in about one percent of trading volume on a relatively continuous basis. If the

trader approximately matches the prices of other traders, he will obtain the Volume-

Weighted Average Price (VWAP).

For example, the portfolio might trade 10000 shares by placing 100 limit orders for

100 shares each, revising the limit prices as necessary to ensure that the orders are ex-

ecuted gradually over the day. Suppose a trader keeps an order close to the market,

changing it each time the market moves one tick. If 80 cent standard deviation re-

sults from independently distribute price changes of plus or minus one cent, then price

changes 6400 times per day, about once every 3–4 seconds. This increases the num-

ber of times limit prices on orders need to be changed. Purchasing 10000 shares may

require many tens of thousands of messages.

Sending numerous messages is costly, especially for traders with smaller bandwidth

or processing power. When message costs are economically significant, traders face a

tradeoff between incurring high message costs and submitting large orders. As a result

of this trade-off, they may submit large messages and leave them resting in the market

for a longer period of time, expos the orders to being picked off by fast traders. Consis-

tent with the idea that fast traders have lower message costs than slow traders, Kirilenko

et al. (Forthcoming) show that high-frequency traders have trades that are half as large

(five versus ten contracts) as other traders.

Suppose the stock’s daily return volatility of 2.00 percent per day results from the

price impact of 100 independently distributed institutional bets of one percent of daily

volume each. If prices fluctuate as a result of incoming orders then each bet is expected

to move prices about 0.20 percent, or 20 basis points (calculated as 2.00/
p

100 = 0.20).

This price impact of 8 cents per share is the natural, unavoidable price impact associ-

ated with order flowing creating return volatility. With suboptimal execution resulting

from message costs, the price impact may larger in expectation, perhaps as little as 21
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basis points or perhaps as large as 30 basis points or more. Quantifying these costs

empirically takes us beyond the scope of this paper.

2.2 How Continuous Scaled Limit Orders Help Slow Traders.

Continuous scaled limit orders dramatically lower the potential rents fast traders earn

at the expense of slow traders.

With continuous order types, fast traders do not earn substantial rents from arriv-

ing early. There is no longer time priority; all orders are treated symmetrically and exe-

cuted simultaneously. The reward for placing an order one millisecond early lasts one

millisecond. Suppose a portfolio manager submits one continuous scaled limit order

to buy 10000 shares at a price between $40.00 and $40.01 at a maximum rate of one

share per second. There are 23400 seconds of regular hours from 9:30 a.m. to 4:00 p.m.

during a trading day. The trader can revise the limit price to keep the order close to the

market. The order will be executed in one day if the market price is above $40.01 at least

42.73 percent of the day. When new public information suddenly changes the expected

future price of the stock from $40.00 per share to $39.80 per share, the losses associated

with being picked off are economically negligible. Since the continuous order buys at

a maximum rate of one share per second, the portfolio manager’s loss is limited to less

than $0.20 if he cancels the order in less than one second. This is far less than losing

$2000 when a standard limit order for 10000 shares is picked off in the same way.

Similarly, the free “liquidity option” provided by slow traders is no longer valuable.

When the price looks like it might fall, fast traders may try to liquidate their purchases

by hitting the resting limit orders. The number of shares they can liquidate, however, is

now much smaller. If the portfolio manager cancels his order within one second, fast

traders can sell a maximum of only one share, not 10000 shares. This eliminates the

value of the liquidity option.

Since the market is no longer the fastest-takes-all, slow traders are protected by

competition among fast traders. Suppose in the previous example that the slow trader

took much longer than one second to cancel his order after the the public information

was released. As fast traders race to sell their stocks to the slow trader, the price will
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quickly go down. With the improved price, the losses to the slow trader will be much

less than $0.20 per share per second. If the equilibrium price falls $0.18 per share due to

competition among fast traders, the slow trader only loses $0.02 per share per second.

The increased competition among fast traders has broader implications for eco-

nomic efficiency. Today’s winner-takes-all market structure encourages arms race among

fast traders to become the fastest, as emphasized by Harris (2013); Li (2014); Biais,

Foucault and Moinas (2015); and Budish, Cramton and Shim (2015). In a sense, fast

traders excessively compete on their technology to avoid competition in price. Both

over-competition in technology and under-competition in trading can be economically

inefficient.

To summarize, continuous scaled limit orders address both inefficiencies. First, by

providing a mechanism by which traders can trades gradually without having to send

numerous messages, they reduce the rents that fast traders as a whole can earn by pick-

ing off slow traders considerably. Second, by removing time priority and treating orders

symmetrically, they make fast traders with varying capacities compete with one an-

other, which further reduces the rents that an individual fast trader can earn and the

incentives to invest in technology to become the fastest.

Continuous scaled limit orders, unlike continuous (unscaled) limit orders, allow the

market clearing price to be continuous even when the limit prices (PH and PL) respect

the minimum tick sizes, which renders the allocation rule unnecessary and, thus, gam-

ing the allocation rule impossible. Naturally, continuous scaled limit orders eliminate

the rents fast traders earn from gaming the allocation rule. To illustrate how this works,

suppose there are two portfolio managers, a buyer and a seller, who now can submit

continuous scaled limit orders. The buyer places an order to buy QBU Y
max = 10000 shares

between P BU Y
L = $40.00 and P BU Y

H = $40.01 at maximum rate U BU Y
max = 1 share per sec-

ond. The seller places an order to sell QSELL
max = 10000 between P SELL

L = $40.00 and

P SELL
H = $40.01 shares at maximum rate U SELL

max = 1 share per second. If the buyer and

the seller are the only traders in the market, then the equilibrium price is the midpoint

$40.0050, and the buyer and seller trader with each other at a rate of 1/2 share per sec-

ond.

Now suppose a high frequency trader tries to get between the buyer and the seller by
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buying between P HF T
L = $40.00 and P HF T

H = $40.01 shares at maximum rate U HF T
max = 2

shares per second. Since

D(P0) = 3, D(P1) = 0, S(P0) = 0, S(P1) = 3, (8)

we obtain

ω= D(P0)−S(P0)

D(P0)−S(P0)+S(P1)−D(P1)
= 3

4
, p(t ) = (1−ω)P0 +ωP1 = 40.0075. (9)

The higher price reduces the buyer’s rate of buying from U BU Y = 0.50 shares per second

to U BU Y = 0.25 shares per second and raises the seller’s rate of selling from U SELL = 0.50

shares per second to U SELL = 0.75 shares per second. The high frequency trader buys

U HF T = 0.50 shares per second. As a result of his participation, the high frequency

trader drives the price above the midpoint, but does not change the sum of the buyers

rate of buying and the sellers rate of selling, which is 1 share per second.

With continuous scaled limit orders, the high frequency trader earns a profit by

predicting future prices, not by earning a spread by intermediating trade between the

buyer and seller. For example, cross-market arbitrage opportunities may still exist, and

high frequency traders may exploit these opportunities. Competition among high fre-

quency traders will make such arbitrage opportunities disappear quickly.

2.3 Comparison with Frequent Batch Auctions.

To reduce the rents that fast traders earn and the resulting arms race among fast traders,

Budish, Cramton and Shim (2015) propose frequent batch auctions which match orders

at discrete time intervals. Their approach contrasts with our approach in that they pro-

pose to make time more discrete while we propose to make time more continuous. Al-

though frequent batch auctions have several desirable properties, frequent batch auc-

tions do not sufficiently address all the perverse incentives that high-frequency traders

enjoy in today’s markets. Our continuous scaled limit orders fix these problems more

robustly.

Frequent batch auctions reduce the costs slow traders incur from being picked off.
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Here is the intuition of Budish, Cramton and Shim (2015). Suppose that a super-fast

trader can react to changing market conditions in 2 milliseconds, a fast trader can react

in 5 milliseconds, and a slow trader (portfolio manager) can react in 50 milliseconds. As

before, suppose a slow trader has a limit order to buy 10000 shares at $40.00 resting in

the market. Suppose for now that a batch auction is held each second. If new public

information that changes the stock value to $39.80 arrives one millisecond before the

next batch auction, even the super-fast trader cannot react fast enough, and the slow

trader’s order is not picked off. If conditions change 3–4 milliseconds before the next

batch auction, the super-fast trader can pick off the resting limit order at the next auc-

tion, and the fast high frequency traders’ similar orders arrive too late. If conditions

change 5–49 milliseconds before the next batch auction, the orders of both the super-

fast and the fast traders arrive in time for the auction but the slow trader is unable to

cancel. The slow trader may lose less than $2000 or $0.20 per share due to competition

among fast traders. If the change occurs between from 50–1000 milliseconds before the

auction, the portfolio manager successfully cancels his order.

This logic would seem to suggest that the longer batching interval reduces the losses

of slow traders. If the news arrives with constant probability over time, a portfolio man-

ager will be picked off with a probability that corresponds to 50 milliseconds divided

by the length of the batching interval. The one-second interval reduces the loss of the

portfolio manager by at least about 95 percent, and perhaps more than 99 percent if the

competition among fast traders improves the price that the portfolio manager pays.

The logic, however, is incorrect because the order size submitted to auctions de-

pends on the batching interval. Suppose a trader would place a one-share order if batch

auctions are held every second. If batch auctions are held every two seconds, the same

trader might submit an order for two shares. The theoretical trading models of Vayanos

(1999) and Du and Zhu (2017) are consistent with this interpretation. If traders place

larger orders in batch auctions, the losses suffered when the order are picked off are

proportionally larger as well. Holding batch auctions every two seconds rather than ev-

ery second may halve the probability of an order being picked off at a given auction, but

a doubled order size the doubles the losses conditional on being picked off. Since these

two effects cancel, changing the time interval between batch auctions does not change

23



the expected dollar losses traders suffer from being picked off.

Batch auctions do not resolve the costs of being picked off unless all traders opti-

mally slice their orders and trade gradually. As we discussed earlier, without contin-

uous order types, order shredding requires sending numerous messages, which is es-

pecially costly for traders with small bandwidth or processing power. Lee et al. (2004)

and Barber et al. (2009) examine trading on the Taiwan Stock Exchange, which had one

to two batch auctions every 90 seconds from 1995 to 1999. They show while large in-

stitutions smooth out their trading by participating in numerous auctions, individual

traders place less frequent orders. Individual traders lose more than two percent of

Taiwan’s GDP trading stocks. These results are consistent with the interpretation that

message costs cause slow traders to place suboptimally few and large orders.

Since frequent batch auctions do not address discreteness in the price, fast traders

will still exercise their superior ability to game the allocation rule as they do in today’s

market standard limit orders. The risks of being picked off by fast traders when new in-

formation arrives a few milliseconds before the next auction limit slow traders’ capacity

to play the same games as fast traders.

Another issue is whether orders not fully executed from previous auctions should

have time priority compared to new orders submitted to the current auction. On the

one hand, it might be argued that traders who placed their orders in the previous auc-

tion should receive priority since they bear the risk of being picked off by other traders

who observe the order imbalance and choose not to place their orders in the first place.

On the other hand, it might be argued that it is likely that older orders in the limit or-

der book come disproportionately from fast traders because their ability to react more

quickly allows them to place large orders. Either way, it is likely that fast traders will be

able to earn extra rents by exploiting the auction rules.

Clock synchronization is a major issue with frequent batch auctions. It is techno-

logically difficult for exchanges to synchronize clocks exactly. If one exchange holds its

frequent batch auction a millisecond or so earlier than another one, the outcome of the

early exchange may be used by super-fast traders to pick off orders on the late exchange.

Even with perfectly synchronized clocks, competing exchanges holding simultaneous

single-price auctions will likely produce prices consistent with arbitrage opportunities
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across the same stock traded on different exchanges and arbitrage opportunities across

different assets traded on the same exchange. With continuous scaled limit orders, fast

traders eliminate such arbitrage opportunities by submitting multiple offsetting orders.

They do not have to wait for the next batch auction.

The last issue is transparency. Real-time pre-trade transparency is inconsistent with

the spirit of frequent batch auctions because fast traders can exploit such information.

If exchanges broadcast changes to the limit order book in real time, traders will wait

until the end of the one-second batch interval before submitting new orders to prevent

other traders from being able to react to their order changes, which rewards fast traders.

Thus exchanges should not broadcast changes to the limit order book in real time but

instead should consider only publishing information about unexecuted orders in the

limit order book immediately after batch auctions, if at all. Suspicious traders may still

suspect that exchanges will leak information about their orders to other traders. It is,

therefore, important that exchanges have mechanisms in place to ensure that some

traders do not obtain such information before other traders.

3 Policy Issues Related to Implementation

This section discusses how commonly proposed policies play out with continuous scaled

limit orders. We first discuss pre-trade and post-trade transparency. We next discuss

policies related to transparency, including competition among exchanges, dark pools,

minimum resting times, privately arranged trades, and our proposed solution—quantity

speed bumps. Finally, we discuss issues related to flash crashes, including price speed

bumps and execution of market orders.

3.1 Transparency

This subsection discusses the issue of transparency with continuous scaled limit orders.

Typically pre-trade transparency refers to publicly announcing information about cur-

rent bid and ask prices, quantities at the best bid and ask, and potentially the quantities

bid and ask at prices below or above the best bid and offer. Post-trade transparency
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refers to revealing traders the prices and quantities traded in transactions.

With continuous scaled limit orders, these concepts play out differently. Post-trade

transparency might consist of revealing trading volume and price, without revealing

how many traders are buying and selling. As discussed in Section 1, an allocation rule

is unnecessary because the market clearing price is always uniquely determined. Thus,

traders can accurately infer the total quantity executed on their orders and the average

price paid or received on their orders from the public feed of the market clearing prices.

Such straightforward execution of all orders provides full post-trade transparency with-

out exchanges having to send constant updates to all traders.

Pre-trade transparency implies releasing information that traders find useful for

constructing optimal strategies. To determine the effect of new buy and sell orders on

prices and trading rates, traders need to know the slopes of the aggregate demand and

supply schedules around the market clearing price. Using the notation in Section 1,

it follows that the minimum actionable pre-trade transparency includes the aggregate

demand rates, D0 and D1, and supply rates, S0, and S1, and the two price points P0 and

P1 around the market clearing price p(t ). These six pieces of data can be used to calcu-

late the slope of the supply schedule S1−S0, the slope of the demand schedule D0−D1,

the relative order imbalance ω in (6), the market clearing price as in equation (7), and

the aggregate rate of trading volume

v (t ) := S (P0)+ω (S (P1)−S (P0)) = D (P1)+ (1−ω) (D (P0)−D (P1)) . (10)

The slopes of the supply and demand schedules determine the dynamic depth of

the market. Given that the aggregate demand and supply schedules are piecewise lin-

ear functions with kinks at multiples of the minimum tick size, traders might want to

know the slopes of aggregate demand and supply schedules outside the market clearing

price. The exchanges may make public the aggregate demand and supply rates D
(
p

)
and S

(
p

)
at several integer multiples of the minimum tick size around P0 and P1. One

argument for disclosing the slopes of the demand and the supply schedules outside

the market clearing price is that fast traders can learn this information anyway. Fast

traders with large bandwidth can place buy and sell orders away from the market for
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brief periods of time, determine urgency away from the market from the execution of

these orders over a few milliseconds, then cancel the orders quickly.5 Determining ex-

actly the price interval over which aggregate demand and supply rates are disclosed is

a complex subject which takes us beyond the scope of this paper.

3.2 Market Fragmentation.

Competition Among Exchanges. In today’s markets, various exchanges operate si-

multaneously and compete for trading volume. We believe that continuous scaled limit

orders would be widely used in many exchanges. Suppose one exchange offers con-

tinuous scaled limit orders and the other standard limit orders. Which exchange will

attract the most trading volume? We think the exchange offering continuous scaled

limit orders will attract the most volume because its traders will not pay rents to fast

traders while conserving bandwidth costs. Consider what happens to a resting limit

order when the price suddenly changes. On the one hand, traders on the continuous

exchange will pick off the orders on the standard exchange and earn meaningful profits

if the size of the resting order is significant. On the other hand, traders on the stan-

dard exchange will not make meaningful profits picking off the orders on the exchange

offering continuous scaled limit orders.

Dark Pools. Dark pools are trading venues which are not open to all traders and do

not have pre-trade transparency. Dark pools exist for many reasons. In the 1990s and

earlier, many large block trades were arranged privately off the NYSE exchange floor in

the upstairs market. Negotiating trades privately outside the exchange is like partici-

pating in a dark pool. Dark pools also exist so that dealers can internalize small order

from unsophisticated, uninformed customers. Dark pools also exist to facilitate trading

inside the bid-ask spread and to avoid the adverse selection costs incurred when orders

are picked off by fast traders.

5In a market with standard limit orders, traders need to know the quantities and prices at the best bids
and offers. Currently, many exchanges also reveal quantities and prices for supply and demand schedules
away from the market clearing price.
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We think continuous scaled limit orders on organized open exchanges would dom-

inate dark pools, including privately arranged trades in upstairs dealer markets. Histor-

ically, the frequency of large block trades declined after electronic order handling tech-

nology improved in the later 1990s, tick size was reduced to $0.01 in 2001, the NYSE

specialists became less active in intermediating trades, and order flow dispersed across

competing exchanges. Traders instead shredded large orders into tiny pieces which

were executed as smaller trades of 100 or 200 shares. Furthermore, continuous scaled

limit orders are designed to make gradual execution of large orders more cost effec-

tive for institutional traders by eliminating slippage in execution costs due to tick size

and allocation rules and by reducing the bandwidth costs of executing large orders with

many small trades.

Minimum Resting Time. Dealers have incentives to steer customers to trading venues

which benefit the dealers at the expense of their customers. To protect unsophisticated

customers from bad execution, we propose a minimum resting time for all dark pools.

Dark pools would have to post tentative matched transactions to public scrutiny for

some minimum resting time during which any market participant would be allowed

to take one side or the other of the transaction, perhaps after offering modest price

improvement.6 For example, if a dark pool matches a 100 share trade at $39.99, this

proposed transaction might be exposed to the market for five seconds, during which

time the buyer or seller can by displaced by any trader offering price improvement of

$0.01. 7

6An alternative to our proposal is SEC regulations which mandate that customer orders be given “best
execution” according to a regulatory definition. This approach, however, is unlikely to be optimal in a
trading environment with rapid technological change, competing exchanges, and incentives for regula-
tory arbitrage.

7The rule is defined by two parameters: a five-second minimum exposure time and $0.01 minimum
price improvement. These parameters might vary with the level of trading activity in the stock, with
longer times and greater price improvement required for less actively traded stocks. The two parameter
values proposed here are hypothetical. The optimal parameter might be quite different, say 1 second and
zero price improvement. The two parameter values should be coordinated so that the free option to trade
has little economic value if both sides of the transaction are matched at a market price. The parameters
should also mimic the rules for infinitely impatient trades on the exchange offering continuous scaled
limit orders.
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Privately Arranged Trades. Similar problems arise in privately arranged trades brought

to the exchange to be executed in a coordinated manner. Suppose two traders privately

negotiate a gigantic trade outside the market. They negotiate a trade for, say, one mil-

lion shares at $41.00, one entire day’s normal trading volume traded at a price $1.00

higher than the prevailing price at the time the trade is negotiated. On an exchange that

offers continuous scaled limit orders, two traders might enter continuous scaled limit

orders to buy and sell, respectively, one million shares at rates of one billion shares per

second at a price range of $39.99 to $41.01. If both orders arrive in the market at about

the same time, both orders will fully execute their desired one million shares in one mil-

lisecond at a price close to $41.00. By executing such a large quantity so fast, the two

traders will likely make it impossible for other traders in the market to participate in the

transaction in a meaningful manner.

Such order executions are problematic. Despite its large size, one side of the trade

may be a naive and poorly informed customer, perhaps the victim of an unscrupulous

intermediary. Even if both the buyer and the seller are sophisticated and well-informed,

there is a sense in which they are taking advantage of positive externalities provided by

a transparent liquid market while not providing positive externalities to other traders.

If all traders were to negotiate all trades privately, there is a danger that markets would

be less transparent and less liquid, making all traders worse off.

Solution: Quantity Speed Bumps. Exchanges can deal with this issue by requiring or-

ders of large urgency to take a meaningful amount of time to execute. For example,

large urgency might be defined as a level of urgency which would execute one day’s

trading volume in five minutes, or 200000 shares per minute for this stock. A mean-

ingful amount of time is enough time for traders with moderately slow technology to

submit orders to participate in the transaction. If a slow trader can react in approx-

imately 50 milliseconds, any order which trades at an urgency of 200000 shares per

minute or faster might be required to have a minimum resting time of 5 seconds and

not be fully executed in less than 5 seconds.8 In effect, a minimum resting time for very

8If it is possible to execute such an urgent order fully in less than five seconds, either the order could
be rejected by the exchange or, alternatively, the urgency of the order reduced so that full execution takes
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urgent orders prevents traders from supplying instantaneous liquidity to other traders,

which allows any trader with a 50 millisecond response time to participate in at least

99 percent of the time the order is actively in the market. Maintaining a level playing

field suggests coordinating this minimum resting time rule with the the rule for crossing

privately negotiated trades.9

Maker-Taker Pricing. When there is a legally binding minimum tick size, exchanges

will engage in strategies of regulatory arbitrage to allow trading at fractional ticks. In

the U.S. market, one mechanism for engaging in regulatory arbitrage is called “maker-

take pricing.” With maker-taker pricing, a trader placing a resting limit order pays a

negative transactions fee while the trader placing an executable order pays a higher fee.

For example, instead of both the buy- and sell sides to a trade paying a fee of $0.0002

per share, the nonexecutable order “making” the market incurs a fee of −$0.0030 and

the order executable “taking” the market pays a fee of $0.0034. Either way, the total fees

earned by the exchange from matching a buy and a sell are $0.0004 per share (since

2×$0.0002 =−$0.0030+$0.0034 = $0.0004).

This example of maker-taker pricing is economically equivalent to shifting all prices

up by $0.0032 per share, approximately 1/3 of a cent. Not surprisingly, there are also

exchanges symmetrically offering “taker-maker” pricing, which has the effect of shifting

prices down by approximately 1/3 of a cent. Altogether, the effect of maker-taker and

taker-maker pricing is to cut the minimum tick size by a factor of approximately three.

Since the best price jumps around from one exchange to another as prices change by

fractions of a cent, maker-taker pricing rewards traders with low message costs and high

bandwidth at the expense of other traders. For unsophisticated traders, the market

becomes less transparent and more confusing, especially if data feeds report market

bids and offers in whole cents which do not net out maker-taker fees.

With continuous scaled limit orders, there is no minimum tick size. There is there-

fore no regulatory arbitrage for maker-take fees to exploit. We believe that continuous

a minimum of five seconds.
9Of course, traders might try to violate the spirit of the rule by trading through multiple accounts with

undisclosed common ownership or coordination. Such suspicious trading, which would be genuinely
highly coincidental if not the result of coordination, should trigger an automatic audit by the exchange.
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scaled limit orders would make maker-taker pricing go away.

3.3 Flash Crashes

Continuous scaled limit orders do not automatically prevent flash crashes, during which

rapid executions of large orders cause substantial temporary disruptions to prices and

volumes. On May 6, 2010, for example, one trader entered a series of orders to sell ap-

proximately $4 billion of S&P 500 E-mini futures contracts over a period of about 20

minutes rather than several hours that would have been typical for such a large amount

of selling. Subsequently, prices collapsed by more than five percent and then quickly

rebounded, as discussed by Kirilenko et al. (Forthcoming). The large seller who caused

the flash crash above used an automated algorithm to participate in about 9 percent

of trading volume without regard to price and time. The order executed very rapidly

because trading volume increased dramatically partly as a result of his trading.

In many cases, extremely rapid selling is likely not an optimal strategy but rather a

mistake; the traders who cause flash crashes do not benefit from them economically

because they trade at unfavorable prices after the market moves against them. We be-

lieve that continuous scaled limit orders focus traders’ attention on the time dimension

of their orders, and thus would make flash crashes less likely. With continuous scaled

limit orders, it is still possible that some traders may disrupt the market by trading large

quantities quickly, whether intentionally or unintentionally. As Black (1971a) observed,

it is a fundamental property of markets that executing large quantities over short peri-

ods of time will create adverse price movements.

Price Speed Bumps. To prevent unreasonable prices at times when new public infor-

mation or extremely urgent orders move prices we propose price speed bumps. The im-

plementation is straightforward. A speed bump begins when the price changes quickly

over a short period of time, for example, by more than one cent per second, plus five

cents, over any period during the day. Suppose the price has been stable at $40.00 per

share for several minutes, at which point a sudden order imbalance makes the tentative

market clearing price fall by $0.20 per share to $39.80. Since the maximum immediate

31



price change allowed is $0.05 per share and $39.95 is well-above the tentative price of

$39.80, the speed bump kicks in. The speed bump stays in effect until the minimum

price it allows, which falls at the rate of $0.01 per second, generates no excess supply.

Excess supply is calculated by hypothetically executing at the minimum allowed price

all orders in the market over the time interval that the speed bump is in effect. At the

moment when the minimum allowed price generates excess supply, the new market

clearing price will be the slightly higher price that clears the market for the entire dura-

tion of the speed bump.

This particular structure for a speed bump has several desirable features. First, if

the price falls dramatically due to new very short-term information, very slow traders

who do not cancel their orders receive price improvement. Second, if a trade with an

extreme urgency triggered the price decline, the speed bump protects a naive urgent

trader from his price impact by allowing new orders flowing into the market to offer

price improvement. Third, the speed bump is hard to game. Suppose a trader places

a large urgent order for the purpose of disrupting trading by stopping price formation,

then tries to cancel the order before the minimum allowed price ever becomes a market

clearing price. Then the cancelation itself is likely to end the speed bump and execute

all of his disruptive trades at the worst possible price for him. The rule discourages

intentionally disruptive as well as naively disruptive trading.

Market Orders. Nowadays a market order is essentially a limit order with an infinite

price for a buy order and a price of $0.01 for a sell order. If a computer receives such an

order, and there are no reasonable bids and offers available, the computer may execute

the order at an unreasonably high or low price. During the flash crash of May 6, 2010,

many market orders for individual stocks were executed at a price of $0.01 even though

the stocks traded at prices like $40.00 per share seconds before and seconds after the

orders were executed.

The possibility of executions at unreasonable prices suggests that market orders

should either not be allowed or, if allowed, should not always be executed immediately

at the best available price. We propose to replace a market order with a continuous

scaled limit order with an automatic speed designed to achieve good quality execu-
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tion over a short amount of human time. For example, a 100 share market order in the

$40.00 stock might execute over 100 seconds, buying at a rate of one share per second

with limit prices close to the market. Then the limit prices adjust gradually to more ag-

gressive levels only if the execution is unusually slowly because prices are rapidly mov-

ing against the order. If a trader wants the more urgent execution of his order, then he

could explicitly enter a continuous scaled limit order with the desired speed parameter,

in which case the trader has himself to blame if his order creates a sudden temporary

distortion in prices.

The way in which market orders are executed has changed over time. With human

trading, a human broker would likely execute a market order by asking for bid and ask

prices, accept the prices if they were competitive in the sense of being consistent with

recent transactions, and ask for prices again if the available bids and offers did not seem

reasonable. Asking for prices several times might take several seconds or even a minute

or two, depending on the speed of recent trading. Our proposal for market orders re-

sembles the way an honest, competent human broker might have handled market or-

ders in the era of human trading.

4 Discussion of Related Literature and Institutions

A persistent theme in market microstructure concerns whether traders demand to trade

immediately as opposed to slowly in the way continuous scaled limit orders are de-

signed to help achieve.

Static Models. In theoretical models, infinite urgency results from assuming that noise

trading is exogenous or assuming that traders act like perfect competitors. Under either

assumption, a given quantity is traded immediately regardless of price.

In the model of Kyle (1989), informed and uninformed traders submit demand sched-

ules which are downward sloping as a result of imperfect competition and risk aversion.

Noise traders mimic infinite urgency by trading an exogenous quantity.

Grossman and Miller (1988) present a model of competitive trading in which mar-

ket makers are continuously present in the market buy traders with a need to hedge
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an inventory shock are not continuously present. If M market makers have the same

risk aversion as one trader, the trader hedges the fraction M/(M +1) of his endowment

shock. This model does not justify artificially stimulating a demand for immediacy by

increasing the tick size. They assume that traders are non-strategic perfect competitors

who believe they do not incur price impact costs. In fact, such costs are substantial and

induce traders to trade gradually to reduce trading costs.

In the one-period model of Kyle and Lee (2017), informed traders also receive en-

dowment shocks. In contrast to the two models above, all traders are strategic. They

show that optimal exercise of monopoly power induces privately informed traders not

to demand urgency. Instead, they hedge only a fraction of endowment shocks to market

impact. Trading less aggressively because of market power does not reduce the infor-

mativeness of prices. Indeed, the opposite is the case; traders trade more aggressively

precisely when they have less price impact and their private information is not reflected

in prices.

Dynamic Models. In the model of Kyle (1985), noise traders demand to trade exoge-

nous random quantities immediately, and market makers supply immediacy by offer-

ing an upward-sloping supply schedule which allows traders to buy or sell significant

quantities immediately. The informed trader does not need to trade with urgency be-

cause he has monopolistic access to private information which does not decay over

time. Since price impact does not depend on time, the informed trader’s price impact

costs do not depend on how urgently he buys or sells. By trading gradually, the informed

trader walks up and down the residual supply schedule like a perfectly discriminating

monopolist.

The noise traders, who trade with infinite urgency, do not take advantage of the re-

duction in price impact costs that would result from trading smoothly. If noise traders

were to trade gradually over an arbitrarily short period of time, they would halve their

price impact costs. Not doing so essentially implies that noise traders do not take ad-

vantage of an arbitrage opportunity. If noise traders were to slow down their trading

slightly, so that their inventories were a differentiable function of time rather than a

Brownian motion, then noise traders would cut their trading costs in half but the mar-
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ket makers would lose money. The equilibrium would collapse and be replaced by

something else. What it is replaced with depends on the noise traders’ motivations for

trading, which might be inventory shocks or private values. Our proposal is designed

to implement a trading equilibrium which would result from the natural operation of

market forces in a trading environment as free of frictions as possible. In particular, we

eliminate frictions associated with minimum tick size, minimum lot size, a costs asso-

ciated with submitting, modifying, and canceling many orders.

Modeling optimal trading strategies with private information in an equilibrium set-

ting is in principle very complicated. Kyle, Obizhaeva and Wang (2017) consider models

of continuous trading on private information, with trade generated by overconfidence

or stochastic private values. There is no exogenous demand for immediacy. The as-

sumption of constant absolute risk aversion and normally distributed random variable

allow to models to have nearly-closed-form solutions for equilibrium prices, quantities,

and trading strategies. Each trader acquires new information continuously and trades

on it with the expectation of making a profit. Traders are willing to take the other side of

one another’s trades because the believe trades of other traders are based on overconfi-

dence or private values. There is an equilibrium in which all traders’ trade slowly. Each

trader submits a continuous demand schedule to by at a rate linear in price, linear in

the trader’s inventory, and linear in the trader’s private valuation of the asset. The de-

mand schedule defines the derivative of the trader’s inventory as a function of the price.

These trading strategies map almost perfectly into continuous scaled limit orders.

Vayanos (1999) considers trading model motivated by privately observed endow-

ment shocks in discrete time. Du and Zhu (2017) consider a similar model in which

investors receive private information about a liquidating dividend. Instead of holding

auctions continuously, both models implement batch auctions by trading take place

at discrete points in time. As the period between batch auctions is reduced, traders’

expect a more liquid market and expand the quantities they expect to trade. For very

frequent batch auctions, the expected quantity traded is approximately proportional to

the length of the period between batch auctions.

Similar intuition describes all of these models. Traders trade gradually in order to

exercise monopoly power optimally to control trading costs. Less aggressive strategies
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reduce market impact costs because the aggressiveness with which a trader buys or sells

signals his private information. When trade is motivated by overconfidence, the price

reveals an average of traders’ valuations immediately. Therefore, price react quickly

even though quantities react slowly.

These equilibrium models imply that a finite tick size, a minimum lot size, or dis-

crete batch auctions alter the underlying equilibrium. The models of Vayanos (1999)

and Du and Zhu (2017) pay particular attention to the welfare properties of chang-

ing the interval between batch auctions. Their models suggest that there may welfare

gains associated with moving from continuous batch auctions (equivalent to contin-

uous scaled limit orders) to auctions held at more infrequent intervals (equivalent to

non-continuous scaled limit orders). When information arrives almost continuously,

the optimal time interval between batch auctions is almost zero.

Institutional Issues. The U.S. Securities and Exchange Commission (SEC) is currently

implementing a “tick pilot” to study the effect of increasing the minimum tick size from

one cent to five cents. The tick pilot proposal is the opposite of ours since it proposes to

increase rather than decrease tick size. The intuition for the tick pilot is that if the bid-

ask spread is wider, there will be more quoted instantaneous depth at the best bid and

offer; this will allow impatient traders to trade toward their desired inventories faster.

In principle, this could be socially desirable if there is demand for immediacy which is

not being met due to market failures. The tick pilot disfavors small traders who want

to buy or sell fewer shares than available at the best bid or offer. It disfavors poorly

informed traders who cannot time their trades based on whether the midpoint of the

bid-ask spread is cheap or expensive. It also creates incentives for dealers to route un-

sophisticated traders’ orders to platforms where the dealer will be the opposite side of

trades that are unprofitable for their customers.

The tick pilot draws intellectual support from research based on the idea that traders

demand immediacy. The idea that market makers provide a risk-sharing service to in-

vestors is unrealistic. A typical investor is an asset management company managing

billions of dollars in assets with a mandate to bear market risk. Market making firms

are nowadays high frequency trading firms which are willing to bear limited risk. For
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example, Kirilenko et al. (Forthcoming) found that high frequency traders took maxi-

mum net long or short positions of about $250 million during the flash crash; they hold

positions on average for two minutes. Baron, Brogaard and Kirilenko (2013) find that

high frequency traders earn about $6 per contract (1 basis point) on trades with small

traders and about one dollar per contract on trades with institutional investors. Earn-

ing 0.1 basis points over two minutes corresponds to earning a return of about 50% for

holding the same risk for an entire year. Is it reasonable to assume that an asset man-

ager with tens of billions in assets under management be willing to pay so much for so

little?

Duffie (2010) suggests that slow-moving capital results from search frictions with

adverse selection. Dealer markets provide an efficient search mechanism when in-

vestors do not pay continuous attention, it takes time to search, intermediaries may

cause bottlenecks. Our proposal solves the inattention problem by allowing one mes-

sage to implement a near optimal gradual trading strategy. If all traders are contin-

uously present in the market and can use any trading strategy, they will likely trade

gradually over time.

Glosten (1994) argues that a consolidated, competitive limit order book with con-

tinuous prices and quantities dominates other types of exchanges. In his one-period

model, time is not divisible. This leads to a finite equilibrium bid-ask spread in which

very small orders incur a positive cost. We believe that allowing the limit order book to

evolve continuously in time will drive the bid-ask spread on infinitesimally small trades

to zero. Indeed, this interpretation is almost immediately implied by the models of Kyle,

Obizhaeva and Wang (2017), Vayanos (1999), and Du and Zhu (2017).

Kyle and Viswanathan (2008) argue that two goals of a markets are to provide mar-

ket liquidity and prices conveying economically useful information. Continuous scaled

limit orders deter traders from trading on high-frequency information and from ex-

ploiting allocation rules to gain time or price priority. By reducing trading costs for

traders who acquire long-term information, continuous scaled limit orders both in-

crease market liquidity and allow prices to contain more long-term information.
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5 Conclusion

Continuous scaled limit orders make it possible to implement Fischer Black’s vision of

continuous electronic markets without requiring traders to place enormous quantities

of limit orders. Continuous scaled limit orders do not eliminate price impact costs,

which are a natural feature of markets in which adverse selection is important. Con-

tinuous scaled limit orders dramatically reduce the profits that high frequency traders

make by using their speed to exploit time priority, price priority, large tick size. This en-

hances economic efficiency by reducing incentives to invest in costly technology to win

playing a zero-sum game. Other policy ideas to reduce the high-frequency-trading arms

race include frequent batch auctions proposed by Budish, Cramton and Shim (2015)

and random message processing delays proposed by Harris (2013). Unlike these pro-

posals, continuous scaled limit orders directly address the source of underlying prob-

lem, the perverse incentives created by limit order discreteness in price, quantity, and

time.
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Abstract 
 

Corporate bonds face institutional rigidities from the division between investment grade and non-
investment grade clientele. Examining how rigidities affect returns requires a methodology that takes 
the infrequent trading of bonds into account. Using a  methodology that modifies the repeat sales 
method by incorporating bond characteristics, subsequent to a bond rating crossing the 
investment/non-investment boundary, we find the transaction price for the bond shows significant 
negative (or positive) abnormal returns over time, followed by a partial recovery. We further show that 
a structural shift occurred in these reactions after the financial crisis. 

 



 

Many corporate bond portfolio managers’ investment strategies depend critically on bond rating 

categories, in particular, the categorization between investment grade and non- investment grade (high-

yield or junk) bonds. Because many bond portfolio strategies have a targeted benchmark index and 

specify limits on the proportion of each category in the portfolio, if a bond’s rating approaches or 

crosses the boundary between investment and non-investment grade, the manager often has an 

imperative or an incentive to sell the position. At the same time, institutions on the other side of the 

divide should be ready to serve as the counterparty for the sell position, but are not always willing to do 

so. This institutional rigidity combined with the low levels of liquidity in the bond market can lead to 

disruptions when a bond’s rating changes. In particular, if the rating change pushes a bond across the 

investment/non-investment grade boundary, the desire by one market segment to sell may not be met 

equally by a desire by the other market segment to buy, creating price pressure, a result similar to the 

mutual fund fire sales documented in the equity markets. Such fire sales result in negative abnormal 

returns on the affected stocks for a period of time, followed by a partial rebound.1 In this paper we 

address the question of how institutional rigidities caused by bond ratings influence the bonds’ returns 

and the extent to which they do so.  We hypothesize that the rating changes can lead to long-lived price 

adjustments due to the institutional rigidities, which will then be partially if not completely reversed. 

 To test our hypotheses we use the Trade Reporting and Compliance Engine, more commonly 

known as TRACE, which since 2002 has provided publicly available bond transaction data.2  However, 

important empirical challenges exist in analyzing corporate bond transactions. The first arises from the 

low liquidity levels in the markets given that we find most corporate bonds trade less than once a 

month, if at all. Our hypotheses are focused on short run serially correlated returns, which may be 

                                                             
1 Fire sales in the stock market, due to mutual fund flows have generated a great deal of interest. Papers by Coval 
and Stafford (2007), Ali, Wei and Zhou (2011), and Dyakov and Verbeek (2013) among others examine this issue. 
These papers identify equity fire sales by a pattern of serially correlated returns followed by a partial recovery. We 
suggest a similar pattern of returns can be induced by bond market institutional rigidities. 
2 See http://www.investopedia.com/terms/t/trace.asp for a brief history of TRACE’s development. 

http://www.investopedia.com/terms/t/trace.asp
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difficult to measure with this lack of liquidity. A further empirical challenge is that the bond market 

illiquidity poses impediments to establishing a benchmark index with which abnormal returns can be 

measured. We provide a novel approach to the problem by developing an econometric model that 

combines two techniques from real estate research, a literature that faces similar data issues. The 

resulting returns are then used to determine whether the institutional rigidities, along with the limited 

liquidity, play a role in short-term bond returns and whether other aspects of bond portfolio manager 

trading strategies mitigate or exacerbate the institutional rigidities.  

Our methodology is based on the repeat sales regression used in the real estate literature to 

deal with two characteristics common to the both the bond and the real estate markets, heterogeneous 

assets that trade infrequently (e.g., Goetzmann, 1992; Francke, 2010; and Peng, 2012). This technique 

calculates the returns between pairs of transactions on the same asset. Given the infrequency of sales, 

the resulting returns vary in length and cover different periods of time.  To create an equally-weighted 

index, the returns are then regressed on a set of indicator variables representing the return per period.3  

However, the broad equally-weighted indices usually employed in the repeated real estate sales 

regressions would be insufficient for corporate bond return analyses because bond returns vary 

systematically with bond characteristics such as issue size, credit quality, industry, years to maturity and 

other factors. Although with stocks, such a problem is handled to some degree by estimating a factor 

model and then adjusting the benchmark returns accordingly, that approach would be impractical with 

securities that trade as infrequently as do bonds. Consequently, we create a custom index for each bond 

by estimating a “characteristic-weighted repeat sales index” in which we weight the repeat sales data by 

characteristic distance.4 Consider a bond i with a vector of characteristics Xit as of date t. Another bond j 

                                                             
3 For example if a model contains returns for dates 2 through 8 and a house sells on dates 3 and 5 it would have a 
dummy of one for returns 4 and 5 and zero elsewhere. Standard modifications account for heteroskedasticity in 
the data. 
4 This modification borrows from a separate strand of the real estate literature on hedonic models (Meese and 
Wallace (1991)). 



3 
 

in the data set has a characteristic vector Xjt. The model then calculates a Euclidean distance between 

the characteristic vectors and reweights the data accordingly. Thus, data from bonds with characteristics 

similar to the one in question are given larger weights in the regression model than those further away. 

Using this technique we generate a set of daily benchmark returns for each bond. These are then 

subtracted from the observed returns on the bond at issue to generate a set of abnormal returns (AR).  

When analyzing stock data, calculated abnormal returns typically span a constant length of time, 

for example, a day or a month. However, for bonds the irregular time between observed trades means 

that the estimated index-adjusted ARs span various lengths of time. To account for this a second 

regression is run on the bond-by-bond ARs to estimate daily ARs for the set of bonds impacted by the 

event in question. The result is an estimated daily AR around the event date and we test the null 

hypothesis that the sum of the regression coefficients (CARs) equals zero. 

The results from the estimated CARs over the sample period indicate that when a bond is 

downgraded from investment to non-investment grade, the ARs over the following days approximate 

−130 basis points (bps), a decrease in price that is both statistically and economically important. 

However, over the next few weeks the bonds gain back almost half their loss, about 60 bps. Downgrades 

to bonds that were already non-investment grade do not have as strong a price effect with a post 

announcement CAR of about −40 bps over the next week, which largely reverses by the end of the 

second week after the announcement. Bonds in the investment grade category that face downgrades 

but do not cross the investment/non-investment grade border have little market reaction either 

immediately or in the weeks that follow.  

Thus, the institutional rigidity created by the investment/non-investment grade boundary has an 

important effect on bond returns, leading to returns that stray, for a time at least, from a random walk. 

One can rank the negative initial price reactions to a downgrade and subsequent recovery from smallest 
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to largest: bonds starting and ending as investment grade, bonds starting and ending as non-investment 

grade and finally bonds that cross from investment to non-investment grade. This pattern is consistent 

with the hypothesis that the bonds’ price pressure from investment grade funds takes some time to 

ameliorate when they are forced out of an issue and have to wait for non-investment grade demand to 

come in to take possession of it. However, there are clearly other forces at work as well since the post 

negative return and recovery reaction is also seen, if to a much smaller degree, for down-graded bonds 

that are already in the non-investment grade category. 

Upgrades in which the bonds move across the investment/non-investment grade boundary have 

a more muted effect on bond returns than the border-crossing downgrades, but they still have 

significant returns. Specifically, bonds moving from the noninvestment to investment grade category 

experience small positive CARs in the first 2 weeks following the announcement and going out 8 weeks 

the returns are closer to 70 bps. In contrast, bonds that remain in their rating class after an upgrade see 

little if any change in value even after 8 weeks have passed. Again, the contrast in these patterns is 

consistent with institutional rigidities having an impact on bond returns. The fact that there is no 

significant difference in returns for upgrades in the same rating class, but that crossing the border from 

non-investment grade to investment grade provides significant increases in returns suggests that part of 

this return comes from the fact that the bonds have to transfer one set of potential investors, non-

investment grade funds, to another, the investment grade funds. Since the latter has not had any reason 

to hold the bonds and thus research them prior to the rating change, it can take them some time to 

absorb the issue. This kind of friction can produce the return patterns seen in the border-crossing 

upgrades. 

One aspect of the investment grade/non-investment grade rigidities in the financial markets 

allows us a unique identification when the market segmentation effects are likely to be most severe. 

Benchmark indices vary over types of bondholders. In particular, investment grade bond mutual funds 
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tend to use Barclays indices as benchmarks, while non-investment grade bond mutual funds tend to use 

the Bank of America Merrill Lynch (BofAM) indices. The two indices do not score bonds equivalently or 

at the same time, which can result in a set of bonds, that for at least a period of time are dropped by 

one index provider but not included by the other. We dub these observations as “orphan” bonds, the 

bonds that experience a rating downgrade that drops the bonds out of the investment grade category 

using Barclays scoring rule, but not under the BofAML rule. As a consequence, these bonds lack a natural 

constituency since they are not in the benchmark index used by either investment or non-investment 

grade funds. That is, prior to the downgrade institutional investment grade funds would be the natural 

holders of these issues. Post announcement they no longer are. At the same time the non-investment 

grade funds do not have the bonds in their benchmark either. Thus, because of the difficulty in finding 

buyers, prices for these bonds keep falling as markets attempt to clear. This unique status provides a 

particularly appropriate test of whether institutional rigidities influence bond returns. We find the 

evidence supporting our hypotheses to be quite strong as the orphan bonds lose more than 500 bps of 

their value over the 8 weeks that follow the downgrade announcement.  

Our hypotheses and results that rating changes have effects on bond returns run counter to 

some of the earlier literature on the impact of ratings changes. For example, Weinstein (1977) finds that 

rating changes follow bond price declines (with a 6-month lag), but that there was no impact after the 

ratings change, a pattern that has been replicated in numerous subsequent studies. The conclusion from 

this literature has been that bond rating changes reflect past market performance but correlate weakly, 

if at all, with future risk-adjusted returns. However, the earlier authors did not have access to bond 

transaction prices, which only became publicly available in 2002. Consequently, authors accounted for 

the missing trade data through techniques such as using data from pricing services (e.g., Wansley, 

Glascock and Clauretie, 1992) or trader quotes (e.g., Warga and Welch, 1993). The problem with such 

techniques is that market makers and pricing services may quote stale prices on bonds that have not 



6 
 

traded for some time and that are unlikely to do so in the near future. Moreover, quotes are not price 

commitments and at most are only firm for a trivial volume. For a meaningful lot size, dealers may only 

feel compelled to produce accurate quotes after the arrival of a bona fide transaction query. This can 

easily result in what looks like return momentum following a rating change, even if there is none. 

Several later studies (Hite and Warga, 1977; May 2010; Ellul, Jotikasthira, and Lundblad 2011) 

document some effects after a bond downgrade, but they have encountered other problems. First, 

benchmarking poses a problem for any study seeking to estimate bond returns. One solution has been 

to use commercial benchmarks as in Hite and Warga (1997). They find some price drift in the month 

before and after the announcement of a bond downgrade. The abnormal returns in their econometric 

model are net of a Lehman Brothers index that tracks bonds with a similar maturity and rating level. 

However, the firms calculating the benchmark returns have the same problem anyone else seeking to 

analyze bonds have – a lack of pricing data because bonds trade very infrequently.5  

May (2010) uses the TRACE data to examine bond returns by value-weighting all bonds that 

traded on days t and t−1 with the same rating and broad maturity class, thus, avoiding the problem of 

using non-price estimates. He finds that both downgrades and upgrades impact bond returns in the two-

day event window around the change with downgrades having the stronger economic impact. However, 

since most bonds do not trade even once a week, let alone daily, such a rule drops most issues from the 

database. Further, since those bonds that do trade frequently tend to be the larger, more liquid, and 

more recent issues, this obviously skews, and potentially biases, the indices created from them and 

potentially any empirical analysis based on these indices.  

                                                             
5 Commercial firms work around this problem by calculating “matrix prices” to fill in for the missing data. However, 
Warga and Welch (1993) show that these prices often lag the market by a substantial length of time. Furthermore, 
when looking at rating changes across the investment-noninvestment boundary, the bond in question will be at 
the edge of any benchmark based on a particular rating class. This may make the benchmark a poor representative 
of how the bond would have done absent the event in question. 
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The study of insurance company transactions and prices around bond rating changes by Ellul, 

Jotikasthira, and Lundblad (2011) is the most similar to our paper. Our paper differs from theirs in a 

number of ways that add a unique contribution. First, and most importantly, we provide insights into 

the structural changes in the bond markets that occurred after the financial crisis. Moreover, our 

methodology of marking to a basket of similar securities rather than marking to model, allows for 

additional insights. In addition, we have a fuller sample of bonds and their trading because our data 

contains all bond transactions rather than just transactions with an insurance company on one side. As 

Bessembinder, Maxwell and Venkataraman (2006) point out, although insurance companies hold a large 

proportion of corporate bonds (estimated by Schultz (2001) to be about 40%), they only account for 

12.5% of corporate bond trading. Thus, we have a much larger sample for examining abnormal returns 

since their analysis covers 384 bonds while ours covers over 8,000 bonds.6 Finally, we examine crossing 

the investment/noninvestment grade boundary from both directions.  

A further differentiation of our paper from previous research is that we consider how behavioral 

regularities in trading such as trend chasing, positive relationship between liquidity and return, and 

reaching for yield may extend or mitigate the effects from the ratings change. That is, in analyzing the 

effects of the institutional rigidities, one needs to also account for the effects from these trading 

behaviors.   

The paper is structured as follows: in Section I we discuss the constraints faced by institutions 

that lead to rigidities in their willingness to hold certain issues. We next provide an overview of the data 

In Section II and discuss bond liquidity and document how infrequently most issues trade in Section III. 

In Section IV we contrast the scoring system used by Barclays and BofAML. In Section V we develop the 

                                                             
6 Other articles have examined bonds around the investment grade/non-investment grade boundary in order to 
study other issues such as the effects on firms’ investments (Chernenko and Sunderam, 2012), the purpose of 
credit ratings (Bongaerts, Cremers and Goetzmann, 2012), and how index labeling affects the bonds (Chen, 
Lookman, Schürhoff and Seppi, 2014). 



8 
 

econometric model used to estimate bond ARs and CARs and present the results in Section VI for various 

rating changes and various sample periods. We provide our conclusions in Section VIII.  

I. Institutional Constraints 
 

Corporate bond portfolio managers have a variety of investment goals. Some invest across all bonds, 

regardless of rating. Many, however, restrict their holdings to either investment grade or high yield 

issues, resulting in somewhat segmented markets. Whether a bond belongs in one category or another 

generally depends on the ratings assigned the bond by the rating agencies, the most prominent of which 

in the U.S. are S&P, Moody’s and Fitch.7 Examples of these restrictions can be found in the prospectuses 

of corporate bond mutual funds. The Calvert Long-Term Income Fund (ticker CLDAX) states within its 

“Principal Investment Strategies” section, 

The Fund typically invests at least 65% of its net assets in investment grade, U.S. dollar-
denominated debt securities, as assessed at the time of purchase. A debt security is investment 
grade when assigned a credit quality rating of BBB- or higher by Standard & Poor’s Ratings 
Services (“Standard & Poor’s”) or an equivalent rating by another nationally recognized 
statistical rating organization (“NRSRO”), including Moody’s Investors Service or Fitch Ratings, or 
if unrated, considered to be of comparable credit quality by the Fund’s Advisor.8 

In theory, this means the fund can invest in any bond that one of the rating agencies has designated as 

investment grade and hold some non-investment grade issues as well. However, an added factor that 

could push bond portfolio managers to focus on investment grade bonds is that these managers are not 

oblivious to benchmark risk. Holding bonds outside the benchmark imposes significant performance risk. 

This incentive may be especially strong in the bond market where an individual bond’s upside potential 

is quite limited, although its downside is not. Thus, the benchmark used to assess a bond’s portfolio 

performance may also influence the manager’s desire to hold or shun a particular issue. For example, 

                                                             
7 For expositional clarity the investment, noninvestment and distressed classifications will be referred to as rating 
categories. 
8 Page 34. 
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the benchmark for CLDAX is Barclays Long U.S. Credit Index. (Our search through a number of 

investment grade fund prospectuses shows this is typical.)  

The prospectuses of high yield funds also provide similar disclosure regarding the restrictions on 

their holdings. For example, Calvert’s High Yield Bond Fund (ticker CYBAX, CHBCX and CYBYX depending 

on class) states 

Under normal circumstances, the Fund will invest at least 80% of its net assets (including 
borrowings for investment purposes) in high yield, high risk bonds, also known as “junk” bonds. 
The Fund will provide shareholders with at least 60 days’ notice before changing this 80% policy. . 
. . When a corporation issues a bond, it generally submits the security to one or more nationally 
recognized statistical rating organizations (“NRSROs”) such as Moody’s Investors Service 
(“Moody’s”) or Standard & Poor’s Ratings Services (“Standard & Poor’s”). These services evaluate 
the creditworthiness of the issuer and assign a rating, based on their evaluation of the issuer’s 
ability to repay the bond. Bonds with ratings below Baa3 (Moody’s) or BBB- (Standard & Poor’s) 
are considered below investment grade and are commonly referred to as junk bonds. Some 
bonds are not rated at all. The Advisor determines the comparable rating quality of bonds that 
are not rated. 9 

As with the earlier income fund examples, the prospectus states the fund’s benchmark which in this case 

is the BofA Merrill Lynch High Yield Master II Index. (After reviewing a number of prospectuses this 

benchmark appears to be the industry standard for high yield funds.) 

Barclays and BofA Merrill Lynch seem to run the industry standard benchmarks, making the list 

of bonds they either do or do not include of upmost importance to numerous fund managers. Since 

these are benchmarks, the firms publish rules governing when a bond is or is not included. For the 

Barclay investment grade indices the rule governing inclusion is: 

Securities must be rated investment grade (Baa3/BBB-/BBB- or higher) using the middle rating 
of Moody’s, S&P and Fitch; when a rating from only two agencies is available, the lower is used; 
when only one agency rates a bond, that rating is used. In cases where explicit bond level ratings 
may not be available, other sources may be used to classify securities by credit quality:  

• Expected ratings at issuance may be used to ensure timely index inclusion or to properly 
classify split-rated issuers.  

                                                             
9 Page 26. 
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• Unrated securities may use an issuer rating for index classification purposes if available. 
Unrated subordinated securities are included if a subordinated issuer rating is available. 

The BofA Merrill Lynch (BofAML) index, however, uses a somewhat different rule based on an average 

score from S&P, Moody’s and Fitch. Table 1 displays the numerical score assigned to each rating. After 

calculating a score BofAML then rounds out the result, rounding up numbers ending in 0.5.10 For 

example, a bond has a rating from S&P of BBB2, from Moody’s of Baa3 and none from Fitch. Then the 

score is (9+10)/2 = 9.5 and this is rounded up to 10. In a case like this, the result is identical to what the 

algorithm used by Barclays produces. However, there are cases where they are not. Consider a bond 

without a Fitch rating but with scores from S&P of BBB2 and Moody’s of Ba1. In this case, the average 

score is 10 based on the BofAML rule. However, the Barclays algorithm yields an 11 since it takes the 

lower score when there are just two. While scoring discrepancies like this are not common, they do 

occur, from which we derive tests of orphan bonds in Section G. 

A. Institutional rigidities and bond trades 

A primary cause for institutional rigidities in the bond markets is the existence of a boundary based on 

bond ratings for portfolio managers’ investment strategies. When a security drops from a portfolio’s 

benchmark index because of a ratings change, managers have two reasons to sell the issue. First, as 

noted earlier, bond portfolios, particularly bond mutual funds, typically have clauses restricting the 

extent to which they can hold securities outside their primary strategic universe. As examples, consider 

the rules imposed on Oppenheimer’s Corporate Bond Fund (OFIAX), T. Rowe Price’s Corporate Income 

Fund (PRPIX) and Calvert’s Income Fund (CFICX). These funds are investment grade corporate bond 

funds that include holding restrictions in their prospectuses. OFIAX limits its high yield holdings to 20% 

of its portfolio, PRPIX has a 15% limit and CFICX has a 35% limit. High yield funds have similar types of 

restrictions on their holdings of investment grade bonds. For example, both Oppenheimer’s Global High 

                                                             
10 We thank Preston Peacock from BofAML for providing us with the details regarding how they round scores 
ending in 0.5. 
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Yield Fund (OGYAX) and T. Rowe Price’s High Yield Fund (PRHYX) limit their investment grade holdings to 

20%.11 Calvert’s High Yield Bond Fund (CYBAX) does not have a strict limit, stating that investment grade 

bonds are “permitted but not a principal investment strategy.” Thus, for either type of fund, a bond with 

a ratings change will move out of the fund’s primary investment category, which then adds to the 

weight of the fund’s portfolio that the prospectus limits, giving the fund manager a requirement or an 

incentive to sell the issue. 

 Beyond the prospectus limits, the potential benchmark tracking error created by the removal of 

the bond from the index also provides fund managers an incentive to sell the bond issues that move 

outside their mandate. For example, suppose a bond constitutes 5 bps of the index and 7 bps of a fund’s 

portfolio, which means relative to the benchmark the fund is long the issue by 2 bps. If the bond is 

removed from the index, the fund is suddenly long the issue relative to the benchmark by 7 bps, a 

nontrivial swing that positions the fund from slightly bullish in the issue to very bullish. The fund 

manager can then achieve a position in line with the benchmark by selling the issue. Moreover, funds 

that took a relatively bearish position (under 5 bps) may have an even stronger incentive to sell. What 

was once a short position relative to the index is suddenly long. 

B. Hypotheses on the Effects of Rating Changes  
 

In this section we develop hypotheses regarding bond rating changes in two diverse circumstances, (1) 

the rating remains within the bond’s category, that is, before and after the ratings change the bond is 

either an investment grade or non-investment grade bond; (2) the rating change moves the bond across 

the investment grade/non-investment grade boundary. Our primary focus revolves around the latter, 

that is, the effects of institutional rigidities on bond trading during the downgrades and upgrades due to 

the restrictions regarding the category of bonds a portfolio manager can hold, which should play a major 
                                                             
11 Although Oppenheimer qualifies this restriction as only applying “under normal market conditions” the fund firm 
does not further define what this means.   
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role when a ratings change forces a bond across categories. The institutional rigidities should not affect 

bond returns when a rating change leaves a bond’s broad ratings category unchanged.  

 Complications for testing the hypotheses arise because of systematic trading effects from 

microstructure models in which markets have limited liquidity due to an intermediary’s inventory 

concerns.12 In such models, large buys or sales are spit up over time and lead to serially correlated 

returns. Prices ultimately overshoot their long run equilibrium value and then partially reverse back. 

Further complicating the tests are several documented behavioral regularities in institutional investor 

trading that need to be considered as these regularities may extend or mitigate the trading effects from 

the ratings change: trend chasing, positive relationship between liquidity and return, and reaching for 

yield.  

 Trend Chasing: Evidence shows that when prices increase for a security, some investors engage 

in trend chasing by adding the security to their portfolio or increasing their current holdings. The 

opposite effect tends to occur after a price decline. Evidence that institutional investors behave this way 

is extensive (Grinblatt, Titman and Wermers (1995), Wermers (1999), Badith and Wahal (2002) and Alti, 

Kaniel and Yoeli (2012)).  

 With regard to bond funds, the trend-chasing hypothesis suggests prices should overshoot their 

equilibrium values after a ratings change; since they tend to follow price moves. On the way up trend-

chasing funds will want to buy, but the trend chasing should restrict the supply of sellers. The opposite 

would hold when bonds lose value. The resulting pattern from the trend-chasing hypothesis is that 

returns should be serially correlated for some time and then partially reverse. 

                                                             
12 A general discussion of these models can be found in Madhavan’s (2000) survey article. A particularly relevant 
example to the current paper can be found in Keim and Madhavan (1996). In their model a block sale comes 
through that overwhelms the market’s short term liquidity provision. When that happens returns exhibit positive 
serial correlation over time as the position is worked off. Once the block is exchanged, prices will have generally 
overshot their equilibrium value and then move in the opposite direction for a time. 
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 Liquidity and Past Returns: A related phenomenon is that higher returns lead to higher future 

liquidity (Chordia, Roll and Subrahmanyam (2001) and Hameed, Kang and Viswanathan (2010)). If an 

institution wants to sell a security whose price has recently risen, there should be a smaller temporary 

price impact than if the same sized sale occurred following a price drop. Thus, for bond upgrades 

liquidity should increase, which would reduce the degree to which returns are serially correlated. This 

phenomenon should also reduce or eliminate any tendency for prices to overshoot their equilibrium 

value. For bond downgrades, the opposite should be true. 

 Reaching for Yield: Another related hypothesis with behavioral elements is based on the 

evidence that many institutional investors appear to chase yields. For example, if there are two AA 

bonds and one has a slightly higher yield, the investor would be more likely to hold the higher yielding 

one. Evidence in support of this tendency is provided in studies of the trading of insurance companies 

(Becker and Ivashina (2015) and Merrill, Nadauld and Strahan (2015)) that finds these investors appear 

to overweight relatively high yielding securities within the rating classes they hold. Thus, if institutional 

investors are reaching for yield, they would be natural buyers for bonds that move categories on 

downgrades. Similarly, they would be sellers for bonds that upgrade to a new category. This type of 

trading behavior should help offset the impact of trend chasers when an upgrade occurs. 

The above discussion can be summarized as: 

Hypothesis 1: (a) Following a ratings downgrade in which a bond remains in either the investment grade 

or non-investment grade category, i.e., its initial broad ratings category, trend chasing and liquidity 

provision suggests we should observe serially correlated returns on the bond and its prices should 

overshoot their equilibrium value. Reaching for yield will mitigate this. (b) For upgrades in which the 

bond remains in its ratings category, trend chasing should induce serially correlated returns and prices 

that overshoot their equilibrium values. Both liquidity provision and reaching for yield should mitigate 
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this tendency. Overall, serial correlation and overshooting should be more pronounced for downgrades 

than upgrades. Institutional rigidities should have little effect for bonds that remain in their original 

ratings category after a change in rating. 

When a bond switches from one ratings category to another, trend chasing and liquidity provision are 

likely to have the same influence on prices that they do when a bond remains within its original broad 

ratings category. However, this is not true for portfolio managers reaching for yield or those constrained 

by institutional rigidities. The combination may even exacerbate their individual influences. 

When a bond rating switches from investment to non-investment grade, the bond goes from 

being among the highest yielding bonds in its ratings category to among the lowest. For investment 

grade funds reaching for yield, these bonds are initially attractive. However, after the downgrade they 

either have to sell out of the position or have strong incentives to do so because of the benchmark 

deviation they will face if they continue to hold a bond out of their benchmark. Moreover, among the 

bonds’ potential buyers, the high yield portfolio managers reaching for yield will find these bonds to be 

particularly unattractive because the bonds will be the lower yielding in their new category. The 

combination of the investment grade bond portfolio managers wanting to sell and the high yield 

managers being less interested leads to net selling pressure and thus, may lead to serially correlated 

returns and prices that overshoot their equilibrium value. In contrast, upgrades that switch a bond’s 

rating category cause it to go from being among the lowest yielding in its category to among the highest. 

While the bond was initially unattractive to high yield funds that are reaching for yield it is now 

particularly attractive to investment grade funds that wish to do so. 

Hypothesis 2: (a) When a rating downgrade causes a bond to switch into a new ratings category the 

institutional rigidity will work in the same direction with the three regularities, which suggests we should 

observe serially correlated returns and prices that overshoot their equilibrium values. (b) When a ratings 
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upgrade causes a bond to switch into a new ratings category, reaching for yield should help reduce the 

degree to which returns are serially correlated and prices overshoot their equilibrium value. (c) Overall, 

the greatest degree of serial correlation and price overshooting should occur for downgrades that switch 

a bond’s ratings category. 

II. Data 

The tick-by-tick bond prices are obtained from the TRACE database for the period beginning July 1, 2002 

and ending on June 30, 2015. The reported volume for each transaction is truncated, with non-

investment grade bonds being reported as $1 million plus for transactions over $1 million (in par value). 

The truncation for investment grade bonds is higher; trades in excess of $5 million in par value are listed 

as 5 million plus.13 We convert the prices and reported volumes into daily closing prices through the 

following algorithm. If a bond trades just once during the day we use that trade price as the closing 

price. If the bond trades multiple times during the day, we use the last trade as the closing price 

provided the trade volume is large enough to yield a truncated value (an institutional sized trade). 

Otherwise the closing price we use is derived by computing a size-weighted average of the last three 

trades in the day.14 

Bond characteristics are drawn from the Mergent Corporate Bond Securities Database. This 

database reports a number of bond characteristics including the bond’s ratings by the major rating 

agencies, call schedules, and coupon frequency among others. To be included in the final sample, a bond 

must be rated by S&P, Moody’s or Fitch and also must conform to the following terms:  (1) make semi-

annual coupon payments, (2) accrue interest on a 360 day year,  (3) have USA as the country of domicile, 

                                                             
13 See the TRACE data guide offered by the Wharton Research Data Services at https://wrds-
web.wharton.upenn.edu/wrds/query_forms/variable_documentation.cfm?vendorCode=TRACE&libraryCode=trace
&fileCode=trace&id=ascii_rptd_vol_tx.  
14 If there are only two trades, then they are size weighted and averaged to produce a closing price. Trades dated 
on weekends and bond holidays are dropped from the database. 

https://wrds-web.wharton.upenn.edu/wrds/query_forms/variable_documentation.cfm?vendorCode=TRACE&libraryCode=trace&fileCode=trace&id=ascii_rptd_vol_tx
https://wrds-web.wharton.upenn.edu/wrds/query_forms/variable_documentation.cfm?vendorCode=TRACE&libraryCode=trace&fileCode=trace&id=ascii_rptd_vol_tx
https://wrds-web.wharton.upenn.edu/wrds/query_forms/variable_documentation.cfm?vendorCode=TRACE&libraryCode=trace&fileCode=trace&id=ascii_rptd_vol_tx
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(4) list its denomination and payments in US dollars (this excludes “Yankee” bonds), (5) have a type of 

PSTK, PS, EMTN, MBS, TPCS or CCOV and (6) have an industry code below 40.15  

III. Bond Liquidity 
 

The limited trading in the corporate bond market means that market prices are unavailable to either 

estimate factor loadings or a bond’s current market value. How problematic this is depends on how 

infrequently a trade takes place. In Table 2 we provide some indication of just how serious this issue is in 

the corporate bond market. The table displays, by percentile rank, what fraction of days per year a bond 

trades. (Throughout the paper, “days” refers to trading days, i.e., when the market is open.)  

Table 2, summarizes a measure we term “fraction of days traded” (FDT). Because we only 

observe prices when a bond trades, we do not have precise information on the time at which the bond 

enters or leaves the market. Consequently, to assess trading frequency we use the following algorithm. 

A bond B is included in year Y’s data if it trades in any day during or prior to year Y and during or after 

year Y. The FDT in year Y for bond B then has as its numerator, the number of days bond B traded in year 

Y. The denominator contains the number of trading days in year Y on or after the first trading day and on 

or before the last trading day observed for B in the entire dataset. Some examples:  

• Example 1: A bond trades in 2005 and 2007 but not 2006. FDT(2006) = 0/total trade 

days in 2006 = 0.  

• Example 2: A bond trades on July 11, 2006 and July 12, 2006 but never before or after. 

FDT(2006) = 2/2 = 1, since total trade days during 2006 between the first and last trade 

date in the bond is 2. 

                                                             
15 This excludes bonds issued by foreign agencies, foreign governments, supranationals, the U.S. Treasury, a U.S. 
Agency, a taxable municipal entity or is in the miscellaneous or unassigned group. 
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This measure is designed to overstate just how frequently a bond trades during the year. The number of 

days built into the denominator assumes that once a bond’s final trading date is observed the bond 

leaves the market and can never trade again. Similarly, it assumes a bond is unavailable for trade prior 

to the first date it appears in TRACE. This is clearly untrue. Unless the bond has been called or matured 

trading can take place, even if trades do not occur. The point is to provide some intuition regarding how 

infrequently bonds trade and this measure provides an upper bound on that concept.  

Within each year the bonds that are part of that year’s sample are ranked by their FDT. Table 2 

displays the percentile break points, in percentage terms. Rows represent years for which a full year of 

data is available. Many of the lower percentile cells contain zeros due to bonds that trade prior to and 

after the year in that row, but not in that year. The early and late years have entries in all columns due 

to how end point problems impact the FDT calculation. If a bond trades in 2001 and 2004, it is not 

included in the 2003 row since the earlier 2001 trade occurred prior to the initial date for the Trace 

database. Similarly, a bond that trades in 2013 and again in 2016 will not be included in the 2014 data as 

a 0, since the 2016 observation occurs after the end period for the sample. However, the important 

point to note is that even with this very conservative measure of trading frequency the median bond 

trades about 12 or 13 days during the average 254 trading days in a year, which amounts to only about 

5% of the available trading days.  

Panel B in Table 2 reports the FDT in a different way by measuring time by the number of years 

since a bond first trades (t0). The year 1 label is applied to all trades from t0 to its first anniversary. For 

example, if a bond first trades on July 11, 2006 all trades in that issue up to July 10, 2007 are aggregated 

into year 1. The denominator equals all trading days between July 11, 2006 and July 10, 2007. The 

figures in Panel B across all years shows just how infrequently most issues trade both initially and over 

time. The median value is just 8.59% during year 1 and falls off to 3.12% by year 4. Even bonds with an 

FDT score at the 75 percentile, trade on just under 20% of the available trading days in their first year 
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and by year 4 are down to just under 10%. It is only at the 95% level that the drop off in FDT becomes 

somewhat less severe over the years. However, even at this level it goes from 37.5% down to 23.5% 

from years 1 to 4. If the criteria for calling an issue liquid is that it averages close to 1 trade a week, then 

only bonds in the top 1% of all issues can be said to be liquid past the 5th anniversary of their first trade.  

IV. Rating Changes 

The hypotheses developed earlier are based on the idea that crossing the boundary between 

investment and non-investment grade leads to different market reactions than when ratings change 

within each classification. The drop in a bond’s liquidity over time, as indicated in Table 2, suggests 

rating changes that occur farther from the initial issue date will be accompanied by relatively thin 

transactions data. We next examine whether this holds in our data by collecting any rating changes that 

lead a bond to move across the investment/non-investment grade boundary. Panel A of Table 3 reports 

these numbers by calendar year and Panel B reports them by the number of years since the bond was 

first rated. Panel A shows a clear variation across years. Prior to 2011, downgrades occur more 

frequently than upgrades. Clearly, the financial crisis led to a large number of downgrades in 2008 and 

2009. From 2011 to 2013 upgrades became more common, with a particular jump in their occurrence in 

2013, although in 2014 there were a few more downgrades than upgrades. Panel B of the table shows 

that many of the rating changes leading to a change in classification to or from investment and non-

investment grade occur years after a bond has been issued. Combined with the evidence in Table 2, this 

occurs after trading in the bond has likely dropped significantly. Thus, estimates of how rating changes 

impact bond returns will necessitate making up for the lack of daily pricing data. 

Given the increased motivation for trading in bonds that cross between investment and non-

investment grade, the question arises as to whether the additional trading is sufficient to employ the 

return estimates commonly used on stock data to the bond data at hand. To check this we tabulate the 
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FDT over the months and days following a rating change that pushes a bond across categories and 

report the results in Table 4. In the months prior to a rating change, consistent with previous evidence 

showing that information precedes bond rating changes, the bonds initially in the investment grade 

group trade more often than their peers; on about 20% of all days. Those initially in the non-investment 

grade group trade only about 6% or 7% of the time until the month prior to being upgraded. In the prior 

month trade nearly doubles in frequency to around 12% or 13%. In the months following a downgrade 

from investment to non-investment grade a typical bond’s FDT score drops significantly. After about 6 

months these bonds seem to trade about as often as the non-investment grade bonds that were 

ultimately upgraded. The reverse is also true of those bonds upgraded from investment to investment 

grade. Their FDT scores jump. Six months prior to the rating change they have a FDT score of about 6% 

and after the rating change it goes to about 15% and remains there for at least 6 months. These patterns 

are consistent with the general observation the bond market liquidity declines with the rating (Han and 

Zhou (2007) and Chen, Lesmond, and Wei (2007) and Kalimipalli and Nyak (2012)). 

V. Estimating Bond Returns 
 

As Section III shows, most bonds trade too infrequently to create factor loading estimates as could be 

done for stocks. Even creating a benchmark to use as a factor poses a challenge. Real estate is an area in 

which academics need to deal with heterogeneous assets that trade infrequently. A popular solution has 

been to employ a repeat sales regression. We create what can be called a distance-weighted bond index 

by combining the repeat sales algorithm with a kernel estimation model used by Meese and Wallace 

(1991).16  

In a traditional repeat sales model, the price p of asset i at dates b (buy) and s (sale) is assumed 

to follow 

                                                             
16 Meese and Wallace (1991) used their statistical model to estimate San Francisco housing returns. 
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where rmt is the return on the benchmark portfolio m and itε  is a log normal error term. The model 

assumes no intervening cash flows exist between the two transaction dates. Taking logs, letting R = 
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The model in equation (2) can then be estimated by using dummies equal to 1 if the time period t is 

between the buy and sale dates and zero otherwise. The variance of each observation equals ( ) 2
es b σ−  

where 2
eσ  is the variance of e. Equation (2) can be estimated via weighted least squares to account for 

the heteroscedasticity across observations. 

Equation (2) is based on the assumption that there are no intervening cash flows between 

sales.17 The vast majority of corporate bonds pay coupons semi-annually. (This study drops the few that 

do not.) Because coupons arrive so infrequently most transactions pairs lack an intervening cash flow 

and thus satisfy equation (2). The few trading pairs where this is not true have been dropped from the 

data used to estimate returns in this paper. 

The standard repeat sales model works well when the goal is to measure the average return 

across a broad array of illiquid assets. However, the model may not do as well when dealing with assets 

that have particular characteristics within the group. In our setting the focus is on bonds that recently 

transitioned between investment and non-investment grade, which are not representative of the whole 

                                                             
17 Geltner and Goetzmann (2000) propose a variant of the repeat sales model that can handle transaction pairs 
with intervening cash flows. As a practical matter, to estimate the model with any reliability there need to be 
sufficient time 0 data points. The TRACE data lacks that requirement and when we attempted to implement the 
Geltner and Goetzmann model the design matrix was not numerically invertable. 
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bond market. In particular, their returns may vary from the general corporate bond market due to 

characteristics such as maturity, current yield and industry. The repeat sales model can be adapted to 

this problem by using a variant of the technique suggested by Meese and Wallace (1991), in their case 

for estimating a hedonic model. Conceptually, we adapt the model to distance weight the rows in (2) to 

account for how far in characteristic space the observation is from the bond whose return one wants to 

benchmark. 

Define the distance between two observations i and j with characteristics vectors 

( )1 nX x x=  , with n characteristics by ,it jtD X X   . In the current application, D is a ratio in which 

the numerator is the Euclidean distance between the two sets of characteristics, where the 

characteristics x are normalized to have unit standard deviations. The denominator is a value that sets 

D<1 for X% of the data. The characteristics we employ are a bond’s current yield, days to worst call date 

and a measure derived from the issuer’s 4-digit SIC code, defined as a dummy equal to 1 if two firms are 

in different 4-digit SIC codes, and 0 if they are in the same one.18 All characteristics are measured as of 

the date of the first trade in each repeat sales pair.  

Following Meese and Wallace (1991) once distances are calculated the observations are then 

weighted with the tri-cube function 

 ( )331 , if 1

0 otherwise.
j ij ijW D D= − <

=
  (3) 

After weighting the rows in (2), the return parameters are then estimated via least squares. The 

resulting estimates are used as the benchmark returns for asset i. A bond’s abnormal return between 

dates b and s is then estimated as 

                                                             
18 The days to worst call date is the same as days to maturity if the bond is either non-callable or if the yield to 
worst call date is the maturity date. 



22 
 

 ( ), ,
1

ˆlog
s

i b s bi si t
t b

AR p p R
= +

= − ∑   (4) 

where ˆ
tR  is the distance weighted repeat sales estimate of Rt.  

In principle, the repeat sales index in equation (2) can be estimated using the entire TRACE 

database from 2002 to date. However, current computing power makes this approach technologically 

challenging. The solution used in the analysis that follows is to estimate equation (2) year-by-year using 

3 year rolling windows. For example, the benchmark index for 2006 rating changes is created from trade 

data spanning January 1, 2005 to December 31, 2007. Similarly, the 2007 benchmarks are estimated 

using data from January 1, 2006 to December 31, 2008.    

B. Commercial Benchmarks as an Alternative 
 

Institutional investors typically have their returns compared to the benchmark indices by BofAML and 

Barclays. While these benchmarks are readily available, using them to estimate the abnormal return to a 

bond that transitions between investment and non-investment grade seems likely to produce biased 

results. Relative to an investment grade index, these bonds are rated at the lowest edge of the 

comparison group and at the upper edge in terms of risk. Relative to a non-investment grade index the 

opposite is true. It seems unlikely that either index will yield an appropriate return adjustment. 

Furthermore, default rates are not linear in the ratings. Rather they are convex in their numerical scores, 

as documented by Emery, et al. (2008) for corporate bonds and Altman and Suggitt (2000) for 

syndicated loans. 

Another option is to use an overall bond index. However, the overall bond market is not equally 

distributed across rating classes. According to the Securities Industry and Financial Markets Association, 

high-yield bonds have comprised between 6% and 25% of the overall new issues market. An overall 
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bond index will therefore skew towards less risk and a higher rating than a bond transitioning between 

investment and non-investment grade. Finally, there is the issue of index measurement. The index 

providers also have to deal with the lack of transactions on which to base prices. Their solution is to 

estimate a bond’s value using a spread to Treasuries. For example, the Barclays US Corporate Index 

Factsheet states, “Most securities in the US Corporate Index are priced using a spread to Treasuries. . . ” 

While this technique is simple, if ratings are sticky estimated price changes will lag the market.19 

VI. Estimating and Testing Cumulative Abnormal Bond Returns  

Estimating equation (4) across bonds produces a list of abnormal bond returns (AR).20 However, due to 

the infrequency with which bonds trade these returns cover various spans of time. One option is to 

assume the ARs are spread evenly between trade dates. For example, if the AR is 100 bps from date 2 to 

12 one can assign an AR of 10 to each day. However, this can lead to problems when the time span 

crosses a date boundary where the suspicion is that ARs before and after differ. 

A variation of the repeat sales model can help deal with the fact that the AR calculations cover 

varying lengths of time. The hypothesis is that the AR on date t relative to some event data is Rt. Thus, 

one can estimate 

 , ,
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s
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AR R e
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= +∑   (5) 

and then calculate the CAR from date t0 to t1 as 1

0

ˆt
tt

R
τ =∑  , where ˆ

tR   is the estimated value of Rt. A 

standard significance test can then be conducted as to whether the CAR (sum of the regression 

coefficients) does or does not equal 0. As in a standard repeat sales regression, return data on the left 

                                                             
19Again, see Warga and Welch (1993) and Hite and Warga (1997) for detailed discussions of this issue. 
20 Here, as in the prior discussions returns should be interpreted as log(1+r); the estimated value produced by the 
repeat sales regression. 
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hand side of (5) will exhibit heteroscedasticity in proportion to the time between sales. A simple 

weighted regression will correct this and is what this paper uses to estimate the reported ˆ
tR . 

As Webb (1988 and 1991) shows estimates from a repeat sales model, like those in equations (2) 

and (5) suffer from measurement errors that follow an AR(1) process. While this issue disappears in 

large samples it can be problematic when the data is thin, as it is in some of the tests conducted here. A 

simple solution is to bootstrap the estimates. The mean return estimates based on the random sampling 

eliminates the AR(1) measurement error and produce robust standard errors.21 In what follows, all of 

the abnormal return estimates using equation (5) and estimates derived from them are based on 

bootstrapped values. We do not bootstrap the repeats sales estimates from the first stage regression 

(equation (2)). These negatively serial correlated measurement errors should not qualitatively impact 

the final estimates from (5), which are the ones of interest.22  

Once the first stage regression is completed the ARs from it are stacked and estimated against a 

second repeat sales model. To the degree that the negative serial correlation in the parameter estimates 

then feeds into the estimated ARs, these should either be completely or close to independent across 

much of the sample. For example, ARs for a bond in 2005 are calculated with a dataset that is 

independent of the one used to calculate the ARs for a bond in 2010. Thus, in the second stage 

regression where the first stage ARs become the dependent variable, the result is just additional noise.         

                                                             
21 We thank William Goetzmann for this insight and suggestion. 
22 It is also true, that attempting to bootstrap the first stage regression would take current computers months to 
perform the calculations. Without bootstrapping calculating the custom index and the resulting ARs for each bond 
in a category (e.g. downgrades within the non-investment grade category) takes about a day. 
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C. CARs in the Days around a Category Crossing 

The first set of tests look at the daily CARs around a rating change that either leaves a bond in the same 

ratings category or moves it between investment and noninvestment. Day 0 is the date on which the 

rating change is recorded in the Mergent database. The results are in Table 6. 

Table 6 Columns 1 and 2 tabulate the results for rating changes that drop a bond from 

investment to non-investment grade. The estimated post announcement returns are in the −180 bps 

range. The results are both economically and statistically significant. There is some evidence of 

continued negative returns for another day or two after which the price appears to level off with a net 

loss of approximately 250 bps. 

The next set of columns examine the returns to a bond that is downgraded but still remains 

inside its original ratings category. For downgrades within both the investment and non-investment 

grade categories returns are relatively small and not persistently significant. Nevertheless, they are 

uniformly negative indicating that investors in these issues may well suffer losses after a rating 

downgrade. Within the non-investment grade category it appears that losses within a week of the 

downgrade come to somewhere between 50 and 70 bps, with some evidence of the start of a recovery 

by day 10. 

On the right side of Table 6 are the returns around upgrades. Upgrades for bonds that cross 

from noninvestment to investment grade show evidence of positive returns that take a week or two to 

materialize post announcement. By the end of the second trading week post announcement (day +10) 

returns are about 50 bps and statistically significant using either the BofAML or Barclays rule. Upgrades 

for bonds beginning and ending in the non-investment grade category are smaller. There is some 

evidence using the Barclays rule that the returns are positive for about a week and then mean revert to 

some degree. A similar pattern appears under the BofAML rule, but there the significance levels are 
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quite a bit lower. For bonds that are upgraded within the investment grade category the estimated 

returns are small, of inconsistent sign and lack statistical significance. It is very hard to reject the idea 

that the announcements have no impact on the market. 

The results from Table 6 support the hypothesis that institutional rigidities play an important 

role in the market reaction when a bond downgrades from the investment to the noninvestment 

category. For other downgrades that do not move a bond across the investment/noninvestment border, 

there is little return reaction possibly due to trend chasing affecting the market’s overall liquidity and 

the influence of reaching for yield apparently offset it. With respect to upgrades into the investment 

grade category, institutional rigidities seem to play a role as well, but to a lesser degree. (Of course, it 

may be that the rigidities play just as strong a role but are offset by other factors. For example, liquidity, 

reaching for yield and trend chasing may all combine to produce a reduced overall price impact.) In the 

other upgrade tests, it may be that the additional liquidity in the investment grade market (see Table 4) 

is sufficient to offset the impact of a ratings upgrade, while the same may not be true for non-

investment grade bonds. 

D. CARs Prior to a Rating Change 

As noted earlier, numerous studies have found that bond rating changes follow changes in the 

bonds’ market prices. Thus, the ratings change may be expected. We examine this possibility in Table 7 

by repeating the analysis in Table 6 for the weeks prior to the rating change. The results are generally 

consistent with previous studies. Almost across the board, downgrades follow negative returns in excess 

of 100 bps. For bonds that cross from investment to non-investment grade the negative returns start at 

least five weeks prior to the downgrade and ultimately total over 150 bps. For downgrades among non-

investment grade bonds that remain non-investment grade (i.e. do not transition to distressed) negative 

returns only precede rating changes by between 1 and 3 weeks and the statistical significance depends 
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on the scoring rule used. For changes among investment grade bonds that then remain in the 

investment grade category the negative returns are close to 120 bps but seem to start as much as 6 

weeks earlier. 23 

For upgrades the picture is again somewhat mixed. Bonds upgraded from noninvestment to 

investment and those that start and end in the noninvestment category yield statistically significant 

positive abnormal returns prior to the rating change. About 70 bps in the former case and 100 in the 

latter. But, for upgrades that involve bonds that start and end in the investment category there is no 

economically or statistically significant indication that rating changes follow a string of positive returns.  

E. CARs Following a Ratings Change 

As demonstrated in the earlier tables the corporate bond market is an illiquid market. As pointed out 

earlier, microstructure models suggest that this illiquidity can lead prices to overshoot their equilibrium 

values and then bounce back to some degree in the weeks following the initial price change (Keim and 

Madhavan (1996)). In Table 8 we address this issue by examining reported CARs that begin at the end of 

the 10th day following a ratings change, which is the day on which the results reported in Table 6 end. 

Table 6 shows that up to day 10 bonds downgraded from investment to non-investment grade 

experience post announcement returns in the range of −233 bps. Table 8 shows that these same bonds 

have a partial rebound of 130 or 78 bps depending on the scoring rule used, which is consistent with the 

Keim and Madhavan model in which price pressure from block sellers and limited liquidity produce 

serially correlated returns and prices that overshoot their equilibrium value. A similar rebound is 

observed for downgrades that cause a bond to start and end as non-investment grade. Again, this occurs 

                                                             
23 We conjecture that the rating agencies are reluctant to downgrade investment grade bonds and require a 
relatively long negative run of news before doing so. For non-investment grade bonds, the rating agencies may 
worry about missing an event that leads to default. They therefore require a shorter negative news run prior to 
downgrading such bonds. Of course, these are just conjectures at this point and we do not pursue them any 
further in this paper.  
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in the part of the market where liquidity is likely to be thinnest. In contrast, the bonds that start and end 

in the investment grade category after a downgrade that showed at most a modest post announcement 

negative return in Table 6, have little evidence of a price rebound in Table 8. 

For upgrades in which a bond crosses from the noninvestment to investment grade category,  

reports an approximate 50 bps post announcement price reaction in the days following the rating 

change. Table 8 indicates a continued upward drift for an additional 4 weeks. By trading day +26 returns 

have increased by another 61 to 78 bps. In contrast, the other rating upgrade groupings show little 

consistent evidence of systematic price changes. At most, for bonds that are upgraded but start and end 

in the noninvestment category there may be a small positive post announcement price increase of 

between 13 and 22 bps after 3 weeks, a gain which then reverses itself by week 5. However, the 

evidence for this is pretty thin and it would be reasonable to conclude that one cannot dismiss the null 

hypothesis that the post announcement benchmark adjusted returns are random noise around zero. 

F. CARs for Border Bonds that then Cross the Border 
 

Following a ratings change, Table 6 through Table 8 compare bonds that move from an investment or 

non-investment grade category to another against those that remain in their initial category. However, 

the potential size of the rating change for bonds that switch categories is quite a bit larger than for 

bonds that do not. Consider a bond with an initial rating of 1 (AAA). For this bond to continue to be 

included in the no change investment grade category, it cannot fall below a rating of 10, thus, a change 

of at most 9 points. For the AAA bond to move from the investment to non-investment grade category, 

its rating has to change by at least 10 points. In fact, it can change up to 15 points (to 16 points) and still 

be included in the investment to non-investment grade group. Large rating changes such as this are 

likely perceived very differently by market participants than a typical downgrade that simply moves a 

bond by a single rating point. As noted earlier, another problem with a potential large rating change is 
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that rather than being rated, a ratings agency may simply drop coverage, resulting in measurement 

error being introduced into the ratings history. That is, rating agencies are not obligated to rate a bond 

for its entire life. A firm that undergoes a large negative or positive corporate event may induce a rating 

agency to drop coverage, in which case such a decision will not be included in the database. All one has 

is the last rating; a rating that is no longer valid. It seems likely that the market is fully aware of this and 

that the firms creating bond benchmarks adjust their scoring rules accordingly. This measurement error 

can lead to situations where bond rating changes are underestimated based on the available ratings 

data. 

 

Figure 1: Downgrades that Change a Bond's Classification from Investment to Noninvestment. 

Figure 1 and Figure 2 address the issue of whether large rating jumps are driving the prior 

results. The two graphs compare the CARs for bonds that start near the border of their rating class and 

then cross versus bonds that simply move from one rating class to another. The legend shows both the 

scoring system used and the filter used to select bonds. The prefix “BofAML” or “Barclays” indicates the 

classification scoring system. A suffix of “all” indicates that the CARs include any bond that begins in one 
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class (investment or noninvestment) and then crosses to the other class. A suffix of “1” indicates that 

the CARs only include bonds that begin within one point of the border prior to crossing it. 

 

 
Figure 2: Upgrades that Change a Bond's Classification from Noninvestment to Investment. 

While including either all bonds or just those that are near the border prior to crossing makes 

some difference in the CARs, these do not seem to be material. It is true that including all bonds results 

in a slightly lower CAR overall. For downgrades, the average CAR differs by 63 bps and 85 bps based on 

the BofAML and Barclays scoring rules respectively. For upgrades, the average differences are 25 and 22 

bps respectively. However, more importantly, in terms of the overall return pattern there seems to be 

little difference. For both upgrades and downgrades bonds tend to see a price reaction over a number of 

days following the rating change after which there is some evidence of a recovery (stronger for 

downgrades than upgrades). 
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G. Orphan Bonds  
 

As pointed out earlier, because BofAML and Barclays use slightly different classification rules, 

they do not always lead to the same groupings. In principle, some bonds may be rated investment grade 

by one and non-investment grade by the other. Recall, that investment grade funds tend to use the 

Barclays classification rule and investment grade funds the BofAML rule. The result is that some bonds 

are orphans in that they are non-investment grade via Barclays rule and investment grade via the 

BofAML rule.24,25 While orphans are not created very often, they do provide another way to test the 

hypothesis that institutional frictions lead to liquidity problems. If the frictions arising from a change in 

rating category impact bond returns, then orphan bonds should be particularly vulnerable. These are 

bonds that are not part of the benchmarks used by either income or high yield funds. If institutional 

rigidities are important, this is the group that should be most affected. The current investment grade 

holders need to sell the issue, but non-investment grade funds have no reason to buy it as it is not in 

their benchmark either. 

Table 5 lists the number of bonds that become orphaned in each year. For these bonds 

institutional rigidities should play a particularly dramatic role. There is, however, no reason to believe 

the other three factors listed in Section I.B will impact any differently in this case than in the more 

general case of a ratings downgrade. 

                                                             
24 While cases where a rating change leads Barclays to rate the issue investment and BofAML non-investment 
grade are theoretically possible, the data do not contain any examples where it occurred. 
25 For the orphan bond tables, cases where the BofAML and Barclays rules produce scores that differ by 3 or more 
are dropped. Occasionally, a bond goes from the higher end of the investment grade scale into either the low end 
of the non-investment grade scale or even into default. Whether this will be reflected in the Mergent database 
depends on if all of the agencies issue new ratings in response to the change in the company’s fortunes. For 
example, following a default Moody’s may reduce the rating to a D while S&P and Fitch may just stop following the 
issue. In this case, the database shows the change to the Moody’s rating but does not indicate that any change 
occurred in the S&P or Fitch rating. Whatever the cause, one suspects that such bonds are not really “orphans” 
and are recognized by all as being either non-investment grade or distressed and are thus dropped from the 
orphan analysis. 
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Hypothesis 3: Orphan bonds should see the greatest degree of negative serial correlation in returns and 

the greatest degree of price overshooting. 

 

For fund managers orphan bonds present a unique problem. These bonds leave the investment grade 

category under the Barclays scoring rule but not that of the BofAML rule. Since investment grade 

managers use the former and non-investment grade managers the latter, it is not clear what funds will 

find these issues conformable with their mandate. An advantage of these cases is that they present a 

unique test of whether institutional rigidities affect bond returns. For these bonds, investment grade 

funds have an incentive to sell, while their natural counterparties (non-investment grade funds) have 

little incentive to buy. 

Figure 3 displays the CARs for 120 trading days before and after bonds that are orphaned, 

defined as date 0. The CARs are relative to the announcement date. Blue dots represent CARs that are 

not significantly different from zero at the 10% level and orange dots CARs that are. In the 60 days prior 

to a bond being orphaned it loses nearly 500 bps. This is substantially more than the pre rating change 

losses seen for any of the other downgrades in Table 7. After the downgrade, these bonds lose 

approximately another 750 bps until about day 45. After that there appears to be an approximately 250 

bps recovery until about day 60 after which returns appear to stabilize. 
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Figure 3: Orphan Bond CARs. Colors represent significance at the 10% level relative to 0. 

 

The post announcement return pattern in Figure 3 is consistent with the institutional rigidity 

argument. These bonds see a substantial drop in their value while in Barclays investment grade 

categorization. Once the downgrade goes through the investment grade funds holding the issue are 

incented to sell it. However, these bonds are still rated investment grade under the BofAML scoring 

system. That reduces the incentive non-investment grade funds would have to buy the issue. While the 

investment grade funds may want to eventually sell out of their position, their prospectuses do not 

typically require that they do so immediately. In a case like this, they may find it optimal to try and hold 

out as long as they can. Of course, once the price drops far enough it becomes sufficiently attractive that 

fund managers become willing owners despite the restrictions imposed upon them by their 
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prospectuses. In a microstructure model like Keim and Madhavan (1996) the result would be long term 

selling pressure with a recovery. This would result in a pattern like the one in Figure 3.    

VII. Changes over Time 
 

In this section we examine how the reaction to bond downgrades around the investment grade/non-

investment grade boundary has changed over time given the institutional changes in the bonds markets 

after the financial crisis of 2007-2008. One aspect of that change has been the change in bond market 

ratings agencies optimism. Cornaggia, Cornaggia and Hund (2015) argue and present evidence that 

corporate bonds have optimism in their ratings. Skreta and Veldkamp (2009) argue that this optimism is 

a result of the pay-by-issuer model.  

 

    Figure 4: Downgrades post Dodd-Frank minus Pre-crisis 

 

Figure 4, which shows the differences in abnormal returns to downgrades before and after the financial 

crisis and the passage of the Dodd-Frank law, is consistent with the conjecture that the optimism shown 
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by ratings agencies has changed since the financial crisis. The figure also suggests that the changes have 

primarily occurred for the downgrades to high-yield bonds that were already in the high-yield market 

segment. The downgrades in which a bond still remains an investment grade bond or in which a bond 

moves from investment grade to non-investment grade have not materially changed. Panel A of Table 3 

in our paper also shows that the pattern of downgrades to upgrades changes significantly after the 

financial crisis. That is, a striking difference exists in the ratio of downgrades relative to upgrades, 

suggesting again that the rating agencies have changed their issuance of the most optimistic forecasts.  

VIII. Conclusion 

Many bond funds restrict their holdings to either investment or non-investment grade. When a bond 

crosses from one category to another, this self-imposed institutional rigidity induces current investors to 

sell the issue. At the same time, the bond moves into the investment opportunity set for other funds 

which find that if they so choose, they can now add the bond to their portfolio because it has the moved 

into their restricted category. Market microstructure models indicate that in an illiquid market with 

relatively anxious sellers or buyers, security returns will exhibit serial correlation (while the positions are 

worked off or acquired) followed by a period when prices partially revert. This is the hypothesis tested in 

this paper. 

 Given the illiquidity in the corporate bond market, to test this hypothesis we adapt the repeat 

sales models from the real estate literature in order to estimate abnormal bond returns that arise from 

institutional rigidities in the market. That model creates a general index about which housing returns 

vary. Implicitly, this gives each house a factor loading of 1. For bonds, that may be a problematic 

assumption. To accommodate the factors that may impact benchmark loadings this paper employs a 

modified repeat sales index. The modification weighs each observation’s by the inverse of its distance 

from the target bond. For each bond this forms a unique distance weighted repeat sales index to use at 
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its benchmark. Once the vector of abnormal returns are generated around an event, CARs can be 

estimated and tested for significance using standard regression techniques. 

Overall, the empirical results support the institutional rigidity hypothesis in that rating changes 

that push a bond from one rating category to another lead to return patterns consistent with 

microstructure theory. Downgrades that cross a bond from investment to noninvestment lead to 

negative CARs from the announcement day and for a few days afterward. This period is then followed by 

a partial price rebound. For bonds that see rating changes that leave them in their overall investment or 

non-investment grade category there is some indication that the bond market’s general lack of liquidity 

leads to prices that overshoot their long run equilibrium value in the non-investment grade market. But 

it is far more muted than the case where the change drops the security from the investment to 

noninvestment category. Upgrades show similar patterns to downgrades, but to lesser degree and with 

returns in the opposite direction.  

A unique test of the how institutional rigidities impact bond returns can be seen via an 

examination of orphan bonds. These bonds undergo rating changes that drop them from investment 

grade under Barclays scoring rule but not under the BofAML rule. Since investment grade portfolios are 

typically benchmarked against a Barclays index and non-investment grade portfolios against the BofAML 

index, there is no natural investment pool for these issues. The results are seen clearly in the data. 

When a bond becomes an orphan its value drops in the weeks following the rating change and then 

recovers somewhat. Overall, the loss appears to total close to 5%. 

The somewhat artificial designation of a bond as investment or non-investment grade is used by 

many institutional investors to restrict their holdings. This is obviously done for the convenience of 

investors and their regulators. But, it also creates an institutional rigidity. When a bond crosses the 

investment-noninvestment barrier it must also transition from one set of bond funds to another. The 
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evidence in this paper indicates that this transfer does not take place smoothly. Instead, bond returns 

exhibit persistent returns for days after the ratings change that are then partially reversed in the weeks 

that follow. Obviously, this would not happen if the bond market was sufficiently liquid. But it is not. 

Most bonds trade less than once a month, which makes these transfers potentially very difficult to pull 

off. 
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Table 1: Ratings scale for calculating composite 
Scoring system used by BofA Merrill Lynch to determine the index 
a bond belongs to. Original source: BofA Merrill Lynch Bond 
Indices; Bloomberg 
Numeric Composite Moody's S&P Fitch 
1 AAA Aaa AAA AAA 
2 AA1 Aa1 AA+ AA+ 
3 AA2 Aa2 AA AA 
4 AA3 Aa3 AA- AA- 
5 A1 A1 A+ A+ 
6 A2 A2 A A 
7 A3 A3 A- A- 
8 BBB1 Baa1 BBB+ BBB+ 
9 BBB2 Baa2 BBB BBB 
10 BBB3 Baa3 BBB- BBB- 
11 BB1 Ba1 BB+ BB+ 
12 BB2 Ba2 BB BB 
13 BB3 Ba3 BB- BB- 
14 B1 B1 B+ B+ 
15 B2 B2 B B 
16 B3 B3 B- B- 
17 CCC1 Caa1 CCC+ CCC+ 
18 CCC2 Caa2 CCC CCC 
19 CCC3 Caa3 CCC- CCC- 
20 CC Ca CC CC 
21 C C C C 
22 D D DDD-D 
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Table 2: Fraction of Days Traded by Year by Bond 
Fraction of days traded (FDT) during a one year time period over which a bond trade is observed. The numerator in 
FDT equals the number of trades in bond B during year Y. The denominator is the number of trading days in year Y 
between the first and last trade date across all years in bond B. Panel A includes a bond in year Y if: (1) there is at 
least one trade in year Y or prior to it and (2) at least one trade in year Y or after it. Note, a single trade in year Y will 
lead to a bond’s inclusion in year Y. Also bonds with trade on dates prior to and after but not in year Y are included 
in the year Y data. Example: A bond trades in 2005 and 2007 but not 2006. Fraction equals 0/total trade days in 
2006 = 0. A bond trades on July 11, 2006 and July 12, 2006 but never before or after. FDT equals 2/2 = 1, since total 
trade days during 2006 between the first and last trade date in the bond is 2. In Panel B, the same exercise is carried 
out. But this time Year refers to the number of years since the bond is first observed to trade t0. Time from t0 to its 
first anniversary is labeled 1. The denominator follows the rule for Panel A, with the reference year being the 
number of years from t0, again with the first year being from t0 to its anniversary. Example: A bond first trades on 
July 11, 2006. It trades again on August 8, 2007 and September 16, 2008. FDT equals 1/trading days between July 
12, 2007 and July 11, 2008. If the bond traded on August 8, 2007 but never again traded then FDT equals 1/trading 
days between July 12, 2007 and August 8, 2007. Row 11+, averages across all years greater than or equal to 11. 
Displayed is the FDT on a percentage basis (i.e. 100×FDT). 
 Percentile 
Year 5% 10% 25% 50% 75% 90% 95% 

Panel A: FDT by Bond by Calendar Year 
2003 0.85 1.47  3.44  8.52 21.53 38.08 53.59 
2004 0.79 1.61  3.92 10.26 22.97 40.50 51.56 
2005 0.49 1.19  2.78  7.82 19.05 36.51 47.60 
2006 0.40 0.80  2.39  7.94 19.56 36.59 48.21 
2007 0.00 0.40  1.98  6.35 17.86 34.61 46.41 
2008 0.00 0.40  1.19  4.35 13.44 31.38 45.57 
2009 0.00 0.40  1.59  5.16 15.74 32.54 44.34 
2010 0.00 0.40  1.19  4.74 15.42 32.00 42.99 
2011 0.00 0.40  1.59  5.16 14.68 29.69 40.48 
2012 0.00 0.00  1.18  3.70 12.09 27.06 39.92 
2013 0.00 0.38  1.52  4.94 14.07 29.28 42.86 
2014 0.38 0.77  1.92  5.75 15.33 31.03 42.91 

Panel B: FDT by Bond by Year’s Since Initial Trade Date 
1 0.40 1.14  3.16  8.59 19.92 37.50 49.80 
2 0.38 0.75  1.95  5.40 14.68 30.62 42.44 
3 0.00 0.40  1.20  4.11 12.26 26.63 38.94 
4 0.00 0.39  1.13  3.12  9.84 23.51 36.11 
5 0.00 0.39  0.79  2.77  8.56 20.43 30.56 
6 0.00 0.00  0.76  1.92  5.84 16.03 25.18 
7 0.00 0.00  0.40  1.53  4.37 12.99 20.76 
8 0.00 0.00  0.39  1.18  3.77 11.40 19.32 
9 0.00 0.00  0.39  1.18  3.82  9.58 19.63 
10 0.00 0.38  0.39  1.52  3.61  9.38 17.29 
11+ 0.00 0.38  0.55  1.16  3.05  8.78 16.98 
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Table 3: Changes between Investment and Non-investment grade over Time 
Panel A of this table reports for each year the total number of bonds crossing the investment 
grade and investment grade category using the Bank of America Merrill Lynch (BofAML) or 
Barclays rule for their indices. Panel B reports the total number of bonds in years since initial 
rating is defined so that year 1 includes any transition from investment to investment or the 
reverse occurring within 1 year of the initial rating date. 
 Downgrades Upgrades Ratio of Downgrades to 

Upgrades 
Year BofAML Barclays BofAML Barclays BofAML Barclays 

Panel A: Calendar Year   
2003 292 312 76 80 3.84 3.90 
2004 209 215 135 138 1.55 1.56 
2005 1700 2245 216 233 7.87 9.64 
2006 688 285 179 155 3.84 1.84 
2007 361 433 161 144 2.24 3.01 
2008 1604 1572 264 263 6.08 5.98 
2009 2361 2467 111 102 21.27 24.19 
2010 253 264 137 127 1.85 2.08 
2011 152 183 180 176 0.84 1.04 
2012 160 157 199 201 0.80 0.78 
2013 145 124 352 341 0.41 0.36 
2014 125 127 127 101 0.98 1.26 

 

 Panel B: Years Since Initial Rating 
 Downgrades Upgrades 
Year BofAML Barclays BofAML Barclays 
1 1237 1465 266 231 
2 1618 1583 312 307 
3 1236 1206 257 247 
4 864 863 228 225 
5 812 874 167 151 
6 836 844 136 138 
7 371 392 145 139 
8 202 233 92 90 
9 242 260 101 86 
10 221 223 84 94 
11+ 411 441 349 353 
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Table 4: Fraction of Days with Trading Around Classification Rating Changes 
This table shows the fraction of days in the months or days a bond trades around a rating change to or 
from investment and investment grade. For months, other than 0, it is the average across bonds of the 
number of trading days on which the bond traded divided by the number of trading days. For month 0 it 
is just the day of the rating change. For days it is the fraction of bonds with a trade on that day. Bonds 
are excluded from a period if there are no trades recorded for them both before and after the period in 
question. Values are in percentage terms. Standard errors are in square brackets. 
Time Investment Grade to Non-investment grade Non-investment grade to Investment Grade 
Units Months Days Months Days 

 
BofAML Barclays BofAML Barclays BofAML Barclays BofAML Barclays 

-6 20.87 
[2.02] 

20.58 
[2.02] 

11.34 
[2.09] 

9.33 
[2.08] 

6.59 
[2.48] 

6.23 
[2.50] 

15.80 
[2.43] 

15.07 
[2.45] 

-5 21.34 
[2.02] 

20.59 
[2.02] 

10.47 
[2.09] 

9.67 
[2.08] 

7.31 
[2.46] 

6.88 
[2.48] 

15.09 
[2.43] 

15.31 
[2.45] 

-4 20.44 
[2.02] 

19.99 
[2.01] 

10.12 
[2.09] 

8.81 
[2.08] 

7.45 
[2.48] 

6.86 
[2.50] 

14.39 
[2.43] 

14.83 
[2.45] 

-3 20.48 
[2.00] 

19.91 
[1.99] 

11.52 
[2.09] 

11.57 
[2.08] 

7.96 
[2.47] 

7.89 
[2.48] 

16.27 
[2.43] 

14.59 
[2.45] 

-2 21.89 
[2.06] 

21.10 
[2.04] 

13.96 
[2.09] 

12.44 
[2.08] 

8.63 
[2.45] 

8.63 
[2.47] 

13.92 
[2.43] 

13.16 
[2.45] 

-1 24.34 
[2.05] 

25.01 
[2.03] 

14.14 
[2.09] 

12.78 
[2.08] 

13.12 
[2.40] 

12.62 
[2.44] 

13.21 
[2.43] 

12.68 
[2.45] 

0 21.82 
[2.09] 

19.00 
[2.08] 

21.82 
[2.09] 

19.00 
[2.08] 

24.53 
[2.43] 

22.25 
[2.45] 

24.53 
[2.43] 

22.25 
[2.45] 

1 11.62 
[2.07] 

10.48 
[2.06] 

32.29 
[2.09] 

30.40 
[2.08] 

15.10 
[2.38] 

14.87 
[2.40] 

20.28 
[2.43] 

20.81 
[2.45] 

2 9.66 
[2.08] 

8.99 
[2.07] 

27.57 
[2.09] 

26.60 
[2.08] 

14.41 
[2.39] 

13.82 
[2.41] 

15.33 
[2.43] 

14.35 
[2.45] 

3 7.89 
[2.10] 

7.55 
[2.09] 

24.61 
[2.09] 

24.87 
[2.08] 

15.80 
[2.39] 

15.65 
[2.41] 

15.09 
[2.43] 

14.11 
[2.45] 

4 8.26 
[2.12] 

8.35 
[2.10] 

25.13 
[2.09] 

26.08 
[2.08] 

15.21 
[2.39] 

15.15 
[2.41] 

9.91 
[2.43] 

8.13 
[2.45] 

5 7.79 
[2.12] 

7.35 
[2.10] 

21.29 
[2.09] 

21.07 
[2.08] 

16.49 
[2.40] 

16.44 
[2.42] 

11.56 
[2.43] 

11.24 
[2.45] 

6 8.21 
[2.11] 

7.80 
[2.10] 

22.51 
[2.09] 

24.87 
[2.08] 

16.54 
[2.42] 

16.50 
[2.45] 

8.96 
[2.43] 

9.33 
[2.45] 
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Table 5: Orphans by Year 
This table shows the number of orphan bonds in the sample each year. An orphan bond is 
defined as one with a BofAML score of less than or equal to 10 and a Barclays score of greater 
than or equal to 11. Bonds are only included if the absolute difference between the two 
scores is less than or equal to the value in Abs(Diff). The upgrades are bonds that having a 
rating change that causes them to go from BofAML investment grade group to its investment 
grade group, while remaining in the Barclays investment grade group. Downgrades are bonds 
that have a rating change that moves them from the Barclays investment grade category to 
Barclays investment grade category while remaining in the BofAML investment grade 
category. 
 Upgrades Downgrades 
Abs(Diff) 1 2 1 2 
2003 8 16 37 47 
2004 14 25 68 71 
2005 24 38 155 769 
2006 42 52 36 51 
2007 31 35 52 60 
2008 32 38 103 124 
2009 13 17 366 456 
2010 30 33 72 81 
2011 37 41 28 37 
2012 17 24 35 39 
2013 32 41 8 10 
2014 31 33 36 36 
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Table 6: Day 0 to +10 Cumulative Abnormal Returns for Bonds Experiencing a Rating Change 
This table shows daily bond returns following a rating change. Investment grade (“Inv.”) (defined as having a score between 1 and 10) and noninvestment grade 
(“Junk”) (a score of 11 to 16) are based on the rating aggregation method used by either BofAML or Barclays (“Barc”). Bonds with a rating of 17+ are defined as 
distressed. Column headers indicate downgrades or upgrades for bonds from one rating group to another. Columns “Inv. To Inv.” Indicate a rating change for an 
investment grade bond that remains investment grade after the rating change. Columns “Junk to Junk” indicate the same for bonds initially rated non-investment grade. 
Finally, “Inv to Junk” and “Junk to Inv.” Indicate bonds that switch class after a rating change. Displayed returns by day are the benchmark adjusted cumulative abnormal 
returns (CAR) from the end of day 0 to the end of day 10 in basis points. Return estimates are based on the mean bootstrapped values repeated 500 times. Day 0 is the 
date on which a bond’s numerical rating score changes. Days are measured in trading, not calendar, days. In the row X to Y the numbers represent borders. It should be 
read as pre rating change score greater than or equal to X and post rating score less than or equal to Y. Bootstrapped p-values against a null of 0 is below in square 
brackets. Key: ***=1%, **=5% and *=10%. 
 Downgrades Upgrades 
 Inv. to Junk Junk to Junk Inv. to Inv. Junk to Inv, Junk to Junk Inv. to Inv. 
Day BofAML Barc BofAML Barc BofAML Barc BofAML Barc BofAML Barc BofAML Barc 
0 -194.938 

[0.00]*** 
-157.632 
[0.00]*** 

-15.616 
[24.60] 

-35.410 
[7.20]* 

-12.379 
[11.60] 

-12.505 
[13.60] 

13.635 
[29.00] 

19.435 
[22.20] 

13.749 
[7.20]* 

10.321 
[11.20] 

15.418 
[26.40] 

12.500 
[32.40] 

1 -184.572 
[0.00]*** 

-175.765 
[0.00]*** 

-29.816 
[15.60] 

-40.633 
[4.80]** 

-11.806 
[16.60] 

-15.474 
[12.80] 

23.375 
[24.40] 

30.903 
[16.60] 

21.719 
[1.80]** 

23.613 
[2.20]** 

-3.319 
[45.40] 

-6.350 
[44.80] 

2 -197.277 
[0.00]*** 

-218.186 
[0.00]*** 

-40.715 
[10.20] 

-47.246 
[2.60]** 

-17.060 
[12.00] 

-22.713 
[7.20]* 

29.976 
[20.00] 

43.337 
[8.00]* 

17.801 
[9.40]* 

25.808 
[4.00]** 

10.087 
[31.40] 

7.015 
[36.40] 

3 -209.022 
[0.20]*** 

-252.310 
[0.00]*** 

-55.861 
[4.40]** 

-46.606 
[4.20]** 

-23.158 
[5.00]** 

-26.848 
[5.80]* 

30.626 
[16.20] 

44.680 
[7.60]* 

18.373 
[8.00]* 

21.743 
[6.80]* 

23.016 
[15.40] 

22.286 
[23.00] 

4 -207.288 
[0.00]*** 

-246.507 
[0.00]*** 

-66.675 
[3.20]** 

-45.971 
[4.60]** 

-28.594 
[2.40]** 

-16.974 
[16.00] 

28.715 
[20.00] 

64.707 
[5.40]* 

8.509 
[25.20] 

27.182 
[2.80]** 

3.649 
[43.20] 

-12.017 
[38.60] 

5 -227.234 
[0.20]*** 

-256.209 
[0.00]*** 

-60.003 
[7.60]* 

-39.044 
[9.40]* 

-34.688 
[2.00]** 

-33.761 
[2.20]** 

31.607 
[20.60] 

114.154 
[16.20] 

10.238 
[17.00] 

25.764 
[1.60]** 

-15.235 
[28.80] 

-19.551 
[28.40] 

6 -192.621 
[0.60]*** 

-235.745 
[0.00]*** 

-74.061 
[2.60]** 

-57.773 
[5.00]** 

-33.781 
[2.40]** 

-34.023 
[2.00]** 

32.410 
[16.80] 

71.889 
[3.00]** 

4.271 
[34.40] 

24.746 
[2.40]** 

14.018 
[28.60] 

11.550 
[34.00] 

7 -182.391 
[0.40]*** 

-203.713 
[0.00]*** 

-73.559 
[3.40]** 

-51.926 
[7.00]* 

-31.870 
[3.80]** 

-29.754 
[4.60]** 

-12.395 
[38.40] 

19.601 
[34.00] 

17.687 
[9.20]* 

41.681 
[0.00]*** 

3.567 
[43.80] 

-6.695 
[45.40] 

8 -263.868 
[0.00]*** 

-273.247 
[0.00]*** 

-52.757 
[12.00] 

-39.172 
[14.40] 

-30.965 
[5.20]* 

-29.555 
[5.80]* 

43.390 
[14.80] 

62.157 
[7.80]* 

22.706 
[6.00]* 

34.847 
[1.20]** 

-4.617 
[44.20] 

-12.207 
[38.40] 

9 -241.856 
[0.00]*** 

-252.054 
[0.00]*** 

-58.927 
[8.60]* 

-40.121 
[15.00] 

-33.884 
[6.20]* 

-30.324 
[10.00]* 

35.633 
[13.80] 

67.880 
[2.00]** 

11.264 
[20.80] 

20.671 
[9.40]* 

-14.880 
[32.80] 

-30.196 
[24.00] 

10 -234.680 
[0.00]*** 

-233.550 
[0.00]*** 

-50.261 
[12.80] 

-9.872 
[40.00] 

-18.867 
[15.20] 

-16.836 
[18.40] 

53.064 
[6.60]* 

62.461 
[4.80]** 

15.408 
[13.00] 

23.480 
[6.00]* 

4.215 
[43.00] 

-0.184 
[50.60] 
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Table 7: Weekly Abnormal Returns prior to a Rating Change 
This table shows weekly bond returns preceding a rating change. Investment grade (“Inv.”) (defined as having a score between 1 and 10) and 
noninvestment grade (“Junk”) (a score of 11 to 16) are based on the rating aggregation method used by either BofAML or Barclays (“Barc”). Bonds with a 
rating of 17+ are defined as distressed.  Column headers indicate downgrades or upgrades for bonds from one rating group to another. Columns “Inv. To 
Inv.” Indicate a rating change for an investment grade bond that remains investment grade after the rating change. Columns “Junk to Junk” indicate the 
same for bonds initially rated non-investment grade. Finally, “Inv to Junk” and “Junk to Inv.” Indicate bonds that switch class after a rating change. Displayed 
returns by day are the benchmark adjusted cumulative abnormal returns (CAR) from the end of day −42 to the end of day −1 in basis points. Return 
estimates are based on the mean bootstrapped value repeated 500 times. Day 0 is the date on which a bond’s numerical rating score changes. Days are 
measured in trading, not calendar, days. In the row X to Y the numbers represent borders. It should be read as pre rating change score greater than or equal 
to X and post rating score less than or equal to Y. Bootstrapped p-values against a null of 0 is below in square brackets. Key: ***=1%, **=5% and *=10%. 
 Downgrades Upgrades 
 Inv. to Junk Junk to Junk Inv. to Inv. Junk to Inv, Junk to Junk Inv. to Inv. 
Day BofAML Barc BofAML Barc BofAML Barc BofAML Barc BofAML Barc BofAML Barc 

-41 
38.067 
[21.00] 

41.387 
[10.20] 

-15.095 
[18.40] 

-11.543 
[25.00] 

2.923 
[43.00] 

7.749 
[28.80] 

9.990 
[29.80] 

6.000 
[35.60] 

23.433 
[0.00]*** 

23.361 
[0.20]*** 

1.951 
[46.20] 

-5.590 
[39.80] 

-36 
-45.125 
[14.00] 

-13.052 
[39.00] 

1.620 
[45.00] 

-4.642 
[41.80] 

1.518 
[47.20] 

-13.058 
[28.40] 

42.290 
[5.00]** 

12.392 
[34.00] 

40.361 
[0.20]*** 

44.360 
[0.00]*** 

-4.217 
[44.20] 

-10.094 
[38.20] 

-31 
-113.882 

[6.20]* 
-2.892 
[47.80] 

-39.855 
[20.40] 

-78.027 
[4.80]** 

-40.525 
[3.40]** 

-64.014 
[0.40]*** 

57.983 
[3.00]** 

42.151 
[9.60]* 

31.631 
[2.60]** 

51.038 
[0.20]*** 

24.269 
[15.80] 

24.432 
[19.60] 

-26 
-160.872 
[3.00]** 

-115.271 
[4.00]** 

-1.163 
[48.20] 

-6.020 
[42.60] 

-78.660 
[0.00]*** 

-82.646 
[0.00]*** 

49.378 
[4.20]** 

42.054 
[4.80]** 

44.186 
[1.20]** 

67.468 
[0.00]*** 

32.157 
[12.40] 

21.517 
[26.00] 

-21 
-174.456 
[0.60]*** 

-143.735 
[2.00]** 

-48.537 
[13.80] 

-34.210 
[23.60] 

-66.138 
[0.20]*** 

-67.399 
[0.60]*** 

65.019 
[3.40]** 

38.481 
[13.00] 

82.121 
[0.00]*** 

86.395 
[0.00]*** 

20.581 
[22.80] 

23.414 
[22.60] 

-16 
-103.037 

[9.20]* 
-75.971 
[17.80] 

-70.308 
[8.80]* 

-6.622 
[44.20] 

-99.753 
[0.00]*** 

-106.587 
[0.00]*** 

44.957 
[10.20] 

-12.862 
[37.80] 

83.488 
[0.00]*** 

87.734 
[0.00]*** 

43.294 
[5.80]* 

41.156 
[8.40]* 

-11 
-105.845 
[11.60] 

-136.582 
[6.60]* 

-126.372 
[0.80]*** 

-26.323 
[31.80] 

-91.627 
[0.00]*** 

-104.333 
[0.00]*** 

72.646 
[0.80]*** 

43.581 
[6.00]* 

86.458 
[0.00]*** 

80.015 
[0.20]*** 

0.790 
[48.80] 

-1.742 
[46.00] 

-6 
-338.419 
[0.00]*** 

-366.826 
[0.00]*** 

-130.892 
[0.80]*** 

-39.717 
[22.20] 

-91.634 
[0.00]*** 

-104.603 
[0.00]*** 

77.580 
[0.60]*** 

40.072 
[9.00]* 

126.386 
[0.00]*** 

130.624 
[0.00]*** 

-5.862 
[40.00] 

-6.342 
[39.40] 

-1 
-168.812 

[5.60]* 
-158.603 
[4.40]** 

-179.588 
[0.00]*** 

-69.953 
[12.60] 

-120.926 
[0.00]*** 

-121.672 
[0.00]*** 

77.107 
[2.60]** 

61.394 
[5.20]* 

116.214 
[0.00]*** 

112.005 
[0.00]*** 

17.036 
[34.00] 

19.316 
[38.40] 
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Table 8: Weekly Cumulative Abnormal Returns following a Rating Change  
This table shows weekly bond returns following a rating change. Investment grade (“Inv.”) (a score between 1 and 10) and noninvestment grade (“Junk”) 
(a score of 11 to 16) are based on the rating aggregation method used by either BofAML or Barclays (“Barc”). Bonds with a rating of 17+ are defined as 
distressed. Column headers indicate downgrades or upgrades for bonds from one rating group to another. Columns “Inv. To Inv.” Indicate a rating change 
for an investment grade bond that remains investment grade after the rating change. Columns “Junk to Junk” indicate the same for bonds initially rated 
non-investment grade. Finally, “Inv to Junk” and “Junk to Inv.” Indicate bonds that switch class post rating change. Displayed returns are the benchmark 
adjusted cumulative abnormal returns (CAR) from the end of day 10 to the end of day 51 in basis points. Return estimates are based on the mean 
bootstrapped value repeated 500 times. Day 0 is the date on which a bond’s numerical rating score changes. Days are measured in trading, not calendar, 
days. In the row X to Y the numbers represent borders. It should be read as pre rating change score greater than or equal to X and post rating score less 
than or equal to Y. Bootstrapped p-values against a null of 0 is below in square brackets. Key: ***=1%, **=5% and *=10%. 
 Downgrades Upgrades 
 Inv. to Junk Junk to Junk Inv. to Inv. Junk to Inv, Junk to Junk Inv. to Inv. 
Day BofAML Barc BofAML Barc BofAML Barc BofAML Barc BofAML Barc BofAML Barc 

11 
52.521 

[1.00]*** 
54.073 

[0.60]*** 
-40.873 
[0.40]*** 

-16.187 
[24.40] 

-11.624 
[12.20] 

-16.490 
[2.80]** 

-24.123 
[16.00] 

-2.610 
[46.60] 

-2.347 
[39.00] 

-7.305 
[24.20] 

9.069 
[34.60] 

15.499 
[22.20] 

16 
118.016 
[1.60]** 

152.258 
[0.00]*** 

-43.811 
[5.60]* 

-47.570 
[16.00] 

-1.567 
[46.20] 

-7.267 
[30.20] 

39.926 
[6.80]* 

52.912 
[2.60]** 

19.759 
[5.40]* 

19.370 
[5.20]* 

23.805 
[29.20] 

34.790 
[23.80] 

21 
58.562 
[17.20] 

149.228 
[1.20]** 

-39.756 
[11.20] 

-84.984 
[4.80]** 

-11.059 
[22.20] 

-11.283 
[22.40] 

36.116 
[15.80] 

29.944 
[14.20] 

16.209 
[14.20] 

10.861 
[24.40] 

1.779 
[45.80] 

-3.287 
[45.00] 

26 
99.791 
[11.00] 

241.368 
[0.20]*** 

-15.553 
[35.60] 

-99.237 
[8.80]* 

-7.807 
[27.20] 

-15.778 
[16.40] 

61.086 
[7.00]* 

78.571 
[2.40]** 

24.868 
[8.00]* 

10.758 
[26.40] 

-2.114 
[44.60] 

-18.408 
[22.80] 

31 
90.579 
[14.00] 

213.793 
[0.00]*** 

15.051 
[38.00] 

-32.809 
[38.40] 

8.938 
[31.20] 

-7.848 
[34.40] 

-20.389 
[30.20] 

-6.412 
[42.60] 

18.899 
[16.00] 

9.458 
[34.80] 

-18.820 
[19.60] 

-29.257 
[12.80] 

36 
145.725 
[7.00]* 

188.416 
[2.20]** 

21.810 
[32.00] 

-36.189 
[34.00] 

-8.377 
[34.20] 

-20.374 
[17.60] 

31.377 
[30.80] 

45.082 
[21.00] 

-0.184 
[47.60] 

-19.016 
[18.20] 

-16.215 
[24.40] 

-11.854 
[31.20] 

41 
118.666 
[10.40] 

142.396 
[7.40]* 

48.547 
[16.80] 

-8.893 
[49.60] 

-2.508 
[44.80] 

-25.743 
[14.40] 

11.146 
[42.00] 

25.435 
[30.00] 

-17.491 
[22.60] 

-25.199 
[17.20] 

1.467 
[46.40] 

-13.270 
[35.40] 

46 
87.101 
[18.40] 

94.085 
[18.20] 

94.394 
[5.20]* 

44.718 
[29.60] 

-19.431 
[18.40] 

-36.708 
[6.60]* 

-7.093 
[46.40] 

29.980 
[31.40] 

-12.081 
[31.60] 

-19.108 
[22.60] 

-37.520 
[13.40] 

-56.980 
[6.60]* 

51 
130.523 
[17.60] 

78.511 
[28.00] 

143.570 
[1.40]** 

52.294 
[26.20] 

-2.255 
[47.00] 

-12.872 
[30.60] 

37.780 
[18.80] 

75.669 
[6.40]* 

-0.755 
[50.60] 

-10.317 
[34.20] 

7.367 
[39.20] 

12.231 
[34.40] 
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Abstract

Latency delays—known as “speed bumps”—are an intentional slowing of order flow by

exchanges. Supporters contend that delays protect market makers from high-frequency

arbitrage, while opponents warn that delays promote “quote fading” by market mak-

ers. We construct a model of informed trading in a fragmented market, where one

market operates a conventional order book, and the other imposes a latency delay on

market orders. We show that informed investors migrate to the conventional exchange,

widening the quoted spread; the quoted spread narrows at the delayed exchange. The

overall market quality impact depends on the nature of the delay: “short” latency

delays lead to improved trading costs for liquidity investors, but worsening price dis-

covery; sufficiently “long” delays improve both.
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“I am personally wary of prescriptive regulation that attempts to identify an optimal

trading speed, but I am receptive to more flexible, competitive solutions that could be

adopted by trading venues.”

—SEC Chair, Mary Jo White, June 5, 2014

Liquidity suppliers prefer to transact against uninformed traders. These uninformed

traders are valuable, as they are unlikely to move the market against market makers. Many

exchanges, competing for scarce order flow, have specialized to attract these uninformed

liquidity demanders. Inverse pricing, dark trading and retail order segmentation facilities

have all been studied as ways in which exchanges try to draw these traders from other

markets, in part by advertising their market design as a way to disincentivize informed

traders from also participating. Recently, some exchanges have imposed latency delays—so-

called “speed bumps”—as yet another way of segmenting away retail order flow. Measured

on the order of milliseconds or microseconds, latency delays impose a time delay between

an order’s receipt at the exchange, and its execution.1 Exchanges advertise latency delays

as means of protecting market makers from adverse selection at the hands of high frequency

traders (HFTs) acting on extremely short-horizon information; the savings are then passed

on through a narrower spread.2

As with any market structure change, latency delays have not been without controversy.

Beyond the comments from proponents, who tout improved market quality, other market

participants have suggested that delays in order execution create an uneven playing field by

allowing market makers to “fade” quotes ahead of large orders.3 Quote “fading” refers to a

market maker’s ability to revise their quotes after an order is received, but not yet filled. By

fading quotes, market makers execute incoming orders at less favourable prices than at the

time of initial submission. Indeed, existing evidence from the academic community suggests

1A description of the mechanics behind latency delays is available in the appendix.
2For one example see “Regulators Protect High-Frequency Traders, Ignore Investors” in

Forbes: http://www.forbes.com/sites/jaredmeyer/2016/02/23/sec-should-stand-up-for-small-

investors/\#1c96d49a1ec6
3For one example see “Canada’s New Market Model Conundrum” by Doug Clark at ITG: http://www.

itg.com/marketing/ITG_WP_Clark_Alpah_Conundrum_20150914.pdf
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that, not only do latency delays allow market makers to withdraw liquidity, but they may

harm liquidity at other markets, by concentrating retail order flow at a single venue. (Chen,

Foley, Goldstein, and Ruf 2016)

To resolve these competing explanations, we construct a static, three-period model of

sequential trading. In our model, trading occurs in fragmented markets, where one exchange

imposes a latency delay. We model traders who are aware of the possibility of an information

event, which occurs with some probability in the second period. This information event can

be interpreted in two ways, both as a scheduled event such as an earnings announcement or

as a fleeting arbitrage opportunity. In the first case, traders are aware of an announcement

at fixed point in the second period, while in the second case, traders are aware that arbitrage

opportunities become public knowledge at a fixed point in the second period.4

In the first period, traders can choose to submit orders to one of two exchanges. One is

a standard exchange, which executes orders immediately in the first period. The second is

a latency-delayed exchange, which randomly executes orders either immediately in the first

period, or after the information event becomes public in the second period.

To differentiate the effects of the delay on different traders, we model two types of traders,

uninformed liquidity traders, and informed speculators. Liquidity traders arrive at the mar-

ket with a need to trade, and have the choice between either submitting an order immediately,

or waiting until after the information event. A liquidity trader who chooses to submit an

order before the information event may send the order to either the open exchange, which

executes instantly, or the speed bump, which delays the order with some probability. Liq-

uidity traders who delay their order risk paying a form of delay cost, should the market

move against them. This delay cost represents the need for these traders to seek additional

capital, should prices become worse.

Alternatively, if a speculator arrives, they have the option for paying to become informed

before the announcement. Similar to liquidity traders, speculators have the option to either

4The latter interpretation is similar in many respects to Budish, Cramton, and Shim (2015), who docu-
ment the fleeting nature of arbitrage opportunities between New York and Chicago.
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execute their order immediately at the non-delayed exchange, or submit their order to the

delayed-exchange, and risk having the information event arrive before their order executes.

We relate the “length” of a latency delay to the probability that a known (or expected)

information event occurs between the trader’s order submission, and its execution. In this

way, we assume that the delayed exchange imposes a delay that is randomly drawn within

a fixed interval, such that private information becomes public within the latency delay with

some (expected) probability. Our notion of a latency delay variation has two interpretations,

a “longer” delay implies that either: i) the distribution of the random delay widens, or, ii)

the time before the public announcement has been reduced.

We show that as the length of the latency delay increases, informed investors migrate

away from the latency delayed-exchange. We use this migration to define our results in

terms of a “segmentation point”. The segmentation point is the delay length at which

the speculator with the highest marginal utility for the delayed exchange migrates away

from the delayed exchange. As the delay length increases towards the segmentation point,

uninformed investor participation at the delayed exchange increases, reaching a maximum at

the segmentation point. At the non-delayed exchange, there is a net migration of informed

investors, and a net emigration of uninformed investors. The result is a wider quoted spread

at the non-delayed exchange; moreover, some speculators who would acquire information in

a setting with no delayed market, choose not to become informed.

Once the segmentation point is reached, further increases in the delay create very different

results. Spreads at the latency-delayed exchange improve no further, as all informed traders

have left the exchange, while uninformed traders continue to incur larger delays. As a result,

uninformed traders begin to return to the non-delayed exchange improving bid-ask spreads

at the non-delayed exchange and increasing informed trader participation. For a delay of

sufficient length, the non-delayed exchange reverts to the conditions present before a latency

delay was imposed, while the latency-delayed exchange contains only uninformed traders

who previously did not participate in the market prior to the resolution of the information
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event.

We make several empirical predictions regarding latency delays. First, we predict that

initial prices should improve at the delayed-exchange while they should be worse at standard

exchanges. Second, we predict market segmentation effects between exchanges. Liquidity

trader participation should increase following the introduction of a delay, and their trading

should be concentrated at this exchange. Informed participation should fall following the

introduction of a delay, and their trading should be concentrated at standard exchange.

Finally, we show that, latency delays have ambiguous effects on price discovery, depending on

the length of the delay. Particularly, small latency delays decrease price discovery measures,

while simultaneously increasing spreads at other exchanges.

Related Literature. While there is little existing literature on the topic of latency de-

lays, the factors which have led to their creation have been well documented. The first group

of relevant literature studies high frequency trading, and its effects on markets. Predatory

high frequency trading is generally cited as the rationale for the use of speed bumps and, as

such, is essential to understanding their purpose. The second group of literature covers both

the drivers and effects of market fragmentation. As a means for exchanges to differentiate

themselves, speed bumps can be discussed within this general trend of market fragmentation

and competition between exchanges.

As latency delays are on the order of milliseconds or less, market makers who are able to

make use of them in a strategic manner are inherently high frequency traders. Several studies

of high frequency market makers have shown that they can improve liquidity (Brogaard

and Garriott 2015, Brogaard, Hagströmer, Nordén, and Riordan 2015, Subrahmanyam and

Zheng 2015). However, work on high frequency liquidity demanders finds that they may

increase price efficiency (Carrion 2013) but also increase transaction costs (Chakrabarty,

Jain, Shkilko, and Sokolov 2014). High frequency traders have also been shown to improve

price discovery through both liquidity supply (Brogaard, Hendershott, and Riordan 2015,

Conrad, Wahal, and Xiang 2015) and demand (Brogaard, Hendershott, and Riordan 2014).
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Proponents argue that latency delays can curb “predatory” behaviours by high frequency

traders, such as inter-market arbitrage. However, critics have suggested that latency delays

may also lead to quote fading. Latza, Marsh, and Payne (2014) do not find evidence of

predatory quote fading behaviour by HFTs, while Malinova and Park (2016) find that it does

occur.5 Our model confirms some forms of quote fading found in the empirical literature.

While we do not allow market makers to fade quotes arbitrarily, we model market makers

who may fade quotes in response to new information on the underlying asset value. We show

that the ability to update quotes before an order arrives may allow market makers to quote

at better initial prices.

Theoretically, the role of HFTs has been studied in a variety of contexts including their

role in market-making (Jovanovic and Menkveld 2011), arbitrage (Wah and Wellman 2013),

and the incorporation of new information (Biais, Foucault, and Moinas 2015).6 Menkveld

and Zoican (2016) model the effects of known latency within a single exchange, versus latency

in reaching the exchange, a friction similar to an intentional latency delay. We complement

the existing theoretical work on HFTs by modeling both intentional, randomized delays

within exchanges as well as investor migration between exchanges, based on these delays.

Further to previous literature, investors base their exchange choice not only with whether

other market participants are delayed, but also on whether a delay at one exchange will

remove their informational advantage.

The topic of market segmentation is not new within the academic literature. Existing

empirical work has found that fragmented markets can have improved liquidity (Foucault and

Menkveld 2008) and efficiency (Ye and O’Hara 2011). Additional work by Kwan, Masulis,

and McInish (2015) and Gomber, Sagade, Theissen, Weber, and Westheide (2016) studies

the use of both dark trading, and other mechanisms, in order to attract order flow.7 As

5Related work by Ye, Yao, and Gai (2013) find evidence of a different behaviour known as quote “stuffing”,
which we do not address in this paper

6A further survey is topics surrounding HFT is present in both Angel, Harris, and Spatt (2011) and
O’Hara (2015).

7Further theoretical work by Baldauf and Mollner (2016) shows that the net effects of increased fragmen-
tation are ambiguous for liquidity suppliers.
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latency delays are another means of attracting order flow, our work confirms the concept of

segmentation and suggests additional avenues for empirical market segmentation work.

Existing theoretical work studies the choice of market based on fees (Colliard and Foucault

2012), dark liquidity (Zhu 2014), and the profitability of financial intermediaries (Cimon

2016). We extend existing work by modeling market segmentation based on differences in

speed. Taken together with these earlier contributions, our work helps complete the set of

factors which may influence market choice by financial system participants.

The closest work to ours is Chen, Foley, Goldstein, and Ruf (2016) who empirically study

the introduction of a speed bump on TSX Alpha, a Canadian trading venue. They find that,

following the introduction of a speed bump, total volume on the affected exchange decreases.

High frequency traders provided a greater proportion of liquidity, compared to non-high

frequency traders when the speed bump was in place. Adverse selection on the affected

exchange also decreased. For all other exchanges, informed trading increased, leading to

wider quoted and effective spreads.

The paper proceeds as follows. Section 1 outlines the model. Section 2 presents a

benchmark model of two identical (fragmented) markets with no latency delay, and then

extends it to consider the case where one exchange may impose a latency delay on incoming

orders. In Section 3, we present empirical and policy predictions. Section 4 concludes.

1 The Model

Security. There is a single risky security with an unknown random payoff v that is equal

to v0 − σ or v0 + σ, with equal probability, where σ ∈ (0, 1). The security is available for

trading at t = 1 and t = 2. The security’s value is publicly announced at t = 2 before

trading begins. The asset is liquidated at t = 3.

Market Organization. There are two exchanges, Fast and Slow, that operate as displayed

limit order books: posted limit orders display their quotes to all market participants. Market
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orders sent to Exchange Fast fill immediately upon receipt, whereas exchange Slow fills market

orders with a random delay. With probability δ ∈ (0, 1), an order sent to exchange Slow is

delayed until t = 2, and filled after the announcement of v.8 Otherwise, the order is filled

immediately.

There are two interpretations for this type of latency delay. First, a latency delay of

this type can reflect a setting where investors expect an incoming information event (a

scheduled announcement), though some investors may not be informed about its direction

and magnitude. Alternatively, this type of latency delay can reflect the presence of fleeting

arbitrage opportunities at other markets. Speculators who acquire information can be viewed

as acquiring the necessary technology to exploit these opportunities. The random nature of

the speed bump then represents the fact that, with a delay of any length, speculators may

no longer be the first to trade.

Exchange Market Maker. A competitive market maker supplies buy and sell limit orders

to both exchanges before investors submit their orders at t = 1 and t = 2. The market maker

is risk-neutral, and receives only the public information, v0, about the security’s fundamental

value. The market maker has a zero latency, permitting them to place (and update) limit

orders to both exchanges at the beginning of periods t = 1 and t = 2, before investors place

their orders. At t = 2, upon the announcement of v, the market maker updates their t = 1

limit orders to the public value, v.

The exogenous separation of market makers matches an important feature of latency-

delayed venues. In general, orders are delayed, with the exception of orders used for market

making purposes. On some venues, this consists of orders pegged at or near the midpoint,

while on others it consists of large orders, above a certain size, providing liquidity. Thus, it

is generally insufficient to merely submit a limit order to bypass the delay.

Investors. There is a unit mass of risk-neutral investors. At t = 0, an investor arrives at

the market to trade a single unit of the security. The investor is either a speculator with

8A random delay is similar in nature to the latency delay imposed by TMX Alpha, a Canadian trading
venue. TMX Alpha delays orders by a random time period of 1-3ms.
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probability µ > 0, or an uninformed investor endowed with liquidity needs. Upon arrival, a

speculator receives an information acquisition cost γi that is distributed uniformly on [0, 1].

Speculators may pay γi at t = 0 to perfectly learn the random payoff v. We refer to those

that acquire information as “informed investors”, and their mass is denoted µI ∈ (0, µ).

With probability (1−µ), a liquidity investor arrives. Liquidity investors have no private

information, but are endowed with a liquidity need that motivates them to trade. They also

pay an additional cost to trade following an adverse price movement that is proportional

to the innovation, ci = kλiσ, where k ∈ (0,∞). λi is a private scaling parameter of the

innovation that is distributed uniformly on [0, 1]. This cost represents the cost uninformed

investors pay to acquire additional capital to trade when the price moves away from them.

As this represents a re-capitalization cost, liquidity investors pay this cost only if the price

moves against them, not if it moves in their favour. 9 The uninformed investor also pays a

constant delay cost K ∈ (σ,∞) if they elect not to trade. Liquidity investors are buyers or

sellers with equal probability.

An investor i may submit a single market order at t = 1 or t = 2, or not trade. Investors

place orders to maximize (expected) profits. Finally, the structure of the model is known to

all market participants. The model timeline is illustrated in Figure 1.

Investor Payoffs. The expected payoff to an investor who submits a buy order at t = 1

is given by their knowledge of the true value of v, minus the price paid, any information

acquisition or delay costs incurred. We denote liquidity investors as L, and informed investors

as I. The expected payoffs to investor i ∈ {I, L} submitting an order to exchange j ∈

{Fast, Slow} are given by:

πI(γi; Buy at t=1) = v − E[askj1 | submit at exchange J]− γi (1)

πL(ci; Buy at t=1) = v0 − E[askj1 | submit to exchange J]− Pr(order delay)×
ci
2

(2)

9We concede that a price movement can occur in a beneficial direction, and that the investor could earn
a reinvestment return on the proceeds. We assume that the recapitalization cost exceeds the reinvestment
return, and as such, normalize the reinvestment return to zero.
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Figure 1: Model Timeline

This figure illustrates the timing of events upon the arrival of an investor at t = 0, until their payoff is
realized at t = 3. Speculators face information acquisition costs γi, and liquidity investors face delay cost ci.

t=0

Investor enters market

and learns type

If investor is a speculator,

they may acquire information

at cost γi

t=1

Market maker

posts limit orders to

Exchange Fast and Slow

Investor submits market order

to Exchange Fast or Slow

(or does not trade);

Orders at Fast are filled

t=2

v publicly announced;

Market maker updates

all limit orders

Orders delayed at Exchange Slow are filled;

Investor may submit new market order

t=3

Asset is liquidated;

investor realizes payoff

The scaling factor of 1/2 in the delay cost of πL reflects the fact that the asymmetric cost

is only incurred if the price moves away from the liquidity investor, which occurs with

probability 1/2. An investor i who submits a buy order at period t = 2 (or elects not to

trade) has a payoff of −γi if informed (speculators have payoff zero); uninformed investors

earn a payoff to not trading of −K < −σ. Seller payoffs are similarly defined.

2 Equilibrium

In this section, we present two versions of our model: first, we outline a benchmark case

where both exchanges are identical (no latency delay), and then subsequently compare our

results to a model where Exchange Slow imposes a latency delay.

We search for a perfect Bayesian equilibrium in which the market maker chooses a quot-

ing strategy such that they earn zero expected profits at each venue, and investors choose

order submission strategies that maximize their profits. We also search for equilibria where

investors use both exchanges. We study the impact of a processing delay at one exchange

by comparing it to a case where both exchanges do not impose a processing delay; we refer

to this as the benchmark case. In effect, a market with two identical exchanges is equivalent
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to a single competitive exchange. Because the set-up of our model is symmetric for buyers

and sellers, we focus our attention to the decisions of buyers, without loss of generality.

2.1 Identical Fragmented Markets (No Latency Delay)

In the exposition that follows, although both exchanges fill orders without delay, we continue

to denote them as Exchange Fast and Slow, to maintain consistency in notation. If both

exchanges impose no processing delay (δ = 0), then investors’ payoffs simplify considerably.

Because any orders submitted to either exchange will be filled at the posted quote, investors

who submit orders suffer no risk of the quote updating adversely. Speculator and liquidity

investor payoffs to trading on an Exchange j are reduced to:

πI(γi; Buy at t=1) = v − ask
j
1 − γi (3)

πL(ci; Buy at t=1) = v0 − ask
j
1 (4)

Note that because a market buy order is filled immediately at the posted quote, the expected

profit for a liquidity investor who submits a market buy order at t = 1 does not consider ci

directly; instead, the cost of ci is considered when choosing whether to trade at t = 1, or

wait until uncertainty is resolved at t = 2 (for which they pay ci).

Given an expectation of investors’ order submission strategies, the market maker pop-

ulates the limit order books at exchanges Fast and Slow. The market maker quotes com-

petitively, setting the ask (and bid) prices at t = 1 on exchange Fast and Slow—which we

denote askFast1 and askSlow1 , respectively—to account for the expected adverse selection of an

incoming buy order:

askFast1 = E[v | Buy at Exchange Fast] (5)

askSlow1 = E[v | Buy at Exchange Slow] (6)

Prices bidFast1 and bidSlow1 are analogously determined through symmetry of buyers and sellers.
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At period t = 2, v is announced, and the market maker updates their buy orders on both

exchanges to askFast2 = askSlow2 = bidFast2 = bidSlow2 = v.

Each investor makes two decisions: whether to participate in the market at t = 1 (or at

all), and if they participate, to which exchange should they submit an order. A speculator

receives their information acquisition cost γi at t = 0, and weighs it against the expected

profit of becoming informed. If they acquire information, they subsequently decide to which

exchange they will submit an order. Similarly, liquidity investors receive their delay cost ci

at t = 0, and choose whether to delay trading to t = 2. If they decide to trade at t = 1, they

choose to which exchange they submit an order.

We characterize these decisions via backward induction. At t = 2, speculators (informed

and otherwise) have no information advantage, and thus their expected profit is zero. Liq-

uidity investors who did not submit an order at t = 1 submit an order to either exchange

at t = 2 and pay cost ci. It is always optimal for a liquidity investor to submit an order at

t = 2, as the cost to abstaining, K > max{ci}.

At t = 1, speculators who do not acquire information at t = 0 do not trade. If a speculator

has chosen to acquire knowledge of v, the now-informed investor knows that delaying until

period t = 2 is unprofitable, so they choose the optimal exchange to which they submit

their order. We denote the probability with which an informed investor submits an order to

Exchange Fast as β ∈ (0, 1); they submit an order to Exchange Slow otherwise. Because γi

only dictates the decision to acquire information, and doesn’t factor directly into the venue

choice, informed investors use a mixed strategy in β such that they earn a equal payoff at

both exchanges. Similarly, a liquidity investor that chooses to trade in t = 1 finds that their

venue choice is not directly impacted by ci; they also submit orders to both venues with

a mixed strategy, where we denote probability of submitting an order to Exchange Fast as
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α ∈ (0, 1), and Exchange Slow otherwise. Buyers’ order choice indifference conditions are:

Informed Buyer:
{

β | πFast

I (Buy t=1) = πSlow

I (Buy t=1) ⇐⇒ askFast1 = askSlow1

}

(7)

Liquidity Buyer:
{

α | πFast

L (Buy t=1) = πSlow

L (Buy t=1) ⇐⇒ askFast1 = askSlow1

}

(8)

We note here that, in the absence of direct impacts by γi and ci, the sole determinant of

venue choice for buyers are the ask prices (and similarly bid prices for sellers). If quotes

are not equal across both exchanges, then (α, β) cannot be an equilibrium, as there would

be migration from the high-priced exchange to the lower priced exchange until prices across

both exchanges equate.

Given the venue choice strategies for informed and liquidity investors, the ask prices

quoted by the market maker at t = 1 can now be characterized as:

askFast1 = v0 +
Pr(informed trade at Fast)

Pr(trade at Fast)
· σ (9)

askSlow1 = v0 +
Pr(informed trade at Slow)

Pr(trade at Slow)
· σ (10)

Liquidity investors are buyers or sellers with equal probability, so only half of liquidity

investors who choose to participate in the market at t = 1 will buy, independent of the

realization of v. Sell prices bidFast1 and bidSlow1 are similarly characterized.

Given α and β, investors make participation decisions at t = 0 that characterize the

measure of speculators, µI and the measure of liquidity investors that participate before

t = 2, which we denote Pr(ci ≥ c). That is, all investors with ci ≥ c face a large enough

cost of delay ci, such that they trade prior to period t = 2. Speculators receive γi in period

t = 0, and decide whether paying their information acquisition cost is profitable. The mass

of speculators that choose to acquire information determines µI . To find µI , we find the value

of γi at which a speculator is indifferent to acquiring information and not trading. This is
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equal to γi such that a speculator earns a zero expected profit from becoming informed:

γ̄ = max
{

v − askFast1 , v − askSlow1

}

(11)

Hence, any speculator with γi ≤ γ̄ will acquire information, and the mass of informed

investors at t = 1 is equal to: µI = µ × Pr (γi ≤ γ̄). Similarly, we characterize the measure

of liquidity investors that participate in the market at t = 1, Pr(ci ≥ c) by:

c = min
{

v0 − askFast1 , v0 − askSlow1

}

(12)

Therefore, any liquidity investors with a delay cost greater than c choose to trade at t = 1.

The probability that such a liquidity investor arrives is given by (1− µ)× Pr (ci ≥ c).

An equilibrium in our model is characterized by: (i) investor participation measures, µI

and (1−µ)Pr (ci ≥ c); (ii) investor venue strategies, α and β, and; (iii) market maker quotes

at t = 1 for each exchange j ∈ {Fast, Slow}, askj1 and bid
j
1. These values solve the venue

choice indifference equations (7)-(8), the market maker quoting strategy (9)-(10), and the

investor participation conditions, (11)-(12).

Theorem 1 (Identical Fragmented Markets) Let δ = 0. Then for any β ∈ (0, 1), there

exists a unique equilibrium consisting of participation constraints µI ∈ (0, µ), c ∈ [0, kσ
2
] that

solve (11)-(12), prices askFast1 , askSlow1 , bidFast1 and bidSlow1 that satisfy (9)-(10), and α ∈ (0, 1)

that solves (7)-(8) such that β = α.

Theorem 1 illustrates that, in equilibrium, identical fragmented markets may co-exist,

and moreover, they need not attract the same level of order flow, despite offering identical

prices. For example, in an equilibrium where (α, β) = (3/4, 3/4), Exchange Fast receives

three times the order flow of Exchange B, but because α = β, these probabilities cancel out

of the pricing equations (9)-(10), ensuring that the ask (and bid) prices of Exchange Fast

and Slow are equal. We summarize this in the Corollary below.
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Corollary 1 (Equilibrium Prices) In equilibrium, ask and bid prices at t = 1 are equal

to askFast1 = askSlow1 = v0 +
µI

µI+(1−µ)Pr(ci≥c)
· σ and bidFast1 = bidSlow1 = v0 −

µI

µI+(1−µ)Pr(ci≥c)
· σ

In what follows, we define the identical fragmented market formulation of our model

(δ = 0) as the benchmark case. We denote the equilibrium solutions with the superscript

BM (i.e., askBM, bidBM).

2.2 Slow Exchange Imposes a Latency Delay

In this section, we examine the case where Exchange Slow fills investor orders with a random

processing delay, such that orders sent to Exchange Slow are filled before t = 2 with prob-

ability δ ∈ (0, 1). The processing delta impacts payoffs to informed and liquidity investors

differently. Informed investors face payoffs to Exchange Fast and Slow:

πFast

I (γi; Buy at t=1) = v − askFast1 − γi (13)

πSlow

I (γi; Buy at t=1) = v − (1− δ)× askSlow1 − δ · v − γi (14)

By submitting an order to Exchange Slow, informed investors face the possibility of losing

their informational advantage. Liquidity do not know v, however, so their expectation of

what the announcement of the true value will be is always v0, and thus the processing delay

does not impact their expectation of the future value when buying. Instead, the uncertainty

about the outcome of the price manifests in an asymmetrical cost to trading, ci, that they

incur if the price moves in the direction of their desired trade (v > askSlow1 ). The payoffs to

liquidity investors then simplify to:

πL(ci; Buy at t=1) = v0 − askFast1 (15)

πL(ci; Buy at t=1) = (1− δ)(v0 − askSlow1 )− δ ·
kλi

2
× σ (16)
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Taking this into account, the market maker sets its prices at t = 1 in the following way:

askFast1 = E[v | Buy at Fast] =
βµI

βµI + Pr(uninformed trade at Fast)
· σ (17)

askSlow1 = E[v | Buy at Slow] =
(1− β)µI

(1− β)µI + Pr(uninformed trade at Slow)
· σ (18)

In period t = 2, the value v is publicly announced, so the market maker updates its prices

to askFast2 = askSlow2 = v.

When Exchange Slow imposes a processing delay, investors weigh the cost of trading on

Exchange Fast immediately, against possibility of a) losing (all or part of) their information

if they are informed, or b) paying a higher cost to acquire capital to complete their trade

if they are a liquidity investor. A investor’s order placement strategy has two equilibrium

conditions: i) an indifference condition (IC) between orders to Exchange Fast and Slow, and

ii) a participation constraint (PC). For a speculator, the participation constraint PCI is the

maximum information acquisition costs γi that lead a speculator to become an informed

investor. Then, conditional on participation, the indifference condition ICI represents the

value of β such that an informed investor is indifferent to submitting an order to or B. These

conditions are written as:

ICI : δσ = E[σ | Buy at Fast]− (1− δ)E[σ | Buy at Slow] (19)

PCI : µI = µPr(γi ≤ max {σ − E[σ | Buy at Fast], (1− δ)(σ − E[σ | Buy at Slow])}) (20)

Liquidity investors face two similar conditions. Their participation constraint PCL describes

the scaling of their delay costs λ at which they are indifferent to trading in t = 1 and waiting

until t = 2. Then, conditional on participating, their indifference condition ICL describes

the value of λ̄ such that a liquidity investor is indifferent to submitting an order to either
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exchange. We write these conditions below.

ICL: E[σ | Buy at Fast] = (1− δ)E[σ | Buy at Slow] + δ ·
kλ̄

2
× σ (21)

PCL: λ = min

{

2E[σ | Buy at Fast]

kσ
,
2E[σ | Buy at Slow]

kσ

}

(22)

Finally, an equilibrium is characterized by values k such that it is sufficiently costly to

delay until t = 2 for at least some investors (i.e, k > k > 0).

Lemma 1 (Costly Delay) In any equilibrium that satisfies conditions (19)-(22), k > 2.

We can now describe our equilibrium. An equilibrium in a model with a processing

delay is characterized by: (i) Ask prices (17) and (18) (and similar bid prices) set by the

market maker at exchanges A and B, respectively, such that they earn zero expected profit

in expectation; (ii) a solution to the speculator’s optimization problem, (19)-(20) and; (iii) a

solution to the liquidity investor’s optimization problem, (21)-(20). By solving this system,

we arrive at the following theorem.

Theorem 2 (Existence and Uniqueness) Let k > 2. For δ ∈ (0, 1), there exist unique

values µI, λ, λ̄, β, and prices askFast1 , askSlow1 given by (17)-(18) that solve equations (19)-(22).

The nature of the equilibrium depends on the parametrization of the latency delay and

can take several forms. For a delay of sufficiently small size, market makers at the delayed

exchange are not offered sufficient protection from informed trades. For these delays, both

types of traders continue to trade at the delayed-exchange. However, there exists an inflection

point, further discussed below, where the delay becomes sufficiently large that informed

traders withdraw their flow from the delayed-exchange. For these larger delays, market

makers are able to offer vastly improved prices on the latency-delayed exchange, drawing

order flow only uninformed traders.

One interpretation of the latency delay is in the context of statistical arbitrage. Instead of

interpreting the announcement event as an earnings announcement, it can instead be viewed
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as the time with which market makers become aware of arbitrage opportunities. This is

similar in many respects to Budish, Cramton, and Shim (2015), who document the fleeting

nature of arbitrage opportunities between New York and Chicago. When viewed in this sense,

a “short” speed bump is one which is similar in length to the lifespan of actionable arbitrage

opportunities. Similarly, a “long” speed bump is one which delays orders sufficiently, such

that statistical arbitrage is generally not possible.

3 Empirical Predictions and Policy Implications

We investigate the impact of a latency delay on measures of market quality and price dis-

covery. When Exchange Slow imposes a latency delay, investors who submit an order to

Exchange Slow at t = 1 face the possibility that private news may become public (i.e., the

market maker will update their limit orders) before their order is filled. The latency delay

impacts speculators and liquidity investors differently. Speculators do not benefit from a

latency delay directly, as a latency delay increases the probability that they may lose their

private information advantage, if they trade at Exchange Slow. Hence, ceteris paribus, they

prefer an exchange that will execute their order immediately. A liquidity investor’s prefer-

ence, however, depends on their individual costs to delay. Those that have sufficiently low

delay costs are impacted more by the price of the order than the possibility of delay, and

hence, they may prefer an exchange with a latency delay, if the price offered is at a sufficient

discount. Because speculators and liquidity investors’ motives are not perfectly correlated,

the introduction of a latency delay segments the order flow of the two investor groups, to

varying degrees.

The degree of order flow segmentation depends on the parameters of the speed bump.

A speed bump is not driven by the magnitude of the delay alone, but the likelihood that a

delay of a given length would lead an investors’ order to fill after private information becomes

public, and hence face updated limit orders. In our model, the latency delay δ takes on this
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interpretation. We identify a latency delay δ∗—which we refer to as the “segmentation

point”—as the delay such that for all δ ≥ δ∗, no informed traders submit orders to the

delayed exchange (β = 1). Moreover, if no informed traders submit orders to Exchange

Slow, then it must be that in equilibrium, askSlow1 = 0. Thus, because the cost of trading on

exchange Slow is bounded above by the cost of delay, it must be that all uninformed investors

participate in the market at t = 1 (λ = 0). Given these solutions, we solve equations (19)-

(22) for δ∗, yielding the equation:

δ∗(k, µ, σ) =

√

(1− µ)2(1− 2
k
)2 + (1− µ)(1− 2

k
)µσ − (1− µ)(1− 2

k
)

√

(1− µ)2(1− 2
k
)2 + (1− µ)(1− 2

k
)µσ + (1− µ)(1− 2

k
)

(23)

We use δ∗ to characterize our results on order flow segmentation in Proposition 1 below.

Proposition 1 (Order Flow Segmentation) Relative to the benchmark value at δ = 0,

if Exchange Slow imposes a delay δ ∈ (0, 1), then:

• for δ ≤ δ∗, informed trading on Exchange Slow falls (β ↓), and the measure of liquidity

investors who submit orders only at t = 2 declines (λ ↓).

• for δ > δ∗, informed trading concentrates on Exchange Fast (β = 1), and all liquidity

investors submit orders at t = 1 (λ = 0). Moreover, liquidity trading on Exchange Fast

increases (λ̄ ↓).

While we find that β = 1 for all δ > δ∗, we do not predict full order flow segmentation

of informed and uninformed investors, as uninformed investors whose delay costs are large

enough (λi ≥ λ̄) still use Exchange Fast. The relationship between the value of δ and the

participation of both investor types is shown in Figure 2.

Order flow segmentation represents one of the reasons why latency delays are often ad-

vertised by exchanges. Proponents argue that delays are a means of protecting liquidity

suppliers from informed investors. Empirically speaking, existing work supports this fact

and finds that that exchanges with latency delays have lower informed trading and higher

18



participation by uninformed orders (Chen, Foley, Goldstein, and Ruf 2016). We show that,

for a sufficiently long delay, informed traders do optimally avoid these exchanges altogether,

allowing liquidity suppliers to quote a near-zero spread for uninformed investors.

The existence of the latency delay implies that with some probability an order submitted

to Exchange Slow will be delayed until after a public information announcement about

the security being traded. Thus, the market maker is afforded the opportunity to update

their limit orders before the delayed order arrives, allowing them to potentially avoid being

adversely selected. Because the potential of updated quotes is equally costly to all informed

investors, but not all liquidity investors, it is natural to hypothesize that quoted spreads

would differ across exchanges Fast and Slow. Our model yields the following prediction on

quoted spread behaviour between Exchanges Fast and Slow, given a latency delay, δ ∈ (0, 1).

Proposition 2 (Quoted Spreads) For δ ∈ (0, 1) quoted spreads are narrower for Ex-

change Slow (askSlow ≤ askBM) and wider at Exchange Fast (askFast ≥ askBM), when compared

to the benchmark case. For δ < δ∗, the spread widens at Exchange Fast as δ increases, while

for δ > δ∗, the spread narrows at Exchange Fast as δ increases.

While the market maker may have the opportunity to update their quotes before an in-

formed trade clears the latency delay, they face additional costs at the non-delayed exchange.

Informed traders concentrate at the non-delayed exchange, increasing adverse selection costs

and forcing the market maker to quote worse prices than in the benchmark case. We illus-

trate the impact of δ on quoted spreads in Figure 4. Proposition 2 reflects the empirical

results in Chen, Foley, Goldstein, and Ruf (2016), who find that spreads improve on the

exchange with the latency delay, and become worse elsewhere.

An improvement in quotes at Exchange Slow is correlated with our result on order seg-

mentation (Proposition 1): the migration of informed traders to Slow leads to an increase in

market participation at t = 1 by liquidity investors. To analyze this order segmentation, we

define total order submissions (OS) as the probability that an investor who enters, submits
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an order at t = 1:

OSt=1 = µγ̄ + (1− µ)× (1− λ) (24)

We then determine from Equation 25 how much of total order submissions at t = 1 are

expected to result in trades before t = 2, our measure for trading volume before t = 2.

OSt=1 = µγ̄ × (β + (1− β)(1− δ)) + (1− µ)× ((1− λ̄) + (1− δ)(λ̄− λ)) (25)

The right panel of Figure 3 shows that, as liquidity investors increase their participation,

the migration of informed traders to Exchange Fast and the resulting increase in quoted

spreads at Exchange Fast lead to a decline in informed trader participation, net of which our

model predicts an increase in aggregate order submissions. This increase does not lead to an

increase in total trading volume, however, as the increase in liquidity investor participation

occurs primarily at Exchange Slow, orders at which, fill before t = 2 with probability 1− δ.

We summarize this result below.

Proposition 3 (Total Volume and Participation) Relative to the benchmark value at

δ = 0, if Exchange Slow imposes a delay δ ∈ (0, 1), then liquidity investor participation

improves (λ ↓), and information acquisition falls (γ̄ ↓). Moreover, total market order sub-

mission at t = 1 increases, but expected trading volume prior to t = 2 declines.

The latency delay affects incentives for both liquidity investors and informed investors.

For liquidity investors, the improved prices offered by the market maker increases participa-

tion. As more liquidity investors enter the market and select the latency-delayed exchange,

the market maker probability of adverse selection falls, further improving prices. For in-

formed investors, the latency delay creates a disincentive for information acquisition. As

δ increases towards δ∗, the proportion of liquidity investors to informed traders on the

non-delayed exchange decreases, increasing spreads and decreasing total participation by

informed investors. Moreover, a rise in δ improves the likelihood that an informed trader

loses their information advantage if they trade on exchange Slow.
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If the delay is sufficiently long, however, (δ = δ∗), all informed traders segregate to the

non-delayed exchange, and all liquidity investors participate before t = 1. At this point,

that any longer delay cannot improve the adverse selection costs on Exchange Slow, as these

costs are already zero. Then, it must be that an increase in the delay probability beyond

δ∗ can only increase the probability that a liquidity investor pays their delay cost, which

must be greater than askSlow1 = 0. Thus, for any δ > δ∗, liquidity investors must migrate

from Exchange Slow to Exchange Fast (see Figure 2). For a sufficiently long delay, both

informed traders and liquidity traders at the non-delayed exchange revert to the case where

no delayed-exchange exists.

In comparison to the benchmark case, we find that the presence of a delayed exchange

unequivocally reduces information acquisition by informed investors (and their subsequent

market participation). We examine whether this fall in information acquisition arising from

the presence of a delayed exchange contributes positively or negatively the price discovery

process. In our framework, we define a measure of price discovery as the fraction of trades

prior to the announcement of v that can be attributed to informed trades (that is, the

permanent price impact of a trade).

Price Discovery = µγ̄ × (β · askFast1 + (1− β)(1− δ) · askSlow1 ) (26)

An informed investor’s contribution to permanent price impact has three components:

i) the probability of information acquisition, ii) the likelihood of a trade by an informed

investor, and iii) the quote they hit (i.e. their price impact). From Proposition 3, we know

that µI is lower for any δ ∈ (0, 1) when compared to the benchmark case, so the presence

of a delayed exchange reduces permanent price impact under component (i). The impact

of (ii) and (iii) are more nuanced, however. For δ < δ∗, the probability of trading at

t = 1 for informed investors falls for those participating on Exchange Slow, and the quoted

spread narrows. The countervailing force to this is that informed investors migrate their

participation toward Exchange Fast, where trading before t = 1 is guaranteed and the quoted
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spread is widening. For small δ, the reduction in informed investor volume and tightening of

the quoted spread dominates, but for sufficiently large delays δ > δ̂ >> δ∗ where informed

trading is concentrated entirely on Exchange Fast, the latter dominates, and price discovery

improves above that of the benchmark case.

Numerical Observation 1 (Price Discovery) Relative to δ = 0, there exists a unique

δ̂ > δ∗, such that for all δ < δ̂, average price movement attributed to informed trades

(permanent price impact) at t = 1 worsens. For any δ > δ̂, price discovery improves.

An additional consequence of the latency delay is a change in pre-announcement price dis-

covery, as shown in Figure 4. While price-discovery decreases for shorter delays, sufficiently

long delays concentrate traders at the exchange with no delay and may improve price discov-

ery measures. Unlike the previous results in this paper, which represent a transfer between

liquidity traders and informed investors, the change price discovery information represents a

cost imposed on the market by the delayed exchange. This prediction is somewhat at odds

with the empirical results of Chen, Foley, Goldstein, and Ruf (2016), as we predict that price

discovery may improve following the introduction of some forms of latency delay.

Curiously, we find that with sufficiently short delays, price discovery falls, but spread

widen for informed traders. Here, markets lose benefits from price discovery, while informed

traders continue to pay higher trading costs. Combined, these two changes represent a

cost imposed on other exchanges from the introduction of a latency delay. This form of

equilibrium is counter to conventional results, where increased price discovery results in wider

spreads, and decreased price discovery allows market makers to quote narrower spreads.

Because of the ambiguous effects on price discovery, the effects on liquidity investors

are also not definitive. We examine whether this effect has a positive transfer to liquidity

investors via a reduction in trading costs paid on average (across liquidity investors of all

delay cost types). We write this measure in the following way:

ATC =

∫ 1

λ̄

askFast1 dλ+

∫ λ̄

λ

askSlow1 +
kσ

2
λdλ+

∫ λ

0

kσ

2
λdλ (27)
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We now examine how ATC is impacted by the introduction of an exchange with a latency

delay, δ. Our result is presented graphically in Figure 4.

Numerical Observation 2 (Liquidity Investor Trading Costs) There exist unique δ

and δ such that 0 < δ < δ < 1 where liquidity investors:

• pay lower average costs if δ < δ or δ > δ relative to δ = 0.

• pay higher average costs if δ ∈ [δ, δ] relative to δ = 0.

Despite the fact that more liquidity investors participate in the market pre-announcement,

the average delay costs borne by those traders increases. This, seemingly contradictory be-

haviour is a result of new liquidity traders submitting orders in t = 1, rather than delaying

until t = 2. Without the latency delay, liquidity traders with the lowest delay cost are

those who choose not to enter the market, and delay trading until the final period. With

the latency delay, these low delay cost traders enter the market and trade on the delayed-

exchange. For liquidity traders already in the market, an increase in the delay time increases

the optimality of trading on the delayed exchange. While these traders are offered better

prices, they incur higher delay costs, which increase their total cost of trading. Broadly

speaking, traders who begin to enter the market at t = 1 as a result of the latency delay are

made better off, while many of those who were already in the market are made worse off.

4 Conclusion

Latency delays have been a topic of controversy since their introduction. Proponents contend

that they improve liquidity for uninformed investors via narrower spreads, while opponents

claim that the liquidity improvement is illusory: the “improved” quotes may fade before

they are ever hit. We construct a model of latency delays in order to disentangle potential

effects from their introduction.

We find that many of the effects from latency delays depend on the length of the delay.

Specifically, we define a “segmentation point”, which is the shortest length of a latency
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delay such that all informed traders cluster on the non-delayed exchange. As the length of

a latency delay increases towards this point, the crowding of informed traders at the non-

delayed exchange widens its bid-ask spread. Concurrently, more liquidity traders migrate to

the delayed exchange, narrowing the its quoted spread, and increasing its total order flow.

Once the delay increases past the segmentation point, results change drastically. The

spread at the latency-delayed exchange holds constant, and liquidity traders begin migrating

to the non-delayed exchanges. This migration improves bid-ask spreads at non-delayed

exchanges, and encourages more informed traders to (re-)enter the market. Finally, for

sufficiently long latency delays, non-delayed markets are identical to the case with no delays,

while the delayed markets contain only liquidity traders who did not trade in market with

no delayed exchange.

Our model makes several empirical predictions. We predict that, following the introduc-

tion of a delay, quoted spreads should improve at the delayed exchange, while worsening at

the standard exchanges. We also predict that the presence of a delayed exchange improves

liquidity investor participation, and that informed trading should cluster on the non-delayed

exchange. Our model also offers several predictions for policy makers. First, we find that

the introduction of a delayed exchange can impact other exchanges. Other exchanges are

likely to see an increased concentration of informed order flow and a withdrawal of retail

order flow. Market makers on these exchanges may require additional protection, or they

may withdraw from markets or quote at much worse prices. Alternatively, the delayed ex-

changes are particularly attractive to uninformed traders. This may create the need for

special attention by regulators who may be concerned about protecting retail investors and

non-professional market participants. Finally, sufficiently-short latency delays may create

a loss in price discovery, combined with an increase in spreads at non-delayed exchanges.

This combination represents a cost imposed on other markets from a delayed-exchange. Our

model shows that, as with many market structure phenomena, policy makers must take a

nuanced view to changes involving latency delays.
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A Appendix

In the appendix, we include a description of the mechanics underlying latency delays, all

proofs and figures not presented in-text.

A.1 Latency Delays.

Broadly speaking, latency delays are means by which an exchange imposes a delay on some

or all of their incoming orders. Despite being a relatively new feature offered by exchanges,

many varieties of latency delay exist.

The most well known type of latency delay is that of IEX in the United States. This delay,

sometimes referred to as the magic shoebox, indiscriminately slows down all orders entering

the exchange by 350 microseconds. This alone would not prevent multi-market strategies, as

traders could simply send their orders to the delayed exchange in advance. However, markets

such as IEX generally allow traders to post pegged orders, which move instantaneously in

response to external factors Since these pegged orders move instantaneously if trading occurs

on other exchanges, market makers using these orders are offered some protection from multi-

market trading strategies.

The pegged orders at IEX are available in multiple forms, but the one most relevant to

this paper is what is called the “discretionary peg”. This order type uses a known algorithm

to determine if a price movement is likely, a behaviour IEX refers to as a “crumbling quote”.10

If IEX determines that the quote in a particular security is likely to move, it automatically

reprices orders placed at “discretionary pegs”, without the 350 microsecond delay.

A second type of delay allows some forms of liquidity supplying orders to simply bypass

the delay. These limit orders often have a minimum size, or price improvement requirement,

which differentiates them from a conventional limit order. By allowing some orders to bypass

the latency delays, market makers who use these orders are able to update their quotes in

10Complete documentation is available in the IEX Rule Book, Section 11.190 (g), available here: https:
//www.iextrading.com/docs/Investors\%20Exchange\%20Rule\%20Book.pdf
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response to trading on other venues. If the delay is calibrated correctly, this updating can

occur before the same liquidity demanding orders bypass the latency delay. Critics con-

tend that these delays also potentially allows market makers to fade their quotes, removing

liquidity before any large order reaches the exchange.

This form of latency delay is used on the Canadian exchange TSX Alpha. In the case

of TSX Alpha, orders entering the exchange are delayed by a period of 1 to 3 milliseconds

before reaching the order book. A special order type, a limit order referred to as a “post

only” order, is able to bypass this delay. Unlike a conventional limit order, the “post only”

order also contains a minimum size requirement based on the price of the security. These

sizes range from 100 shares for high priced to 20,000 shares for lower priced securities.11

Finally, a third type of latency delay explicitly classifies traders into two groups. Some

traders are affected by the delay, and have their orders held up for a fixed period of time.

Other traders are simply not affected and trade as normal. Unlike the other two types

of delays which rely on order types, this form requires the explicit division of traders by

the exchange into two types. This is used on the Canadian exchange Aequitas NEO, which

divides traders into Latency Sensitive Traders, who are affected by the speed bump, and non-

Latency Sensitive Traders, who are not.12 Those are are deemed to be “latency sensitive”

are subjected to a randomized delay of between 3 to 9 milliseconds.

11Complete documentation is available on the TMX Group website, here: https://www.tsx.com/

trading/tsx-alpha-exchange/order-types-and-features/order-types
12The factors underlying this determination are outlined in Section 1.01 of the Aequitas Neo rule book,

available here: https://aequitasneoexchange.com/media/176022/aequitas-neo-trading-policies-

march-13-2017.pdf
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A.2 Proofs

Proof Sketch (Theorem 1).

Investors who choose to buy at t = 1 at Exchange j have profit functions given by:

πI(γi; Buy at t=1) = v − ask
j
1 − γi (28)

πL(ci; Buy at t=1) = v0 − ask
j
1 (29)

Because exchanges are identical in their operation, it must be that in any equilibrium,

their ask and bid prices are identical. These prices are given by the following:

askFast1 = E[v | Buy at Fast] =
βµI

βµI + (1− µ)αPr (ci ≥ c)
· σ (30)

askSlow1 = E[v | Buy at Slow] =
(1− β)µI

(1− β)µI + (1− µ)(1− α)Pr (ci ≥ c)
· σ (31)

We then solve askFast1 = askSlow1 for (α, β) ∈ (0, 1)2, for all µI and c:

askFast1 = E[v | Buy at Fast] = E[v | Buy at Slow] = askSlow1 (32)

⇐⇒
βµI

βµI + (1− µ)αPr (ci ≥ c)
· σ =

(1− β)µI

(1− β)µI + (1− µ)(1− α)Pr (ci ≥ c)
· σ (33)

⇐⇒ β(1− α) = (1− β)α ⇒ β = α (34)

Given equilibrium prices in (30) and (31), we then solve for µI and c. To solve for µI ,

we solve the equation:

µI = µ× Pr(γi ≤ min
{

v − askFast1 , v − askSlow1

}

) (35)

⇒ γ̄ − (v − askFast1 ) = 0 (36)

where the simplification in (36) arises from the fact that the ask prices at Exchanges Fast

and Slow are identical in equilibrium. We then show that there exists a unique γ̄ ∈ [0, 1]

29



that solves (36). Given this γ̄, µi = µ× γ̄ exists, and is unique.

γ̄ = 0 : 0− (v − 0) < 0 (37)

γ̄ = 1 : 1− σ

(

1−
µ

µ+ (1− µ)Pr (ci ≥ c)

)

> 0 (38)

where (38) is positive because σ < 1. Then differentiate equation (36) by γ̄:

∂

∂γ̄
(γ̄ − (v − askFast1 )) = 1 + σ

(

(1− µ)Pr (ci ≥ c)

(µ+ (1− µ)Pr (ci ≥ c))2

)

> 0 (39)

for all c. Then, to show there exists a unique c, consider the participation constraint for

liquidity investors, c− askFast1 ≥ 0:

c = 0 : 0−
µI

µI + (1− µ)Pr (ci ≥ 0)
· σ < 0 (40)

c = 1 : 1− σ > 0 (41)

where (41) is positive because σ < 1. Then differentiate c− askFast1 ≥ 0 by c:

∂

∂c
(c− askFast1 ) = 1 + σ

(

(1− µ)µi

(µ+ (1− µ)Pr (ci ≥ c))2

)

> 0 (42)

Thus, a unique equilibrium exists for all β = α ∈ (0, 1)2.

Proof (Lemma 1). For an equilibrium to exist, we require that liquidity investors will

trade before t = 1 for a non-zero measure of λi on both exchanges. To ensure this, a sufficient

condition is that the scaling of the cost of delaying trade, k, must be large enough, to entice

investors with the largest valuations (λi ≥ 1 − ǫ, for ǫ arbitrarily close to zero) to trade at

an exchange that posts the widest possible spread, equal to 2σ. Then, k must satisfy:

k(1− ǫ)σ

2
> σ ⇐⇒ k >

2

1− ǫ
> 2

Hence, in any equilibrium where investors use both exchanges, k > 2.

Proof (Theorem 2). The proof of Theorem 2 proceeds similarly to Theorem 1, except
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that we solve the liquidity investor constraints for λ̄ and λ, instead of c and α.

There are three equilibrium cases, defined through the (mixed) strategies of speculators:

β = 0, β(0, 1), and β = 1.

Speculators use only Exchange Slow (β = 0): In this part, we show that no equilibrium

exists for β = 0. To do so, we consider the informed investor’s incentive compatibility

constraint, evaluated at β = 0.

ICI : σ − 0− (1− δ)(σ −
µγ̄

µγ̄ + (1− µ)(λ̄− λ)
) = δσ +

µγ̄

µγ̄ + (1− µ)(λ̄− λ)
> 0 (43)

Moreover, because askFast = 0, then γ̄ < 1, implying that informed investors would always

have an incentive to deviate to the fast exchange.

Speculators use both exchanges (β ∈ (0, 1)): We now solve the following system of

equations for λ̄, λ, γ̄ and β, using the method as in the proof of Theorem 1.

ICI : δσ = E[σ | Buy at Fast]− (1− δ)E[σ | Buy at Slow] (44)

PCI : µI = µPr(γi ≤ max {σ − E[σ | Buy at Fast], (1− δ)(σ − E[σ | Buy at Slow])}) (45)

ICL: E[σ | Buy at Fast] = (1− δ)E[σ | Buy at Slow] + δ ·
kλ̄

2
× σ (46)

PCL: λ = min

{

2E[σ | Buy at Fast]

kσ
,
2E[σ | Buy at Slow]

kσ

}

(47)

We write (44)-(47) explicitly as:

ICI : 1−
µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ)

(

1−
µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)

)

= 0 (48)

PCI : γ̄ − σ

(

1−
µγ̄β

µγ̄β + (1− µ)(1− λ̄)

)

= 0 (49)

ICL:
µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ)

µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
−

δkλ̄

2
= 0 (50)

PCL:
δkλ

2
−

µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
= 0 (51)

We first show that, for all (λ̄, λ, γ̄) ∈ (0, 1)3, there is a unique β∗ ∈ (0, 1) that solves (44).
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ICI |β=0 : δσ + (1− δ)
µγ̄

µγ̄ + (1− µ)(λ̄− λ)
> 0 (52)

ICI |β=1 : δσ −
µγ̄

µγ̄ + (1− µ)(1− λ̄)
< 0, ∀δ <

µγ̄

µγ̄ + (1− µ)(1− λ̄)
= δ∗ (53)

Thus, for all δ < δ∗, there exists a β ∈ (0, 1) by the intermediate value theorem that satisfies

(48). To show that β∗ is unique, we differentiate (48) with respect to β.

∂

∂β
(ICI) = −

µγ̄(1− µ)(1− λ̄)

(µγ̄β + (1− µ)(1− λ̄))2
−

µγ̄(1− µ)(1− λ̄)

(µγ̄(1− β) + (1− µ)(λ̄− λ))2
< 0 (54)

Thus, β∗ is unique for all (λ̄, λ, γ̄) ∈ (0, 1)3.

We then rearrange (48) to:

δ =
µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ)

µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
(55)

Equation (55) can then be substituted into (50) and simplified to yield an expression for λ̄:

λ̄ =
2

k
(56)

Next, we use equation (48) and (49) to solve for E[σ | Buy at Slow], in terms of δ, σ and

γ̄, which we substitute into equation (51):

λ =
2

k

(

1−
γ̄

σ(1− δ)

)

(57)

Then, because the right-hand side equals 2
k
E[σ | Buy at Slow] ∈ (0, 1), and λ̄ = 2

k
, λ∗ exists

and is unique for all γ̄ ∈ (0, 1). Lastly, we show that there exists a unique γ̄∗ that solves

(20), given λ̄∗(γ̄), λ∗(γ̄), and β∗(γ̄).

First, we show that γ̄∗ ∈ [0, 1] exists, by appealing to the intermediate value theorem:

PCI |γ̄=0 : 0− σ < 0 (58)

PCI |γ̄=1 : 1− σ(1−
µβ

µβ + (1− µ)(1− λ̄)
) > 0 (59)
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where (59) holds by the fact that σ < 1. Thus, γ̄∗ ∈ (0, 1) exists. To show that γ̄∗ is unique,

we differentiate (20) by γ̄:

∂

∂γ̄
(PCI) = σ

µ(1− µ)(1− λ̄)

(µγ̄β + (1− µ)(1− λ̄))2
+

∂β

∂γ̄
·

µγ̄(1− µ)(1− λ̄)

(µγ̄β + (1− µ)(1− λ̄))2

+
∂λ̄

∂γ̄
·

µγ̄(1− µ)β

(µγ̄β + (1− µ)(1− λ̄))2
< 0 (60)

Where the third term is zero by the fact that ∂λ̄
∂γ̄

= 0. Now all we need to show is that

∂β

∂γ̄
≥ 0. If we differentiate (19) by γ̄, and solve for ∂β

∂γ̄
, we find:

∂ICI

∂γ̄
= −

µ(1− µ)(1− λ̄) + ∂β

∂γ̄
µβ(1− µ)(1− λ̄)

(µγ̄β + (1− µ)(1− λ̄))2
− (1− δ)

k

2
·
∂λ

∂γ̄
= 0 (61)

⇐⇒
∂β

∂γ̄
= −

µ(1−µ)(1−λ̄)

(µγ̄β+(1−µ)(1−λ̄))2
+ (1− δ)k

2
· ∂λ

∂γ̄

µβ(1−µ)(1−λ̄)

(µγ̄β+(1−µ)(1−λ̄))2

> 0 (62)

where (62) is positive by the fact that the partial derivative of λ with respect to γ̄ is:

∂λ

∂γ̄
= −

2

σk(1− δ)
< 0

which implies that:
µ(1− µ)(1− λ̄)

(µγ̄β + (1− µ)(1− λ̄))2
−

1

σ
< 0

Hence, γ̄∗ is unique.

Speculators use only Exchange Fast (β = 1): Lastly, we solve equations (44)-(47) for

the case where β =. Inputting β = 1, we have:

ICI : δ −
µγ̄

µγ̄ + (1− µ)(1− λ̄)
≥ 0 (63)

PCI : γ̄ − σ

(

1−
µγ̄

µγ̄ + (1− µ)(1− λ̄)

)

= 0 (64)

ICL:
µγ̄

µγ̄ + (1− µ)(1− λ̄)
−

δkλ̄

2
= 0 (65)

PCL:
δkλ

2
= 0 (66)

Equation (63) pins down the relation between β and δ: for all δ ≥ µγ̄

µγ̄+(1−µ)(1−λ̄)
, β∗ = 1.
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Moreover, by inspection, we see that λ∗ = 0. To prove the existence of a unique γ̄, we solve

equation (64) for γ̄:

γ̄∗ =

√

(1− µ)2(1− λ̄)2 + (1− µ)(1− λ̄)µσ − (1− µ)(1− λ̄)

2µ
(67)

By inspection, γ̄∗ exists and is unique as long as the limit µ → 0 exists, and is in the interval

[0,1]. To calculate this limit, we need to apply L’Hôpital’s Rule.

lim
µ→0





∂
∂µ

(

√

(1− µ)2(1− λ̄)2 + (1− µ)(1− λ̄)µσ − (1− µ)(1− λ̄)
)

∂
∂µ
(2µ)



 =
λ̄+ σ

4
∈ [0, 1]

(68)

Lastly, we show that there exists a unique λ̄ ∈ [0, 1] that solves (65).

ICL |λ̄=0 :
µγ̄

µγ̄ + (1− µ)
− 0 > 0 (69)

ICL |λ̄=1 : 1−
k

2
< 0 (70)

Thus, λ̄∗ exists. To show that it is unique, we differentiate (65) with respect to λ̄:

∂

∂λ̄
(ICL) =

µγ̄(1− µ)

(µγ̄ + (1− µ)(1− λ̄))2
+

∂γ̄

∂λ̄
·

µ(1− λ̄)(1− µ)

(µγ̄ + (1− µ)(1− λ̄))2
−

δk

2
< 0 (71)

Since λ̄ ≤ 2/k, the following holds.

Thus, a unique equilibrium exists for
{

β, λ̄, λ, γ̄
}

=
{

1, λ̄∗, 0, γ̄∗
}
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Figure 2: Market Participation by Investor Type

The left panel below depicts the unconditional probabilities of a speculator’s action prior to t = 2 (β), as a function of the latency delay
δ. The right panel illustrates the market participation choices of liquidity investors, as a function of the latency delay δ. A vertical
dashed line marks δ∗: for all δ > δ∗, informed investors use only Exchange Fast. Horizontal dashed lines mark values for the benchmark
case. Parameter µ = 0.5 and k = 2.6. Results for other values of µ and k are qualitatively similar.
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Figure 3: Order Submissions, Trades, and Market Participation

The left panel below depicts total orders submitted and trades executed pre-announcement (prior to t = 2), as a function of the Exchange
Slow latency delay δ. The right panel illustrates market participation by speculators (µI) and liquidity investors (µL), as a function of
the latency delay δ. A vertical dashed line marks δ∗: for all δ > δ∗, informed investors use only Exchange Fast. Horizontal dashed lines
mark values for the benchmark case. Parameter µ = 0.5 and k = 2.6. Results for other values of µ and k are qualitatively similar.
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Figure 4: Quoted Spreads and Price Discovery

The left panel below presents the quoted half-spreads for exchanges Fast and Slow at t = 1, as a function of the latency delay δ. The
right panel depicts price discovery pre-announcement, which we measure as average price movement attributed to informed trades prior
to t = 2 (the announcement date of v), as a function of the Exchange Slow latency delay δ. A vertical dashed line marks δ∗: for all
δ > δ∗, informed investors use only Exchange Fast. Horizontal dashed lines mark values for the benchmark case. Parameter µ = 0.5 and
k = 2.6. Results for other values of µ and k are qualitatively similar.
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Figure 5: Liquidity Investor Trading Costs

The left panel below illustrates the average trading costs paid by a liquidity investor who enters the market at t = 0. In the right panel,
we present the trading costs due to delay and the trading costs due to realized quotes separately, as well as the aggregation (from the left
panel). We present these costs as a function of the latency delay δ. A vertical dashed line marks δ∗: for all δ > δ∗, informed investors
use only Exchange Fast. Horizontal dashed lines mark values for the benchmark case. Parameter µ = 0.5 and k = 2.6. Results for other
values of µ and k are qualitatively similar.
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A Model of Multi-Frequency Trade∗

Nicolas Crouzet, Ian Dew-Becker, and Charles G. Nathanson

March 5, 2017

Abstract

We develop a noisy rational expectations model of financial trade featuring investors who

acquire information and trade at a range of different frequencies. In the model, a restriction on

high-frequency trading affects effi ciency of prices at high frequencies, but leaves low-frequency

effi ciency unaffected. In a particular equilibrium of the model, traders specialize into trading

at individual frequencies. We show that high- and low-frequency investors coexist, trade with

each other, and make money from each other. The model matches numerous basic features of

financial markets: investors endogenously specialize into strategies distinguished by frequency;

volume is disproportionately driven by high-frequency traders; and the portfolio holdings of

informed investors forecast returns at the same frequencies as those at which they trade.

Investors in financial markets follow many different strategies, including value investing, techni-

cal analysis, macro strategies, and algorithmic trading. These strategies differ in two salient ways.

First, they require investors to learn about different aspects of asset prices; market-makers or algo-

rithmic traders care more about the high-frequency movements of prices, while value investing puts

more emphasis on their slow-moving features. These investors all understand that their information

sets may not overlap, and yet they trade with each other, presumably making some money in the

process. Second, these strategies differ in the frequency at which they require investors to trade,

or equivalently the rate at which they turn over their positions.

This paper proposes an equilibrium model in which investors endogenously specialize in acquir-

ing information and trading at different frequencies. There is a single fundamentals process, and a

continuum of investors who trade forward contracts on the fundamental. These investors also learn

about different aspects of asset dynamics. An example of the fundamentals process is the spot

price of oil: investors are able to acquire information that tells them about the future path of oil

prices, allowing them to potentially earn profits on the forward contracts. As is common elsewhere,

in order to grease the wheels of the market, we assume that investors trade against an exogenous

flow of demand for forward contracts that fluctuates stochastically over time.

We show that in such a model, there exists a natural (though not necessarily unique) equi-

librium in which individual investors endogenously choose to focus on specific frequencies of the
∗Crouzet: Northwestern University. Dew-Becker: Northwestern University and NBER. Nathanson: Northwestern

University. We appreciate helpful comments from Stijn van Nieuwerburgh.
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fundamentals. Some investors learn about low-frequency aspects of oil prices in the sense that

they get a signal about their average path over, say, a period of decades, while others learn about

higher-frequency behavior, receiving a signal about how oil prices vary from day to day or month

to month. This occurs despite the fact that the learning technology is fully general, and in no way

tilts investors towards frequency specialization ex-ante.

Given attention allocation —what aspect of fundamentals investors choose to learn about —in

equilibrium we show that their positions fluctuate at the frequency at which they receive signals.

That is, investors who learn about long-run fundamentals hold positions in forward contracts that

fluctuate slowly over time, whereas those who do high-frequency research have positions that vary

at high frequencies. So we have a model in which people choose to learn about high- or low-

frequency aspects of fundamentals, and that learning causes them to endogenously become high-

or low-frequency traders.

While there is other research on investors who trade at different frequencies, that work typically

endows investors with investment horizons that differ exogenously.1 In our setting, all investors

have the same objective, maximizing utility over identical horizons. We view this as an important

restriction in our setting because it is obviously not the case that people who trade at high fre-

quencies, e.g. turning over their portfolios once per day, really have investment horizons of only 24

hours. Rather, all investors want to maximize the same utility function over wealth, they just go

about it in different ways.

What is particularly interesting about the equilibrium that we obtain is that it is not the case

that the informed investors trade only with the exogenous demand (i.e. liquidity traders). In

fact, high- and low-frequency traders trade with each other. The simple reason is that a high-

frequency trader cannot distinguish uninformative demand shocks from the orders of informed

low-frequency traders (and vice versa). So in periods when fundamentals are persistently strong,

low-frequency traders tend to hold persistently more forward contracts than high-frequency traders

and earn profits from them. Similarly, if there is a very transitory increase in fundamentals, the

high-frequency traders tend take advantage and earn profits while the low-frequency traders lose,

as they ignore the temporary trading opportunity. In that sense, then, everybody is a noise trader

sometimes, and they all understand that, but they still participate and make money on average.

The model has a number of predictions for observable features of financial markets. First,

as we have already discussed, it predicts that there are traders who can be distinguished by the

frequencies at which their asset holdings change over time, and they do research about fundamentals

at the same frequencies. So we obtain endogenous high- and low-frequency traders with a specific

prediction for how research aligns with trade.

The model also matches salient facts about differences in volume across investors. We can
1See, e.g., Amihud and Mendelson (1986), who assume that investors are forced to sell after random periods of

time; Hopenhayn and Werner (1996), who assume that investors vary in their rates of pure time preference, and
Defusco, Nathanson, and Zwick (2016) who assume that there are sets of investors who are exogenously forced to
sell at determinstic horizons that vary across groups. Turley (2012), like us, studies a setting in which investors
endogenously choose to learn about high- or low-frequency information, though he studies only a two-period case.
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very easily show analytically that high-frequency investors account for a fraction of aggregate

volume that is out of proportion to their fraction of total asset holdings. An interesting implication

of that result is that incorporating trading costs into the model can have substantial effects on

optimal information acquisition strategies. Since high-frequency trade requires paying much larger

transaction costs than low-frequency trade, any trading costs cause prices to naturally be less

effi cient and for there to be less liquidity at high than low frequencies.2 Moreover, as transaction

costs fall, we expect to see a shift towards higher-frequency trade and for prices to become more

effi cient at high frequencies (see also Turley (2012)).

The model is fundamentally about differences in information across investors. People obtain

information in order to make money, and so their asset holdings in general should forecast returns.

We see that both in the model and in the data.3 But different investors’holdings do not forecast

returns in the same way. The frequency at which an investor’s portfolio holdings forecasts returns is

the same as the frequency at which they trade: high-frequency investors’positions forecast returns

at very short horizons, while buy-and-hold investors’portfolios forecast returns over much longer

periods.

The idea that an investors’asset holdings should forecast returns over a period related to how

long those assets will be held is perhaps not surprising. Studies of the holdings of mutual funds

and other institutional investors typically examine returns over a period of perhaps 3—12 months.

At the other extreme, Brogaard, Hendershott, and Riordan (2014) show that the holdings of high-

frequency traders (as defined by NASDAQ) forecast returns over periods of 1—5 seconds —a horizon

7 orders of magnitude smaller than a calendar quarter.

To empirically test our model, we provide novel evidence on the relationship between turnover

and asset return predictability. Using form 13F data on institutional asset holdings, we first show

that asset turnover within funds is highly persistent over time, suggesting that it is a salient feature

of investor strategies. Next, after confirming past results that institutional holdings predict returns,

we show that the predictive power of the holdings of high-turnover funds decays much more quickly

than those of low-frequency funds, consistent with the model.

Finally, we use the model to study the effects of a policy that restricts high-frequency trade.

Such a policy has the obvious effect of reducing the informativeness of prices at high frequencies,

but it has no effect at low frequencies. The practical implication is that while prices at any single

moment contain less information than without the policy, moving averages of prices remain almost

equally informative about moving averages of dividends. So to the extent that economic decisions

are made based on an average of prices over time, rather than a price at a single moment, the

model implies that restricting high-frequency trade will not reduce the information available for

those decisions.
2Gârleanu and Pedersen (2013) also discuss how high-frequency information is less valuable in the presence of

trading costs, while Dávlia and Parlatore (2016) study in a related setting how trading costs can affect information
acquisition, but without our focus on differences across frequencies.

3See, e.g., the literature on the predictive power of mutual fund and institutional investor asset holdings for future
returns, such as Carhart (1997) and Yan and Zhang (2009), among many others.
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To summarize, we develop a model that matches a number of major features of trade in financial

markets: investors can be distinguished by the frequencies at which they trade; volume is accounted

for by high-frequency traders; and the holdings of investors forecast returns at horizons similar to

their holding periods. The model can then be used to analyze the effects of restricting trade at

specific frequencies.

In general models with dynamic trade are extremely diffi cult to solve; solutions typically require

some kind of restriction, such as to a very narrow class of driving processes (e.g. AR(1) and

Ornstein—Uhlenbeck processes studied in Wang (1993, 1994) and He and Wang (1995)), or to only

two or three period horizons. We allow for a very long investment horizon and place only technical

constraints on the fundamental processes driving the model and obtain fully analytic solutions. The

sacrifice that we make is that information sets are fixed on date 0 —investors only obtain signals

once. The model should be thought of as essentially a stationary equilibrium: it gives a steady-

state description of trade, volume, and returns. It is not well suited to studying how investors and

markets respond to shocks to information sets.

The major advantage of our particular information structure is that it allows us to take a long-

horizon dynamic model and solve it as a series of parallel scalar problems. In particular, solving

our model is only marginally more diffi cult than solving a standard single-period/single asset noisy

rational expectations model — it reduces to a parallel set of such equilibria. The paper thus has

useful methodological contributions for analyzing models of trade over time.

This paper builds on a growing recent literature that tries to understand optimal informa-

tion acquisition in financial markets. The most important building blocks are the models of van

Nieuwerburgh and Veldkamp (2010) and Kacperczyk, van Nieuwerburgh, and Veldkamp (2016) in

that we use a highly similar information and market structure and build on their results on optimal

information acquisition (their reverse water-filling solution, in particular). Those papers themselves

build critically on work by Grossman and Stiglitz (1980), Hellwig (1980), Diamond and Verrecchia

(1981), and Admati (1985) on rational expectations equilibria. More recently, research has tried

to understand the effects on the equilibria developed in those earlier papers of various limits on

information gathering ability (e.g. Banerjee and Green (2015) and Dávila and Parlatore (2016)).

There is also a literature on price dynamics in rational expectations equilibria, though it is

relatively small given how diffi cult dynamic models are to solve. In particular, a series of papers

by Wang (1993, 1994) and He and Wang (1995) study the implications of dynamic equilibria on

prices and volume. Those papers are based around AR(1) or Ornstein—Uhlenbeck-type dynamics

to maintain tractability (see also Wachter (2002)), whereas we study a setting in which the various

exogenous time series may follow processes with minimally constrained autocorrelations. Further-

more, we focus on how investment strategies differ across investors, whereas those papers focus on

symmetric strategies. A number of papers also study overlapping generations models, which can

help alleviate some of the diffi culties with dynamic trade.4

There is also a large literature on disagreement in financial markets. In addition to the above

4See Spiegel (1998), Watanabe (2008), and Banerjee (2011), among others.
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work, see, e.g., Townsend (1983), Basak (2005), Hong and Stein (2007), and Banerjee and Kremer

(2010), who focus, like us, on dynamics. In our setting, disagreement arises not just because agents

receive signals that have random errors, but also because their signals have different relationships

with fundamentals. High-frequency and low-frequency investors will often disagree about the price

path of the asset over time because they learn about different characteristics of fundamentals —the

path over the next few minutes, say, versus the path over the next several years.

Our desire to develop a model that can match salient features of the cross-section of investment

strategies follows from a large empirical literature that documents the behavior of many different

types of investors and how it affects the aggregate behavior of financial markets. Chen, Jegadeesh,

and Wermers (2000), Gompers and Metrick (2001), Nagel (2005), Griffi n and Xu (2009), Yan and

Zhang (2009), and Brogaard, Hendershott, and Riordan (2014), for example, study the behavior of

institutional investors and how their holdings relate to asset returns. Turley (2012), Bai, Philippon,

and Savov (2016), and Weller (2016) study how price informativeness has changed over time and

how it is affected by trading costs and the number of investors who trade at different frequencies.

Finally, our work is related to a small literature that studies the properties of asset returns

and portfolio choice in the frequency domain including Bandi and Tamoni (2014), Chinco and Ye

(2016), Chaudhuri and Lo (2016), and Dew-Becker and Giglio (2016).

The remainder of the paper is organized as follows. Section 1 describes the basic environment,

and we solve for optimal information acquisition in section 2. Section 3 examines the implications

of the model for the behavior of individual investors in a setting that features investors who spe-

cialize in trade at a particular frequency. Section 4 presents empirical evidence on the behavior of

institutions consistent with out model of specialization. Finally, section 5 presents our key results

on the effects of restrictions on high-frequency trade on return volatility and price effi ciency at

different frequencies, and section 6 concludes.

1 Asset market equilibrium

We begin by describing the basic market structure and the asset market equilibrium. This section

introduces the description of trading strategies in terms of frequencies and shows how the frequency

transformation makes multi-period investment a purely scalar problem. the problem is solved from

the perspective of date 0.

1.1 Market structure

Time is denoted by t ∈ {−1, 0, 1, ..., T}, with T even, and we will focus on cases in which T may be
treated as large. There is a fundamentals process Dt that investors make bets on with realizations

on all dates except −1 and 0. The time series process is stacked into a vector D ≡ [D1, D2, ..., DT ]′

(variables without subscripts denote vectors) and is distributed as

D ∼ N(0,ΣD). (1)
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The fundamentals process is assumed to be stationary, meaning that it has constant uncondi-

tional autocovariances. Stationarity implies that ΣD is Toeplitz (all diagonals are constant), and

we further assume that the eigenvalues of ΣD are finite and bounded away from zero.5

On date 0, there is a market for forward claims on Dt for all t > 0. A unit mass of investors

indexed by i ∈ [0, 1] meets on date 0 and commits to a set of trades of futures contracts maturing

on all dates. Pt denotes the price of a claim to the fundamental Dt.

There is an exogenous supply of futures, Z, which is distributed as

Z ∼ N(0,ΣZ). (2)

Zt may be thought of as either exogenous liquidity demand or noise trading. The time series process

for supply is also assumed to be stationary. For markets to clear, the net demand of the investors

for the fundamental on date t must equal Zt,6

∀t :

∫
i
Qi,tdi = Zt, (3)

where Qi,t is the number of date-t forward claims agent i buys.

A concrete example of a potential process Dt is the price of crude oil: oil prices follow some

stochastic process and investors trade futures on oil at many maturities. Dt can also be interpreted

as the dividend on a stock, in which case Pt is the price of a forward claim on a single dividend.

1.1.1 Modeling equities

While the concept of a futures market on the fundamentals will be a useful analytic tool, we can

also obviously price portfolios of futures. We model equity as a claim to the stream of fundamentals

over time. To purchase such a claim, one would enter into futures contracts for the fundamental

on each date t + j. Since futures contracts specify that money only changes hands at maturity,

the money that must be set aside on date t for a futures contract that expires at t+ j is Pt+jR−j ,

where R is the discount rate (which is assumed here to be a constant). The date-t cost of a claim

to the entire future stream of fundamentals is therefore

P equityt ≡
T−t∑
j=1

R−jPt+j (4)

Holding any given combination of futures claims on the fundamental D is therefore also equiva-

lent to holding futures contracts on equity claims (i.e. committing to a trading strategy in equities

at prices that are agreed on at date 0). Any desired set of exposures to fundamentals over time

5The analysis is similar if a transformation of Dt (e.g. its first difference) is stationary. See appendix section A.
6 It is also possible to assume that there is an exogenous downward-sloping supply curve of the fundamental that

shifts stochastically over time; our results go through similarly. This case is treated as part of the analysis of appendix
6.
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can be obtained either through purchases of futures or through suitable trading strategies for the

equity claim (assuming prices can be committed to or that they are predetermined, which will be

the case in our equilibrium).

Our analysis of pricing will focus on futures as they will give the most direct analog to past

work. When we discuss volume and trading costs, though, we will take advantage of the equity-

based implementation.

1.2 Information structure

The realization of the time series of fundamentals, {Dt}Tt=1, can be thought of as a single draw from

a multivariate normal distribution. Investors are able to acquire signals about that realization. The

signals are a collection {Yi,t}Tt=1 observed on date 0 with

Yi,t = Dt + εi,t, εi ∼ N (0,Σi) , (5)

Information sets in the model are fixed on date 0. Through Yi,t, investors can learn about funda-

mentals potentially arbitrarily far into the future. εi,t is a stationary error process in the sense that

cov (εi,t, εi,t+j) depends on j but not t (again, Σi is Toeplitz).

The information structure here is obviously stylized. One interpretation is that we are collapsing

to date 0 all the realizations of a stationary process. That is, agents have a machine that gives them

signals about fundamentals plus an error, and that machine reports all of its output on date 0. The

information structure is meant to generate two important features in the model. First, obviously on

any particular date agents can choose to learn about fundamentals on more than just a single date

in the future —they can potentially get information about fundamentals in many different periods

(e.g. next quarter vs. over the next five years). Second, by restricting εi,t to be “stationary”, we

are forcing agents to choose a fixed policy for information. They build a machine (or a research

department) that, rather than yielding information about only a single date, returns information

about the entire fundamentals stream over time in a way that places no particular emphasis on any

single date.

In choosing Σi agents will have two choices to make. First, they will be able to choose how

informative their signals are by choosing the variance of εi. Second, though, they will be able to

choose how accurate the signals are about fundamentals over different horizons. some choices for

Σi will yield signals that are informative about transitory variation in fundamentals, while others

will yield signals that are more useful for forecasting trends.

1.3 Investment objective

All trading decisions are made on date 0. Investors choose demands {Qi,t}Tt=1 conditional on their

observed signals, {Yi,t}Tt=1, and the set of futures prices, {Pt}
T
t=1. That is, as in past work, agents

submit to a central auctioneer demand curves that condition on prices.
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We assume that investors have mean-variance utility over cumulative excess returns. Investor

i’s objective is

U0,i = max
{Qi,t}

E0,i

[
T−1

T∑
t=1

Qi,t (Dt − Pt)
]
− (ρT )−1 V ar0,i

[
T∑
t=1

Qi,t (Dt − Pt)
]
, (6)

where E0,i is the expectation operator conditional on agent i’s date-0 information set, {P, Yi}.
V ar0,i is the variance operator conditional on {P, Yi}. ρ is risk-bearing capacity per unit of time.

The assumption that all plans are made on date 0 only restricts information sets in a very

specific way: it means that investors are not able to condition demand on the realized history of

fundamentals. That is, it is not free to condition on the history of Dt, even when that history has

already been realized. Instead, what agents must condition on is noisy signals about fundamentals,

Yi,t.

An important implication of that assumption is that agents have no desire to change their

investment choices after date 0 since they receive no further information. Agents’trading strategies

can thus be equivalently implemented either through a set of purchases of futures contracts or

through a dynamic plan for trading the equity claim, as described above.

We interpret the objective as representing a target that an institutional investor might have.

Rather than aiming to maximize the discounted sum of returns, as a person who consumes out of

wealth might, the investors we study maximize a measure of their performance. The objective can

be thought of as representing CARA or quadratic preferences over the sum of excess returns, so it

would appear if a manager were paid on date T a fee proportional to total excess returns up to that

time. Bhattacharya and Pfleiderer (1985) and Stoughton (1993) also argue that a quadratic contract

(which would induce mean-variance preferences) can appear optimally in delegated investment

problems. The important characteristic of (6) is that it yields a stationary problem in the sense

that there is no discounting to make returns in some periods more important than others.

Finally, note that all investors have the same investment horizon. We show in appendix F that

the investment horizon as defined here by T has no effect on information choices in the model —

two investors with different T will be equally likely to be high- or low-frequency investors. The

simplest way to confirm that fact is to simply note, when we obtain the equilibrium strategies, that

T has no effect on the type of information that investors optimally obtain.

1.4 Equilibrium

Conditional on the information choices of the agents — that is, taking the set of Σi (which may

differ across agents) as given —we study a standard asset market equilibrium.

Definition 1 An asset market equilibrium is a set of demand functions, Qi (P, Yi), and a vector

of prices, P , such that investors maximize utility, U0,i, and all markets clear,
∫
iQi,tdi = Zt ∀t.
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The equilibrium concept is that Grossman and Stiglitz (1980), Hellwig (1980), Diamond and

Verrecchia (1981), and Admati (1985). Investors submit demand curves for each futures contract

to a Walrasian auctioneer who selects equilibrium prices to clear all markets.

The structure is in fact mathematically that of Admati (1985), who studies investment across

a set of assets that might represent stocks in different companies, and the solution from that

paper applies directly here. Here we are considering investment across a set of futures contracts

that represent claims on some fundamentals process across different dates. We simply rotate the

Admati (1985) structure from a cross-section to a time series.

1.5 Trading frequencies

This paper is fundamentally about the behavior of markets at different frequencies, so we need a

rigorous concept of what frequencies are. We use the fact that fluctuations at different frequencies

represent an (asymptotic) orthogonal decomposition of any time series.

Define a set of vectors of cosines and sines at the fundamental frequencies ωj = 2πj/T for

j ∈ {0, 1, ..., T/2}

cj ≡
√

2/T [cos (2πj (t− 1) /T ) ; t = 1, 2, ..., T ]′ (7)

sj′ ≡
√

2/T [sin (2πj (t− 1) /T ) ; t = 1, 2, ..., T ]′ . (8)

A cycle at frequency ωj has an associated wavelength 2π/ωj . ω0 = 0 thus corresponds to an infinite

wavelength, or a permanent shock (a constant vector). ω1 corresponds to a cycle that lasts as long

as the sample —c1 is a single cycle of a cosine. ωT/2 = π, the highest frequency, corresponds to a

cycle that lasts two periods, so that cT/2 oscillates between ±
√

2/T .

The frequency-domain counterpart to the vector of fundamentals, D, is then

d = Λ′D (9)

where Λ ≡
[
c0/
√

2, c1, ..., cT/2/
√

2, s1, s2, ..., sT/2−1

]
, (10)

we use the notation dj = c′jD and dj′ = s′jD to refer to fundamentals at particular frequencies.

When the distinction is necessary, we use the notation j to refer to a frequency associated with a

cosine transform and j′ to refer to one with a sine transform. In what follows, lower-case letters

denote frequency-domain objects. Note that Λ is orthonormal with Λ′ = Λ−1.

Since d is a linear function of D, it can be thought of as a vector of payoffs on portfolios of

futures given by Λ —portfolios with weights on Dt that fluctuate over time as sines and cosines.

For our purposes, the key feature of Λ is that it approximately diagonalizes all Toeplitz matrices

and thus orthogonalizes stationary time series.7

7This is a textbook result that appears in many forms, e.g. Shumway and Stoffer (2011). Brillinger (1981) and
Shao and Wu (2007) give similar statements under weaker conditions.
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Definition 2 fX is the spectrum of X with elements fX,j, defined as

fX,j ≡ σX,0 + 2

T−1∑
s=1

σX,j cos (ωjs) (11)

fX ≡
[
fX,0, fX,1, ...fX,T/2, fX,1, fX,2, ..., fX,T/2−1

]′
. (12)

Lemma 1 For a stationary time series Xt ∼ N (0,ΣX) with autocovariances σX,j ≡ cov (Xt, Xt−j),

x ≡ Λ′X ⇒ N (0, diag (fX)) (13)

where ⇒ denotes convergence in the sense that

∣∣Λ′ΣXΛ− diag (fX)
∣∣ ≤ cXT−1/2 (14)

for a constant cX and for all T .8 diag (fX) is a matrix with the vector fX on its main diagonal

and zero elsewhere.

Proof. This is a textbook result (e.g. Brockwell and Davis (1991)). See appendix B for a derivation
specific to our case.

For any finite horizon, the matrix Λ does not exactly diagonalize the covariance matrix of D.

But as T grows, the error induced by ignoring the off-diagonal elements of the covariance matrix

Λ′D becomes negligible (it is of order T−1/2), and x is well approximated as a vector of independent

random variables.9 The spectrum of X, fX , measures the variance in X coming from fluctuations

at each frequency. It also represents an approximation to the eigenvalues of ΣX .10

To see why this lemma is useful, consider the vector of fundamentals in the frequency domain,

d = Λ′D. Given that D ∼ N(0,ΣD), where ΣD is Toeplitz, we have

Λ′D = d⇒ N (0, diag (fD)) . (15)

Λ thus approximately diagonalizes the matrix ΣD, meaning that the elements of d —the fluctuations

in fundamentals at different frequencies (with both sines and cosines) are jointly asymptotically

independent. Moreover, the same matrix Λ asymptotically diagonalizes the covariance matrix of

any stationary process. That result will allow us to massively simplify the study of investment over

8Two technical points may be noted here. First, as a technical matter, the spectrum fX must be extended as T
grows. A simple way to do that is to suppose that there is a true process for X with a spectrum that is a continuous
function fX , and in any finite sample of length T , there is then an associated spectrum fX,T defined in (11). The
second point is that the constant cX is then a function of that true spectrum fX ; the appendix elaborates on that
fact.

9For all the stationary processes studied in the paper, we assume that the autocovariances are summable in the
sense that

∑∞
r=1 |jσX,j | is finite (which holds for finite-order stationary ARMA processes, for example).

10fX represents an approximation to the eigenvalues only in the sense that Λ′ΣXΛ ≈ diag (fX). Providing a sense
in which fX is actually close to the true eigenvalues of ΣX is a subtler problem that we do not address here. The
specific result in lemma 1 is all that we actually need for our results.
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many horizons. It says that set of orthogonal factors underlying all stationary processes is (nearly)

the same.

1.6 Market equilibrium in the frequency domain

The approximate diagonalization induced by Λ allows us to solve the model through a series of

parallel scalar problems that can be easily solved by hand. Using the asymptotic approximation

that d and z are independent across frequencies (and across sines and cosines), we obtain the

following frequency-by-frequency solution to the asset market equilibrium.11

Solution 1 Under the approximations d ∼ N (0, diag (fD)) and z ∼ N (0, diag (fZ)), the prices of

the frequency-specific portfolios, pj, satisfy, for all j, j′

pj = a1,jdj − a2,jzj (16)

a1,j ≡ 1−
f−1
D,j(

ρf−1
avg,j

)2
f−1
Z,j + f−1

avg,j + f−1
D,j

(17)

a2,j ≡
a1,j

ρf−1
avg,j

(18)

where f−1
avg,j ≡

∫
i
f−1
i,j di (19)

where pj, dj, and zj represent the frequency-j components of prices, fundamentals, and supply,

respectively. fi is the spectrum of the matrix Σi. See appendix C for the derivation.

The price of the frequency-j portfolio depends only on fundamentals and supply at that fre-

quency. As usual, the informativeness of prices, through a1,j , is increasing in the precision of the

signals that investors obtain, while the impact of supply on prices is decreasing in signal precision

and risk tolerance. The frequency domain analog to the usual demand function is

qi,j = ρ
E [dj − pj | yi,j , pj ]
V ar [dj − pj | yi,j , pj ]

. (20)

These solutions for the prices and demands are the standard results for scalar markets. What is

novel here is that the choice problem refers to trades over time. pj is the price of a portfolio whose

exposure to fundamentals fluctuates over time at frequency 2πj/T . Both prices and demands at

frequency j depend only on signals and supply at frequency j —the problem is completely separable

across frequencies.

The appendix shows that the frequency domain solution provides a close approximation to the

true solution in the time domain. Specifically, the true time domain solution from Admati (1985)

11A simple way to see where this solution comes from is to note that, under the asymptotic approximation, Λ′A1Λ
and Λ′A2Λ from the Admati solution can be written purely in terms of diagonal matrices, for which addition,
multiplication, and inversion are simply scalar operations on the main diagonal.
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(with no approximations) can be written as

P = A1D −A2Z (21)

for a pair of matrices A1 and A2 defined in the appendix that are complicated matrix functions of

ΣZ , ΣD, and the precisions of the signals agents obtain.

Proposition 1 The difference between calculating the prices directly in the time domain using the
Admati (1985) solution in the time domain and rotating the frequency domain solution back into

the time domain is small in the sense that

∣∣A1 − Λdiag (a1) Λ′
∣∣ ≤ c1T

−1/2 (22)∣∣A2 − Λdiag (a2) Λ′
∣∣ ≤ c2T

−1/2 (23)

for constants c1 and c2. Furthermore, while prices and demands are stochastic, the time- and

frequency-domain solutions are related through an even stronger result

emax [V ar (Λp− P )] ≤ cPT
−1/2 (24)

emax [V ar (Λqi −Qi)] ≤ cQT
−1/2 (25)

where the operator emax [·] denotes the maximum eigenvalue of a matrix (that is, the operator norm),
for constants cP and cQ.

In other words, among portfolios whose squared weights sum to 1, the maximum variance of

the pricing and demand errors —the difference between the truth from the time domain solution

and the frequency-domain approximation that assumes that Λ diagonalizes the covariance matrices

—is of order T−1/2 (that is, the bound holds for any portfolio of futures, not just the frequency- or

time-domain claims). We note also that these are not limiting results —they are true for all T .

Result 1 shows that for large T , the standard time-domain solution for stationary time series

processes becomes arbitrarily close to a simple set of parallel scalar problems in the frequency do-

main. The time domain solution is obtained from the frequency domain solution by premultiplying

by Λ.

2 Optimal information choice

We now model a constraint on information acquisition and characterize optimal strategies. The

objective, constraint, and solution are drawn from van Nieuwerburgh and Veldkamp (2009) and

Kacperczyk, van Nieuwerburgh, and Veldkamp (2016; KvNV). Our analysis follows theirs closely,

except that we are studying a time-series model and a frequency transformation. Whereas KvNV

study a symmetric equilibrium in which all investors follow the same information acquisition strat-

egy, we will subsequently argue for the relevance of a separating equilibrium in our setting.

12



2.1 Objective

Following KvNV, we assume that investors choose information to maximize the expectation of their

mean-variance objective (6) subject to a linear constraint on total precision:

max
{fi,j}

E−1

[
Ui,0 | Σ−1

i

]
such that T−1tr

(
Σ−1
i

)
≤ f̄−1 (26)

where E−1 is the expectation operator on date −1, i.e. prior to the realization of signals and

prices (as distinguished from Ei,0, which conditions on P and Yi). The trace function tr
(
Σ−1
i

)
measures the total cost of acquiring a private signal with precision matrix Σ−1

i and is subject to the

bound f̄−1.12 This cost function is also equal to the sum of the eigenvalues of the precision matrix.

Since the eigenvalues represent the precisions of the orthogonalized signals, it can be thought of

as measuring the total precision of the independent parts of the signals. Moreover, since the trace

operator is invariant under rotations, this measure of information is invariant to the domain of

analysis, time or frequency.13 That is,

T−1tr
(
Σ−1
i

)
= T−1

∑
j,j′

f−1
i,j (27)

The information constraint is linear in the frequency-specific precisions. Investors also face the

constraint that fi,j = fi,j′ , which ensures that the variance matrix of εi is symmetric and Toeplitz.14

The appendix shows that, given the optimal demands, an agent’s expected utility is linear in

the precision they obtain at each frequency.

Lemma 2 Under the frequency domain representation, when informed investors optimize, each
investor’s expected utility may be written as a function of their own precisions, f−1

i,j , and the average

across other investors, f−1
avg,j ≡

∫
i f
−1
i,j di, with

E−1 [U0,i | {fi,j}] =
1

2
T−1

∑
j,j′

λj

(
f−1
avg,j

)
f−1
i,j + constants (28)

λj (x) is a function determining the marginal benefit of information at each frequency with the

properties λj (x) > 0 and λ′j (x) < 0 for all x ≥ 0. The fact that λ′j < 0 says that the marginal

benefit to an investor of allocating attention to frequency j is decreasing in the amount of attention

that other investors allocate to that frequency —attention decisions are strategic substitutes. If

12Our main analysis considers the case where signals about fundamentals are costly but investors can condition on
prices freely. Appendix I considers a case where it is costly to condition expectations on prices and shows that model’s
predictions results go through similarly with the caveat that investors never choose to become informed about prices,
as in Kacperczyk, van Nieuwerburgh, and Veldkamp (2016).
13This result relies on the approximation Σi ≈ Λ′diag (fi) Λ.
14KvNV show that the solution of the optimal attention allocation problem (26) are identical if one assumes

that the cost of information is measured by the entropy of the investor’s signals, which corresponds to the function
ln
∣∣Σ−1i ∣∣ ≈∑j,j′ log f−1i,j . The key feature of the two cost functions is that they are non-convex in precision.
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f−1
avg,j , the average precision of the signals obtained by other agents, is high, then prices are already

effi cient at frequency j, so there is little benefit to an investor from learning about that frequency.

The frequency-domain transformation is what allows us to write utility as a simple sum across

frequencies. An investor’s utility depends additively on the amount of information that they obtain

at each frequency. In the time domain, utility is a complicated function of matrices.

2.2 Characterizing the optimum

The critical feature of (28) is that expected utility is linear in the set of precisions that agent i

chooses,
{
f−1
i,j

}
. Since the both the objective (28) and the constraint (27) are linear in the choice

variables, it immediately follows that agents either allocate all attention to a single frequency, or

that they are indifferent between allocating attention across some subset of the frequencies. We

then obtain the following solution for attention allocation.

Solution 2 Information is allocated so that

f−1
avg,j =

{
λ−1
j

(
λ̄
)
if λj (0) ≥ λ̄

0 otherwise
(29)

where λ̄ is obtained as the solution to

T−1
∑

j,j′:λ−1j (λ̄)>0

λ−1
j

(
λ̄
)

= f̄−1. (30)

This is the reverse water-filling solution from KvNV. While it may appear mathematically

complicated, the intuition is simple: investors allocate attention to signals in such a way that the

marginal benefit is equalized to the extent possible across frequencies. It is impossible to allocate

negative attention, though, so if the marginal benefit of paying attention to a particular frequency,

λj (0), is below the cutoff λ̄, then f−1
i,j = 0 there for all investors.

The intuition is easiest to develop graphically. Figure 1 plots the functions λj (0) and λj
(
f−1
avg,j

)
across frequencies ωj , where

λj (0) = fD,j
(
1 + ρ−2fD,jfZ,j

)
. (31)

The initial marginal benefit of allocating attention is increasing in the amount of fundamental

information and the volatility of supply.

The details of the calibration are reported in appendix J. What is important here is simply

that λj (0) has peaks at low, middle, and high frequencies. Those are the frequencies at which Dt

or Zt is more volatile, so there is more information to potentially be gathered and a larger reward

for doing so. For a given value of f̄−1, λj
(
f−1
avg,j

)
is a flat line for all j such that λj (0) ≥ λ̄. Those

are the frequencies that investors learn about. The term “reverse water filling”refers here to the

idea that the curve λj (0) is inverted and one pours water into it. λ̄ is then the level of the water’s
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surface.15 As the information constraint is relaxed, λ̄ falls and potentially more frequencies receive

attention.

Given the calibration, we see that there are investors acquiring information in three disconnected

ranges of frequencies. At the places where λj (0) is farther above λ̄, there is more information

acquisition, whereas the locations where λj (0) = λ̄ are marginal in the sense that they are the next

to receive attention if λ̄ falls.

Another way to interpret the results is to observe the following

Result 1 The return at frequency j has variance

V ar [rj ] = λj

(
f−1
avg,j

)
(32)

where rj ≡ dj − pj . (33)

The marginal benefit of acquiring information at a particular frequency is exactly equal to

the unconditional variance of returns at that frequency. When returns have high variance, there

are potentially large profits to be earned from acquiring information. When returns have zero

variance, on the other hand, prices are already perfectly informative, so there is no reason to study

fundamentals at such a frequency. So agents desire to learn at the frequencies where returns are

most volatile.

The solution derived here characterizes aggregate information acquisition — the sum of the

precisions obtained by all the agents at each frequency —but it does not describe exactly what

strategy each agent follows; and in fact there are infinitely many strategies for individual investors

consistent with the aggregate solution. We now examine one particular solution that leads to the

existence of traders who can be characterized by their trading frequencies.

3 Specialization

3.1 The separating equilibrium

Given the assumptions we have made so far, the only restrictions on information allocation are those

that ensure that the information allocation condition (29) holds. There are numerous equilibria

with that characteristic, though. KvNV focus on the symmetric equilibrium in which all investors

allocate their attention in proportion to f−1
avg,j at each frequency. There are also many asymmetric

and mixed-strategy equilibria.

Since one of our goals is to understand the potential existence and behavior of high-and low-

frequency treaders, we now focus on equilibria in which all investors learn about only a single

frequency. Specifically, we assume that for every agent i, there is a frequency j∗i such that f
−1
i,j∗i

=

15Again, each frequency (except 0 and π) has an associated sine and cosine. The same amount of precision is
required to be allocated to both the sine and cosine at each frequency.
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f̄−1/2, and f−1
i,j = 0 for all other j

fi,j = fi,j′ =


f̄−1/2 if j = j∗i and j

∗
i 6∈ {0, T/2}

f̄−1 if j = j∗i and j
∗
i ∈ {0, T/2}

0 otherwise

(34)

(f̄−1 is divided by 2 in the first case because the agent pays attention to both the sine and the cosine

at frequency j∗i ). Specialization here means that agents obtain information at a single frequency

and are uninformed at all other frequencies.

We offer two potential explanations for why specialization would be natural. First, it could be

the case that people must pay a fixed cost for each frequency that they learn about. That is, just

starting to learn about some aspect of fundamentals might be costly. In that case people would

naturally choose to learn about only a single frequency, since all frequencies pay the same marginal

benefit, so learning about more than one frequency requires an extra payment of the fixed cost with

zero benefit.

Another motivation for specialization is that people might simply have different natural apti-

tudes or desires for learning about fluctuations at different frequencies. The appendix develops a

simple example of such a case that can generate specialization. The basic idea is that if the pref-

erence for learning about particular frequencies is suffi ciently small (i.e. it is second-order or in

a sense lexicographic) then the equilibrium described in the previous section still holds, but with

each investor focusing their attention on only a single frequency.

Now obviously in reality nobody learns about just a single aspect of the world. It is also not the

case, though, that everybody learns about everything. We focus here on the case with specialization

as it is consistent with the evidence discussed above and with new results presented below on the

wide divergences in behavior and research across investors.

3.2 Specialization model predictions

We now examine the implications of the model with specialization for the behavior of individual

investors, obtaining the following results:

1. Investors can be distinguished by the frequencies at which their portfolio positions fluctuate,

and those fluctuations match the frequencies at which they obtain information.

2. The average volume accounted for by an investor is proportional to the frequency at which

they trade. In the presence of quadratic trading costs, costs can be linearly decomposed across

frequencies and are quadratic in frequency.

3. Investors’positions are correlated with returns most strongly at the frequency they learn

about.

4. Investors earn money from liquidity provision, they earn money from trading at the frequency

at which they are informed, and they lose money to other investors from trading at frequencies at

which they are uninformed.
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3.2.1 Fluctuations in positions

Result 2 Investor i’s demand at frequency j is

qi,j = zj + ρ
[(
f−1
i,j − f

−1
avg,j

)
rj + f−1

i,j ε̃i,j

]
(35)

where ε̃i,j is equal to the jth column of Λ multiplied by εi, i.e. the noise in investor i’s signal at

frequency j, and rj is the realized return on the jth frequency portfolio.

Investor i’s demand depends on three terms. zj is the stochastic supply at frequency j. Each

investor is equally willing to absorb supply, so they all take equal fractions, giving them a common

component zj .

The second term, ρ
(
f−1
i,j − f

−1
avg,j

)
rj reflects investor i’s information. At the frequency that

investor i pays attention to, f−1
i,j − f−1

avg,j is positive, so investor i’s demand covaries positively

with returns at that frequency. That is, investors who learn about low-frequency dynamics hold

portfolios that are long when returns are high over long periods, while high-frequency investors hold

portfolios that covary positively with transitory fluctuations in returns. At the other frequencies,

where investor i does not pay attention, f−1
i,j = 0, so the investor’s demand actually covaries slightly

negatively with returns, holding zj fixed.

The third term, ρf−1
i,j ε̃i,j is the idiosyncratic part of demand that is due to the random error in

the signal that agent i receives. Note that the standard deviation of f−1
i,j ε̃i,j is equal to f

−1/2
i,j , so

these errors are equal to zero at the frequencies that the investor ignores (i.e. all but one).

When the number of active frequencies (i.e. with f−1
avg,j > 0) is large, f−1

avg,j becomes small

relative to f̄−1. That means that the term
(
f−1
i,j − f

−1
avg,j

)
is close to zero at all frequencies except

for the one that the agent pays attention to, j∗i . Since
(
f−1
i,j − f

−1
avg,j

)
≈ 0 for all other frequencies,

we have

Qi,t ≈ Zt + cos
(
ωj∗i t/T

) (
f̄−1rj∗i + ε̃j

)
+ sin

(
ωj∗i t/T

) (
f̄−1rj∗′i + ε̃j′

)
(36)

Investor i’s demand on date t thus is approximately equal to supply on that date plus a multiple

the part of returns depending on frequency ωj∗i , rj∗i and rj∗′i , plus an error. The second line shows

that what is really going on is that investor i’s information can be thought of as a signal about

returns interacted with a cosine and a sine.

The important feature of equations (35) and (36) is that they show that each agent’s position

is equal to Zt plus fluctuations that come primarily at the frequency that they pay attention to.16

That is, if some agent allocates all attention to frequency ωj∗i , then their relative position, Qi,t−Zt,
16More formally, the variance of Qi,t − Zt can be decomposed as V ar (Qi,t − Zt) =∑
j

(
ρ2
(
f−1i,j − f−1avg,j

)2
fR,j + f−1i,j

)
. Now consider a simple case where there are N frequencies that receive

equal allocations of information. Furthermore, denote the spectrum of returns as fR,j . Then we have

lim
N→∞

V ar (Qi,t − Zt) = ρ2f̄−2fR,j∗i + f−1i,j (37)

which shows that Qi,t − Zt is driven by fluctuations at a single frequency.
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fluctuates over time at frequency ωj∗i . This can be seen by noting that the sum of a sine and a cosine

at frequency ωj∗i , even with different coeffi cients, remains a cosine that fluctuates at frequency ωj∗i ,

just shifted by a constant. Specifically,

Qi,t ≈ Zt +

√√√√√ (
f̄−1rj∗i + ε̃j∗i

)2
+
(
f̄−1rj∗′i + ε̃j∗′i

)2 cos
(
ωj∗i t/T + Ci,j

)
(38)

where Ci,j is a function of
(
f̄−1rj + ε̃j

)
and

(
f̄−1rj′ + ε̃j′

)
. So agent i’s excess demand is approxi-

mately a cosine with a random translation and amplitude.

As a numerical example, figure 2 plots a hypothetical history for a particular agent’s position

Qi,t in the same calibration that we studied above. We see that Qi,t looks like a sinusoid with noise

added; the noise is from the Zt term in (38). The noise in the agent’s signal, ε̃j∗i and ε̃j∗′i , simply

changes the amplitude and translation of the cosine in (38).

So equations (35) and (36) deliver our first two basic results for the behavior of individual

specialized investors: the investors can be distinguished by the frequencies at which their asset

holdings fluctuate, and those frequencies are linked to the type of information that they acquire.

The first result, that there are traders at different frequencies, is essentially obtained by design: it

follows from the assumption that agents specialize across frequencies. Nevertheless, the finding is

interesting for its novelty in a theoretical setting.

The fact that the frequency of trading is related to information acquisition, while not surprising,

is certainly not obtained by assumption. In past work, different trading behavior has sometimes

been obtained by simply assuming that different agents have different exogenously specified trad-

ing horizons. In our case, any investor can potentially trade at any frequency. That choice is

entirely endogenous —investors are not forced to trade any particular frequency by assumption (the

assumption is that they gather information at a single frequency).

The reason that buy-and-hold investors in our model buy and hold is that they have persistent

low-frequency information about fundamentals —they have signals that fundamentals will be strong

or weak over long time spans. Similarly, high-frequency investors have transitory high-frequency

information. So the model provides a testable prediction that we should observe investors doing

research about asset return dynamics that aligns in terms of frequency or time horizon with their

average holding periods.

3.2.2 How do investors earn money?

Investors earn returns in the model through two basic mechanisms: providing liquidity and trading

on private signals. We can see from the results on demand above that the liquidity function is

spread equally across investors. The effects of private information are more interesting.

Result 3 Investor i’s expected profits (which are also equal to the covariance of their positions with
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returns) are

E
[
Q′iR

]
=

∑
j

E [qi,jrj ] (39)

=
∑
j

E [zjrj ] + ρ
(
f̄−1 − f−1

avg,j∗i

)
fR,j∗i −

∑
j 6=j∗i

ρf−1
avg,jfR,j (40)

where the spectrum of returns is (from (32) )

fR,j = max
(
λ̄, λj (0)

)
(41)

The first term on the right-hand side is the contribution from each investor’s liquidity provision.

The second term is the positive covariance of the investor’s holdings with returns at the frequency

they are informed about. In informed investors have demands that covary positively with returns

at a particular frequency, then the investors who are uninformed about that frequency must have

demands that covary negatively with returns (after accounting for E [zjrj ]). That is the third term

above: there is a negative contribution to the correlation of the investor’s demands with returns

from the frequencies they do not pay attention to.

It is not the case that trading from frequencies j 6= j∗i is unprofitable. Investors still earn profits

from liquidity provision. It is just the case that some of their profits at those frequencies are taken

by investors who are more informed. In some sense, this result is inevitable. The total profits that

the informed investors earn as a group come from trading with liquidity demand. If an investor

earns more money by becoming informed at some frequency, that must come at the cost of other

investors.

Now since the information allocation we find is an optimum, obviously investors must be in some

sense comfortable with the losses we see here. Intuitively, the slight trading losses they bear at

frequencies other than j∗i are offset by their gains at j
∗
i . But obviously any trading that informed

investors do that is not related to exogenous supply must ultimately come at the cost of other

informed investors.

So the model has the feature that high-frequency investors earn money at high frequencies, but

they lose money at lower frequencies relative to other investors. Low-frequency investors might

know that oil prices are on a long-term downward trend. In such a situation, the high-frequency

investors can still earn profits by betting on day-to-day movements in oil prices, but they will lose

money to those who understand that prices are generally drifting down. Similarly, low-frequency

investors will tend to lose out at high frequencies by, for example, failing to trade at precisely the

right time, buying slightly too high and selling slightly too low compared to where they would if

they had high-frequency information.
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3.2.3 Volume and trading costs

We study volume in the representation of the model in terms of equity holdings. Recall that equity

is modeled as a discounted claim to dividends on all future dates. An investor’s position Qi,t can

be acquired either by holding Qi,t units of forwards or Qi,t units of equity. In modeling volume, we

consider trading in equity. Using equity to measure volume ensures that a person who has position

that does not change between dates t and t+ 1 (Qi,t = Qi,t+1) induces no trade volume, whereas if

we assumed that every forward position required volume, then each investor’s contribution would be

|Qi,t| each date, meaning, unrealistically, that buy-and-hold investors would contribute constantly
to volume.

The equity volume contributed by investor i is

Vi,t = |∆Qi,t| (42)

where ∆Qi,t ≡ Qi,t −Qi,t−1 (43)

Recall that investors’positions can be written as functions of cosines and sines. The appendix

derives the following result for volume for each investor.

Result 4 The volume induced by investor i, |∆Qi,t|, may be approximated as

|∆Qi,t| ≈ |∆Zt|+ ωj∗i f̄
−1ρ

∣∣∣∣∣ sin
(
ωj∗i t

) (
rj∗i + ε̃i,j∗i

)
+ cos

(
ωj∗i t

) (
rj∗′i + ε̃i,j∗′i

) ∣∣∣∣∣ (44)

and has expectation

E [|∆Qi,t|]− E [|∆Zt|] ≈ ωj∗i

√
2

π
ρ
(
f̄−1λ̄+ 1/2

)
. (45)

The approximations converge to true equalities as T →∞.

So we find that agent i’s contribution to volume depends on the volume induced by exogenous

supply and also the magnitude of returns at frequency ωj∗i (λ̄).

Agent i’s contribution to aggregate volume is also exactly proportional to the frequency they

allocate attention to, ωj∗i . High-frequency investors contribute relatively more to aggregate volume

because they have portfolios than change most rapidly. An investor at the very lowest frequency,

ω = 0, contributes zero volume beyond that induced by exogenous supply, since their position is

nearly constant. Investors at ω = π, on the other hand, contribute the maximum possible volume

as they approximately turn over their entire portfolios in each period.

Not surprisingly, it is also straightforward to show that high-frequency investors typically

will face larger trading costs. As an example, consider quadratic trading costs proportional to∑T
t=2 (Qi,t −Qi,t−1)2. The appendix shows that trading costs can, just like volume, be decom-

posed across frequencies.
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Result 5 The quadratic variation in an investor’s position can be approximated (with convergence
as T →∞) by

T∑
t=2

(Qi,t −Qi,t−1)2 =
∑
j,j′

(2πj)2 T−1q2
i,j . (46)

The quadratic trading costs associated with a given demand vector Qi can be written as a

simple sum across frequencies. Trading costs are proportional to the frequency squared. It is thus

immediately apparent from our frequency-domain analysis that changes in the magnitude of trading

costs have the largest effects on the highest frequencies.

4 Institutional portfolio turnover and return forecasting

In this section, we demonstrate empirically that investment funds specialize in the frequency at

which they trade, and we show that the portfolio holdings of high turnover funds forecast returns

at relatively shorter horizons than those of lower turnover funds.

4.1 Data

We obtain data on institutional asset holdings from SEC form 13F. These forms list the identities

and quantities of securities held by each institution at the end of the filing quarter.17 The data

cover the period 1980—2015. Data on monthly stock returns is taken from CRSP and is aggregated

to a quarterly frequency with delisting returns included. We obtain data on the risk-free rate,

market return, and Fama—French (1993) factors from Kenneth French’s website.

4.2 Fund specialization

Yan and Zhang (2009) define the churn rate ci,t of institution i in quarter t as

ci,t ≡
min

( ∑
s|∆Si,s,t>0

Ps,t∆Si,s,t,
∑

s|∆Si,s,t≤0

Ps,t |∆Si,s,t|
)

1
2

∑
s
Ps,t−1Si,s,t−1 + 1

2

∑
s
Ps,tSi,s,t

, (47)

where Ps,t is the price and Si,s,t is the number of shares of stock S held by institution i at the end

of quarter t. The churn rate is equal to the minimum of net purchases and sales during quarter t

as a fraction of the institution’s average value over the two quarters, and it is used to measure the

turnover of each institution’s portfolio. Due to the presence of the minimum operator, institutions

17 Institutions are required to report only their holdings of 13(f) securities, a category defined by the SEC that
includes exchange-traded equities and some securities that can be converted to equity. Only institutions holding more
than $100,000,000 in 13(f) securities at the end of the quarter must file form 13F, and each institution is required to
report only securities for which its holdings exceed $200,000 or 10,000 shares. Gompers and Metrick (2001) provide
more information on these filings. We use Thompson Reuters’s database of these filings, which includes the price of
each security at the filing date.
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must both buy and sell large fractions of their portfolios to register a high churn rate. The mean

churn rate is 0.12 and the standard deviation is 0.14, indicating a high degree of right skewness as

the minimum churn rate is zero.

If institutions specialize in the rate at which they trade, then the churn rate should be persistent

over time within institutions. Figure 5 plots the sample autocorrelations corr(ci,t, ci,t−∆t) for ∆t ≥
2. The churn rate strongly persists over time, with an autocorrelation of 0.51 over 10 years and

0.21 over 30 years.18 We also find that institution fixed effects (δi) account for 65 percent of the

variance in the churn rate in the regression ci,t = δi + εi,t, where εi,t a residual.

4.3 Fund performance

To separate institutions according to their trading frequency, at each quarter t we divide institutions

into deciles, denoted d, based on the mean of ci,t over the previous five years.19 For simplicity, we

restrict attention to top and bottom deciles (d = 10 and d = 1). Table 1 lists several institutions

in these extreme deciles during the most recent quarter in our data. The top decile contains

several well-known quantitative and high-frequency trading firms, whereas the bottom contains

endowments and insurance companies.

Table 1: Institutions in the top and bottom deciles of churn rate in the fourth quarter of 2015

Top decile Bottom decile

Arrowstreet Capital Berkshire Hathaway

Citadel Bill & Melinda Gates Foundation

Dynamic Capital Management Lilly Endowment

Ellington Management Group Longview Asset Management

Quantlab MetLife

Renaissance Technologies New York State Teachers’Retirement System

Soros Fund Management University of Notre Dame

Virtu Financial University of Chicago

At the beginning of quarter t, we average the portfolio holdings of all the funds in each decile

d at the end of quarter t− 1 (with equal weight on each fund) and then track the returns on that

aggregate decile-level portfolio over subsequent quarters, reinvesting proceeds from any delistings

in the remaining stocks in the portfolio according to their value weights at that time. The return

during quarter t of the decile d portfolio formed in quarter t− k is denoted rd,k,t.
We measure the performance of each portfolio by its alpha,

rd,k,t − rft = αd,k + βd,kFt + εd,k,t, (48)

18 Institution identifiers can be reassigned over time in the 13F data, leading to measurement error that biases the
longer-term autocorrelations towards zero.
19We restrict attention to institutions for which the t + 1 return on some of their holdings appears in CRSP, as

these are the only institutions that can be analyzed in our return regressions.
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Ft is a vector of market risk factors; Ft = rmt −r
f
t in the CAPM specification and Ft =

(
rmt − r

f
t rsmbt rhmlt

)′
in the Fama-French specification (rsmbt and rhmlt are returns on the SMB and HML portfolios, re-

spectively). We focus on returns over the first two years after portfolio formation by estimating

(48) only for k ≤ 8.

Figure 6 displays alphas in the two specifications. For simplicity, we compare the alphas in the

first quarter (αd,1) to those in the following seven quarters, αd,>1 ≡ 1
7

∑8
j=2 αd,j . The holdings of

high-turnover funds out-perform more during the first quarter, while those of low-turnover funds

out-perform more during subsequent quarters. The difference in differences (α10,1 − α10,>1) −
(α1,1−α1,>1), which measures the relative out-performance of high churn holdings versus low churn

holdings at short versus long horizons, is equal to 0.005 in both specifications and is significant at the

5 percent level.20 So, consistent with the model, high-turnover funds hold stocks that outperform

relatively more in the short-run, while low-turnover funds hold assets that display more persistent

outperformance.

5 The effects of eliminating high-frequency trade

Recently there has been interest in policies that might restrict high-frequency trading. Some of

those policies are aimed at investors who trade at the very highest frequencies (such as the CFTC’s

recently proposed Regulation AT; see CFTC (2016)). But there are also proposals to discourage

even portfolio turnover at the monthly or annual level.21 There are two ways to interpret such

policies. One would be that regulators might impose a tax on trading, which would simply represent

a transaction cost. Such a regulation would obviously have the strongest effects on high-frequency

traders (that result can be derived in an extension to the present setting with trading costs), but

it would ultimately affect all trading strategies. A more targeted policy would be one that simply

outlawed following a trading strategy in which positions fluctuate at frequencies above some bound.

Such a policy is straightforward to analyze in our framework.

We show in this section that a policy that restricts high-frequency trading by professional

investors (as opposed to liquidity traders) reduces liquidity and price informativeness and increases

return volatility at high frequencies. At the frequencies not targeted by the policy, though, price

informativeness is, if anything, increased.

5.1 The policy

If elimination of high-frequency trading means that investors cannot hold portfolios with compo-

nents that fluctuate rapidly, it means that those investors are restricted to setting qi,j = 0 for ωj in

20Yan and Zhang (2009) similarly find that the fraction of the outstanding shares of a stock held by high-churn
institutions predicts subsequent returns, while the fraction held by low-churn institutions does not.
21The US tax code, for example, encourages holding assets for at least a year through the higher tax rates on short-

term capital gains. There have been recent proposals to further expand such policies (a plan to create a schedule of
capital gains tax rates that declines over a period of six years was attributed to Hillary Clinton during the 2016 US
Presidential election; see Auxier et al. (2016)).
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the relevant frequency range. But when qi,j must equal zero at some set of frequencies, obviously

no trader will allocate attention to those frequencies.

In cases where the sophisticated investors must set qj = 0, there can obviously be no equilibrium

since liquidity demand is perfectly inelastic. We therefore consider a simple extension to the baseline

model where the exogenous supply curve is elastic,

Zt = Z̃t + kPt (49)

zj = z̃j + kpj (50)

where Z̃t is the exogenous supply process and k is the response of supply to prices.

The appendix solves this extended version of the model. We obtain the same water filling

equilibrium. For this section, what is most important is the volatility of returns.

For the frequencies that are restricted

for qi,j = 0: prestrictedj = −k−1z̃j . (51)

That is, prices at the restricted frequencies are now completely uninformative, depending only on

supply, with no relationship with fundamentals. Moreover, the market is completely illiquid in the

sense that when exogenous supply increases, there is no change in trade —prices just move so that

trade remains at zero. In other words, prices equilibrate the market instead of quantities.

5.2 Return volatility

Result 6 Given an information policy f−1
avg,j, the variance of returns at frequency j, when trade is

unrestricted (i.e. in the benchmark model from above), is

fR (ωj) ≡ V ar (rj) (52)

= λj

(
f−1
avg,j

)
(53)

= min
(
λ̄, λj (0)

)
. (54)

where

λj (0) = fD,j +
fZ̃,j(

k + ρf−1
D,j

)2 (55)

Recall that fR is also the spectrum of returns, Rt ≡ Dt − Pt.

So the spectrum of returns inherits exactly the water-filling property of the marginal benefits

of information. In the context of our benchmark calibration, the spectrum of returns is exactly the

λj

(
f−1
avg,j

)
curve plotted in figure 1.

That result does not apply when the sophisticated investors are restricted from trading, though.
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Result 7 The variance of returns at any restricted frequency, where qi,j must equal zero, is

f restrictedR,j = fD,j +
fZ̃,j
k2

(56)

and

f restrictedR,j > λj (0) . (57)

The volatility of returns at a restricted frequency is higher than it would be if the sophisticated

investors were allowed to trade, even if they gathered no information. Intuitively, when the active

investors have risk-bearing capacity (ρ > 0), they can absorb some of the exogenous supply. The

greater is the risk-bearing capacity, the smaller is the effect of supply volatility on return volatility.

We examine the quantitative implications of restricting trade in the context of the calibration

used above. The top panel of figure 3 plots f−1
avg,j in the restricted and unrestricted scenarios. The

restriction is that investors are not allowed to trade at frequencies above ω = 3 (cycle lengths

shorter than 2.1 periods). We see, then, that no information is acquired at those frequencies.

That means, though, that investors can allocate their attention elsewhere, so we observe more

information acquisition at other frequencies.

The bottom panel of figure 3 plots return volatility in the two regimes and also when investors

can trade at all frequencies, but they are just restricted from gathering information at high fre-

quencies. At high frequencies, we see that the restrictive policy has two separate effects that both

strongly affect return volatility. First, when investors can trade but do not gather information, there

is a jump in return volatility at the frequencies where f−1
avg is constrained to zero (up to λj (0)). But

under the full restriction, where they cannot trade at all, we see that the effect on return volatility

is much larger, due to the reduced risk bearing capacity. At the unrestricted frequencies, return

volatility actually weakly declines, again due to the fact that more attention is allocated to those

frequencies.

Restricting sophisticated investors (such as dealers or proprietary trading firms) from trading at

high frequencies in this model can thus substantially raise asset return volatility at high frequencies —

it can lead to, for example, large minute-to-minute fluctuations in prices and returns. Sophisticated

traders typically play a role of smoothing prices over time, essentially intermediating between excess

inelastic demand in one minute and excess inelastic supply in the next. When they are restricted

from holding positions that fluctuate from minute to minute, they can no longer provide that

intermediation service. Such behavior has no impact on low-frequency volatility in prices, though.

Even when there is no high-frequency trading, changes in average prices between one year and the

next are essentially unaffected.

5.3 Price informativeness and effi ciency

The fact that the sophisticated investors choose to allocate no attention to high frequencies under

the trading restriction obviously has implications for price effi ciency there. To see precisely how, we
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measure price informativeness as the precision of a person’s prediction of fundamentals conditional

on observing prices only, V ar (Dt | P ). In the frequency domain we have

τ̄ j ≡ V ar (dj | p)−1 (58)

=
(
ρf−1
avg,j

)2
f−1
Z,j + f−1

D,j (59)

price-based precision, τ̄ j is higher at frequencies where there is less fundamental uncertainty (f−1
D,j

is lower), where there is less variation in liquidity demand (f−1
Z,j is lower) or where investors acquire

more information (f−1
avj,j is higher). So when trading strategies are restricted and f

−1
avg,j endogenously

falls to zero at the restricted frequencies, price informativeness clearly falls. In fact, when f−1
avg,j = 0,

the ex-post precision at each frequency is exactly f−1
D,j , which is the prior precision; prices contain no

information. The decline in informativeness happens, though, only at the restricted frequencies.22

Result 8 If trade is restricted at some set of frequencies, prices become (weakly) less informative
at those frequencies (τ̄ j falls) but informativeness is unaffected or increased at all other frequencies.

5.3.1 Informativeness for moving averages of Dt

If a person is making decisions based on estimates of fundamentals from prices and they are worried

that prices are contaminated by high-frequency noise, a natural response would be to examine an

average of fundamentals and prices over time. For averages of fundamentals, we have the following:

Result 9 The variance of an estimate of the average of fundamentals over dates t to t + n − 1

conditional on observing the vector of prices, P , is

V ar

(
1

n

n−1∑
m=0

Dt+n | P
)

=
1

nT

∑
j,j′

Fn (ωj) τ̄
−1
j (60)

where Fn (ωj) ≡
1

n

1− cos (nωj)

1− cos (ωj)
(61)

and τ̄ j is defined in (58).

Fn is the Fejér kernel. F1 = 1, and as n rises, the mass of the Fejér kernel migrates towards the

origin. That is, it places progressively less mass on high frequencies and more on low frequencies

(it always integrates to 1). Specifically,

1

T

∑
j,j′

Fn (ωj) = 1 (62)

lim
n→∞

Fn (ω) = 0 for all ω 6= 0 (63)

22To see that result in the time domain, the appendix shows that V ar (Dt | P ) = 1
T

∑
j,j′ τ̄

−1
j . The variance of an

estimate of fundamentals conditional on prices at a particular date is equal to the average of the variances across all
frequencies. So when uncertainty, τ̄−1j , rises at some set of frequencies, the informativeness of prices for fundamentals
on every date falls by an equal amount.
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The total weight allocated across the frequencies always sums to 1, and as n rises, the mass becomes

allocated eventually purely to frequencies local to zero.

This result shows that the informativeness of prices for moving averages of fundamentals places

relatively more weight on low- than high-frequency informativeness. So even if prices have little

or no information at high frequencies — τ̄ j is small for large j, there need not be any degradation

of information about averages of fundamentals over multiple periods, as they depend primarily on

precision at lower frequencies (smaller values of j).

The top panel of figure 4 plots the Fejér kernel, Fn, for a range of values of n. One can see

that even with n = 2, the weight allocated to frequencies above the cutoff of ω = 3 that we use

in the example in figure 3 is close to zero. As n rises higher, the weight falls towards zero at a

progressively wider range of frequencies. Equation (60) therefore shows that while a reduction in

precision at high frequencies due to trading restrictions will reduce the informativeness of prices

about fundamentals on any single date, it has quantitatively small effects on the informativeness

of prices for fundamentals over longer periods.

Moving averages of fundamentals depend less on the precise high-frequency details of the world,

so when high-frequency information is reduced, we would not expect to see a reduction in the

informativeness of prices for moving averages. More concretely, going back to our example of oil

futures, when high-frequency trade is not allowed, prices become noisier, making it more diffi cult

to obtain an accurate forecast of the spot price of oil at some specific moment in the future. If one

is interested in the average of spot oil prices over a year, on the other hand, then we would expect

futures prices to remain informative, even when high-frequency trade is restricted.

5.3.2 How should one forecast Dt conditional on prices?

As an alternative to estimating an average of fundamentals over some number of periods, one’s

goal might alternatively be to specifically forecast fundamentals on just one date. In that case, we

see that the effect of high-frequency trade restrictions is to cause investors to focus on averages of

prices over multiple periods. That is, to forecast the spot oil price in one particular month, one

might use an average of futures prices over neighboring months.

In general, the expectation of the full time series of fundamentals, D, is

E [D | P ] = Λdiag
(
φj (favg,j)

)
Λ′P (64)

φj is a function of only favg,j and the behavior of fundamentals and liquidity demand at frequency

j with φj (0) = 0. Intuitively, this equation says that dividends are obtained from prices using a

filter: prices are transformed into the frequency domain (Λ′P ), a filter is applied that depends on

the informativeness of prices at each frequency (φj (favg,j)), and then D is obtained by transforming

back into the time domain.

The effect of eliminating information —setting f−1
avg,j = 0 —at high frequencies is then simple

to analyze. The frequency domain step sets to zero the weight on any frequencies at which there

27



is no information. That is, in obtaining the expectation of dividends, one first applies a low-pass

filter to prices (e.g. Christiano and Fitzgerald (2003)).

Result 10 When information acquisition is set to zero for frequencies above a cutoff j̄, so that

f restrictedavg,j = favg,j1 {j ≤ j̄} (where 1 {·} is the indicator function) the expectation of fundamentals
conditional on prices is

E [D | P ] = Λdiag
(
φj (favg,j)

)
diag (1 {j ≤ j̄}) Λ′P (65)

Specifically, E [Dt | P ] is equal to the t’th row of Λdiag
(
φj (favg,j)

)
diag (1 {j ≤ j̄}) Λ′ multiplied by

the vector of prices, P .

Under the restriction on information acquisition (which, as we saw above, happens when in-

vestors may not trade at frequencies above j̄), expectations are now calculated by first applying a

filter to prices that eliminates high-frequency fluctuations (that is, it sets to zero all components

of the price vector P that are spanned by high-frequency (j ≥ j̄) sines and cosines). That filter

is implemented by multiplying prices by diag (1 {j ≤ j̄}) Λ′, which eliminates the high-frequency

components. Intuitively, since those components are completely devoid of information, they should

be filtered out before estimating fundamentals.

A simple benchmark case is where the variance of fundamentals and liquidity demand is con-

stant across frequencies, so that favg,j is also constant across frequencies in the absence of trading

restrictions and diag
(
φj (favg,j)

)
is a multiple of the identity matrix. The question, then, is how

investors estimate fundamentals on some date t based on the history of prices.

When there is no restriction on prices and φj (favg,j) is constant, we see immediately that

E [D | P ] ∝ P , so that the expectation of fundamentals on date t depends only on the price on

date t (for any t).

When trade is restricted, we have E [D | P ] ∝ Λdiag (1 {j ≤ j̄}) Λ′P . The bottom panel of

figure 4 therefore plots a representative row of Λdiag (1 {j ≤ j̄}) Λ′ for different values of j̄ (the

interior rows are all highly similar; the boundaries induce some differences). We see that with the

trading restriction, the estimate of fundamentals on date t now depends on prices on t and its

neighbors. Moreover, the smaller is j̄ —the more frequencies that are restricted —the wider is the

set of weights applied to prices. Intuitively, then, figure 4 confirms the natural result that when

prices are less informative at high frequencies, the simple response is to estimate fundamentals

based on a moving average of prices.

5.3.3 Summary

In the end, this section shows that the model has two key predictions for the effects of restrictions

on high-frequency trade. First, at the frequencies at which trade is restricted, price informative-

ness falls and return volatility rises (due to both information effects and liquidity effects). Second,

though, price informativeness at low frequencies is, if anything, improved by the policy. So if a
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manager is making investment decisions based on fundamentals only at a particular moment, then

that decision will be hindered by the policy since prices now have more noise. But if decisions are

made based on averages of fundamentals over longer periods, e.g. over a year, then the model pre-

dicts that there need not be adverse consequences. If anything, low-frequency price informativeness

may increase as investors reallocate attention to lower frequencies.

6 Conclusion

This paper develops a model in which there are many different investors who all trade at different

frequencies. Investors in real-world markets follow countless strategies that are associated with

rates of turnover that differ by multiple orders of magnitude. We show that in fact it is entirely

natural that investors would differentiate along the dimension of investment frequency.

It has been standard in the literature for decades to focus on factors or principal components

when studying the cross-section of asset returns. For stationary time series, the analog to factors or

principal components is the set of fluctuations at different frequencies. So just as it seems natural for

investors to focus on particular factors in the cross-section of returns, e.g. value stocks, a particular

industry, or a particular commodity, it is also natural for investors to focus on fluctuations in

fundamentals at a particular frequency, like quarters, business cycles, or decades.

Such an attention allocation problem can be solved using a combination of standard tools from

time series econometrics and the literature on equilibria in financial markets. We show that the

model fits a wide range of basic stylized facts about financial markets: investors can be distinguished

by turnover rates; trading frequencies align with research frequencies; volume is driven primarily by

high-frequency traders; and the positions of informed traders forecast returns at a horizon similar

to their holding period.

Since the model has a rigorous concept of what being a high- or low-frequency entails, it is

particularly useful for studying the effects of regulatory policies that would restrict trade at certain

frequencies, whether by outlawing it or by simply making it more costly. We find that not only do

such policies reduce the informativeness of prices at those frequencies, they also reduce liquidity

and increase return volatility. In fact, return volatility will in general be raised even above where it

would be in the complete absence of information, since eliminating active traders from the market

removes their risk-bearing capacity.

At this point, the primary drawback of the model in our view is that it is not fully dynamic. In

a certain sense we have to assume that investors do not update information sets over time. While

that simplification does not interfere with the model’s ability to match a wider range of basic facts

about financial markets, a simple desire for realism suggests that incorporating dynamic learning

is an obvious next step.
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A Non-stationary fundamentals

If fundamentals are non-stationary, e.g. if Dt has a unit root, then ΣD is no longer Toeplitz and

our results do not hold. In that case, we assume that D0 is known by all agents and that the

distribution of ∆Dt ≡ Dt −Dt−1 is known, with covariance matrix Σ∆D. Then the entire problem

can simply be rescaled by defining P̃t ≡ Pt −Dt−1, so that

Rt = Dt − Pt (66)

= ∆Dt − P̃t (67)

Our analysis then applies to P̃t and ∆Dt, with Qi,t continuing to represent the number of forward

contracts on Dt that agent i buys. That is, we are allowing agents to condition demand Qi,t not

just on signals and prices, but also the level of Dt−1, simply through differencing.

B Proof of lemma 1

Gray (2006) shows that for any circulant matrix (a matrix where row n is equal to row n − 1

circularly shifted right by one column, and thus one that is uniquely determined by its top row),

the discrete Fourier basis, uj = [exp (iωjt) , t = 0, ..., T − 1]′ for j ∈ {0, ..., T − 1}, is the set of
eigenvectors.

Let Σ be a symmetric Toeplitz matrix with top row [σ0, σ1, ..., σT−1]. Define the function

circ (x) to be a circulant matrix with σcirc as its top row. Define a vector σ

σ ≡ [σ0, σ1 + σT−1, σ2 + σT−2, ..., σT−2 + σ2, σT−1 + σ1]′ (68)

Following Rao (2016), we “approximate”Σ by the circulant matrix Σcirc ≡ circ(σcirc). Since Σcirc

is symmetrical, one may observe that its eigenvalues repeat in the sense that u′jΣcirc = u′T−jΣcirc

for 0 < j < T . Since pairs of eigenvectors with matched eigenvalues can be linearly combined to

yield alternative eigenvectors, it immediately follows that the matrix Λ from the main text contains

a full set of eigenvectors for Σcirc. The associated eigenvalues are

fΣcirc(ωj) = σ0 + 2
T−1∑
t=1

σtcos(ωjt) (69)

We can write this relationship more compactly as:

ΣcircΛ = ΛfΣ

Λ′ΣcircΛ = fΣ
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where the T × T diagonal matrix fΣ is given by:

fΣ = diag
(
fΣ (ω0) , fΣ (ω1) , ..., fΣ

(
ω T

2

)
, fΣ(ω1), fΣ(ω2), ..., fΣ

(
ω T

2
−1

))′
.

The approximate diagonalization of the matrix Σ consists in writing:

Λ′ΣΛ = fΣ +RΣ

where RΣ ≡ Λ′ (Σ− Σcirc) Λ

By direct inspection of the elements of Σ−Σcirc, one may see that the m,n element of RΣ, denoted

Rm,nΣ satisfies (defining λm to be the mth column of Λ and λm,n to be its m,n element)

Rm,nΣ ≡ λ′m (Σ− Σcirc)λn (70)

=
T∑
i=1

T∑
j=1

λm,iλn,j (Σ− Σcirc)
m,n (71)

≤
T∑
i=1

T∑
j=1

2

T
(Σ− Σcirc)

m,n (72)

≤ 4

T

T−1∑
j=1

j |σj | (73)

where (Σ− Σcirc)
m,n is the m,n element of (Σ− Σcirc). So RΣ is bounded elementwise by a term

of order T−1. One may show that the weak norm satisfies |·| ≤
√
T |·|max, where |·|max denotes the

elementwise max norm, which thus yields the result that |ΛΣΛ′ − diag (fΣ)| ≤ bT−1/2 for some b.

B.1 Convergence in distribution and Ō bounds

Define the notation ⇒ to mean that ΛX ⇒ N
(

0, Σ̂X

)
if ΛX ∼ N (0,ΣX) and

∣∣∣Σ̂X − ΣX

∣∣∣ =

Ō
(
T−1/2

)
.

The notation Ō indicates

|A−B| = Ō
(
T−1/2

)
⇐⇒ |A−B| ≤ bT−1/2 (74)

for some constant b and for all T . This is a stronger statement than typical big-O notation in that

it holds for all T , as opposed to holding only for some suffi ciently large T .

Trigonometric transforms of stationary time series converge in distribution under more general

conditions. See Shumway and Stoffer (2011), Brillinger (1981), and Shao and Wu (2007).

34



C Derivation of solution 1

Since the optimization is entirely separable across frequencies (confirmed below), we can solve

everything in scalar terms. To save notation, we suppress the j subscripts indicating frequencies in

this section when they are not necessary for clarity. So in this section fD, for example, is a scalar

representing the spectral density of fundamentals at some arbitrary frequency.

C.1 Statistical inference

We guess that prices take the form

p = a1d− a2z (75)

The joint distribution of fundamentals, signals, and prices is then d

yi

p

 ∼ N
0,

 fD fD a1fD

fD fD + fi a1fD

a1fD a1fD a2
1fD + a2

2fZ


 (76)

The expectation of fundamentals conditional on the signal and price is

E [d | yi, p] =
[
fD a1fD

] [ fD + fi a1fD

a1fD a2
1fD + a2

2fZ

]−1 [
yi

p

]
(77)

= [1, a1]

[
1 + fif

−1
D a1

a1 a2
1 + a2

2fZf
−1
D

]−1 [
yi

p

]
(78)

and the variance satisfies

τ i ≡ V ar [d | yi, p]−1 = f−1
D

1−
[

1 a1

] [ 1 + fif
−1
D a1

a1 a2
1 + a2

2fZf
−1
D

]−1 [
1

a1

]−1

(79)

=
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (80)

We use the notation τ to denote a posterior precision, while f−1 denotes a prior precision of one

of the basic variables of the model. The above then implies that

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z p

)
(81)
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C.2 Demand and equilibrium

The agent’s utility function is (where variables without subscripts here indicate vectors),

Ui = max
{Qi,t}

ρ−1E0,i

[
T−1Q′i (D − P )

]
− ρ−2V ar0,i

[
T−1/2Q′i (D − P )

]
(82)

= max
{Qi,t}

ρ−1E0,i

[
T−1q′i (d− p)

]
− ρ−2V ar0,i

[
T−1/2q′i (d− p)

]
(83)

= max
{Qi,t}

ρ−1T−1
T−1∑
j=0

qi,jE0,i [(dj − pj)]− ρ−2T−1
T−1∑
j=0

q2
i,jV ar0,i [dj − pj ] (84)

where the last line follows by imposing the asymptotic independence of d across frequencies (we

analyze the error induced by that approximation below). The utility function is thus entirely

separable across frequencies, with the optimization problem for each qi,j independent from all

others.

Taking the first-order condition associated with the last line above for a single frequency, we

obtain

qi = ρτ iE [d− p | yi, p]

= ρi

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
p

)
Summing up all demands and inserting the guess for the price yields

z =

∫
i
ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
(a1d− a2z)

)
di (85)

=

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z − τ i

)
(a1d− a2z)

)
di (86)

Where the second line uses the law of large numbers. Matching coeffi cients then yields∫
i
ρ

(
a1

a2
2

f−1
Z − τ i

)
di = −a−1

2 (87)∫
i
ρf−1
i + ρ

(
a1

a2
2

f−1
Z − τ i

)
a1di = 0 (88)

and therefore

ρ

∫
i
f−1
i di =

a1

a2
(89)

Inserting the expression for τ i into (87) yields

a1 =

a1
a2

+ ρ
(
a1
a2

)2
f−1
Z

ρ

(∫
i f
−1
i di+ f−1

D +
(
a1
a2

)2
f−1
Z

) (90)
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Now define aggregate precision to be

f−1
avg ≡

∫
i
f−1
i di (91)

We then have

τ i =
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (92)

τavg ≡
∫
τ idi =

(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D (93)

a1 = τ−1
avg

(
f−1
avg +

(
ρf−1
avg

)2
f−1
Z

)
= 1− f−1

D

τavg
=
τavg − f−1

D

τavg
(94)

a2 =
a1

ρf−1
avg

(95)

C.3 Proof of proposition 1

In the time domain, the solution from Admati (1985) is

P = A1D −A2Z (96)

A1 ≡ I − S−1
avgΣ

−1
D (97)

A2 ≡ ρ−1A1Σavg (98)

Standard properties of norms yield the following result. If |A−B| = Ō
(
T−1/2

)
and |C −D| =

Ō
(
T−1/2

)
, then

|cA− cB| = Ō
(
T−1/2

)
(99)∣∣A−1 −B−1

∣∣ = Ō
(
T−1/2

)
(100)

|(A+ C)− (B +D)| = Ō
(
T−1/2

)
(101)

|AC −BD| = Ō
(
T−1/2

)
(102)

In other words, convergence in weak norm carries through under addition, multiplication, and

inversion. Since A1 is a function of Toeplitz matrices using those operations, it follows that

|Λ′A1Λ− diag (a1)| = Ō
(
T−1/2

)
, and the same holds for A2.

For the variance of prices, we define

R1 = A1 − Λdiag (a1) Λ′ (103)

R2 = A2 − Λdiag (a2) Λ′ (104)
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|V ar [P − Λp]| ≤
∣∣R1ΣDR

′
1

∣∣+
∣∣R2ΣZR

′
2

∣∣ (105)

≤ |R1ΣD| |R1|+ |R2ΣZ | |R2| (106)

≤ ‖ΣD‖ |R1|2 + ‖ΣZ‖ |R2|2 (107)

≤ K
(
|R1|2 + |R2|2

)
(108)

The first line follows from the triangle inequality; the second line comes from the sub-multiplicativity

of the weak norm; the third line uses the fact that, as indicated by Gray (2006), for any two square

matricesG,H, ||GH||2 ≤ ‖G‖ |H|; and the last line follows from the assumption that the eigenvalues
of ΣD and ΣZ are bounded by some K.

Since the weak norm is invariant under unitary transformations,

|R1| =
∣∣Λ′R1Λ

∣∣ =
∣∣Λ′AiΛ− diag (a1)

∣∣ , i = 1, 2.

Therefore,

|V ar [P − ΛP ]| ≤ K
(∣∣Λ′A1Λ− diag (a1)

∣∣2 +
∣∣Λ′A2Λ− diag (a2)

∣∣2) (109)

= Ō

(
1

T

)
(110)

Since ‖·‖ ≤
√
T |·|, ‖V ar [P c − P ]‖ = Ō

(
T−1/2

)
.

D Proof of lemma 2

Inserting the optimal value of qi,j into the utility function, we obtain

E−1 [Ui,0] ≡ 1

2
E

T−1
T−1∑
j=0

τ i,jE [dj − pj | yi,j , pj ]2
 (111)

Ui,0 is utility conditional on an observed set of signals and prices. E−1 [Ui,0] is then the expectation

taken over the distributions of prices and signals.

V ar [E [dj − pj | yi,j , pj ]] is the variance of the part of the return on portfolio j explained by
yi,j and pj , while τ−1

i,j is the residual variance. The law of total variance says

V ar [dj − pj ] = V ar [E [dj − pj | yi,j , pj ]] + E [V ar [dj − pj | yi,j , pj ]] (112)

where the second term on the right-hand side is just τ−1
i,j and the first term is E

[
E [dj − pj | yi,j , pj ]2

]
since everything has zero mean. The unconditional variance of returns is

V ar [dj − pj ] = (1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ,j (113)
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So then

E−1 [Ui,0] =
1

2
T−1

T−1∑
j=0

(
(1− a1,j)

2 fD,j +
a2

1,j(
ρf−1
avg

)2 fZ,j
)
τ i,j −

1

2
(114)

We thus obtain the result that agent i’s expected utility is linear in the precision of the signals that

they receive (since τ i,j is linear in f−1
i,j ).

Furthermore,

(1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ,j = τ−2
avg,jf

−1
D,j + ρ−2f2

avg,jτ
−2
avg,j

(
τavg,j − f−1

D,j

)2
fZ,j (115)

= τ−2
avg,jf

−1
D,j + ρ−2τ−2

avg,j

(
ρ2f−1

avgf
−1
Z + 1

)2
fZ,j (116)

= τ−2
avg,j

(
f−1
D,j + ρ−2

(
ρ2f−1

avgf
−1
Z + 1

)2
fZ,j

)
(117)

So

E−1 [Ui,0] =
1

2
T−1

T−1∑
j=0

τ−2
avg,j

(
f−1
D,j + ρ−2

(
ρ2f−1

avgf
−1
Z + 1

)2
fZ,j

)((
ρf−1
avg,j

)2
f−1
Z,j + f−1

i,j + f−1
D,j

)
− 1

2

(118)

E Derivation of solution 2

Investors allocate attention, f−1
i,j , to maximize E−1 [Ui,0] subject to the constraint∑

j,j′

f−1
i,j ≤ f̄

−1 (119)

and that f−1
i,j = f−1

i,j′ . Since the investors are maximizing a linear objective subject to a linear

constraint, the optimal policy is clearly to allocate attention f−1
i,j only to the frequencies j at which

the marginal benefit is equal to the maximum available marginal benefit.

Define the function λj

λj (x) ≡
(

(ρx)2 f−1
Z,j + x+ f−1

D,j

)−2
(
f−1
D,j + ρ−2

(
ρ2xf−1

Z,j + 1
)2
fZ,j

)

then λj
(
f−1
avg,j

)
is the marginal benefit from attention to frequency j. Note that dλj (x) /dx < 0.

In equilibrium, then, there is a number λ̄ such that

λj

(
f−1
avg,j

)
≤ λ̄ for all j (120)

Now define J
(
λ̄
)
to be the set of frequencies j such that λ−1

j

(
λ̄
)
> 0.23 That is the set of

23Technically, it is the set of frequencies for which λ−1j
(
min

(
λ̄, λj (0)

))
> 0.
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frequencies for which there is positive attention.

For any frequency that investors allocate attention to,

f−1
avg,j = λ−1

j

(
λ̄
)

(121)

f−1
avg,j =

∫
f−1
i,j di (122)

Now ∑
j,j′∈J

∫
f−1
i,j di =

∫ ∑
j,j′∈J

f−1
i,j di (123)

=

∫
f̄−1di = f̄−1 (124)

So then ∑
j,j′∈J (λ̄)

λ−1
j

(
λ̄
)

=
∑

j,j′∈J (λ̄)

f−1
avg,j = f̄−1 (125)

So λ̄ is obtained by solving
∑

j,j′∈J (λ̄) λ
−1
j

(
λ̄
)

= f̄−1.

F Time horizon and investment

At first glance, the assumption of mean-variance utility over cumulative returns over a long period

of time (T →∞) may appear to give investors an incentive to primarily worry about long-horizon
performance, whereas a small value of T would make investors more concerned about short-term

performance. In the present setting, that intuition is not correct —the T → ∞ limit determines

how detailed investment strategies may be, rather than incentivizing certain types of strategies.

The easiest way to see why the time horizon controls only the detail of the investment strategies

is to consider settings in which T is a power of 2. If T = 2k, then the set of fundamental frequencies

is {
2πj/2k

}2k−1

j=0
(126)

For T = 2k−1, the set of frequencies is

{
2πj/2k−1

}2k−2

j=0
=
{

2π (2j) /2k
}2k−2

j=0
(127)

That is, when T falls from 2k to 2k−1, the effect is to simply eliminate alternate frequencies.

Changing T does not change the lowest or highest available frequencies (which are always 0 and

π, respectively). It just discretizes the [0, π] interval more coarsely; or, equivalently, it means that

the matrix Λ is constructed from a smaller set of basis vectors.

When T is smaller — there are fewer available basis functions —Q and its frequency domain

analog q ≡ Λ′Q have fewer degrees of freedom and hence must be less detailed. So the effect
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of a small value of T is to make it more diffi cult for an investor to isolate particularly high- or

low-frequency fluctuations in fundamentals (or any other narrow frequency range). But in no way

does T cause the investor’s portfolio to depend more on one set of frequencies than another. While

we take T → ∞, we will see that the model’s separating equilibrium features investors who trade

at both arbitrarily low and high frequencies, and T has no effect on the distribution of investors

across frequencies.

G Proofs of specialization model predictions

G.1 Results 2 and 3

qi = ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τ i

)
p

)
The coeffi cient on ε̃i is f−1

i . Straightforward but tedious algebra confirms that the coeffi cient

on d is

ρ
(
f−1
avg − f−1

i

)
(a1 − 1)

The coeffi cient on z is

1 + ρ
(
f−1
i − f

−1
avg

)
a2

We thus have

qi = ρ
(
f−1
avg − f−1

i

)
(a1 − 1) d+

(
1 + ρ

(
f−1
i − f

−1
avg

))
a2z (128)

Now note that

r = (1− a1) d+ d2z (129)

So then

qi = ρ
(
f−1
i − f

−1
avg

)
r + ρε̃i + z (130)

The result on the covariance then follows trivially.

G.2 Result 4

Approximating first differences with derivatives, we obtain

∆Qi,t −∆Zt ≈ −
T/2∑
j=0

2πj

T

 sin (2πjt/T )
(
ρ
[(
f−1
i,j − f

−1
avg,j

)
rj + f−1

i,j ε̃i,j

])
+ cos (2πjt/T )

(
ρ
[(
f−1
i,j − f

−1
avg,j

)
rj′ + f−1

i,j ε̃i,j′
])  (131)

where the approximation becomes a true equality as T → ∞. Now if we furthermore use the

approximations f−1
i,j∗i
− f−1

avg,j∗i
≈ f̄−1/2 and suppose that the exogenous supply process is small

enough that it rarely causes a trader’s demand to change signs, then we have

|∆Qi,t| ≈ |∆Zt|+ ωj∗i f̄
−1ρ

∣∣∣∣∣ sin
(
ωj∗i t

) (
rj∗i + ε̃i,j∗i

)
+ cos

(
ωj∗i t

) (
rj∗′i + ε̃i,j∗′i

) ∣∣∣∣∣ . (132)
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G.3 Result 5

QV {qj} ≡
T∑
t=2

(Qi,t −Qi,t−1)2 ≈
T∑
t=2

∑
j

2πj

T

[
qj sin (2πjt/T )

+qj′ cos (2πjt/T )

]2

(133)

=

T∑
t=2

∑
j,k

(
2π

T

)2

jk

[
qj sin (2πjt/T ) qk sin (2πkt/T ) + qj′ cos (2πjt/T ) qk sin (2πkt/T )

qj sin (2πjt/T ) qk′ cos (2πkt/T ) + qj′ cos (2πjt/T ) qk′ cos (2πkt/T )

]
(134)

≈
∑
j,j′

(2πj)2 T−1q2
j (135)

where the equality in the first line is approximate in assuming that cos (2πjt/T )−cos (2πj (t− 1) /T ) ≈
2πj
T sin (2πjt/T ) and the same for the differences in the sines. The third line uses the fact that sines

of unequal frequencies are orthogonal (it is approximate because t = 1 is not included in the sum

inserts the integral for sin2 and cos2, rather than the exact finite sums. All the approximations

here are accurate for large T .

H Proofs of trading restriction results

H.1 Results 6 and 7

If trade by the investors is not allowed at certain frequencies, then obviously markets cannot clear

at those frequencies when supply is inelastic. In this section we therefore first solve the model for

the case with an upward sloping supply curve and then analyze the effect of eliminating trade on

asset prices and returns.

H.1.1 Equilibrium with elastic supply

We now assume that there is exogenous supply on each date of

Zt = Z̃t + kPt (136)

where k is a constant determining the slope of the supply curve. One could imagine allowing k

to differ across frequencies, which would be equivalent to allowing supply to depend on prices on

multiple dates (intuitively, maybe supply increases by more when prices have been persistently

high than when they are just temporarily high). Here, though, we simply leave k constant across

frequencies. Multiplying by Λ′ yields

zj = z̃j + kpj (137)

Solving the inference problem as before, we obtain
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τ i ≡ V ar [d | yi, p]−1 (138)

=
a2

1

a2
2

f−1
Z̃

+ f−1
i + f−1

D (139)

and

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z̃
p

)
(140)

H.1.2 Demand and equilibrium

The investors’demand curves are again

qi = ρi

(
f−1
i yi +

(
a1

a2
2

f−1
Z̃
− τ i

)
p

)
Summing up all demands and inserting the guess for the price process yields

z̃ + k (a1d− a2z̃) =

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z̃
− τ i

)
(a1d− a2z̃)

)
di (141)

Matching coeffi cients yields ∫
i
ρ

(
a1

a2
2

f−1
Z̃
− τ i

)
di = −a−1

2 (1− ka2) (142)∫
i
ρf−1
i + ρ

(
a1

a2
2

f−1
Z̃
− τ i

)
a1di = ka1 (143)

Combining those two equations, we have

ρf−1
avg = a1

(
k + a−1

2 (1− ka2)
)

(144)

=
a1

a2
(145)

a1 =
f−1
avg +

(
ρf−1
avg

)2
f−1
Z̃

τavg + ρ−1k
(146)

=
τavg − f−1

D

τavg + ρ−1k
(147)

a2 =
a1

ρf−1
avg

(148)
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H.1.3 Utility

As before, the contribution to optimized utility from frequency j is(
(1− a1,j)

2 fD,j +
a2

1,j(
ρf−1
avg

)2 fZ,j
)
τ i,j (149)

Furthermore,

(1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ̃,j =

(
ρ−1k + f−1

D

τavg + ρ−1k

)2

fD,j + ρ−2f2
avg,j

(
τavg − f−1

D

τavg + ρ−1k

)2

fZ̃,j

=
(
τavg + ρ−1k

)−2
((
ρ−1k + f−1

D

)2
fD,j + ρ−2f2

avg,j

((
ρf−1
avg

)2
f−1
Z̃

+ f−1
avg

)2
fZ̃,j

)
=

(
τavg + ρ−1k

)−2
((
ρ−1k + f−1

D

)2
fD,j + ρ−2

(
ρ2f−1

avgf
−1
Z̃

+ 1
)2
fZ̃,j

)
So

E−1 [Ui,0] =
1

2
T−1

T−1∑
j=0


(
τavg,j + ρ−1k

)−2
((

ρ−1k + f−1
D,j

)2
fD,j + ρ−2

(
ρ2f−1

avg,jf
−1
Z̃,j

+ 1
)2
fZ̃,j

)
×
((

ρf−1
avg,j

)2
f−1
Z,j + f−1

i,j + f−1
D,j

)
− 1

2

(150)

When there are no active investors and just exogenous supply, we have

0 = z̃j + kpj (151)

pj = −k−1z̃j (152)

rj = dj − k−1z̃j (153)

We then have

fR = fD +
fZ
k2

(154)

fR,0 = fD,j +
fZ̃,j(

k + ρf−1
Dj

)2 (155)

H.2 Result 9

We have

D | Y, P ∼ N
(
D̄,Λdiag

(
τ−1

0

)
Λ′
)

(156)
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where τ0 is a vector of frequency-specific precisions conditional on prices. Now consider some

average over D, F ′D, where F is a column vector. Then

V ar (Dt) = 1′tΛdiag
(
τ−1

0

)
Λ′1t (157)

=
(
Λ′1t

)′
diag

(
τ−1

0

) (
Λ′1t

)
(158)

=
∑
j,j′

λ2
t,jτ
−1
0,j (159)

= λ2
t,0τ
−1
0,0 + λ2

t,T/2τ
−1
0,0 +

T/2−1∑
n=1

(
λ2
t,n + λ2

t,n′
)
τ−1

0,n (160)

where 1t is a vector equal to 1 in its tth element and zero elsewhere and λt,j is the jth trigonometric

transform evaluated at t, with

λt,j =
√

2/T cos (2πj (t− 1) /T ) (161)

λt,j′ =
√

2/T sin (2πj (t− 1) /T ) (162)

λt,0 =
√

1/T (163)

λt,T/2 =
√

1/T cos (π (t− 1)) =
√

1/T (−1)t−1 (164)

More generally, then

V ar

(
1

s

s−1∑
m=0

Dt+m

)
=

1

s2

(
s−1∑
m=0

1t+m

)′
Λdiag

(
τ−1

0

)
Λ′

(
s−1∑
m=0

1t+m

)
(165)

=
1

s2

(
s−1∑
m=0

λt+m,0

)2

τ−1
0,0 +

1

s2

(
s−1∑
m=0

λt+m,T/2

)2

τ−1
0,T/2 (166)

+
1

s2

T/2−1∑
n=1

( s−1∑
m=0

λt+m,n

)2

+

(
s−1∑
m=0

λt+m,n′

)2
 τ−1

0,n (167)

where τ0,n is the frequency-n element of τ0. For 0 < n < T/2

(
s−1∑
m=0

λt+m,n

)2

+

(
s−1∑
m=0

λt+m,n

)2

=
s−1∑
m=0

s−1∑
k=0

2

T

[
cos (2πn (t+m− 1) /T ) cos (2πn (t+ k − 1) /T )

+ sin (2πn (t+m− 1) /T ) sin (2πn (t+ k − 1) /T )

]
(168)

Now note that

2 cos (x) cos (y) + 2 sin (x) sin (y) = 2 cos (x− y) (169)
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So we have (
s−1∑
m=0

λt+m,n

)2

+

(
s−1∑
m=0

λt+m,n

)2

=
2

T

s−1∑
m=0

s−1∑
k=0

cos

(
2πn

T
(m− k)

)
(170)

= 2
s

T

s−1∑
m=−(s−1)

s− |m|
s

cos

(
2πn

T
m

)
(171)

= 2
s

T
Fs

(
2πn

T

)
(172)

=
2

T

1− cos
(
s2πn
T

)
1− cos

(
2πn
T

) (173)

where Fs denotes the sth-order Fejér kernel. Note that when s = T , the above immediately reduces

to zero, since cos (2πn) = 0. That is the desired result, as an average over all dates should be

unaffected by fluctuations at any frequency except zero.

For n = 0, (
s−1∑
m=0

ft+m,0

)2

=

(
s−1∑
m=0

√
1/T

)2

(174)

=

(
s

1

T 1/2

)2

(175)

=
s

T
Fs (0) (176)

Since Fs (0) = s (technically, this holds as a limit: limx→0 Fs (x) = s).

For n = T/2, (
s−1∑
m=0

ft+m,T/2

)2

=
1

T

(
s∑

m=1

(−1)m
)2

=

{
1
T for odd s

0 otherwise
(177)

=
s

T

1

s

(
sin (sπ/2)

sin (π/2)

)2

=
s

T
Fs (π) (178)

So we finally have that

V ar

(
1

s

s−1∑
m=0

Dt+m

)
=

1

sT

∑
j,j′

Fs (ωj) τ
−1
0,j (179)
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I Costly learning about prices

I.1 Generic result: no learning from prices

Lemma 3 Assume that learning from prices is costly. At that at time −1, if agent i decides to

infer information from prices, then their capacity constraint is:

Tr(f−1
i + f−1

P ) ≤ f̄−1,

where f−1
P is inverse of the variance-covariance matrix of signals contained in prices, and f−1

i is

the variance-covariance of the private signals of agent i. On the other hand, if agent i decides not

to infer information from prices, then his capacity constraint is:

Tr(f−1
i ) ≤ f̄−1.

Then, agents always prefer not to learn from prices.

Proof. If agent i has decided not to learn from prices, then at time 0, their posterior distribution

over d is:
d|yi ∼ N

(
µ(yi), τ

−1
i

)
τNPi = f−1

D + f−1
i

µ(yi) = (τNPi )−1f−1
i yi

(180)

Agent i still observes prices; their first-order condition leads to the demand schedule:

qi = ρτNPi (µ(yi)− p) .

His time-0 utility is:

UNP0,i (yi; p) = 1
2T (µ(yi)− p)′ τNPi (µ(yi)− p) . (181)

Since τNPi is symmetric, this implies:

E−1,i

[
UNP0,i

]
= 1

2T tr(τ
NP
i V NP

i ) + 1
2T (µNPi )′τNPi µNPi , (182)

where as before:
µNPi = E−1,i [µ(yi)− p]

V NP
i = V ar−1,i [µ(yi)− p]

(183)

As before, because all fundamentals are mean 0, µi = 0. Moreover, by the law of total variance:

Vi = V ar−1 [d− p]︸ ︷︷ ︸
≡V−1

−(τNPi )−1
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Therefore,

E−1,i

[
UNP0,i

]
= 1

2T tr(τ
NP
i Vi)

= 1
2T tr(τ

NP
i V−1)− 1

2T tr(I)

= 1
2T tr

(
f−1
D V−1

)
− 1

2T tr(I) + 1
2T tr(f

−1
i V−1)

(184)

The time-(−1) attention allocation problem of such an agent is therefore:

UNP−1,i

(
f−1
avg

)
= −1

2 + 1
2T tr

(
f−1
D V−1

)
+

1

2T
max
f−1i

tr(f−1
i V−1)

s.t. f−1
i,j ≥ 0 ∀j ∈ [0, ..., T − 1]

tr(f−1
i ) ≤ f̄−1

(185)

For an agent who does learn from prices (but shares the other agent’s ex-ante distribution over p

and d, summarized by V−1), the attention allocation problem has already been derived; it is given

by:

U−1,i

(
f−1
avg

)
= −1

2 + 1
2T tr

((
f−1
D + f−1

P

)
V−1

)
+

1

2T
max
f−1i

tr(f−1
i V−1)

s.t. f−1
i,j ≥ 0 ∀j ∈ [0, ..., T − 1]

tr(f−1
i + f−1

P ) ≤ f̄−1

(186)

Since f−1
i is diagonal, f−1

i → tr(f−1
i V−1) can be thought of as a linear map on RT . By the Riesz

representation theorem, there is λ ∈ RT such that ∀f−1
i , tr(f−1

i V−1) =
∑T−1

j=0 f
−1
i,j λj . Let λ̃ denote

the element-wise maximum of λ. Note, in particular, that:

tr(f−1
P V−1) =

T−1∑
j=0

f−1
P,jλj .

Moreover, after optimization, not learning through prices yields utility:

UNP−1,i

(
f−1
avg

)
= −1

2
+

1

2T
tr
(
f−1
D V−1

)
+

1

2T
λ̃f̄−1.

Learning through prices yields utility:

U−1,i

(
f−1
avg

)
= −1

2
+

1

2T
tr
((
f−1
D + f−1

P

)
V−1

)
+

1

2T
λ̃
(
f̄−1 − tr(f−1

P )
)

The difference between the two is:

UNP−1,i

(
f−1
avg

)
− U−1,i

(
f−1
avg

)
= 1

2T λ̃tr(f
−1
P )− 1

2T tr
(
f−1
P V−1

)
= 1

2T λ̃tr
(
f−1
P

)
− 1

2T

∑T−1
j=0 f

−1
P,jλj

≥ 0
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Therefore, the agent always prefer not to learn from prices.

I.2 The equilibrium when agents do not learn about prices

Guess:

p = a3d− a4z

with a3, a4 diagonal matrices of size T × T . Straightforward derivations lead to:

a3 = I − (τavg + kI)−1
(
f−1
D + kI

)
= (τavg + kI)−1f−1

avg

a4 = 1
ρa3favg

= 1
ρ(τavg + kI)−1

τavg = f−1
avg + f−1

D

τ i = f−1
i + f−1

D

(188)

Moreover, expected utility is given by:

E−1,i

[
UNP0,i

]
= CNP + 1

2T tr(V
NP
−1 f−1

i )

V NP
−1 = fD

(
(I + kfD)2 + fZfD

ρ2

)
(I + kfD + fDf

−1
avg)

−2

CNP = 1
2T tr

(
f−1
D V NP

−1

)
− 1

2

(189)

J Calibration

f̄−1 = 0.01

T = 1000

fD (ω) = 1
4

∣∣1− 1
2e
iω
∣∣−2

+ 1− .55 cos (2ω) + 7
16

∣∣1 + 1
2e
iω
∣∣−2

fZ (ω) = 1
10

∣∣1− 1
2e
iω
∣∣−2

ρ = 1
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Figure 5: Persistence of the churn rate over time
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Understanding how financial market activity impacts the real economy is one of the 

most important topics studied by financial economists.  Since firms only raise capital 

in the primary market it is easy to conclude that trading in the secondary market 

does not directly affect firm activity, or in turn, the real economy.  This potential 

disconnect leads some to view secondary markets as merely a sideshow to the real 

economy, an idea that has been debated in the academic literature since at least 

Bosworth (1975).  Recent events have revived and added new dimensions to this 

debate.1  The discussion that is now taking place in both the academic literature and 

the popular press indicates that that this question remains both prevalent and ever 

changing.    

To contribute to this debate, we consider whether two important benefits of 

secondary markets, liquidity and price discovery, impact the primary market.  To this 

end, we empirically investigate two questions: 1. do firms with illiquid bonds face 

higher costs when issuing new debt, and 2. does price discovery in the secondary bond 

market impact a firm’s cost of issuing new debt? By answering these questions, we 

seek to address the broader question: how does secondary market activity affect the 

real economy?   

The view that secondary markets impact the real economy begins with the 

argument that access to capital is an important determinant of growth.  The results 

in the literature consistently indicate that this relation holds at the country, industry, 

and firm levels.  This question has been examined in numerous studies, including the 

seminal paper by Rajan and Zingales (1996).  The literature has evolved to the point 

where we now better understand the channels that connect growth and access to 

capital.  Empirical evidence, for example, indicates that access to financing is 

important for firm investment (Stein (2003); Chava and Roberts (2008); Campello and 

Graham (2013)).  Surveys of corporate decision makers also support this view.  For 

                                            
1 Some examples include: bailouts given during the financial crisis and the resulting “Main Street” 

versus “Wall Street” debate arising from the Occupy Wall Street protests (Kuziemko, Norton, Saez, 

and Stantcheva (2015)), questions regarding the relation between economic growth and equity returns 

(Ritter (2005); Ritter (2012)), and questions related to the controversial practice of using corporate 

repurchases to prop up firm growth (Driebusch and Eisen, “Buybacks Pump Up Stock Rally,” The Wall 

Street Journal, 7/13/2016, Section C1). 
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example, after surveying 1,050 Chief Financial Officers (CFOs), Campello, Graham, 

and Harvey (2010) report that firms facing financial constraints reduce their 

investment in both technology and fixed capital and also reduce employment.   

Based on the theoretical and empirical evidence provided in the literature, we 

begin with the view that access to capital affects firm activity.  From this, we argue 

that frictions affecting firm access to capital may impact the real economy.  The 

channels we focus on are secondary market liquidity and price discovery.  If, for 

example, an increase in secondary market illiquidity raises a firm’s cost of capital or 

prevents a firm from accessing capital all together, then we can conclude that 

secondary market illiquidity could hamper a firm’s growth.2 

As Maureen O’Hara discusses in her AFA Presidential Address (O'Hara 

(2003)), liquidity and price discovery are two of the most important functions of a 

market.  The precise roles that liquidity and price discovery play are still being 

explored in the literature, with many papers logically focusing on whether secondary 

market liquidity and price discovery affect trading in the secondary market.  For 

example, when framing the question, O'Hara (2003) focuses on the importance of 

liquidity and price discovery for asset pricing. These questions are clearly important 

to the literature, and would likely be important regardless of whether there is a 

connection between the primary and secondary markets.  However, if frictions that 

arise in the secondary market impact the primary markets as well, then questions of 

liquidity and price discovery take on an additional level of importance.  As Morck, 

Shleifer, and Vishny (1990) argue, if the secondary market is in fact a sideshow, then 

any inefficiencies that arise in the secondary market solely represent wealth 

transfers amongst secondary market participants.  While we by no means intend to 

trivialize the understanding of what could be “wealth transfers” and believe that 

understanding the trading process is important for its own sake, it is also important 

                                            
2 There is some evidence that greater liquidity can actually be detrimental to the real activities of a 

firm.  Fang, Tian, and Tice (2014), for example, find that greater liquidity can actually impede firm 

innovation.  The authors attribute the relation to an increase in liquidity leading to an increase chance 

of a hostile takeover and a decrease in monitoring by institutional investors.  Given the question raised 

by Fang, et al. (2014), understanding precisely how secondary market liquidity impacts a firm’s cost 

of debt is important.   
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to note that connecting this process to the primary market may significantly change 

the scope of inquiry.   

We thus examine whether liquidity and price discovery in the corporate bond 

market impact the primary market for new debt issues. Mauer and Senbet (1992) and 

Ellul and Pagano (2006) argue that the secondary market affects pricing in the 

primary market for IPOs. The latter, for example, suggests that greater expected 

after-market illiquidity results in greater IPO underpricing. While liquidity and price 

discovery are important elements of all markets, as Green, Li, and Schürhoff (2010) 

argue, they are especially important in less liquid markets.  In the corporate bond 

market, for example, Chen, Lesmond, and Wei (2007), Bao, Pan, and Wang (2011), 

Friewald, Jankowitsch, and Subrahmanyam (2012), and Dick-Nielsen, Feldhütter, 

and Lando (2012) show that bond illiquidity is positivity related to the cross-section 

of bond returns.  As the evidence in the literature indicates that illiquidity impacts 

expected returns, there is an implied argument that secondary market illiquidity 

influences a firm’s cost of raising new capital (Amihud and Mendelson (1986)).  

Fundamental to this argument is the view that expected equity returns and bond 

yields are proxies for a firm’s cost of capital.3  While this view implies that secondary 

market illiquidity and the cost of raising new capital are linked, we look to test this 

conjecture directly.  

Using the laboratory of publicly traded debt, we examine the effects of 

secondary market illiquidity and price discovery on the primary market. Using 

publicly traded debt in our study is advantageous because firms frequently enter, and 

often revisit, the bond market.  While firms can reenter the equity market using 

SEOs, this activity is comparatively limited: firms tend to enter the bond market with 

greater frequency. Moreover, firms frequently have multiple bond issues outstanding, 

and may issue new bonds before the existing bonds mature. Because some firms have 

                                            
3 There is a debate in the literature that raises questions as to whether ex post returns are a precise 

proxy for a firm’s cost of capital.  As Chen, Chen, and Wei (2011) discuss, ex post returns may reflect 

other information than a firm’s cost of capital, such as grown opportunities and changes in investors’ 

risk preferences (Stulz (1999); Hail and Leuz (2009)), and are also susceptible to questions with respect 

to the selection of asset pricing model (Fama and French (1997)).   
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multiple bonds simultaneously trading in the secondary market, we are able to 

measure the expected illiquidity of a new issue before it begins trading using the 

illiquidity of the firm’s outstanding bonds as a proxy for anticipated illiquidity.  By 

doing so, we can examine the relation between the actual cost of debt and expected 

market illiquidity, rather than the relation between the expected cost of capital and 

actual market illiquidity.  With varying maturities, coupon structures, and credit 

risk, the degree of heterogeneity amongst bonds, as well as the cross-sectional 

differences in bond risks and characteristics, produce cross-sectional variation in 

bond liquidity.4  Our empirical approach also allows us to determine if firms with 

more liquid bonds are disproportionally able to access the debt markets during 

periods of distress, such as the financial crisis.  If secondary market liquidity affects 

access to capital, then a regulatory objective designed to improve market liquidity 

will impact a firm’s ability to raise new funds.  Understanding this channel is 

generally important, but may be particularly relevant during a liquidity crisis.5   

Additionally, the staggered implementation of the Trade Reporting and 

Compliance Engine (TRACE) and the subsequent release of all bond trading data 

through the Enhanced TRACE files provides us with a unique setting for testing the 

impact of secondary market price discovery on the primary market.  As TRACE now 

provides two data files, one containing information that was disseminated at the time 

and one that backfills additional data, we are able to examine the impact of trading 

when prices are not disseminated to the public – an important component of price 

discovery.   Because TRACE was implemented in 2002, we now have a sufficient time 

series available to conduct empirical tests.  The available data also allows us to 

                                            
4 Chen, et al. (2007), Bao, et al. (2011), Friewald, et al. (2012), and Dick-Nielsen, et al. (2012) each not 

only examine the relation between expected returns and bond illiquidity, but also consider the 

characteristics that impact this relation.   
5 As many papers have shown (Amihud (2002), for example), both individual security illiquidity and 

aggregate market illiquidity change over time.  Furthermore, both managers and regulators can 

institute changes that directly influence market liquidity.  Managers, for example, can alter secondary 

market liquidity and price discovery by changing the information environment (disclosure) and 

changing their exchange listing.  The results of this paper also offer important implications for changes 

in regulation.  If channels exist that connect the real economy to the secondary market, then 

regulations intended to improve secondary market transparency have implications for the real 

economy.   
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circumvent many of the objections raised in the literature regarding the estimation 

of a firm’s cost of capital (Fama and French (1997)).      

In total, our results suggest a direct relation between the secondary market 

illiquidity of existing bonds and the cost of new debt issued by the same firm in the 

primary market.  Furthermore, we find evidence that greater illiquidity is a 

significant predictor of a firm’s ability to issue new debt.  Thus, not only is issuing 

new debt costlier for firms with illiquid debt, but firms with illiquid debt may have 

difficulty accessing credit markets altogether.  We also find that TRACE-reported 

bonds experience lower underwriting costs relative to bonds that were not 

immediately subject to TRACE-reporting requirements. As the staggered 

implementation of TRACE provides us a way to capture the benefits of secondary 

market price discovery for primary market participants, we conclude that a more 

efficient price discovery process also leads to lower costs in the primary market for 

new debt issuances.  The evidence presented in this paper supports theory suggesting 

that secondary market activity affects the real economy.  Efforts to improve liquidity 

and price discovery, such as changes in disclosure and the implementation of TRACE, 

serve to not only improve the secondary market trading environment, but also to 

provide firms with better access to capital.  Better access to capital, in turn, provides 

firms with better investment options and could potentially improve employment 

prospects.  

In this regard, our analysis contributes to the growing literature that explores 

connections between secondary market trading and the real economy.6  In his AFA 

                                            
6 As this question is important to the academic literature, it takes on many forms. Aslan and Kumar 

(2016), for example, show that hedge fund activism in a given firm can impact rival firms’ product 

market performance.  Grullon, Michenaud, and Weston (2015) show that short selling constraints 

impact a firm’s ability to access capital and thus impact firm investment.  Using the conversion of non-

tradable to tradable stocks in China, Campello, Ribas, and Wang (2014) show, how secondary market 

trading can directly impact corporate activity.  And, as McLean and Zhao (2014) discuss, the recent 

financial crisis not only emphasizes the importance of understanding the connection between financial 

markets and the real economy, but also provides a laboratory for assessing the extent of the connection.  

While all of these papers examine different channels, the important underlying commonality is that 

they all contribute to a better understanding of connections between primary and secondary market 

activity. 
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Presidential Address (Zingales (2015)): Does Finance Benefit Society? Luigi Zingales 

states (p. 1337): “To this day, empirical measures of the benefits of an efficient market 

are fairly elusive.”  By directly examining the link between two defining features of 

the secondary market, liquidity and price discovery, and the real economy, we seek 

to identify and quantify just such a benefit. 

I. Overview of New Corporate Bond Issuances 

A. The underwriting process 

We begin by describing the underwriting process and primary market for new 

debt issuances.  The underwriting process motivates our examination of the link 

between secondary market activity and the cost of new issues in the primary market. 

When a firm decides to raise capital through the issuance of new bonds, it will 

seek an investment banker to underwrite the new issue and act as an intermediary 

between the firm and investors.  The choice of a lead underwriter(s) is critical to the 

bond’s success.  An underwriter’s ability, experience, reputation, and strength of 

relationships with investors are all considered in the selection process (Fang (2005)).   

Potential underwriters will submit an initial prospectus detailing pricing, strategies, 

and underwriter compensation.  Once chosen, a lead underwriter may form an 

underwriting syndicate to spread the risk of the new issue and improve the likelihood 

of selling all of the securities.7  The underwriter(s) typically has a prearranged group 

of institutional investors interested in the new debt issue. Underwriters must balance 

the preferences of these institutional clients with a debt structure (i.e. bond maturity, 

coupon, and price) that meets the needs of the issuing firm.  Satisfying both 

institutional investors and the issuing firms requires adjusting the bond’s yield.  

Underwriters make known the firm’s intention to issue new debt, help the 

issuer prepare disclosure documents and prospectuses, and accept indications of 

interest from investors.  Unlike new equity issuances, bond issues typically forego the 

lengthy roadshow and conference call process. As a result, the time between the 

                                            
7 The underwriter may also employ a selling group to assist in selling shares to investors. 
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announcement and when the bond begins to trade varies from a few hours to days.8  

Even though the timeline for the bookmaking process may vary, many of the details 

of the issue are not set until the end of the process.  Consequently, issuers maintain 

some flexibility in issue size as well as which orders, if any, to fill.  The underwriting 

process concludes by setting the coupon and initial issue price.  

The underwriter not only provides expertise throughout the process, but may 

also agree to buy a portion or even the entirety of the bond issue until the securities 

are resold to the public or broker-dealers.  The difference between the underwriter’s 

purchase price and the price at which the bonds are sold to investors is known as the 

underwriting spread or underwriting discount.  While the initial bond price may be 

set at par, or at a premium or discount to par value, the pricing structure itself does 

not affect the underwriter’s compensation.  The underwriter’s compensation is based 

on the discount it pays relative to the markup on the initial issuance.9  

The underwriting spread will depend on a variety of factors including the size 

and type (public or private) of the issue, as well as demand for the new issue at the 

initial offering price.10  In this paper, we examine whether underwriters similarly 

consider the secondary market illiquidity of existing bonds when pricing new issues 

by the same firm.  We also examine whether the price discovery process aids in the 

pricing of new debt issuances. We hypothesize that with illiquid securities and 

barriers to price discovery, underwriter fees, and thus the issuing firm’s cost of 

capital, will increase. While the gross underwriting spread is a function of an 

underwriter’s ability to place a security, it is not immediately clear, however, that 

secondary market illiquidity or price discovery will influence underwriting costs.  If, 

for example, an issue is purchased entirely by a small number of large institutions, 

                                            
8 Some participants complain that this condensed process does not allow enough time to reliably 

evaluate the issue, its structure, or the issuing firm’s financial position. 
9 The gross underwriting spread consists of fees paid the lead underwriter, the syndicate and the 

selling group. 
10 The firm must also choose whether to issue bonds in the public or private market. Public issues will 

not only appeal to a larger group of investors, but may also help firms gain visibility in the 

marketplace. A firm that obtains financing through private placements will avoid some of the costs 

associated with a public offering, including the costs of registering the securities with the SEC and 

complying with GAAP.  Private placements are typically less conventional, marketed to a smaller 

group of investors, and are inherently riskier. 
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such investors may intend to hold the bonds until maturity. Accordingly, an active 

secondary market for the firm’s other bond issues may not sway an institution’s 

willingness to buy.        

B. Underwriting statistics in our sample 

To provide context to our discussion of the issuance process in the above 

section, we include descriptive data that highlights the frequency and magnitude of 

new corporate debt issues.  As reported in Table I, beginning with the start of TRACE 

coverage in January 2002, through December 2012, 1,231 firms issued over $4.95 

trillion in new debt.  Many of these firms frequently revisited the debt market and 

issue new bonds.  Our sample of 1,231 firms initiated 21,247 new debt placements 

during the sample period, an average of over 17 issues per firm.  The subsequent 

issuances by firms with outstanding debt allows us to measure the costs of new issues 

resulting from prior illiquidity.  The 21,247 issues consist of 10,687 investment grade 

issues, 1,299 speculative grade issues, and 9,261 unrated issues.  From Figure 1, 

which displays the issuance size characteristics, the average firm raises 

approximately $200 million with each new debt issue. 

< Table I > 

< Figure 1 > 

In Figure 2, we document the aggregate amount of outstanding debt for each 

year during the sample period.  Approximately $1.80 trillion in total corporate debt 

was outstanding in 2002, of which $1.15 trillion stemmed from unrated corporate 

bond issues, $560 billion from investment grade debt, and $92 billion from speculative 

grade bonds.  By the end of our sample period in 2012, the amount of outstanding 

corporate debt ballooned to $3.54 trillion, comprised of $2.06 trillion in investment 

grade bonds, $1.50 trillion in unrated debt, and $354 billion in speculative grade 

bonds.11  

< Figure 2 > 

                                            
11 While firms raised over $4.95 trillion in new debt during the sample period, we report only $3.54 

trillion outstanding at the end of the sample.  The difference is largely due to bonds that mature during 

the sample period. The median term to maturity for bonds in our sample is 7 years. 
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Figure 3 highlights the number and volume of new issues during the sample 

period.  Although time series fluctuations are evident, new issues have increased over 

time.  Even during the financial crisis, firms were able to raise capital through the 

issuance of investment grade debt.  However, the number of unrated bonds decreased, 

and speculative grade issues were almost nonexistent during this time.  From the 

figures described above, it is apparent that the size and scale of the bond market 

continues to grow.  We believe these results highlight both the importance of our 

empirical analysis as well as the implications of our study for managers, investors, 

and regulators alike.  

< Figure 3 > 

 

II. Data and Sample 

The primary data used in our analysis comes from the Mergent FISD database, 

which includes information for all debt issuances.  The FISD database includes the 

issue size, initial yield, coupon rate, credit rating at issuance, difference between the 

yield and the Treasury rate at issuance, underwriting fees paid, as well as many other 

characteristics of newly issued corporate bonds.  We augment the Mergent database 

with bond trading data from the Trade Reporting and Compliance Engine (TRACE) 

database. Corresponding with TRACE coverage, our sample contains all new 

corporate bond issuances from July 2002 through December 2012.  Last, for the 

subset of firms in our sample that are public companies, we collect cash flow, leverage, 

and firm size measures from Compustat. The final merged database contains 

information on all new corporate bond issues, including underwriting costs, coupons, 

and credit ratings, as well as information on subsequent trading that occurs after a 

bond is issued.  The data allows us to determine the costs and characteristics of new 

issues in the primary market, as well as the capability to calculate secondary market 

illiquidity measures once the bonds begin trading. In addition to examining the 

characteristics of new issues, we are also able to account for the features of a firm’s 

previously issued bonds. 

< Table II > 
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We present descriptive statistics of the issuance characteristics in Table II.   

For the new issues in our sample, the average and median coupon rates are 4.48% 

and 4.89% respectively.  The average (median) years to maturity is 9.89 (7.05) years. 

Last, 34% of the bonds in our sample are callable, while 1% of the bonds are 

convertible.   

 

A. Cost of New Debt Variables 

In this paper, we use two measures to identify the costs associated with issuing 

new bonds: the Treasury spread and the gross underwriting spread.  The Treasury 

spread is defined as the difference between the yield to maturity and the yield of a 

duration-matched Treasury security at the time of issuance. We believe the Treasury 

spread is a more suitable measure of a firm’s cost of debt than the yield to maturity 

at issuance. Because our sample runs through the financial crisis, the yield on 

corporate bonds varies significantly over the 11-year period our sample covers.  As 

we also control for credit risk in our analysis, the Treasury spread provides a more 

stable measure of cost than the yield to maturity at issuance.  While the Treasury 

yield spread will be small on safer bonds issued by large firms, investors typically 

demand higher returns on smaller, riskier bonds, which results in a higher Treasury 

spread.  

Similar to Butler (2008), we also use the gross underwriting spread as a 

measure of underwriting costs. While the Treasury spread is intended to account for 

the costs incurred by secondary market traders, our second cost measure here 

captures revenues to underwriters. When a corporation issues new debt, the 

immediate cost that the corporation bares is the gross underwriting spread, which is 

direct compensation to the underwriter.   

  We present summary statistics for the above cost measures in Panel A of Table 

III.  As expected, investment grade bonds have lower yields and smaller underwriting 

spreads than those of speculative grade bonds.  During our sample period, newly 

issued bonds have an average yield to maturity of 4.89%, which is, on average, 1.94% 

higher than the related Treasury security. New issues pay a gross spread of 11.94%. 
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Management fees are also higher for more speculative bond issues.  In dollar terms, 

this implies that the average debt issue of $200 million produces approximately $23 

million in underwriting fees. 

< Table III > 

B. Illiquidity Variables 

We use the illiquidity of a firm’s existing bonds as a proxy for the future 

expected illiquidity of a new issue.  This approach allows us to calculate expected 

illiquidity measures prior to a bond’s initial trading. We compute multiple measures 

of secondary market illiquidity. The first measure of secondary market illiquidity, 

𝑃𝑁𝑇𝑖,𝑡, is the percentage of days in month t that security i does not trade. It is 

calculated as: 

𝑃𝑁𝑇𝑖,𝑡 =
𝑍𝑒𝑟𝑜 𝑉𝑜𝑙𝑢𝑚𝑒 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝐷𝑎𝑦𝑠𝑖,𝑡

𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝐷𝑎𝑦𝑠 𝑖𝑛 𝑀𝑜𝑛𝑡ℎ 𝑡
×100. 

𝑃𝑁𝑇𝑖,𝑡 measures an investors ability to trade a bond at all, which is especially relevant 

in the highly illiquid bond market. Higher values of 𝑃𝑁𝑇𝑖,𝑡 imply greater bond 

illiquidity.  

Our second measure of bond illiquidity is the Kyle and Obizhaeva (KO) 

measure of price impact.  This metric is constructed from the illiquidity measure 

presented in Kyle and Obizhaeva’s (2011) model of market microstructure invariance. 

The measure is calculated using the variance of monthly bond returns, scaled by the 

dollar volume traded within the month.   Dollar volume is calculated as the final trade 

price of each day multiplied by daily volume, then summed to aggregate the monthly 

totals. We compute the return variance using all TRACE reported transactions for 

each month.  

𝐾𝑦𝑙𝑒 𝑂𝑏𝑖𝑧ℎ𝑎𝑒𝑣𝑎 𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖,𝑡 = (
𝑅𝑒𝑡𝑢𝑟𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖,𝑡

𝑃𝑟𝑖𝑐𝑒𝑖,𝑡 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡
)

1
3

∙ 106. 

Because a large return variance for smaller dollar volumes indicates greater 

illiquidity, larger values of the KO measure specify greater bond illiquidity.  

Our third measure of bond illiquidity is the Amihud (2002) illiquidity measure, 

given by: 
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𝐴𝑚𝑖ℎ𝑢𝑑 𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 =
1

𝐷𝑖,𝑡
∑

|𝑅𝑒𝑡𝑖,𝑡,𝑛|

𝑃𝑟𝑖𝑐𝑒𝑖,𝑡,𝑛 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡,𝑛
∙ 106

𝐷𝑖,𝑡

𝑛=1

, 

where 𝐷𝑖,𝑡 is the number of observations for security i in month t.  We use TRACE 

reported transactions to identify the return, price, and volume for each bond. 

Similar to the KO measure above, the intuition behind the Amihud ratio is that 

larger returns per dollar of trading volume provides an indication of greater bond 

illiquidity.  

  Our last measure of bond illiquidity, 𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡, is from Liu (2006). This 

adjusted turnover measure is similar in construction to one proposed by Lesmond, 

Ogden, and Trzcinka (1999), and is computed for security i in month t as follows: 

𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 = # 𝑍𝑒𝑟𝑜 𝑉𝑜𝑙𝑢𝑚𝑒 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝐷𝑎𝑦𝑠𝑖,𝑡 +

1
𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡

𝐷𝑒𝑓𝑙𝑎𝑡𝑜𝑟
×

21

# 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝐷𝑎𝑦𝑠
. 

#𝑍𝑒𝑟𝑜𝑉𝑜𝑙𝑢𝑚𝑒𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝐷𝑎𝑦𝑠𝑖,𝑡 is the number of trading days on which the bond did not 

trade; 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 is the quotient of the total number of bonds traded per month and 

the total number of outstanding bonds.  Following Liu (2006), we use a deflator of 

480,000 that allows 0 <
1/𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡

𝐷𝑒𝑓𝑙𝑎𝑡𝑜𝑟
< 1.  Last, we standardize the number of trading 

days from one month to the next using 
21

# 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝐷𝑎𝑦𝑠
.  The 𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 illiquidity 

metric is similar to 𝑃𝑁𝑇𝑖,𝑡, but distinguishes between two bonds with similar zero 

volume trading days.  This measure is increasing in illiquidity.   

One additional benefit of measuring turnover is that it may provide insight 

into the price discovery process. Although turnover is typically used as a liquidity 

measure, Barinov (2014) suggests that turnover may more appropriately measure 

firm-specific uncertainty or investor disagreement surrounding the trading process. 

In this light, turnover may capture elements of the price discovery process, whereby 

information is incorporated into prices through the interaction of market 

participants. 

In Panel B of Table III, we present summary statistics for the four measures 

described above. The average bond in our sample trades 5.40 days per month.  Bonds 

in our sample trade, on average, 148 times per month, which generates over $283 
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million in trading volume. When partitioning the sample by credit rating, we find 

that the average speculative grade bond trades more frequently than investment 

grade bonds as well as bonds that are not rated.  Median levels of the KO and Amihud 

illiquidity measures are smaller than their respective means.12 

 

III. The Economic Effects of Secondary Market Illiquidity in 

the Primary Market 
 

In this section, we seek to identify an economic link between the primary and 

secondary debt markets. We conjecture that the two principal functions of the 

secondary market, liquidity and price discovery, each have a direct impact on the cost 

of issuing new debt in the primary market. We begin by examining the effects, if any, 

of secondary market liquidity on the primary market. Then, in the subsequent 

section, we study the significance of secondary market price discovery in the primary 

market for new issues.  

 

A. Tests of secondary market illiquidity and the cost of new debt issues 

We begin by identifying corporate bonds issued between 2002 and 2012.  We 

then link each newly issued bond with existing bonds issued by the same firm.  Since 

we are interested in whether secondary market illiquidity affects the cost of new 

issues, we require firms to have outstanding bonds issued after 1975.  From this set 

of prior issues, we eliminate those that mature more than three years prior to the 

new issues. Bond characteristics may not only change over time, but the market’s 

perception of a new issue may not incorporate the characteristics of bonds that have 

already matured.  We also exclude prior issues that originated within the previous 

month, since there is insufficient data to measure illiquidity.    

For each previously issued bond, we calculate the four illiquidity measures 

described in Section II, for each month of the sample period.  To aid our 

                                            
12 Because there is a great deal of skewness in the illiquidity measures, we winsorize our data at the 

1% and 99% levels. 
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understanding of how prior illiquidity affects the cost of new debt, we average the 

monthly illiquidity variables from all prior issues over the previous year. Should a 

firm have multiple prior issues, we weight our illiquidity measure by prior issue 

size.13  

In our first set of empirical tests, we investigate how the illiquidity of prior-

issues affects the cost to issue new debt. We consider the full sample of public and 

private corporate debt issues from 2002 through 2012. To determine if prior illiquidity 

influences future underwriting costs, we regress our cost measures, the Treasury 

spread and gross underwriting spread, on each of the four illiquidity measures.  To 

isolate the effects of prior illiquidity on the underwriting costs of new issues, we 

control for the heterogeneous characteristics of bonds by including variables for the 

new issues’ term to maturity, duration, size, as well as for the issuers’ outstanding 

debt. We also include indicator variables that identify whether the issue is callable, 

convertible, senior/junior, privately placed, asset-backed, and if the bond is a 144A 

bond. To control for credit ratings, we include an indicator variable for each possible 

rating (AAA, AA+, AA, AA-, etc.), as well as indicator variables that identify if the 

credit rating of the new issue is higher or lower relative to the most recent issue.  For 

the subset of firms that are publicly traded (for which data is readily available), we 

include controls for firm characteristics that could influence a firm’s cost of debt.  

These variables include Cash Flow, Leverage, and Firm Size for the year end prior to 

the new issue.  Cash Flow is the firm’s operating income before depreciation divided 

by total assets; Leverage is the percentage of total financing represented by debt; and 

Firm Size is the log of the sum of debt and stockholder equity.  All regressions include 

firm-year fixed effects. 

We report the coefficient estimates of our cross-sectional regression tests in 

Table IV.  In Panel A, we report results using the Treasury spread as the dependent 

variable. Our findings suggest that the illiquidity of previously issued, outstanding 

                                            
13 To address concerns that investors may place more emphasis on recent issues (since these bond 

characteristics may be similar to the current issue), we repeat all of our analyses using only prior 

issues that originated within five years of the current issue. The results presented in this paper are 

robust to this alternative specification.  
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bonds is directly related to the yield placed on new bond issues by the same firm.  

Because larger Treasury spreads on new issues are typically associated with greater 

risk, the positive coefficients on the KO and Amihud measures indicate that the 

secondary market illiquidity of existing bonds likely captures the potential illiquidity 

risks associated with the new issues.  This result implies that investors purchasing 

new issues demand a premium for the expected illiquidity of the bonds. In turn, these 

costs are directly passed to the issuing firm. Economically, our findings demonstrate 

that each one percent increase in the KO (Amihud) measure of illiquidity corresponds 

to a four (two) basis point increase in the bond yield beyond the maturity-matched 

Treasury security.  The coefficient on 𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 is also positive and significant, 

specifying that the uncertainty surrounding the trading process, another dimension 

of illiquidity, affects the cost of new issues as well.  The coefficients of Years to 

Maturity and Issue Size are positive as well, suggesting that investors require a larger 

yield for longer maturity bonds as well as for larger debt issuances.  Because new 

debt offerings affect a firm’s capital structure, larger bond issues increase the default 

risk of the issuer.  

In columns (5) through (8), we consider the subset of public firms and include 

additional variables that potentially impact a firm’s cost of debt financing.  We 

partition our results to address concerns that more illiquid private debt might be 

driving our results. The subsample also allows us to control for other firm 

characteristics that may influence a firm’s cost of debt (e.g., Cash Flow, Leverage, and 

Firm Size).  Here, we find a similar outcome as before when considering the full 

sample: a one percent increase in the KO (Amihud) illiquidity measure is associated 

with a five (three) basis point increase in the yield paid at issuance.  Our results imply 

that investors view new publicly-traded debt offered by firms with illiquid 

outstanding issues as riskier, and thus demand higher yields in return. In sum, our 

findings are robust to the type of debt (i.e. public or private) issued.   

In Panel B of Table IV, we report the coefficients resulting from regressions of 

underwriter fees on illiquidity.  While our approach as presented in Panel A is 

designed to isolate costs associated with secondary market trading, the results in 
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Panel B should capture the costs levied by underwriters. While we, again, find a 

direct relation between the illiquidity of existing bonds and the costs of new issues in 

the primary market, our results offer added insight into a different dimension of 

illiquidity charged by underwriters. Our results indicate that underwriters are less 

concerned about secondary market transactions costs, as seen in the insignificant 

coefficients of the KO and Amihud price impact measures, but are more attentive to 

the ability to trade a bond at all. As seen in the positive and significant coefficients of 

𝑃𝑁𝑇𝑖,𝑡 and 𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡, firms incur higher costs on new issues if their previously 

issued bonds trade on fewer days of the month.  From the underwriting process 

description presented in Section I, underwriters may agree to buy bonds that cannot 

be sold to investors. Given the consequences of being unable to place new issues, 

underwriters place a premium on new issues with higher levels of expected illiquidity.  

Specifically, a one percent increase in the number of days that existing debt does not 

trade is associated with a 1.65% increase in the underwriting spread paid to the 

syndicate.  Similarly, we find that a one percent increase in 𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 is 

associated with a 14 basis point increase in the underwriting spread.  In dollar terms, 

these results suggest that for the average issue of $200 million, a one percent increase 

in illiquidity is associated with an increase in underwriting fees of between $280,000 

and $3,300,000.  

 We also find that Issue Size is negatively related to the gross underwriting 

spread. The sign of this coefficient is in sharp contrast to the same variable presented 

in Panel A, when considering the Treasury spread.  One potential explanation of this 

result is that because investment banks collect a portion of the total debt issued as 

compensation, underwriters may be more willing to offer a quantity discount for 

larger issues.  In total, the results in Table IV offer compelling evidence that 

secondary market illiquidity leads to higher underwriting costs for firms issuing new 

debt.  

<Table IV> 

As discussed in Yasuda (2005), underwriters consider first-time issuances 

more difficult to market, relative to bonds offered by seasoned and frequent issuers. 
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Because first-time issuers have no historical track record, their new placements 

exhibit high “informational sensitivity,” and consequently, may be charged a 

premium by underwriters. We consider a subsample of second offerings by first-time 

debt issuers. By removing seasoned firms with greater debt exposure, and instead 

study the second debt offering of these first-time issuers, we believe that we are able 

to isolate the effects of prior illiquidity on the costs of a new issue.  The initial bonds 

issued by the firms in our study have varying degrees of secondary market illiquidity. 

Accordingly, if both underwriters and investors have limited information regarding 

the first-time issuers, we expect the illiquidity premium to be even more pronounced 

for firms with more illiquid debt outstanding. 

As reported in Panel A of Table V, we identify 948 firms that first issue debt 

during our sample window. We examine the relation between the secondary market 

illiquidity of the initial issue and the costs associated in 597 second issues by the 

same firm. As reported in Panel B, these firms return to the debt market, on average, 

1.83 years later, and typically raise more money in the second issue relative to the 

first. 

< Table V > 

 We report the results of our multivariate analysis in Table VI. Our approach 

in this portion of our investigation is similar to that presented in Table IV.  However, 

in Table VI, we consider the marginal change in issuing costs between the first and 

second issue, and not the costs associated with any other subsequent issues.  In 

addition to years to maturity and the size of the issue, we include controls for whether 

the bonds are rated, as well as controls for the time between the debt offerings.  Given 

that debt offerings by first-time issuers are more challenging to underwrite than 

subsequent offerings by frequent and seasoned issuers, including these control 

variables allows us to isolate the illiquidity effects on the costs of a subsequent issue.  

 In our test of first time issuers, we find that the cost of a second debt offering 

is higher than the costs of the first issue for firms whose initial issue is illiquid. When 

considering the credit spread results in Panel A, we find that 𝑃𝑁𝑇𝑖,𝑡 and 

𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 are priced into the cost of new issues by the same firm. Similarly, in 
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Panel B, we find that an increase in the KO and Amihud price impact measure, as 

well as the 𝑃𝑁𝑇𝑖,𝑡 and 𝐴𝑑𝑗𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑖,𝑡 metrics increase the gross underwriting spread 

beyond what was paid in the first issue. A one percent increase in price impact and 

turnover is associated with an incremental increase of 3 basis points beyond what 

was paid in the first issue. A one percent increase in the number of days a bond 

doesn’t trade is associated with a 28 basis point marginal increase beyond the cost of 

the first issue. These results confirm that underwriters account for expected 

secondary market illiquidity when determining their compensation structure. For the 

average size of a second issue of $536 million, the findings in Table VI suggest that a 

firm will pay an additional $160,000 to $1,500,000 in underwriting fees for every one 

percent increase in illiquidity. In total, the results in Table VI suggest that both 

investors and underwriters demand higher premiums to compensate for the potential 

illiquidity risks associated with new debt offerings, costs directly incurred by the 

issuing firms. 

< Table VI > 

 

B. Secondary market illiquidity and access to debt 

The results in the previous section demonstrate that illiquidity can alter a 

firm’s cost of debt.  In turn, secondary market illiquidity influences a firm’s access to 

capital.  The results indicate that firms pay a premium for issuing new debt when 

their previously issued debt is comparatively illiquid.  Our tests to this point, 

however, are predicated on firms being able to access credit markets at all.  In our 

next set of tests, we further explore this relation by determining whether secondary 

market illiquidity for a firm forecasts the issuance of new credit.  

If illiquidity results in a higher cost of debt for firms, as our prior results 

indicate, then, on the margin, this relation will affect the set of profitable projects 

available to a firm.  Firms with a higher cost of debt may forgo valuable projects that 

they could have otherwise undertaken.  Note, too, that difficulties in raising new 

capital may be driven by both firm-specific factors as well as market events.  Thus, 

firms may experience changes in their access to capital if either firm-level or market-
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level illiquidity changes.  Understanding how aggregate market conditions and 

macroeconomic factors impact a firm’s access to capital is also an important question 

(Erel, Julio, Kim, and Weisbach (2012)).   

We begin this portion of our analysis by considering firms with outstanding 

bonds trading in the secondary market.  We compare this total with the number of 

firms that actually issue new debt in that year.  We present descriptive statistics of 

firms that issue debt, as well as statistics for firms that do not issue debt during the 

same period, in Table VII.  We partition the sample based on credit rating.  In 2008, 

for example, 28 percent of firms with outstanding debt issued new bonds during the 

year, whereas 21% (30%) of firms with speculative grade debt (debt that is not rated) 

are able to return to the debt markets during 2008.  However, during 2012, 40%, 54%, 

and 68% of firms with investment-grade debt, speculative-grade debt, and debt that 

is not rated, respectively, issue new bonds. 

< Table VII > 

To determine if prior illiquidity poses a hurdle that firms must overcome when 

issuing new debt securities, we report the results of cross-sectional probit tests in 

Table VIII. The dependent variable is an indicator variable equal to one if a firm 

issues debt in the current year (year t). The independent variable of interest is the 

average monthly illiquidity measures for the same firm in year t-1.  We include the 

total dollar volume of current debt outstanding in order to control for a firm’s need 

for new debt. Given that the financial crisis provided a market-wide shock, we also 

include an indicator variable for the years 2008 and 2009, as well as an interaction 

between illiquidity and the recession-year indicator variables. As a final control, we 

include indicator variables for the median credit rating of each firm’s outstanding 

bonds. 

As seen in Table VIII, the negative and significant coefficients on three out of 

the four illiquidity measures indicate that prior year illiquidity provides predictive 

power to identify firms that subsequently issue new debt. We believe these results 

imply that firm-specific illiquidity represents an impediment to accessing credit. 
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Firms with comparatively illiquid debt may find it more difficult to fund or expand 

operations, even after accounting for system wide shocks to liquidity.  

Overall, the results in Tables IV, V, and VI suggest that firms with illiquid 

bonds experience higher costs of new issues. The results in Table VIII indicate that 

illiquidity also serves as a predictor of a firm’s ability to access public credit markets 

entirely.  Our results offer practical implications for managers as they indicate that 

secondary market trading provides real economic benefits.  Collectively, our results 

indicate that illiquidity improvements are not only associated with the potential to 

lower a firm’s cost of debt, but also indicate that illiquidity improvements might affect 

the ability of a firm to access debt financing at all.   

< Table VIII > 

 

IV. The Economic Effects of Secondary Market Price 

Discovery in the Primary Market 

 
In the previous section, we provide evidence that the illiquidity of existing 

bonds has a significant economic impact on the underwriting costs incurred by firms 

when issuing new bonds.  As previously discussed, however, liquidity is only one 

major function provided by secondary markets.  The other important role of secondary 

markets is to provide the opportunity for price discovery, the process by which new 

information is assimilated into prices. In this section, we explore whether the price 

discovery process that occurs in the secondary market also has an economic impact 

on underwriting costs incurred by firms in the primary market.  

One difficulty in determining the effects of liquidity and price discovery is that 

the two are often indistinguishable in empirical tests. An improvement in one 

typically produces an improvement in the other.  The corporate bond market allows 

us a novel approach to disentangle the two effects.  The staggered implementation of 

the Trade Reporting and Compliance Engine (TRACE) and the subsequent release of 

all bond trading data through the Enhanced TRACE files provides us a way to test 

the effects of secondary market price discovery on the primary market.  
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TRACE is the vehicle that requires mandatory transaction reporting for 

corporate bonds.  Prior to the implementation of TRACE, investors did not have 

access to real-time information on transaction sizes and prices.  While traders were 

still able to find liquidity in the pre-TRACE period, investors were forced to transact 

with an information set that included only stale prices.  Consequently, the price 

discovery process was severely inhibited prior to the implementation of TRACE.  

Because TRACE allows traders to see prices in real-time, the price discovery process 

was much more efficient for TRACE-reported bonds than for bonds that were not 

TRACE reported.  

Not all new debt offerings issued in 2002 were immediately TRACE-reported. 

As presented in Table IX, only 26% of all new debt issuances were TRACE-reported.  

This percentage increases every year until 2006, the year in which all new issues are 

TRACE-reported and thereby provide real-time transparency to traders.14 The 

staggered implementation of TRACE allows us to examine the impact of trading when 

prices are not yet disseminated to the public.  Specifically, we compare the cost of new 

bond issues that are TRACE-reported to the costs of new bond issues that were not 

yet subject to TRACE reporting.  Greater price discovery in a firm’s outstanding 

bonds should benefit underwriters when pricing new issues. 

< Table IX > 

                                            
14 As reported in the TRACE fact book: During Phase I, effective on July 1, 2002, public transaction 

information was disseminated immediately upon receipt for the larger and generally higher credit 

quality issues: (1) Investment-Grade debt securities having an initial issue of $1 billion or greater; and 

(2) 50 Non-Investment-Grade (High-Yield) securities disseminated under FIPS that were transferred 

to TRACE. Under these criteria, FINRA disseminated information on approximately 520 securities by 

the end of 2002. Phase II, fully effective on April 14, 2003, expanded public dissemination to include 

transactions in smaller Investment-Grade issues: (1) all Investment Grade TRACE-eligible securities 

of at least $100 million par value (original issue size) or greater rated A3/A- or higher; and (2) a group 

of 120 Investment-Grade TRACE-eligible securities rated Baa/BBB and 50 Non-Investment-Grade 

bonds. As Phase II was implemented, the number of disseminated bonds increased to approximately 

4,650 bonds. In Phase III, fully effective on February 7, 2005, approximately 99 percent of all public 

transactions and 95 percent of par value in the TRACE-eligible securities market were disseminated 

immediately upon receipt by the TRACE System. However, transactions over $1 million in certain 

infrequently traded Non-Investment-Grade securities were subject to dissemination delays, as were 

certain transactions immediately following the offering of TRACE-eligible securities rated BBB or 

below. 
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To determine if firms with TRACE-reported bonds experience lower costs in 

the primary market, we perform a similar analysis to that presented in Tables IV and 

VI.  In this model, we include an indicator variable specifying whether outstanding 

bonds issued by the same firm are TRACE reported.  We include, but do not report, 

the same control variables presented in previous tables. To disentangle the effects of 

price discovery from that of liquidity, we also control for illiquidity using each of the 

four illiquidity measures reported in our analysis to this point.  

The results in Table X indicate that firms with TRACE-reported bonds 

experience lower underwriting costs in the primary market relative to firms who had 

bonds that were not TRACE reported. After considering both the Treasury spread in 

Panel A, as well as the underwriting spread in Panel B, we find that bonds with 

greater transparency and price discovery in the secondary market experience lower 

costs in the primary market. Specifically, the negative and significant coefficient of 

the TRACE-reported indicator variable suggests that bonds with greater 

transparency and price discovery in the secondary market have lower underwriting 

costs and yield spreads in the primary market.  While numerous studies document 

an improvement in secondary market liquidity with the implementation of TRACE 

on July 1, 2002 (see, for example, Bessembinder, et al. (2006) and Goldstein, 

Hotchkiss, and Sirri (2007)), none of these studies look at the effects of TRACE 

reporting on the costs of new issues in the primary market.  We are the first to show 

that improved price discovery in the secondary market leads to lower costs of new 

debt in the primary market.  

< Table X > 

 

V. Conclusion 

Primary markets, where securities are initially purchased from the issuing 

firm, serve a clear and necessary purpose.  Through the issuance of new securities in 

the primary market, firms are able raise capital to fund or expand operations. After 

underwriting fees are subtracted, all proceeds from security issuances go directly to 

the issuing firm.  Issuing firms do not, however, receive a direct capital inflow from 
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transactions occurring in the secondary market, where investors trade with other 

investors.  While issuing firms are unable to directly collect new investment in the 

secondary market, firms may still indirectly benefit from trading in the secondary 

market.  Greater secondary market liquidity for equity securities, for example, is 

shown to lower a firm’s cost of capital and lead to significant improvements in firm 

performance (Butler, et al. (2005); Fang, et al. (2009)).   

In this paper, we explore whether secondary market liquidity for corporate 

bonds provides a positive and significant benefit to the issuing firm.  Unlike the 

primary equity markets of IPOs and SEOs, which are accessed infrequently, the sheer 

volume of bond issues and reissues, along with the scope of firms and entities issuing 

debt allow us to address a question posed by Zingales (2015) as to whether finance, 

in this case secondary markets, benefit society.  

Our results indicate that the illiquidity of outstanding bonds is priced into new 

debt issues by the same firm, where firms with current illiquid debt pay higher prices 

for subsequent debt issues.  We also find that greater illiquidity reduces the likelihood 

that firms return to the debt market during periods of market turmoil.  Additionally, 

our results suggest that a more efficient price discovery process in the secondary 

market reduces the cost of new issues in the primary market.  The practical inference 

from our results is that secondary markets are not simply a sideshow, but do in fact 

provide real economic benefit to issuing firms.  Our paper contributes to the growing 

body of research that sheds light on the societal benefits provided by secondary 

market.  We conclude by suggesting that efforts to improve liquidity and price 

discovery in secondary markets is warranted, not only because they improve 

secondary market trading, but also because they provide firms better access to capital 

to fund growth opportunities. 
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Table I 

Corporate Bond Issues (2002-2012) 
This table reports summary statistics for new issues of corporate bonds during the sample 

period covering 2002 through 2012. Panel A reports the statistics for the entire sample 

period, while Panel B reports the statistics averaged by year. Statistics are partitioned by 

investment rating at the time of issue. Number of issuers is the number of unique 

corporations that issue bonds during the sample period, and number of issues is the total 

number of unique issues from the issuers in the sample. Total volume is the sum of the 

issue amount, and average issue size is the average amount issued.  

 Investment 

Grade 

Speculative 

Grade 

Not Rated Full 

Sample 

Panel A: Full Sample 

Number of Issuers  440   99   692   1,231  

Number of Issues  10,687   1,299   9,261   21,247  

Volume Issued (Millions)  2,645,152   343,210   1,966,952   4,955,313  

Avg. issue size  247.51   264.21   212.39   233.22  

Panel B: Average per year 

Number of Issuers  40.00   9.00   62.91   111.91  

Number of Issues  971.55   118.09   841.91   1,931.55  

Volume Issued (Millions)  240,468   31,201   178,814   450,483  

Avg. issue size  360.56   542.65   292.53   335.91  
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Table II 

Corporate Bond Characteristics at Issuance 
In this table, we present the characteristics of newly issued corporate bonds. Major 

characteristics include the coupon paid to investors, the time in years until the bond 

matures as a percent of par. We also include the proportion of new issues that are 

callable and convertible. We report means and medians. Characteristics of bonds are 

partitioned according to investment rating at the time of issue.   

 Investment 

Grade 

Speculative 

Grade 
Not Rated All 

Mean     

Coupon 4.40 5.54 4.42 4.48 

Years to Maturity 9.97 11.28 9.61 9.89 

Offer Yield 4.86 5.64 4.83 4.89 

Offering Price of Par 99.87 99.86 99.85 99.86 

Proportion Callable 0.32 0.42 0.34 0.34 

Proportion Convertible 

 

0.01 0.01 0.02 0.01 

Median     

Coupon 4.88 5.68 4.75 4.89 

Years to Maturity 7.02 9.99 7.54 7.05 

Offer Yield 5.00 5.65 5.00 5.03 

Offering Price of Par 100.00 100.00 100.00 100.00 

Total New Issues (2002-2012)  10,687   1,299   9,261   21,247  
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Table III 

Liquidity and Cost of Newly Issued Corporate Bonds 
In this table, we report the main variables used to identify illiquidity and the cost of issuing 

bonds. In Panel A, we report the principal costs of issuing bonds, which includes the yield to 

maturity at issue, the gross spread paid to the underwriting syndicate, the management fee, 

the reallowance fee, and the difference between the Treasury yield and the bond’s yield to 

maturity at issuance. In Panel B, we report the average issue illiquidity variables, which 

include the number of days in a month that a bond is traded, the dollar volume traded in a 

month, the number of trades in a month, the Kyle-Obizhaeva (2011) illiquidity measure, and 

the Amihud (2002) illiquidity measure.   

 

 Investment 

Grade 

Speculative 

Grade 
Not Rated All 

Panel A: Cost of Issuing Descriptive Statistics 

Mean     

YTM at issuance 4.86 5.64 4.83 4.89 

Credit spread 1.72 2.97 2.07 1.94 

Bond issue gross spread 11.09 12.76 12.79 11.94 

Management Fee 4.96 6.95 7.91 6.64 

Reallowance Fee 2.19 2.18 2.47 2.34 

     

Median     

YTM at issuance 5.00 5.65 5.00 5.03 

Credit Spread 1.45 2.63 1.52 1.50 

Bond issue gross spread 8.75 10.00 10.00 9.75 

Management fee 4.00 4.00 5.00 4.00 

Reallowance fee 2.50 2.50 2.00 2.00 

Panel B: Illiquidity Statistics 

Mean     

Monthly Trading Days  5.35   6.00   5.37   5.40  

Monthly $ Volume per issue  266,134,012  667,601,291   249,713,397   283,521,628  

Monthly trades per issue  144.44   182.11   147.72   148.17  

Kyle-Obizhaeva illiquidity  3.36   3.62   3.35   3.37  

Amihud Bond illiquidity   3.27   3.04   3.65   3.45  

Adjusted Turnover illiquidity 15.42 15.03 15.87 15.61 

     

Median     

Monthly Trading Days   4.00   4.00   4.00   4.00  

Monthly $ Volume per issue   3,671,000   6,291,000   4,150,060   4,000,000  

Monthly trades per issue  18.00   32.00   23.00   21.00  

Kyle-Obizhaeva Liquidity   1.40   1.35   1.73   1.52  

Amihud Bond Liquidity   1.06   1.35   1.42   1.24  

Adjusted Turnover 17.00 16.80 17.35 17.18 

Total New Issues (2002-2012)  10,687   1,299   9,261   21,247  
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Table IV 

The Cost of Issuing Illiquid Bonds 
In this table, we report cross-sectional regression tests of the costs of new issues on prior illiquidity of outstanding bonds. The sample includes new 

public and private corporate bond issues during the period from 2002 to 2012. To measure secondary market illiquidity, each bond is required to 

have at least one other debt issuance prior to the current new issue. When computing the liquidity of existing debt, we use the average monthly 

liquidity of all outstanding bonds for the year prior to the new issue, weighted by issue size. The illiquidity variables include the percentage of days 

in a month that a bond does not trade, the Kyle-Obizhaeva (2011) measure of price impact, the Amihud (2002) measure of price impact, and Liu’s 

(2006) adjusted turnover measure. The dependent variable in all specifications is a form of issuing costs, including the difference between the yield 

to maturity and the Treasury yield at issuance (Panel A), and the gross spread paid to the underwriter (Panel B). The independent variables include 

the years to maturity, log of the new issue size, log of prior outstanding issues, and the duration of the issue. For public firms where the data is 

available, we include the leverage ratio, cash flow, and log of firm size. Other control variables include indicators for convertible, callable, senior, 

junior, 144A eligible, privately placed, and asset-backed issues, as well as indicators for credit upgrades and downgrades since the last issue. All 

regressions include firm and year fixed effects. Robust test-statistics are reported in parentheses, where ***, **, and * indicate significance at the 

1%, 5%, and 10% levels. 

Panel A: Credit Spread          

 (1) (2) (3) (4)  (5) (6) (7) (8) 

 PNT KO Amihud Adj. TO  PNT KO Amihud Adj. TO 

 All Corporate Debt Issues  Corporate Debt Issues of Public Firms 

Illiquidity 0.04 0.04*** 0.02** 0.01**  0.05 0.05*** 0.03** 0.01 

      (0.42) (2.59) (2.53) (1.99)  (0.31) (3.06) (2.44) (1.52) 

Years to Maturity 0.03*** 0.03*** 0.03*** 0.03***  0.03*** 0.03*** 0.03*** 0.03*** 

 (2.80) (2.76) (2.70) (2.79)  (2.73) (2.66) (2.61) (2.73) 

Log Issue Size 0.08*** 0.08*** 0.08*** 0.08***  0.07*** 0.07*** 0.07*** 0.07*** 

 (6.86) (6.84) (6.76) (6.82)  (4.55) (4.53) (4.44) (4.49) 

Log Outstanding Debt 0.06 0.07 0.07 0.06  -0.03 -0.02 -0.03 -0.03 

 (0.89) (0.98) (0.88) (0.89)  (-0.26) (-0.21) (-0.29) (-0.25) 

Duration -0.02 -0.02 -0.02 -0.02  -0.03 -0.03 -0.03 -0.03 

 (-1.09) (-1.08) (-0.99) (-1.09)  (-1.24) (-1.19) (-1.10) (-1.24) 

Cash Flow      -3.22** -3.30** -3.37** -3.24** 

      (-1.97) (-2.03) (-2.03) (-1.98) 

Leverage      -0.02 -0.02 -0.04 -0.01 

      (-0.03) (-0.03) (-0.07) (-0.01) 

Log Firm Size      -0.00 -0.00 -0.01 -0.00 

      (-0.12) (-0.07) (-0.17) (-0.11) 

Control Variables Yes Yes Yes Yes  Yes Yes Yes Yes 

Firm and Year Fixed Yes Yes Yes Yes  Yes Yes Yes Yes 

Adj-R2 0.39 0.39 0.39 0.39   0.39 0.39 0.39 0.39 

N 919 919 918 919  731 731 730 731 

Observations 11,364 11,364 11,281 11,364  7,793 7,793 7,768 7,793 

 



30 

 

 

Panel B: Underwriting Spread          

 (1) (2) (3) (4)  (5) (6) (7) (8) 

 PNT KO Amihud Adj. TO  PNT KO Amihud Adj. TO 

 All Corporate Debt Issues  Corporate Debt Issues of Public Firms 

Illiquidity 1.65*** 0.18 0.00 0.14***  1.21** 0.30* 0.05 0.11** 

      (2.80) (1.55) (0.04) (3.27)  (2.11) (1.91) (1.19) (1.98) 

Years to Maturity 0.20** 0.19** 0.20** 0.20**  0.27*** 0.26*** 0.27*** 0.27*** 

 (2.43) (2.40) (2.42) (2.42)  (3.92) (3.89) (3.91) (3.92) 

Log Issue Size -0.85*** -0.87*** -0.87*** -0.87***  -1.10*** -1.11*** -1.11*** -1.11*** 

 (-5.18) (-5.18) (-5.15) (-5.16)  (-5.88) (-5.83) (-5.77) (-5.81) 

Log Outstanding Debt -0.47* -0.40 -0.45* -0.43*  -0.48 -0.46 -0.50 -0.48 

 (-1.87) (-1.52) (-1.65) (-1.68)  (-1.27) (-1.24) (-1.31) (-1.25) 

Duration 0.77*** 0.77*** 0.76*** 0.77***  0.53*** 0.54*** 0.53*** 0.53*** 

 (4.19) (4.17) (4.13) (4.16)  (3.20) (3.22) (3.18) (3.20) 

Cash Flow      -7.12 -8.20 -7.92 -7.54 

      (-1.47) (-1.54) (-1.50) (-1.49) 

Leverage      -0.67 -0.84 -0.86 -0.74 

      (-0.26) (-0.32) (-0.33) (-0.29) 

Log Firm Size      0.22* 0.24* 0.26** 0.22* 

      (1.84) (1.88) (2.35) (1.85) 

Control Variables Yes Yes Yes Yes  Yes Yes Yes Yes 

Firm and Year Fixed Yes Yes Yes Yes  Yes Yes Yes Yes 

Adj-R2 0.34 0.34 0.34 0.34   0.54 0.54 0.54 0.54 

N 943 943 942 943  753 753 752 753 

Observations 15,257 15,257 15,153 15,257  10,160 10,160 10,122 10,160 
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Table V 

First time issuers 
This table presents summary statistics for first-time bond issuers during the period from 

2002 through 2012. This subsample of bond issuers includes firms that potentially have 

little information regarding the expected risks of the issue. Panel A reports the frequency 

of first time issuers, including the total number of initial issues, the total number of second 

issues, as well as the total number of subsequent issues for the remainder of the sample 

period. In instances where a firm issues two different bonds with differing maturities on the 

same day, both count as a second issue. Panel B summary statistics of issues by first time 

issuers.  

Panel A: Frequency of New Issuers 

First Time Issuers: 2002-2012   948 

First time issuers with a Second Issue: 2002-2012   597 

Total subsequent issues: 2002-2012   6,331 

     

Panel B: Summary Statistics of Secondary Issues 

 Mean Median Min Max 

Total Subsequent issues per issuer   2.18   1.00   1.00   85.00  

Size of Initial Issue  508.83   362.50   0.37   5,000.00  

Size of Second Issue  536.72   400.00   0.15   4,625.00  

Years between Initial and Second issue  1.83   1.24   0.01  10.70  
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Table VI 

Change in issuing costs following first time issues 
This table presents the cross sectional regression tests of marginal underwriting costs on 

a firm’s second bond issue. To be included in the sample, a firm must issue its second bond, 

where the only other bond issued by the corporation is the initial issue that occurred 

previously. The dependent variable includes the change in underwriting costs of the second 

bond issue beyond the first issue by a firm, namely the difference between the initial yield 

to maturity and the Treasury yield, as well as the underwriting spread paid to the 

syndicate. The principal independent variable is the average monthly illiquidity of the 

previously issued bond. Control variables include an indicator variable identifying whether 

the bond is speculative grade or not rated, the time in years between initial and second 

issue, years to maturity of the current issue, the log of the issue size, and indicator 

variables indicating 144A, senior, junior, callable, and convertible issues. Indicator 

variables also indicate whether the new issue receives a higher or lower grade relative to 

its previous issue. All specifications include year fixed effects. Robust t-statistics are 

reported in parentheses, with ***,**, and * indicating significance at the 1%, 5%, and 10% 

levels respectively. 

Panel A: Credit Spread (1) (2) (3) (4) 

 PNT KO Amihud Adj. TO 

Illiquidity 0.53** 0.02 0.02 0.03** 

 (2.51) (0.44) (1.07) (1.99) 
Years to Maturity 0.01 0.01 0.01 0.01 

 (0.49) (0.44) (0.47) (0.46) 
Log Size of Issue 0.13** 0.13** 0.12** 0.13** 

 (2.41) (2.43) (2.29) (2.35) 
Time Between Issues 0.00 0.00 0.00 0.00 

 (1.32) (1.26) (1.25) (1.31) 
Controls Yes Yes Yes Yes 
Firm & Year Yes Yes Yes Yes 
Adj-R2 0.18 0.18 0.18 0.18 
n 386 386 386 386 
Observations 2,830 2,830 2,769 2,830 

Panel B: Underwriting Spread 

Illiquidity 0.28*** 0.03*** 0.04*** 0.03*** 

 (3.26) (2.60) (4.49) (3.85) 

Years to Maturity 0.06*** 0.06*** 0.06*** 0.06*** 

 (35.48) (35.28) (34.77) (35.34) 

Log Size of Issue -0.06*** -0.06*** -0.06*** -0.05*** 

 (-5.96) (-6.03) (-5.99) (-5.85) 

Time Between Issues 0.00 -0.00 -0.00 0.00 

 (0.24) (-0.02) (-0.11) (0.22) 

Controls Yes Yes Yes Yes 

Firm & Year Yes Yes Yes Yes 

Adj-R2 0.36 0.36 0.36 0.36 

n 386 386 386 386 

Observations 3,985 3,985 3,904 3,985 
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Table VII 

Proportion of Firms Issuing Bonds by Year 

This table reports the number of firms that issue bonds each year of the sample period. For each year, the 

number of firms eligible to issue debt (Potential Repeat Issuers) is estimated by summing the number of unique 

firms that have outstanding debt trading in the secondary market. The credit rating for firms that do not issue 

new debt is estimated using the existing issues. In the instances where current issues have multiple credit 

ratings, or if multiple ratings differ among agencies, the median credit rating across all issues is used. The 

trading data comes from TRACE, while the issuing data comes from Mergent FISD.  

 Investment Grade  Speculative Grade  Not Rated 

 

Year 

Potential 

Repeat 

Issuers 

 

Issuers 

 

% 

 Potential 

Repeat 

Issuers 

 

Issuers 

 

% 

 Potential 

Repeat 

Issuers 

 

Issuers 

 

% 

2002  822   213   26    226  39   17    642   299   47  

2003  778   236   30    141  43   30    771   353   46  

2004  687   158   23    134  42   31    891   257   29  

2005  689   172   25    136  32   24    895   246   27  

2006  712   228   32    140  61   44    809   253   31  

2007  748   269   36    146  70   48    766   277   36  

2008  722   202   28    136  29   21    712   215   30  

2009  801   297   37    157  61   39    617   341   55  

2010  855   259   30    186  78   42    571   270   47  

2011  905   298   33    202  60   30    519   232   45  

2012  1,020   408   40    218  118   54    435   297   68  
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Table VIII 

Does Illiquidity Impede Access to Capital? 
This table reports coefficient results from a cross sectional probit analysis of the 

determinants of a firm’s ability to issue new debt. To understand the firm’s choice to 

issue new debt we regress the following equation: 

𝑃𝑟(𝐼𝑠𝑠𝑢𝑒𝑑𝑘,𝑡 = 1)
= 𝛼0 + 𝛽1𝐴𝑣𝑔 𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑘,𝑡−1 + 𝛽2𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝐷𝑒𝑏𝑡𝑘,𝑡−1 + 𝛽3𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑡

+ 𝛽4𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑡 ∗ 𝐴𝑣𝑔𝐼𝑙𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑘,𝑡 + 𝜀𝑘,𝑡. 

The dependent variable is an indicator variable equal to one if a firm k issues new debt 

in year t, zero otherwise. To be included in the sample the firm must have existing debt 

that currently trades in the secondary market. The principal independent variable is the 

average monthly illiquidity of existing bonds issued by the same firm in the year prior. 

We include as control variables the median credit rating of the existing bonds issued, 

the log of the outstanding debt issued by the firm at the end of the prior year, an 

indicator variable that marks the year 2008 and 2009 as crisis years, and an interaction 

of the firm’s illiquidity variable and the recession variable. Robust test statistics are 

reported in parentheses, with ***,**, and * indicating significance at the 1%, 5%, and 

10% levels respectively. 

 Probit (Issuer = 1) 

 (1)  (2)  (3)  (5) 

 PNT  KO  Amihud  Adj. TO 

Intercept -0.19  -2.24***  -2.69***  -0.58** 

 (-0.69)  (-7.22)  (-7.63)  (-2.08) 

Prior Year Illiquidity -0.14**  -0.12***  -0.06***  0.04** 

 (-2.02)  (-9.38)  (-8.27)  (2.39) 

Prior Year Outstanding Debt 0.00  0.04***  0.06***  0.03** 

 (0.12)  (4.28)  (5.83)  (2.51) 

Recession  0.21***  -0.20  0.51  -0.03 

 (2.97)  (-0.64)  (1.30)  (-0.36) 

Recession * Prior Year Illiquidity -0.36***  -0.02  0.02  0.00 

 (-3.57)  (-0.69)  (1.30)  (0.02) 

        

Firm and Credit Fixed Effects Yes  Yes  Yes  Yes 

N 2,473  2,460  2,455  2,473 

Observations 17,870  16,179  16,123  17,842 
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Table IX 

TRACE Reporting of New Debt Issuances 
This table reports the number and volume of new issues during the years 2002-2006. During this 

sub-period, FINRA reported trades of bonds in waves depending on issue size and credit rating. We 

report the average number of new issues that are reported on TRACE at issuance. 

  

All New Issues 

  

TRACE reported 

  

Not Reported 

 Percent 

Trace 

 # Volume  # Volume  # Volume   

2002 229  $86,522,700   59  $58,475,000   170  $28,047,700   26% 

2003 777  374,147,728   399  266,239,800   378  $107,907,928   51% 

2004 546  313,509,987   398  280,635,237   148  $32,874,750   73% 

2005 500  294,787,014   478  262,742,014   22  $32,045,000   96% 

2006 566  386,532,825   566  386,532,825   0 0   100% 

Total 2618  1,455,500,254   1900  1,254,624,876   718  $200,875,378    
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Table X 

The Real Effect of Price Impact on Issuing Costs 

This table presents cross sectional regression results of the impact of TRACE reporting on underwriting costs. The independent 

variable includes the costs of underwriting, either the difference between the yield to maturity and the Treasury yield at the time of 

issuance or the gross spread paid to the underwriting syndicate. The principal independent variable is an indicator variable equal to 

one if the firm’s prior issues are TRACE reported, zero otherwise. Control variables include the years to maturity, log of the issue 

size, the bond’s duration, and indicator variables marking whether the bond is callable, convertible, 144A, senior, or a junior issue. 

We include crediting rating dummy variables, as well as firm fixed effects. Robust test statistics are reported in parentheses, with 

***,**, and * indicating significance at the 1%, 5%, and 10% levels respectively. 

Panel A: Credit Spread         

 (1) (2) (3) (4)  (5) (6) (7) (8) 

 PNT KO Amihud Adj. TO  PNT KO Amihud Adj. TO 

 2002-2003  2002-2005 

Illiquidity -0.21* 0.18*** 0.03*** 0.02***  0.35 0.31*** 0.17*** -0.08 

      (-1.91) (3.52) (2.68) (2.69)  (0.72) (3.04) (5.01) (-0.96) 

Prior Bonds Trace Reported -0.12 -0.17** -0.15* -0.12  -0.22*** -0.21*** -0.23*** -0.23*** 

 (-1.33) (-1.98) (-1.73) (-1.26)  (-3.66) (-3.78) (-3.78) (-3.67) 

          

Control Variables Yes Yes Yes Yes  Yes Yes Yes Yes 

Firm and Year Fixed Yes Yes Yes Yes  Yes Yes Yes Yes 

Adj-R2 0.09 0.14 0.09 0.09   0.14 0.18 0.15 0.13 

N 280 282 263 308  416 411 414 416 

Observations 576 571 571 576  1,085 1,078 1,077 1,085 

Panel B: Underwriting Spread         

Illiquidity 2.04*** 0.75*** 0.37*** -0.26**  1.85*** 0.24 0.04 0.19*** 

      (3.76) (7.10) (9.83) (-1.99)  (2.61) (1.31) (0.89) (2.65) 

Prior Bonds Trace Reported -0.49 -0.34 -0.92*** -0.32  -1.16*** -1.13*** -1.17*** -1.15 

 (-1.52) (-1.11) (-3.00) (-0.91)  (-3.97) (-3.95) (-4.10) (-1.57) 

          

Control Variables Yes Yes Yes Yes  Yes Yes Yes Yes 

Firm and Year Fixed Yes Yes Yes Yes  Yes Yes Yes Yes 

Adj-R2 0.47 0.51 0.52 0.47   0.22 0.23 0.23 0.22 

N 304 306 285 389  459 453 458 459 

Observations 1,119 1,096 1,075 1,119  2,285 2,229 2,212 2,285 



37 

 

 

 

Figure 1. Corporate Bond Issuances (2002-2012) 

The figures display primary market activity for corporate bonds issued from 2002 

through 2012, partitioned by credit rating at the time of the issue. Panel A reports 

the total amount of capital raised through corporate bonds, whereas Panel B reports 

the average issue size. Both figures provide aggregate totals of the full sample of firms 

issuing bonds.  
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Figure 2. Monthly Corporate Debt Outstanding (2002-2012) 

The figure displays the aggregate amount of corporate debt outstanding during the 

sample period from January 2002 through December 2012.  

 

 

 

 

  

0

1000

2000

3000

4000

5000

C
u

m
u

la
ti

v
e
 V

o
lu

m
e
 (

$
 B

il
li

o
n

s)
Corporate Bond Volume Outstanding (2002-2012)

Investment Grade

Speculative Grade

Not Rated



39 

 

 

 
Figure 3. Monthly Corporate Bond Issues (2002-2012)  

The figure displays the monthly amount of capital issued through U.S. corporate 

bonds during the sample period from January 2002 through December 2012. Panel A 

reports the monthly volume issued. Panel B reports the number of monthly issues.  
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Figure 4. Bond Trading Volume and fees from 2002-2012 

This figure displays the yearly average trading volume alongside the gross spread, 

the percentage of the issue amount paid to the underwriting syndicate. Panels A, B, 

and C report issues for investment grade, speculative grade, and non-rated grade 

issues respectively. Issue volume and gross spread are averaged by firm and issue.  
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Secondary Market 

After issuance, investors trade debt in 

the secondary market. Issuing firms do 

not receive capital from secondary 

market activities.  

Primary Market 

Debt issued in the 

primary market.  

Capital transferred 

from investors to 

issuing firms.  

Cycle continues 

 

Primary Market 

Subsequent bond issues take place in the primary 

market. We hypothesize that the illiquidity of the 

previously issued debt will affect the costs of new 

issues. 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

Figure 5. How Secondary Market Liquidity Affects Underwriting Costs 

This study links secondary market activity with the primary market for new issues. 

When considering liquidity, this paper postulates that the characteristics of 

previously issued bonds will influence the fees associated with new issues. Both 

underwriters and investors estimate the potential risks of new bond issues by 

examining the past performance of outstanding bonds by the issuing firm.    
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