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Abstract 

 

We incorporate discrete tick size and allow non-high-frequency traders (non-HFTs) to supply 

liquidity in the framework of Budish, Cramton, and Shin (2015). When adverse selection risk is 

low or tick size is large, the bid-ask spread is typically below one tick, and HFTs dominate liquidity 

supply. In other situations, non-HFTs dominate liquidity supply by undercutting HFTs, because 

supplying liquidity to HFTs is always less costly than demanding liquidity from HFTs. A small 

tick size improves liquidity, but also leads to more mini-flash crashes. The cancellation-to-trade 

ratio, a popular proxy for HFTs, can have a negative correlation with HFTs’ activity. 
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In decades past, specialists on the New York Stock Exchange and dealers in NASDAQ supply 

liquidity to other traders, that is, they buy when other traders sell and sell when other traders buy. 

The transition to electronic trading not only destroyed these traditional liquidity suppliers, but also 

blurs the definition of liquidity supply. Everyone can supply liquidity, but no one is obligated to 

do so. Liquidity supply simply means to post a limit order, an offer to buy or sell at a certain price. 

A trade occurs when another trader (a liquidity demander) accepts the terms of a posted offer. 

Every trader has to decide whether to supply or demand liquidity in order to complete a trade. In 

this paper, we examine how the contemporary trading environment of voluntary liquidity supply 

and demand reaches its equilibrium. Who supplies liquidity and who demands liquidity? Can 

voluntary liquidity supply and demand lead to systemic risk such as a flash crash? And, if this is 

possible, what conditions lead up to it?  

 In this paper, we show how the equilibria in liquidity supply and demand depend on the 

characteristics of securities, market structures, and market conditions. Our model extends Budish, 

Cramton, and Shim (2015; BCS hereafter) along two dimensions. BCS include two types of traders: 

high-frequency traders (HFTs) and non-HFTs. In the BCS model, non-HFTs can only demand 

liquidity, while in our model we allow non-HFTs to provide liquidity. In addition, BCS consider 

a continuous price, whereas we consider a discrete price to reflect the tick size (minimum price 

variation) imposed by the U.S. Security and Exchange Commission’s (SEC’s) Regulation National 

Market Systems (Reg NMS) Rule 612, and to reflect the recent policy debate to increase the tick 

size from one cent to five cents.  

 Our model includes one security, whose fundamental value is public information. However, 

liquidity suppliers in our model are subject to adverse selection risk, because they may fail to 

cancel stale quotes during value jumps. HFTs in our model have no private value to trade. They 



3 
 

consistently monitor the market for profit opportunities. For example, they supply liquidity when 

the expected profit from doing so is positive, or snipe stale quotes after value jumps. Non-HFTs 

arrive at the market with a private value to buy or sell one unit of a security. We allow a fraction 

of non-HFTs to choose between providing or demanding liquidity. We call these non-HFTs “buy-

side algorithmic traders” (BATs) to represent algorithms used by buy-side institutions (e.g., mutual 

funds and pension funds) to minimize the cost of executing trades in portfolio transition 

(Hasbrouck and Saar, 2013; Frazzini, Israel, and Moskowitz, 2014). BATs are major players in 

modern financial markets (O’Hara, 2015). We build the first theoretical model to study their 

trading behavior. Our model captures two main features of BATs. First, BATs are slower than 

HFTs (O’Hara, 2015). Second, BATs supply liquidity to minimize the transaction costs of 

portfolio rebalancing (Hasbrouck and Saar, 2013), not to profit from the bid-ask spread. As both 

BATs and HFTs are algorithmic traders (Hasbrouck and Saar, 2013), we call the fraction of non-

HFTs who are not BATs non-algorithmic traders (non-algos).  

 As in BCS, the adverse selection risk increases with the arrival rate of value jumps and 

decreases with the arrival rate of non-HFTs. Supplying liquidity to non-HFTs leads to revenue, 

but value jumps lead to sniping cost. With the continuous price in BCS, the competitive bid-ask 

spread strictly increases with adverse selection risk. In our model, the tick size constrains price 

competition in the bid-ask spread. When adverse selection risk is low or the tick size is large, the 

competitive bid-ask spread can be less than one tick, which generate rents for liquidity supply. The 

rents are typically allocated to HFTs, because most U.S. stock exchanges use time to decide 

execution priority for orders quoted at identical prices. The market thus reaches equilibrium 

through queuing, not through price competition. In this first type of equilibrium, the queuing 

equilibrium, in which bid-ask spread is binding at one tick, HFTs dominate liquidity supply due to 
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their speed advantage over BATs.  

 When the tick size does not bind, we find that BATs never demand liquidity from HFTs. 

Instead, they provide liquidity at more aggressive prices than HFTs. This result is surprising 

because Han, Khapko, and Kyle (2014), Hoffmann (2014), Bernales (2016), and Bongaerts and 

Van Achter (2016) maintain that HFTs cancel stale quotes faster, incur lower adverse selection 

cost, and quote more aggressive prices than other traders. Brogaard et al. (2015), however, show 

that non-HFTs quote tighter bid-ask spreads than HFTs. Our model reconciles the contraction 

between previous channels of speed competition and the empirical results by including the 

opportunity cost of liquidity supply. BATs have to trade in our model. The outside option for BATs 

is to demand liquidity and pay the bid-ask spread. For BATs, supplying liquidity at a tighter bid-

ask spread strictly dominate demanding liquidity from HFTs.  

 To show why BATs choose to supply liquidity, we develop a new concept: the make-take 

spread. Without loss of generality, consider the BATs’ decision to buy and HFTs’ decision to sell. 

HFTs quote an ask price above the fundamental value, and their difference, or the half bid-ask 

spread, reflects the compensation for adverse selection costs during value jumps. BATs pay the 

half bid-ask spread if they demand liquidity. BATs can reduce transaction costs by supplying 

liquidity slightly above the fundamental value. We call this type of limit order a flash limit order, 

because it immediately triggers HFTs to demand liquidity. Flash limit orders execute immediately 

like market orders, but with a lower transaction cost. Flash limit orders exploit the make-take 

spread, the price difference between HFTs’ willingness to make an offer and their willingness to 

accept one. HFTs accept a lower sell price when they demand liquidity, because when they 

immediately accept an order, they do not incur adverse selection costs during a value jump.  

When the tick size does not impose a constraint for BATs to quote more aggressive prices 
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than HFTs, our model has two types of equilibria: flash and undercutting. In the flash equilibrium, 

BATs use flash limit orders to supply liquidity to HFTs. In the undercutting equilibrium, BATs 

quote a buy limit order price below the fundamental value or a sell limit order price above the 

fundamental value. These regular limit orders stay in the LOB to supply liquidity to non-algos or 

other BATs. We find that undercutting equilibrium are more likely to occur when the adverse 

selection risk is low, because flash limit orders incur no adverse selection cost, whereas the cost 

of  regular limit orders increases with the adverse selection risk. 

We also examine mini-flash crashes, which are sharp price movements in one direction 

followed by quick reversion (Biais and Foucault, 2014), and predict their cross-sectional and time 

series patterns. In the cross-section, mini-flash crashes are more likely to occur for stocks with a 

smaller tick size or higher adverse selection risk. Because BATs can undercut HFTs for these 

stocks, HFTs’ limit orders face lower execution probability before value jumps. When the fraction 

of BATs is large enough, HFTs have to quote stub quotes, a bid-ask spread wider than the 

maximum value of the jump, to protect against sniping. Yet BATs do not always supply liquidity 

on both sides of the market. Thus, an incoming market orders can hit HFTs’ stub quotes, causing 

a mini-flash crash. In time series, a downward (upward) mini-flash crash is more likely to occur 

immediately after a downward (upward) price jump, because such jumps can snipe all BATs’ limit 

orders on the bid (ask) side raising the probability that market orders hit stub quotes before BATs 

refill the limit order book (LOB).  

Existing literature on HFTs focuses on the role of adverse selection. On the one hand, speed 

can allow HFTs to adversely select other traders, which harms liquidity; on the other hand, speed 

can reduce adverse selection costs for liquidity suppliers and improve liquidity [see Jones (2013), 

Biais and Foucault (2014), and Menkveld (2016) for surveys]. We contribute to the literature by 
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identifying two new channels of speed competition, both of which are unrelated to adverse 

selection. For liquidity demand, we find that HFTs race to demand liquidity when BATs post flash 

limit orders, but HFTs impose no adverse selection cost on BATs. Instead, BATs prompt HFTs to 

demand liquidity to reduce their transaction costs. Thus, liquidity demand from HFTs need not be 

bad. Indeed, transactions costs are lower when HFTs demand liquidity than when they supply 

liquidity.  

For liquidity supply, our queuing channel of speed competition rationalizes three 

contradictions between empirical evidence and existing theoretical channels that focus on adverse 

selection. If an HFT’s speed advantage primarily helps it to reduce adverse selection costs, HFTs 

should realize a comparative advantage in providing liquidity for stocks with higher adverse 

selection costs (Han, Khapko, and Kyle, 2014; Hoffmann, 2014; Bernales, 2016; Bongaerts and 

Van Achter, 2016). HFTs should also crowd out slow liquidity suppliers when the tick size is 

smaller, because a smaller tick size reduces the constraints to offer better prices (Chordia et al., 

2013). In addition, a higher cancellation-to-trade ratio likely indicates more liquidity supply from 

HFTs, because HFTs need to cancel many orders to avoid adverse selection risk [see Biais and 

Foucault (2014) and Menkveld (2016) for a survey]. Yet Jiang, Lo, and Valente (2014) and Yao 

and Ye (2017) show that non-HFTs dominate liquidity supply when adverse selection risk is high. 

O’Hara, Saar and Zhong and Yao and Ye (2017) show that a smaller tick size crowds out HFTs’ 

liquidity supply.  Yao and Ye (2017) show stocks with higher fractions of liquidity provided by 

HFTs have lower cancellation-to-trade ratios. The queuing channel of speed competition 

reconciles these three contradictions. The tick size is more likely to be bind when adverse selection 

risk is low or the tick size is large. A binding tick size helps HFTs to establish time priority. HFTs 

dominate liquidity supply for stocks with larger tick sizes, but they also have less incentive to 
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cancel orders. A smaller tick size or higher adverse selection risk allows BATs to increase liquidity 

provision by establishing price priority, but smaller tick size or higher adverse selection risk also 

leads to more frequent order cancellations. This theoretical intuition, along with the empirical 

evidence in Yao and Ye (2017), suggests that the cancellation-to-trade ratio should not be used as 

a cross-sectional proxy for HFT activities.3 

Our model casts doubt on the recent policy proposal in the U.S. to increase the tick size, 

initiated by the 2012 Jumpstart Our Business Startups Act (the JOBS Act). In October 2016, the 

SEC started a two-year pilot program to increase the tick size from one cent to five cents for 1,200 

less liquid stocks. Proponents to increase the tick size assert that a larger tick size should control 

the growth of HFTs and increase liquidity (Weild, Kim, and Newport, 2012). We find that an 

increase in tick size would encourage HFTs. We also find that an increase in tick size constrains 

price competition and reduces liquidity. A larger tick size may reduce mini-flash crashes, or very 

high volatility in liquidity, but such a reduction decreases liquidity in normal times. We argue that 

a more effective way to reduce a mini-flash crash is a trading halt after value jumps so that liquidity 

supply from BATs can resume.  

 

1. Model 

In our model, the stock exchange operates as a continuous limit order book (LOB). Each 

trade in the LOB requires a liquidity supplier and a liquidity demander. The liquidity supplier 

submits a limit order, which is an offer to buy or sell at a specified price and quality. The liquidity 

demander accepts the conditions of a limit order. Execution precedence for liquidity suppliers 

follows the price-time priority rule. Limit orders with higher buy or lower sell prices execute before 

                                                           
3 The cancellation-to-trade ratio can still be a good time series proxy for HFTs’ activity (Hendershott, Jones, and 
Menkveld, 2011; Angel, Harris, and Spatt, 2015; Boehmer, Fong, and Wu, 2015).  
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less aggressive limit orders. For limit orders queuing at the same price, orders arriving earlier 

execute before later orders. The LOB contains all outstanding limit orders. Outstanding orders to 

buy are called “bids” and outstanding orders to sell are called “asks.” The highest bid and lowest 

ask are called the “best bid and ask (offer)” (BBO), and the difference between them is the bid-ask 

spread. 

Our model has one security, 𝑥𝑥 , whose fundamental value, 𝑣𝑣𝑡𝑡 , evolves as a compound 

Poisson jump process with arrival rate 𝜆𝜆𝐽𝐽. 𝑣𝑣𝑡𝑡 starts from 0, and changes by a size of 𝑑𝑑 or –𝑑𝑑 in 

each jump with equal probability. As in BCS, 𝑣𝑣𝑡𝑡 is common knowledge, but liquidity suppliers are 

subject to adverse selection risk when they fail to update stale quotes after value jumps. Traders 

start with a small latency to observe the common value jump, 4 but can reduce the latency to 0 by 

investing in a speed technology with cost 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 per unit of time. 

Our model includes HFTs and two types of non-HFTs: BATs and non-algo traders. HFTs 

place no private value on trading. They supply or demand liquidity as long as the expected profit 

is above 0. They submit a market order to buy (sell) 𝑥𝑥 when its price is below (above) 𝑣𝑣𝑡𝑡. HFTs 

supply liquidity as long as the expected profit from the bid-ask spread is above 0. Non-HFTs, who 

arrive with a compound Poisson jump process with intensity 𝜆𝜆𝐼𝐼, have to buy or sell one unit of 𝑥𝑥, 

each with probability 1
2
. Non-HFTs do not invest in speed technology because they only arrive at 

the market once.  

Our model extends BCS along two dimensions. First, non-HFTs in the BCS model submit 

only market orders. In our model, we allow a proportion 𝛽𝛽 of non-HFTs, BATs, to choose between 

limit and market orders to minimize transaction costs. The rest of the non-HFTs, non-algo traders, 

use only market orders. Second, BCS assume continuous pricing in their model, whereas we 

                                                           
4 By small, we mean that no additional events, such as a trader arrival or a value jump, take place during the delay.  
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consider discrete pricing grids. The benchmark pricing grid in Section 2 �…− 3𝑑𝑑
2

,−𝑑𝑑
2

, 𝑑𝑑
2

, 3𝑑𝑑
2

… � 

has a tick size of  𝛥𝛥0 = 𝑑𝑑. This choice ensures that 𝑣𝑣𝑡𝑡 is always at the midpoint of two price levels 

at any time. In Sections 3-6, we reduce the tick size to 𝛥𝛥1 = 𝑑𝑑
3
, which creates additional price levels, 

such as 𝑑𝑑
6
 and−𝑑𝑑

6
. Figure 1 shows the pricing grids with large and small tick sizes.  

Following the dynamic LOB literature (e.g., Goettler, Parlour, and Rajan, 2005, 2009; Rosu, 

2009; Colliard and Foucault, 2012), we examine the Markov perfect equilibrium, in which traders’ 

actions condition only on state of the LOB and events at 𝑡𝑡. We assume that HFTs instantaneously 

build up the equilibrium LOB after any event. Under this simplification, six types of events trigger 

the transition of the LOB across states: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

   

1
2
𝛽𝛽𝛽𝛽𝐼𝐼  BAT sells (BS)

1
2
𝛽𝛽𝛽𝛽𝐼𝐼 BAT buys (BB)

1
2

(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼 Non-algo sells (NS)
1
2

(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼 Non-algo buys (NB)
1
2
𝜆𝜆𝐽𝐽 Price jumps up (UJ)

1
2
𝜆𝜆𝐽𝐽 Price jumps down (DJ).

                           (1) 

 

BCS do not allow non-HFTs to supply liquidity. We extend their model by allowing BATs 

to submit limit orders. To convey the economic intuition in the most parsimonious way, we make 

a technical assumption that BATs can only submit limit orders when the price level contains no 

other limit orders. This assumption reduces the number of states of the LOB that we need to track. 

We can further relax the assumption in BCS by allowing BATs to queue for 𝑛𝑛 > 1 shares, but such 

an extension only increases the number of LOB states without conveying new intuition. Non-HFTs 

in the BCS model never use limit orders, which can be justified by an infinitely large delay cost 
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(Menkveld and Zoican, 2017). Our extension effectively reduces the delay cost to allow BATs to 

submit limit orders.5 The main intuition of our model stays the same as long as BATs do not queue 

for infinite length.  

 

2. Benchmark: Binding at one tick under a large tick size 

Our analysis starts from ∆0 = 𝑑𝑑. As in BCS, HFTs can choose to be liquidity suppliers, 

who profit from the bid-ask spread, or to be stale-quote snipers, who profit by demanding liquidity 

from stale quotes after a value jump. In BCS, the equilibrium bid-ask spread equalizes the HFTs’ 

expected profits from these two strategies, which are both zero after speed investment. Lemma 1 

shows that this break-even bid-ask spread is smaller than the tick size when adverse selection risk 

is low. 

 

Lemma 1 (Binding Tick Size). When ∆0 = 𝑑𝑑 and 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, HFTs’ profit from providing the first 

share at the ask price of 𝑎𝑎𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and the bid price of  𝑏𝑏𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 is higher than HFTs’ profit 

from stale-quote sniping.  

 

 Because non-HFTs trade for liquidity reasons and value jumps lead to sniping cost for stale 

quotes,  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 measures adverse selection risk in our model. As in BCS and Menkveld and Zoican 

(2017), this adverse selection risk comes from the speed of the response to public information, not 

from exogenous information asymmetry (e.g., Glosten and Milgrom, 1985; Kyle, 1985). As the 

                                                           
5 We can assume a finite delay cost so that BATs only queue for one share, and the results are available upon request. 
The value of the delay cost, however, conveys no intuition and only leads to a more complicated proof. In Section 4, 
we show that the exact size of the delay cost has little impact for BATs’ choice between limit orders and market orders. 
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arrival rate of non-HFTs increases or the intensity of value jumps decreases, the adverse selection 

risk decreases and so does the break-even bid-ask spread. The break-even bid-ask spread drops 

below one tick when 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, making liquidity supply for the first share more profitable than stale-

quote sniping.6 The rents for liquidity supply then trigger the race to win time priority in the queue. 

As BATs do not have a speed advantage to win the race, they demand liquidity in the same manner 

as non-algo traders. As a result, Lemma 1 does not depend on 𝛽𝛽.7  

 Under a binding tick size, price competition cannot lead to economic equilibrium. It is the 

queue that restores the economic equilibrium. Next, we derive the equilibrium queue length for 

the ask side of the LOB, and the bid side follows symmetrically. 

We evaluate HFTs’ value of liquidity supply and stale-quote sniping for each queue 

position, though we allow an HFT to supply liquidity at multiple positions and to snipe shares in 

other positions where she is not a liquidity supplier. We denote the value of liquidity supply for 

the 𝑄𝑄𝑡𝑡ℎ
P

 share as 𝐿𝐿𝐿𝐿(𝑄𝑄). A market sell order does not affect 𝐿𝐿𝐿𝐿(𝑄𝑄) on the ask side, because HFTs 

immediately restore the previous state of the LOB by refilling the bid side. A market buy order 

moves the queue forward by one unit, thereby changing the value to 𝐿𝐿𝐿𝐿(𝑄𝑄 − 1). A limit order 

execution leads to a profit of 𝑑𝑑
2
 to the liquidity supplier, 𝐿𝐿𝐿𝐿(0) = 𝑑𝑑

2
. When 𝑣𝑣𝑡𝑡   jumps upward, the 

liquidity providing HFT of the 𝑄𝑄𝑡𝑡ℎ share races to cancel the stale quote, whereas the other 𝑁𝑁 − 1 

HFTs (with 𝑁𝑁 determined in equilibrium) race to snipe the stale quote. The loss from being sniped 

                                                           
6 Throughout this paper, we consider 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 1 for expositional simplicity. When 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
≤ 1, ∆0 is no longer binding, and 

the equilibrium structure is similar to that in Sections 3-6, where we reduce the tick size to ∆1= 𝑑𝑑
3
. 

7 An order with less time priority has lower probability of execution and higher probability of being sniped, both of 
which reduce BATs’ incentives to queue. In addition, BATs have incentives to implement trades, and a positive delay 
cost would compel them to use market orders when the queue is long. We assume that BATs never queue after the 
first position to reflect these intuitions in a parsimonious way.  
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is 𝑑𝑑
2
, while the probability of being sniped is 𝑁𝑁−1

𝑁𝑁
. When 𝑣𝑣𝑡𝑡  jumps downward, the liquidity supplier 

cancels the order and joins the race to supply liquidity at a new BBO.8 𝐿𝐿𝐿𝐿(𝑄𝑄) then becomes 0. 

Equation (2) presents 𝐿𝐿𝐿𝐿(𝑄𝑄) in recursive form and Lemma 2 presents the solution for equation (2).  

𝐿𝐿𝐿𝐿(𝑄𝑄) =
1
2 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(𝑄𝑄) +
1
2 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(𝑄𝑄 − 1) − 𝑁𝑁−1
𝑁𝑁

1
2 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

× 𝑑𝑑
2

+
1
2 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

× 0.     (2) 

  

Lemma 2 (Value of Liquidity Supply). The value of liquidity supply for the 𝑄𝑄𝑡𝑡ℎ position is: 

𝐿𝐿𝐿𝐿(𝑄𝑄) = � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 𝑁𝑁−1

𝑁𝑁
1
2
�1 − � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄
� 𝑑𝑑
2

.   (3) 

𝐿𝐿𝐿𝐿(𝑄𝑄) decreases in 𝑄𝑄. 

 

Intuitively, Lemma 2 reflects the conditional probability of value-change events for 𝐿𝐿𝐿𝐿(𝑄𝑄) 

and their payoffs. Since 𝐿𝐿𝐿𝐿(𝑄𝑄)  stays the same after a market sell order, the conditional 

probabilities of value-changing events are 𝜆𝜆𝐼𝐼 
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for a market buy, 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for an upward value 

jump, and 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for a downward value jump. The 𝑄𝑄𝑡𝑡ℎ share executes when 𝑄𝑄 non-HFTs arrive in 

a row to buy, which has a probability of � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

, and the revenue conditional on execution is 𝑑𝑑
2
. 

Their product, the first term in equation (3), reflects the expected revenue for liquidity suppliers. 

The 𝑄𝑄𝑡𝑡ℎ share on the ask side fails to execute with non-HFTs when an upward or downward value 

jump occurs, each with probability 1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

]. After an upward value jump, the liquidity 

supplier has a probability of 1
𝑁𝑁

 to cancel the stale quote, but failure to cancel the stale quote before 

                                                           
8 We assume that the HFT liquidity supplier cancels the limit order to avoid the complexity of tracking infinite many 
price levels in the LOB.  
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sniping leads to a loss of  𝑑𝑑
2
. The expected loss is 𝑁𝑁−1

𝑁𝑁
1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

] 𝑑𝑑
2
, the second term in 

equation (3). A downward value jump before the order being snipped or executed leads to a zero 

payoff for the liquidity supplier. 𝐿𝐿𝐿𝐿(𝑄𝑄) decreases in 𝑄𝑄, because an increase in a queue position 

reduces execution probability and increases the cost of being sniped.  

The outside option for supplying liquidity for the 𝑄𝑄𝑡𝑡ℎ share is to be the sniper of the share 

during the value jump. HFTs’ liquidity supply decision for the 𝑄𝑄𝑡𝑡ℎ share also needs to include this 

opportunity cost. With a probability of  1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

], the 𝑄𝑄𝑡𝑡ℎ share becomes stale before it 

gets executed, and each sniper has a probability of 1
𝑁𝑁

 to profit from the stale quote. The value for 

each sniper of the 𝑄𝑄𝑡𝑡ℎ share is: 

 

𝑆𝑆𝑆𝑆(𝑄𝑄) =  1
𝑁𝑁
1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

] 𝑑𝑑
2

.                   (4) 

𝑆𝑆𝑁𝑁(𝑄𝑄) increases with 𝑄𝑄, because shares in a later queue position offer more opportunities for 

snipers.  

 HFTs race to supply liquidity for the 𝑄𝑄𝑡𝑡ℎ position as long as 𝐿𝐿𝐿𝐿(𝑄𝑄) > 𝑆𝑆𝑆𝑆(𝑄𝑄), because the 

winner’s payoff is higher than that of the losers. Equation (5) determines the equilibrium length:  

� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 1

2
[1 − � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄

] 𝑑𝑑
2

> 0.                        (5) 

The solution for equation (5) is:  

𝑄𝑄∗ = max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄 𝑑𝑑

2
−

1
2
�1 − �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄

�
𝑑𝑑
2

> 0� 

= max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄

>
1
3
� 
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= �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
1
3
�,                                                                                                      (6) 

where ⌊𝑥𝑥⌋ denotes the largest integer smaller than or equal to 𝑥𝑥. 

 

Figure 2 shows the comparative statics for equilibrium queue length. The queue length at 

BBO decreases with 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, which indicates that, for stocks with a bid-ask spread binding at one tick, 

the depth at the BBO may serve as a proxy for adverse selection risk. Traditionally, bid-ask spreads 

serve as a proxy for adverse selection risk (Glosten and Milgrom, 1985; Stoll, 2000). Yet Yao and 

Ye (2017) find that bid-ask spread is one-tick wide 41% of time for their stratified sample of 

Russell 3000 stocks in 2010. Depth at the BBO then serves as an ideal proxy to differentiate the 

level of adverse selection for these stocks.9  

To derive 𝑁𝑁, note that HFTs’ total rents come from the bid-ask spread paid by non-HFTs, 

because sniping only redistributes the rents among HFTs. Ex ante, each HFT obtains 1
𝑁𝑁

 of the rents 

per unit of time. New HFTs continue to enter the market until:  

𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 0.                                     (7) 

In Proposition 1, we summarize the equilibrium under a large binding tick size. 

 

Proposition 1. (Large Binding Tick Size): When ∆0= 𝑑𝑑 and 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, 𝑁𝑁∗ HFTs jointly supply 𝑄𝑄∗ 

units of sell limit orders at 𝑎𝑎𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and 𝑄𝑄∗ units of buy limit orders at 𝑏𝑏𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
, where:  

𝑄𝑄∗ = �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
1
3
�, and 

                                                           
9 Certainly, the comparison also needs to control for price, because stocks with the same nominal bid-ask spread may 
have a different proportional bid-ask spread. 
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𝑁𝑁∗ = max �𝑁𝑁 ∈ ℕ+ s. t. 𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0�.  (8) 

 
BATs and non-algo traders demand liquidity when there is a large binding tick size. 

 

In BCS, the depth at the BBO is one share, because the first share has a competitive price. 

The second share at that price, which faces lower execution probability and higher adverse 

selection costs, is not profitable. The discrete tick size in our model raises the profit of liquidity 

supply above the profit of stale-quote sniping for the first share, and generates a depth of multiple 

shares.  

In BCS, the number of HFTs is determined by 𝜆𝜆𝐼𝐼
𝑠𝑠∗

2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0, where 𝑠𝑠∗ is the break-

even bid-ask spread. In our model, 𝑁𝑁 is determined by 𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0. When tick size is 

binding, 𝑑𝑑 > 𝑠𝑠∗, so tick size leads to more entries of HFTs. Taken together, our model contributes 

to the literature by identifying a queuing channel of speed competition, in which HFTs race for top 

queue positions to capture the rents created by tick size.  

We assume that BATs do not queue after the first share to get the analytical solution of the 

queuing equilibrium. The intuition when BATs can queue more than one share, however, remains 

the same. As long as we do not allow BATs to queue for an infinitely long time, BATs will demand 

liquidity with positive probability. In Section 4, we show that BATs always supply liquidity when 

tick size is small.    

 

3. Equilibrium types under a small tick size 

Starting from this section, we reduce the tick size to 𝑑𝑑
3
. BATs then always choose to supply liquidity 

by establishing price priority over HFTs, except when the adverse selection risk is very low. 
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Corollary 1 shows that a small tick size of 𝑑𝑑
3
 is still binding when 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 5.  

 

Corollary 1. (Small Binding Tick Size) If ∆1= 𝑑𝑑
3
 and 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 5, the bid-ask spread equals the tick 

size. 𝑁𝑁𝑠𝑠∗ HFTs jointly post 𝑄𝑄𝑠𝑠∗ units of sell limit orders at 𝑎𝑎𝑠𝑠,𝑡𝑡
∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 and 𝑄𝑄𝑠𝑠∗ units of buy limit 

orders at 𝑏𝑏𝑠𝑠,𝑡𝑡
∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
, where: 

𝑄𝑄𝑠𝑠∗ = max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄 𝑑𝑑

6
−

1
2
�1 − �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄

�  
5𝑑𝑑
6

> 0 � 

= �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
5
7
� < 𝑄𝑄∗, and       (9) 

𝑁𝑁𝑠𝑠∗ = max �𝑁𝑁 ∈ ℕ+ s. t. 𝜆𝜆𝐼𝐼
𝑑𝑑
6
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0� < 𝑁𝑁∗.        (10) 

 

 Compared with Proposition 1, a small tick size reduces revenue from liquidity supply from 

𝑑𝑑
2
 to 𝑑𝑑

6
, increases the cost of being sniped from 𝑑𝑑

2
 to 5𝑑𝑑

6
, and reduces the queue length from 𝑄𝑄∗ to 𝑄𝑄𝑠𝑠∗. 

Figure 2 shows that 𝑄𝑄𝑠𝑠∗ is approximately 1
3
 of 𝑄𝑄∗. A small tick size also discourages the entry of 

HFTs. 𝑁𝑁𝑠𝑠∗ is approximately 1
3
 of 𝑁𝑁∗, because HFTs’ expected profit per unit of time decreases from 

𝜆𝜆𝐼𝐼
𝑑𝑑
2
 to 𝜆𝜆𝐼𝐼

𝑑𝑑
6
. 

When 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, the break-even bid-ask spread is larger than one tick. To profit from the 

bid-ask spread, HFTs have to quote the following bid-ask spread:10  

                                                           
10 We defer the derivation of the boundary condition for HFTs’ bid-ask spread to Sections 4-6. Another way to bypass 
tick size constraints is to randomize quotes immediately above and below the break-even bid–ask spread. In this paper, 
we consider only stationary HFT quotes. 
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⎩
⎪
⎨

⎪
⎧ 𝑑𝑑

2
 1

1−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5

5𝑑𝑑
6

1
5(1−𝛽𝛽)

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

7𝑑𝑑
6

1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
5(1−𝛽𝛽)

P

                                  (11) 

Figure 3 shows that the bid-ask spread quoted by HFTs weakly decreases with 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, because 

an increase in 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 decreases adverse selection risk. The bid-ask spread quoted by HFTs increases 

weakly with the fraction of BATs, because BATs’ strategies for minimizing transaction costs 

reduce HFTs’ expected profit from liquidity supply. Interestingly, when the adverse section risk 

or the fraction of BATs is high, HFTs effectively cease supplying liquidity by quoting a bid-ask 

spread that is wider than the size of a jump. In the following sections, we elaborate the equilibrium 

types when tick size is not binding. 

 

Insert Figure 3 about Here 

 

4. Make-take spread 

In this section, we develop a new concept make-take spread, and we use the concept to explain 

why BATs never demand liquidity from HFTs when the tick size is not binding. Without loss of 

generality, we consider the decision for a BAT who wants to buy. We start from the case when 

1
1−𝛽𝛽

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, for which HFTs need to quote an ask price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and a bid price of 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 to 

profit from the bid-ask spread. 

A BAT can choose to accept the ask price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
, but submitting a limit order to buy at 

𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 is always less costly, because a buy limit order above fundamental value immediately 

attracts HFTs to submit market orders to sell. This flash limit order immediately executes like a 
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market order, but with lower cost.  

 Why do HFTs quote a sell price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
, but are willing to sell at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 using market 

orders? It is because HFTs’ limit price to sell includes the costs of adverse selection risk. An offer 

to sell is more likely to be executed when 𝑣𝑣𝑡𝑡 jumps up. HFTs would accept a lower sell price when 

they demand liquidity, because immediate execution reduces adverse selection risk.  

Flash limit orders exploit the make-take spread, which measures the price difference 

between the traders’ willingness to list an offer and their willingness to accept an offer conditional 

on the trade direction (e.g., sell). We discover make-take spread because liquidity suppliers can 

demand liquidity. This new feature reflects reality in contemporary electronic platforms. In most 

exchanges, every trader can supply liquidity and encounter very limited, if any restrictions when 

demanding liquidity (Clark-Joseph, Ye, and Zi, Forthcoming) 

BATs are able to quote more aggressive prices than HFTs because they have lower 

opportunity costs for supplying liquidity. BATs have to buy or sell, and they supply liquidity as 

long as its cost is less than demanding liquidity. BATs lose 𝑑𝑑
6
 by using flash limit orders, but the 

cost of flash limit orders is lower than paying a half bid-ask spread  𝑑𝑑
2
. O’Hara (2015) finds that 

sophisticated non-HFTs cross the spread only when it is absolutely necessary. The make-take 

spread provides one interpretation for why sophisticated non-HFTs seldom cross the bid-ask 

spread. 

When 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

, the half bid-ask spread quoted by HFTs are higher than 𝑑𝑑
2
, leaving 

more price levels for BATs to use flash limit orders. Therefore, BATs never demand liquidity as 

long as HFTs quote a bid-ask spread that is wider than one tick.  

 



19 
 

5. Flash equilibrium versus undercutting equilibrium  

In the previous section, we show that flash orders strictly dominate market orders. In this section, 

we show that, under some conditions, BATs can further reduce their transaction costs by 

submitting limit orders that do not cross the midpoint. These regular limit orders do not get 

immediate execution but stay in the LOB to wait for market orders.  

We consider BATs’ choice between flash and regular limit orders. In the flash equilibrium, 

BATs use flash limit orders to supply liquidity to HFTs, and HFTs supply liquidity to non-algos. 

In the undercutting equilibrium, BATs use regular limit orders to supply liquidity to non-algos and 

other BATs, whereas HFTs follow complex strategies with frequent order additions and 

cancellations. For simplicity, we focus on the case when 1
1−𝛽𝛽

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, for which HFTs need to 

quote an ask price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and a bid price of 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 to profit from the bid-ask spread. In this case, 

BATs only need to consider two price levels: a flash limit order (e.g., 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 to buy) or a regular 

limit order (e.g., 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
 to buy).  

 

5.1 Flash equilibrium    

In Proposition 2, we characterize the flash equilibrium.  Starting from now, we only characterize 

the equilibrium outcome. BATs’ response to off-equilibrium paths are defined in the proofs.  

Proposition 2. (Flash Equilibrium): When ∆1= 𝑑𝑑
3
 and 1

1−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 1+2β+�4β2+9

2−β
, the equilibrium is 

characterized as follows: 

1. BAT buyers submit limit orders at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 and BAT sellers submit limit orders at price 

𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
. 
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2. 𝑁𝑁𝑓𝑓∗ HFTs jointly supply 𝑄𝑄𝑓𝑓∗  units of sell limit orders at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and 𝑄𝑄𝑓𝑓∗  units of buy limit 

orders at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
, where: 

𝑄𝑄𝑓𝑓∗ = max �𝑄𝑄 ∈ ℕ+ s. t. � (1−𝛽𝛽)𝜆𝜆𝐼𝐼
(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 1

2
 (1 − � (1−𝛽𝛽)𝜆𝜆𝐼𝐼

(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄

) 𝑑𝑑
2

> 0 �  

= �log
� (1−𝛽𝛽)𝜆𝜆𝐼𝐼

(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
1
3
� < 𝑄𝑄∗   (12) 

𝑁𝑁𝑓𝑓∗ = max �𝑁𝑁 ∈ ℕ+ s. t.𝛽𝛽𝛽𝛽𝐼𝐼
𝑑𝑑
6

+ (1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0� < 𝑁𝑁∗.  (13) 

3. HFTs participate in three races: (1) HFTs race to fill the queue when the depth at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 

or 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
 becomes less than 𝑄𝑄𝑓𝑓∗ . (2) HFTs race to take the liquidity offered by flash limit 

orders. (3) After a value jump, HFTs who supply liquidity race to cancel the stale quotes, 

whereas stale-quote snipers race to pick off the stale quotes. 

 

In Proposition 2, we first derive the boundary between the flash equilibrium and the 

undercutting equilibrium. Figure 4 illustrates the boundary in. BATs choose flash limit orders over 

regular limit orders when adverse selection risk is high. Intuitively, flash limit orders execute 

immediately, but it costs 𝑑𝑑
6
 relative to the midpoint; regular limit orders capture a half bid-ask 

spread of 𝑑𝑑
6
 if executed against a non-HFT, but it is also subject to adverse selection risk. BATs 

tend to choose flash limit orders when the adverse selection risk is high. Figure 4 also shows BATs 

tend to choose regular limit orders when 𝛽𝛽 decreases. Intuitively, because non-algo traders use 

only market orders, a regular limit order on the book would have higher execution probability 

before a value jump as the fraction of non-algo traders increases.  

Insert Figure 4 about Here 
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Proposition 2 identifies a unique type of speed competition led by tick size: racing to be 

the first to take the liquidity offered by flash limit orders. If price is continuous, any buy limit order 

price above fundamental value would prompt HFTs to sell. In our model with discrete tick size, a 

BAT needs to place the buy limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
, which drives the speed race to capture the rent 

of 𝑑𝑑
6
 through demanding liquidity.  

In the literature, HFTs demand liquidity when they have advance information to adversely 

select other traders (BCS; Foucault, Kozhan, and Tham, Forthcoming; Menkveld and Zoican, 

2017). Consequently, HFTs’ liquidity demand often has negative connotations. Our model shows 

that HFTs can demand liquidity without adversely selecting other traders. Instead, the transaction 

cost is lower for BATs when HFTs demand liquidity than when HFTs supply liquidity. Therefore, 

researchers and policy makers should not evaluate the welfare impact of HFTs simply based on 

liquidity supply versus liquidity demand.  

As BATs no longer demand liquidity from HFTs, HFTs respond to the reduced liquidity 

demand and higher adverse selection cost by decreasing their depth to 𝑄𝑄𝑓𝑓∗ . The profit to take 

liquidity from BATs, 𝑑𝑑
6
, is less than the profit to supply liquidity to BATs at 𝑑𝑑

2
 when the tick size 

is ∆0. A smaller tick size, ∆1, reduces the profit for HFTs, thereby reducing the number of HFTs.  

 

5.2 Undercutting equilibrium  

In flash equilibrium, the LOB only has one stable state. In the undercutting equilibrium, 

the LOB transits across different states. As indicated in Proposition 2, BATs choose regular limit 

orders over flash limit orders when adverse selection risk or 𝛽𝛽  is low. In the undercutting 

equilibrium, their limit orders stay in the LOB, and their decisions, as well as those of HFTs, 
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depend on the state of the LOB. Our technical assumption that BATs never queue at the second 

position reduces the number of states. Still, the solution is complicated. We focus on deriving the 

equilibrium strategies of HFTs, as Proposition 2 and its proof in the Appendix demonstrate the 

strategy of BATs in undercutting equilibrium. BATs choose regular limit orders over flash limit 

orders when 1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5.  

To show the equilibrium strategy of HFTs, we first define the state of the LOB as (𝑖𝑖, 𝑗𝑗). 

Here 𝑖𝑖 represents the number of BATs’ limit orders on the same side of the LOB, and 𝑗𝑗 denotes 

the number of BATs’ limit orders on the opposite side of the LOB. For example, for a HFT who 

wants to buy, 𝑖𝑖 represents the number of BATs’ limit orders on the bid side, and 𝑗𝑗 represents the 

number of BATs’ limit orders on the ask side. The LOB then has four states:  
 

(0,0) No limit order from BATs
(1,0) A BAT limit order on the same side
(0,1) A BAT limit order on the opposite side
(1,1) BAT limit orders on both sides

 

 

When 1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5, HFTs quote a half bid-ask spread of 𝑑𝑑

2
, as a half bid-ask 

spread of 𝑑𝑑
6
 loses money. Similar to the queuing equilibrium and the flash equilibrium, HFTs’ 

decision to supply liquidity depends on the payoff of the liquidity supply relative to the outside 

option of sniping. The new feature of the undercutting equilibrium is that HFTs’ decision also 

depends on the status of the LOB. We denote the payoff of the 𝑄𝑄𝑡𝑡ℎ
P

 share to supply liquidity at half 

the bid-ask spread 𝑑𝑑
2
 as 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄), and the payoff to the snipers of the 𝑄𝑄𝑡𝑡ℎ

P

 share as 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄). The 

HFT’s strategy depends on 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) ≡ 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) − 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄).  

Figure 5 illustrates how 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) changes with the six types of events defined in equation 
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(1). For example, consider 𝐷𝐷(0,0)(𝑄𝑄) for an HFT on the ask side of the LOB.  

1) A BAT buyer submits a limit order at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
, which changes 𝐷𝐷(0,0)(𝑄𝑄) to 𝐷𝐷(0,1)(𝑄𝑄).  

2) A BAT seller undercuts the ask side at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
, which changes 𝐷𝐷(0,0)(𝑄𝑄) to 𝐷𝐷(1,0)(𝑄𝑄). 

3) A non-algo buyer submits a market buy order, which moves the queue position forward 

by one unit. 𝐷𝐷(0,0)(𝑄𝑄) changes to 𝐷𝐷(0,0)(𝑄𝑄 − 1). 

4) A non-algo seller submits a market sell order, which does not affect 𝐷𝐷(0,0)(𝑄𝑄) as the 

LOB on the bid side is refilled immediately by HFTs.  

5) In an upward value jump, a liquidity providing HFT on the ask side gains – 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

, a 

stale-quote sniper gains 𝑑𝑑
2
1
𝑁𝑁

, and the difference between them is −𝑑𝑑
2
.  

6) In a downward value jump, the liquidity supplier cancels the limit order, thereby 

changing the value of both the liquidity supply and stale-quote snipping to zero. 

Insert Figure 5 about Here 

These six types of events and the four states of the LOB are the key features of the 

undercutting equilibrium, which we summarize in Proposition 3. To simplify the notation, we use 

𝑝𝑝1 ≡
1
2
∙ 𝜆𝜆𝐼𝐼𝛽𝛽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 to denote the arrival probability of a BAT buyer or seller, 𝑝𝑝2 ≡
1
2
∙ 𝜆𝜆𝐼𝐼(1−𝛽𝛽)
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 to denote 

the arrival probability of a non-algo trader to buy or sell, and 𝑝𝑝3 ≡
1
2
∙ 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 to denote the 

probability of an upward or downward value jump.  

 

Proposition 3. (Undercutting Equilibrium): When ∆1= 𝑑𝑑
3

 and  1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5 , the 

equilibrium is characterized as follows: 

1. HFTs’ strategy: 
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a. Spread: HFTs quote ask price at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and bid price at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
.  

b. Depth: The following system of equations determines the equilibrium depth in 

each state. 

i. Difference in value between the liquidity supplier and the stale-queue sniper 

in each state: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐷𝐷(0,0)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄 − 1) + 𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄) + 𝑝𝑝3 �−

𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(1,0)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(1,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷0,0(𝑄𝑄) + 𝑝𝑝2𝐷𝐷(1,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(0,1)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚{0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,1)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,1)(𝑄𝑄 − 1) + 𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(1,1)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝2𝐷𝐷(1,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

. (14) 

ii. Difference in value for immediate execution: 𝐷𝐷(0,0)(0) = 𝐷𝐷(0,1)(0) = 𝑑𝑑
2
. 

iii. Equilibrium depth as a function of the difference in value:  

𝑄𝑄(𝑖𝑖,𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑄𝑄𝑄𝑄ℕ+�𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) > 0�    𝑖𝑖 = 0,1; 𝑗𝑗 = 0,1. 

c. In equilibrium there are 𝑁𝑁𝑢𝑢∗ < 𝑁𝑁∗ HFTs. 

2. BATs who intend to buy (sell) submit limit orders at price 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 + 𝑑𝑑
6

 ) if no existing 

limit orders sit at the price level, or buy (sell) limit orders at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 −
𝑑𝑑
6

 ) 

otherwise11.  

 

The depth from HFTs depends on 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄). 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄), is defined using the equation system 

in (14), because the value difference in each state also depends on the value differences in other 

                                                           
11 After an upward (downward) jump with size 𝑑𝑑, we assume BATs buy (sell) undercutting orders at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
 (𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
) 

will be cancelled and resubmitted at price 𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

) to follow the value jump. Alternative BATs strategy 
does not change the equilibrium. 
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states. The equations in (14) contain the 𝑚𝑚𝑚𝑚𝑚𝑚{0, . } as HFTs do not queue at the 𝑄𝑄𝑡𝑡ℎ position once 

the expected payoff is below 0.  

We present the solution for 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) for any 𝑖𝑖, 𝑗𝑗, and 𝑄𝑄 in the Appendix. Here we use a 

numerical example to present the main intuition of the undercutting equilibrium. Figure 6 shows 

that the value of the liquidity supply decreases in 𝑄𝑄 , while the value of stale-quote sniping 

increases in 𝑄𝑄 . HFTs supply liquidity as long as 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) >  𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄) . For example, in 

state(0,0), the LOB has a depth of two shares. 

Figure 6 also shows that 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) and 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄) also depend on the state of the LOB. As 

the undercutting limit orders from BATs can change the states of the LOB, HFTs can add or cancel 

their limit orders even when the fundamental value stays the same. A comparison between Panel 

A and Panel B and between Panel C and Panel D of Figure 6 shows that an undercutting order 

reduces HFTs’ depth on the same side of the LOB by approximately one share. Intuitively, when 

a BAT submits an undercutting order, the execution priority for all HFTs on the same side of the 

book decreases by one share.12 An HFT who used to quote the last share at the half bid-ask spread 

𝑑𝑑
2
 has to cancel, because the share become unprofitable after the arrival of the undercutting order. 

For the same reason, once an undercutting order from a BAT executes, HFTs race to submit one 

more share at the half bid-ask spread 𝑑𝑑
2
, because the execution priority in the LOB increases by 

                                                           
12 An undercutting BAT order on the opposite side of the LOB has an indirect effect. For example, in state (1, 1), a 
BAT buyer takes liquidity at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 and changes the state to (0, 1), which enables an HFT limit sell order at price 

𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 to trade with the next buy market order from a non-algo trader. In state (1, 0), a BAT buyer chooses to submit 

a limit order at price 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
, which changes the state to (1, 1). An HFT limit sell order at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑

2
 then needs to 

wait at least one more period for execution. More generally, an undercutting BAT limit buy (sell) order may attract 
future BAT sellers (buyers) to demand liquidity, making future BATs less likely to undercut HFTs. In turn, the value 
of liquidity supply increases relative to sniping, thereby incentivizing HFTs to supply larger depth. This indirect effect 
is so small that it does not affect depth in our numerical example, because the number of shares is an integer. It is 
possible for a depth of (1, 1) to be higher than (1, 0) for numerical values such as 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
= 4.9 and 𝛽𝛽 = 0.06, and the 

results are available upon request. 
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one. One new feature of the undercutting equilibrium is the frequent order addition or cancellation 

of HFTs’ limit orders in the absence of a change in fundamental value.  

One driver of HFTs’ frequent additions and cancellations is small tick size. When tick size 

is binding, BATs cannot achieve execution priority over HFTs who are already in the queue. When 

tick size is small, BATs can achieve price priority over HFTs, which induces HFTs to cancel their 

earlier orders and to add new ones in response to the undercutting orders from BATs.  

 When 1
5(1−𝛽𝛽)

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

, HFTs quote 5𝑑𝑑
6

, and BATs’ strategies follow the intuition 

outlined above, where they choose between flash limit orders and regular limit orders. The only 

main difference is that the four price levels between 𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

 and 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 increase the states to 

24 = 16. We do not report the results for brevity but they are available upon request. In Section 6, 

we discuss the case when the break-even spread equals 7𝑑𝑑
6

.  

 

6. Stub quotes and mini-flash  

 In Proposition 4, we show that HFTs quote a bid-ask spread wider than the size of the jump 

when adverse selection risk is high or the fraction of BATs is large. We call such quotes stub 

quotes. A mini-flash crash occurs when a market order hits a stub quote. In our model, the size of 

the mini-flash crash is 7𝑑𝑑
6

, because the size of a value jump is 𝑑𝑑. An increase in the support of jump 

size can lead to stub quotes further away from the midpoint, thereby creating mini-flash crashes of 

larger size. Such an extension adds mathematical complexity without conveying new intuition. 

 

Proposition 4 (Stub Quotes and Mini-Flash Crash). When ∆1= 𝑑𝑑
3

 and 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
5(1−𝛽𝛽)

, the 

equilibrium is characterized as follows.  
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1. HFTs quote a half bid-ask spread of 7𝑑𝑑
6

. 

2. A BAT buyer (seller) quotes 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

) if the price level has no limit orders. 

Otherwise, the BAT buyer (seller) submits a flash limit order at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 (𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
) to 

provide liquidity.  

3. Compared with the case when ∆0= 𝑑𝑑, the transaction cost for non-algo traders increases, 

but the average transaction cost for non-HFTs decreases.  

4. The probability of mini-flash crashes decreases in  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

. The probability of mini-flash crashes 

first increases in 𝛽𝛽 and then decreases in 𝛽𝛽.  

 

Proposition 4 shows that HFTs are more likely to quote stub quotes when adverse selection 

risk is high. A higher adverse selection risk prompts HFTs to quote stub quotes through two 

channels. First, HFTs have to quote a wider bid-ask spread to reach the break even point. Second, 

when HFTs’ quotes are wider than one tick, BATs are able to quote more aggressive prices than 

HFTs. HFTs then need to further widen the bid-ask spread due to reduced liquidity demand.  

 When HFTs quote stub quotes, BATs have six price levels to choose from. Fortunately, we 

are able to obtain analytical solutions for the BATs’ strategy. Consider the decision for a BAT 

buyer. We find that the buyer chooses to queue at 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 if the price level contains no limit orders. 

The sniping cost is as low as 𝑑𝑑
6
, and the BAT buyer can earn a half bid-ask spread of 5𝑑𝑑

6
 if a non-

algo trader arrives. When 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 contains a limit order, the BAT buyer will use a flash limit order 
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at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 to obtain immediate execution with a transaction cost of 𝑑𝑑

6
.13 We show in the proof that 

BATs never quote at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
 and 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
 as the execution cost is always higher than 𝑑𝑑

6
. Flash buy 

limit orders at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 also strictly dominate more aggressive flash limit orders of 𝑣𝑣𝑡𝑡 + 𝑑𝑑

2
 and 

𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

, because a limit order price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 is aggressive enough to trigger immediate execution.  

In Section 3, we find that the transaction costs for both BATs and non-algo traders are 𝑑𝑑
2
 

when tick size is d. A decrease in tick size to 𝑑𝑑
3
 increases the transaction cost for non-algo traders. 

A non-algo trader pays 5𝑑𝑑
6

 when an order is she executed against a BAT and pays 7𝑑𝑑
6

 if a stub quote 

is encountered. Meanwhile, a decrease in tick size to 𝑑𝑑
3
 decreases the transaction cost for BATs. 

BATs’ maximum transaction cost is 𝑑𝑑
6
 if they use flash limit orders, although the cost is lower if 

they quote a half bid-ask spread of 5𝑑𝑑
6

. Overall, we find that the average transaction cost decreases 

with tick size. Figure 3 shows that the proportion of BATs needs to be at least 4
5
 for stub quotes to 

occur. Non-algo traders’ maximum transaction cost is 7𝑑𝑑
6

 if they hit stub quotes. The average 

transaction cost for non-HFTs is then at most 11𝑑𝑑
30

 ( 4
5

× 𝑑𝑑
6

+ 1
5

× 7𝑑𝑑
6

) , which is lower than 𝑑𝑑
2

. 

Therefore, a reduction in tick size reduces non-HFTs’ average transaction costs, but increase the 

dispersion and volatility of their transaction costs.    

An increase in adverse selection risk unambiguously increases the probability of mini-flash 

crashes. Figure 3 in Section 3 show that stub quotes are more likely to occur when there higher 

                                                           
13 This result is certainly a consequence of our simplifying assumption that BATS cannot queue for a second share. 

However, BATs should always have higher incentives to use flash limit orders when 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 contains a limit order, 
because the second share has a lower probability of executing against a non-algo trader and a higher probability of 

executing against a sniper, whereas a flash limit order always incurs a constant cost of 
𝑑𝑑
6
.  
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adverse selection risk. Conditional on stub quotes occurring, Figure 6 reveals another channel for 

adverse selection risk to increase the number of mini-flash crashes. An increase in adverse 

selection risk implies more value jumps relative to the arrival rate of non-algo traders. During an 

upward (downward) value jump, BATs’ limit orders on the bid (ask) side are all sniped and only 

stub quotes remain. If the limit orders from BATs fail to reconvene before a non-algo trader arrives, 

the market order from the non-algo trader hits the stub quote and causes a mini-flash crash.  

The proportion of BATs, 𝛽𝛽, have an ambiguous effect on the probability of flash crashes 

because of two competing effects. On the one hand, Figure 3 in Section 3 shows that a larger 𝛽𝛽 

increases the probability for stub quotes as HFTs face less liquidity demand. On the other hand, a 

larger 𝛽𝛽 decreases the probability of hitting stub quotes, because BATs never demand liquidity 

from HFTs. For example, mini-flash crashes never occur when 𝛽𝛽 = 0 or 𝛽𝛽 = 1. Therefore, mini-

flash crashes need both BATs and non-algo traders. Figure 6 shows the simulated intensity of mini-

flash crashes with respect to 𝛽𝛽. For each 𝛽𝛽, we first uniformly draw 100 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 from [1, 5], the support 

of the adverse selection risk in our paper. For each 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, we simulate the first 100,000 trades. For all 

10 million simulations, we count the number of trades that hit the stub quotes relative to the total 

number of trades.  

Figure 7 shows that mini-flash crashes are most likely to occur when 𝛽𝛽 is approximately 

0.95, and we normalize this crash intensity to 1. The black square line shows that the intensity is 

hump-shaped with respect to 𝛽𝛽. The circle line shows that majority of mini-flash crashes occur 

after a value jump. An upward value jump removes BATs’ limit orders from the ask side and a 

downward jump removes BATs’ limit orders from the bid side. If BATs’ limit orders do not 

reconvene in the LOB, a market buy (sell) order from non-algo trader would hit stub quotes. 

Therefore, most of the upward (downward) mini-flash crashes occur after an upward (downward) 
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value jump. Only a small amount of crashes are due to BATs’ liquidity being used up by non-algo 

traders. 

An effective way to prevent a mini-flash crash is a trading halt to let the trading interest of 

BATs reconvene. The triangle line in Figure 7 shows the intensity of mini-flash crashes with 

trading halts. We impose the trading halt after a value jump, and the market reopens after 10 orders 

arrive at the market. We find that such a trading halt reduces mini-flash crashes by about 90%.  

Insert Figure 7 About Here 

 

6. Predictions and policy implications  

Our model rationalizes a number of puzzles in the literature on HFTs and generates new empirical 

predictions that can be tested. In Subsection 6.1, we summarize the predictions on who supplies 

liquidity and when. In Subsection 6.2, we examine the predictions on liquidity demand. In 

Subsection 6.3, we evaluate the predictions on liquidity. In Subsection 6.4, we discuss the use of 

the cancellation ratio as the cross-sectional proxy for HFTs’ activity.   

 

6.1 Liquidity supply    

Our model shows that who provides liquidity depends on the tick size, adverse selection risk, the 

motivation of the trade, and the speed of the trade. In Prediction 1, we posit that BATs dominate 

liquidity supply when tick size is not binding.  

 

Prediction 1 (Price Priority): When tick size is not binding, Non-HFTs are more likely to 

establish price priority in liquidity supply.  
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Speed advantages in the LOB reduce HFTs’ adverse selection costs (see Jones (2013) and 

Menkveld (2016) surveys), inventory costs (Brogaard et al., 2015), and operational costs (Carrion, 

2013). These reduced costs of intermediation raise the concern that “HFTs use their speed 

advantage to crowd out liquidity supply when the tick size is small and stepping in front of standing 

limit orders is inexpensive” (Chordia et al., 2013, p. 644). However, Brogaard et al. (2015) find 

that non-HFTs quote a tighter bid-ask spread than HFTs, and Yao and Ye (2017) find that non-

HFTs are more likely to establish price priority over HFTs as the tick size decreases. We find that 

the opportunity cost of supplying liquidity can reconcile the contradiction between the empirical 

results and the channels of speed competition. BATs incur lower opportunity costs when supplying 

liquidity. When they implement a trade, they supply liquidity as long as it is less costly to demand 

liquidity. The make-take spread that we introduce in Section 4 indicates that BATs never demand 

liquidity from HFTs when tick size is not binding.  

 

Prediction 2 (Queuing): HFTs crowd out non-HFTs’ liquidity supply when tick size is binding, 

that is, when the tick size is large or adverse selection risk is low.  

 

When tick size is binding, HFTs’ speed advantage allows them to establish time priority at 

the same price. Yao and Ye (2017) find that tick size is more likely to be binding when tick size 

increases. They also find that a large tick size crowds out non-HFTs’ liquidity supply. Both results 

provide evidence to support Prediction 2. 

Hoffmann (2014), Han, Khapko, and Kyle (2014), Bernales (2016), and Bongaerts and 

Van Achter (2016) find that HFTs have lower adverse selection costs than non-HFTs. Yao and Ye 

(2017), however, find that HFTs do not have a comparative advantage in providing liquidity for 
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stocks with higher adverse selection risk. In Prediction 2, we provide the economic mechanism to 

reconcile this inconsistency. Comparing Corollary 1 with Proposition 2 and 3, we find that the tick 

size is more likely to be binding when adverse selection risk is low. A binding tick size helps HFTs 

to supply liquidity through time priority. An increase in adverse selection risk raises the break-

even bid-ask spread above one tick, allows non-HFTs to undercut HFTs, and decreases HFTs’ 

liquidity supply. 

In Prediction 3, we address who provides liquidity during a mini-flash crash. 

 

Prediction 3. (Stub Quotes and Mini-Flash Crashes): A mini-flash crash is more likely to occur 

when the adverse selection risk is high or when the tick size is small. During a mini-flash crash, 

HFTs supply liquidity and non-HFTs demand liquidity. A downward (upward) mini-flash crash is 

more likely to follow a downward (upward) value jump.  

 

A comparison of Propositions 1 and 4 shows that stub quotes are more likely to occur when 

the tick size is small. When the tick size is large, BATs cannot establish execution priority over 

HFTs. When the tick size is small, BATs can establish price priority over HFTs, which increases 

the adverse selection costs for HFTs through two channels. First, when BATs can undercut HFTs, 

they no longer demand liquidity from HFTs. HFTs then face reduced liquidity demand but the risk 

of value jump stay the same. Second, the undercutting orders by BATs reduce the execution 

priority of HFTs. In turn, HFTs’ limit orders face lower execution probability and higher sniping 

cost. When the adverse selection cost is high enough, HFTs effectively quit liquidity supply by 

quoting stub quotes. HFTs are more likely to quote stub quotes when adverse selection risk is high 

as higher adverse selection risk widens the break-even bid-ask spread; a wider break-even bid-ask 
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spread also allows BATs to undercut HFTs, which further increases the adverse selection costs for 

HFTs. Because BATs do not continuously supply liquidity in the market, non-algo traders’ market 

orders can hit stub quotes and cause mini-flash crashes. A high adverse selection risk also implies 

more value jumps relative to the arrival rate of non-HFTs. Non-algo traders’ market orders are 

more likely to hit stub quotes after value jumps, because value jumps clear BATs’ limit orders on 

the side of the jump.  

In cross-section, our model predicts that stocks with smaller tick sizes or higher adverse 

selection risk are more likely to incur mini-flash crashes. This cross-sectional pattern has not been 

tested. In time series, our model predicts that an initial downward (upward) jump increases the 

probability of a downward (upward) mini-flash crash. The downward (upward) jump clears the 

LOB on the bid (ask) side, making the market orders from non-algo traders more likely to hit stub 

quotes.  

Brogaard et al. (Forthcoming) analyze the time series pattern of mini-flash crashes. They 

show that, 20 seconds before a mini-flash crash, HFTs neither demand nor supply liquidity, 

whereas non-HFTs demand and supply the same amount of liquidity; 10 seconds before a mini-

flash crash, HFTs demand liquidity from non-HFTs; at the time of a mini-flash crash, HFTs supply 

liquidity to non-HFTs, but at a much wider bid-ask spread. The authors also find that the liquidity 

supply from the mini-flash crash is profitable. This evidence is consistent with the theoretical 

mechanism for mini-flashes crash that we document. (1) In normal times, non-HFTs dominate 

both liquidity supply and liquidity demand; (2) slightly before a mini-flash crash, HFTs demand 

liquidity and remove limit orders from BATs; (3) a mini-flash crash occurs when a non-algo 

trader’s market order hits HFTs’ stub quotes, thus HFTs profit when a mini-flash crash occurs.   

Our interpretations of mini-flash crashes are consistent with both negative and positive 
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framing of the role of HFTs in a mini-flash crash. Brogaard et al. (2017) suggest that HFTs supply 

liquidity in extreme price movements, while Ait-Sahalia and Sağlam (2017) suggest that HFTs 

withdraw liquidity supply when it is most needed. Both views, however, suggest that mini-flash 

crashes occur when the market orders of non-HFTs hit the stub quotes from HFTs. 

Our interpretation of mini-flash crashes has two additional features that are consistent with 

economic reality. First, markets recover quite quickly from mini-flash crashes. In our model, mini-

flash crashes disappear when the limit orders from BATs replenish the LOB. Second, Nanex, the 

firm that invented the concept of mini-flash crash, finds that mini-flash crashes are equally likely 

to be upward as downward. Indeed, even during the famous Flash Crash on May 6, 2010, in which 

the Dow Jones plunged 998.5 points, some stocks, including Sotheby's, Apple Inc., and Hewlett-

Packard, increased in value to over $100,000 in price (SEC, 2010). In our model, upward and 

downward mini-flash crashes are equally likely, even though downward mini-flash crashes are 

more likely to occur conditional on an initial downward value jump.   

 

6.2 Liquidity demanding   

Our model discoveries a new channel of speed competition to demand liquidity. In 

Prediction 4, we summarize the empirical implications of this new channel.  

 

Prediction 4. (Speed Competition of Taking Liquidity): Non-HFTs are more likely than HFTs 

to supply liquidity at price levels that cross the midpoint (flash limit orders). HFTs are also more 

likely to demand liquidity from flash limit orders, but they do not adversely select these orders.  

 

Latza, Marsh, and Payne (2014) find evidence consistent with Prediction 4. They classify 

https://en.wikipedia.org/wiki/Sotheby%27s
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
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a market order as “fast” if it executes against a standing limit order that is less than 50 milliseconds 

old. Because of the speed of taking liquidity, it is natural to expect that fast market orders are from 

HFTs. These authors also find that fast market orders often execute against limit orders that cross 

the midpoint, and they lead to virtually no permanent price impact.  

In Prediction 4, we offer fresh perspectives on the liquidity demand from HFTs. Typically, 

HFTs demand liquidity when they employ a speed advantage to adversely select liquidity suppliers 

(BCS; Foucault, Kozhan, and Tham, 2017; Menkveld and Zoican, 2017). Therefore, liquidity 

demand from HFTs generally has negative connotations of reducing liquidity (Jones, 2013; Biais 

and Foucault, 2014). We find that HFTs’ liquidity demand does not necessarily adversely select 

slow traders. Instead, the liquidity demand from HFTs can reduce the transaction costs of non-

HFTs. In the flash equilibrium, BATs pay 𝑑𝑑
2
 when HFTs supply liquidity, while BATs only pay 𝑑𝑑

6
 

when HFTs demand liquidity.  

 

6.3 Liquidity  

On April 5, 2012, President Barack Obama signed into law the Jumpstart Our Business Startups 

(JOBS) Act. Section 106 (b) of the Act requires the SEC to examine the effect of tick size on initial 

public offerings (IPOs). On October 3, 2016, the SEC implemented a pilot program to increase the 

tick size from one cent to five cents for 1,200 small- and mid-cap stocks. Proponents of the 

proposal argue that a larger tick size can improve liquidity (Weild, Kim, and Newport, 2012). In 

Prediction 5, however, we posit that an increase in tick size decreases liquidity.   

 

Prediction 5. A larger tick size increases the depth at the BBO, but it also increases the effective 

bid-ask spread, the transaction costs paid by liquidity demanders.  
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Yao and Ye (2017) find evidence consistent with Prediction 5. Holding the BBO constant, 

an increase in depth at the BBO implies an increase in liquidity. Yet these authors also find that 

the quoted bid-ask spread increases after an increase in tick size. When both quoted bid-ask spread 

and depth increase, the most relevant liquidity measure becomes the effective bid-ask spread, the 

transaction cost paid by liquidity demanders (Bessembinder, 2003). Our model shows that 

constrained price competition increases the effective bid-ask spread, which is consistent with Yao 

and Ye’s (2017) findings. Our model prediction, along with the evidence in Yao and Ye (2017), 

shows that an increase in tick size would not improve liquidity.   

Advocates for an increase in tick size also argue that a wider tick size increases market-

making profits, supports sell-side equity research and, eventually, increases the number of IPOs 

(Weild, Kim, and Newport, 2012). We find that a wider tick size increases market-making profits, 

but the profit belongs to traders with higher transaction speeds. Therefore, a wider tick size is more 

likely to result in an arms race in latency reduction than in sell-side equity research.  

We also find that an increase in tick size harms non-HFTs. An increase in tick size also 

does not benefit HFTs as the cost of the speed investment dissipates when larger tick size generates 

higher rents. In our model, non-HFTs trade no matter how large the bid-ask spread may be. In 

reality, a wider spread may prevent investors with low gains from trading, leading to a further 

reduction in welfare.  

An increase in tick size reduces mini-flash crashes, but it also increases the transaction 

costs for average trades. A more effective solution to prevent mini-flash crashes would be to slow 

down the market, particularly during periods of market stress. In a standard Walrasian equilibrium, 

price is continuous and time is discrete. Modern financial markets exhibit exactly the opposite 
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structure: price competition is constrained by the tick size, whereas time is divisible at the 

nanosecond level in electronic trading platforms (Gao, Yao, and Ye, 2013). Making price more 

continuous and time more discrete would improve liquidity and also prevent mini-flash crashes at 

the same time.  

 

6.4 Cancellation-to-trade ratio as a cross-sectional proxy for HFT activity  

The cancellation-to-trade ratio is widely used as a proxy for HFTs’ activities, particularly 

for HFTs’ liquidity supplying activities (Biais and Foucault, 2014). Yet Yao and Ye (2017) find 

that stocks with a higher proportion of liquidity provided by HFTs have a lower cancellation-to-

trade ratio. In Prediction 6, we offer one interpretation for this surprising negative correlation.  

 

Prediction 6. (Cancellation-to-trade Ratio). Stocks with a smaller tick size and higher adverse 

selection risk have a lower proportion of liquidity provided by HFTs relative to non-HFTs but a 

higher cancellation-to-trade ratio. 

 

A decrease in tick size decreases the proportion of liquidity provided by HFTs (Prediction 

2), but it leads to more order cancellations. Under a large tick size in our model, HFTs do not need 

to cancel their orders when non-HFTs arrive, because non-HFTs cannot establish time priority 

over HFTs. A decrease in tick size increases the potential for non-HFTs to undercut HFTs. If non-

HFTs submit flash limit orders, HFTs race to take liquidity, and the losers of the race cancel their 

orders. If non-HFTs submit regular limit orders, HFTs reduce their depth once non-HFTs undercut, 

and HFTs increase their depth once an undercutting order gets executed. These changes in depth 

lead to frequent order cancellations. We offer a new interpretation of flickering quotes. Yueshen 
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(2014) shows that flickering quotes occur when new information causes the price to move to a new 

level. We show that HFTs can cancel orders in the absence of information. Periodic order additions 

and cancellations also differ from Baruch and Glosten (2013), who rationalize flicking quotes 

using a mixed-strategy equilibrium. An increase in adverse selection risk, defined as the intensity 

of value jumps relative to the arrival rate of non-HFTs, also lead to more order cancellations, but 

HFTs also provide less liquidity for these stocks.  Taken together, we suggest that the cancellation-

to-trade ratio should not be used as a cross-sectional measure of HFTs’ activity.   

 

7. Conclusion 

In this paper, we extend BCS by adding two unique characteristics in financial markets: 

discrete tick size and algorithmic traders who are not HFTs. We discover a queuing channel of 

speed competition for liquidity supply. BATs are more likely to supply liquidity when tick size is 

small, because supplying liquidity is less costly than demanding liquidity from HFTs. A large tick 

size constrains price competition, creates rents for liquidity supply, and encourages speed 

competition to capture such rents through the time priority rule. Higher adverse selection risk 

increases the break-even bid-ask spread relative to tick size, which allows BATs to establish price 

priority over HFTs and reduces the fraction of liquidity provided by HFTs.  

We also discover a new channel of speed competition in liquidity demand.  HFTs race to 

demand liquidity from BATs when BATs post flash limit orders to buy above the fundamental 

value or to sell below the fundamental value. BATs incur lower transaction cost when HFTs 

demand liquidity than when HFTs supply liquidity. Thus, an evaluation of the welfare impact of 

HFTs should not be based solely on demand versus supply liquidity. Our results also indicate that 

the definition of providing versus demanding liquidity blurs in model electronic markets.  
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Yao and Ye (2017) find that the cancellation ratio, a widely used empirical proxy for HFTs’ 

activity, has a negative cross-sectional correlation with HFT liquidity supply. We provide a 

theoretical foundation for their surprising negative correlation. A large tick sizes induces HFTs to 

race for the top queue position, and HFTs are less likely to cancel orders once they secure this spot. 

HFTs cancel orders more frequently for stocks with smaller tick sizes, but they also supply less 

liquidity. Both theoretical and empirical evidence suggests that researchers should not apply the 

cancellation ratio as a cross-sectional proxy for HFT activity. 

We also provide new predictions to be tested. We predict that 1) non-HFTs are more likely 

than HFTs to supply liquidity at price levels that cross the midpoint, and these limit orders are 

more likely to be taken by HFTs; 2) a mini-flash crash is more likely to occur for stocks with 

smaller tick sizes and higher adverse selection risk; 3) an upward (downward) mini-flash crash is 

more likely to follow an initial price jump in the same direction.  

Our model shows that a larger tick size increases transaction cost and negatively affects 

non-HFTs. Yet HFTs do not benefit from a larger tick size as an investment in high-speed 

technology dissipates the rents created by tick size. We challenge the rationale for increasing the 

tick size to five cents, and we encourage regulators to consider decreasing tick size, particularly 

for liquid stocks.   

Our model is parsimonious. For example, BATs in our model do not have private 

information and they choose order types only upon arrival. It will be interesting to extending our 

model toward more realistic setups.  Most studies in the finance literature ignore diversity among 

algorithms traders. We take the initial step to examine algorithmic traders who are not HFTs, and 

we believe that further examination on the relationship between HFTs and other algorithmic 

traders would prove to be fruitful. 
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Appendix 

Proof for Lemma 1  

For the 𝑄𝑄𝑡𝑡ℎ share in the queue at the half bid-ask spread 𝑠𝑠
2
, we define its value for the liquidity 

supplier as 𝐿𝐿𝐿𝐿𝑠𝑠/2(𝑄𝑄) and its value for each sniper as 𝑆𝑆𝑆𝑆𝑠𝑠/2(𝑄𝑄). In all proofs, we drop the subscript 

if 𝑠𝑠
2

= 𝑑𝑑
2
. HFTs race to supply liquidity for the first share at ± 𝑑𝑑

2
 iff 𝐿𝐿𝐿𝐿(1) > 𝑆𝑆𝑆𝑆(1).  

We consider the first share on the ask side in the proof, and the race on the bid side follows 

symmetrically. When tick size in binding, both BATs and non-algo traders demand liquidity, so we 

use non-HFTs to refer to both in the proofs of Lemma 1 and Proposition 1. A non-HFT seller does 

not change the state of the LOB; an non-HFT buyer, who arrives with probability 
1
2𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽
 provides a 

profit of 𝑑𝑑
2
 to HFT liquidity supplier; fundamental value jumps up with probability 

1
2𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 and costs 

an HFT firm 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

; fundamental value jumps down with probability 
1
2𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

, which reduces the value 

of the current queue position to 0. Therefore:  

𝐿𝐿𝐿𝐿(1) =
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2

+
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(1) −

1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

+
1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
∙ 0 

𝐿𝐿𝐿𝐿(1) = 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
− 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

. 

Each sniper has a probability of 1
𝑁𝑁

 to snipe the stale quote after an upward value jump. A successful 

sniping leads to a profit of 𝑑𝑑
2
, so:  

𝑆𝑆𝑆𝑆(1) =
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2

1
𝑁𝑁

 

𝐿𝐿𝐿𝐿(1) > 𝑆𝑆𝑆𝑆(1)
 
⇔

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

>  
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2

1
𝑁𝑁
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𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1 

Therefore, the tick size is binding at 𝑑𝑑
2
 if 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 1. ■ 

Proof for Lemma 2 

We prove Lemma 2 using mathematical induction. 

1. From the proof for Lemma 1, 

𝐿𝐿𝐿𝐿(1) =
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2
−

1
2

[1 −
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
]
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

, 

which satisfies equation (3). 

2. Suppose that equation (3) holds for some 𝑄𝑄 ∈ ℕ+. The following proof shows that it holds for 

𝑄𝑄 + 1 ∈ ℕ+ as well. 

𝐿𝐿𝐿𝐿(𝑄𝑄 + 1) =
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(Q) +

1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(𝑄𝑄 + 1) −

1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

+
1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
∙ 0 

 𝐿𝐿𝐿𝐿(Q + 1)  =  𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(Q)− 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

= � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1 𝑑𝑑

2
− 1

2 �
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
− � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄+1

� 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

= � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1 𝑑𝑑

2
− 1

2 [1− � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1

] 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

. 

Thus, equation (3) holds with 𝑄𝑄 replaced by 𝑄𝑄 + 1. Hence equation (3) holds for all Q ∈

ℕ+. ■ 

 

Proof of Proposition 2 

BATs use flash limit orders when regular limit orders are more costly. We start the proof by finding 

the boundary between the flash equilibrium and the undercutting equilibrium. 
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In an undercutting equilibrium, a BAT submits a limit order to an empty LOB (0,0) and 

changes the state to (1,0); a BAT submits a limit order to (0,1) and changes the state to (1,1). We 

denote the cost for the first case as 𝐶𝐶(1,0) and the cost for the second case as 𝐶𝐶(1,1). Then  

�
𝐶𝐶(1,0) = 𝑝𝑝1 ∙ 𝐶𝐶(1,1) + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−

𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0)

𝐶𝐶(1,1) = 𝑝𝑝1(−𝑑𝑑
6

) + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−
𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0)
         (A.1) 

Insert Figure A.1 about Here 

In equation (A.1) and Figure A.1, we describe six event types that can change the LOB in 

an undercutting equilibrium. Consider 𝐶𝐶(1,0) on the ask side. A BAT buyer and a BAT seller each 

arrive each with probability 𝑝𝑝1. A BAT buyer posts a limit order on the bid side and changes the 

state to 𝐶𝐶(1,1); a BAT seller uses a flash limit order so the state remains at 𝐶𝐶(1,0). A non-algo 

buyer and a non-algo seller arrive each with probability 𝑝𝑝2. The BAT seller enjoys a negative 

transaction cost of −𝑑𝑑
6
 when the non-algo buyer takes his liquidity; the non-algo seller hits a HFT’s 

quote on the bid side and does not change the state on the ask side. Upward and downward value 

jumps occur with probability  𝑝𝑝3 . An upward jump leads to a sniping cost of 5𝑑𝑑
6

, whereas a 

downward jump does not change the state of the LOB.14 𝐶𝐶(1,1) differs in two ways from 𝐶𝐶(1,0). 

First, the arrival of a BAT buyer leads to execution of a sell limit order from a BAT.15 Second, a 

downward jump under 𝐶𝐶(1,1) leads to sniping on the opposite side of the LOB and changes the 

state to 𝐶𝐶(1,0). 

If an undercutting order gets immediate execution, the cost −𝑑𝑑
6
. 𝐶𝐶(1,1) must be greater 

                                                           
14 Here we assume that BATs position their order one tick above the new fundamental value. BATs are able to 
reposition their orders because they face no competition from other BATs in a short time period. 
15 The execution of this order results from our assumption that BATs do not queue after another limit order at the same 
price, but the intuition that a longer queue on the bid side increases the execution probability on the ask side holds 
true generally (Parlour, 1998). 
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than −𝑑𝑑
6
 because of the cost of being sniped. Therefore, 𝐶𝐶(1,0) − 𝐶𝐶(1,1) = 𝑝𝑝1 �𝐶𝐶(1,1) + 𝑑𝑑

6
� > 0. 

Intuitively, if a BAT chooses to post a sell limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 on an empty LOB, he must post a 

sell limit order when the bid side has a limit order posed by a BAT, because the existence of a 

limit order on the bid side increases the execution probability for a limit order on the ask side. Note 

that our model starts with no limit orders from BATs, so 𝐶𝐶(1,0) < 𝑑𝑑
6
 is needed to jumpstart the 

undercutting equilibrium.  

The solution for equation (A.1) is:  

𝐶𝐶(1,1) =  
(−2 + 𝛽𝛽)𝜆𝜆𝐼𝐼 + 10𝜆𝜆𝐽𝐽

(2 − 𝛽𝛽)𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

=
(−2 + 𝛽𝛽)𝑅𝑅 + 10

(2 − 𝛽𝛽)𝑅𝑅 + 2
d
6

 

𝐶𝐶(1,0) =
𝑑𝑑
6

[ 
𝛽𝛽𝛽𝛽
𝑅𝑅 + 1

∙
(−2 + 𝛽𝛽)𝑅𝑅 + 10

(2− 𝛽𝛽)𝑅𝑅 + 2
+

5 − (1 − 𝛽𝛽)𝑅𝑅
𝑅𝑅 + 1

] 

𝐶𝐶(1,0) < 𝑑𝑑
6
 iff 𝛽𝛽𝛽𝛽

𝑅𝑅+1
∙ (−2+𝛽𝛽)𝑅𝑅+10

(2−𝛽𝛽)𝑅𝑅+2
+ 5−(1−𝛽𝛽)𝑅𝑅

𝑅𝑅+1
< 1, i.e.,  

(2 − β)R2 + (−2− 4β)𝑅𝑅 − 4 > 0. 

Equation (2 − β)𝑅𝑅2 + (−2 − 4β)𝑅𝑅 − 4 = 0 has two roots: 𝑅𝑅1,2 = 1+2β±�4β2+9
2−β

,  

𝑅𝑅2 < 0, R1 = 1+2β+�4β2+9
2−β

. 

So BATs choose to undercut when 𝑅𝑅 > 𝑅𝑅1, because 𝐶𝐶(1,0) < d
6
; BATs choose to flash 

when 𝑅𝑅 < 𝑅𝑅1. 

Above is the boundary between undercutting equilibrium and flash equilibrium. On both 

sides of the boundary, we let a BAT buyer (seller) use limit order to respond to the other side’s 

limit order. Such a response is both rational and necessary. It is rational because 𝐶𝐶(1,1) <

𝐶𝐶(1,0) = 𝑑𝑑
6
, thus a limit order response, which costs 𝐶𝐶(1,1), is strictly better than flash order. It is 

necessary because otherwise all BATs buyers (sellers) will still use flash orders when off-
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equilibrium sell (buy) order is present 16 . The off-equilibrium sell (buy) order will have an 

execution cost as follows: 

𝐶𝐶(1,0) = 𝑝𝑝1 �−
𝑑𝑑
6
� + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−

𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0) 

𝐶𝐶(1,0) =
𝑑𝑑
6

5 − 𝑅𝑅
1 + 𝑅𝑅

 

𝐶𝐶(1,0) <
𝑑𝑑
6

  
 
⇔   𝑅𝑅 > 2 

Thus, undercutting is an optimal deviation when 1+2β+�4β
2+9

2−β
> 𝑅𝑅 > 2. The existence of 

deviation proves that, in the 𝑅𝑅 > 2 region of flash equilibrium, BATs should use limit orders to 

respond to the other side’s off-equilibrium undercutting order, otherwise the off-equilibrium 

undercutting order will become a profitable deviation. 

However, in the 𝑅𝑅 < 2  region of flash equilibrium, BATs should use flash orders to 

respond to the other side’s off-equilibrium undercutting order, because the cost of limit order 

response, 𝐶𝐶(1,1), is larger than 𝑑𝑑
6
. On the other hand, even if other BATs use flash orders, the 

deviator is still not profiting.  

In other words, regardless of whether 𝑅𝑅 > 2 or 𝑅𝑅 < 2, the equilibrium outcome is the same, 

but BATs need to use different rational strategies in off-equilibrium paths to eliminate profitable 

deviations, thus these deviations will never appear under equilibrium.  

                                                           
16 In flash equilibrium, any BAT’s undercutting limit order is off-equilibrium. 
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To sum up, the complete strategy (including the optimal response to off-equilibrium paths) of a 

BATs seller under flash equilibrium is: 

1. If 2 < 𝑅𝑅 < 1+2β+�4β2+9
2−β

, use limit order under off-equilibrium path: 

i> If there is no order at −𝑑𝑑
6
, submit a limit sell order at −𝑑𝑑

6
. 

ii> Else, submit a limit sell order at 𝑑𝑑
6
. 

2. If 𝑅𝑅 < 2, use flash order under off-equilibrium path: 

i> Submit a limit sell order at −𝑑𝑑
6
 regardless of state of the book. 

BATs buyer’s strategy is symmetric. These strategies will generate the equilibrium outcome 

sketched in proposition 2.  

Predictions on depth and HFT participation follow the proof of Proposition 1. ■ 

 

Proof of Proposition 3 

1. In Proposition 2, we address the boundary between the flash equilibrium and the undercutting 

equilibrium. 

2. The solution for HFT depth follows from Figure 5 and equation (14). The depth decreases 

because the revenue from liquidity supply for HFTs decreases. BATs never take HFTs’ 

liquidity at 𝑑𝑑
2
, and BATs can also supply liquidity to non-algo traders. The decreased revenue 

for HFTs also reduces their entry.  

3. Equation (14) can be solved for any 𝑅𝑅 and 𝛽𝛽. Here we give an example for 𝑅𝑅 = 4 and 𝛽𝛽 = 0.1. 

First, we assume that all 𝐷𝐷(𝑖𝑖,𝑗𝑗)(1) > 0. Thus we solve: 
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𝐷𝐷(0,0)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2 ∙
𝑑𝑑
2

+ 𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,0)(1) = 𝑝𝑝1𝐷𝐷(1,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(1,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(0,1)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,1)(1)+𝑝𝑝2 ∙
𝑑𝑑
2

+ 𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,1)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(1,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

 

We then obtain: 

𝐷𝐷(0,0)(1)

=
8 + 12𝑅𝑅 + 12β𝑅𝑅 − 4𝑅𝑅2 + 24β𝑅𝑅2 + 2β2𝑅𝑅2 − 12𝑅𝑅3 + 21β𝑅𝑅3 − 2β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.2202, 

𝐷𝐷(1,0)(1)

=
8 + 24𝑅𝑅 + 20𝑅𝑅2 + 6β𝑅𝑅2 − 4β2𝑅𝑅2 + 12β𝑅𝑅3 − 5β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.0527, 

𝐷𝐷(0,1)(1) = 8+12𝑅𝑅+12β𝑅𝑅−4𝑅𝑅2+24β𝑅𝑅2+2β2𝑅𝑅2−12𝑅𝑅3+21β𝑅𝑅3−5β2𝑅𝑅3+2β3𝑅𝑅3−4𝑅𝑅4+7β𝑅𝑅4−4β2𝑅𝑅4+β3𝑅𝑅4

2(−16−48𝑅𝑅−52𝑅𝑅2+12β𝑅𝑅2−4β2𝑅𝑅2−24𝑅𝑅3+18β𝑅𝑅3−8β2𝑅𝑅3+2β3𝑅𝑅3−4𝑅𝑅4+7β𝑅𝑅4−4β2𝑅𝑅4+β3𝑅𝑅4) = 0.2205,  

𝐷𝐷(1,1)(1)

=
8 + 24𝑅𝑅 + 20𝑅𝑅2 + 2β2𝑅𝑅2 + 6β𝑅𝑅3 + β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.0593. 

𝐷𝐷(𝑖𝑖,𝑗𝑗)(1) > 0 is satisfied. Therefore, the depth is at least one share in any state of the LOB.  

  Then we assume all 𝐷𝐷(𝑖𝑖,𝑗𝑗)(2) > 0. Thus, we solve: 
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𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,0)(2) = 𝑝𝑝1𝐷𝐷(1,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷0,0(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷(0,1)(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

 

We get:  

𝐷𝐷(0,0)(2) = 0.0448, 

𝐷𝐷(1,0)(2) = −0.0602 < 0, 

𝐷𝐷(0,1)(2) =  0.0451, 

𝐷𝐷(1,1)(2) = −0.0561 < 0.17 

We reject the assumption that all 𝐷𝐷(2) > 0. Therefore, under certain states of the LOB, 

HFTs would not supply the second share of liquidity. We start from the worst state for liquidity 

suppliers, (1,0), in which a BAT undercuts HFTs on the same side of the LOB, but no BAT 

undercuts HFTs on the other side of LOB.18 Therefore, 𝐷𝐷(1,0)(2) = 0 and all other 𝐷𝐷(𝑖𝑖,𝑗𝑗)(2) > 0. 

Thus we solve: 

𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(1,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

                                                           
17 For briefness, the closed-form solution is not presented, but it is available upon request.  
18 In this state, an HFT liquidity supplier on the ask side cannot trade with the next non-HFT buyer, because a BAT 
buyer chooses to supply liquidity and changes the state to (1,1), and a non-algo buyer chooses to take the BAT 
seller’s liquidity and changes the state to (0,0). 
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We obtain: 

𝐷𝐷(0,0)(2) = 0.0475 

𝐷𝐷(0,1)(2) = 0.0487 

𝐷𝐷(1,1)(2) = −0.0310. 

However, 𝐷𝐷(1,1)(2) is still smaller than 0. We further assume that 𝐷𝐷(1,1)(2) is also 0, i.e., 

HFTs cancel the second order when BATs submit limit orders on both sides. Therefore,  

𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1 ∙ 0+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1 ∙ 0+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

We obtain: 

𝐷𝐷(0,0)(2) = 0.0488 

𝐷𝐷(0,1)(2) = 0.0489. 

Further calculation shows 𝐷𝐷(0,0)(3) = 0,𝐷𝐷(0,1)(3) = 0. We then conclude that 𝑄𝑄(0,0) =

𝑄𝑄(0,1) = 2 and 𝑄𝑄(1,0) = 𝑄𝑄(1,1) = 1 is the solution for equation (14) under R=4 and β=0.1. ■ 

 

Proof of Proposition 4 

HFTs do not compete to supply liquidity at 5𝑑𝑑
6

 when:  

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) < 𝑆𝑆𝑆𝑆5𝑑𝑑
6

(1) 

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) = 𝑝𝑝1 ∙ 𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) + 𝑝𝑝1 ∙ 0 + 𝑝𝑝2 ∙
5𝑑𝑑
6

+ 𝑝𝑝2 ∙ 𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) − 𝑝𝑝3
𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

+ 𝑝𝑝3 ∙ 0 

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) =
(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

5𝑑𝑑
6
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

 

𝑆𝑆𝑃𝑃5𝑑𝑑
6

(1) =
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

1
𝑁𝑁
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∴  
(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

5𝑑𝑑
6
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

<  
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

1
𝑁𝑁

 

𝑅𝑅 <  
1

5(1 − 𝛽𝛽).  

Thus, HFTs supply liquidity at 7𝑑𝑑
6

. WOLOG, we consider a BATs seller’s strategy. The 

complete strategy (including the optimal response to off-equilibrium paths, see proof of 

proposition 2) of a BAT seller is: 

1. If there is no limit sell order on 𝑑𝑑
6

, 𝑑𝑑
2

, 𝑎𝑎𝑎𝑎𝑎𝑎 5𝑑𝑑
6

, submit a limit sell order at 5𝑑𝑑
6

. 

2. Else, if there is no limit buy order on −𝑑𝑑
6
, submit a limit sell order at −𝑑𝑑

6
. 

3. Else, there is a limit buy order on −𝑑𝑑
6
 (this is an off-equilibrium path, there are two possible 

responses, same intuition as the proof of proposition 2) 

i> If 𝑅𝑅 > 2, submit a limit sell order at 𝑑𝑑
6
, costs 𝐶𝐶(1,1). 

ii> Else, submit a limit sell order at −𝑑𝑑
6
, costs 𝑑𝑑

6
. 

If all BATs follow this strategy, no limit sell (buy) order will be present at 𝑑𝑑
2
 (−𝑑𝑑

2
) or 𝑑𝑑

6
 

(−𝑑𝑑
6
). We show that a deviator will suffer a higher execution cost. 

Firstly, a BAT seller will not post a limit sell order at 𝑑𝑑
2
, because only a non-algo buy order 

will trade with this seller. The seller’s execution cost is: 

𝐶𝐶 = 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝2 �−
𝑑𝑑
2
� + 𝑝𝑝2 ∙ 𝐶𝐶 + 𝑝𝑝3 ∙

𝑑𝑑
2

+ 𝑝𝑝3 ∙ 𝐶𝐶 

𝐶𝐶 = 𝑑𝑑
2
∙ −(1−𝛽𝛽)𝑅𝑅+1

(1−𝛽𝛽)𝑅𝑅+1
. 
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Since in flash crash equilibrium 𝑅𝑅(1 − 𝛽𝛽) < 1
5
, the BAT’s cost is at least 𝑑𝑑

2
∙ 4/5
6/5

= 𝑑𝑑
3

> 𝑑𝑑
6

=

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. Thus, it is never optimal to submit a limit order at 𝑑𝑑
2
. 

Secondly, the BAT seller will not post a limit sell order at 𝑑𝑑
6
. In this case, non-algo traders 

and other BAT buyers might trade with the seller: the non-algo trader will execute a buy order and 

a BAT will execute a flash buy order (when he cannot or finds not optimal to post a limit buy order 

at −𝑑𝑑
6

). The intuition is similar with formula (A.1) and Figure. A.1, but in the flash crash 

equilibrium, the BAT seller faces equal or higher costs than in an undercutting equilibrium: The 

BATs buyer does not have to post a limit buy order in a flash crash equilibrium. The solution of 

formula (A.1) is:  

𝑅𝑅1 = 1+2𝛽𝛽+�4𝛽𝛽2+9
2−𝛽𝛽

. 

However, there is no combination of (𝑅𝑅,𝛽𝛽) in the flash crash equilibrium that satisfies 𝑅𝑅 >

𝑅𝑅1. 

Finally, the BAT seller will post a sell limit order at 5𝑑𝑑
6

. Her cost is: 

𝐶𝐶 = 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝2 �−
5𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶 + 𝑝𝑝3 ∙

𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶 

𝐶𝐶 = 𝑑𝑑
6
−5(1−𝛽𝛽)𝑅𝑅+1
5(1−𝛽𝛽)𝑅𝑅+1

< 𝑑𝑑
6

. ■ 
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Figure 1: Pricing Grid under Large vs. Small Tick Sizes  
This figure demonstrates the pricing grids under a large tick size 𝑑𝑑 and a small tick size 𝑑𝑑

3
. The fundamental 

value of the asset is 𝑣𝑣𝑡𝑡.  
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Figure 2: Depth and the Adverse Selection Risk under a Binding Tick Size  
This figure demonstrates the relation between 𝑄𝑄, the depth at the BBO, and 𝑅𝑅 = 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
 under a binding tick 

size. An increase in the investor arrival rate (𝜆𝜆𝐼𝐼), or a decrease in intensity of jumps (𝜆𝜆𝐽𝐽), decreases the 
adverse selection risk and increases the depth. The solid line represents the depth under tick size 𝑑𝑑 and the 
dashed line represents the depth under tick size 𝑑𝑑

3
.  
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Figure 3: Bid-ask Spread Quoted by HFTs under a Small Tick Size    
This figure demonstrates the half bid-ask spread quoted by HFTs as a function of 𝛽𝛽 (the fraction of BATs) 
and 𝑅𝑅 ≡ 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
 (the arrival intensity of non-HFTs relative to the value jump, a measure of adverse selection 

risk). When 𝑅𝑅 ≥ 5, adverse selection risk is low and the tick size is binding. HFTs quote a half bid-ask 
spread 𝑑𝑑

6
 and the spread is independent of the fraction of BATs. When 𝑅𝑅 < 5, HFTs’ quoted bid-ask spreads 

weakly increase with the fraction of BATs and adverse selection risk. 
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Figure 4: The Undercutting and the Flash Trading Equilibrium 

This figure demonstrates two types of equilibrium, undercutting equilibrium and flash equilibrium, when 
HFTs’ ask price is at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

2
 and their bid price is at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
. In the undercutting equilibrium, BATs place 

limit buys at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
 and limit sells at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
. These limit orders undercut the BBO by one tick and establish 

price priority in the LOB. In the flash equilibrium, BATs place limit buys at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 and limit sells at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
. 

These orders cross the midpoint and immediately attract market orders from HFTs. BATs are more likely 
to cross the midpoint when the fraction of BATs (𝛽𝛽) is high or when the arrival intensity of non-HFTs 
relative to a value jump (𝑅𝑅 ≡ 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
) is low, because a high 𝛽𝛽 and a low 𝑅𝑅 reduce the potential for a limit order 

executing with non-HFTs before a value jump. To jumpstart an undercutting equilibrium, the expected 
transaction cost for a limit order that undercuts one tick must be lower than 𝑑𝑑

6
. The short-dashed line, 

𝐶𝐶(1,0) = 𝑑𝑑
6
, illustrates the boundary for such a condition. 
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Figure 5: States and Profits for HFT Liquidity Suppliers with the 𝑸𝑸𝒕𝒕𝒕𝒕 Position on the Ask Side 

This figure illustrates the dynamics of HFT queuing on 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
. In state (i, j), the number of undercutting 

BAT orders on the ask side is i, while the number on the bid side is j. BB and BS represent the arrival of 
BATs’ buy and sell limit orders, NB and NS represent the arrival of non-algo traders’ buy and sell market 
orders, and UJ and DJ denote the upward and downward value jumps. The number next to the event is the 
immediate payoff of the event.  

 

  



59 
 

Figure 6: Value of Liquidity Supply and Stale-Queue Sniping and Queue Length 

The x-axis is the value of HFT liquidity supply (LP) and stale-queue sniping (SN) for the four states of the 
LOB. In 𝑄𝑄(0,0), no BATs undercut HFTs in the LOB. In 𝑄𝑄(1,0), BATs undercut HFTs on the same side 
of the book. In 𝑄𝑄(0,1), BATs undercut HFTs on the opposite side of the book. In 𝑄𝑄(1,1), BATs undercut 
both sides of the book. LP decreases in the queue position, while SN increases in the queue position. HFTs 
supply liquidity as long as LP > SN. 
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Figure 7. Flash Crash Intensity 

This figure shows the intensity of mini-flash crashes with respect to the fraction of BATs. We normalize 
the highest intensity as 1. For each 𝛽𝛽, we uniformly draw 100 samples from [1,5] as 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
, which is the support 

of the adverse selection risk in our paper. For each 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, we simulate 100,000 trades. For all these 10 million 

simulations, we count the number of trades hitting the stub quotes relative to the total number of trades. 
The line with squares shows the intensity for total crashes. The line with circles shows that the majority of 
mini-flash crashes occur after a value jump (and a small fraction of crashes occur after BATs’ liquidity 
being consumed by non-algos). The line with triangles shows that trading halts reduce the number of mini-
flash crashes. We impose trading halts after each value jump, and the market reopens when the market 
receives 10 orders.   
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Figure A.1: States and Profits for BATs on the Ask Side  

This figure illustrates the dynamics of the BAT seller who posts a limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
. State (i, j) implies 

the number of BAT orders on the ask and bid sides if the BAT seller add a regular limit order. BB and BS 
imply the arrival of BAT buy and sell orders, respectively. NB and NS are arrivals of non-algo buy and sell 
orders, respectively, while UJ and DJ are upward and downward jumps, respectively. For example, 
submitting a sell limit order to an empty LOB leads to state (1,0), and the exepceted cost for the limit order 
is 𝐶𝐶(1,0). If a BAT submits a limit order when a limit order already exists on the opposite side of the LOB, 
the state after submission is (1,1) and the cost is 𝐶𝐶(1,1).  
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1 Introduction

Heightened counterparty risk during the great recession has led policymakers to mandate

central counterparties (CCPs) in the over-the-counter (OTC) derivatives markets. Through

a process called novation, after a trade is established between two parties, the contractual

obligations are replaced by equivalent positions between the two original parties and the

clearinghouse. In the event of one party’s default, the original counterparty is insulated

from losses as his contractual position is now with the clearinghouse. In this respect, the

clearinghouse is referred to as a central counterparty (CCP); see also Pirrong (2011) for a

comprehensive review of clearinghouse functioning mechanisms. Both the Dodd-Frank Wall

Street Reform Act in the United States and the European Market Infrastructure Regulation

in Europe mandate the central clearing of all standardized OTC derivatives contracts. The

class of products being centrally cleared is rising steadily—around 80% of all interest rate and

credit derivatives in the United States are now centrally cleared (Financial Stability Board

Report, 2015).

There is, however, still considerable debate over the optimal design of clearinghouse ar-

rangements (see, e.g., Dudley, 2014, and Economist, 2014). One aspect of the arrangements

is that members are required to contribute to a loss-mutualizing default fund. Currently, the

required contribution by each member is such that the default fund is sufficient to cover the

liquidation costs of two defaulting members, the “Cover II” rule.1 The default loss of an insti-

tution that exceeds its initial margins and its default fund contribution are absorbed by the

CCP equity capital and the default fund contributions of the surviving members. Typically,

the CCP’s equity capital is the first to absorb losses. Residual losses are then allocated to

surviving members on a pro-rata basis.2

1CPSS-IOSCO regulatory guidelines require CCPs to maintain a default fund sufficient to cover the liq-
uidation costs caused by the default of two members, in extreme yet plausible market scenarios. The recent
European Market Infrastructure Regulation requires each CCP to cover the default of the clearing member
to which it has the largest exposure, or of the second and third largest clearing members if the sum of their
exposures is larger.

2There is not yet a universally agreed upon loss allocation rule. Ice Clear Credit, the leading US CDS
clearinghouse, distributes losses to non-defaulting clearing members on a pro-rata basis for cleared futures and
options contracts (see ICE, 2016). Similarly, for cleared credit default swaps, it allocates losses among members
on a pro-rata basis corresponding to the uncollateralized stress losses of each individual member.

1



In this paper, we study the optimal design of the default fund contributions. First, we show

that the loss-mutualization arrangement by the CCPs is intrinsically vulnerable: While the

default funds allow members to share risk ex post, an inherent externality induces members

to take excessive risk ex-ante. Second, we show that the excessive risk-taking behavior can

be mitigated by regulating the amount in the default fund. Thirdly, we design a default fund

level that trades off ex post risk-sharing with ex-ante risk-shifting, thus providing regulators

an optimal cover rule for default fund collection. In particular, we show that as the number of

clearing members grows large, the optimal default fund should be designed to cover the default

costs of a fixed fraction of the members rather than a fixed number of clearing members, as

is done, for instance, in the currently implemented “Cover II” rule.

The economic forces under the loss-mutualization arrangement work as follows. Under the

pro-rata rule, CCPs redistribute counterparty risk through mutualization among all members.

This achieves ex post risk-sharing. However, this risk-sharing benefit comes with a flip side.

Sharing the common pool of default funds creates a dependency among members. When

members can choose to take excessive risk, a typical negative externality arises. Notably, the

size of the default fund contribution directly determines the extent of the externality: While

a lower default fund reduces the opportunity costs of the members, it leads to larger negative

externalities among members, reducing total welfare through excessive risk-taking. As such,

a regulator faces a tradeoff in collecting default fund contributions between (1) reducing the

counterparty risk of clearing members and (2) generating excessive risk taking. We study this

tradeoff and identify the right balance in designing the clearinghouse default funds. To the

best of our knowledge, our study is the first to address this mechanism.

We develop a game-theoretical model to study the optimal design of default funds. In the

model, a regulator decides what the size of the default fund contribution should be in order to

maximize social welfare, defined as the aggregate value of clearing members and CCP. Given

the required default fund amount, members of the clearinghouse decide on the riskiness of the

undertaken projects. More specifically, each clearing member maximizes its expected total

utility, taking into account the costs the member incurs to absorb losses generated by other

2



members’ defaults. Thus the strategic interaction between the regulator and its members is

modeled through a Stackelberg game with a coordination problem, in which the regulator is

the leader and the members of the CCP are the followers.

Using the model, we study the positive and normative implications of default fund require-

ments. Our positive analysis focuses on the social welfare implications of the “Cover II” rule.3

We show that a collective default fund under the “Cover II” rule might lead to moral hazard

problems by reducing the incentives of a clearing member to avoid default. A member may

decide to engage in excessively risky activities because the cost of its own default would be

jointly borne by the other participants through their default fund contributions. This gener-

ates an inefficiency, especially in the setting of central clearing where mitigating systemic risk

is critical. From a normative perspective, our results shed light on the optimal cover number

for the default fund rule—i.e., the one that is most socially desirable. We illustrate that,

under some circumstances, the inefficiency could be mitigated if the regulator were allowed to

decide the size of the contribution by the clearing members to the default fund. By regulating

the design of default funds, the regulator can give members an incentive to take less risk,

hence improving social welfare.

A major novelty of our study is to analytically derive an optimal default fund level. Our

model predicts that, as the number of clearing members increases, the optimal default fund

level converges to a fixed fraction of the default cost, provided that the opportunity cost of

default fund is not too high. In this case, it is socially optimal to mandate a default fund

sufficiently high to cover a proportion of the members in the network. The Pareto dominating

equilibrium associated with this default fund level prescribes that all members behave safely;

i.e., they run away from the externality imposed by the risk-taking activities of the others.

To the extent that the opportunity cost of default fund is associated with the cost of funding

the collateral position and thus with the prevailing interest rates, our model predicts that

default fund levels should be higher than those prescribed by the Cover II rule in the current

3The CPSS-IOSCO’s Principles for Financial Market Infrastructures (PFMI) published in 2012 state that
CCPs should maintain financial resources to cover the default of two participants that would potentially cause
the largest aggregate credit exposure for the CCP, in extreme but plausible market conditions.

3



low interest rate environment. Our results are in line with ISDA (2013), which shows that

default fund levels are quite conservative for their sample, and that on average less than 20%

of the default funds are used to cover defaults that occur under stressed scenarios.

Our results support the Cover II rule when the costs of funding collateral are high. In

this case, the socially optimal choice is to require members to contribute a lower amount to

the default fund. Such an action induces members to engage in risky activities, resulting in

a higher expected number of defaults than what could be covered by the members’ default

fund levels. Hence, our analysis suggests that the Cover II rule should be viewed in a different

perspective: it is optimal when funding illiquidity (associated with marginal opportunity costs

of default fund) is so high that it becomes socially preferable to induce a higher number of

defaults in the system, than to subject members to the very high costs of raising collateral.

The paper proceeds as follows. Section 2 reviews the literature. Section 3 introduces the

baseline model with binary risk and demonstrates members’ incentives for excess risk-taking.

Section 4 analyzes the game between the regulator and the clearing members; we demonstrate

that although members’ risk-taking is unobservable, it can be supervised when the regulator

strategically chooses the default fund contribution. Section 5 generalizes the environment to

the case of continuous risk choice and compares the social benefit and cost of increasing the

size of the default fund. Section 6 concludes. Proofs of technical results are in the Appendix.

2 Literature Review

Our main contribution to the literature on clearinghouses is to develop a tractable model

that delivers explicit “Cover type” rules, accounting for the main economic forces at play—

i.e., default costs, opportunity costs of posting collateral, and the risk-return trade-offs of the

investments. These rules can be readily employed by clearinghouse supervising authorities

to perform macro-stress testing, and compared with the currently employed Cover II rule.

To the best of our knowledge, our study is the first to theoretically investigate the design of

collateral resources further down the waterfall, namely the default levels.
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Following the Dodd-Frank mandatory clearing for standardized OTC derivatives, several

studies have analyzed the extent to which central clearing reduces counterparty credit risk.

The seminal paper by Duffie and Zhu (2011) shows that netting benefits exist only if a clear-

inghouse nets across different asset classes, while counterparty credit risk may arise if the

clearing process is fragmented across multiple clearinghouses. These predictions are empir-

ically confirmed by Duffie, Scheicher, and Vuillemey (2015) using bilateral exposures data

from the credit default swap market.4 Biais, Heider, and Hoerova (2016) study how hedging

with derivatives can introduce moral hazard originating from the fact that the trading coun-

terparties neglect risk management. They show that margin calls can be optimally designed

to mitigate the moral hazard problem thereby enhancing risk-sharing. While these studies

consider initial margins—i.e. collateral resources designed to absorb the losses of an individ-

ual member—our paper focuses on the optimal degree of risk-sharing for the determination

of default fund requirements.

Other studies have analyzed the risk-management implications of transparency introduced

by a central clearinghouse. Acharya and Bisin (2014) illustrate one type of counterparty ex-

ternality arising from the lack of portfolio transparency in OTC markets and show that it

can be corrected if trades are centrally cleared. Zawadowski (2013) shows that the estab-

lishment of a clearinghouse can improve efficiency as it effectively forces banks to contribute

ex-ante to bail-out defaulting counterparties, thus reducing the hedging losses of a bank. In

his model, defaults are caused by informational effects that induce runs on banks if they have

experienced hedging losses. Antinolfi, Carapella, and Carli (2016) show that central clearing

can be socially inefficient because loss-mutualization may weaken the incentives to acquire

and reveal information about counterparty risk, whereas bilateral trading typically encour-

ages assessment of counterparty risk. Different from these works, we consider a symmetric

information model and highlight a different form of inefficiency due to loss mutualization.

Like Zawadowski (2013), we show that default fund requirement is a tool that can be used

to correct for inefficiency; unlike him, however, we find that the domino effects of defaults

4Loon and Zhong (2014) and Bernstein, Hughson, and Weidenmier (2014) both find evidence consistent
with central clearing reducing counterparty risk, using CDS spreads data and historical data, respectively.
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plays the prominent role, and the inefficiency is corrected by balancing the benefits of ex-post

risk-sharing with the costs of ex-ante risk-shifting.

Our paper contributes to a nascent literature focusing on default fund requirements.

Menkveld (2017) analyzes systemic liquidation within a crowded trades setting and sets the

default fund as the minimum level of funds needed to cover default losses in extreme yet

plausible conditions. Ghamami and Glasserman (2017) provide a calibration framework and

show that lower default fund requirements reduce the cost of clearing but make CCPs less

resilient. While these studies follow risk-measure based rules to determine default funds, the

latter are endogenously determined in our model. Other studies focus on the default fund

design explicitly. Amini, Filipović, and Minca (2015) analyze systemic risk under central

clearing in an Eisenberg-Noe type clearing network, and propose an alternative structure for

a default fund to reduce liquidation costs. In contrast, we solve for the optimal default fund in

a symmetric equilibrium setting, taking members’ incentives into account. Capponi, Cheng,

and Sethuraman (2017) analyze the incentives behind the determination of default fund and

clearinghouse equity in the default waterfall structure. In their model, the mass of safe and

risky members is exogenously specified, and their objective is to study the optimal balance

of equity and default fund requirements from the clearinghouse point of view. In our model,

members instead endogenously choose the risk profile, and we focus on the socially optimal

cover rule.

In emphasizing an intrinsic vulnerability from loss mutualization, our paper joins the

literature that highlights various aspects of inefficiency and “unintended consequences” asso-

ciated with central clearing. The model proposed by Koeppl and Monnet (2010) predicts that,

though CCP clearing can induce traders to take the socially optimal level of counterparty risk,

it affects liquidity across the OTC markets in a way that not all traders universally benefit.

Building on this model, Koeppl (2012) shows that higher collateral requirements lower de-

fault risk, but also reduce market liquidity, which in turn amplifies collateral costs. Pirrong

(2014) argues that central clearing reforms may redistribute risk rather than reduce it, and

that expanding clearing makes the financial system more connected and transforms credit
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risk into liquidity risk. Arnold (2017) shows that, under current market regulations, central

clearing may have unintended consequences such as a higher number of issued loans, but a

lower credit quality of these loans. A closely related paper by Biais, Heider, and Hoerova

(2012) shows that the main advantage of centralized clearing is loss mutualization, which

fully insures members against idiosyncratic risk, but not against aggregate risk. They argue

that CPP should be designed to incentivize members to search for solid counterparties under

aggregate risk. In contrast, we show that the inefficiency arises even when the source of risk

is idiosyncratic, and we demonstrate how this inefficiency can be mitigated by the optimal

design of default fund contributions.

3 Baseline Model

In this section we introduce our baseline model in which clearing members have a binary

choice of risk. By comparing the (first-best) risk level that maximizes social welfare with

the one that maximizes individual members’ profit, we demonstrate that members have an

incentive for excessive risk-taking due to an inherent externality associated with loss mutual-

ization.

3.1 The Environment

We consider a two-period model, t = 0, 1. The economy consists of N homogeneous

clearing members and the regulator. The clearing members are risk-neutral. At t = 0, the

regulator chooses the required level of the default fund and the members make investment

decisions. At t = 1, payoffs are realized.

Clearing Members. Clearing members may differ in their choice of investments such as

whether to invest in a high-risk or low-risk project. Project types can model engagement in

risky investments, choice of weak trading counterparties before novation, lower effort in risk

management, or reduced hedging of counterparty exposure. Such choices are unobservable

and capture the risk-return tradeoff faced by member institutions.
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The payoffs from investing in a high-risk project and a low-risk project are denoted,

respectively, by Rh and Rl. The expected payoff from the investment depends on the risk

level. Let µ = E[R] and assume µh > µl. We denote by qh and ql the default probability of

a member who chooses, respectively, the high-risk and low-risk project. Defaults are costly,

and we use c to denote the constant default cost. We analyze the economic role of default

funds, and do not model initial margins which usually serve as the first line of defense against

default losses. Hence, we can view the default costs as describing the losses that exceed initial

margin requirements. The following assumption formalizes the risk-return tradeoff.

Assumption 1 A member who chooses the high-risk project has a higher expected return but

a higher default probability than a member who chooses the low-risk project – i.e.

0 < µl < µh, 0 < ql < qh. (1)

Default Fund. Clearing members derive risk-sharing benefits from entering into a loss

mutualization arrangement with other member’s through the CCP. A positive default fund,

F > 0, sets an upper bound on the loss given the default of a member. We consider a default

waterfall structure in which the clearinghouse capital has seniority over the default funds of

surviving members in absorbing losses.c0 After the funds of a defaulted clearing member are

exhausted, the loss mutualization mechanism ensures that the remaining losses are allocated

proportionally to the available default funds of the surviving members. This is the risk-sharing

mechanism.c0 On the other hand, the default fund increases a surviving members chances of

incurring a loss when others default, creating externality among members.

Specifically, the CCP charges a default fund amount F to each member upfront. Because

the default fund is segregated, each member will incur an opportunity cost of rfF , where

c0A well known example is the Korean CCP KRX. The default of a clearing member in December 2013
generated losses that exceeded the defaulter’s collateral. According to the KRX’s rules, the remaining losses
were allocated first to the default fund contributions of surviving participants.

c0In the contractual agreement between the clearinghouse and the clearing members, the initial margins of
a defaulted member are first used to cover losses arising at liquidation. In our analysis, we do not model the
initial margins in the clearinghouse default waterfall to focus entirely on the risk-shifting incentives triggered
by the default fund resources. This comes without loss of generality, however, as we can view the default costs
as the losses that exceed initial margin requirements.
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rf ∈ (0, 1) denotes the risk-free rate.

A member is willing to participate in such a loss mutualization fund only if the sum of his

default fund contribution and the resulting opportunity cost does not exceed his default cost.

To summarize, it is rational for individual members to participate in loss mutualization only

if

0 < F + rfF < c. (2)

Investment Choice of a Clearing Member. For a given default fund requirement

F , and for given investment choice a−i = (a1, a2, . . . , ai−1, ai+1, . . . , aN ) made by all clearing

members except i, member i decides on the riskiness of his investment to maximize the

following objective function:

Vi(a
−i) = max

ai∈{h,l}
E

[
Rai
− 1i defaults F − 1i survives min

(
F,

∑
j 6=i 1j defaults

1 +
∑

j 6=i 1j survives
(c− F )

)
− rfF

]
.

(3)

The objective function (3) can be understood by analyzing two possible scenarios:

1. If i defaults, i does not contribute to the loss mutualization, but i’s default fund F will

be used to cover its loss. i’s total cash flow will thus include the value of its investment

minus the default fund and the associated opportunity cost:

Rai
− F − rfF (4)

2. If i survives, the default fund of i will be used to absorb the losses generated by defaulted

members, if any; hence, the cash flow is given by

Rai
− F min

(
1,

∑
j 6=i 1j defaults (c− F )

F +
∑

j 6=i 1j survivesF

)
− rfF. (5)

The cost to a surviving member is the highest if all other clearing members default because

that member will have to bear all costs totaling min[F,
∑

j 6=i (c− F )]. If no clearing member

defaults, the cost incurred by i will be zero. More generally, if k members default, k < N , all

N members will collectively contribute an amount equal to min(NF, kc) to absorb the default
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losses; if k ≥ F
cN , then the default funds of all members, totaling NF , will be used to cover

the default costs.

Assumption 2 The aggregate default fund contribution satisfies a Cover II constraint:

2c ≤ NF. (6)

The Cover II rule provides that the default fund contribution collected from all members, NF ,

is always sufficient to cover the default costs of two members.

Assumption 2 and the participation constraint in Eq. (2) together set an upper and lower

bound for F : 2c
N < F < c

1+rf
. The Cover II constraint is the currently imposed requirement

that CCPs should maintain financial resources sufficient to cover a wide range of potential

stress scenarios, including the default of two members.

If more than two members default, the total default fund contribution, NF , may not be

enough to cover the default costs. In this case, the rest of the default costs are covered by

CCP’s capital.

Assumption 3 The CCP contributes with his own capital and incurs an equity loss of (Nd ·

c−N · F )+, where Nd is the number of defaults.

Assumption 3 guarantees that there are always enough resources in the system to pay for the

default costs of members in every possible state.

3.2 First-best Benchmark: optimal investment

For a given default fund contribution F , the choice of risky investments {a∗i }i=1,...,N that

maximizes the aggregate values of all agents in the economy (clearing members and the CCP)

is given by

{a∗(F )} = arg maxE

[∑
i

(Rai
− c1i defaults − rfF )

]
. (7)
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To solve for the socially optimal risk profile, it is sufficient to consider the risk and return

tradeoff of a representative clearing member by comparing the return differential µh−µl with

the expected default cost differential c(qh − ql).

Proposition 1 The socially optimal risk profile is given by

a∗i (F ) =


l, µh−µl

qh−ql ≤ c

h, µh−µl

qh−ql > c

(8)

The focus of this paper is on the members’ ex ante incentive to take excessive risk. There-

fore, for the rest of Section 3, we consider the case that the socially optimal risk profile is the

low-risk project and impose the following:

Assumption 4 The parameters {µh, µl, qh, ql, c} satisfy the condition

µh − µl
qh − ql

≤ c. (9)

3.3 Equilibrium Investment

In this section, we solve for the best response of members to a given choice of default fund

F . Our objective is to compare the investment choice of the profit-maximizing members in

equilibrium with the socially optimal choice. We call risk-shifting the situation in which the

first-best outcome prescribes that all members choose the low-risk project but the equilibrium

response of members is to instead undertake the high-risk project. This is socially inefficient

in the sense that by taking excessive risk members obtain a lower total value.

Definition 1 Under Assumption 2, and if F satisfies (2), the risk profile (a1, a2, . . . , aN ) ∈

{h, l}N is a Nash equilibrium if for all i, it holds that

Vi(a
−i) = E

[
Rai

i − 1i defaults F − 1i survives min

(
F,

∑
j 6=i 1j defaults

1 +
∑

j 6=i 1j survives
(c− F )

)
− rfF

]
.

A Nash equilibrium (a1, a2, . . . , aN ) is Pareto dominating, if, for any other Nash equilib-
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rium (b1, b2, . . . , bN ), it holds that

Vi(a
−i) ≥ Vi(b−i), i = 1, 2, . . . , N,

and the above inequality holds strictly for at least one i.

Suppose member i survives, and g of the remaining N − 1 members choose the low-risk

project. Then, for any given admissible choice of default fund, F ∈ [2cN ,
c

1+rf
], the expected

contribution of member i to other members’ defaults is given by

E
[

min

(
F,
N −Ns
Ns

(c− F )

)∣∣∣∣member i survives

]
:= F − ψ(g;F ), (10)

where Ns is the number of surviving members. The left-hand side of (10) is the expected

contribution of member i to other members’ defaults, given that i survives: If N −Ns is the

number of defaulted members, the total cost of their defaults is c(N − Ns). Each defaulted

member will first absorb the losses using his own default fund, and the remaining cost will be

shared equally by the surviving members. Hence, each member i will be charged, on average,

a cost equal to (c − F )N−Ns

Ns
capped at maximum amount F that i can contribute. The

quantity F − ψ(g;F ) on the right-hand side of Eq. (10) is the cost due to loss mutualization

imposed by the members of the network on i. A lower value of ψ(g;F ) means that the negative

externalities on i caused by the risky project choices of the other members are high. The next

proposition summarizes our main results on the investment choice of clearing members.

Proposition 2 For a given default fund requirement F satisfying Assumption 2 and condition

(2), if Assumption 4 holds, then all possible equilibrium risk profiles are given by

ae =


h,∀i F < F̂

h,∀i, or l,∀i F̂ ≤ F ≤ F̄

l,∀i F̄ < F

(11)

Moreover, ψ(·; ·) is a strictly increasing function in both the first and second argument. The
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ae = all high

A B C

ae = all high or all low ae = all low

ψ(N − 1; F̂ ) = µh−µl
qh−ql ψ(0; F̄ ) = µh−µl

qh−ql
F

Figure 1. Equilibrium Investment Choices. This figure illustrates how the equilibrium
investment choices change as we vary the size F of the default fund. ae is the equilibrium
risk profile from individual members’ strategic behavior. In region A, the unique equilibrium
differs from the first-best benchmark and features risk-shifting; in region B, we have multiple
equilibria; in region C, the unique equilibrium coincides with the first-best.

parameters F̂ and F̄ are implicitly defined as

ψ(N − 1; F̂ ) =
µh − µl
qh − ql

, ψ(0; F̄ ) =
µh − µl
qh − ql

. (12)

If F̂ ≤ F ≤ F̄ , the “all low”-risk equilibrium Pareto dominates the “all high”-risk equilibrium.

The result in Proposition 2 states that the members’ incentives in shifting risk decrease as the

required default level of F rises. If the profitability of risk-shifting measured by excess return

per unit of default probability, µh−µl

qh−ql , is exceeded by the negative externalities generated

from the risk-shifting behavior, ψ(0, F ), or equivalently F > F̄ , then each member decides

to run away from the externalities and chooses the low-risk project. Figure 1 illustrates the

equilibrium risk profile as a function of F .

3.4 Inefficiency in Investment Choice: risk-shifting

In this section, we show that there exist cases in which the loss mutualization mechanism

induces members to take excessive risk ex ante due to an inherent externality among members.

Corollary 2 If F < F̂ , the first-best benchmark is not an equilibrium, and in fact, “all

high”-risk is the unique inefficient equilibrium. More generally, if F ≤ F̄ , “all high”-risk is

an inefficient equilibrium.

Under F < F̂ , if all other members choose low-risk, member i strategically deviates to

choose high-risk. Under loss mutualization, the expected liquidation cost ψ(N−1;F ) is lower
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than c. This wedge shifts a member’s incentive from choosing low-risk to high-risk, thereby

creating a risk-shifting problem.

In the presence of risk-shifting incentives, it is still possible to achieve the socially optimal

risk-taking in equilibrium. This happens when the default fund contribution F is close enough

to the default cost such that the externality is restrained.

Corollary 3 If F̄ < F , the “all low”-risk equilibrium is the unique equilibrium and is first-

best. Moreover, the “all low”-risk equilibrium is the unique Pareto dominant equilibrium if

F̂ < F .

4 Equilibrium between Clearing Members and the Regulator

We analyze how to design a default fund that mitigates the inefficiency arising from ex-

cessive risk-taking. Corollary 3 indicates that a default fund can potentially correct members’

risk-shifting incentives. In this section, we develop a game theoretic analysis to show that the

regulator can correct the inherent externality by optimally choosing a default fund, balancing

the ex post risk-sharing benefit and ex ante risk-shifting cost.

Definition 4 A Nash equilibrium between clearing members and the regulator is a set of

members’ risk profiles ae := (ae1, . . . , a
e
N ) and a default fund contribution F e set by the regu-

lator, such that:

1. Taking the default fund F e and other members’ risk profile ae−i as given, aei solves the

optimization problem of clearing member i given in (3).

2. Taking as given the risk profile of clearing members ae, the regulator chooses a feasible

default fund level F e, satisfying assumptions (2)–(3) and condition (2) to maximize the

aggregate value of the members and the equity of CCP:

F e = arg max
F

∑
i

Vi − E
[
(Nd · c−N · F )+

]
. (13)
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In the above equation, Vi is given by Eq. (3), and Nd =
∑

i 1i defaults is the number of

defaulted members.

4.1 Default Fund: a tool to mitigate risk-shifting

We solve for the optimal default fund level that satisfies the criterion in Equation (13), tak-

ing the functional dependence of ae on F into account. Given the assumption of independent

defaults, the objective function of the regulator in (13) may be rewritten as follows:

W (F ) = E

[∑
i

Vi − (Nd · c−N · F )+

]
= E

[∑
i

Rai
−Nd · c−NrfF

]
. (14)

Thanks to Proposition 2, it suffices to consider either “all low” or “all high”-risk profiles.

We base our analysis on the equilibrium refinement concept of Pareto dominance: From

Proposition 2 and Corollary 3, members all choose low-risk when F̂ ≤ F because it is either

the unique equilibrium (region C in Figure 1) or the Pareto dominating equilibrium (in region

B). Hence the equilibrium risk profile switches from high to low at the boundary between

Regions A and B. To obtain the threshold value of F̂ at this boundary, define the linear

function of F : I(F ) = ψ(N − 1;F ) − µh−µl

qh−ql . By Lemma 8 in Appendix A, I(F ) is a strictly

increasing function. Moreover, ψ(N − 1; c) = c. Thus if the following condition holds,

ψ

(
N − 1;

2c

N

)
<
µh − µl
qh − ql

c0, (15)

there is a unique threshold value F̂ such that I(F̂ ) = 0, i.e. ψ(N − 1; F̂ ) = µh−µl

qh−ql .

The functionW (F ) may be defined piecewisely, with just one discontinuity at F̂ , as follows:

W (F ) = N
(
W l(F )1F≥F̂ +W h(F )1F<F̂

)
, W a(F ) = µa − cqa − rfF, a = l, h. (16)

Because the ‘low-risk” equilibrium is socially optimal, W (F ) exhibits a positive jump as we

increase F : the equilibrium switches from “all high” to “all low”-risk at F̂ . Denote the size

c0When the inequality fails to hold, the aforementioned switch from “all low”-risk equilibrium to “all high”-
risk equilibrium does not occur. The reason is that the lower bound set by the Cover II rule may already be
large enough that choosing high-risk is not attractive for an individual member. In the sequel, we only focus
on the (interesting) case that the inequality (15) holds.
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Figure 2. Regulator’s Objective Function W (F ). This figure plots the total wealth
W (F ) as a function of F , where F ranges from the lower bound 2c

N that satisfies the Cover
II requirement to the upper bound that equals the default cost c. The graph shows that a
default fund given by the Cover II requirement may not be socially optimal. Rather, a higher
value of F that corrects the risk-shifting yields the highest total value. Model parameters:
µh = 5, µl = 4.8, N = 8, c = 2, qh = 0.2, ql = 0.05, and rf = 0.1. The optimal default fund

F e = F̂ = 1.30, and W (F e)−W ( 2
N c) = 0.16.

of the upward jump at F̂ by ∆. Then

∆ ≡W l(F̂ )−W h(F̂ ) = µl − µh − c(ql − qh) > 0. (17)

Moreover, W h(F ) and W l(F ) are both strictly decreasing in F . Thus the maximum of W (F )

over the set of feasible values for F is attained either at the lower bound 2
N c, or at the switch

point F̂ . We summarize this result in the following proposition (see also Figure 2 for an

illustration).

Proposition 3 Suppose the inequality (15) holds. Among all feasible values of F – i.e.,

those satisfying Assumption 2 and condition (2) – the default fund level that maximizes the

regulator’s objective function (13) is given by

F e =


F̂ , if ∆ > rf

(
F̂ − 2

N
c

)
,

2

N
c, else.

(18)

In conclusion, the objective of the regulator is to maximize the total value of the agents
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in the system, taking members’ incentives for risk-shifting into consideration. The choice of

default fund yields the following tradeoff. On the one hand, the benefit of having a higher

value of F is to correct for risk-shifting: as F increases to F̂ , we move from region A to region

B in Figure 1, where members’ risk choices switch from high to low. Hence, by mandating a

high enough default fund F , the regulator can give the member an incentive to choose risk

with a total social value equal to N∆. On the other hand, increasing F raises the opportunity

cost of each member from rf
2
N c to rf F̂ . If the benefit exceeds the cost, it is optimal to set the

default fund at F̂ , a higher value than required by the Cover II rule; otherwise, the regulator

will find it optimal to use the Cover II rule.

4.2 Cover X: the optimal covering number

The previous sections have shown that the Cover II rule is not necessarily socially optimal,

when we consider the role of mitigating risk-shifting. As the number of clearing members

increases, how many members’ defaults should the default funds be ready to cover? We design

a Cover X rule so that the implied default fund achieves the efficiency of F̂ in Equation (18).

The generalized Cover X rule for any given number N of participating clearing members

is

x(N) :=
N · F e(N)

c
, (19)

where F e(N) is the default fund level that maximizes the regulator’s objective given in Propo-

sition 3, when N is the number of members in the CCP. When x(N) > 2, our model provides

a rationale to charge a default fund more than the current regulatory requirement prescribed

by the Cover II rule; see also Figure 3 for an illustration.

Interestingly, the exact Cover X rule depends on the number of members. If N = 3, then

x(N) is approximately equal to two, so Cover II is able to prevent risk-shifting. However,

if, for example, N = 8, the optimal requirement becomes Cover 5.18. Under the Cover II

requirement, clearing members would engage in excessive risk-taking and deviate from the

social optimum, resulting in a higher total cost of default. In contrast, the proposed Cover

5.18 requirement induces members to choose low-risk projects, thereby effectively mitigating
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Figure 3. Optimal Covering Number. This figure shows the optimal covering number
x(N) given in equation (19) as a function of the number of clearing members N . We use the
same parameter settings for project return and default probability as in Figure 2. Left panel:
the optimal covering numbers x(N); Right panel: the ratio x(N)

N .

risk-shifting.

While the optimal covering number clearly depends on the number of members N , the

ratio x(N)/N shows little variation with respect to N , if N is sufficiently large. The next

proposition characterizes the asymptotic behavior of the optimal coverage ratio, as the number

of clearing members grows large. Specifically, it shows that the ratio between the optimal

default fund level F e(N) and the default cost c, or equivalently, the optimal proportion of

covered members, x(N)/N , converges to a constant as the size of the CCP network tends to

infinity. If the marginal opportunity cost rf is sufficiently low, then this limit is a positive

number in (0, 1), meaning that the optimal covering number should be proportional to the

size of network N (at least for large N); otherwise, this limit is 0, implying that it is optimal

to cover only a small portion of the CCP network.

Hence, as the number of clearing members grows large, the cover rule that the regulator

should adopt is simple—rather than covering a fixed number of clearing members as pre-

scribed, for instance, by the Cover II rule, the regulator should cover a fixed fraction of the

members. Considering that the major U.S. derivative clearinghouses consist of more than 30

members (this is the case, for instance, for the major CDS derivative clearinghouse ICE Clear

Credit, and interest rates swaps clearinghouse LCH), our result implies that the default fund
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rule is robust with respect to entry and exit of the members in the clearing business.c0

Proposition 4 In the large CCP network limit – i.e., as N →∞ – we have

F e(N)

c
=
x(N)

N
→


ql + (1− ql)

1

c

µh − µl
qh − ql

, if µl − µh − c(ql − qh) > rf (ql c+ (1− ql)
µh − µl
qh − ql

),

0, else.

It is immediate from Proposition 4 that if the differential ratio µh−µl

qh−ql is much smaller than

the default cost c (i.e., the risky project is not sufficiently profitable to compensate for the

costs incurred at default), then the members are more inclined to switch from risky to safe

investments as the default fund level increases. Thus the regulator can use a lower default

fund level to prevent the risk-shifting.

5 Continuous Choice of Risk-Taking

Having illustrated the simple logic of how a default fund can alleviate risk-taking for two

possible choices of risk, in the rest of the paper we extend the analysis to the more general

case of a continuous choice of taken risks. Such a setup allows us to track the marginal impact

of setting a higher default fund contribution on the risk-taking behavior of a member.

5.1 The Environment

Member i has a continuous choice of risk-levels. The member invests a fraction ai ∈ [0, 1]

of its resources in the risky project and allocates the remaining fraction 1 − ai to a risk-free

project. The risk-free project has a guaranteed payoff of (1 + rf ) times the invested amount

and can be thought as an investment in risk-free assets (e.g., U.S. Treasury bonds). The risky

project could include a portfolio of loans to firms in the corporate sector or a portfolio of

mortgages, exposing the member to volatile returns. The payoff, denoted by R̃i, is realized

c0For instance, in May 2014, the Royal Bank of Scotland announced the wind down of its clearing business
due to increasing operational costs. This was followed by State Street, BNY Mellon, and more recently Nomura,
each of whom shut down part or all of their clearing business.
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at t = 1 and assumed to be a random variable:

R̃i =


R, with probability 1− ai

r, with probability ai,

(20)

R can be viewed as the notional value of the loan/mortgage. Let R > 1 + rf > r: in the good

state, the realized payoff is higher than that of the risk-free project, whereas in the bad state

the payoff is lower than the return from the same investment in the risk-free project. Similar

to the setup in Holmstrom and Tirole (2001) and Acharya, Shin, and Yorulmazer (2010), the

risky technology has diminishing returns to scale with risk-taking; i.e., the probability of a

good state decreases with ai.
c0 In particular, the probability of observing the good state is

1− ai.

Member i defaults if the value of the realized risky project is r:

1i defaults ⇔ aiR̃i + (1− ai)(1 + rf ) < 1 + rf ⇔ R̃i = r. (21)

The default probability of member i is equal to ai: the fraction invested by i in the risky

project. Default can always be avoided if member i invests entirely in the risk-free project.

Defaults are costly, and we use c > 0 to denote the cost of a default. Let R > 1 + rf + c,

indicating that members prefer to invest a non-zero fraction in the risky project. Notice that

at a = 0, the marginal profit of risk-taking is R, whereas the marginal cost is 1 + rf (forgone

return from the risk-free project) plus c (marginal cost of default). We assume that the

realizations R̃i, i = 1, . . . , N , are independent across members, which implies that defaults

are independent.

Strategic Investment Choice of a Member. Consider a CCP, and assume a default

fund level F satisfying the Cover II requirement: given investment strategies a−i chosen by

c0The assumption of diminishing returns to scale is not essential for our results, but helps to obtain a neat
expression for the default probability.
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other members except i, the expected payoff of member i is given by

Vi(a−i) =

sup
ai∈[0,1]

E

[
aiR̃i+(1−ai)−1i defaults F−1i survives min

(
F,

∑
j 6=i 1j defaults

1 +
∑

j 6=i 1j survives
(c− F )

)
−rfF

]
.

(22)

Each clearing member chooses his own investment strategically to maximize his expected

payoff. If all other members choose the same investment strategy a−i ∈ [0, 1], we have

Vi(a−i) = sup
a∈[0,1]

[−(R− r)a2 + (R− 1)a+ 1− F + (1− a)φ(a−i;F )− rfF ], (23)

where φ(a−i;F ) ≡ ψ(0;F ), and ψ(0;F ) is obtained by evaluating the function ψ(g;F ) defined

in Eq. (A1) choosing qh ≡ a−i therein. Because of our symmetric configuration of clearing

members, we restrict our attention to symmetric equilibria. A symmetric equilibrium among

members is ae ∈ [0, 1] such that, member i’s best response when all other members choose

ae is also ae; i.e., there is no unilateral deviation. Taking the first-order condition of the

objective function in (23), and then setting a−i with ai, we obtain the following result.

Proposition 5 For a large enough differential return R − r > 0, given a default fund level

F ∈ [2cN , c), there exists a unique symmetric response of members; i.e., ai = ae ∀i, which

satisfies

R− 1− φ(ae, F )

2(R− r) − ae = 0. (24)

Moreover, ae is a strictly decreasing function of F ; for F 6= lc
N , l = 2, 3, . . . , N − 1, ae

is an infinitely differentiable function of F and dae

dF < 0; for F = lc
N , l = 3, 4, . . . , N − 1,

dae

dF (F+) − dae

dF (F−) < 0, where dae

dF (F+) and dae

dF (F−) are respectively the right and left

derivatives of ae(F ) at F .

Risk-shifting. We demonstrate that the risk-shifting pattern shown in the binary case

also manifests in the continuous risk-taking setup. As a first-best benchmark, we solve for the

socially optimal risky asset investment a∗ that maximizes the aggregate value of all members
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Figure 4. Members’ Stategic Response to the Default Fund Level. Panel 4a plots the
symmetric strategic response ae as a function of F (blue solid line). ae is strictly decreasing
in F . The socially optimal invested fraction in the risky project is shown in the amber dashed
line and is equal to a∗ = 0.25. Panel 4b plots the derivative of ae with respect to F . There
are downward jumps at the kinks lc

N for l = 3, 4, . . . , N−1. Kinks are indicated by black dots.
The parameters used are: R = 3.5, r = 0.5, N = 10, and c = 1.

net of the CCP’s equity loss. Equivalently, a∗ maximizes the expected payoff of a representa-

tive member:

a∗ = arg max
ai

E[aiR̃i + (1− ai)− c1idefaults − rfF ]. (25)

While a∗ balances the socially desirable tradeoff between risk and return, members have

incentives for risk-shifting under the loss mutualization scheme, as shown by the following

proposition:

Proposition 6 Assume R > 1 + c. Then the socially optimal investment a∗ in the risky

project satisfies

0 < a∗ =
R− 1− c
2(R− r) <

1

2
. (26)

The privately optimal investment choice ae of the clearing members is given by the solution

to Eq. (24) and satisfies

a∗ < ae. (27)

A direct comparison of the privately optimal investment choice ae (solution to Eq. (24))

and the socially optimal outcome a∗ (solution to Eq. (26)) immediately reveals the economic

22



mechanism. In the risk-return tradeoff faced by the social planner, a member faces marginal

cost-due-to-default c; in the decentralized risk-return tradeoff under loss mutualization, the

marginal cost-due-to-default becomes φ(a;F ). As φ(a;F ) < c (which directly results from

risk-sharing via the CCP), members strategically chooses higher risk than what is socially

optimal. Figure 4 plots ae(F ), a∗, and dae

dF : the decreasing pattern of ae(F ) is clearly seen

from the figure.

5.2 Equilibrium between Clearing Members and the Regulator

In this section, we show that a default fund higher than the Cover II requirement can

be used to regulate members’ risk-taking. As in Section 4, the regulator selects the default

fund level F , which maximizes the social value of the system (including all members and the

CCP), anticipating the risk-taking activities chosen by the members in response to his choice.

The members’ response has been characterized in Proposition 5. Next, we describe the game

theoretical setting:

Definition 5 For a given number N of clearing members, a symmetric Nash equilibrium

between all clearing members and the CCP is the set of members’ risk profiles {ae}ni=1, and

the default fund contribution F e set by the CCP such that,

1. Taking the default fund F e and other members’ risk profile ae−i as given, aei solves the

optimization problem of clearing member i given in (22).

2. Taking as given the risk profile of clearing members ae, the regulator chooses a feasible

default fund level F ec0 to maximize the total value of the system W (F ):

W (F ) =
∑
i

Vi − E
[
(Nd · c−N · F )+

]
= N · (B(F )− rfF ), (28)

F e = arg max
F

W (F ) = arg max
F

(B(F )− rfF ), (29)

c0We recall that feasible means that the assumptions (2)-(3) and condition (2) are satisfied.
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where Vi is the payoff of member i given by (22), Nd is the number of defaults, and

B(F ) = −(R − r)(ae(F ))2 + (R − 1 − c)ae(F ) + 1 is the part of the representative

member’s value which does not account for the opportunity cost of default fund F .

To solve for the tradeoff in choosing the default fund, we analyze the differential properties

of the various components of the objective function. First, recall from Proposition 5 that ae(F )

is continuously differentiable in F except over the set of kinks { lcN ; l = 2, . . . , N − 1}. Thus

the same property holds for B(F ). To see how B(F ) changes with F , consider the quadratic

function U(a) = −(R − r)a2 + (R − 1− c)a+ 1, which achieves its maximum at a = a∗. An

application of the chain rule shows that the marginal benefit of increasing F is given by

B′(F ) =
∂U

∂a

∂ae

∂F
= −2(R− r) (ae(F )− a∗) da

e

dF
, ∀F 6= lc

N
, l = 2, . . . , N − 1. (30)

Recall from propositions 5 and 6 that members exhibit risk-shifting (ae(F ) > a∗), and that

a higher default fund can mitigate risk-shifting (da
e

dF < 0, ∀F 6= lc
N , l = 2, . . . , N − 1). There-

fore, B(F ) increases with F ; that is, a higher default fund increases value B(F ) by steering

members’ risk-taking closer to the socially optimal level.c0

Proposition 7 The equilibrium default fund F e set by the regulator is either the Cover II

level 2c
N or a solution to the first-order condition of Equation (29). Formally, F e ∈ {F̄ e, 2cN }

where F̄ e satisfies

B′(F̄ e) = rf , B′′(F̄ e) ≤ 0, F̄ e 6= lc

N
, l = 2, . . . , N. (31)

Proposition 7 offers a simple algorithm for the regulator to pin down the equilibrium

(constrained optimal) default fund. To maximize the social objective value function (29),

the regulator balances the marginal benefit B′(F̄ e) and marginal cost of capital rf . While

a higher default fund increases the social value by mitigating risk-shifting, it is also costly

because the fund needs to be segregated. If the marginal benefit and marginal cost cross paths

c0Formally, Equation (30) implies that the marginal benefit of increasing F is positive; i.e., B′(F ) > 0,
∀F ∈ [ 2c

N
, c)\{ lc

N
; l = 2, . . . , N − 1}. Moreover, as F crosses a kink lc

N
from below, Proposition 6 indicates that

B′( lc
N

+)− B′( lc
N
−) = −2(R − r)(ae( lc

N
)− a∗)[ da

e

dF
( lc
N

+)− dae

dF
( lc
N
−)] > 0. Hence, at each kink value of F , the

marginal benefit of increasing F increases with a positive jump. Taken together, B(F ) increases with F .

24



0.4 0.6 0.8 1.0
F

10.85

10.90

10.95

11.00

W(F)

(a) ae(F )

0.4 0.6 0.8 1.0
F

0.05

0.10

0.15

0.20

(b) dae

dF (F )

Figure 5. The Social Value Function and the Marginal Value. Panel (a) plots the
total wealth W (F ). Panel (b) plots the marginal values: the marginal benefit B′(F ) (in blue),
and the marginal cost rf (in amber). The parameters used are: R = 3.5, r = 0.5, N = 10,
c = 1 and rf = 0.1. The optimal default fund is F e ≈ 0.74.

at a fund value higher than the Cover II lower bound, and the condition B′′(F̄ e) ≤ 0 holds,

then F̄ e is the constrained optimal level. In other words, if the marginal value of increasing

F is higher than the opportunity cost at the lower bound 2c
N (B′(2cN ) > 0), then 2c

N < F e < c.

That is, the optimal default fund level exceeds the critical level for the Cover II requirement.

Figure 5 considers a scenario in which the Cover II rule is not socially optimal. As the default

fund level increases, the social value function increases and peaks at F e = 0.74. This value

corresponds to a Cover 7.4 rule instead for a 10-member clearing arrangement.

An Example with Three Members We consider a simplified setting consisting of three

clearing members, in which closed-form expressions for ae(F ) and F e can be obtained. For

a given choice of F that satisfies the Cover II requirement, the equilibrium investment in

the risky asset is given by ae(F ) = R−r
c−F − 1

2 −
√(

R−r
c−F − 1

2

)2
− R−1−F

c−F , and obtained by

solving Equation (24). It is immediate to see that ae(F ) is strictly decreasing in F . We can

explicitly compute the unique equilibrium default fund F e. In particular, let h(a) = a −

a∗− rf 1+a∗+2a∗a−a2

(1+a+a2)2 , which is a strictly increasing function over [0, 1], and satisfies h(a∗) < 0.

Then

F e =


2c

3
, if h(ae(

2c

3
)) ≤ 0,

c− 2(R− r) a0 − a∗
1 + a0 + a20

, if h(ae(
2c

3
)) > 0.

(32)
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where a0 is the unique root to h(a0) = 0 over the interval (a∗, ae(2c3 )). This example serves

to illustrate that even in a simple central clearing setup consisting of three members, neither

Cover II nor Cover III may be the optimal default fund allocation. In fact, 2c/3 < F e < c,

and thus an intermediary level for the default fund level might be optimal.

Analogous to the binary case, we can show that the ratio between the optimal default

fund level F e(N) and the default cost c, or equivalently, the optimal proportion of covered

members, x(N)/N , also converges to a constant as the number of members N grows large.

This limit is a positive number in (0, 1) when the marginal opportunity cost rf is sufficiently

low. In particular, paralleling the result in Proposition 4, we have the following asymptotic

result.

Proposition 8 In the large CCP network limit – i.e., as N → ∞ – the unique symmetric

response of members, ai = ae is given by

ae(F )→


R− 1

2(R− r) , if
F

c
≤ R− 1

2(R− r) ,

(1 + a∗)−
√

(1 + a∗)2 − 2R−1−FR−r
2

, if
F

c
>

R− 1

2(R− r) .
(33)

Letting F (a) = R − 1 + R−r
2 [(1 + a∗ − 2a)2 − (1 + a∗)2] be the inverse of line two in (33),

a∞ := (1+rf )a∗+rf
1+2rf

, and F̂∞ := F (a∞). Then we have

F e(N)

c
=
x(N)

N
→


F̂∞
c
, if B(F̂∞)− rf F̂∞ > B(0) and a∞ <

R− 1

2(R− r) ,

0, else,

(34)

where B(·) is defined in Definition 5.

From Proposition 8, we see that for a CCP consisting of many members, the highest risk

choice ae converges R−1
2(R−r) . When members take this level of risk, then the optimal response

of the regulator is to set the default fund level to zero because the members’ risk choice is

independent of F . If the marginal opportunity cost of default fund is low, the regulator may

attain a higher per member social welfare by charging a larger default fund requirement F̂∞

to members, that in turn incentivize them to take a lower level risk level a∞.
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6 Conclusion and Policy Implications

The problem of the optimal determination of default fund levels contributed by members

of a clearinghouse has been the subject of extensive regulatory debate. Current regulatory re-

quirements prescribe that default fund contributions should guarantee that the clearinghouse

is able to continue its services in the even that its two largest clearing members default. There

is, however, no economic analysis of the conditions under which this rule is socially optimal,

or of alternative designs that are welfare improving. Our paper fills this important gap and

introduces a parsimonious model to study the main economic incentives behind the determi-

nation of the default fund requirements. While default funds allow members to effectively

share counterparty risk ex post, we highlight a novel mechanism related to loss mutualization

that induces members to take excessive risk ex ante owing to an inherent externality among

them. Our analysis shows that the CCPs can mitigate the inefficiency generated by members’

excessive risk-taking activities through an optimal choice of the default fund level. Such a

choice balances the ex post risk-sharing and the ex ante risk-taking of members.

Our analysis shows that if the clearinghouse consists of a sufficiently high number of

clearing members, then the optimal cover rule should be to cover the default costs of a

constant fraction of members. This finding contrasts with the currently imposed Cover II

requirements, whose optimality is supported by our analysis only if the marginal opportunity

costs of collateral posting are high.

Our results have important policy implications. They point to the need to design a simple

rule that guarantees the coverage of the costs generated by the default of a proportion of

clearing members. This simple covering requirement is robust to the size of the participating

member base. The optimal proportion depends, in an explicit way, on the relation between the

premium earned by the member who undertakes high-risk projects and the costs incurred at

default. These parameters can be accessed by clearinghouses and their supervisory authorities

who typically have detailed information on the risk profile of their members. Owing to its

simplicity, the proposed rule can also serve as a benchmark against more complex rules based
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on simulated scenario stress testing.
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A Proof of Proposition 2

In this Appendix, we prove Proposition 2. We first present some technical lemmas to fix
preliminary results and notations.

Lemma 6 Suppose member i is alive, and g of the remaining N − 1 members choose the low
risk project. Then, for any given F ∈ [2cN ,

c
1+rf

], we have that

ψ(g;F ) :=

N−1∑
k=N−1−bNF

c
c
fg(k)

(
c− N(c− F )

k + 1

)
. (A1)

Here b·c denotes the floor function (giving the greatest integer less than or equal to the argu-
ment), and

fg(k) :=

k∑
m=0

(
g

m

)
(1− ql)mqg−ml ×

(
N − 1− g
k −m

)
(1− qh)k−mqN−1−g−(k−m)

h

are positive constant.

Proof of Lemma 6. Suppose that the default fund F is such that

lc

N
≤ F <

(l + 1)c

N
or equivalently 1− 1 + l

N
< 1− F

c
≤ 1− l

N
, (A2)

for some integer l = 2, 3, . . . , N − 1. Then member i’s contribution to other members’ default
when himself does not default is given by

min

(
F,
N −Ns
Ns

(c− F )

)
= F min

(
1, (

N

Ns
− 1)(

c

F
− 1)

)
= (c− F )

(
N

Ns
− 1

)
1Ns≥(1−F

c
)N + F1Ns<(1−F

c
)N

For F in the range (A2), we have

N − (l + 1) < (1− F

c
)N ≤ N − l

Thus Ns ≥ (1− F
c )N if and only if Ns ≥ n− l. In other words, among the remaining N − 1

members, if there are less than or equal to l defaults, member i will pay less than F . But
if there are l or more defaults and F = lc

N then member i’s default fund will be exhausted
completely.

Suppose all members except member i choose the low risk project, then if member i
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survives, his expected contribution is

(c− F )E
[(

N

Ns
− 1

)
1Ns≥N−l

∣∣∣∣member i survives

]
+ F · Pr(Ns < N − l|member i survives)

=(c− F )

N−1∑
k=N−(l+1)

(
N − 1

k

)
N − 1− k
k + 1

(1− ql)kqN−1−kl + F

N−(l+2)∑
k=0

(
N − 1

k

)
(1− ql)kqN−1−kl

=(c− F )

N−2∑
k=N−(l+1)

(
N − 1

k + 1

)
(1− ql)kqN−1−kl + F

N−(l+2)∑
k=0

(
N − 1

k

)
(1− ql)kqN−1−kl . (A3)

Likewise, if all members except member i choose the high risk project, then if member i
survives, his expected contribution is

(c− F )E
[(

N

Ns
− 1

)
1Ns≥N−l

∣∣∣∣member i survives

]
+ F · Pr(Ns < N − l|member i survives)

=(c− F )

N−2∑
k=N−(l+1)

(
N − 1

k + 1

)
(1− qh)kqN−1−kh + F

N−(l+2)∑
k=0

(
N − 1

k

)
(1− qh)kqN−1−kh . (A4)

In general, if there are g members among the remaining N − 1 choosing the low risk project,
for g = 0, 1, . . . , N−1, then the number of surviving ones among these N−1 members, Ns−1,
is the sum of the number of the survived ones choosing the low risk project and that of the
survived choosing the high risk project. Specifically, the probability that there are k survived
ones is given by

fg(k) :=

k∑
m=0

(
g

m

)
(1− ql)mqg−ml ×

(
N − 1− g
k −m

)
(1− qh)k−mqN−1−g−(k−m)

h .

It follows that, if member i survives, his expected contribution is

(c− F )E
[(

N

Ns
− 1

)
1Ns≥N−l

∣∣∣∣member i survives

]
+ F · Pr(Ns < N − l|member i survives)

=(c− F )

N−1∑
k=N−(l+1)

fg(k)
N − 1− k

1 + k
+ F

N−(l+2)∑
k=0

fg(k)

=

N−1∑
k=N−(l+1)

fg(k)

(
N(c− F )

k + 1
− c
)

+ F, (A5)

where the last line comes from the total probability
∑N−1

k=0 fg(k) = 1.

Lemma 7 For any given F ∈ [2cN , c), the function ψ(g;F ) is strictly decreasing in g, i.e.

0 < ψ(0;F ) < ψ(1;F ) < . . . < ψ(N − 1;F ) < F < c.

Proof of Lemma 7. Suppose member i survives, and Ns − 1 is the number of survivals
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except member i. Given how we define a default event, we have

Ns − 1 =
∑
j 6=i

1member j defaults (A6)

By Lemma 6, we only need to show that

g : 7→ E
[

min

(
F,
N −Ns
Ns

(c− F )

)]
≡ F − ψ(g;F )

is strictly decreasing in g for g = 0, 1, 2, . . . , n − 1, where g is the number of members other
than member i, who chooses the low risk project. Because the expression ψ(g;F ) only depends
on the default probabilities ph, pl, not how defaults occur, we can choose a probability model
for the defaults that is convenient to our analysis. More precisely, suppose for each member i,
there is an independent random variable εi, with a uniform distribution on (0, 1), such that, if
this member has chosen the low risk project, he will default at time 1 if and only if εi < pl; on
the other hand, if this member has chosen the high risk project, then he will default at time
1 if and only if εi < ph. Because the event {εi < pl} implies {εi < ph}, we see that, in this
probability model of defaults, increasing g, the number of of remaining members (other than
member i) choosing the low risk project, always makes Ns non-increasing, and can makes Ns
strictly increasing with a positive probability (equal to ph − pl in this particular specification
of default).

Similarly, there is a positive chance that Ns may decrease from 1 to N as g increases from
0 to N − 1. As Ns varies between 1 and N , N−Ns

Ns
(c− F ) varies between (N − 1)(c− F ) and

0, hence the random variable min

(
F, N−Ns

Ns
(c− F )

)
is non-decreasing with g, and there is a

positive chance that it is strictly decreasing with g. As a result, we know that the mapping

g :7→ E
[

min

(
F,
N −Ns
Ns

(c− F )

)]
, g = 0, 1, . . . , N − 1

is strictly decreasing.

Lastly, because the expected contribution F − ψ(N − 1;F ) is positive (member i has to
contribute as long as there is at least one other member default), we have ψ(N − 1;F ) <
F . Moreover, the expectation contribution F − ψ(0;F ) is strictly less than F (member i
contributes less than F when there is no default).

Lemma 8 For any fixed g = 0, 1, . . . , N − 1, the function ψ(g;F ) is piecewise linear and
strictly increasing in F , in the interval [ 2

N c,
c

1+rf
]. In particular, ψ(g; c) = c.

Proof of Lemma 8. From (A1), ψ(g;F ) is linear and strictly increasing for F ∈ ( l
N ,

l+1
N )

with l = 2, 3, . . . , N − 1. Moreover, the nonnegative random variable min(F, N−Ns

Ns
(c− F )) is

almost surely continuous in F , and is bounded by c. By the dominated convergence theorem,
we know that ψ(g;F ) is continuous. Therefore, the function ψ(g;F ) is strictly increasing for
all F ∈ [ 2

N c,
c

1+rf
]. The value of ψ(g; c) follows directly from (10).

To prove Proposition 2, we next analyze different scenarios for a member’s investment
choice, taken as given the default fund and other members’ investment choices. In particular,
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we characterize conditions such that member i chooses high risk given all possible combina-
tions of risk profile of other members. When we check those conditions for all members, we
will see that “all high risk” and “all low risk” strategy are the only possible equilibria.

Suppose that the other members do not choose the same risk level: There are g members
who choose low risk projects and the rest N − 1 − g choose high risk projects, where g ∈
{0, . . . , N − 1}.

If member i chooses low risk, his expected utility is (by Lemma 6)

E

[
Rli − 1i defaults F − 1i survives min

(
F,

∑
j 6=i 1j defaults (c− F )

1 +
∑

j 6=i 1j survives

)
− rfF

]
= µl − ql ψ(g;F )− F + ψ(g;F )− rfF.

If member i chooses instead high risk, his expected utility is

E

[
Rhi − 1i defaults F − 1i survives min

(
F,

∑
j 6=i 1j defaults (c− F )

1 +
∑

j 6=i 1j survives

)
− rfF

]
= µh − qh ψ(0;F )− F + ψ(0;F )− rfF.

Hence, member i chooses high (low, resp.) risky project when g members choose low and
N − 1− g choose high if and only if

µh − µl
qh − ql

> (<, resp.)ψ(g;F ). (A7)

When (A7) takes an equality, member i is indifferent to choosing high or low risky project.
As a consequence,

1. If µh−µl

qh−ql > ψ(N − 1;F ), every member will choose the high risky project, regardless of

other members’ choice. Hence, the “all high risk” strategy is the unique equilibrium
among members.

2. If µh−µl

qh−ql < ψ(0;F ), every member will choose the low risky project, regardless of other

members’ choice. Hence, the “all low risk” strategy is the unique equilibrium among
members.

3. If ψ(0;F ) ≤ µh−µl

qh−ql ≤ ψ(N − 1;F ), it is straightforward to verify that both the “all

high risk” strategy and the “all low risk” strategy are equilibriums among members. To
prove there cannot be any other forms of equilibrium, suppose there is an equilibrium
which is consisted of g low and (N − g) high, for some g = 1, 2, . . . , N − 1. Then for
any member choosing high, he faces g choosing low and (N − g − 1) choosing high, so
in order for him to stay high as well, it must hold that

µh − µl
qh − ql

≥ ψ(g;F ). (A8)

Yet, for any member choosing low, he faces g−1 low and N−g high, so for this member
to stay low, it must holds that

µh − µl
qh − ql

≤ ψ(g − 1;F ). (A9)
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However, (A8) and (A9) cannot hold simultaneously because ψ(g− 1;F ) < ψ(g;F ) (see
Lemma 7).

Finally, we prove that the all low risk profile is Pareto dominating the all high risk profile
when ψ(0;F ) ≤ µh−µl

qh−ql ≤ ψ(N − 1;F ) holds. Recall that member i’s expected utility under

the all low risk profile is

µl − ql ψ(N − 1;F )− F + ψ(N − 1)− rfF.

Likewise, his expected utility under the all high risk profile is

µh − qh ψ(0;F )− F + ψ(0;F )− rfF.

The difference is then given by

[µl − ql ψ(N − 1;F )− F + ψ(N − 1)− rfF ]− [µh − qh ψ(0;F )− F + ψ(0;F )− rfF ]

=µl − µh + (1− ql)ψ(N − 1;F )− (1− qh)ψ(0;F ).

When µh − µl ≤ (qh − ql)ψ(N − 1;F ), the above expression is bounded from below by
(1 − qh) (ψ(N − 1;F )− ψ(0;F )) > 0, due to Lemma 7. Therefore, among the two possible
equilibriums, the all low risk profile is Pareto dominating.

B Proof of Proposition 5

Recall that a symmetric equilibrium under cover-II requirement is given by aei = ae for all
i = 1, 2, . . . , N , with ae being the root to the follow equation:

f(ae;F ) = 0, where f(a;F ) =
R− 1− φ(a;F )

2(R− r) − a.

We first show the existence of such a root. To that end, recall that (10) implies

E
[

min

(
F,
N −Ns
Ns

(c− F )

)∣∣∣∣member i survives

]
= F − φ(a;F ),

where Ns is the number of surviving members, each of who has a default probability of a. It
follows that when a = 0, we have Ns = N almost surely, so 0 = F − φ(0;F ), which implies
that

φ(0;F ) = F.

Therefore we have

f(0;F ) =
R− 1− F
2(R− r) >

R− 1− c
2(R− r) = a∗ > 0. (A10)

On the other hand, because min(F, N−Ns

Ns
(c − F )) ≤ F holds almost surely, we know that

φ(a;F ) ≥ 0 for all a ∈ [0, 1]. Therefore, we have

f(1;F ) =
R− 1− φ(a;F )

2(R− r) − 1 ≤ R− 1

2(R− r) − 1 <
1

2
− 1 = −1

2
< 0. (A11)
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Hence, from (A10) and (A11) we can conclude that, for any fixed F ∈ [2cN ,
c

1+rf
), there exists

at least one ae such that f(ae;F ) = 0.

To prove the uniqueness of ae, we demonstrate that, when R − r > 0 is sufficiently
large, f(a;F ) is strictly decreasing in q over (0, 1) for every F . Indeed, Lemma 7 indicates
that φ(qh;F ) = ψ(0;F ) < ψ(N − 1;F ) = φ(ql;F ) for 0 < ql < qh < 1, so φ(a;F ) is
strictly decreasing in a. Therefore, the monotonicity of f(a;F ) in a is completely determined
by the strictly increasing function − 1

2(R−r)φ(a;F ) and the strictly decreasing function −a.

Intuitively, as (R − r) becomes large, we have − 1
2(R−r)

∂
∂aφ(a;F )− 1 < 0, meaning f(a;F ) is

strictly decreasing in a. In Lemma 9 below we formally bound | ∂∂aφ(a;F )| from above, which
effectively gives a sufficient lower bound for (R − r) such that f(a;F ) is strictly decreasing,
which implies the uniqueness of ae.

To prove the monotonicity of ae(F ) in F , we use lemma 8 to know that, for each fixed
a ∈ (0, 1), φ(a;F ) is strictly increasing for all F ∈ [2cN ,

c
1+rf

)), so f(a;F ) is strictly decreasing

in F over the same domain. Let 2c
N ≤ F1 < F2 < c, we have

0 = f(ae(F2);F2) = f(ae(F1);F1) > f(ae(F1);F2).

Because f(q;F2) is strictly decreasing in q when R− r > 0 is sufficiently large, we must have
ae(F2) < ae(F1). This proves the monotonicity of ae(F ) on F .

The infinite differentiability of ae(F ) in F follows from implicit differentiation and Lemma
8, from which we know that f(a;F ) is infinitely differentiable in F if F 6= lc

N for l =
2, 3, . . . , N − 1. This, in conjunction with the monotonicity of ae(F ) in F , implies that
dae

dF (F ) < 0 for any F ∈ (2cN , c) but F 6= lc
N , l = 3, 4, . . . , N − 1.

Lastly, to prove that ae(F ) is not differentiable at F = lc
N , and with a greater left derivative,

we use implicit differentiation to obtain that, for any F ∈ ( lcN ,
(l+1)c
N ) with l = 3, . . . , N − 2,

dae

dF
(F ) = −

∂f
∂F
∂f
∂a

∣∣∣∣
(a,F )=(ae(F ),F )

= − u
(N)
l (ae(F ))

2(R− r) + c · v(N)′
l (ae(F ))− (c− F )u

(N)′
l (ae(F ))

,

where v
(N)
l and u

(N)
l are functions defined in the proof of Lemma 9 below. Thus, the right

derivative at F = lc
N is given by

dae

dF
(
lc

N
+) = − u

(N)
l (ae( lcN ))

2(R− r) + c · v(N)′
l (ae( lcN ))− (c− lc

N )u
(N)′
l (ae( lcN ))

. (A12)

Similarly, for the left derivative at F = lc
N we obtain that

dae

dF
(
lc

N
−) = −

u
(N)
l−1(ae( lcN ))

2(R− r) + c · v(N)′
l−1 (ae( lcN ))− (c− lc

N )u
(N)′
l−1 (ae( lcN ))

. (A13)

To compare (A12) with (A13), we first show that the denominators for dae

dF ( lcN+) and dae

dF ( lcN−)

36



are the same. To that end, we have(
c · v(N)′

l (ae(
lc

N
))− cN − l

N
u
(N)′
l (ae(

lc

N
))

)
−
(
c · v(N)′

l−1 (ae(
lc

N
))− cN − l

N
u
(N)′
l−1 (ae(

lc

N
))

)
=c

((
N − 1

N − 1− l

)
[(1− a)N−1−lal]′ − N − l

N

(
N

N − l

)
[(1− a)N−l−1al]′

)∣∣∣∣
a=ae( lc

N
)

=c[(1− a)N−1−lal]′|a=ae(F ) ·
((

N − 1

l

)
− N − l

N

(
N

l

))
= 0.

On the other hand, recall that when R − r is large enough, both dae

dF ( lcN+) and dae

dF ( lcN−) are

negative. Given that u
(N)
l−1(ae( lcN )), u

(N)
l (ae( lcN )) > 0, we know from (A12) and (A13) that the

common denominator for dae

dF ( lcN+) and dae

dF ( lcN−) must be positive. Thus,

dae

dF
(
lc

N
+)− dae

dF
(
lc

N
−) =

−[u
(N)
l (ae( lcN ))− u(N)

l−1(ae( lcN )]

2(R− r) + c · v(N)′
l (ae( lcN ))− cN−1N u

(N)′
l (ae( lcN ))

=
−
(
N
N−1

)
(1− a)N−l−1al|a=ae( lc

N
)

2(R− r) + c · v(N)′
l (ae( lcN ))− cN−1N u

(N)′
l (ae( lcN ))

< 0.

Lemma 9 For any F ∈ [2cN ,
c

1+rf
), we have that

sup
a∈[0,1]

∣∣∣∣ ∂∂aφ(a;F )

∣∣∣∣ <∞.
Proof.

Without loss of generality, let us suppose F ∈ [ lcN ,
(l+1)c
N ) for some l = 2, 3, . . . , N − 1, so

that bNFc c = l. Using (A1), we have

φ(a;F ) =

N−1∑
k=N−1−l

(
N − 1

k

)
(1− a)kaN−1−k

(
c− N(c− F )

k + 1

)
=c · v(N)

l (a)− (c− F )u
(N)
l (a), (A14)

where

v
(N)
l (a) =

N−1∑
k=N−1−l

(
N − 1

k

)
(1− a)kaN−1−k, u

(N)
l (a) =

N∑
k=N−l

(
N

k

)
(1− a)k−1aN−k.

Functions v
(N)
l (a) and u

(N)
l (a) do not depend on F and c, and apparently both of them have

continuous first order derivative in a over [0, 1]. This completes the proof.
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C Proof of Proposition 6

We first study the first best. To that end, recall from (25) that

a∗ = arg max[−(R− r)a2 + (R− 1− c)a+ 1− rfF ].

Using the first order condition, we obtain that a∗ = R−1−c
2(R−r) .

To prove (27), the upper bound follows immediately from (24) and the fact that φ(a;F ) ≥
0:

ae =
R− 1− φ(ae;F )

2(R− r) ≤ R− 1

2(R− r) .

To prove the lower bound, let us suppose for the moment that F satisfies a cover-(N − 1)

rule, i.e. (N−1)c
N ≤ F < c. In this case, we have φ(a;F ) = F − (c − F )a(1−a

N−1)
1−a < c for all

0 < a < 1 and (N−1)c
N ≤ F < c. On the other hand, using Lemma 8 we know that, for each

fixed a ∈ (0, 1), φ(a;F ) is strictly increasing for all F ∈ [2cN ,
c

1+rf
), so that φ(a;F ) < c for all

2c
N ≤ F < c. Comparing a∗ and ae in expressions (26) and (24), we have that

ae =
R− 1− φ(ae;F )

2(R− r) >
R− 1− c
2(R− r) = a∗.

This completes the proof.

D Proof of Proposition 7

The objective function B(F ) − rfF is differentiable in F off the set of kinks { lcN ; l =
2, 3, . . . , N − 1}. Thus, if the equilibrium F e is not at one of the kinks, it must solves the
regulator’s tradeoff between the marginal benefit and marginal cost, i.e. the marginal benefit
of increase F in mitigating risk-shifting should equal to the marginal cost of opportunity of
default fund segregation. However, as F increases over the kink lc

N for some l = 3, 4, . . . , N−1,
the marginal cost rf increases continuously, but the marginal benefit B′(F ) increases abruptly.
Thus, it is never optimal to choose a default fund level F at one of such kinks.

Next we show that if the marginal value of increasing F is higher than the opportunity
cost at the lower bound 2c

N (B′(2cN ) > rf ), then 2c
N < F e < c. We claim that

B′(
2c

N
) > rf ↔

(ae(2cN )− a∗) · u(N)
2 (ae(2cN ))

1 + c
2(R−r) [v

(N),′
2 (ae(2cN ))− N−2

N u
(N),′
2 (ae(2cN ))]

> rf . (A15)

where v
(N)
2 (a) =

∑N−1
k=N−3

(
N−1
k

)
(1 − a)kaN−1−k, u(N)

2 (a) =
∑N

k=N−2
(
N
k

)
(1 − a)k−1aN−k. To

see (A15), notice that for any F 6= lc
N ,

B′(F ) = [−2(R− r)ae(F ) +R− 1− c]da
e

dF
(F ) = −2(R− r)(ae(F )− a∗)da

e

dF
(F ). (A16)
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Moreover, using implicit differentiation we have

−da
e

dF
(F ) =

∂φ
∂F

2(R− r) + ∂φ
∂a

=
u
(N)
2 (ae(F ))

2(R− r) + c[v
(N)
2 (ae(F ))− N−2

N u
(N)
2 (ae(F ))]

. (A17)

From (A16) and (A17) we have

B′(
2c

N
+) =

u
(N)
2 (ae(2cN ))

1 + c
2(R−r) [v

(N)
2 (ae(2cN ))− N−2

N u
(N)
2 (ae(2cN ))]

. (A18)

Therefore, the condition in (A15) is equivalent to B′(2cN +)− rf > 0, so the objective function

B(F ) − rfF is locally increasing in a small right neighborhood of 2c
N . Similarly, because

ae(c−) = a∗ (see Proposition 6), we know that B′(c−)− rf = −rf < 0. That is, the objective
function B(F ) − rfF is locally decreasing in a small left neighborhood of c. It follows that
the maximum F e < c.

E Proof of Equation (32)

When N = 3, the first order equation is a quadratic equation

f(a;F ) =
R− 1− F + (c− F )(a+ a2)

2(R− r) − a = 0. (A19)

Its solution is given by

a± =
R− r
c− F −

1

2
±
√(

R− r
c− F −

1

2

)2

− R− 1− F
c− F .

Since R − r > c
2 , we know that a− > 0 and a+ < 0. Moreover, one can easily verify that

a− < 1 by plugging a = 1 into (A19) and using the condition that 2c− 3F ≤ 0 (the cover-II
requirement). Hence, a− gives the formula for ae(F ).

To demonstrate the monotonicity of ae(F ), we notice that, for any 2c
3 ≤ F < c and

0 ≤ a ≤ 1,

∂f

∂a
=

(c− F )(1 + 2a)

2(R− r) − 1 ≤
c
3(1 + 2)

2(R− r) − 1 =
c

2(R− r) − 1 < 0,

∂f

∂F
=− 1

2(R− r)(1 + a+ a2) < 0.

By the implicit differentiation theorem, we know that ae(F ) is strictly decreasing and differ-
entiable in F .

Now that we have established that the mapping F : 7→ ae(F ) is one-to-one and decreasing,
to obtain the equilibrium F e, we consider a change of variable: ae :7→ F (ae), namely, the
inverse of ae(F ):

F (a) = c− 2(R− r) a− a∗
1 + a+ a2

.
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Then we know that F e = F (â), where

â = arg max
a∈[a∗,ae( 2c

3
)]

[−(R− r)a2 + (R− 1− c)a+ 1− rfF (a)]

= arg max
a∈[a∗,ae( 2c

3
)]

[−(R− r)a2 + (R− 1− c)a+ 1− rfF (a)]. (A20)

To fix â, we calculate the derivative of the objective function of (A20) with respect to a:

−2(R− r)a+R− 1− c− 2rf (R− r)1− a2 + a∗ + 2a∗a
(1 + a+ a2)2

= −2(R− r)h(a). (A21)

Moreover, notice that

h′(a) = 1 + rf
1− a3 + 3a∗a2 + 2(1 + a∗)a

(1 + a+ a2)3
> 1, ∀a ∈ [0, 1]. (A22)

Therefore, the first order condition equation h(a) = 0 can have at most one root. On the other
hand, one clearly has h(a∗) < 0, so if h(ae(2c3 )) ≤ 0, then the objective function of (A20) is

strictly increasing in a over [a∗, ae(2c3 )]. It follows that â = ae(2c3 ) and F e = F (ae(2c3 )) = 2c
3 .

On the other hand, if h(ae(2c3 )) > 0, then there is a unique maximizer â = a0 ∈ (a∗, ae(2c3 )),
which solves the first order condition equation h(a0) = 0. Hence, the equilibrium default fund
F e = F (a0).

F The large CCP network limit: proofs of Proposition 4 and
Proposition 8

In this section, we derive the limit of ψ(N − 1;F ) and φ(a;F ) as N → ∞, which will

imply the limit of F̂ and ae(F ) as the number of members in the CCP network grows without
bound. To that end, we recall (A14) that,

φ(a;F ) = c v
(N)
l (a)− (c− F )u

(N)
l (a),

where l = bNFc c, and functions v
(N)
l and u

(N)
l have the following representation: suppose X

follows a Binomial distribution with parameter (N−1, a) and Y follows a Binomial distribution
with parameter (N, a), then

v
(N)
l (a) =P(X ≤ l) = P(

√
N − 1(

X

N − 1
− a) ≤

√
N − 1(

l

N − 1
− a)), (A23)

u
(N)
l (a) =

P(Y ≤ l)
1− a = P(

√
N(

Y

N
− a) ≤

√
N(

l

N
− a)). (A24)

By the central limit theorem, both
√
N − 1( X

N−1−a) and
√
N( YN −a) converges in distribution

to a normal distribution with mean 0 and variance a(1 − a). On the other hand, from
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NF−c
c < bNFc c ≤ NF

c we know that,

lim
N→∞

√
N − 1(

l

N − 1
− a) = lim

N→∞

√
N(

l

N
− a) =


∞, if

F

c
> a,

0, if
F

c
= a,

−∞, if
F

c
< a

.

It follows that

lim
N→∞

v
(N)
l (a) = 1{F

c
≥a} +

1

2
1{F

c
=a}, lim

N→∞
u
(N)
l (a) =

1{F

c
≥a} + 1

21{F

c
=a}

1− a ,

and

lim
N→∞

φ(a;F ) = c · 1{F

c
>a}

(
1− 1− F

c

1− a

)
.

Returning to the definition of φ(a;F ), we know that

lim
N→∞

ψ(N − 1;F ) = c · 1{F

c
>ql}

(
1− 1− F

c

1− ql

)
.

Therefore, in the binary case, the switching point F̂ , which is defined as the unique root to
ψ(N − 1; F̂ ) = µh−µl

qh−ql , converges to the solution to the equation:

c · 1{F

c
>ql}

(
1− 1− F

c

1− ql

)
=
µh − µl
qh − ql

.

We notice that, as the number of members N → ∞, the cover-II requirement for F , now
becomes F > 0. Hence, if µh−µl

qh−ql ≤ c, then we obtain that

F̂ = ql c+ (1− ql)
µh − µl
qh − ql

.

Hence, by (18) we know that, as N →∞,

xe(N)

N
=
F e(N)

c
→


F̂

c
, if µl − µh − c(ql − qh) > rf (ql c+ (1− ql)

µh − µl
qh − ql

),

0, else.

(A25)

This proves Proposition 4.

In the continuous case, recall that the optimal risk preference ae(F ) and F satisfies the
first order condition equation:

a =
R− 1− φ(a;F )

2(R− r) .
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As N →∞, we notice that the above equation converges to

a =


R− 1

2(R− r) , if
F

c
≤ a,

a∗ +
c− F

2(R− r)(1− a)
, if

F

c
> a.

In other words,

ae(F ) =


R− 1

2(R− r) , if
F

c
≤ R− 1

2(R− r) ,

(1 + a∗)−
√

(1 + a∗)2 − 2R−1−FR−r
2

, if
F

c
>

R− 1

2(R− r) ,
(A26)

which is a continuous function that is strictly decreasing over ( R−1
2(R−r)c, c), with limits ae(c−) =

a∗. From (29) we know that, as N →∞, we have

xe(N)

N
=
F e(N)

c
→ 1

c
arg max

F

(
−(R− r)(ae(F ))2 + (R− 1− c)ae(F ) + 1− rfF

)
. (A27)

To find the maximizer for the right hand side of (A27), we first notice that

arg max
0<F≤ R−1

2(R−r)
c

(
−(R− r)(ae(F ))2 + (R− 1− c)ae(F ) + 1− rfF

)
= 0,

with maximum

− (R− r)
(

R− 1

2(R− r)c
)2

+ (R− 1− c) R− 1

2(R− r)c+ 1 = −(R− 1)2c2

4(R− r) + a∗(R− 1)c+ 1. (A28)

On the other hand, the range of the objective function in (A27) for F ∈ ( R−1
2(R−r)c, c) is the

same as that of

G(a) := −(R− r)a2 + (R− 1− c)a+ 1− rfF (a), a ∈ (a∗,
R− 1

2(R− r)),

where F (a) is the inverse of ae(F ) in (A26) for F ∈ ( R−1
2(R−r)c, c), given by

F (a) = R− 1 +
[(1 + a∗ − 2a)2 − (1 + a∗)2](R− r)

2
. (A29)

From

G′(a) = −2(R− r)[(1 + 2rf )a− ((1 + rf )a∗ + rf )], (A30)
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we know that G′(a∗) > 0. So

sup
a∈(a∗, R−1

2(R−r)
)

G(a) =


G(

(1 + rf )a∗ + rf
1 + 2rf

), if
(1 + rf )a∗ + rf

1 + 2rf
<

R− 1

2(R− r) ,

G(
R− 1

2(R− r)), else.

Thus, we know that

arg max
F

(
−(R− r)(ae(F ))2 + (R− 1− c)ae(F ) + 1− rfF

)

=


F (

(1 + rf )a∗ + rf
1 + 2rf

), if G(
(1 + rf )a∗ + rf

1 + 2rf
) > −(R− 1)2c2

4(R− r) + a∗(R− 1)c+ 1 and

(1 + rf )a∗ + rf
1 + 2rf

<
R− 1

2(R− r) ,

0, else.
(A31)

This proves Proposition 8. Finally, since a∗ < R−1
2(R−r) and a∗ maximizes G(a) when rf = 0,

we know that we are in the first case of (A31) if rf > 0 is sufficiently small.
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We study crowded markets using a symmetric continuous-time model

with strategic informed traders. We model crowdedness by assuming

that traders may have incorrect beliefs about the number of smart

traders in the market and the correlation among private signals,

which distort their inference, trading strategies, and market prices.

If traders underestimate the crowdedness, then markets are more liq-

uid, both permanent and temporary market depths tend to be higher,

traders take larger positions and trade more on short-run profit op-

portunities. In contrast, if traders overestimate the crowdedness,

then traders believe markets to be less liquid, they are more cau-

tious in both trading on their information and supplying liquidity to

others; fears of crowded markets may also lead to “illusion of liquid-

ity” so that the actual endogenous market depth is even lower than

what traders believe it to be. Crowdedness makes markets fragile, be-

cause flash crashes, triggered whenever some traders liquidate large

positions at fire-sale rates, tend to be more pronounced.
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With a dramatic growth in the asset management industry, financial markets have be-

come platforms where the sophisticated institutional players trade intensively with each

other, while retail investors are of much less importance. Even though traders usually seek

for overlooked opportunities and try to add diversity into their portfolios, many trading

strategies often become crowded. Traders are concerned about crowded markets, because

these markets tend to be more fragile and prone to crashes.

Traders come up with investment ideas for generating alphas, evaluate transaction costs

of implementing these strategies in real markets, and try to assess, often informally, to

what extent strategies might be crowded, i.e., how many other traders might be simulta-

neously entering the same strategy space and to what extent their private signals might be

correlated. While there has been lots of academic research in finance on anomalies in asset

returns and liquidity, until recently the question about crowding has received little formal

attention. In the 2009-presidential address, Jeremy Stein emphasizes this point and notes

that “for a broad class of quantitative trading strategies, an important consideration for

each individual arbitrageur is that he cannot know in real time exactly how many others are

using the same model and taking the same position as him.” Recognizing the importance

of this issue, some firms started to provide tools for identifying and measuring crowded-

ness of trades and strategies, for example, such as the “crowding scorecard” offered by the

MSCI. In this paper, we fill the gap and study theoretically the crowded-market problem,

analyzing how thinking about crowdedness interacts with other aspects of trading, such as

private information and liquidity.

We consider a stationary continuous-time model of trading among oligopolistic traders.

Traders observe flows of private information about asset’s fundamental value and trade on

their disagreement about the precision of private information. Traders are of two types.

“Smart” traders observe private information with high precision and other traders observe

private information with low precision; yet, each trader believes that he observes private

information with high precision. All traders trade strategically. They take into account

how their trades affect prices and smooth out the execution of their bets over time. This

modelling structure is borrowed from the smooth trading model of Kyle, Obizhaeva and

Wang (2017) due to its convenience and tractability.

We model crowding by assuming that traders make informed guesses about how many of

sgorban@nes.ru. Obizhaeva: New Economic School, 100A Novaya Street, Skolkovo, Moscow, 143026,
Russia, aobizhaeva@nes.ru. Wang: Robert H. Smith School of Business, University of Maryland, College
Park, MD 20742, ywang22@rhsmith.umd.edu.
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their peers might be investing in the same trading strategies, how correlated their private

signals might be, and how many of them are smart traders. The perceived subjective

characteristics about the number of traders, the correlation among private signals, and the

number of smart traders can differ from true characteristics defining the market. Actual

characteristics are hard to observe, and trader may either underestimate or overestimate

these parameters. Our approach differs from the approach in Callahan (2004) and Stein

(2009), who propose to model crowding as the uncertainty about the number of traders,

but assume that market participants have unbiased estimates about model parameters.

Each trader trades toward a target inventory, which is proportional to the difference

between his own valuation and the average valuation of other market participants, inferred

from prices and dividends. The price-based mechanism works properly in our model, as

traders do learn from history of prices and condition their strategies on their estimates

of fundamental values. Trading strategies are not required to be “unanchored,” this is in

sharp contrast with Stein (2009). In the equilibrium, since traders optimally choose their

consumption path together with trading strategies using their subjective beliefs, strategies

depend only on traders’ subjective parameters, not the actual model parameters. Yet, the

equilibrium price also reflects the true number of traders, since it is obtained through the

actual market-clearing mechanism, which aggregates demand functions of all traders.

Can traders learn about their mistakes by observing price dynamics? For the case when

traders might mis-estimate the total number of traders, traders can learn the average of

other traders’ signals from prices, but it is impossible for them to figure out the average of

exactly how many signals get into the pricing formula. We show that under the consistency

condition that imposes a restriction on the relationship between traders’ beliefs about the

number of peers and the correlation among private signals, traders cannot learn about their

possibly wrong beliefs from observable prices and price volatility. The consistency condition

requires that traders either simultaneously underestimate or overestimate both the number

of traders and correlation among private signals, though the adjustment in correlation

estimates satisfying the consistency condition tends to be very small. The main impact

on market liquidity and trading strategies is coming from mis-estimation of the number of

traders. Thus, we view this consistency condition as a reasonable one for real-world markets.

The intuition is simple. For example, if traders simultaneously overestimate the number of

peers and correlation among private signals, i.e., they overestimate the crowdedness of the

market, then traders would expect a relatively lower volatility due to a larger number of
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peers and a relatively higher volatility due to a higher correlation among private signals.

When both effects perfectly balance each other, traders can not learn from price dynamics

about their mistakes. Similar arguments apply for the case when traders underestimate

the crowdedness.

In fact, traders can learn about their mistakes only by experimenting and deviating from

equilibrium strategies or from one-time off-equilibrium events, which may allow traders to

learn about actual slope of residual demand function. In practice, this type of experiment

can be expensive to implement. Even if traders could learn about the actual total number

of traders by obtaining some data on residual demand schedules, they still cannot know

in real time exactly how many smart traders are trading in the same direction. We study

market properties in this situation as well.

In our model, there is a temporary market depth and a permanent market depth that

depend on the execution speed and the size of executed orders, respectively. Since traders

build their calculations based on subjective market-clearing condition, the perceived market

depth may differ from actual market depth in the market. Perceived market depth differs

from actual market depth by a factor approximately equal to the ratio of the perceived

number of traders to the actual number of traders.

Fear of a crowded market may lead to illusion of liquidity. We show that when traders

overestimate how crowded the market is, they overestimate both temporary and permanent

market depth in comparison with actual market depth. However, fear of crowded markets

tends to decrease both perceived and actual market depth. Traders trade less intensively,

take smaller positions, and are less willing to supply liquidity to other traders. In contrast,

when traders underestimate how crowded the market is, they trade more aggressively, take

larger positions, and readily supply liquidity to others.

Crowded markets dominated by institutional investors are often blamed for increased

fragility and instability of financial markets, see for example Basak and Pavlova (2013).

Market crashes often occur when some market participants are liquidating substantial posi-

tions at a fast pace ( e.g., Kyle and Obizhaeva (2016)). We model one-time off-equilibrium

execution of large orders and study how the market reaction changes depending on traders’

beliefs about market crowdedness. The more traders overestimate the number of their

peers, the less they are willing to provide liquidity to others, and the more pronounced are

flash-crash patterns.

The crowded-trade hypothesis is often mentioned in discussions about some important
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finance episodes. During the market-neutral “quant meltdown” in August of 2007, some

of the most successful hedge funds suddenly experienced massive losses, even though the

overall market itself did not move much. Khandani and Lo (2010) and Pedersen (2009)

discuss a popular hypothesis that attributes this event to unprecedentedly large number

of hedge funds investing in similar quantitative strategies. The anecdotal evidence shows

that crowding in strategies may play roles during the unwinding of carry trades as well as

during the momentum crashes. Stein (2009) also illustrates the effect of crowding using

a case study about announced changes in the construction of MSCI indices in 2001-2002

that created a profit opportunity for arbitrageurs. In anticipation of trading by index

fund managers in response to changes in index weights, arbitrageurs could in theory buy

stocks whose weights were known to increase and sell stocks whose weights were known

to decrease. This strategy though did not result in predicted profits in practice, perhaps

because too many arbitrageurs rushed into this opportunity at the beginning and this led

to price overshooting followed by correction.

Our paper contributes to the existing literature on crowded markets. Stein (2009) pro-

poses a one-period model, in which some traders underreact to their private signals, and

uncertain number of arbitrageurs chase to profit on this opportunity. To keep things sim-

ple, he makes a number of simplifying assumptions by hard-wiring existence of anomalies,

restricting strategies, and considering limiting cases. Arbitrageurs do not condition their

strategies on their own estimates of fundamental values and their demand functions may

be a non-decreasing functions of asset prices. In contrast, in our model, except for overcon-

fidence, traders apply Bayes Law consistently, optimize correctly, and dynamically update

their estimates of both alphas and target inventories. Stein (2009) suggests that the effect

of crowding among arbitrageurs on market efficiency is likely to exhibit complicated pat-

terns. When there is uncertainty about the degree of crowding, in some cases prices might

be pushed further away from fundamentals.

Another related paper is Callahan (2004), who analyze the model of Kyle (1985) with

added uncertainty about the number of informed traders. Under specific assumptions

about signals of informed traders, he obtains a solution for the case when the total number

of informed traders is some unknown number less or equal to two. In contrast, we model

crowded markets in oligopolistic setting and the number of strategic informed traders can be

any number greater than two. Kondor and Zawadowski (2016) study another issue related

to crowding. They analyze how learning induced by competition affects capital allocation
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and welfare. They find that additional potential entrants do not improve efficiency of

capital allocation and decrease social welfare.

Thinking about crowded markets has recently become important in public policy discus-

sions. Regulators are increasingly concerned about whether some strategies and market

segments become crowded and whether any of them are currently at risk of unwinding.

For example, crowded trades and concentration on a small set of risk factors may create

a systemic risk for a central clearing party and financial system, when some traders are

forced to liquidate their positions, as discussed in Menkveld (2017). Our model suggests

that market turns to be more vulnerable of crashes when traders overestimate the fraction

of traders who are trading in the same direction.

It is difficult to identify and track crowded trades. A number of studies propose and test

some measures of crowdedness. Pojarliev and Levich (2011) measure the style crowdedness

in currency trades as the percentage of funds with significant positive exposure to a given

style less the percentage of funds with significant negative exposure to the same style. Polk

and Lou (2013) gauge the level of arbitrageurs crowdedness in momentum strategies from

high-frequency (daily or weekly) abnormal returns correlations among stocks in the winner

and/or loser portfolios. Sokolovski (2016) applies both measures to analyze dynamics in

returns of carry trades. Hong et al. (2013) suggest using days-to-cover metrics, defined as

the ratio of a stock’s short interest to trading volume, which is expected to be a proxy for

the cost of exiting crowded trade. Yan (2013) measures the crowdedness by combining the

short interest ratio and the exit rate of institutional investors, defined as the number of

shares liquidated; he shows that momentum losses can often be avoided by shorting only

non-crowded losers. Usually researchers find empirically that these measures provide useful

information about following up performance of strategies. Strategies may work well as long

as they are not crowded, and they tend to crash or revert when crowdedness increases.

This paper is structured as follows. Section 1 describes a continuous-time model of

crowded markets. Section 2 presents some comparative statics and studies the implications

of crowding. Section 3 examines how crowdedness may affect the magnitude of flash crashes

and implementation shortfalls. Section 4 concludes. All proofs are in the Appendix.

1. A Model of Crowded Market

We consider a dynamic model of trading among N oligopolistic traders. There is a risky

security with zero net supply, which pays out dividends at continuous rate D(t). The
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dividend D(t) is publicly observable and follows a stochastic process with mean-reverting

stochastic growth rate G∗(t). The dividend has a constant instantaneous volatility σD > 0

and constant rate of mean reversion αD > 0,

(1) dD(t) := −αD D(t) dt+G∗(t) dt+ σD dBD(t),

where G∗(t) is unobservable growth rate. The growth rate G∗(t) follows an AR-1 process

with mean reversion αG > 0 and volatility σG > 0,

(2) dG∗(t) := −αG G
∗(t) dt+ σG dBG(t).

Each trader n observes a continuous stream of private information In(t) defined by

(3) dIn(t) := τ 1/2n

G∗(t)

σG Ω1/2
dt+ ρ1/2dZ(t) + (1− ρ)1/2dBn(t).

Since its drift is proportional to G∗(t), each increment dIn(t) in the process In(t) is a noisy

observation of G∗(t). The denominator σGΩ1/2 scales G∗(t) so that its conditional variance

is one. The parameter Ω measures the steady-state error variance of the trader’s estimate

of G∗(t) in units of time; it is defined algebraically below (see equation (8)). The precision

parameter τn measures the informativeness of the signal dIn(t) as a signal-to-noise ratio

describing how fast new information flows into the market. The error terms are correlated,

and Cov(dIn, dIm) = ρdt for m ̸= n, where ρ < 1.

The stream of dividends contains some information about the growth rate as well. Define

dI0(t) := [αD D(t) dt+ dD(t)] /σD and dB0 := dBD. Then, dI0(t) can be written

(4) dI0(t) := τ
1/2
0

G∗(t)

σG Ω1/2
dt+ dB0(t), where τ0 :=

Ω σ2
G

σ2
D

,

so that public information dI0(t) in the divided stream D(t) has a form similar to the

notation for private information. The process I0(t) is informationally equivalent to the

dividend process D(t). The quantity τ0 measures the precision of the dividend process.

The Brownian motions dB0(t), dZ(t), dB1(t),. . . , dBN(t) are independently distributed.

To model trading, we assume that all traders agree about the precision of the public

signal τ0, but agree to disagree about the precisions of private signals τn. Each trader n

is certain that his own private information has high precision τn = τH and N − 1 other
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traders can be of two types: NI − 1 traders have private information with high precision

τH and the other NU := N − NI traders have private information with low precision τL,

where τH > τL ≥ 0.

Denote the fraction of other traders (except trader n himself) with high precision in the

market as

(5) θ :=
NI − 1

NU +NI − 1
.

This implies that 1 − θ fraction of other traders’ private information has low precision.

Traders do not know each others’ type.

To model crowded markets, we make the following two assumptions that capture two

different aspects of these markets. First, traders might make incorrect estimates about the

total number of traders; we assume that all traders symmetrically think that there areNs :=

NIs +NUs participants. Second, traders might have incorrect beliefs about correlations in

private signals (3); we assume that traders symmetrically believe that Cov(dIn, dIm) = ρsdt

for m ̸= n. Trader may also have subjective beliefs θs about the fraction of informed

traders. We use subscripts s to denote subjective beliefs to differentiate them from the

actually correct parameters N , ρ, and θ. We assume that traders’ beliefs about the number

of traders and the correlation of signals are some known constants. There is no uncertainty

about the number of traders and correlation. We study how mistakes in traders’ views

about these parameters affect trading, prices, and liquidity.

We refer to the model with crowding as (NIs, NUs, ρs;NI , NU , ρ)-model, where NI , NU ,

and ρ are objective parameters describing the environment, and NIs, NUs, and ρs are

subjective parameters describing traders’ beliefs. We refer to the model without crowd-

ing as (NI , NU , ρ;NI , NU , ρ)-model, where traders have correct beliefs about the corre-

lation in private signals of market participants and the number of traders. For any

(NIs, NUs, ρs;NI , NU , ρ)-model, equilibrium strategies depend only on the parameters NIs,

NUs, and ρs, since traders make their decisions based only on subjective beliefs, not the

actual parameters. The equilibrium price though is a result of the correct market clearing

based on the actual total number of traders in the market N = NI + NU . In spite of the

fact that the equilibrium strategies depend only on the parameters NIs, NUs, and ρs.

Let Sn(t) denote the inventory of trader n at time t. Each trader n chooses a consumption

intensity cn(t) and trading intensity xn(t) to maximize an expected constant-absolute-

risk-aversion (CARA) utility function U(cn(s)) := −e−A cn(s) with risk aversion parameter
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A. Letting β > 0 denote a time preference parameter, trader n solves the maximization

problem

(6) max
{cn(t),xn(t)}

En
t

{∫ ∞

s=t

e−β(s−t) U(cn(s)) ds

}
,

where trader n’s inventories follow the process dSn(t) = xn(t) dt and his money holdings

Mn(t) follow the stochastic process

(7) dMn(t) = (r Mn(t) + Sn(t)D(t)− cn(t)− P (t) xn(t)) dt.

Each trader trades “smoothly” in the sense that Sn(t) is a differentiable function of time

with trading intensity xn(t) = dSn(t)/dt. Each trader explicitly takes into account how

both the level of his inventory Sn(t) and the derivative of his inventory xn(t) affect the

price of a risky asset P (t).

Each trader dynamically adjusts his estimates and their error variance. We use En
t {. . .}

to denote the expectation of trader n calculated with respect to his information at time

t. The superscript n indicates that the expectation is taken with respect to the beliefs of

trader n. The subscript t indicates that the expectation is taken with respect to trader

n’s information set at time t, which consists of both private information as well as public

information extracted from the history of dividends and prices.

Let Gn(t) := En
t {G∗(t)} denote trader n’s estimate of the growth rate. Let Ω denote

the steady state error variance of the estimate of G∗(t), scaled in units of the standard

deviation of its innovation σG. Stratonovich-Kalman-Bucy filtering implies that, for the

beliefs of any trader n, the total precision τ and scaled error variance Ω are constants that

do not vary over time and given by

(8) Ω := V ar

{
G∗(t)−Gn(t)

σG

}
= (2 αG + τ)−1,

(9) τ = τ0 + τH + (Ns − 1)

(
(θs − ρs)τ

1/2
H + (1− θs)τ

1/2
L

)2
(1− ρs)(1 + (Ns − 1)ρs)

.



9

Define signals of trader n and the average signal of other traders as

(10) Hn(t) :=

∫ t

u=−∞
e−(αG+τ) (t−u) dIn(u), n = 0, 1, . . . , Ns,

and

(11) H−n(t) :=
1

Ns−1

Ns∑
m=1
m̸=n

Hm(t).

The importance of each bit of information dIn about the growth rate decays exponentially

at a rate αG + τ , i.e., the sum of the decay rate αG of fundamentals and the speed τ of

learning about fundamentals.

Trader n’s estimate Gn(t) can be conveniently written as the weighted sum of three

sufficient statistics H0(t), Hn(t), and H−n(t), which summarize the information content of

dividends, his private information, and other traders’ private information, respectively. The

filtering formulas imply that trader n’s expected growth rate Gn(t) is a linear combination

given by

Gn(t) := σG Ω1/2
(
τ
1/2
0 H0(t) + (1− θs)

(
τ
1/2
H − τ

1/2
L

)
/(1− ρs)Hn(t)

+
(θs − ρs)τ

1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)
(Hn(t) + (Ns − 1)H−n(t))

)
.

(12)

This equation has a simple intuition. Each trader places the same weight τ
1/2
0 on the

dividend-information signal H0(t), assigns a larger weight to his own signal Hn(t) and a

lower weight to signals of presumably Ns − 1 other traders, aggregated in variable H−n(t).

We focus on a symmetric linear equilibrium. To reduce the number of state variables, it

is convenient to replace the three state variables H0(t), Hn(t), H−n(t) with two composite

state variables Ĥn(t) and Ĥ−n(t) defined using a constant â by

(13) Ĥn(t) := Hn(t) + â H0(t), Ĥ−n(t) := H−n(t) + â H0(t),

(14) â :=
(1 + (Ns − 1)ρs)τ

1/2
0

(1 + (Ns − 1)θs)τ
1/2
H + (Ns − 1)(1− θs)τ

1/2
L

.
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The trader n conjectures that the symmetric linear demand schedules for other tradersm,

m ̸= n,m = 1, . . . , Ns is given by

(15) xm(t) =
dSm(t)

dt
= γD D(t) + γH Ĥm(t)− γS Sm(t)− γP P (t).

Each trader thinks that his flow-demand xn(t) = dSn(t)/dt must satisfy the following

market clearing

(16) xn(t) +
Ns∑
m=1
m̸=n

(
γD D(t) + γH Ĥm(t)− γS Sm(t)− γP P (t)

)
= 0,

which depends on his estimate Ns about the number of traders in the market. Using zero

net supply restriction
∑Ns

m=1 Sm(t) = 0, he solves this equation for P (t) as a function of his

own trading speed xn(t) to obtain his estimate about the residual supply function,

(17) P (xn(t)) =
γD
γP

D(t) +
γH
γP

Ĥ−n(t) +
γS

(Ns − 1)γP
Sn(t) +

1

(Ns − 1)γP
xn(t).

Then, each trader n exercises monopoly power in choosing how fast to demand liquidity

from other traders to profit from private information. He also exercises monopoly power

in choosing how fast to provide liquidity to the other Ns − 1 traders. Trader n solves for

his optimal consumption and trading strategy by plugging the price impact function (17)

into his dynamic optimization problem (6). Although strategies are defined in terms of

the average of other traders’ signals H−n(t), each trader believes that equilibrium prices

reveal the average private signal, which enables him to implement his equilibrium strategy

by conditioning his trading speed on market prices.

1.1. Prices and Consistency Condition

The equilibrium price is determined based on the actual market clearing condition which

sums up demands of the actual number of traders N in the market,

(18)
N∑

m=1

xm(t) = 0, and
N∑

m=1

Sm(t) = 0.
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Using equations (15) and (17), we obtain the actual equilibrium price

(19)

P (t) =
γD(Ns, θs, ρs)

γP (Ns, θs, ρs)
D(t) +

γH(Ns, θs, ρs)

γP (Ns, θs, ρs)
â(Ns, θs, ρs)H0(t) +

γH(Ns, θs, ρs)

NγP (Ns, θs, ρs)

N∑
m=1

Hm(t).

By contrast, each trader uses in his calculations the subjective market clearing condition

by summing up demands of the perceived number of traders Ns,

(20)
Ns∑
m=1

xm(t) = 0, and
Ns∑
m=1

Sm(t) = 0.

Each trader believes that the equilibrium price is determined by

(21)

Ps(t) =
γD(Ns, θs, ρs)

γP (Ns, θs, ρs)
D(t) +

γH(Ns, θs, ρs)

γP (Ns, θs, ρs)
â(Ns, θs, ρs)H0(t) +

γH(Ns, θs, ρs)

NsγP (Ns, θs, ρs)

Ns∑
m=1

Hm(t).

The only difference between the two pricing equations (19) and (21) are indices N and Ns

over which the summation of private signals is done. In the equilibrium, all calculations are

done from the perspective of traders, so only their subjective parameters enter equilibrium

demands and prices. This is, for example, why parameters ρ and θ are not in the formulas.

Among all objective parameters, only the objective number of traders N sneaks into the

pricing formula through the actual market clearing mechanism (18).

Each trader observes the market price P (t) but thinks that it is his conjectured price

Ps(t). He infers the average signal of all traders in the model, and (potentially incorrectly)

interprets it as the average of Ns signals, rather than N signals.

In continuous time, it is not difficult to estimate accurately the diffusion variance of

the process dP (t) by looking at its quadratic variation. If traders simply misinterpret

information about the averages in the price, then they would be able to learn about their

mistakes from the price dynamics. For example, if traders underestimate the total number

of participants in the market (Ns < N), then traders would expect to observe a relatively

high price volatility comparing to what they see in the market, because errors in private

signals would not average out.

Since traders cannot know in real time exactly how many other traders are investing in

the same strategies, we make sure that incorrect estimates about the number of traders

cannot be easily falsified by observing the price dynamics. This requires that the quadratic
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variation of actual price dynamics dP (t) must coincide with the quadratic variation of

perceived price dynamics dPs(t). Using equations (19) and (21), we obtain the consistency

condition ensuring that the quadratic variation of ρ1/2dZ(t) + (1 − ρ)1/2 1
N

∑N
m=1 dBm(t)

must coincide with the quadratic variation of ρ
1/2
s dZ(t) + (1− ρs)

1/2 1
Ns

∑Ns

m=1 dBm(t).

COROLLARY 1: Under the consistency condition

(22)
1 + (N − 1)ρ

N
=

1 + (Ns − 1)ρs
Ns

such that V arn(dP (t)) = V arn(dPs(t)), we have

(23) Cov(dIn(t), dP (t)) = Cov(dIn(t), dPs(t)).

The corollary means that, if the consistency condition (22) is satisfied, then for each trader,

the correlation coefficient between his private signal and the actual price change is consistent

with the subjective correlation between his private signal and price change. This condition

ensures that traders can not learn about their mistakes from price dynamics.

The consistency condition imposes the restriction on N,Ns, ρ, and ρs. If Ns < N , then

the condition implies that ρs < ρ, and vice versa. If traders underestimate the total number

of participants in the market (Ns < N), they should simultaneously underestimate the cor-

relation among their private signals (ρs < ρ) in order to bring downward the overestimated

volatility of dollar price changes due to the underestimated number of traders.

1.2. Liquidity

Equation (17) defines the subjective permanent market depth 1/λs and temporary market

depth 1/κs, as inverse slopes of residual demand functions with respect to number of shares

traded and the rate of trading,

(24) 1/λs :=
(Ns − 1) γp

γS
, 1/κs := (Ns − 1) γp,

where λs is the permanent price impact coefficient and κs is the temporary price impact

coefficient according to traders’ views. Traders believe that markets are deeper when the

number of traders is higher (Ns is high) and they tend to be more willing to provide liquidity

to others (γp is high).
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The subjective estimates of market liquidity may differ from the actual permanent market

depth 1/λ and temporary market depth 1/κ, because in reality the price is determined by

the actual market clearing condition (16), but with Ns replaced by N . Using the market-

clearing condition (16) and equation (17), subjective permanent and temporary market

depth 1/λs and 1/κs are related to the actual ones as

(25) 1/λs =
Ns − 1

N − 1
1/λ, 1/κs =

Ns − 1

N − 1
1/κ.

The subjective market depth is Ns−1
N−1

times of the objective one. If traders overestimate

the number of traders in the market (Ns > N), they also overestimate both permanent

and temporary market depth. We refer to this case as “illusion of liquidity.” If traders

underestimate the number of traders, they underestimate market depth and we refer to

this case as “illusion of illiquidity.” The subjective and objective market depth differ

approximately by a factor of Ns/N . For example, when traders overestimate the number

of total traders by 50 percent, the subjective market depth is larger than actual market

depth also by about 50 percent, and vice versa.

Traders do not observe actual residual demand schedules in the equilibrium. They might

be able to learn about the actual residual demand schedule’s slopes by implementing a

series of experiments and analyzing price responses to executions at some off-equilibrium

trading rates. In practice, this type of experiments however are either infeasible or very

costly to implement. Even if we assume that traders could learn about N by obtaining

some data on residual demand schedules, they still can not learn about the fraction of

informed traders θ.

1.3. Solution

The following theorem characterizes the equilibrium trading strategies and price. Traders

calculate target inventories, defined as inventory levels such that trader n does not trade

(xn(t) = 0). Traders update their targets dynamically and trade toward them smoothly,

thus optimizing the market impact of trading.

THEOREM 1: There exists a steady-state equilibrium with symmetric linear flow-strategies

and positive trading volume if and only if the six polynomial equations (C-38)–(C-43) have a

solution satisfying the second-order condition γP > 0 and the stationarity condition γS > 0.

Such an equilibrium has the following properties:
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1) There is an endogenously determined constant CL > 0, defined in equation (C-32),

such that trader n’s optimal flow-strategy xn(t) is given by

(26) xn(t) =
dSn(t)

dt
= γS

(
STI
n (t)− Sn(t)

)
,

where STI
n (t) is trader n’s “target inventory” defined as

(27) STI
n (t) = CL

(
Ĥn(t)− Ĥ−n(t)

)
.

2) There is an endogenously determined constant CG > 0, defined in equation (C-32),

such that the equilibrium price is

(28) P (t) =
D(t)

r + αD

+ CG
Ḡ(t)

(r + αD)(r + αG)
,

where Ḡ(t) := 1
N

∑N
n=1Gn(t) denotes the average expected growth rate.

Trader n targets a long position if his own signal Ĥn(t) is greater than the average signal

of other traders Ĥ−n(t) and a short position vice versa. The proportionality constant CL in

equation (27) measures the sensitivity of target inventories to the difference. The parameter

γS in equation (26) measures the speed of trading as the rate at which inventories adjust

toward their target levels. The price in equation (28) immediately reveals the average of

all signals. If CG were equal to one, the price in equation (28) would equal the average of

traders’ risk-neutral buy-and-hold valuations, consistent with the Gordon’s growth formula.

Aggregation of heterogeneous beliefs in a dynamic model, which we refer to as the Keynesian

beauty contest effect, makes the multiplier CG less than one.

Obtaining an analytical solution for the equilibrium in Theorem 1 requires solving the

six polynomial equations (C-38)–(C-43). While these equations have no obvious analytical

solution, they can be solved numerically. Extensive numerical calculations lead us to con-

jecture that the existence condition for the continuous-time model is exactly the same as

the existence condition for the similar one-period model presented in Appendix A:

CONJECTURE 1: Existence Condition. A steady-state equilibrium with symmetric,

linear flow-strategies exists if and only if

(29) θs < 1− Ns(1− ρs)τ
1/2
H

(Ns − 1)(2 + (Ns − 2)ρs)(τ
1/2
H − τ

1/2
L )

< 1.
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Equation (29) implies that, for an equilibrium with positive trading volume to exist, the

fraction of other traders whose private information has high precision θs cannot be too

high. The existence condition is reduced to τ
1/2
H /τ

1/2
L > 2+ Ns

Ns−2
if ρs = 0 and θs = 0, as in

the setting of Kyle, Obizhaeva and Wang (2017). This condition requires Ns ≥ 3 and τ
1/2
H

to be sufficiently more than twice as large as τ
1/2
L .

2. Properties of Crowded Markets

In this section, we study how changes in correlation of private signals and the number

of traders whose private information has high precision affect market liquidity and traders’

trading strategies.

2.1. Effects of Changes in Correlations of Private Signals

To develop intuition, we next consider the (NI , NU , ρ;NI , NU , ρ)-model with traders mak-

ing no mistakes about the level of crowdedness, but the correlation ρ among private in-

formation potentially may take different values. We study how changes in ρ affect the

market.
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Figure 1. γS against ρ.

Figure 1 illustrates that the speed of trade γS increases with the correlation coefficient

ρ.1 When traders observe private signals with highly correlated errors, they engage in a

rat race with each other, as in Foster and Vishwanathan (1996), and trade more aggres-

sively at a higher speed γS toward their target inventory levels. Figure 2 shows that as ρ

1In Figures 1, 2, 3, 4, and 6 parameter values are r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5,
σG = 0.1, θ = 0.1, τH = 1, τL = 0.2.
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increases, the total precision of information τ decreases, the error variance of the growth

rate estimates increases, and the coefficient γP increases, i.e., each trader is more willing

to provide liquidity to others.2
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Figure 2. Values of γP and τ against ρ.

Figure 3 shows that both permanent market depth 1/λ and temporary market depth 1/κ

increase, as ρ increases. The market becomes deeper. The perceived depth coincides with

the actual market depth, because traders do not misestimate the number of their peers in

the market.
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Figure 3. Values of 1/λ and 1/κ against ρ.

Traders believe that trading becomes more valuable and the value of trading on inno-

vations to future information (built into the constant term −ψ0 defined in trader’s value

function (C-20)) increases in correlation ρ, as shown in Figure 4.

2Total precision τ decreases with ρ as long as ρ is not very close to 1.
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Figure 4. Value of trading on innovations to future information −ψ0 against ρ.

Figure 5 presents two simulated paths for target inventories (dashed lines) and actual

inventories (solid lines).3 In panel (a) where correlation ρ is small, the market is less

liquid, traders adjust their inventories at a lower rate to reduce transaction costs, and

actual inventories may deviate significantly from target inventories. In panel (b) where

correlation ρ is larger, the market is more liquid, traders adjust their inventories at a faster

rate, and actual inventories closely track target inventories.
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Figure 5. Simulated paths of STI
n (t) (Dashed) and Sn(t) (Solid).

Figure 6 shows that the coefficient CG in the equilibrium pricing rule decreases, when

the correlation coefficient ρ increases. Higher correlation among private signals leads to

3The paths are generated using equations (27), (C-18), and (C-19), which describe the dynamics of

Ĥn(t), Ĥ−n(t), and STI
n (t). Numerical calculations in Figure 5 are based on the exogenous parameter

values r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, θ = 0.1, τH = 1, τL = 0.2 in both (a)
and (b); ρ = 0.05 in (a); ρ = 0.5 in (b).
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Figure 6. CG against ρ.

more pronounced price dampening effect (CG < 1). Indeed, in the model each trader

believes that other traders make mistakes and they will revise their forecasts in the future.

Due to highly correlated signals and a lot of liquidity, traders have greater incentives to

engage in short-term speculative trading and take advantage of this predictability in short-

term trading patterns of other traders, which could be quite different from expected price

dynamics in the long run, because each trader believes that at some point in the future the

price will converge to his own estimates of fundamentals.

2.2. Effects of Changes in Crowdedness

We next study properties of the (NIs, NUs, ρs;NI , NU , ρ)-markets where parameters NI ,

NU , and ρ describe the trading environment, and parameters NIs, NUs, ρs describe traders’

subjective beliefs. Traders believe that there are NIs and NUs traders whose private infor-

mation has high precision (e.g., “smart traders”) and low precision, respectively, and that

the correlation among innovations in private signals is equal to ρs. We study how beliefs

of traders about the crowdedness of smart traders affect the market and its properties.

We consider two cases. In both cases, we fix the trading environment NI , NU , and

ρ. In the first case, we vary beliefs of traders about the number of smart traders NIs

in the same market, but fix the number of traders whose private information has low

precision NUs = NU . In the second case, we vary NIs but fix the total number of traders

Ns = NIs +NUs = N.4

4As we discussed, traders might implement a series of experiments and analyze price response to
executions at some off-equilibrium trading rates to estimate the total number of traders in the market N .
However, traders cannot know in real time exactly how many of these traders are smart, i.e., they don’t
know NIs.
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Since traders’ estimate of the total number of traders Ns may differ from actual parameter

N in the first case, we consider two subcases. In the base case, we change both NIs and

ρs in lockstep to satisfy the consistency condition (22) so that traders can not learn about

their mistakes by observing price dynamics. The subjective correlation is calculated as

ρs = 1
Ns−1

(
Ns

N
(1 + (N − 1)ρ)− 1

)
. In another subcase, we change only NIs, but keep

ρs = ρ fixed. These subcases allow us to disentangle the effects of changes in the perceived

correlation ρs and the estimate of the number of traders NIs. The first subcase is presented

by solid lines, and the second subcase is presented in dashed lines in Figures 8, 9, 10, 13,

14, 15 and 16 below.

Figure 7 shows how ρs must change with changes in NIs in order to satisfy the consistency

condition. When NIs is the same as the actual number of traders NI (NI = NIs = 30),

the subjective correlation ρs converges to the actual correlation ρ (ρ = ρs = 0.20). If NIs

drops from 30 to 10, the subjective correlation ρs changes only slightly from 0.20 to about

0.195. If NIs raises from 30 to 50, the subjective correlation ρs changes from 0.20 to about

0.202.5
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Figure 7. ρs against NIs.

It means that the consistency condition requires only small changes in subjective corre-

lations in response to large changes in subjective estimates of the number of traders. Since

it is difficult to estimate the correlation among private signals in practice, this consistency

condition is practically realistic, because potentially incorrect beliefs of traders cannot be

easily falsified by observing the price dynamics. Also, in both subcases, all variables exhibit

very similar patterns, so we do not discuss these cases separately.

5Parameter values are r = 0.01, β = 0.05, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, NU = 40,
NI = 30, ρ = 0.2, τH = 1, τL = 0.
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Figure 8 plots the speed of trading γS against NIs for fixed number of traders with low

precision NUs = NU (left panel)6 and fixed total number of traders Ns = N (right panel).7

When traders overestimate the number of smart traders in the market, they tend to trade

less aggressively. If Ns = N is fixed in panel (b), then traders also underestimate the

number of traders with low-precision signals, which makes them to trade less aggressively

as well. If NUs = NU is fixed, then there are two effects. More smart traders imply that

competition among traders becomes more fierce and information decays at a faster rate

which also increases traders’ trading speed. However, more traders with high precision also

imply that adverse price impact increases, this tends to slow down traders’ trading speed.

These two opposite effects explain why γS may first decrease and then increase slightly when

NIs is getting larger with fixed NU , since first the adverse price impact effect dominates

and then the competition effect dominates. In panel (a) of Figure 8 the difference between

dashed and solid lines is hardly noticeable, this suggests that the decrease in trading speed

mainly comes from overestimating the number of smart traders, not from misestimating

the correlation.
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Figure 8. Values of γS against NIs.

Figure 9 shows that what traders think about crowdedness also affects how large positions

they are willing to take. Traders target smaller positions when they overestimate the

crowdedness of the smart traders, since the profit opportunities get smaller. The effect is

6In Figure 10 and in the left panel of Figures 8, 9, 13, 14, 15 and 16, parameter values are r = 0.01,
β = 0.05, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, NU = 40, NI = 30, ρ = 0.2, τH = 1, τL = 0.

7In Figure 11 and in the right panel of Figures 8, 9, 13, 14, 15, and 16, parameter values are r = 0.01,
A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, N = Ns = 70, τH = 1, τL = 0.
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slightly more pronounced when the total number of traders is fixed, because the adverse

price impact is more significant with an increased fraction of smart traders while fixing the

total number of traders in the market.
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Figure 9. Values of E|STI
n (t)| against NIs.

Figure 10 plots permanent market depth 1/λ and temporary market depth 1/κ against

NIs using ρs = ρ (dashed curve) and ρs (solid curve) satisfying the consistency condition

(22). It also plots subjective estimates of market depths 1/λs and 1/κs. As before, the

figure suggests that the change in market depth comes mainly from misestimation of the

number of traders, not correlation among private signals.
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Figure 10. Values of 1/λ, 1/κ, 1/λs, and 1/κs against NIs for the case with fixed NU .

Fear of crowding of smart traders reduces market liquidity. Indeed, when traders over-

estimate the crowdedness of smart traders (NIs > NI), they also expect that the market

depth is somewhat low, because everybody is less willing to provide liquidity to each other.



22

In reality, the actual market depth is even lower than what traders think, 1/λ < 1/λs

and 1/κ < 1/κs. In contrast, when traders underestimate the number of smart traders

(NIs < NI and ρs < ρ), all types of market depth increase, because traders are more ag-

gressive in trading on private information and providing liquidity to others. The actual

market depth is even higher than the perceived one (1/λ > 1/λs and 1/κ > 1/κs).

Figure 11 plots permanent market depth 1/λ and temporary market depth 1/κ against

NIs with fixed N . For this case, the perceived market depth is the same as the actual

market depth since traders correctly estimate the total number of market participants.

This figure shows that underestimating the number of smart traders NIs with fixed N

tends to increase market liquidity by a larger magnitude comparing to the case with fixed

NU .
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Figure 11. Values of 1/λ, 1/κ, 1/λs, and 1/κs against NIs for the case with fixed Ns = N .

Figure 12 presents two simulated paths for target inventories (dashed curve) and actual

inventories (solid curve).8 When traders underestimate the number of smart traders—

and the market is more liquid—actual inventories deviate less significantly from target

inventories since traders trade at a higher rate, as in panel (a). When traders overestimate

the number of smart traders —and the market is less liquid—actual inventories deviate

more significantly from target inventories, as in panel (b).

The left panel of Figure 13 plots γP against NIs for fixed NU using ρs = ρ (dashed curve)

and ρs (solid curve) satisfying the consistency condition (22). The right panel of Figure 13

plots γP against NIs for fixed N . As we can see from Figure 13, γP is lower (higher) when

8The paths are generated using equations (27), (C-18), and (C-19), which describe the dynamics of

Ĥn(t), Ĥ−n(t), and STI
n (t). Numerical calculations in Figure 12 are based on the exogenous parameter

values r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, τH = 1, τL = 0, NI = 30, NU = 40,
ρs = ρ = 0.2 in both (a) and (b); NIs = 20 and NUs = 50 in (a); NIs = 40 and NUs = 30 in (b).
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Figure 12. Simulated paths of STI
n (t) (Dashed) and Sn(t) (Solid).

traders overestimate (underestimate) the number of traders whose private information has

low precision.
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Figure 13. Values of γP against NIs.

Figure 14 illustrates changes in the total precision τ . A higher ρ tends to decrease the

total precision. Overestimating the number of traders tends to increase total precision, as

illustrated by the dashed curve in Figure 14. The net effect of overestimating the number of

traders and correlation increases the total precision (as shown by the solid curve in Figure

14) and decreases the error variance of the estimate of the growth rate. This makes trading

due to agreeing to disagreement less valuable, as shown in Figure 15, the value of trading

on innovations to future information (−ψ0) decreases.

Figure 16 presents how CG changes with NIs with fixed NU and fixed N . Figure 16



24

10 20 30 40 50
1.0

1.2

1.4

1.6

1.8

NIs

τ

(a) With fixed NU

10 20 30 40 50
1.0

1.2

1.4

1.6

1.8

2.0

NIs

τ

(b) With fixed Ns = N

Figure 14. Values of τ against NIs.
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Figure 15. Values of −ψ0 against NIs.

illustrates that CG is higher when traders overestimate the number of smart traders. Over-

estimating the number of smart traders results in less pronounced price dampening (a larger

CG), as traders are less willing to engage in short-term speculation due to greater adverse

price impacts.

To summarize, when traders overestimate the crowdedness of the smart traders, they tend

to have smaller target inventories, trade less aggressively toward target levels, trade less

on short-run opportunities, expect less liquidity, and believe that trading is less valuable.

When traders underestimate how many other smart traders who are trading in the same

direction as them, they tend to have larger target inventories, adjust actual inventories

faster toward target levels, trade more on short-run profit opportunities, expect higher

liquidity, and are more willing to provide liquidity to others.
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Figure 16. Values of CG against NIs.

3. Crowding and Fire Sales

It is believed that crowding may make markets more fragile. As we discussed in the

previous section, when traders underestimate the crowdedness of smart traders, they tend

to take larger positions, trade more on short-run profit opportunities, and are more willing

to provide liquidity to others. When traders are concerned that they might have underes-

timated the crowdedness of the traders who are trading in the same direction. They would

liquidate some of their inventories and market becomes less liquid at the same time. This

tends to make market more fragile.

Our model allows us to study what would happen in the crowded market if some traders

suddenly have to liquidate large positions in a “fire sale” mode. For example, this analysis

will help us examine theoretically how the market is expected to respond to events similar

to quant meltdown in August 2007. We show that these unexpected off-equilibrium fire

sales would create flash crashes. When traders are concerned about the crowding in their

trading strategies, they trade less aggressively toward their targets and provide less liquidity

to others. We show that this makes flash crashes more substantial.

We present a numerical example of how the market would respond to an off-equilibrium

fire sale of a trader. For simplicity, suppose at time 0, a trader observes a private signal

Hn(0) and holds some positive inventory, which is consistent with his target inventory. We

also assume that he thinks signals of other traders are at their long-term mean H−n(0) = 0

and dividends D(0) = 0 (with H0(0) = 0). It follows that his inventory at time 0 is

(30) Sn(0) = STI
n (0) = CL(NIs, ρs)Hn(0) > 0.
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We explicitly state the argument (NIs, ρs) on which the coefficient CL depends to emphasize

that this coefficient—as well as some other coefficients—depends on subjective beliefs of a

trader about the number of traders and correlations ρs of signals. From equations (17) and

(24), we get

(31) P (0) =
γS(NIs, ρs)

(N − 1)γP (NIs, ρs)
Sn(0) > 0.

A trader is not able to learn from the price about mistakes. Equations (19) and (21)

therefore imply that the perceived average of private signals must coincide with the actual

average.9 This is a starting consistent-with-equilibrium point of our example.

Next, assume that at time t = 0+, all traders receive new private information, so that

trader n’s signal Hn(0) and other traders’ signal H−n(0
+) suddenly drop to zero, reducing

his target inventory from STI
n (0) to STI

n (0+) = 0. Since Hn(0
+) = H−n(0

+) = 0, the new

equilibrium price is En
0 [P (t)] = 0. Suppose also that a trader has to trade toward his target

inventory at a fire-sale speed γ̄S, which is much faster than the equilibrium rate γS,

(32) x̄n(t) = γ̄S
(
STI
n (t)− S̄n(t)

)
at each point t > 0. Since γ̄S > γS, the trader moves to his target inventory STI

n (t) more

aggressively. This captures the idea of a sudden rushed sale in the market.

After date t = 0, off-equilibrium inventory S̄n(t) is expected to evolve according to

(33) S̄n(t) = e−γ̄S t
(
Sn(0) +

∫ t

u=0

eγ̄S u γ̄S CL (Hn(u)−H−n(u)) du
)
.

A rushed sale leads to execution at a heavy discount. Trader n can calculate the impulse-

response functions of how market prices En
0 [P̄ (t)] are expected to change in response to his

sales, described by En
0 [S̄n(t)],

(34) En
0 [S̄n(t)] = e−γ̄S t Sn(0),

9For the case with fixed number of “noise traders” NU , traders’ estimate about the total number
of traders is Ns while the actual number of traders is N . The actual average of all private signals is
1/N (Hn(0)+ (N − 1)H̆−n(0)), whereas the trader believes that the perceived average of all private signals
is equal to 1/Ns Hn(0), since there are Ns traders and signals of other traders are zero. Matching these

two averages, we get the average of other traders’ signals H̆−n(0) such that a trader does not learn from
the price about his misestimation of the total number of traders in the market. For the case with fixed N ,
traders correctly estimate the total number of traders, then H̆−n(0) = H−n.
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(35) En
0 [P̄ (t)] = − γ̄S − γS(NIs, ρs)

(Ns − 1)γP (NIs, ρs)
e−γ̄St Sn(0).

Figure 17 shows expected paths of future prices based on equation (35) for the case

without crowding (NIs = NI) and with crowding (NIs > NI). Figure 18 shows paths

of trader n’ s future inventories based on equation (34) for the case without crowding

(NIs = NI) and with crowding (NIs > NI).
10 There are two cases in each figure. The

first baseline case is shown by the solid red lines: If trader n liquidates his inventory at an

equilibrium rate (γ̄S = γS), then the price immediately drops to the equilibrium level of

zero, but the trader continues to trade out of his inventories smoothly over time.
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Figure 17. The Dynamics of Expected Prices With and Without Crowding.

The other case show what happens when trader n liquidates his position at an off-

equilibrium fire-sale rate, which is five times faster than normal rate (γ̄S = 5 γS). In

panel (a) of Figure 17, black dashed line corresponds to price dynamics for the case with

no crowding (NI = NIs), and blue dashed line in panel (b) of Figure 17 corresponds to

price dynamics for the case when traders are concerned about crowding (NI < NIs).

In panel (a) of Figure 18, black dashed line corresponds to inventory dynamics for the case

with no crowding (NI = NIs), and blue dashed line in panel (b) corresponds to inventory

dynamics for the case when traders are concerned about crowding (NI < NIs).

In both cases with and without crowding, price paths exhibit distinct V-shaped patterns,

i.e., after a sharp initial drop the price changes its direction and converges to the new equi-

librium level. As explained in Kyle, Obizhaeva and Wang (2017), faster-than-equilibrium

trading generates “flash crashes” by increasing temporary price impact.

10Parameter values are r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, N = Ns = 70,
NI = 30, NIs = 40, ρ = 0.2, τH = 1, τL = 0, and D(0+) = 0, H0(0

+) = 0. The endogenous parameter
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Figure 18. The Dynamics of Expected Inventories With and Without Crowding.

When traders are concerned about crowding in their trading strategies, traders are more

cautious and slower in trading on their information and providing liquidity to others, there-

fore flash crashes may be more likely to occur and their price patterns may be more pro-

nounced, as indeed confirmed by more significant price changes in panel (b) of Figure 17

when NIs > NI .

When traders overestimate the number of smart traders in the market, both temporary

and permanent market depth are smaller, and thus transaction costs are larger. We next

present two simple examples to illustrate how overestimating the fraction of smart traders

affects execution costs.

Suppose a “new” trader n = N + 1 silently enters the market and liquidates inventories

S̄N+1(t) at a rate x̄N+1(t), unbeknownst to the other N traders. We can explicitly calculate

the effect on prices if a trader deviates from his optimal inventory policy S∗
n(t) and instead

holds inventories denoted Sn(t). As a result of the deviation, the old equilibrium price path

P ∗(t) will be changed to a different price path, denoted P (t), given by

(36) P (t) = P ∗(t) + λ (Sn(t)− S∗
n(t)) + κ (xn(t)− x∗n(t)) .

Since the new trader does not trade in actual equilibrium, we assume S∗
N+1(t) = x∗N+1(t) = 0

We measure his execution costs C using the concept of implementation shortfall, as

described by Perold (1988). The expected price impact costs are given by

(37) E{C} = E

{∫ ∞

u=t

(P (u)− P ∗(u)) x̄(u) du

}
.

values are γS(NI) = 15.635, for NI = 30 and γS(NIs) = 11.6015 for NIs = 40, γ̄S = 5 γS(NIs) = 58.
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The expected implementation shortfall depends on how the new trader trades. Here are

two simple examples.

Example 1 : Suppose the new trader N +1 enters the market at date t = 0 and liquidates

a random block of shares B, uncorrelated with signals Hn(t), n = 1, . . . , N , by trading at

the constant rate x̄(t) = B/T over some interval [0, T ]. Then his expected implementation

shortfall is given by

(38) E{C1} =
(
λ+

κ

T/2

) B2

2
.

Example 2 : Suppose instead that the new trader enters the market at date t = 0 and

liquidates the random inventory B by trading at rate xN+1(t) = γS (B− S̄N+1(t)). Then his

inventory evolves as S̄(t) = B(1−e−γS t), with S̄(t) → B as t→ ∞, and the implementation

shortfall is given by

(39) E{C2} =
(
λ+ κ γS

) B2

2
.

When traders are concerned about crowdedness of their trading strategies, market be-

comes less liquid and the implementation shortfall increases for a trader who enters the

market and acquires certain shares of the stock. Since faster execution leads to larger

temporary price impact, overestimating the fraction of smart traders tends to have bigger

impact on the implementation shortfall when a trader needs to acquire or liquidate certain

inventory level faster.

4. Conclusion

After the Quant Meltdown of August 2007, institutional traders are increasingly con-

cerned about crowded markets, because this factor may impede their efforts to deliver

good performance and make them vulnerable to externalities imposed by other market

participants.

In this paper, we develop a continuous-time model with strategic informed traders to

study the phenomenon of crowded markets. Traders may have incorrect views about the

correlation among traders’ private signals and the number of traders chasing similar invest-

ment strategies.
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Even though equilibrium trading strategies depend only on traders’ subjective beliefs, the

equilibrium prices are determined by the actual market clearing condition, and thus the

perceived market depth may differ from the actual market depth available in the market.

Underestimation of the crowdedness of smart traders in the market increases both the

perceived and actual market depth. Traders trade more intensively, take larger positions,

and are more willing to supply liquidity to other traders. Overestimation of the crowdedness

of the market tends to increase both temporary and permanent price impact and thus

increase traders’ implementation shortfall. Traders trade less aggressively, take smaller

positions, and are less willing to supply liquidity to others.

When some traders are forced to liquidate large positions at a suboptimal fire-sale pace,

then flash crashes happen. Our paper suggests that flash-crash price patterns may be more

pronounced when traders become more concerned about the crowdedness of the market.

To reduce the risks, it is important to understand the mechanisms that drive these patterns

in crowded markets. Our analysis also implies that it is important that regulators carefully

monitor the crowding risk of many investment strategies.
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Perold, André. 1988. “The Implementation Shortfall: Paper vs. Reality.” Journal of

Portfolio Management, 14(3): 4–9.

Pojarliev, Momtchil, and Richard M. Levich. 2011. “Detecting Crowded Trades in

Currency Funds.” Financial Analysts Journal, 67(1): 26–39.



32

Polk, Christopher, and Dong Lou. 2013. “Comomentum: Inferring Arbitrage Activity

from Return Correlations.” Working Paper.

Sokolovski, Valeri. 2016. “Crowds, Crashes, and the Carry Trade.” Working Paper.

Stein, Jeremy. 2009. “Presidential Address: Sophisticated Investors and Market Effi-

ciency.” Journal of Finance, VOL.LXIV: 1517–1548.

Yan, Phillip. 2013. “Crowded Trades, Short Covering, and Momentum Crashes.” Working

Paper.



33

A. One-period Model

There are two assets. A risk free asset and a risky asset that has random liquidation

value v ∼ N(0, 1/τv). Both assets are in zero net supply. Trader n is endowed with

inventory Sn with
∑N

n=1 Sn = 0. Traders observe signals about the normalized liquidation

value τ
1/2
v v ∼ N(0, 1). All traders observe a public signal i0 := τ

1/2
0 (τ

1/2
v v) + e0 with

e0 ∼ N(0, 1). Each trader n observes a private signal in := τ
1/2
n (τ

1/2
v v)+ρ1/2z+(1−ρ)1/2en

with en ∼ N(0, 1), where v, z, e0, e1, . . . , eN are independently distributed.

Traders agree about the precision of the public signal τ0 and agree to disagree about the

precisions of private signals τn. Each trader is certain that his own private information has

a high precision τn = τH and N − 1 other traders can be of two types: NI − 1 traders’

private information has high precision τH and the other NU := N − NI traders’ private

information has low precision τL, with τH > τL ≥ 0.

Denote the fraction of other traders (except trader n himself) with high precision in the

market as

(A-1) θ :=
NI − 1

NU +NI − 1
.

Each trader submits a demand schedule Xn(p) := Xn(i0, in, Sn, p) to a single-price auc-

tion. An auctioneer clears the market at price p := p[X1, . . . , XN ]. Trader n’s terminal

wealth is

(A-2) Wn := v (Sn +Xn(p))− p Xn(p).

Each trader nmaximizes the same expected exponential utility function of wealth En[− e−AWn ]

using his own beliefs to calculate the expectation.

An equilibrium is a set of trading strategies X1, . . . , XN such that each trader’s strategy

maximizes his expected utility, taking as given the trading strategies of other traders. Let

i−n := 1
N−1

∑N
m=1,m ̸=n im denote the average of other traders’ signals. When trader n

conjectures that other traders submit symmetric linear demand schedules

(A-3) Xm(i0, im, Sm, p) = α i0 + β im − γ p− δ Sm, m = 1, . . . , N, m ̸= n,
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he infers from the market-clearing condition

(A-4) xn +
N∑

m=1
m̸=n

(α i0 + β im − γ p− δ Sm) = 0

that his residual supply schedule P (xn) is a function of his quantity xn given by

(A-5) P (xn) =
α

γ
i0 +

β

γ
i−n +

δ

(N − 1)γ
Sn +

1

(N − 1)γ
xn.

Let En[. . .] and Varn[. . .] denote trader n’s expectation and variance operators conditional

on all signals i0, i1, . . . , iN . Define “total precision” τ by

(A-6) τ := (Varn[v])−1 = τv

1 + τ0 + τH + (N − 1)

(
(θ − ρ)τ

1/2
H + (1− θ)τ

1/2
L

)2
(1− ρ)(1 + (N − 1)ρ)

 .

The projection theorem for jointly normally distributed random variables implies

(A-7)

En[v] =
τ
1/2
v

τ

(
τ
1/2
0 i0 +

1− θ

1− ρ

(
τ
1/2
H − τ

1/2
L

)
in +

(θ − ρ)τ
1/2
H + (1− θ)τ

1/2
L

(1− ρ)(1 + (N − 1)ρ)
(in + (N − 1)i−n)

)
.

Conditional on all information, trader n’s terminal wealth Wn is a normally distributed

random variable with mean and variance given by

(A-8) En[Wn] = En[v] (Sn + xn)− P (xn) xn, Varn[Wn] = (Sn + xn)
2 Varn[v].

Maximizing this function is equivalent to maximizing En[Wn]− 1
2
AVarn[Wn]. Oligopolistic

trader n exercises market power by taking into account how his quantity xn affects the

price P (xn) on his residual supply schedule (A-5). The following Theorem characterizes

the equilibrium in this one-period model.

THEOREM 2: There exists a unique symmetric equilibrium with linear trading strategies
and nonzero trade if and only if the second-order condition

(A-9) θ < 1− N(1− ρ)τ
1/2
H

(N − 1)(2 + (N − 2)ρ)(τ
1/2
H − τ

1/2
L )

holds. The equilibrium satisfies the following:
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1. Trader n trades the quantity x∗n given by

(A-10) x∗n = δ

(
1
A

1− θ

1− ρ

(
1− 1

N

)
τ 1/2v (τ

1/2
H − τ

1/2
L ) (in − i−n)− Sn

)
,

where the inventory adjustment factor δ is

(A-11) 0 < δ =
2 + (N − 2)ρ

1 + (N − 1)ρ
− N(1− ρ)τ

1/2
H

(N − 1)(1− θ)(1 + (N − 1)ρ)(τ
1/2
H − τ

1/2
L )

< 1.

2. The price p∗ is the average of traders’ valuations:
(A-12)

p∗ =
1

N

N∑
n=1

En[v] =
τ
1/2
v

τ

(
τ
1/2
0 i0 +

(1 + (N − 1)θ)τ
1/2
H + (N − 1)(1− θ)τ

1/2
L

N (1 + (N − 1)ρ)

N∑
n=1

in

)
.

3. The parameters α > 0, β > 0, and γ > 0, defining the linear trading strategies in
equation (A-3), have unique closed-form solutions defined in (C-2).

For an equilibrium with positive trading volume to exist, the fraction of traders whose

private information has high precision must satisfy condition (A-9). Each trader trades in

the direction of his private signal in, trades against the average of other traders’ signals

i−n, and hedges a fraction δ of his initial inventory. Equation (A-12) implies that the

equilibrium price is a weighted average of traders’ valuations with weights summing to one.

Define a trader’s “target inventory” STI
n as the inventory such that he would not want

to trade (x∗n = 0). From equation (A-10), it is equal to

(A-13) STI
n = 1

A

1− θ

1− ρ

(
1− 1

N

)
τ 1/2v (τ

1/2
H − τ

1/2
L ) (in − i−n).

Then trader n’s optimal quantity traded can be written

(A-14) x∗n = δ (STI
n − Sn).

The parameter δ, defined in equation (A-11), is the fraction by which traders adjust posi-

tions toward target levels. It can be proved analytically that δ increases in correlation ρ

and decreases in θ while fixing everything else.

From the perspective of trader n, equation (A-5) implies that price impact can be written

as a function of both xn and Sn,

(A-15) P (xn, Sn) := p0,n + λ Sn + κ xn,
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where p0,n is a linear combination of random variables i0 and i−n, and constants λ and κ

are given by

(A-16) λ :=
δ

(N − 1)γ
=
A(1− ρ)

(
(1 + (N − 1)θ)τ

1/2
H + (N − 1)(1− θ)τ

1/2
L

)
τ(N − 1)(1 + (N − 1)ρ)(1− θ)(τ

1/2
H − τ

1/2
L )

,

(A-17) κ :=
λ

δ
=

1

(N − 1)γ
.

It can be proved analytically that both λ and κ both decrease in correlation ρ and

increase in the fraction of traders whose private information has high precision while fixing

everything the same. Market becomes more liquid if traders’ private information are highly

correlated and less liquid if the fraction of traders whose private information has high

precision increases.

B. Effects of Changes in Crowding of the Total
Market

In this section we focus on the case when traders might misestimate the total number of

traders while correctly estimate the fraction of smart traders in the market. We consider

two situations: (1) the base case when both Ns and ρs are changing in lockstep satisfying

the consistency condition so that traders can not learn about their mistakes by observing

price dynamics, and (2) another case when only Ns is changing, but ρs remains fixed. The

first case is presented by solid lines and the second case is presented in dashes lines below.

Figure B.1 shows that how ρs changes with changes in Ns in order to satisfy the consis-

tency condition. When Ns is the same as the actual number of traders N (N = Ns = 80),

the subjective correlation ρs converges to the actual correlation ρ (ρ = ρs = 0.20). If Ns

drops by a half to 40, the subjective correlation ρs changes only slightly to about 0.19.11

Figure B.1 shows that satisfying the consistency condition only requires small changes in

subjective correlations in response to large changes in subjective estimates of the number

of traders. Since it is difficult to estimate the correlation among private signals in actual

financial markets, this consistency condition is a very reasonable one to ensure that traders’

potentially incorrect beliefs cannot be easily falsified by observing the price dynamics.

11In Figures B.1, B.2, B.3 and B.7, parameter values are r = 0.01, β = 0.01, A = 1, αD = 0.1, αG = 0.02,
σD = 0.5, σG = 0.1, θ = 0.1, N = 80, ρ = 0.2, τH = 1, τL = 0.1.
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Figure B.1. ρs against Ns.

We now study how crowding affects market liquidity and traders’ trading strategies.

Figure B.2 plots the speed of trading γS against traders’ subjective belief about the number

of total market participants Ns. To separate the impact of the number of traders from the

impact of correlation among private signals on the trading speed, we first plot γS against

changing Ns while keeping ρs = ρ fixed. The dashed curve illustrates that traders trade

less aggressively toward target inventory when there are fewer traders in the market (fixing

ρ); if traders believe that there are fewer of them in the market and the competition is less

intensive, then traders trade less aggressively.

When correlation ρs is adjusted to satisfy the consistency condition, traders trade toward

target inventories even slower, as depicted by the solid line in Figure B.2. The subjective

correlation is calculated as ρs = 1
Ns−1

(
Ns

N
(1 + (N − 1)ρ)− 1

)
to satisfy the consistency

condition (22), it decreases with lower Ns, and a lower subjective correlation among private

signals leads to a slower trading rate γS, as shown previously in Figure 1. Figure B.2 also

suggests that the decrease in trading speed comes mainly from underestimating the number

of traders, not from underestimating of the correlation among private signals. Indeed, the

difference between dashed line and solid lines are hardly noticeable. This difference is small

for most of other variables, so we will next discuss only our base case when both Ns and

ρs are changing to satisfy the consistency condition.

The left panel of Figure B.3 plots γP against Ns using ρs = ρ (dashed curve) and ρs

(solid curve) satisfying the consistency condition (22). γP is lower (higher) when traders

underestimate (overestimate) the number of market participants. The right panel of figure

B.3 illustrates changes in the total precision τ . A lower ρ tends to increase the total

precision. Underestimating the number of traders tends to decrease total precision, as
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illustrated by the dashed curve in Figure B.3. The net effect of underestimating the number

of traders and correlation tends to increase the total precision (as shown by the solid curve

in Figure B.3) and decrease the error variance of the estimate of the growth rate. This

makes trading due to agreeing to disagreement less valuable, as shown in figure B.4, the

value of trading on innovations to future information (−ψ0) decreases.
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Figure B.3. Values of γP and τ against Ns.

Figure B.5 presents how CL changes with Ns using ρs = ρ (dashed curve) and ρs (solid

curve) satisfying the consistency condition (22). It shows that CL is lower when traders

underestimate the total number of participants and correlation among private signals since

traders trade less aggressively with fewer number of traders. This implies traders tend to

hold smaller positions when they underestimate the number of traders.

Figure B.6 presents how CG changes with Ns using ρs = ρ (dashed curve) and ρs (solid
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Figure B.5. Values of CL against Ns.

curve) satisfying the consistency condition (22). Figure B.6 illustrates that CG is higher

when traders underestimate the total number of participants and correlation among private

signals. A lower ρ leads to a higher CG since traders trade less aggressively while fewer

number of traders also result in a higher CG due to less intensive competition. Therefore,

underestimating the number of traders and correlation results in less pronounced price

dampening (a larger CG) and traders are less willing to engage in short-term speculation.

Figure B.7 plots permanent market depth 1/λ and temporary market depth 1/κ against

NS using ρs = ρ (dashed curve) and ρs (solid curve) satisfying the consistency condition

(22). It also plots subjective estimates of market depths 1/λs and 1/κs. As before, the

figure suggests that the change in market depth comes mainly from misestimation of the

number of traders, not correlation among private signals.
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When traders overestimate the crowdedness (Ns > N and ρs > ρ), traders trade more

intensively. Fear of crowding leads to illusion of liquidity in the market, and indeed market

depth increases. However, the actual market depth is much lower than the perceived one

(1/λ < 1/λs and 1/κ < 1/κs). The actual permanent market depth 1/λ does not change

much comparing to the case without crowing. When traders underestimate the crowdedness

(Ns < N and ρs < ρ), all types of market depth decrease, because traders trade less

aggressively on their signals and are less willing to provide liquidity. Underestimating the

crowdedness tends to reduce market liquidity, but the actual market depth is higher than

the perceived one (1/λ > 1/λs and 1/κ > 1/κs). In this example, the drop in the actual

permanent market depth is not as substantial as the drop in the actual temporary market

depth. When traders underestimate the crowdedness of the market by a half (e.g., Ns = 40

and N = 80), then 1/λ changes only slightly from about 150 to 140, whereas 1/κ drops by

about a half from approximately 3000 to 1500.
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Figure B.7. Values of 1/λ, 1/κ, 1/λs, and 1/κs against Ns.
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Figure B.8 presents two simulated paths for target inventories (dashed curve) and actual

inventories (solid curve).12 When traders underestimate the number of traders and the

correlation among private signals—and the market is less liquid—actual inventories deviate

more significantly from target inventories since traders trade at a lower rate, as in panel (a).

When traders correctly estimate the number of traders and correlation among private

signals—and the market is more liquid—actual inventories deviate less significantly from

target inventories, as in panel (b).
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Figure B.8. Simulated paths of STI
n (t) (Dashed) and Sn(t) (Solid).

To summarize, when traders overestimate crowding in the market, they tend to have

larger target inventories, trade more aggressively toward target levels, trade more on short-

run opportunities, expect more liquidity, and believe that trading is more valuable. When

traders underestimate how crowded strategies are, they tend to have smaller target inven-

tories, adjust actual inventories more slowly toward target levels, trade less on short-run

profit opportunities, expect less liquidity, and are less willing to provide liquidity to others.

Figure B.913 suggests that, in crowded markets, flash crashes may be more likely to occur

and their price patterns may be more pronounced, as indeed confirmed by more significant

price changes in Figure B.9 when Ns < N .

12The paths are generated using equations (27), (C-18), and (C-19), which describe the dynamics of

Ĥn(t), Ĥ−n(t), and STI
n (t). Numerical calculations in Figure B.8 are based on the exogenous parameter

values r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, θ = 0.1, τH = 1, τL = 0.2 in both (a)
and (b); Ns = 40 < N = 80 and ρs = 0.19 < ρ = 0.2 in (a); Ns = N = 80 and ρs = ρ = 0.2 in (b).

13Parameter values are r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, θ = θs = 0, τH = 1,
τL = 0.1, and D(0+) = 0, H0(0

+) = 0. The endogenous parameter values are γS(N, ρ) = 24.04, for N = 80
and ρ = 0.2; and γS(Ns, ρs) = 11.23 for Ns = 40 and ρs = 0.19, γ̄S = 5 γS(Ns, ρs) = 56.14.
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Figure B.9. Underestimating the Crowdedness of the Total Market Leads to More Pro-

nounced Flash-Crash Price Patterns.

C. Proofs

C.1. Proof of Theorem 2

The first-order condition yields the optimal demand:

(C-1) xn =
En[v]−

(
α
γ
i0 +

β
γ
i−n

)
−
(

δ
(N−1)γ

+ A
τ

)
Sn

2
(N−1)γ

+ A
τ

.

Solving for i−n instead of p in the market-clearing condition (A-4), substituting this solution

into equation (C-1) above, and then solving for xn, yields a demand scheduleXn(i0, in, Sn, p)

for trader n as a function of price p. In a symmetric linear equilibrium, the strategy chosen

by trader n must be the same as the linear strategy (A-3) conjectured for the other traders.

Equating the corresponding coefficients of the variables i0, in, p, and Sn yields a system of

four equations in terms of the four unknowns α, β, γ, and δ. The unique solution is

(C-2) α =
τ
1/2
0 τ

1/2
v

τ
γ, β =

(1− θ)(τ
1/2
H − τ

1/2
L )

A(1− ρ)
τ 1/2v δ,

(C-3) γ =
τ(1 + (N − 1)ρ)

(1 + (N − 1)θ)τ
1/2
H + (N − 1)(1− θ)τ

1/2
L

β

τ
1/2
v

,

(C-4) δ =
2 + (N − 2)ρ

1 + (N − 1)ρ
− N(1− ρ)τ

1/2
H

(N − 1)(1− θ)(1 + (N − 1)ρ)(τ
1/2
H − τ

1/2
L )

.
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Substituting (C-2) into (C-1) yields trader n’s optimal demand (A-10). Substituting

(A-10) into (A-5) yields the equilibrium price (A-12).

The second-order condition has the correct sign if and only if 2
(N−1)γ

+ A
τ
> 0. This is

equivalent to

(C-5) θ < 1− N(1− ρ)τ
1/2
H

(N − 1)(2 + (N − 2)ρ)(τ
1/2
H − τ

1/2
L )

.

C.2. Proof of Theorem 1

We assume that all traders believe that there are Ns traders in the market, and that their

private signals are pairwise positively correlated with correlation coefficient of ρs.

Apply the Stratonovich–Kalman–Bucy filter to the filtering problem. This yields trader

n’s filtering estimate of the growth rate Gn(t) defined by the Itô differential equation

dGn(t) =− αG Gn(t) dt+ τ
1/2
0 σG Ω1/2

(
dI0(t)−

τ
1/2
0 dt

σG Ω1/2
Gn(t)

)
+

(
(1 + (Ns − 2)ρs)τ

1/2
H − (Ns − 1)ρsτ

1/2
L

)
σG Ω1/2

(1− ρs)(1 + (Ns − 1)ρs)

(
dIn(t)−

τ
1/2
H dt

σG Ω1/2
Gn(t)

)
+

(τ
1/2
L − ρsτ

1/2
H )σG Ω1/2

(1− ρs)(1 + (Ns − 1)ρs)

( Ns∑
m=1
m̸=n

dIm(t)−
(Ns − 1)τ

1/2
L dt

σG Ω1/2
Gn(t)

)
.

(C-6)

Rearranging terms yields

dGn(t) =− (αG + τ)Gn(t) dt+ τ
1/2
0 σG Ω1/2dI0(t) +

(τ
1/2
L − ρsτ

1/2
H )σG Ω1/2

(1− ρs)(1 + (Ns − 1)ρs)

Ns∑
m=1
m ̸=n

dIm(t)

+

(
(1 + (Ns − 2)ρs)τ

1/2
H − (Ns − 1)ρsτ

1/2
L

)
σG Ω1/2

(1− ρs)(1 + (Ns − 1)ρs)
dIn(t).

(C-7)

The mean-square filtering error of the estimate G(t), denoted σ2
G Ω(t), is defined by the
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Riccati differential equation

(C-8)

σ2
G

dΩ(t)

dt
= −2αGσ

2
GΩ(t)+σ

2
G−σ2

GΩ(t)

τ0 + τH + (Ns − 1)

(
(θs − ρs)τ

1/2
H + (1− θs)τ

1/2
L

)2
(1− ρs)(1 + (Ns − 1)ρs)

 .

Let Ω denote the steady state of the function of time Ω(t). Using the steady-state assump-

tion dΩ(t)/dt = 0, solve the second equation for the steady state value Ω = Ω(t) to obtain

equation (8). The error variance Ω corresponds to a steady state that balances an increase

in error variance due to innovations dBG(t) in the true growth rate with a reduction in

error variance due to (1) mean reversion of the true growth rate at rate αG and (2) arrival

of new information with total precision τ .

Note that Ω is not a free parameter but is instead determined as an endogenous function

of the other parameters. Equation (8) implies that Ω turns out to be the solution to

the quadratic equation Ω−1 = 2 αG + τ . In equations (3) and (4), we scaled the units

with which precision is measured by the endogenous parameter Ω. This leads to simpler

filtering expressions. The estimate Gn(t) can be conveniently written as the weighted sum

of Ns + 1 sufficient statistics Hn(t) corresponding to Ns + 1 information flows dIn. The

sufficient statistics Hn(t) is defined by equation (10). Gn(t) becomes a linear combination

of sufficient statistics Hn(t) as given by equation (12). Using the two composite signals,

Ĥn(t) and Ĥ−n(t), defined in equation (13), trader n’s estimate of the dividend growth rate

can be expressed as a function of the two composite signals Ĥn(t) and Ĥ−n(t) as

Gn(t) := σG Ω1/2
(((1− θs)(τ

1/2
H − τ

1/2
L )

1− ρs
+

(θs − ρs)τ
1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)

)
Ĥn(t)

+
(θs − ρs)τ

1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)
(Ns − 1)Ĥ−n(t)

)
.

(C-9)

Define the processes dBn
0 , dB

n
n , and dB

n
m, m = 1, . . . , Ns, m ̸= n, by

(C-10) dBn
0 (t) = τ

1/2
0

G∗(t)−Gn(t)

σG Ω1/2
dt+ dB0(t),

(C-11) dBn
n(t) = τ

1/2
H

G∗(t)−Gn(t)

σG Ω1/2
dt+ ρ1/2s dZ(t) + (1− ρs)

1/2dBn(t),
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and

(C-12) dBn
m(t) = (θsτ

1/2
H +(1−θs)τ 1/2L )

G∗(t)−Gn(t)

σG Ω1/2
dt++ρ1/2s dZ(t)+(1−ρs)1/2dBm(t).

The superscript n indicates conditioning on beliefs of trader n. These Ns + 1 processes

are correlated distributed Brownian motions from the perspective of trader n. Trader n

believes that signals change as follows:

(C-13) dH0(t) = −(αG + τ)H0(t) dt+ τ
1/2
0

Gn(t)

σG Ω1/2
dt+ dBn

0 (t),

(C-14) dHn(t) = −(αG + τ)Hn(t) dt+ τ
1/2
H

Gn(t)

σG Ω1/2
dt+ dBn

n(t),

(C-15)

dH−n(t) = −(αG + τ)H−n(t) dt+ (θsτ
1/2
H + (1− θs)τ

1/2
L )

Gn(t)

σG Ω1/2
dt+

1

Ns − 1

Ns∑
m=1
m̸=n

dBn
m(t).

Note that each signal drifts toward zero at rate αG + τ and drifts toward the optimal

forecast Gn(t) at a rate proportional to the square root of the signal’s precision τ
1/2
0 , τ

1/2
H ,

or θsτ
1/2
H + (1− θs)τ

1/2
L , respectively.

In terms of the composite variables Ĥn and Ĥ−n, we conjecture (and verify below) a

steady-state value function of the form V (Mn, Sn, D, Ĥn, Ĥ−n). Letting (cn(t), xn(t)) denote

consumption and investment choices, write

(C-16) V
(
Mn, Sn, D, Ĥn, Ĥ−n

)
:= max

[cn(t),xn(t)]
En

t

[∫ ∞

s=t

− e−β(s−t)−A cn(s) ds

]
,

where P (xn(t)) is given by equation (17), dividends follow equation (1), inventories follow

dSn(t) = xn(t) dt, the change in cash holdings dMn(t) follows

(C-17) dMn(t) = (r Mn(t) + Sn(t)D(t)− cn(t)− P (xn(t)) xn(t)) dt,

and signals Ĥn and Ĥ−n are given by

(C-18) dĤn(t) = −(αG + τ) Ĥn(t) dt+
τ
1/2
H + âτ

1/2
0

σG Ω1/2
Gn(t) dt+ â dBn

0 (t) + dBn
n(t),



46

(C-19)

dĤ−n(t) = −(αG+τ)Ĥ−n(t)dt+
θsτ

1/2
H + (1− θs)τ

1/2
L + âτ

1/2
0

σG Ω1/2
Gn(t)dt+âdB

n
0 (t)+

1

Ns − 1

Ns∑
m=1
m̸=n

dBn
m(t).

The dynamics of Ĥn and Ĥ−n in equations (C-18) and (C-19) can be derived from equa-

tions (C-13), (C-14), and (C-15).

Note that the coefficient τ
1/2
H + âτ

1/2
0 in the second line of equation (C-18) is different

from the coefficient θsτ
1/2
H +(1− θs)τ

1/2
L + âτ

1/2
0 in the second line of equation (C-19). This

difference captures the fact that—in addition to disagreeing about the value of the asset in

the present—traders also disagree about the dynamics of their future valuations.

We conjecture and verify that the value function V (Mn, Sn, D, Ĥn, Ĥ−n) has the specific

quadratic exponential form

V
(
Mn, Sn, D, Ĥn, Ĥ−n

)
=− exp

(
ψ0 + ψMMn +

1
2
ψSSS

2
n + ψSDSnD

+ ψSn SnĤn + ψSx SnĤ−n +
1
2
ψnn Ĥ

2
n +

1
2
ψxx Ĥ

2
−n + ψnx ĤnĤ−n

)
.

(C-20)

The nine constants ψ0, ψM , ψSS, ψSD, ψSn, ψSx, ψnn, ψxx, and ψnx have values consistent

with a steady-state equilibrium. The Hamilton–Jacobi–Bellman (HJB) equation corre-

sponding to the conjectured value function V (Mn, Sn, D, Ĥn, Ĥ−n) in equation (C-16) is

0 =max
cn,xn

[
U(cn)− βV +

∂V

∂Mn

(rMn + SnD − cn − P (xn) xn) +
∂V

∂Sn

xn

]
+
∂V

∂D
(−αDD +Gn(t)) +

∂V

∂Ĥn

(
−(αG + τ)Ĥn(t) +

τ
1/2
H + âτ

1/2
0

σG Ω1/2
Gn(t)

)
+ 1

2

∂2V

∂D2
σ2
D

+
∂V

∂Ĥ−n

(
−(αG + τ)Ĥ−n(t) +

θsτ
1/2
H + (1− θs)τ

1/2
L + âτ

1/2
0

σG Ω1/2
Gn(t)

)
+ 1

2

∂2V

∂Ĥ2
n

(
1 + â2

)
+ 1

2

∂2V

∂Ĥ2
−n

(
ρs +

1− ρs
Ns − 1

+ â2
)
+

(
∂2V

∂D∂Ĥn

+
∂2V

∂D∂Ĥ−n

)
âσD +

∂2V

∂Ĥn∂Ĥ−n

(ρs + â2).

(C-21)

For the specific quadratic specification of the value function in equation (C-20), the HJB
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equation becomes

0 = min
cn,xn

[
−e−Acn

V
− β + ψM(rMn + Sn D − cn − P (xn) xn)

+ (ψSSSn + ψSDD + ψSnĤn + ψSxĤ−n)xn

]
+ ψSDSn(−αDD +Gn(t))

+
(
ψSnSn + ψnnĤn + ψnxĤ−n

)(
− (αG + τ)Ĥn(t) +

τ
1/2
H + âτ

1/2
0

σG Ω1/2
Gn(t)

)
+
(
ψSxSn + ψxxĤ−n + ψnxĤn

)(
−(αG + τ)Ĥ−n(t) +

θsτ
1/2
H + (1− θs)τ

1/2
L + âτ

1/2
0

σG Ω1/2
Gn(t)

)
+ 1

2
ψ2
SDS

2
nσ

2
D + 1

2

(
(ψSnSn + ψnnĤn + ψnxĤ−n)

2 + ψnn

) (
1 + â2

)
+ 1

2

(
(ψSxSn + ψxxĤ−n + ψnxĤn)

2 + ψxx

) (
ρs +

1− ρs
Ns − 1

+ â2
)

+
(
(ψSn + ψSx)Sn + (ψnn + ψnx)Ĥn + (ψxx + ψnx)Ĥ−n

)
ψSDSnâσD

+
(
(ψSnSn + ψnnĤn + ψnxĤ−n) (ψSxSn + ψxxĤ−n + ψnxĤn) + ψnx

)
(ρs + â2).

(C-22)

The solution for optimal consumption is

(C-23) cn(t) = − 1

A
log
(ψM V (t)

A

)
.

The optimal trading strategy is a linear function of the state variables given by

xn(t) =
(Ns − 1)γP

2ψM

((
ψSD − ψMγD

γP

)
D(t) +

(
ψSS − ψMγS

(Ns − 1)γP

)
Sn(t)

+ ψSn Ĥn(t) +

(
ψSx −

ψMγH
γP

)
Ĥ−n(t)

)
.

(C-24)

Trader n can infer from the market-clearing condition (16) that Ĥ−n is given by

(C-25) Ĥ−n(t) =
γP
γH

(
P (t)−D(t)

γD
γP

)
− 1

(Ns − 1)γH
xn(t)−

γS
(N − 1)γH

Sn(t).

Plugging equation (C-25) into equation (C-24) yields xn(t) as a linear demand schedule
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given by

xn(t) =
(Ns − 1)γP

ψM

(
1 +

ψSx

ψM

γP
γH

)−1

·

((
ψSD − ψSx

γD
γH

)
D(t) +

(
ψSS − ψSx

γS
(Ns − 1)γH

)
Sn(t)

+ ψSn Ĥn(t) +

(
ψSx

γP
γH

− ψM

)
P (t)

)
.

(C-26)

Equating the coefficients of D(t), Ĥn(t), Sn(t), and P (t) in equation (C-26) to the con-

jectured coefficients γD, γH , −γS, and −γP results in the following four equations:

(C-27)
(Ns − 1)γP

ψM

(
1 +

ψSx

ψM

γP
γH

)−1 (
ψSD − ψSx

γD
γH

)
= γD,

(C-28)
(Ns − 1)γP

ψM

(
1 +

ψSx

ψM

γP
γH

)−1

ψSn = γH ,

(C-29)
(Ns − 1)γP

ψM

(
1 +

ψSx

ψM

γP
γH

)−1 (
ψSS − ψSx

γS
(Ns − 1)γH

)
= −γS,

(C-30)
(Ns − 1)γP

ψM

(
1 +

ψSx

ψM

γP
γH

)−1 (
ψSx

γP
γH

− ψM

)
= −γP .

We obtain

(C-31) ψSx =
Ns − 2

2
ψSn, γH =

NsγP
2ψM

ψSn, γS = −(Ns − 1)γP
ψM

ψSS, γD =
γP
ψM

ψSD.

Define the constants CL and CG by

(C-32)

CL := − ψSn

2ψSS

, CG :=
ψSn

2ψM

Ns(r + αD)(r + αG)
(
1 + (Ns − 1)ρs

)
σGΩ1/2

(
(1 + (Ns − 1)θs) τ

1/2
H + (Ns − 1)(1− θs)τ

1/2
L

) .
Substituting equation (C-31) into equation (C-24) yields the solution for optimal strategy.

(C-33) x∗n(t) = γS

(
CL (Hn(t)−H−n(t))− Sn(t)

)
.
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Define the average of traders’ expected growth rates Ḡ(t) by

(C-34) Ḡ(t) :=
1

Ns

Ns∑
n=1

Gn(t),

Then, the equilibrium price is

(C-35) P ∗(t) =
D(t)

r + αD

+
CG Ḡ(t)

(r + αD)(r + αG)
.

Plugging (C-23) and (C-24) back into the Bellman equation and setting the constant

term and the coefficients of Mn, Sn D, S2
n, Sn Ĥn, Sn Ĥ−n, Ĥ

2
n, Ĥ

2
−n, and Ĥn Ĥ−n to be

zero, we obtain nine equations. Using the first equation (C-31) to substitute ψSn for ψSx,

there are in total nine equations in nine unknowns γP , ψ0, ψM , ψSD, ψSS, ψSn, ψnn, ψxx, and

ψnx.

By setting the constant term, coefficient of M , and coefficient of SnD to be zero, we

obtain

(C-36) ψM = −rA, ψSD = − rA

r + αD

,

(C-37)

ψ0 = 1− ln r +
1

r

(
−β +

1

2
(1 + â2)ψnn +

1

2

(
â2 +

1 + (Ns − 2)ρs
Ns − 1

)
ψxx + (â2 + ρs)ψnx

)
.

In addition, by setting the coefficients of S2
n, Sn Ĥn, Sn Ĥ−n, Ĥ

2
n, Ĥ

2
−n and Ĥn Ĥ−n to be

zero, we obtain six polynomial equations in the six unknowns γP , ψSS, ψSn, ψnn, ψxx, and

ψnx. Defining the constants a1, a2, a3, and a4 by

a1 := −(αG + τ) + (τ
1/2
H + âτ

1/2
0 )

((1− θs)(τ
1/2
H − τ

1/2
L )

1− ρs
+

(θs − ρs)τ
1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)

)
,

a2 := −(αG + τ) + (Ns − 1)
(
θsτ

1/2
H + (1− θs)τ

1/2
L + âτ

1/2
0

) (θs − ρs)τ
1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)
,

a3 := (τ
1/2
H + âτ

1/2
0 )(Ns − 1)

(θs − ρs)τ
1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)
,

a4 :=
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θsτ

1/2
H + (1− θs)τ

1/2
L + âτ

1/2
0

)((1− θs)(τ
1/2
H − τ

1/2
L )

1− ρs
+
(θs − ρs)τ

1/2
H + (1− θs)τ

1/2
L

(1− ρs)(1 + (Ns − 1)ρs)

)
,



50

these six equations in six unknowns can be written

0 =− 1

2
rψSS − γP (Ns − 1)

rA
ψ2
SS +

r2A2σ2
D

2(r + αD)2
+

1

2
(1 + â2)ψ2

sn+

+
1

2

(
â2 +

1 + (Ns − 2)ρs
Ns − 1

)
(Ns − 2)2

4
ψ2
Sn −

rA

r + αD

âσD
Ns

2
ψSn +

Ns − 2

2
ψ2
Sn(â

2 + ρs)

(C-38)

0 =− rψSn −
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σGΩ
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1/2
L )

1− ρs
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1/2
L

(1− ρs)(1 + (Ns − 1)ρs)

)
+ a1ψSn

−γP (Ns − 1)
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ψSSψSn +
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2
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)
ψnxψSn
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2
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)
,

(C-39)
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0 =− r

2
ψnn −

γP (Ns − 1)

4rA
ψ2
Sn + a1ψnn + a4ψnx +

1

2
(1 + â2)ψ2

nn

+
1

2

(
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0 =− r

2
ψxx −

γP (Ns − 1)

4rA
ψ2
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0 =− rψnx +
γP (Ns − 1)

2rA
ψ2
Sn + a3ψnn + a4ψxx + (a1 + a2)ψnx

+(1 + â2)ψnnψnx +

(
â2 +

1 + (Ns − 2)ρs
Ns − 1

)
ψxxψnx + (â2 + ρs)(ψnnψxx + ψ2

nx).
(C-43)

We solve equations (C-38)–(C-43) numerically. For a solution to the six polynomial

equations to define a stationary equilibrium, a second-order condition implying γP > 0, a

stationarity condition implying γS > 0, and a transversality condition requiring r > 0.

The transversality condition for the value function V (. . .) is

(C-44) lim
T→+∞

En
t

[
e−ρs(T−t) V

(
Mn(T ), Sn(T ), D(T ), Ĥn(T ), Ĥ−n(T )

)]
= 0.

The transversality condition (C-44) is satisfied if r > 0. Under the assumptions γP > 0 and

γS > 0, analytical results imply γD > 0, ψM < 0, ψSD < 0, and ψSS > 0. The numerical

results indicate that γH > 0, ψSn < 0, ψSx < 0, ψnn < 0, ψxx < 0 and the sign of ψnx is

intuitively and numerically ambiguous.

C.3. Proof of Corollary 1

The consistency condition in equation (22) implies that

(C-45) ρs − ρ =
(Ns −N)(1− ρ)

N(Ns − 1)
.

Equation (C-45) implies that, if Ns < N , then ρs < ρ.

Cov(dIn(t), dP (t)) =Cov(ρ
1/2dZ(t) + (1− ρ)1/2dBn(t), ρ

1/2dZ(t) + (1− ρ)1/2
1

N

N∑
m=1

dBm(t))

=ρ+
1

N
(1− ρ).

(C-46)

Cov(dIn(t), dPs(t)) =Cov(ρ
1/2
s dZ(t) + (1− ρs)

1/2dBn(t), ρ
1/2
s dZ(t) + (1− ρs)

1/2 1

Ns

Ns∑
m=1

dBm(t))

=ρs +
1

Ns

(1− ρs).

(C-47)
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Therefore, if the consistency condition (22) is satisfied, then for each trader, the correlation

coefficient between his private signal and the actual price is consistent with the correlation

between his private signal and his “subjective” price.
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1 Introduction 

New technologies have dramatically changed financial markets. One of the main innovations of 

recent years is computerised algorithmic trading (AT), which broadly refers to the direct use of 

computers to implement trades. AT is now widely used by financial institutions such as banks 

and hedge funds, and has important effects on the operation of financial markets. It can improve 

market liquidity by reducing transaction costs (Hendershot et al., 2011) and the reliance on 

financial intermediaries (Menkveld, 2013). It can also make security prices more efficient, in the 

sense that they better reflect fundamental values . It can even reduce risks by 

lessening the impact of human feelings on overall investor behaviour, such as panic reactions 

and herding behaviour. On the other hand, AT may have less desirable implications because it 

can increase market power over slower traders (Hoffmann, 2014), raise adverse selection (Biais 

et al., 2015), excess volatility or extreme market movements (Foucault et al., 2016) and so 

potentially harm financial stability. It is this last issue we focus on in this paper. 

We analyse the role of AT in foreign exchange (FX) markets in a period containing the 15 

January 2015 announcement by the Swiss National Bank that it had discontinued its policy of 

capping the value of the Swiss franc against the euro. This  represents a 

natural experiment as one of the largest shocks to the FX market in recent years and probably 

the most significant black swan  event in the period in which AT has been a prominent force in 

FX markets.1 In particular, we study the contribution of AT and human traders to two important 

dimensions of market quality, namely liquidity and price efficiency. Our analysis is based on a 

unique dataset with a detailed identification of AT obtained from EBS Market, which is the 

leading platform for electronic spot FX trading in many of the major currencies.2  

A detailed understanding of AT in distressed situations is important for at least two 

reasons. First, a better comprehension of whether AT is beneficial or detrimental for market 

quality in extreme situations would help inform the ongoing reform of trading venues, as 

pursued by Regulation NMS in the United States and MiFID I and II in Europe. Second, the 

resilience of an exchange system depends on the behaviour of different types of market 

participant and their reciprocal influence on each other. For instance, a tendency of AT to offer 

liquidity in calm markets and withdraw it in distressed situations could lead less sophisticated 

agents to become reliant on high levels of market liquidity only to find it in short supply when 

they most needed it. If these adverse consequences of AT were predominant or not offset by 

other traders, then AT could represent a systemic threat to the whole trading system. To shed 

light on this key issue for financial stability, we analyse whether human traders and AT 

substitute for or complement each other in supplying and consuming liquidity.  

                                                 
1 that describes an event that comes as a complete surprise and has a major effect. The term is based on an 
ancient saying that presumed black swans did not exist, but the saying was rewritten after black swans were discovered in the wild. 
2 While EBS has supplied the relevant market data, it does not endorse or support any conclusions made in this paper and has not 
contributed to any of the analysis in it. 
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We proceed in three steps. First, we describe the EBS Market platform and our sample of 

data from it. The platform is the central limit order book for spot FX operated by EBS Service 

Company Limited, which is part of NEX Markets, a business division of the NEX Group plc. To 

introduce our analysis, we provide an overview of trading patterns conducted by AT and human 

traders around the Swiss franc event. Second, we perform an in-depth analysis of market 

liquidity and price movements by decomposing order flow, effective spreads and intraday 

volatility by type of trader. This enables us to highlight the contribution of AT and human 

traders to liquidity provision and consumption, transaction costs and realised volatility. Third, 

we study the contribution to efficient pricing of AT and human traders. To do this, we analyse 

the formation of efficient prices by performing a vector autoregression (VAR) as in Hasbrouck 

(1991(a), 1991(b), 2007), but conditioning on trader  types as in Hendershott et al. (2011). We 

substantiate the analysis of price efficiency by looking at arbitrage opportunities (Chaboud et 

al.,  

Our study delivers two important findings. First, in reaction to the Swiss franc event, we 

find that AT tended to consume liquidity and reinforce the price disruption. Opposite and 

offsetting patterns apply for human traders, who supported market quality by providing liquidity 

and aiding price discovery. Second, we find that this market quality degradation coming from 

AT was concentrated in the shocked FX rate (EUR/CHF) and, to a lesser extent, USD/CHF. 

Non-CHF currency pairs (USD/JPY, EUR/JPY and EUR/USD in our sample) were essentially 

unaffected.3 This suggests that AT models were somewhat compartmentalised, which, along 

with human trading, helped to sustain market quality beyond the CHF currency pairs.  

distressed in its own way. This limits our ability to draw general conclusions. However, as in 

previous papers investigating important shocks such as the failure of Lehman Brothers in 2008 

(Afonso et al., 2011) or Flash Crash  in 2010 (Kirilenko et al., 2017), our analysis of a 

single event should provide indicative evidence on these broader issues. 

Our paper contributes to the growing literature on algorithmic trading, which we survey in 

the next section. Except for the thorough analysis by Chaboud et al. (2014), prior research on 

FX algorithmic trading is scant. While that work shows AT improves price efficiency in 

normal  market conditions, we find that AT reactions to an extreme event were detrimental to 

market liquidity and price resilience, whereas human traders sustained market quality during the 

event. FX markets have a different structure to other markets where AT is prevalent, with more 

trading conducted bilaterally and on multilateral platforms, and less on centralised exchanges. 

Hence, it is important to build the literature on FX markets. 

The paper proceeds as follows. After briefly describing related literature (Section 2) and 

our data (Section 3), we give an overview of trading patterns around the Swiss franc event 

(Section 4). We then undertake a more formal analysis of liquidity (Section 5), volatility 

                                                 
3 The currency codes are: CHF for Swiss francs, EUR for euros, JPY for Japanese yen and USD for US dollars.  
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(Section 6) and market efficiency (Section 7) for Swiss franc currency pairs, followed by 

analysis of non-CHF FX rates (Section 8). 

2 Literature review 

The literature on AT has grown substantially in the last few years.4 The theoretical literature 

focuses on how high-frequency trading (HFT), which is the most commonly discussed form of 

AT, 

quickly after news arrives creates disincentives for 

trading by slower traders (Hoffmann, 2014; and Jovanovich and Menkveld, 2016), including by 

increasing adverse selection and price impact (Foucault et al., 2016). Aït-Sahalia and Saglam 

(2014) and Rosu (2016) model HFT that is averse to inventory risk and predict that volatility 

will lead high-frequency traders to reduce their provision of liquidity. Biais et al. (2015) find a 

role for HFT in fragmented markets that produces adverse selection, negative externalities and 

over-investment in equilibrium.5   

The focus of prior empirical research has been the stock market. As described 

(2015), the consensus is that HFT market making enhances market quality by reducing spreads 

and raising informational efficiency.6 However, it is not clear whether HFTs go with or lean 

against the wind, that is amplify price falls (rises) by actively selling (buying) or dampening 

them by actively buying (selling) (see Korajczyk and Murphy, 2016; van Kervel and Menkveld, 

2016; Breckenfelder, 2013; and Tong, 2015). 

 event, our paper is related to the stock market literature, 

which provides mixed evidence on the role of HFT in distressed markets. On the one hand, 

HFTs are found to withdraw from their market-making role during lash crash  (see e.g. 

CFTC-SEC, 2010; Easley et al., 2012; Kirilenko et al., 2017; and Menkveld and Yueshen, 

2015) or when market conditions become unfavourable (see e.g. Raman et al., 2014; Anand and 

Venkataraman, 2015; and Korajczyk and Murphy, 2015). On the other hand, HFT provides 

liquidity and absorbs imbalances created by non-high frequency traders around large price 

movements (Brogaard et al., 2017) and the short-interval return volatility of most stocks varies 

inversely with a market-wide measure of correlated HFT strategies (Boehmer, Li, and Saar, 

2016).  

The only earlier paper that provides an in-depth analysis of AT in the FX market is 

Chaboud et al. (2014). They show that algorithmic trading is associated with a reduction in 

arbitrage opportunities while AT liquidity provision decreases return autocorrelation. 

                                                 
4 There are many excellent surveys on AT and HFT, including recent papers by Biais and Woolley (2011), Chordia et al. (2013), Easley 
et al. (2013), Gomber et al. (2011), Goldstein et al. (2014), Jones (2013), Kirilenko and Lo (2013), Biais and Foucault (2014), SEC 
(2010), O'Hara (2015) and Menkveld (2016, 2017). 
5 The role of AT in fragmented markets with multiple exchanges is studied in Pagnotta and Philippon (2015). Other papers analyse the 
welfare implications from double auctions (e.g. Cespa and Vives, 2015; Du and Zhu, 2015) and asynchronous arrivals (e.g. Budish et 
al., 2015; Bongaerts and Van Achter, 2016). Bernales (2014) and Rojcek and Ziegler (2016) use numerical methods for dynamic models 
encompassing the endogenous role of HFT, general limit order book and latency. 
6 See, for example, Boehmer et al. (2015), Brogaard et al. (2015), Carrion (2017), Conrad et al. (2015), Hasbrouck and Saar (2013), 
Hendershott et al. (2011), Menkveld (2013) and Malinova et al. (2013). 
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3 Market structure and data 

3.1 Market structure 

Two significant global electronic spot trading platforms in major currency pairs are EBS and 

Reuters. USD/CHF and EUR/CHF, which are the focus of this study, trade primarily on EBS 

(see King, et al., 2011). Prices on EBS also constitute the reference for derivative pricing in 

these currencies. Moreover, during the period of the Swiss franc event, EBS was the key trading 

platform for all Swiss franc positions as trading of futures on the Chicago Mercantile Exchange 

was suspended and over-the-counter trading had largely disappeared (Hagströmer and 

Menkveld, 2016). 

EBS Market is an order-driven electronic trading system, which unites buyers and sellers 

of spot FX across the globe on a pre-trade anonymous central limit order book. EBS is 

accessible to foreign exchange dealing banks and, under the auspices of dealing banks (via 

prime brokerage arrangements), to hedge funds and commodity trading advisors (CTAs). EBS 

controls the network and each of the terminals on which trading is conducted, and records 

 trades).  

As well as this simple distinction by terminal type, EBS requires market participants to 

identify what types of trading they engage in. This allows EBS to decompose the algorithmic 

trades into two different categories, referred to as bank AI  and PTC AI , where PTC stands 

for Professional Trading Community and AI for algorithmic interface, which is how EBS labels 

the direct computer interfaces. Market data at this level of granularity is not ordinarily sold or 

distributed by EBS to third parties. PTC essentially refers to principal trading firms, hedge funds 

and commodity trading advisors, which can trade directly on EBS under the auspices of dealing 

banks (via prime brokerage arrangements). Trading through this route is all AT in the sense that 

trades are initiated by computers. Bank AI is harder to categorise since it includes a significant 

share (EBS estimates approximately 30%) of aggregators that are computer-based trading 

systems that simply process orders received from bank customers and then execute them 

algorithmically. The source of these trades may be described as 

, as discussed by Gomber et al. (2011), rather than the proprietary 

algorithms usually highlighted in the AT literature. Note that the former category also includes 

auto-liquidation  algorithms that respond to margin calls, which have been highlighted as a 

source of price distortions during crashes (e.g. McCann and Yan, 2015). Note that PTC firms or 

banks may also submit manual orders. The three trade categories and their shares of average 

transaction volumes in EBS Market are represented in Figure 1. 

Computer-based trading classified as PTC or bank AI accounts for approximately 70% of 

EBS Market transaction volume. However, the system includes features designed to prevent 

strategies where speed or low latency is the sole contributor to success. First, it imposes a 

minimum quote life (MQL) for the five core currency pairs on EBS Market, so that once a good-
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till-cancelled order is submitted, it cannot be cancelled for 250 milliseconds.7 Second, and more 

importantly, EBS Market operates a randomised batching window on all messages that enter its 

of 1-3 milliseconds8, in which messages are processed on a randomised basis. As a result, the 

first message to arrive may not be the first released and sub-millisecond differences in latency 

become less important for trading on EBS Market. Note that this is not analogous to the frequent 

batch auction system described by Budish, Crampton and Shim (2015), which eliminates 

sniping of stale quotes, but is more like the random order delay system of Harris (2012). 

Figure 1: Indicative breakdown of EBS trading volumes 

 

                                      Source: EBS. 
 

As EBS Market 

period is one million of the base currency9, and trade sizes are only allowed in a multiple of 

millions of the base currency. 

 

3.2 Data 

Our data consist of both intraday quotes and transactions for EUR/CHF, USD/CHF, EUR/USD, 

USD/JPY and EUR/JPY during 5-23 January 2015. We specify 15 January as the Swiss franc 

event day, 5-14 January as the pre-event period, and 16-23 January as the post-event period. 

Throughout the subsequent analysis, we focus on data between 8.00 GMT and 17.00 GMT, 

                                                 
7 A MQL of 250 milliseconds was applied in the EUR/USD, USD/JPY, USD/CHF, EUR/CHF and EUR/JPY currency pairs on EBS 
Market for the dates referenced in this paper. 
8 For the dates referenced in this paper. 
9 The base currency is the first currency displayed in the symbol of the currency pair. For example, the euro is the base currency of 
EURCHF. 



 
  8 

which represent the effective trading hours of the day. We also exclude weekends, when the 

EBS trading platform is inactive.10,11    

The transaction data set records the time stamp to the nearest millisecond of each trade 

that occurred, along with the actual transaction price, the amount transacted, and the direction of 

the trade. Importantly for our study, the nature of the party providing liquidity (submitting the 

good-till-cancelled (GTC) order) and consuming liquidity (submitting the immediate-or-cancel 

) is categorised by EBS as human, bank AI or PTC AI.12 Thus, each trade may be 

classified according to nine different possible combinations of liquidity provider and consumer. 

In addition, each trade has an indicator of whether the liquidity provider was the buyer or the 

seller. We line up these millisecond time-stamped transactions with the quote data, which are 

available at 100 millisecond intervals, so for a given transaction the top 10 anonymised best bid 

and ask prices at the nearest previous whole 100 millisecond interval are also available. All 

quotes are firm and therefore truly represent the market prices at that instant.13 Unlike in the 

transactions data, the type of trader that posts each quote is not available to us.  

 

4 Overview of trading patterns around the Swiss franc event 

4.1 The Swiss franc event 

The Swiss National Bank (SNB) began intervening in FX markets to cap the value of the Swiss 

franc against the euro on 6 September 2011. In a press release of the same date, the SNB said 

 the Swiss economy and 

herefore  will no longer tolerate a 

EUR/CHF exchange rate below the minimum rate of CHF 1.20  and is prepared to buy 

foreign currency in unlimited quantities  (SNB, 2011). 

Following the introduction of this policy, the franc generally traded a little below its cap 

(Figure 2). It pushed against it for a period in mid-2012, before appreciation pressures again 

intensified towards the end of 2014 due to weakness in the euro-area economy. In response, the 

SNB cut its interest rate on sight deposits to minus 0.25%. However, commitment to the 

exchange rate policy appeared to remain firm. On 18 December 2014 the SNB Governor stated 

committed to purchasing unlimited quantities of foreign currency to 

 (Jordan, 2014). Similarly, 

                                                 
10 See Chaboud et al. (2014) for further discussion of trading activity on the EBS system. In addition, EBS indicated to us that their 
dealing services are ordinarily open for trading 24 hours a day, 7 days a week, with the exception of a maintenance window that 
ordinarily occurs from 5:50pm New York time on a Friday until Saturday morning. For the purpose of computing market data products, 

n 
normal marke  
11 In our sample, we drop five transactions and 24 quotes on EUR/CHF that took place between 09:32:29 GMT and 09:32:39 GMT on 
January 15, where the price was exceptionally low at 0.0015, with volume of one million of the base currency for each transaction. EBS 
confirmed that those transactions turned out to be errors made by the traders, and the counterparties have settled solutions outside EBS. 
12 GTC and IOC orders respectively align closely with the concepts of limit and market orders in the broader market microstructure 
literature.  
13 The historical market data provided by EBS is time-sliced at 100 milliseconds and is therefore a snapshot of the activity during 
previous time-period. Consequently the quote and paid/given trade data provided are a summary and not a full life-cycle of every event. 
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on 12 January 2015, another member of the SNB Governing Board said 

that the minimum exchange rate must r  (Reuters, 

2015a). 

Figure 2: EUR/CHF exchange rate versus the cap set by the Swiss National Bank 

   Source: Bloomberg 

 

Despite that, the policy of capping the value of the franc against the euro was discontinued 

at 9:30 GMT on 15 January 2015. A press release gave the following explanation: 

divergences between monetary policies of the major currency areas have increased significantly. 

The euro has depreciated significantly against the US dollar and this, in turn, has caused the 

Swiss franc to weaken against the US dollar. In these circumstances, the SNB concluded that 

enforcing and maintaining the minimum exchange rate for the Swiss franc against the euro is no 

longer justified . This news came as a complete surprise to market participants, as was reflected 

both in FX options prices leading up to the announcement (Mirkov et al., 2016) and financial 

reporting after it (e.g. Reuters, 2015b; Bloomberg, 2015). 

 

4.2 Overview of trading patterns 

In this section we provide an overview of the market reaction to the SNB announcement on 15 

January 2015. In particular, we illustrate graphically some of the key features of human and 

algorithmic trading around the announcement as a prelude to the more formal analysis in the rest 

of the paper. We first focus on the seconds around the announcement, then the minutes, and 

finally the hours.  

francs as well as the mid-price, which is the mid-point between the best bid and ask prices, 

during the 90 seconds following the announcement. Not shown, for reasons of sensitivity, is a 

sharp fall in outstanding orders to sell francs in the seconds approaching 9:30. While our data 

from EBS does not include the identities of the institutions submitting the orders, we presume 

this was driven by the SNB in preparation for its 9:30 announcement. The chart does show that 

it was not until about 44 seconds after the announcement that the market reacted significantly. 

At this time, the mid-price started to reflect a very rapid appreciation of the franc, as both sides 
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of the order book collapsed in size.14 Indeed, for a few seconds during the minute of 9.31, there 

were no orders to buy euros in exchange for Swiss francs at any price. We take the delayed 

response to the announcement as further evidence that it was not anticipated. 

Figure 3: EUR/CHF price and orders in the seconds following the SNB announcement 

    
 

Figure 4 shows the prices at which different types of trader exchanged euros for Swiss 

francs in the 30 minutes following the SNB announcement depending on whether their trades 

were consuming liquidity (top panel) or providing it (bottom panel). Trades that consume 

liquidity result from IOC orders, while those that provide it result from GTC orders. The top 

panel shows that bank AIs consumed liquidity at extreme prices (prices significantly different to 

those of immediately preceding trades) on a number of occasions, notably between 9.31 and 

9.36. Thus, over 75% of the cumulative appreciation of the franc in the 20 minutes to 9.50 was 

attributable to bank AIs, which accounted for 61% of the volume of liquidity-consuming trades. 

Indeed, we show below that bank AIs accounted for an even larger share of the realised variance 

of the EUR/CHF rate at this time. The lower panel shows that bank AIs also provided liquidity 

for some of the extreme-price trades. That bank AIs both consumed and provided liquidity at 

extreme prices may reflect the diverse set of traders from whom these trades may originate. This 

includes not only the different banks but also their various clients. In addition, a roughly equal 

number of extreme-price trades were accommodated by human traders. Indeed, human traders 

accounted for a significantly higher share of liquidity-providing trades (50%) than they did for 

liquidity-consuming trades (19%) during the 20 minutes to 9.50 when the Swiss franc 

appreciated sharply.15 

 

 

 

                                                 
14 We thank Alain Chaboud for pointing out ant portion of the orders 
underpinning the value of the euro against the franc were withdrawn but it was not until seconds later that the price started to fall.  
15 Figure 4 excludes trades that we infer (as discussed later) may have involved the SNB, though we found few such trades in the first 
twenty minutes after the announcement. 
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Figure 4: EUR/CHF trades in the minutes following the SNB announcement(1) 

By type of trader consuming liquidity (i.e. supplied the IOC order) 

By type of trader providing liquidity (i.e. supplied the GTC order) 

 
(1) Each data point plotted in the charts represents a simple average of trade prices within a given second. Due to averaging, the 
prices in the top and bottom panels need not be identical. 

 
 

Figure 5 gives an overview of the reaction of both the EUR/CHF and USD/CHF markets 

to the SNB announcement over the whole trading day of 15 January 2015. The first row shows 

minutes following the announcement, but that sizeable portions of these gains were reversed in 

the subsequent hour. After that the two spot rates were much more stable, with the Swiss franc 

worth about 10% more than at the start of the day. The second row shows that algorithmic 

traders were net purchasers of Swiss francs over the day, particular bank AIs against the euro 

and PTC AIs against the US dollar, while human traders were net purchasers of the base 

 franc as it appreciated, while 

purchases of the base currencies in the key 20-minute period immediately after the 

announcement. Finally, the third row shows that human traders were consistently net suppliers 

of liquidity over the day, while PTC AI trades consumed it. However, as we shall see below, net 

liquidity consumption by PTC AIs is not unusual in these two currency-pairs. 
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Figure 5: Market reaction on the day of the SNB announcement 

EUR/CHF: spot exchange rate USD/CHF: spot exchange rate 

  

EUR/CHF: cumulative net purchases of CHF USD/CHF: cumulative net purchases of CHF 

  

EUR/CHF: cumulative net liquidity provision EUR/CHF: cumulative net liquidity provision 

  

 
 

Overall, our graphical overview suggests that algorithmic traders contributed both to the 

liquidity dry-up (as they were net consumers of liquidity) and the price move (as they were net 

purchasers of the appreciating currency) after the SNB announcement. In the following sections, 

we examine these issues in more detail. 
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5 Liquidity contributions of computer and human trading 

In this section we investigate the contributions of computer and human traders to the liquidity of 

EUR/CHF and USD/CHF markets before, during and after the day of the SNB announcement. 

We study both quantity-based and price-based indicators of liquidity. 

 

5.1 Volumes of liquidity provided and consumed 

First, we focus on volumes of liquidity. As in Section 4, we identify whether the consumer and 

provider of liquidity for each trade was a human (H), a bank AI (B) or a PTC AI (P). We then 

record the shares of total trade volumes in three different periods for which providers and 

consumers of liquidity were H, B or P. The three periods are a -  period (5-14 January 

2015, excluding weekends), the  a post-event  (16-23 

January 2015, excluding weekends). , which is the 

difference between the share of trades for which a given type of trader provided liquidity and the 

share for which it consumed liquidity. The results are reported in Table 1. 

Table 1: Liquidity volumes by trader type 

EUR/CHF 

 

USD/CHF 

 
(1) Share of volume as liquidity provider minus share of volume as liquidity consumer. 
(2) *** / ** / * denote statistical significance at the 1% / 5% / 10% level. 

 

 

The table shows that net liquidity provision by AIs fell on the event day and in the post-

event period compared with the pre-event period, while it increased for humans. The increases 

in human net liquidity provision were all statistically significant, while the decreases for 

algorithmic traders were significant for at least one type of AI. In EUR/CHF, net liquidity 

Human Bank AI PTC AI Human Bank AI PTC AI Human Bank AI PTC AI
Share of trade volume (%)
Pre-event period 38.8 54.1 7.1 19.4 42.0 38.6 19.4 12.1 -31.5
Event day 68.4 25.1 6.5 34.9 26.7 38.4 33.5 -1.6 -31.9
Post-event period 50.1 35.3 14.5 21.5 23.3 55.1 28.6 12.0 -40.6
Statistical tests (t-statistics) (2)

Event day = pre-event? 6.0*** -4.3*** -0.3 11. 6*** -5.0*** -0.1 3.1*** -2.2** -0.1
Post-event = pre-event? 1.9** -2.5*** 3.1*** 1.1 -5.3*** 4.6*** 1.7* 0.0 -2.7***

Liquidity provider Liquidity consumer Net liquidity provision(1)

Human Bank AI PTC AI Human Bank AI PTC AI Human Bank AI PTC AI
Share of trade volume (%)
Pre-event period 3.8 15.4 69.1 16.6 31.5 40.3 -12.8 -16.1 28.9
Event day 8.9 25.6 60.3 34.1 34.6 26.2 -25.1 -9.0 34.1
Post-event period 7.7 24.9 56.3 27.6 39.0 22.4 -19.8 -14.1 34.0
Statistical tests (t-statistics) (2)

Event day = pre-event? 17.6*** 10.0*** -8.8*** 20.3*** 2.4** -11.6*** 20.8*** -6.6*** -4.4***

Post-event = pre-event? 8.7*** 5.9*** -9.3*** 8.1*** 3.7*** -9.0*** 5.6*** -0.87 -2.9***

Liquidity provider Liquidity consumer Net liquidity provision(1)
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provision by bank AIs declined significantly on the event day, while it was that of PTC AIs that 

declined significantly in the post-event period. In USD/CHF, net liquidity provision by both 

types of AI declined significantly on the event dayand that of PTC AIs declined significantly in 

the post-event period. Economically, the most significant changes were the decline in the share 

of bank AI liquidity-providing trades on the event day in EUR/CHF and the offsetting increase 

in the human share. Thus, although bank AIs also increased their share of liquidity-consuming 

trades on the event day, and humans reduced their share, this was not enough to change the 

pattern in net liquidity provision.  

One possible explanation for the importance of human traders in supporting liquidity on 

the event day and in the post-event period is that the SNB was an active trader in this category. 

If that were the case, it would be hard to draw general conclusions from our analysis about the 

role of human traders in extreme events. Hence, we have estimated how the SNB may have 

traded during this period. We need to make estimates, based on assumptions, as our data from 

EBS is anonymous so we cannot identify from this any trades of the SNB or any other 

individual institution. We then repeat the analysis underpinning Table 1 excluding these 

estimated trades to see if the results are materially affected.  

Our estimates of SNB trading activity are based on three assumptions. First, that SNB 

activity over our full sample period cannot have exceeded about 16% of the turnover on EBS. 

This figure is derived from public data on SNB sight deposits, which is the key liability created 

by FX interventions. It is an upper bound because other public documents suggest that the SNB 

favours a diversified approach to FX interventions (Moser, 2016), including substantial use of 

telephone orders (Fischer, 2004). Hence, only a share of any such activity may take place 

directly through EBS. The other assumptions are based on Fischer (2004), who notes that SNB 

interventions cluster around prices ending in 00 or 50, and that they tend to come in bursts of 

many transactions within short periods. Hence, we assume that bid orders ending in 00 or 50 

originated from the SNB if there was a trade at the same price within 100 milliseconds with a 

human liquidity provider that was buying EUR. Our strategy does not estimate IOC orders 

placed by the SNB, so we may overestimate net liquidity provision by the SNB.   

Table 2 shows adjusted results for liquidity provision and consumption by computers and 

humans excluding estimated SNB trades. It only shows results for EUR/CHF, as we made 

relatively more adjustments for this currency pair. These results are very similar to those in 

Table 1. In particular, we still find that human traders supported liquidity on the event day and 

in the post-event period, offsetting a reduction in net liquidity provision by computers. Hence, 

we proceed using the full data set in the rest of the paper. 
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Table 2: Adjusted EUR/CHF liquidity volumes by trader type 

 
(1) Share of volume as liquidity provider minus share of volume as liquidity consumer. 
(2) *** / ** / * denote statistical significance at the 1% / 5% / 10% level. 

 

 

 

5.2 Effective spreads 

We now turn our focus to a price-based indicator of liquidity. We saw in Section 5.1 that 

computers reduced their net volume of liquidity provision on the event day and afterwards, but 

did they widen bid-ask spreads on trades for which they did still provide liquidity? To 

investigate this question, we calculate a series of effective spreads, s, for each of our trader 

types: 

 

where t indexes the time of the trade, k indexes the type of trader providing liquidity, i.e. 

supplying the GTC order (human, bank AI or PTC AI), q is a binary variable equal to +1 for 

trades in which the liquidity consumer was buying the base currency and -1 for trades in which 

it was selling it, p is the transaction price and m is the mid-point between the best bid and ask 

quotes from any type of trader in the 100 millisecond window in which the trade took place. 

Table 3 shows median effective spreads for EUR/CHF and USD/CHF. We report median 

values as our calculated spreads include some extreme observations, particularly on the event 

day. For the same reason, the tests of equality of the medians reported in the table are non-

parametric tests.16 For EUR/CHF, median effective spreads were very similar across trader types 

in the pre-event period. They increased very sharply for all trader types on the event day, but 

significantly more so for computer trades than human trades, and they only contracted a little 

moving into the post-event period. The results are similar for USD/CHF. In this case, humans 

offered narrower spreads in the pre-event period, but all spreads again increased very sharply on 

the event day, particularly those of PTC AIs, and they remained much wider in the post-event 

period than in the pre-event period.  

 

                                                 
16 In particular, we use K-sample tests to investigate equality across periods and Snedecor and Cochran (1989) tests to investigate 
equality across trader types. 

Human Bank AI PTC AI Human Bank AI PTC AI Human Bank AI PTC AI
Share of trade volume (%)
Pre-event period 38.7 54.2 7.1 19.4 41.9 38.6 19.3 12.3 -31.5
Event day 63.9 28.7 7.5 33.5 25.6 40.9 30.4 3.1 -33.4
Post-event period 50.1 35.4 14.5 21.6 23.3 55.2 28.6 12.1 -40.6
Statistical test (t-statistics) (2)

Event day = pre-event? 5.1*** -3.8*** 0.2 10.6*** -5.4*** 0.9 2.4** -1.5 -0.7
Post-event = pre-event? 1.9** -2.5** 3.1*** 1.1 -5.3*** 4.6*** 1.7* -0.0 -2.7***

Liquidity provider Liquidity consumer Net liquidity provision(1)
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Table 3: Effective spreads by type of liquidity provider 

EUR/CHF 

 

USD/CHF 

 
(1) The tests are described in footnote 18. *** / ** / * denote statistical significance at the 1% / 5% / 10% level. 

 
 

Taking our quantity-based and price-based indicators of market liquidity together, we 

conclude that those classified as AI traders significantly reduced their net volume of liquidity 

provision and, where they did still provide liquidity, this was only at much wider spreads. In 

contrast, human traders significantly increased their net volume of liquidity provision relative to 

AIs and did so at narrower spreads than algorithmic traders. 

 

6 Impact of computer and human trading on volatility 

A second important dimension of market quality, alongside liquidity, is pricing efficiency. In 

theory, in an efficient market any gaps that might arise between the actual price of an asset and 

its fundamental value, tend to be small and closed quickly by 

traders drawing on the available information about the fundamental value.17 As a result there 

would be little excess volatility in prices, i.e. on top of that attributable to changes in the 

efficient price. In this section, we will examine the contributions of different trader types to 

efficient pricing of the EUR/CHF and USD/CHF exchange rates around the SNB 

announcement. However, we begin relatively simply by looking at contributions of different 

trader types to the realised variance of returns. 

 

                                                 
17 As Hendershott and Menkveld (2014) note, the net provision of limit orders need not be a good measure of liquidity supply, since a 
market order that leans against price pressure (goes against the prevailing market trend) can be thought of as a contribution to liquidity 
and reducing volatility. 

Human Bank AI PTC AI Human = Bank AI? Human = PTC AI?
Pre-event period 0.21 0.21 0.21 0.45 0.41
Event day 0.92 1.22 1.91 0.03** 0.00***

Post-event period 0.91 0.91 1.70 0.12 0.00***

Statistical tests (1) ( 2  statistics )
Event day = pre-event? 303.1*** 413.3*** 222.9***

Post-event = pre-event? 830.8*** 880.3*** 826.6***

Statistical tests (1) (p-values )Median spread (basis points )

Human Bank AI PTC AI Human = Bank AI? Human = PTC AI?
Pre-event period 0.24 0.30 0.43 0.00*** 0.00***

Event day 0.96 0.94 2.00 0.38 0.00***

Post-event period 0.86 1.05 1.80 0.00*** 0.00***

Statistical tests (1) ( 2  statistics )
Event day = pre-event? 71.7*** 73.3*** 97.1***

Post-event = pre-event? 429.6*** 666.7*** 864.2***

Median spread (basis points ) Statistical tests (1) (p-values )
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6.1 Contributions to realised volatility 

e calculate contributions of different trader types to the 

realised variance of returns in our pre-event, event day and post-event periods as: 

 

where k indexes our different types of trader (human, bank AI or PTC AI) and n indexes the 

return observations, of which there are N in total; r denotes the returns, which are logarithmic 

returns derived from successive transaction prices, and d is a dummy variable that equals one if 

the trader initiating the trade (i.e. consuming liquidity) is of a particular type and is otherwise 

zero. So, for example, if prices changed by 2% during a particular period as a result of two 

trades, one by a computer that moved the price by 1% and another by a human trader that moved 

the price by a further 1%, then each type of trader would have contributed 50% of the realised 

variance in that period. Results of this breakdown applied to EUR/CHF and USD/CHF during 

our three periods are shown in the left-hand panel of Table 4. 

Table 4: Contributions to realised variance 

Share of total variance Per-trade share of variance 

  
      (1) Such that the average variance per trade across all three periods and all trader types is one. 
      

 

The results for EUR/CHF show a remarkable increase in the variance contribution of bank 

AIs on the event day. This jumped to over 90% of the total, before the variance shares of all 

trader types returned close to pre-event levels in the post-event period. The results for USD/CHF 

show a similar pattern, but the event-day increase in the bank AI share is much smaller and the 

variance shares of the different trader types do not fully revert to pre-event levels in the post-

event period. As bank AIs include both proprietary algorithmic trading by banks (estimated to 

be about 70% of total bank AI trading) and computer systems that aggregate and transact client 

orders (estimated to be about 30% of total bank AI trading), either of these could have been 

responsible for the event-day jumps in variance contributions. To the extent that PTC AIs run 

similar proprietary trading algorithms to those of banks, the fact we see a different pattern for 

bank AI and PTC AI suggests that aggregators may have played an important role.  

The breakdown in the left-hand panel of Table 4 is effectively a combination of the share 

of total trading of each type of trader and the per-trade impact on volatility of each type of trade. 

Per cent Human Bank AI PTC AI
EUR/CHF
Pre-event period 17.4 45.0 37.6
Event day 1.0 90.7 8.3
Post-event period 17.7 46.8 35.6
USD/CHF
Pre-event period 5.3 17.7 77.1
Event day 6.8 33.7 59.5
Post-event period 8.3 26.4 65.3

Normalised (1) Human Bank AI PTC AI
EUR/CHF
Pre-event period 1.14 1.14 0.83
Event day 0.05 3.55 0.15
Post-event period 0.94 1.81 0.64
USD/CHF
Pre-event period 0.93 0.95 1.02
Event day 0.62 1.22 0.97
Post-event period 0.88 0.98 1.03
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Changes in variance contributions could therefore simply reflect changes in trading shares. We 

therefore calculate a per-trade variance impact coefficient, which simply scales variance 

contributions by the number of trades undertaken by the different trader types.  

The right-hand panel of Table 4 shows the results of this analysis. The remarkably high 

contribution of bank AIs to EUR/CHF volatility on the event day is still present on a per-trade 

basis, as is an increase in its contribution to USD/CHF volatility. This panel also shows that the 

contribution to volatility of human trades declined on a per-trade basis for both EUR/CHF and 

USD/CHF, particularly on the event day itself. We obtain the same qualitative results if we 

normalise by trade volume rather than number of trades. 

As a complement to our per-trade variance results, Table 5 shows estimated price-impact 

coefficients (Kyle, 1985). These were derived by regressing five-minute returns on the net order 

flow for each type of trader during the same five-minute periods. Specifically, returns were 

computed as logarithmic returns (on the base currency) between successive mid-points of the 

best bid and ask quotes in the final 100 milliseconds of each period. Net order flow was 

computed as the difference between liquidity-consuming purchases of the base currency and 

liquidity-consuming sales of the base currency by each trader type. 

Table 5: Price impact coefficients(1) 

EUR/CHF USD/CHF 

  
  (1) *** / ** / * denote statistical significance at the 1% / 5% / 10% level. 
  Sources:  

 

The results share some similarities with the right-hand panel of Table 4. In particular, bank 

AI order flow had the largest price impacts on both EUR/CHF and USD/CHF in the post-event 

period, as well as on USD/CHF on the event day itself. However, the price impact of bank AI 

order flow was effectively zero in EUR/CHF on the event day, while bank AI trades generated 

the most volatility. This suggests that bank AIs contributed a lot of uninformative noise  to the 

EUR/CHF market on the event day. We investigate the information contributions of our three 

trader types in more detail in the next section.  

 

6.2 Contributions to efficient pricing 

Since it would be possible to argue that any increase in volatility driven by AI or human trading 

was valuable if it helped market prices to fully reflect available information, it would be 

desirable to view the results in Section 6.1 in combination with estimated contributions of 

different trader types to the formation of efficient prices. We estimate the latter using a variant 

Human Bank AI PTC AI
Pre-event period 0.001 0.000 0.002***

Event day -0.102 0.000 0.118
Post-event period 0.454*** 0.480*** 0.151***

Human Bank AI PTC AI
Pre-event period 0.064** 0.073*** 0.034***

Event day 0.716 1.421*** -0.371
Post-event period 0.244** 0.516*** -0.023
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of the vector autoregression (VAR) model developed in Hasbrouck (1991(a), 1991(b), 2007) 

and employed in Hendershott et al. (2011).18 Specifically, we estimate the following model:  

  

  

  

  

where r denotes returns on the base currency and x denotes its order flows, i.e. net liquidity-

consuming purchases, both are calculated over five-minute periods, indexed by t. More 

specifically, returns are logarithmic returns based on the mid-point of the best bid and ask 

quotes in the final 100 milliseconds of the current and previous periods, and order flows are 

computed separately for the different types of trader. 

The only structural assumptions in this model relate to timings. Thus, we assume that PTC 

AIs  as the fastest traders in the market  can adjust their net orders to the contemporary order 

flow of other market participants. Similarly, bank AIs  as the next fastest trader type  can 

adjust their net orders to the contemporary order flow of human traders, but not to that of PTC 

AIs. Finally, human traders can only adjust their net orders to the previous order flows of other 

market participants.19 These assumptions are in a similar vein to those of Brogaard et al. (2014) 

in their study of HFT and non-HFT trading activity.  

We estimate this model, selecting K = 5 as the optimal number of lags, and transform it to 

a vector moving-average representation by repeatedly substituting for the right-hand side 

terms.20 The resulting equation for returns is: 

   

As suggested by Hendershott et al. (2011), the last three terms 

as they reflect order flows from particular trader types, while the first term may be 

. Thus, we can identify separate contributions to efficient pricing 

from public information and private information pertaining to each of our three trader types 

via:21 

  

                                                 
18 The model is described in some detail on pages 78-85 of Hasbrouck (2007). 
19 This is the most logical ordering, but even with alternative orderings the pattern of results across periods remains similar. 
20 We did this ten times, by when the marginal effect of each substitution had become small.  
21 To be clear, this follows from the assumptions of the model, and not from information in the market data provided by EBS. 
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where  is the overall variance of returns, and the terms on the right-hand side respectively 

represent contributions to this from public information and private information pertaining to 

PTC AI, bank AI and human traders. , , ,  denote the variances of return shocks 

and shocks to order flows of each trader type. Table 6 presents the results of this decomposition. 

Table 6: Estimated contributions to variance of efficient returns 

EUR/CHF USD/CHF 

  
(1) A small number of the most extreme returns on the event day were excluded to avoid these driving the results.  

 

 

The results for EUR/CHF show a striking shift in information contributions across our 

three periods. In the pre-event period, PTC AIs are estimated to have made by far the largest 

contribution to the variance of efficient returns of all types of order flows, with bank AIs and 

human traders contributing very little. On the event day, human trading took over as the most 

significant contributor, while the influence of PTC AIs all but disappeared. Human trading also 

maintained a significant contribution in the post-event period. The role of bank AIs on the event 

day and in the post-event period was similar to that of human traders, though not as dramatic, 

stepping up from pre-event levels. This was dwarfed by the increased contribution of bank AI to 

total realised volatility highlighted in Section 6.1.  

The pattern for USD/CHF is somewhat less clear, as the informational role of all types of 

trading is estimated to be relatively small in both the pre-event and post-event periods. When the 

contribution of public information collapsed on the event day, however, order flows did 

temporarily become much more informative, particularly those from AI trades.  

This section suggests that human traders played an important role in the discovery of 

efficient prices, notably in the EUR/CHF market on the event day. Here, they substituted for 

computers, notably PTC AIs, which still contributed less to price discovery than human traders 

in the post-event period. Combining these results with previous ones, showing that AI traders 

made large contributions to realised volatility, we conclude that these traders added significant 

noise to FX rates following the SNB announcement. This may reflect the possibility that many 

computer trades after the announcement were driven by liquidity needs rather than information. 

ire-selling would be consistent computers being net consumers of liquidity, as we saw in 

Section 5. 

 

Per cent
Human Bank AI PTC AI

Pre-event period 63.8 4.4 0.3 31.5
Event day(1) 11.8 69.2 18.1 0.9
Post-event period 39.9 27.3 19.4 13.4

Order flowReturns Per cent
Human Bank AI PTC AI

Pre-event period 79.5 4.3 11.0 5.2
Event day(1) 19.2 17.9 26.1 36.9
Post-event period 85.3 3.1 11.3 0.2

Returns Order flow
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7 Arbitrage opportunities and market efficiency  

Studies have found that computer trading algorithms sometimes help to iron out market 

imperfections such as arbitrage opportunities. In this section, we present measures of market 

efficiency relating to triangular arbitrage to see if there were changes in the efficiency of Swiss 

franc currency markets as computer traders withdrew liquidity following the SNB 

announcement on 15 January 2015.  

The Swiss franc is one of the few currencies continuously quoted directly against both the 

euro and the US dollar. Some computer trading in these markets may therefore be engaged in 

triangular arbitrage. This involves searching for and trading on instances of direct quotes for 

EUR/CHF that have moved out of line with implied quotes derived from USD/CHF and 

EUR/USD.  

We begin by calculating the frequency and average size of such arbitrage opportunities on 

the day of the SNB announcement and in the periods preceding and following it. Specifically, 

we examine the best bid and ask quotes in each 100 millisecond window and record the 

existence of an arbitrage opportunity if a profit could have been made by buying EUR/CHF 

directly and selling via USD/CHF and EUR/USD trades or vice versa. 

The profits have to exceed a de minimus one basis point, and we record the average profitability 

of all arbitrage opportunities meeting this criterion. The results are shown in the left-hand panel 

of Table 7. 

Table 7: Arbitrage opportunities between EUR/CHF, USD/CHF and EUR/USD 

Size and frequency of opportunities Trading on arbitrage opportunities(1) 

  
(1) *** / ** / * denotes statistical significance at the 1% / 5% / 10% level. 
(2) Percentage of 100 millisecond periods in which the combination of best bid and ask quotes across the three 
currency-pairs offers a profit in excess of one basis point. 
(3) Average profitability of arbitrage opportunities where they exist. 
Sources: EBS and  

 

Not surprisingly, by far the largest and most frequent arbitrage opportunities occurred 

during the event day itself. Arbitrage opportunities then remained over ten times more frequent 

in the post-event period compared with the pre-event period. This suggests that algorithmic 

trading may have become less active in this latter period, possibly in response to the increased 

volatility of the two CHF rates in the arbitrage triangle.  

To investigate more thoroughly how the role of algorithmic trading in arbitrage in the 

post-event period compares with that of the pre-event period, we estimate a structural vector 

autoregression (SVAR) model of the relationship between arbitrage opportunities and the 

Frequency(2) Profitability(3)

Per cent Basis points
Pre-event period 0.004 9.9
Event day 0.897 181.2
Post-event period 0.046 4.8

Coefficents

Human -0.0022 0.0010
Bank AI 0.0061*** 0.0025

PTC AI 0.0089*** -0.0050

Pre-event 
period

Post-event 
period
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trading volumes of different types of trader. This analysis closely follows that of Chaboud et al. 

(2014). In particular, we estimate the following model: 

  

where Y contains four endogenous variables, the first of which measures the frequency of 

arbitrage opportunities, while the remaining ones measure the order flow of each trader type 

relative to total market order flow. These variables are measured over five-minute windows. A is 

a 4×4 matrix of coefficients governing contemporaneous relationships between the endogenous 

variables. These were estimated using the approach of Rigobon (1993). Two lags of the 

endogenous variables are also included in the model, as are six exogenous variables, X. These 

are total trade volumes and return volatilities for each of the three currency pairs in the arbitrage 

triangle, all computed over the preceding ten minutes. Finally, we include nine time dummy 

variables, G, one for each hour of the trading day. 

The right-hand panel of Table 7 shows the estimated contemporaneous coefficients that 

reflect how the trading activity of each type of trader responds to arbitrage opportunities. It 

reveals statistically significant positive responses of human, bank AI and PTC AI trading in the 

pre-event period, with both bank AI and PTC AI trading responding more than that of human 

traders. In the post-event period, however, human traders pursued triangular arbitrage 

opportunities more than bank AIs and PTC AIs, even though the relationship was weaker and no 

longer statistically significant. Thus, our results suggest a significant reduction in computer 

resources devoted to triangular arbitrage following the Swiss franc event, with human trading 

becoming the most important source of arbitrage (though not significantly so). The fact that no 

type of trading made a significant contribution to arbitrage suggests that most mis-pricings were 

closed by quote adjustment rather than active trading. 

 

8 Non-CHF foreign exchange rates 

Although we have some evidence that AI trading adversely affected market liquidity and price 

formation in exchange rates featuring the Swiss franc after the SNB announcement, an 

important question for financial stability is whether these effects spread to exchange rates more 

widely. If so, to what extent did AI trading undermine the quality of these FX markets? In order 

shed light on this issue, we now focus on three other currency pairs, EUR/USD, USD/JPY and 

EUR/JPY. We chose these three cross-rates as EUR/USD and USD/JPY are the two most traded 

currency pairs in all FX markets, and while EUR/USD is associated with EUR/CHF and 

USD/CHF through triangular arbitrage, USD/JPY is not. We added EUR/JPY to study arbitrage 

in another triangle of currencies. 

First we repeat the analysis of liquidity provision and consumption of Section 5.1 for these 

three currency pairs. Here, we focus on net liquidity provision, which is shown in Table 8. 
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Table 8: Net liquidity provision(1) 

 
(1) Share of volume as liquidity provider minus share of volume as liquidity consumer. 
(2) *** / ** / * denote statistical significance at the 1% / 5% / 10% level. 

 
 

Table 9: Effective spreads by type of liquidity provider 

EUR/USD 

 

USD/JPY 

 

EUR/JPY 

 
(1) The tests are described in footnote 18. *** / ** / * denote statistical significance at the 1% / 5% / 10% level. 

 
 

 

Human Bank AI PTC AI Human Bank AI PTC AI Human Bank AI PTC AI
Share of trade volume (%)
Pre-event period 20.9 5.0 -25.9 20.1 7.7 -27.8 35.3 18.5 -53.8
Event day 17.7 -2.1 -15.6 18.2 -2.4 -15.8 31.9 18.4 -50.4
Post-event period 18.5 4.1 -22.6 19.6 7.7 -27.3 36.6 20.4 -57.0
Statistical tests (t-statistics) (2)

Event day = pre-event? -3.3*** -6.7*** 9.2*** -1.6 -8.0*** 7.4*** -2.1* -0.1 1.8
Post-event = pre-event? -1.3 -0.6 1.4* -0.3 0.0 0.1 0.3 0.6 -0.8

EUR/USD USD/JPY EUR/JPY

Human Bank AI PTC AI Human = Bank AI? Human = PTC AI?
Pre-event period 0.17 0.21 0.34 0.00*** 0.00***

Event day 0.22 0.30 0.51 0.00*** 0.00***

Post-event period 0.20 0.25 0.42 0.00*** 0.00***

Statistical tests (1) ( 2  statistics )
Event day = pre-event? 42.6*** 62.3*** 84.4***

Post-event = pre-event? 51.5*** 101.8*** 160.7***

Median spread (basis points ) Statistical tests (1) (p-values )

Human Bank AI PTC AI Human = Bank AI? Human = PTC AI?
Pre-event period 0.14 0.24 0.35 0.00*** 0.00***

Event day 0.18 0.27 0.47 0.00*** 0.00***

Post-event period 0.14 0.26 0.41 0.00*** 0.00***

Statistical tests (1) ( 2  statistics )
Event day = pre-event? 18.7*** 11.8*** 45.6***

Post-event = pre-event? 0.6 13.2*** 57.5***

Median spread (basis points ) Statistical tests (1) (p-values )

Human Bank AI PTC AI Human = Bank AI? Human = PTC AI?
Pre-event period 0.22 0.36 0.45 0.00*** 0.00***

Event day 0.46 0.56 0.92 0.91 0.00***

Post-event period 0.28 0.48 0.64 0.00*** 0.00***

Statistical tests (1) ( 2  statistics )
Event day = pre-event? 28.3*** 19.0*** 73.9***

Post-event = pre-event? 14.8*** 20.2*** 60.0***

Median spread (basis points ) Statistical tests (1) (p-values )
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The table shows no significant change in the net supply of liquidity in non-CHF currency 

pairs in the post-event period compared with the pre-event period. On the event day, there was 

some decline in net liquidity provision in EUR/USD and USD/JPY by bank AIs, but this was 

compensated for by an increase from PTC AIs. 

Second, we look at effective spreads, as in Section 5.2. Table 9 shows how effective 

spreads varied on and after the day of the SNB announcement by type of liquidity provider for 

our three non-CHF currency pairs. Across these currency pairs, spreads on human trades were 

always narrower than spreads on computer trades, but all spreads widened on the event day and 

reverted towards pre-event values in the post-event period, such that the relative positions of 

spreads with human and computer traders did not change.  

Finally, we repeat our analysis of the frequency and size of arbitrage opportunities in 

Section 8.1 for the USD/JPY-EUR/JPY-EUR/USD triangle. If the Swiss franc event had a 

widespread impact on computer trading in all FX cross-rates we might expect more arbitrage 

opportunities to have appeared in this triangle. However, as Table 10 shows, although there was 

some increase in arbitrage opportunities on the event day, which was statistically significant, 

they were almost identical in the pre-event and post-event periods. 

Table 10: Arbitrage opportunities between USD/JPY, EUR/JPY and EUR/USD 

 
(1) Percentage of 100 millisecond periods in which the combination of best bid and ask quotes across the three 
currency-pairs offers a profit in excess of one basis point. 
(2) Average profitability of arbitrage opportunities where they exist. 

 
 

  

9 Conclusion  

The Swiss franc event is probably the most significant shock to FX markets since computerised 

algorithmic trading has been prominent. Studying the reaction to this shock, we find that 

algorithmic trading contributed to the decline of EUR/CHF and USD/CHF market quality on the 

event day and afterwards as they withdrew liquidity and generated uninformative volatility. 

Human traders took over as the main contributors to efficient pricing, while algorithms tended to 

amplify price movements by following trends. Trades by bank algorithms, in particular, 

contributed substantially to non-informative EUR/CHF volatility. This may indicate that the role 

of trade aggregators, which has been highlighted in other extreme market events (see for 

example BIS, 2017), was important. Both PTC and bank algorithms, which had traded on 

Frequency(1) Profitability(2)

Per cent Basis points
Pre-event period 0.012 0.2
Event day 0.494 1.9
Post-event period 0.014 0.2
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triangular arbitrage opportunities before the event, ceased doing so afterwards. However, 

adverse effects on non-CHF currency pairs were limited, suggesting that algorithmic trading did 

not propagate contagion in the FX market, at least on this occasion. 

Of course, it is hard to draw general conclusions from one event, not least because we 

have only studied how algorithmic trading reacted and not why it did so. Was it due to more 

stringent capital or trading requirements applied to algorithmic trading or because of the 

behaviour of the algorithms themselves? If the latter, were there types of algorithm that reacted 

more and types that reacted less or even partially offset the behaviour of the others? If that were 

the case, the mix of algorithms operating at the time of future financial market shocks could 

affect the scale of any amplification that occurs. Indeed, that mix could be affected by the 

adaptation of algorithms as they experience periods of market stress like the one studied in this 

paper. Nevertheless, our results contrast with evidence that algorithmic trading in aggregate 

improves liquidity and price discovery in normal times. This suggests there is some value in 

maintaining a diversity of trader types to help keep markets resilient through different trading 

conditions.  
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A stock’s demand might appear random, not because individual investors are
behaving randomly, but because it’s too computationally complex to predict
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mark to. . . Although it’s easy to predict if this index-fund rebalancing cascade
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Z will be affected (buy? or sell?) is computationally intractable. Second, we give
empirical evidence that complexity actually does generate noise in real-world fi-
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1 Introduction

Imagine you’re a trader who’s just discovered that stock Z is under-priced. In a
market without noise, there’s no way for you to take advantage of this discovery. The
moment you try to buy a share, other traders will immediately realize that you must
have uncovered some good news. And, you won’t find anyone willing to sell you a
share at the old price (Aumann, 1976; Milgrom and Stokey, 1982).

Noise pulls the rug out from under this no-trade theorem. In a market with noise,
someone may always be trying to buy or sell stock Z for erratic non-fundamental
reasons. So, when you try to buy a share, other traders won’t immediately realize
that you’ve uncovered good news since your buy order could just be some more
random noise. It’s this plausible cover story that allows you to both trade on and
profit from your discovery. It’s this plausible cover story that Fischer Black was
referring to when he wrote that “noise makes financial markets possible”.

But, where exactly does this all-important noise come from? Who generates it?
And, what are their erratic non-fundamental reasons for trading?

The standard answer to these questions is that i) noise comes from individual
investors, and that ii) their demand looks erratic and unrelated to fundamentals be-
cause individual investors are just plain bad traders. These are the standard answers
for a reason. Not only do individual investors suffer from all sorts of behavioral biases
when they trade (Barberis and Thaler, 2003) but they trade far too often (Barber
and Odean, 2000). So, it’s clear that individual investors can generate noise.

But, are they the only source? It seems unlikely. The importance of individual
investors has steadily declined over the past few decades. While individual investors
held 47.9% of all U.S. equity in 1980, this percentage was down to only 21.5% by 2007
(French, 2008). And, in June 2017 JP Morgan strategists reported that only around
“10% of trading is done by traditional, ‘discretionary’ traders, as opposed to system-
atic rules-based ones.”1 However, this steady downward trend in the importance of
individual investors has not been accompanied by a drop in trading volume.

Motivated by this explanatory gap, we propose an alternative noise-generating
mechanism based on computational complexity. A stock’s demand might appear ran-
dom, not because individual investors are behaving randomly, but because it’s too
computationally complex to predict how a wide variety of simple, deterministic, trad-
ing rules will interact with one another—even if you yourself are fully rational. There

1Financial Times. 6/14/2017. Not Your Father’s Market: Tech Tantrum Shows How U.S. Equi-
ties Trading Has Changed.
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are two parts to our analysis. First, we show theoretically how computational com-
plexity can generate noise by modeling a particular kind of trading-rule interaction:
index-fund rebalancing cascades. Then, we give empirical evidence that index-fund
rebalancing cascades actually generate noise in real-world financial markets using data
on the end-of-day holdings of exchange-traded funds (ETFs).

Theoretical Model. As individual investors have shrunk in importance, “passive
investing—indexing—has become popular as an alternative to active investment man-
agement” and “active managers. . . have become more index-like in their investing
(Stambaugh, 2014).” However, these new ‘index-like’ funds have not been created
in Jack Bogle’s image. Many choose their holdings “based on custom criteria” that
involve threshold-based rules.2 For instance, the PowerShares S&P 500 Low-Volatility
ETF [SPLV] tracks the lowest-volatility quintile of S&P 500 stocks. This fund uses
a threshold-based rule because an arbitrarily small change in a stock’s volatility can
move it from 101st to 100th place on the low-volatility leaderboard. When this hap-
pens, SPLV has to exit its position in one stock and build a new position in another,
affecting each stock in equal-but-opposite ways. The price of the stock being added
will rise while the price of the ‘stock formerly known as 100th’ will fall.

We begin our analysis by presenting a model where, because there are so many
index funds tracking so many different threshold-based benchmarks, a small change
in stock A’s price can cause one index fund to buy stock A and sell stock B, which
can then cause a second index fund following a different threshold-based benchmark
to sell stock B and buy stock C, which can then cause. . . Our main theoretical result
is that, although it’s possible to determine if a stock will be affected by one of these
index-fund rebalancing cascades, the problem of determining how the stock will be
affected (buy? or sell?) is computationally intractable. In fact, it’s NP hard. Thus,
index-fund rebalancing cascades can generate seemingly random demand shocks even
though each index fund involved in the cascade is following a completely deterministic
trading rule. In other words, index-fund rebalancing cascades generate noise in a way
that does not require traders to suffer from behavioral biases or make cognitive errors.

Rebalancing Cascades. Our theoretical model shows how index-fund rebalancing
cascades are able to generate seemingly random demand shocks. But, is there any
evidence that they are actually doing this in real-world financial markets? To answer
this question, we study end-of-day ETF holdings using data from ETF Global, which
covers every trading day from January 2010 to December 2015. We focus our attention

2Bloomberg. 5/12/2017. There Are Now More Indexes Than Stocks.
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on ETFs that rebalance daily. So, when you look at our results, you should be thinking
about the PowerShares S&P 500 Low-Volatility ETF [SPLV] rather than the SPDR
S&P 500 ETF [SPY]. ETFs that rebalance daily are smaller than funds that track
broad value-weighted market indexes, such as SPY. But, their rebalancing activity
matters because these funds tend to do the bulk of their trading during the final
20-to-30 minutes of the trading day.3 We also net-out changes in ETF holdings due
to creations and redemptions. These trades are executed as in-kind transfers for tax
reasons (Madhavan, 2016) and so can’t contribute to index-fund rebalancing cascades.

Here’s how we structure our tests. Our theoretical model studies index-fund re-
balancing cascades that stem from an initial shock. So, we study ETF rebalancing
cascades that stem from an initial M&A announcement, referring to the target of
an M&A announcement as stock A. Our data on M&A announcements comes from
Thomson Financial. M&A deals are a natural choice for the initial shocks because “a
profusion of event studies has demonstrated that mergers seem to create shareholder
value, with most of the gains accruing to the target company (Andrade et al., 2001).”
While M&A targets are not randomly chosen, the exact date of the announcement
(Tuesday? Wednesday? or Thursday?) may as well be.

Following each stock A’s announcement as an M&A target, we examine the set of
unrelated stock Zs. For stock A and stock Z to be unrelated, they have to be twice
removed in the network of ETF holdings at the time of the M&A announcement.
Stock Z can’t have been recently held by any ETF that also held stock A. And, if
stock A and stock B both belong to the same benchmark, then stock Z can’t have
been recently held by any ETF that also held stock B. In other words, the chain
has to be A → B → C → Z or longer. Because there are smart-beta ETFs focusing
on things like large-cap, value, and industry-specific benchmarks, this unrelatedness
criteria also implies that stock Z doesn’t share any well-known characteristics such
as size, book-to-market, or industry with stock A.

Our theoretical model predicts that, all else equal, a stock Z that’s on the cusp
of more ETF rebalancing thresholds is more likely to be hit by an ETF rebalancing
cascade. So, we split the set of stock Zs for each M&A announcement into two
subsets: those that are on the cusp of rebalancing for an above-median number of
ETFs, and those that aren’t. Consistent with our theoretical prediction, we find that
ETF rebalancing volume grows by 169% more for the above-median group of stock
Zs than for the below-median group in the 5 days immediately following an M&A

3Wall Street Journal. 5/27/2015. Stock-Market Traders Pile In at the Close.
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announcement. And, we show that this increase is no more likely to be made up of
buy orders than of sell orders. Taken together, these results suggest that it’s possible
to predict if stock Z will be affected by an ETF rebalancing cascade but not how
stock Z will be affected. What’s more, because the same stock Z can be above-median
relative to one M&A target but below-median relative to another, our results can’t
be attributed to unobserved characteristics of stock Z.

Market Reaction. To show that ETF rebalancing cascades are actually generating
noise, however, we need to do more than just give statistical evidence that they are
unpredictable. To be convincing, we need to show that market participants treat the
resulting demand shocks as noise, too. The natural way to investigate whether market
participants are treating the demand coming from ETF rebalancing cascades as noise
is to look for differences in liquidity. As highlighted in the opening paragraphs, if
there is more demand noise, then a randomly selected trade is less likely to be coming
from an informed trader. So, we look for otherwise identical stock Zs and ask: ‘Is
stock Z1 more liquid than stock Z2 at times when stock Z1 happens to be more
susceptible to ETF rebalancing cascades than stock Z2?’ The data reveals that the
answer is ‘Yes’. Above-median stock Zs are much more liquid than the below-median
stock Zs suggesting that market participants treat the demand shocks coming from
ETF rebalancing cascades as noise.

Broader Implications. John Maynard Keynes (1921) pointed out that, because a
daily national census is logistically impossible, the answer to the question ‘Is the pop-
ulation of France an even or an odd number?’ is effectively a coin toss. So, economists
had intuited a connection between apparent randomness and computational complex-
ity long before ETFs arrived on the scene. But, in the past, this intuitive connection
his always been just that—an intuition. The goal of our theoretical model is to make
the connection concrete.

By showing precisely why it’s computationally intractable to predict ETF re-
balancing cascades even if you yourself are fully rational, we make it possible for
researchers to identify other situations where the same logic holds. For example, our
theoretical model also applies to any other group of funds following a wide variety of
threshold-based rebalancing rules. Think about quantitative hedge funds following
strategies of the form ‘Buy the top 30% and sell the bottom 30% of stocks when
sorting on X’ (Khandani and Lo, 2007). Or, consider pension funds with strict port-
folio mandates of the form ‘15% of our assets will be held in alternative investments’
(Pennacchi and Rastad, 2011).
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Figure 1: How This Paper Is Different. Papers on index-linked investing fall into two
groups. The first studies how trading due to index inclusion can amplify an initial shock to
stock A (Row 1). The second studies how stock A’s returns suddenly co-move with stock B’s
returns as soon as stock A gets added to stock B’s index (Row 2). By contrast, this paper
focuses on the unpredictable consequences of stock A’s index inclusion, not for stock A or
for stock B, but for seemingly unrelated stock Zs (Rows 3 and 4).

1.1 Related Literature

This paper connects to three main strands of literature.

Noise. The problem we study is motivated by the central role that noise plays in
information-based asset pricing models (Grossman and Stiglitz, 1980; Hellwig, 1980;
Admati, 1985; Kyle, 1985) and limits-to-arbitrage models (Shleifer and Summers,
1990; Shleifer and Vishny, 1997; Gromb and Vayanos, 2010). We propose an expla-
nation for noise that does not rely on individual investors behaving randomly.

Indexing. Our paper also relates to work on index-linked investing (Wurgler,
2010). Some of these papers study how index inclusion can amplify an initial shock
to stock A. For instance, Chang et al. (2014) shows how getting added to the Russell
2000 results in further price increases. For examples involving ETFs, see Ben-David
et al. (2017), Brown et al. (2016), and Israeli et al. (2017). Other papers study how
stock A’s returns suddenly co-move with stock B’s returns as soon as stock A gets
added to stock B’s index. For instance, Barberis et al. (2005) shows that a stock’s
beta with the S&P 500 jumps sharply after index inclusion. For other examples, see
Greenwood and Thesmar (2011), Vayanos and Woolley (2013), and Anton and Polk
(2014). By contrast, we focus on the unpredictable consequences of stock A’s index
inclusion, not for stocks A or B, but for seemingly unrelated stock Zs.

Thresholds. Finally, people use threshold-based rules to make all sorts of decisions
(Gabaix, 2014). The literature on heuristic decision making typically measures the
cost of using a heuristic rule in expected -utility loss (Bernheim and Rangel, 2009).
Whereas, we look at how simple decision rules can affect demand volatility.
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2 Theoretical Model

Because there are so many index funds tracking so many different benchmarks, a small
change in stock A’s characteristics can cause one index fund to buy stock A and sell
stock B, which can then cause a second index fund following a different benchmark to
sell stock B and buy stock C, which can then cause. . . This section presents a model
showing that, while it’s possible to determine if a stock will be affected by one of these
index-fund rebalancing cascades, predicting how the stock will be affected (buy? or
sell?) is an NP-hard problem. As a result, demand shocks coming from index-fund
rebalancing cascades are effectively random even though each index fund involved in
a cascade is following a simple, completely deterministic, rebalancing rule.

2.1 Market Structure

Here’s how we model index funds transmitting an initial shock from stock A to stock
B, and then from stock B to stock C, and then from stock C to stock D, and so on.

Network. Imagine a market with a set of stocks S = {1, 2, . . . , S}. Index-fund
rebalancing rules define a network over these stocks. There is an edge from stock s
to stock s′, not if they both currently belong to the same benchmark, but rather if a
shock to stock s would cause an index fund to swap its position in stock s for a new
position in stock s′. If a positive shock to stock s would cause some fund to sell stock
s′ and buy stock s, then stock s′ is a negative neighbor to stock s:

N−s = {s′ ∈ S | positive shock to s ⇒ negative shock to s′} (1)

Whereas, if a negative shock to stock s would cause some fund to buy stock s′ and
sell stock s, then stock s′ is a positive neighbor of stock s:

N+
s = {s′ ∈ S | negative shock to s ⇒ positive shock to s′} (2)

The market structure is the set of positive and negative neighbors for each stock,
M = {(N+

1 ‖N−1 ), (N+
2 ‖N−2 ), . . . , (N+

S ‖N−S )}.
Distortion. This network of rebalancing rules propagates shocks through the mar-

ket in discrete rounds, which are indexed by t = 0, 1, 2, . . . For this to happen, index-
fund rebalancing decisions must have the potential to distort stock characteristics. If
one fund decides to sell stock s, then this decision must have the potential to change
stock s in a way that causes a second fund to rebalance, too. In other words, it’s
important that demand curves slope down (Shleifer, 1986).

7



This assumption is consistent both with trader descriptions of index-fund rebalanc-
ing and with current academic research (Ben-David et al., 2017). More and more peo-
ple are talking about how ETF rebalancing “influences trading in individual stocks.”4

And, there’s a lot of overlap between index-fund portfolios. The same stock is often
involved in numerous ETF benchmarks, such as “active beta, momentum, dividend
growth, deep value, quality, and total earnings.”5

We embed this rebalancing-distortions assumption in our model by using a single
variable, xs,t, to keep track of both index-fund rebalancing decisions and changes in
stock characteristics:

xs,t ∈ {−1, 0, 1} ∆xs,t = xs,t − xs,t−1 (3)

If (xs,t,∆xs,t) = (1, 1), then stock s has realized a positive shock because some fund
built a new position in stock s. If (xs,t,∆xs,t) = (−1, −1), then the opposite outcome
has taken place. Stock s has realized a negative shock because some fund exited an
existing position in stock s. To emphasize that index-fund rebalancing decisions can
affect more than just a stock’s price, we refer to changes in stock ‘characteristics’.

Propagation. Because we want to illustrate how computational complexity can
generate seemingly random demand shocks even in the absence of any random be-
havior on the part of individual investors, we model how index-fund rebalancing
decisions propagate shocks through the market as a mechanical 3-step process. Step

1 involves identifying the set of stocks that will be affected at time (t + 1) by index
funds’ rebalancing decisions at time t:

Out+s,t =


{
s′ ∈ N+

s | s /∈ Out−s′,t−1

}
if (xs,t,∆xs,t) = (−1, −1)

∅ otherwise
(4a)

Out−s,t =


{
s′ ∈ N−s | s /∈ Out+s′,t−1

}
if (xs,t,∆xs,t) = (1, 1)

∅ otherwise
(4b)

Out−s,t is the set of stocks that will be negatively affected at time (t+1) by some index
fund’s decision to buy stock s at time t. Likewise, Out+s,t is the set of stocks that
will be positively affected at time (t + 1) by some index fund’s decision to sell stock
s at time t. The restrictions on Out+s,t and Out−s,t that s /∈ Out−s′,t−1 and s /∈ Out+s′,t−1

respectively ensure that a shock doesn’t just bounce back and forth between stocks s
and s′ over and over again in perpetuity.

4Bloomberg. 4/10/2015. Tail Can Wag Dog When ETFs Influence Single Stocks, Goldman Says.
5Financial Times. 10/7/2017. On The Perverse Economic Effects Created by ETFs.
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Figure 2: An Example. An example of an index-fund rebalancing cascade involving 5
stocks that starts with a positive shock to stock A, A = {A}. Grey box depicts market struc-
ture, M. Columns to the right depict state of each stock, xs,t, at times t = 1, 2, 3, 4. Diagram
above each column depicts shock propagation through the market. Dots denote stocks. Red
dot indicates xs,t = +1; blue dot indicates xs,t = −1; and, black dot indicates xs,t = 0.
Dashed box reports result of index-fund rebalancing cascade at time t = 4, CascadeM,4(A).
Notice that cascade has positive effect on stock Z in round t = 3, EffectM,3(A, Z) = +1. But,
in round t = 4, its net effect on stock Z reverts to EffectM,4(A, Z) = 0.

Step 2 involves identifying all the ways that each stock s ∈ S will be affected at
time (t+ 1) by this collection of outgoing links at time t:

In+
s,t+1 =

{
s′ ∈ S | s ∈ Out+s′,t

}
(5a)

In−s,t+1 =
{
s′ ∈ S | s ∈ Out−s′,t

}
(5b)

Positive incoming links for stock s correspond to situations where an index fund sold
stock s′ at time t, and this selling pressure then forced a second index fund following a
different benchmark to sell stock s′ and buy stock s at time (t+1). Negative incoming
links for stock s correspond to the same sequence of events with opposite signs.

Finally, Step 3 involves calculating how this collection of incoming links will
distort the characteristics of each stock at time (t+ 1):

us,t+1 = 1{|In+s,t+1|>|In−s,t+1|} − 1{|In+s,t+1|<|In−s,t+1|} (6a)

xs,t+1 = Sign[xs,t + us,t+1] (6b)

In the equation above, Sign[y] = y/|y|. This updating rule simply says that, if more
index funds decided to buy stock s than sell stock s at time (t+1), then it will realize
a positive shock; whereas, if more index funds decided to sell stock s than buy stock
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s, then it will realize a negative shock.

Cascades. An index-fund rebalancing cascade starts in round t = 0 with all stocks
at their default levels:

(xs,0,∆xs,0) = (0, 0) (7)

Then, at time t = 1, nature selects an ε-small subset of stocks, A, to receive an initial
positive shock:

(xs,1,∆xs,1) = (1, 1) for each s ∈ A (8)

We assume that everyone knows the identity of the stocks in A. We say that A is
ε-small if there’s a positive constant ε > 0 such that |A| < ε · S as S → ∞. The
positive-initial-shock convention is without loss of generality.

Following this initial shock, an index-fund rebalancing cascade is just the iteration
of the 3-step updating procedure until a time limit T ∈ {1, 2, . . .} has been reached:

function CascadeM,T (A):

t← 0

for all (s ∈ A):

(xs,∆xs)← (1, 1)

while (t ≤ T ):

for all (s ∈ S):

Step 1: (Out+s ,Out
−
s )← Update[(Out+s ,Out

−
s )|(xs,∆xs)]

for all (s ∈ S):

Step 2: (In+
s , In

−
s )← Update[(In+

s , In
−
s )]

Step 3: (xs,∆xs)← Update[(xs,∆xs)]

t← t+ 1

return [x1 x2 · · · xS ]

(9)

An index-fund rebalancing cascade’s effect on stock Z, EffectM,T (A, Z), is the Zth
element of the output from CascadeM,T (A). Notice that how description of an index-
fund rebalancing cascade suggests a second interpretation for the symbol M. M is not
just a description of index-fund rebalancing rules. It’s also a description of a machine
that computes the effects of index-fund rebalancing cascades.

An Example. Figure 2 shows an example of an index-fund rebalancing cascade
involving 5 stocks that starts with a positive shock to stock A. At time t = 3, the
cascade delivers a positive shock to stock Z, EffectM,3({A}, Z) = +1. But then, at
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time t = 4, a second branch of the cascade hits stock Z, canceling out the effect of the
first shock, EffectM,4({A}, Z) = 0. This example highlights the two questions we want
to ask about index-fund rebalancing cascades in the following two subsections. First,
is there any way for an index-fund rebalancing cascade that starts at stock A to effect
stock Z? Second, suppose there is. What will be the net effect of the rebalancing
cascade on stock Z? In the next two subsections, we’re going to investigate the
computational complexity of answering each of these questions.

2.2 ‘If?’ Problem

How hard is it to figure out whether an index-fund rebalancing cascade triggered by
an initial shock to stock A might eventually affect the demand for stock Z?

Decision Problem. Solving this decision problem means finding at least one path
connecting a particular stock A to stock Z. A K-path connecting stock A to stock
Z is a sequence of K stocks {s1, . . . , sK} such that the first stock is stock A, the last
stock is stock Z, and

sk ∈

N+
sk−1

k odd

N−sk−1
k even

for all k ∈ {2, . . . , K} (10)

For example, in Figure 2, there are two different paths from stock A to stock Z. One
travels from stock A to stock B to stock Z:

A
B

Z {(∅‖{B}
Stock A

), (
→
{A,Z}‖∅

Stock B
), (
→
∅‖{B}
Stock Z

)} (11)

The other travels from stock A to stock B′ to stock C ′ to stock Z:

A

B′ C ′

Z
{(∅‖{B′}

Stock A
), (
→
{A,C ′}‖∅

Stock B′
), (
→
∅‖{B′,Z}

Stock C′
), (
→
{C ′}‖∅
Stock Z

)} (12)

If such a path exists, then it’s possible that an index-fund rebalancing cascade trig-
gered by an initial shock to stock A might affect the demand for stock Z.

Below we give a formal definition of the ‘If?’ problem.

Problem 2.2a (If).

• Instance: A choice for stock Z; a market structure M; a time T ≥ 1; and, a
subset of stocks Ŝ ⊆ S.

• Question: For each stock s ∈ Ŝ, is there a K-path connecting stock s to stock Z
for some K ≤ T?
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If denotes the set of instances where the answer is ‘Yes’. Solving the ‘If?’ problem
means deciding whether (Z,M, T, Ŝ) ∈ If. If (Z,M, T, Ŝ) ∈ If, then there’s at least one
K-path connecting each stock s ∈ Ŝ to stock Z in K ≤ T steps.

If Complexity. Problems with polynomial-time solutions are considered “tractable
problems” that “can be solved in a reasonable amount of time (Moore and Mertens,
2011).” And, the proposition below shows that If can be solved in polynomial time.
So, it’s easy to determine which stocks have the potential to trigger an index-fund
rebalancing cascade that might affect stock Z.

Proposition 2.2a (If Complexity). If can be solved in polynomial time.

We say that f(y) = O[g(y)] if there exists an α > 0 and a y0 > 0 such that |f(y)| ≤
α ·|g(y)| for all y ≥ y0. And, we say that f(y) = Poly[y] if there exists some β > 0 such
that f(y) = O[yβ]. The size of an instance of If is governed by the number of stocks
in the market, S. So, a polynomial-time solution for If is an algorithm that decides
whether (Z,M, T, Ŝ) ∈ If in Poly[S] steps for every possible choice of (Z,M, T, Ŝ)—
i.e., computational-complexity results typically provide bounds on the time needed
to solve worst-case instances.

Predicting If. The computational tractability of If also means that you can make
useful predictions about the size of Ŝ for a given stock Z. To illustrate, suppose that
for any pair of stocks (s, s′) ∈ S2, stock s′ is chosen as a positive neighbor to stock
s independently with probability κ/S where κ > 0 is some O[log(S)] function. Under
these assumptions, the number of positive neighbors for each stock, N+

s = |N+
s |, obeys

a Poisson distribution as S →∞ (Erdos and Rényi, 1960)

N+
s ∼ Poisson(κ, S) (13)

which implies that the typical stock has E[N+
s ] = κ positive neighbors. Thus, if κ ≈ 0,

then the market will be fragmented with most stocks having no neighbors; whereas,
if κ ≈ log(S), then the market will be densely connected with each stock on the cusp
of rebalancing for many different funds.

The proposition below shows that it’s easy to predict how many stocks are con-
nected to stock Z just by counting the number of neighbors for stock Z.

Proposition 2.2b (Predicting If). If M is a market structure generated using con-
nectivity parameter κ > 1 and

Ŝmax(Z,M, T ) = max
Ŝ∈2S

{
|Ŝ| s.t. (Z,M, T, Ŝ) ∈ If

}
(14)
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denotes the number of stocks with a K-path to stock Z for some K ≤ T , then
E[Ŝmax(Z,M, T )] is increasing in the total number of neighbors to stock Z.

Put differently, stocks with more neighbors are more likely to be affected by index-
fund rebalancing cascades. And, you can infer this property about stock Z without
having to trace out each individual path that a rebalancing cascade might take. We
will make use of this fact in our empirical analysis below.

2.3 ‘How?’ Problem

Although it’s easy to predict if a stock is likely to be affected by an index-fund rebal-
ancing cascade, predicting how a stock will be affected is computationally intractable.

Some Intuition. What does it mean to say that ‘If?’ is an easier question than
‘How?’? To build some intuition, let’s start by looking at Figure 3. Each row depicts
a single market with S = 25 stocks and is broken up into 3 panels. Here’s the exercise
we have in mind. First, examine the left panel in each row, which depicts the index-
fund rebalancing rules that define each market. Then, ask yourself: i) ‘Will stock Z,
which is denoted by the large black square with a question mark in it, be affected
by an index-fund rebalancing cascade that starts at stock A, which is denoted by the
large blue star?’ and ii) ‘If so, how exactly will stock Z be affected (buy vs. sell)?’

On one hand, you can immediately see how easy it is to answer the first question.
The middle panels show that there’s a path connecting stock A to stock Z in M2, M3,
and M4 but not in M1. So, stock Z might be affected by an index-fund rebalancing
cascade starting with stock A in M2, M3, and M4 but not in M1. Answering this first
question gives you a sense of what it means to have a polynomial-time solution.

But, on the other hand, you can also immediately see how hard it is to answer
the second question. There’s no way to guess how an index-fund rebalancing cascade
will affect stock Z by examining the set of index-fund rebalancing rules involved,
even though these rules are completely deterministic. M2, M3, and M4 all have paths
connecting stock A to stock Z ending positive shocks. But, the effect of the entire
index-fund rebalancing cascade only agrees with this naïve prediction in M2.

Decision Problem. Below is the formal definition of the ‘How?’ decision problem.

Problem 2.3a (How).

• Instance: A choice for stock Z; a market structure M; a time T = Poly[S]; a
positive constant ε > 0; and, the power set Â ⊆ 2S of all ε-small sets A ⊆ S.

13



☀
∎?

☀
∎?

☀
∎

☀
∎

☀
∎?

☀
∎

☀
∎

☀
∎?

☀
∎

☀
∎

Network If? How?

M
1

M
2

M
3

M
4

Figure 3: Some Intuition. Each row contains 3 panels and depicts simulated results for
a single market with S = 25 stocks—i.e., one market structure per row. Nodes are stocks.
Node color denotes effect of index-fund rebalancing cascade: blue=positive, red=negative,
black=no effect. Star: stock A. Square: stock Z. Edges denote index-fund rebalancing
rules. Blue(s)-to-red(s′): stock s′ is negative neighbor to stock s. Red(s)-to-blue(s′): stock
s′ is positive neighbor to stock s. Stock A and stock Z are in same position in all panels.
Network: Index-fund rebalancing rules. If?: Path connecting stock A to stock Z if one exists.
How?: Net effect of index-fund rebalancing cascade if path exists.
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• Question: Is there some A ∈ Â such that EffectM,T (A, Z) 6= +1?

How denotes the set of instances where the answer is ‘Yes’. Here’s what How is
asking in plain English. Imagine the universe of all index-fund rebalancing cascades
that stem from an initial positive shock to an arbitrarily small subset of stocks in the
market. Will every single one of these rebalancing cascades have a positive effect on
stock Z after T rounds of rebalancing?

How Complexity. The proposition below gives a mathematical result that mirrors
the intuition we built up in Figure 3. Solving How is much harder than solving If.

Proposition 2.3a (How Complexity). How is an NP-complete problem.

Just like instances of If, the size of instances of How are governed by the number
of stocks in the market, S. The complexity class NP is the set of decision problems
with solutions that can be verified in polynomial time. A crossword puzzle is a good
example of a problem that’s hard to solve but easy to verify (Garey and Johnson,
2002). Solving this Sunday’s grid might take you an hour, but it will only take a
second to verify your guess for 31-down using the answer key.

What does it mean for a decision problem to be NP complete? For any pair of
decision problems, Prob1 and Prob2, we say that solving Prob2 can be reduced to
solving Prob1 if you can solve Prob2 by just mapping each instance of Prob2 over to a
corresponding instance of Prob1 and then simply solving Prob1. Intuitively, if solving
Prob2 can be reduced to solving Prob1, then solving Prob2 is no harder than solving
Prob1. A decision problem is NP complete if every decision problem in NP can be
reduced to it and it belongs to NP.

Root of the Problem. Figure 4 illustrates why How is so computationally in-
tractable. Each vertical gray region denotes a separate sequence events, starting at
the top and ending at the bottom. On the left, there’s a proposed path connecting
stock A to stock Z that ends with a positive shock to stock Z:

A

A B C D Z

The trouble is that stocks A and D are also connected to other stocks that may not
belong to the original path (dotted lines), which means that the market structure
could contain a secondary path. The four gray regions to the right show how small
changes in the length of this secondary path can change the cascade’s net effect on
stock Z. If stock A and stock D are directly connected, M0, then the secondary
path doesn’t matter. If there is a 1-path connecting stock A to stock D, M1, then
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Figure 4: Root of the Problem. Each vertical gray region denotes a separate sequence
events, which starts at the top and ends at the bottom. Each node denotes a stock. Node
color denotes effect of cascade: blue=positive, red=negative, black=no effect. Star: initial
shock to stock A. Square: final effect for stock Z. Edges denote index-fund rebalancing
rules. Blue(s)-to-red(s′): stock s′ is negative neighbor to stock s. Red(s)-to-blue(s′): stock s′

is positive neighbor to stock s. Path: path connecting stock A to stock Z. Location of stocks
A, B, C, D, and Z remain unchanged in all sequences. Dotted lines: neighbors to stock A
and stock Z that could form alternate path. Mk: market structure that contains alternate
path with k ∈ {0, 1, 2, 3} stocks separating stock A and stock D.
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the secondary path implies that stock Z will be unaffected by the entire index-fund
rebalancing cascade. But, if there’s a 2-path connecting stock A to stock D, M2, then
the secondary path won’t matter once again. And, if there’s a 3-path connecting
stock A to stock D, M3, then stock Z will be positively affected by the index-fund
rebalancing cascade even though stock D will be unaffected. Tiny changes in the
structure of a rebalancing cascade can lead to different outcomes for stock Z.

As a result, determining how a particular index-fund rebalancing cascade will af-
fect stock Z requires a detailed simulation of how the entire cascade will play out.
So, finding an initial shock which results in a negative effect on stock Z could re-
quire checking every possible ε-small subset. And, the size of this power set scales
exponentially with the number of stocks in the market, S. Suppose you could solve
instances of How in less than one microsecond when there were only 20 ETFs in the
market. Proposition 2.3a implies that this same algorithm would take longer than
the current age of the universe to execute in today’s market, which contains roughly
2,000 U.S.-listed ETFs.6 “A running time that scales exponentially implies a harsh
bound on the problems we can ever solve—even if our project deadline is as far away
in the future as the Big Bang is in the past (Moore and Mertens, 2011).”

Predicting How. Proposition 2.3a says that the problem of figuring out how ev-
ery single index-fund rebalancing cascade will effect stock Z is computationally in-
tractable. But, maybe this is an unreasonable goal. What if you only try to figure
out how most index-fund rebalancing cascades will affect stock Z? We introduce the
following decision problem to make this idea precise.

Problem 2.3b (MajorityHow).

• Instance: A choice for stock Z; a market structure M; a time T = Poly[S]; a
positive constant ε > 0; and, the power set Â ⊆ 2S of all ε-small sets A ⊆ S.

• Question: Is
∑

A∈Â 1{EffectM,T (A, Z)=+1} > |Â|/2?

Compared to How, MajorityHow seems like a much closer analogue to the problem
that real-world traders care about. Traders know which index funds hold each stock.
And, they know the rebalancing rules that index funds are following. So, given this
information, they would like to determine whether or not some stock Z will be affected
by the majority of index-fund rebalancing cascade that might occur. For a particular
market structure, will more than half of all possible index-fund rebalancing cascades

6Financial Times. 1/14/2017. ETFs Are Eating The US Stock Market.
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result in buy orders?
At first, MajorityHow seems like a much easier problem to solve than How because

it doesn’t involve finding a particular verboten instance. But, this first reaction is
wrong. Proposition 2.2b shows that stock Zs with more neighbors are more likely
to be hit by index-fund rebalancing cascades. But, Proposition 2.3b shows that
determining whether more than half of all possible index-fund rebalancing cascades
will result in buy orders is tantamount to predicting the outcome of a coin flip.

Proposition 2.3b (Predicting How). MajorityHow is an NP-hard problem.

A decision problem is NP hard if every decision problem in NP can be reduced to it but
the problem itself might not belong to NP. So, if MajorityHow is an NP-hard problem,
then it is at least as hard as any decision problem in NP. And, a polynomial-time
solution to MajorityHow would imply P = NP.

2.4 Key Ingredients

We’ve just seen that predicting how index-fund rebalancing cascades will affect a
stock’s demand with accuracy better than a coin flip is an NP-hard problem. As
a result, the demand shocks coming from the rebalancing cascades are effectively
noise. To make it easier for other researchers to spot other situations where the same
mathematical reasoning applies, we now describe three key features of index-fund
rebalancing cascades that make them so hard to predict.

Alternation. First, index-fund rebalancing cascades are only hard to predict if
they involve alternating sequences of buy and sell orders. In a world where a positive
shock to stock A can only ever result in a positive shock to stock B, predicting how
stock Z will be affected by a rebalancing cascade is easy. In fact, it’s equivalent to
solving the ‘If?’ problem.

Proposition 2.4a (Necessity of Alternation). Without alternation, How is solvable
in polynomial time.

Index-fund rebalancing cascades necessarily involve an alternating sequence of buy
and sell orders. When an index fund rebalances its portfolio, it swaps out an existing
position in one stock for a new position in another. But, there are other cascade-like
phenomena where this isn’t the case. For example, think about bank runs. During a
bank run, depositors are choosing whether to withdraw their money—sell only. As a
result, equilibrium demand in these models behaves in a predictable way depending
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on whether some threshold has been crossed (Diamond and Dybvig, 1983).

Feedback Loops. Second, index-fund rebalancing cascades are only hard to predict
in a market structure that involves cancellation due to feedback loops. It’s important
that different cascade paths have the potential to cancel each other out, as shown in
Figure 4. To illustrate, think about what would happen if every stock in the market
had exactly 2 neighbors. In this setting, if there exists a path connecting stock A to
stock Z, then you can determine how a rebalancing cascade starting with stock A will
affect stock Z by counting the number of stocks in the path. If it’s an odd number,
then stock Z will realize a positive shock, like in Equation (11). Whereas, if it’s an
even number, then the shock will be negative, like in Equation (12).

Proposition 2.4b (Necessity of Feedback Loops). Without cancellation due to feed-
back loops, How is solvable in polynomial time.

Again, we feel that feedback loops are a natural part of the index-fund universe.
There is no central-planning committee that limits the number of indexes that a
single stock can belong to. There’s nothing stopping 20 different smart-beta ETFs
from holding the same stock at the same time.7 Thus, the associated collections of
rebalancing rules will contain market structures with feedback loops. And, it’s these
loopy instances that make solving How computationally intractable.

Thresholds. Third, index-fund rebalancing cascades are only hard to predict if
their benchmark indexes involve threshold-based rebalancing rules. For example,
it’s important that the PowerShares S&P 500 Low-Volatility ETF [SPLV] tracks a
benchmark consisting of only the 100 lowest-volatility stocks on the S&P 500 and not a
benchmark including all S&P 500 stocks with relatively more shares of lower-volatility
constituents. In the first case, an arbitrarily small change in a stock’s volatility can
move it from 101st to 100th place on the low-volatility leaderboard and force SPLV

to exit its entire position. In the second case, an arbitrarily small change in a stock’s
volatility would only lead to an even smaller change in the fund’s portfolio position.
Without threshold-based rebalancing rules, longer cascade paths would necessarily
have smaller effects for the same reason that AR(1) impulse-response functions get
weaker at longer horizons. So, you could approximate an index-fund rebalancing
cascade’s net effect on stock Z by using the effect of the shortest path to stock Z.

Proposition 2.4c (Necessity of Thresholds). If index funds don’t use threshold-based
rebalancing rules, then there’s a fully polynomial-time approximation scheme for How.

7SeekingAlpha. 6/27/2017. Smart Beta ETFs Love These Stocks.
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It’s a simple fact that index funds use threshold-based rebalancing rules. This is
how many index funds operate. But, threshold-based trading rules can be found all
over the place in financial markets. A typical stat-arb trading strategy will have the
form, ‘Buy the top 30% and sell the bottom 30% of stocks when sorting on X.’ where
X is some variable that predicts the cross-section of expected returns. Our goal is
not to explain why funds choose to follow these sorts of trading rules; instead, we
point out one natural consequence of this choice: noise.

No-Trade Theorem. We began this paper with a discussion of Milgrom and Stokey
(1982)’s classic no-trade theorem. There’s no error in their paper. So, at this point,
you might be wondering why doesn’t their result apply to the setting we study in our
paper. What implicit assumption is being violated?

Milgrom and Stokey (1982) consider a setting where all traders start out with com-
mon priors and then one of them gets a private signal. They then prove that, if this
lone trader acts on his private signal using a simple deterministic trading rule, then
everyone else in the market will be able to figure out what he’s learned by studying
his trading behavior. We show that this result can break down in modern financial
markets because there isn’t just one lone trader following a simple deterministic trad-
ing rule. There are hordes of them. So, even if each index fund is using a simple
deterministic rebalancing rule, the net demand coming from the entire interacting
mass of index funds can still appear random.

Different Application. Finally, we would like to point out a nice parallel be-
tween our main theoretical results and the analysis in Arora et al. (2011). Instead
of studying the demand-shock distribution for a single stock, Arora et al. study the
loan-quality distribution within a single mortgage-backed security. They too show
that the problem of determining whether an asset-backed security contains slightly
more bad loans than expected is NP hard. Same mathematical insight. Different
financial applications.

3 Rebalancing Cascades

We’ve just seen that index-fund rebalancing cascades can generate seemingly random
demand shocks in a theoretical model. We now use data on end-of-day ETF holdings
to show that the ETF rebalancing cascades generate unpredictable demand shocks in
real-world financial markets.
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3.1 Index Funds

We study index-fund rebalancing cascades using data on a particular kind of index
fund—namely, exchange-traded funds (ETFs). There are three reasons for this choice.

Reason #1: Diversity. First, we need a large group of index funds that follows
a very heterogeneous collection of benchmark indexes. Prior to January 2008, ETFs
all looked like the SPDR S&P 500 ETF [SPY] in that they all tracked some sort of
pre-existing market index, like the S&P 500. But, in early 2008, the SEC changed
its guidelines so that an ETF could track its own self-defined benchmark. After this
change, Invesco PowerShares was free to create an ETF tracking the returns of the
quintile of S&P 500 stocks with the lowest historical volatility even though there was
no pre-existing low-volatility S&P 500 index. All Invesco had to do was promise to
announce the identities and weights involved in the benchmark one day in advance.

Now, there are more ETFs than stocks.8 “From ProShares we have CLIX (100%
long internet retailers and 50% short bricks-and-mortar U.S. retailers) and EMTY

(which just bets against bricks-and-mortar retailers). . .meanwhile from EventShares,
we have policy-factor ETFs. . . like. . . GOP (full of oil drillers, gun manufacturers, and
so on that would benefit from Republican policies) and DEMS (with companies that
should do well under Democrats, such as clean-energy companies). There is also an
ETF called TAXR that invests in companies poised to benefit most from a successful
attempt to pass a tax reform bill.”9

The sheer number and variety of these so-called ‘smart-beta’ ETFs has become
something of a hot-button issue of late. To be sure, niche ETFs like DEMS tend to be
smaller than broad value-weighted market ETFs, like the SPDR S&P 500 ETF SPY.
But, even the rebalancing activity of niche ETFs can affect a stock’s fundamentals
because ETFs often execute the bulk of their trades during the final 20 to 30 minutes
of the trading day. The numbers are stark: “37% of New York Stock Exchange trading
volume now happens in the last 30 minutes of the session, according to JPMorgan.
The chief culprit is the swelling exchange-traded fund industry. . . ETFs are essentially
investment algorithms of varying degrees of complexity, and typically automatically
rebalance their holdings at the end of the day.”10

Reason #2: Discretion. Second, ETF managers have less ability to deviate from
their stated benchmarks than either mutual- or hedge-fund managers due to the

8Bloomberg. 5/16/2017. Mutual Funds Ate the Stock Market. Now ETFs Are Doing It.
9Financial Times. 11/21/2017. A ROSE by any other ticker symbol. . .

10Financial Times. 3/17/2017. Machines and Markets: 5 Areas To Watch.
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underlying structure of the ETF market (Madhavan, 2016; Ben-David et al., 2017).
The company running an ETF (its ‘sponsor’) has an obligation to create or redeem
shares at the end-of-day market value of its stated benchmark. So, if an ETF’s price
is higher than the end-of-day market value of its benchmark, then an arbitrageur can
sell shares of the ETF back to the sponsor and use the proceeds to buy shares of the
underlying assets in the benchmark index. The reverse logic holds when underpriced.

If arbitrageurs are constantly asking an ETF sponsor to create or redeem lots of
shares, then the sponsor must be losing lots of money. So, just like you’d expect,
creations and redemptions are only a small fraction of daily trading volume for ETFs,
and these trades involve less than 0.5% percent of ETFs’ net assets (Investment Com-
pany Institute, 2015). Instead, ETF trading volume primarily comes from managers’
rebalancing activity just prior to market close. This end-of-day trading is how ETF
sponsors make sure that there is very little difference between the market value of
their end-of-day holdings and the market value of their stated benchmark.

An ETF manager who does the bulk of his rebalancing right at market close will
incur higher trading costs. But, the typical investor in a smart-beta ETF is not
looking for a cheap way to buy and hold a broad market portfolio. ETF investors
traded “$20 trillion worth of shares last year even though ETFs only have $2.5 trillion
in assets. That’s 800% asset turnover, which is about 3-times more than stocks.”11

An investor interested in holding a smart-beta ETF is looking for quick access to a
very targeted position. He’d rather the ETF manager have slightly higher trading
costs and be much more faithful to his stated benchmark. For a niche ETF, the
additional trading costs incurred by the end-of-day trading are nothing compared to
the costs associated with replicating the entire position from scratch.

Reason #3: Data. Third, we can observe end-of-day portfolio positions for ETFs.
Specifically, we use data from ETF Global that includes both the assets under man-
agement, AUMf,t, and the relative portfolio weight on each stock, Ωf,s,t, for each ETF
f ∈ {1, . . . , F} at the end of each trading day from January 2010 to December 2015.
We restrict our sample to include only those ETFs that rebalance their positions
daily—think about the PowerShares S&P 500 Low-Volatility ETF [SPLV] rather than
the SPDR S&P 500 ETF [SPY]. Thus, if Ps,t is the price of stock s on day t, then the
actual number of shares of stock s that the fth ETF holds on day t, Qf,s,t, is:

Qf,s,t = 1
Ps,t
×
{

Ωf,s,t · AUMf,t

}
(15)

11Bloomberg. 3/3/2017. 5 Ways ‘Passive’ Investing Is Actually Quite Active.
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And, total ETF trading volume for stock s on day t is given by
∑F

f=1 |Qf,s,t−Qf,s,t−1 |.
This end-of-day data is important. Other papers in the ETF literature, such as

Ben-David et al. (2017), impute ETFs’ daily portfolio positions from their end-of-
quarter financial statements. But, we are interested in how the rebalancing decisions
of different ETFs interact with one another over the course of a few days. And, we
can’t study these interactions if we are forced to impute daily holdings from end-of-
quarter data.

Rebalancing Volume. We use data on end-of-day ETF holdings to create two main
variables of interest. The first is ETF rebalancing volume. This requires a little bit of
subtlety because not all ETF trading is due to rebalancing decisions. If money pours
into ETF f on day t, AUMf,t � AUMf,t−1, then the fund is going to have to buy a
bunch of shares of each stock that it holds. But, this trading volume won’t be due to
any rebalancing decision. The fund manager is just scaling up his existing holdings.
So, to adjust for trading due to inflows and outflows, we first calculate each ETF’s
predicted holdings on day t given its portfolio weights on the previous day (t−1) and
the realized inflows and outflows on day t:

Q̄f,s,t = 1
Ps,t
×
{

Ωf,s,t−1 · AUMf,t

}
(16)

Then, for each stock s, we compute the total difference between every ETF’s actual
end-of-day holdings and this inflow-adjusted prediction on day t:

etfRebalVlms,t =
∑F

f=1

∣∣Qf,s,t − Q̄f,s,t

∣∣ (17)

We use this as our daily measure of ETF rebalancing volume for each stock. Note
that we will write all regression variables in teletype font to distinguish them from
estimated parameters. Table 2 shows that the typical stock during our sample period
had e7.62 ≈ 2,038 shares traded each day due to ETF rebalancing decisions.

Order Imbalance. Then, to evaluate whether ETFs are trading in different direc-
tions, we also compute a corresponding measure of ETF order imbalance:

etfOrdImbals,t =
F∑
f=1

Qf,s,t − Q̄f,s,t

etfRebals,t
(18)

This variable lies on the interval [−1, 1]. If etfOrdImbals,t = −1, then every share of
stock s traded on day t was a sell order. Whereas, if etfOrdImbals,t = 1, then every
share of stock s traded on day t was a buy order. Table 2 contains summary statistics
describing the typical ETF order imbalance for each stock during our sample period.
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3.2 Initial Shocks

We use M&A announcements for our set of initial shocks, referring to the stock that’s
the target of the M&A announcement as stock A.

M&A Announcements. Our source for data on M&A deals is Thomson Financial.
We use all deals with an announcement date between January 1st, 2010 and December
31st, 2015 where the target is a public company. Table 2 shows that there were 884

such events during our sample period. M&A announcements are a natural choice
for our initial shocks because there is solid empirical evidence that the target of an
M&A announcement realizes a sharp price increase (Andrade et al., 2001). And,
while acquirers do not choose their M&A targets at random, the exact day that a
deal is announced can be taken as random. We use tA to denote the day of the M&A
announcement in which stock A was the target firm.

Desired Effect. Table 3 contains direct evidence that ETFs rebalance in response to
these initial shocks. We create a panel dataset containing the ETF rebalancing volume
for each M&A target in our sample during the time window t ∈ {tA−20, . . . , tA+5}.
Then, we regress log ETF rebalancing volume on indicator variables for the date of
the M&A announcement:

ln(etfRebalA,t) = α + β · 1{t=tA−1} + γ · 1{t=tA} + δ · 1{t=tA+1} + · · ·+ εA,t (19)

In different specifications, the “· · · ” term in the equation above contains year-month
fixed effects, stock A fixed effects, and lagged trading volume. The first column in
Table 3 shows that ETF rebalancing volume for stock A rises by 166% on the day it’s
announced as an M&A target. The second column in Table 3 shows that this jump
in ETF rebalancing activity is not explained by lagged volume.

Manager Discretion. The third column of Table 3 shows the results of the same re-
gression specification but with additional indicator variables for days (tA−2), (tA−3),
(tA−4), and (tA−5). This column reveals that there is no pretrend in ETF managers’
reaction to the M&A announcement. ETF rebalancing volume only starts to rise on
the day immediately before the announcement, and this 1-day-early effect is due to
the way overnight announcements are coded by Thompson Financial. What’s more,
after we include lagged volume in the specification, the jump in ETF rebalancing
volume is gone the day after. This supports our claim that ETF managers don’t have
much discretion when it comes to deviating from their benchmark index overnight.
There’s no reason to suspect that ETF managers are slowly rebalancing their position
in stock Z in response to demand shocks coming from ETF rebalancing cascades if
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they aren’t doing the same thing in response to the initial M&A announcement shock
to stock A.

Placebo Test. Finally, the fifth column of Table 3 shows the results of the same
regression specification using randomly selected dates for tA rather than the actual
M&A announcements dates. Just as expected, there is no sharp jump in ETF re-
balancing volume on these randomly selected dates. But, more importantly, the
coefficients on lagged trading volume are also unchanged. This placebo test suggests
that our result isn’t being driven by some broader trading-volume anomaly that oc-
curs around the time of each M&A announcement. Things look normal other than
the spike in ETF rebalancing volume.

3.3 Main Results

We now give evidence that these M&A announcements lead to ETF rebalancing
cascades that result in unpredictable demand shocks for unrelated stock Zs.

Diff-in-Diff Approach. Here’s how we set up our tests. First, we create a panel
dataset containing the ETF rebalancing volume on days t ∈ {tA− 20, . . . , tA + 5} for
each unrelated stock Zs relative to each M&A target announcement in our sample.
We use afterAncmtA,t as an indicator variable to flag the 5 days after the M&A
announcement for a given stock A:

afterAncmtA,t =

1 if t ∈ {tA + 1, . . . , tA + 5}
0 otherwise

(20)

For stock Z to be unrelated to stock A, it has to be twice removed in the network
of ETF holdings. It can’t have been recently held by any ETF that also recently
held stock A. And, if stock B and stock A are both held by the same ETF, then
stock Z can’t have been recently held by any ETF that also recently held stock B
either. i.e., the chain has to be A → B → C → Z or longer. Because there are so
many different smart-beta ETFs that are specifically designed to give their investors
exposure to things like size and value, this criteria implies that each set of stock Zs
doesn’t share well-known characteristics with the associated stock A.

Proposition 2.2b suggests that, all else equal, stocks on the cusp of more rebalanc-
ing thresholds are more likely to be hit by an ETF rebalancing cascade. So, we split
the set of stock Zs for each initial M&A announcement into two subsets: those on
the cusp of an above-median number of ETF rebalancing thresholds (i.e., stocks with
lots of neighboring stocks in the ETF rebalancing network) and those on the cusp of
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Figure 5: Empirical Design. Each panel depicts the the same set of stocks during 3 dif-
ferent M&A announcements: Owens & Minor’s purchase of Medical Action Industries [MAI]
announced on Jul. 21, 2014; Sonus Networks’ purchase of Network Equip Technologies [NET]
announced on Jun. 19, 2012; and, Old National Bancorp’s purchase of Indiana Community
Bancorp [INCB] announced on Jan. 25, 2012. The target of each M&A announcement, stock
A, is denoted by a blue star. Each black circle denotes a stock that’s related to stock A at the
time of the announcement. Each white square denotes a stock that’s unrelated to stock A at
the time of the announcement. This is the set of stock Zs. Unrelated stocks that are neighbors
with an above-median number of other stocks are labeled with an “H”; whereas, those that
are neighbors with a below-median number are labeled with an “L”. Oracle Corp. is a related
stock in the left panel, a below-median stock Z in the middle panel, and an above-median
stock Z in the right panel.

a below-median number of ETF rebalancing thresholds. We use manyNbrsA→Z,t as an
indicator variable to flag the subset of stock Zs that are on an above-median number
of ETF rebalancing thresholds:

manyNbrsA→Z,t =

1 if stock Z has an above-median number of neighbors

0 otherwise
(21)

We say that stock s′ is a neighbor to stock s if a fund that currently holds stock s
also rebalanced its position in stock s′ at some point during the previous month.

There are two key predictions from Section 2 that we want to test. First, Propo-
sition 2.2b suggests that stock Zs with more neighbors should be more likely to be
hit by ETF rebalancing cascades and so should have proportionally higher ETF re-
balancing volume in the days immediately following the initial M&A announcement
for stock A. We test this prediction using a standard diff-in-diff regression:

ln(etfRebalVlmZ,t) = α + β · afterAncmtA,t
+ γ · manyNbrsA→Z,t

+ δ · {afterAncmtA,t × manyNbrsA→Z,t}
+ · · ·+ εA→Z,t

(22)
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The null hypothesis is that ETF rebalancing cascades only affect stocks that are
closely related to the initial stock A. If this were the case, then we’d expect to find
δ = 0. By contrast, if stock Zs with more neighbors are indeed more likely to be hit
by a rebalancing cascade, then we should estimate δ > 0.

How should we interpret β? ETF rebalancing cascades have the potential to
affect the demand for all stock Zs; it’s just that they’re much more likely to affect the
demand of stock Zs with more neighbors. Stocks with only 1 or 2 neighbors can still
be included in a rebalancing cascade as shown in Figure 4. So, if ETF rebalancing
cascades are taking place, then we should also expect to find β > 0. And, we can
use this auxiliary prediction as a way of checking the internal consistency of our
results. But, while finding β > 0 is consistent with the existence of ETF rebalancing
cascades, it’s also consistent with general market conditions changing following an
M&A announcement. By checking whether δ > 0, we can see whether this increase in
ETF rebalancing volume for stock Z is related to the structure of ETF rebalancing
rules in a way that’s predicted by our theory.

Second, even though stock Zs with more neighbors are more likely to be hit
by ETF rebalancing cascades, Proposition 2.3b suggests that the direction of the
resulting demand shock should be a coin flip. We test this prediction using the
same diff-in-diff specification as before but with order imbalance as the left-hand-side
variable:

ln(etfOrdImbalZ,t) = α + β · afterAncmtA,t
+ γ · manyNbrsA→Z,t

+ δ · {afterAncmtA,t × manyNbrsA→Z,t}
+ · · ·+ εA→Z,t

(23)

If a stock Z with many neighbors is no more likely to realize a positive demand shock
than a stock Z with few neighbors, then we should estimate δ = 0.

Empirical Design. At this point, you might be worried that the unrelated stock
Zs with more neighbors are just different kinds of stocks than the unrelated stock Zs
with few neighbors. And, this is a valid concern. But, there is an important detail
about how we set up our diff-in-diff approach that helps us address this concern.
Specifically, we define the set of unrelated stock Zs separately for each initial M&A
announcement for a stock A. This means that the exact same stock can play the role
of an above-median stock Z relative to one M&A announcement while playing the
role of a below-median stock Z relative to another. Figure 5 gives an example from
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our dataset of this sort of thing happening for Oracle Corp.
By including fixed effects for each stock Z in our regression specification, we can

estimate how the ETF rebalancing activity for the exact same stock changes when it
happens to have many neighbors. This design feature means that any empirical results
we find can’t be explained by ETFs always trading some stocks differently than others.
Any confounding variable has to explain why ETFs suddenly change their rebalancing
behavior for an ever-changing subset of stock Zs in the days immediately following
an M&A announcement about a completely unrelated stock A.

Rebalancing Volume. Table 4 provides the estimated coefficients for the regression
described in Equation (22). The first column shows that ETF rebalancing volume
for all unrelated stock Zs tends to rise by 5.0% on average in the wake of an M&A
announcement for stock A. But, the third column shows that this growth is concen-
trated among unrelated stock Zs that have many neighboring stocks in the network
defined by ETF rebalancing rules. Consistent with our economic story, we find that
ETF rebalancing volume is 3.7% higher for the above-median group of stock Zs than
for the below-median group in the five days immediately following each M&A an-
nouncement.

There are three important points to emphasize about this result. The first is
that we include stock-Z fixed effects in our regressions. So, because the same stock
Z can have many neighbors relative to one M&A target and few neighbors relative
to another, these results can’t be due to persistent differences in how ETFs tend to
rebalance their positions in particular stocks. The second is that there is no pre-
trend. Figure 6 shows that in the run-up to each M&A announcement, the difference
between the amount of ETF rebalancing activity in stock Zs with many neighbors
and the amount of ETF rebalancing activity in stock Zs with few neighbors remains
constant. Finally, the second and fourth columns of Table 4 confirm that the sudden
spike in log ETF rebalancing volume for stock Zs with many neighbors isn’t due to
a general run-up in trading volume. When we include lagged trading volume in our
regression specification, our point estimates are largely unchanged.
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Order Imbalance. Table 4 gives evidence of long rebalancing cascades; whereas,
Table 5 gives evidence that these cascades have an unpredictable effect on demand.
This table reports the estimated coefficients for the regression described in Equation
(23). The main takeaway from this table comes from comparing the coefficients in
the first and third columns. While the first column shows that there is a statistically
significant β = 0.0075%pt increase in ETF order imbalance for unrelated stock Zs
in the days immediately after an M&A announcement, the third column shows that
there is no measurable difference between the ETF order imbalance of stock Zs with
many neighbors and stock Zs with few neighbors. What’s more, the size of the
statistically insignificant point estimate for this difference, δetfOrdImbal = 0.0024%pt,
is more than 2 orders-of-magnitude smaller than the corresponding difference in ETF
rebalancing volume, δln(etfRebal) = 3.70%. Taken together, this evidence suggests
that, while it’s possible to predict which stock Zs are likely to be affected by a ETF
rebalancing cascade, it’s much harder to predict how these stock Zs will be affected
by the resulting demand shock.

Aggregate Tests. Among empirical economists, it’s taken almost as an article of
faith that empirical tests should be run using the most micro-level data possible.
So, at this point, you might be surprised that we didn’t try to trace out the precise
buy-sell-buy-sell sequences of each ETF cascade in our sample. But, there is a good
reason why we didn’t do this. This empirical approach would fundamentally ignore
the central message of our theoretical analysis: it is computationally intractable to
make predictions about the fine-grained structure of rebalancing cascades. Instead, we
need to run our tests using well-chosen macro-level variables. Even if it isn’t practical
to track the precise buy-sell-buy-sell sequence of ETF rebalancings, it’s relatively easy
to proxy for the total number of thresholds that a stock is close to. By analogy, even
if it isn’t possible to keep track of the location and momentum of every single gas
molecule in a 1m3 box, it’s easy to measure macro-level variables like the pressure
and temperature inside the container.

4 Market Reaction

We’ve just seen evidence that ETF rebalancing cascades exist and that the resulting
demand shocks are unpredictable from the standpoint of an econometrician. But,
maybe these demand shocks look less random to traders? In this section, we pro-
vide evidence that market participants treat the erratic demand coming from ETF
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rebalancing cascades as noise by studying cross-sectional variation in liquidity.

4.1 Liquidity

If market participants treat the erratic demand coming from ETF rebalancing cas-
cades as noise, then we should find that stock Zs with more neighbors also have higher
levels of liquidity.

Variable Definitions. We calculate the liquidity of each stock Z on a daily basis
in two different ways. First, we compute an intraday variant of the Amihud (2002)
measure:

amihudZ,t =
1

390
·
∑
m∈t

|RZ,m|
$VZ,m

(24)

Above, m ∈ {1, . . . , 390} indexes the 390 minutes in each trading day, retZ,m denotes
the return of stock Z in minute m, and $VZ,m denotes the number of dollars of stock
Z traded in minute m. We scale this variable so that it’s reported as the percent-
change in stock Z’s price per million dollars of traded volume. In addition, we also
compute the average bid-ask spread of stock Z during the trading day:

baSpreadZ,t =
1

PZ,t
·
(

1

390
·
∑
m∈t

[P bid
Z,m − P ask

Z,m]

)
(25)

We scale this second variable so that it’s reported in basis points as a fraction of stock
Z’s closing price on day t.

Around Initial Shocks. Market participants can see whether each unrelated stock
Z has many neighbors or few neighbors. And, because the stock Zs with many neigh-
bors are more likely to be hit by an ETF rebalancing cascade, market participants
should realize that they are more likely to see erratic non-fundamental demand shocks
for these stocks as a result. So, the stock Zs with many neighbors should have higher
liquidity. The second and fourth columns of Table 6 confirm this prediction by show-
ing that γ < 0 when estimating the regression below for y ∈ {amihud, baSpread}:

yZ,t = α + β · afterAncmtA,t
+ γ · manyNbrsA→Z,t

+ δ · {manyNbrsA→Z,t × afterAncmtA,t}
+ · · ·+ εA→Z,t

(26)

Note that both the Amihud (2002) measure and the bid-ask spread are inversely
related to liquidity. So, γ < 0 implies that stock Zs who happen to have more
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neighbors also have more liquidity.
These same columns also show that there is no change in the relative liquidity of

the stock Zs with many neighbors and the stock Zs with few neighbors in the days
immediately after the initial M&A announcement for stock A. This result is in stark
contrast to the earlier findings in Tables 4 and 5. But, this result is also exactly
what we’d expect to find in a market where traders knew which stock Zs were most
susceptible to the erratic non-fundamental demand coming from ETF rebalancing
cascades. This knowledge should be priced into each stock Z’s bid-ask spread ahead
of time. The market as a whole might contain more asymmetric information after
an important M&A announcement and thus be less liquid in general. But, if market
participants already understood which stocks were more likely to be hit by ETF
rebalancing cascades and considered this demand to be noise, then there should be
no differential effect for stock Zs with many neighbors vs. those with few neighbors
following the M&A announcement for stock A.

4.2 Panel Regressions

If market participants recognize ex ante that stocks with more neighbors are more
likely to be hit by ETF rebalancing cascades, then you might expect that stocks
with many neighbors actually have higher liquidity than stocks with few neighbors
unconditionally. And, this is exactly what we find in the data.

Unconditional Results. The third and fifth columns of Table 7 show the estimation
results for the regression below where y ∈ {amihud, baSpread}:

ys,t = α + β · #nbrss,t + · · ·+ εs,t (27)

The key difference between this regression and the earlier regressions is that the data
we use to estimate this regression do not only include the unrelated stock Zs around
each initial M&A announcement. They include all stocks in our data sample. Again,
we estimate β < 0 for both liquidity measures, suggesting that market participants
are treating the erratic demand coming from ETF rebalancing cascades as noise.

Implication for Traders. A natural next question is: ‘What should a trader do
with this information?’ The answer isn’t to directly buy or sell stocks with many
or few neighbors. Instead, these results suggest a way of amplifying the returns to
any existing cross-sectional trading strategy. For example, suppose that you would
like to construct a classic momentum portfolio that is long the 30% of stocks with
the highest returns over the previous 6 months and short the 30% of stocks with
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the lowest returns over the previous 6 months. Our results suggest that you could
implement this strategy more efficiently by focusing each leg of this strategy on the
stocks with the most neighbors. This position will have the same average return,
but it will have lower implementation costs due to the liquidity provided by ETF
rebalancing cascades.

Neighbors vs. Holdings. Are our results just due to the fact that ETFs like holding
liquid stocks? No. And, we can use the regression specification in Equation (27) one
more time to further emphasize this point. Our results are due to the overlapping
network of ETF rebalancing decisions and not due to which stocks ETFs choose to
hold. Specifically, we re-estimate the regression where y ∈ {amihud, baSpread}, but
this time including fixed effects for the number of ETFs that hold a particular stock:

ys,t = α + β · #nbrss,t + γ · 1{#etf=i} + · · ·+ εs,t (28)

By doing this, we are able to estimate the amount of additional liquidity that is
associated with having more neighbors while controlling for the effect of being held
by more ETFs. Again, we find that β < 0, suggesting that market participants are
reacting to a stock’s susceptibility to ETF rebalancing cascades rather than just the
number of ETFs that hold it.

5 Conclusion

“To generate randomness, we humans flip coins, roll dice, shuffle cards,
or spin a roulette wheel. All these operations follow direct physical laws,
yet casinos are in no risk of losing money. The complex interaction of a
roulette ball with the wheel makes it computationally impossible to predict
the outcome of any one spin, and each result is indistinguishable from
random.” —Fortnow (2017)

This paper proposes an analogous explanation for seemingly random demand
shocks in financial markets. A stock’s demand might appear random, not because
individual investors are behaving randomly, but because it’s too computationally com-
plex to predict how a wide variety of simple, deterministic, trading rules will interact
with one another. First, we show theoretically how computational complexity can
generate noise by modeling a particular kind of trading-rule interaction: index-fund
rebalancing cascades. Then, we give empirical evidence that index-fund rebalancing
cascades actually generate noise in real-world financial markets using data on the
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end-of-day holdings of exchange-traded funds (ETFs).
By showing precisely why it’s computationally intractable to predict ETF rebal-

ancing cascades, we make it possible for researchers to identify other situations where
the same logic holds. For example, our theoretical model also applies to any other
group of funds following a wide variety of threshold-based rebalancing rules. Think
about quantitative hedge funds following strategies of the form ‘Buy the top 30% and
sell the bottom 30% of stocks when sorting on X’ (Khandani and Lo, 2007). Or,
consider pension funds with strict portfolio mandates of the form ‘15% of our assets
will be held in alternative investments’ (Pennacchi and Rastad, 2011).
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A Proofs
Definition (Binary String). Let {0, 1}? = ∪n=0,1,2,...{0, 1}n denote the set of all bi-
nary strings.

Definition (Problem Solving). Let Prob ∈ {0, 1}? denote a decision problem. An
algorithm F : {0, 1}? 7→ {0, 1} solves Prob (a.k.a., decides membership in Prob) if for
every instance i ∈ {0, 1}?

i ∈ Prob ⇔ F(i) = 1

Problem A (stCon).

• Instance: A directed graph G, and two vertices (s, t).

• Question: Is there a path from s to t?

Theorem A (Wigderson, 1992). stCon is solvable in polynomial time.

Definition (Reduction). Let Prob1 and Prob2 denote two decision problems. We
say that Prob2 is (Karp, 1972) reducible to Prob1 if there exists a polynomial-time
algorithm F : {0, 1}? 7→ {0, 1}? such that

i ∈ Prob2 ⇔ F(i) ∈ Prob1

Proof (Proposition 2.2a). If Ŝ contains a single stock, then If and stCon are the
same problem—there is a trivial reduction from If to stCon. Both involve finding a
path from one node in a directed network to another. What’s more, each K-path
to stock Z is evaluated separately. For example, in the market described by Figure
2, the path described in Equation (11) exists with or without the path described
by Equation (12). This means that if (Z,M, T, {s}) ∈ If and (Z,M, T, {s′}) ∈ If,
then (Z,M, T, {s, s′}) ∈ If. Thus, we don’t need to check every single subset Ŝ ⊆ S
separately. To see which subsets of stocks are connected to stock Z, we can just check
which stocks are connected to stock Z. This is reducible to solving (S − 1) separate
instances of stCon, which is doable in polynomial time because stCon itself if solvable
in polynomial time (Wigderson, 1992).

Remark (Time Complexity). Let Prob1 and Prob2 denote decision problems with
instances of size S. Prob1 is solvable in polynomial time if there’s a solution algorithm
that runs in O[Sk] steps for some k > 0. Whereas, Prob2 requires exponential time if
every solution algorithm requires 2`·S steps on at least one instance for some ` > 0.

Decision problems with polynomial-time solutions are considered tractable while
those that require exponential time are not. However, a polynomial-time solution for
Prob1 could require a k = 10000, and an exponential-time solution for Prob2 could
use an ` = 0.00001. For these values of k and `, Prob2 would be easier to solve than
Prob1 on reasonable instance sizes.

“If cases like this regularly arose in practice, then it would’ve turned out that
we were using the wrong abstraction. But so far, it seems like we’re using the
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right abstraction. Of the big problems solvable in polynomial time—matching, lin-
ear programming, primality testing, etc. . .—most of them really do have practical
algorithms. And of the big problems that we think take exponential time—theorem-
proving, circuit minimization, etc. . .—most of them really don’t have practical algo-
rithms. (Aaronson, 2013)” In short, when seen in this context, your first guess for
both k and ` should be something like 1, 2, or 3.

Remark (Random Networks). To make predictions about the likelihood of being
affected by an index-fund rebalancing cascade, we assume a data-generating process
for the market structure. A standard way to do this is to use a random-networks
model (Jackson, 2010). The particular random-networks model we use dates back
to Erdos and Rényi (1960). We chose this model because it is the simplest. Our
main economic insight is about complexity not networks. Proposition 2.2b can be
extended to other models with power-law and exponential edge distributions. See
Newman et al. (2001) for more details.

Remark (Percolation Threshold). The largest connected component of a directed
graph is the largest set of nodes that are each connected to one another by a path.
There’s a sharp phase transition in the size of the largest connected component in an
Erdös-Rényi random-networks model (Bollobás, 2001). When κ < 1, the size of the
largest connected component remains finite as S → ∞; whereas, when κ > 1, the
largest connected component is infinitely large as S →∞. i.e., the largest connected
component includes a finite fraction of infinitely many nodes. When κ > 1, the
largest connected component is called the ‘Giant Component’. For our purposes, this
percolation threshold implies that the probability of stock Z being affected by an
index-fund rebalancing cascade starting somewhere else in the market is vanishingly
small when κ < 1.

Remark (Connectivity Threshold). There’s a similar phase transition in the exis-
tence of small connected components for the Erdös-Rényi random-networks model
(Bollobás, 2001). When κ < log(S), the typical random network will contain many
small connected components; whereas, when κ > log(S), the typical random network
will contain only the giant component and nodes without any edges whatsoever. For
our purposes, this connectivity threshold implies that the probability stock Z isn’t
affected by an index-fund rebalancing cascade starting somewhere else in the market
is vanishingly small when κ > log(S).

Proof (Equation 13). Suppose M contains S stocks and was generated using con-
nectivity parameter κ > 0. If (s, s′) ∈ S2, then stock s′ will be a positive neighbor to
stock s with probability κ/S. Because the outcome is determined independently for
each stock s′ ∈ S, the probability that stock s has exactly n positive neighbors is

Pr(N+
s = n |S) =

(
S
n

)
· (κ/S)n · (1− κ/S)S−n

This is the probability of n successes in S independent Bernoulli trials, which implies

N+
s ∼ Binomial(κ/S, S)
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So, given the additional restriction that κ = O[log(S)], we know that as S →∞
N+
s ∼ Poisson(κ, S)

since the Binomial distribution converges to the Poisson distribution as S → ∞ for
small values of κ.

Proof (Proposition 2.2b). Let Cs ∈ {True, False} be an indicator variable for whether
a stock s is connected to the giant component of the random graph induced by M.
We can write

Pr[(Z,M, T, {s}) ∈ If |NZ = n] = Pr[(Cs = True) ∧ (CZ = True) |NZ = n]

= Pr[Cs = True] · Pr[CZ = True |NZ = n]

The second line implies that E[Ŝmax(Z,M, T )] will be increasing in NZ if and only if
E[CZ |NZ = n] is increasing in n since the path connecting each stock s ∈ S to stock
Z can be evaluated independently. Bayes’ rule implies

E[CZ |NZ = n] =

(
Pr[NZ = n|CZ = True]

Pr[NZ = n]

)
× E[CZ ]

And, Pr[NZ = n|CZ = True]/Pr[NZ = n] is increasing in n. So, we can conclude that
E[C|N = n] is increasing in n.

Definition (Complexity Class NP). Let Prob denote a decision problem, and let |i|
denote the size of instance i. We say that Prob ∈ NP if there exists a polynomial-time
Turing machine M such that

i ∈ Prob ⇔ ∃ w ∈ {0, 1}Poly(|i|) s.t. M(i, w) = 1

The string w is known as the ‘witness’ or ‘proof’ that i ∈ Prob.

Definition (Hardness). Let CC denote an arbitrary complexity class, such as NP.
We say that Prob is hard with respect to CC if every decision problem in CC can be
reduced to Prob.

Definition (Completeness). Let CC denote an arbitrary complexity class. We say
that Prob is complete with respect to CC if both i) Prob ∈ CC and ii) Prob is CC hard.

Problem B (3Sat).

• Instance: A Boolean formula defined over N input variables

F : {True, False}N 7→ {0, 1}
where some clauses contain 3 variables.

• Question: Is there an assignment x ∈ {True, False}N such that F(x) = 1?

Theorem B (Cook, 1971). 3Sat is an NP-complete problem.

Corollary. Let Prob denote any decision problem. If Prob is reducible to 3Sat, then
Prob is NP complete.
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Proof (Proposition 2.3a). We show that How is NP complete by reducing it to 3Sat.
There are two steps to the proof.

Step 1: First, create variables to track of the state of the rebalancing cascade:

• For each possible value of (xs,t,∆xs,t),

k ∈ {(0,0), (1,1), (1,0), (0,− 1), (−1,− 1), (−1,0), (0,1)}
define for each stock s ∈ S

α(k)s,t = 1{(xs,t,∆xs,t)=k}

• For each pair of stocks (s, s′) ∈ S2 such that s 6= s′ define

β+
s,s′,t = 1{s′∈Out+s,t}

β−s,s′,t = 1{s′∈Out−s,t}

• For each pair of stocks (s, s′) ∈ S2 such that s 6= s′ define

γ+
s′,s,t+1 = 1{s∈In+

s′,t+1
}

γ−s′,s,t+1 = 1{s∈In−
s′,t+1

}

• For each stock s ∈ S define
δ+
s,t+1 = 1{us,t+1=1}

δ−s,t+1 = 1{us,t+1=−1}

Total number of new variables is polynomial in S.
Step 2: Encode constraints on variables in conjunctive-normal form clauses.

There are two kinds of constraints to consider.

• First, there are constraints that impose variable consistency. e.g., we can’t have
both α(0,0)s,t = 1 and α(1,1)s,t = 1 at the same time:

(α(0,0)s,t ∨ α(1,1)s,t)

• Second, there are constraints that encode the rebalancing cascade updating
rules. e.g., if stock s has one negative neighbor, s′, and one positive neighbor,
s′′, then the rebalancing-cascade rules are encoded in four different clauses:

δ+
s λ+

s′,s λ−s′′,s Violated Clause
0 0 0 X
0 0 1 X
0 1 0 ⊗ (δ+

s ∨ λ̄+
s′,s ∨ λ−s′′,s)

0 1 1 X
1 0 0 ⊗ (δ̄+

s ∨ λ+
s′,s ∨ λ−s′′,s)

1 0 1 ⊗ (δ̄+
s ∨ λ+

s′,s ∨ λ̄−s′′,s)
1 1 0 X
1 1 1 ⊗ (δ̄+

s ∨ λ̄+
s′,s ∨ λ̄−s′′,s)
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Figure 7: State Diagram. All possible ways that
a single stock could move between the 7 possible val-
ues of (xs,t,∆xs,t) in successive rounds of an index-
fund rebalancing cascade. Arrows denote transitions.
Loops denote unchanged values in successive rounds.

Again, the total number of new clauses is polynomial in S.
Whenever stock s has both positive and negative neighbors, some of these clauses

involve 3 variables. Thus, we have a polynomial reduction of How to 3Sat.

Definition (Complexity Class PP). Let Prob denote a decision problem, and let r ∈
{0, 1}? denote an arbitrarily long sequence of random bits. We say that Prob ∈ PP if
there exists a polynomial-time randomized algorithm F such that

i ∈ Prob ⇔ Pr
r

[ F(i, r) = 1 | i /∈ Prob ] > 1/2

Problem C (Majority).

• Instance: A Boolean formula defined over N input variables

F : {True, False}N 7→ {0, 1}

• Question: Is
∑

x∈{True, False}N F(x) > 2N−1?

Theorem C (Gill, 1977). NP ⊆ PP, and Majority is a PP-complete problem.

Corollary. Let Prob denote any decision problem. If Prob is reducible to Majority,
then Prob is PP hard.

Proof (Proposition 2.3b). The proof of Proposition 2.3a showed how to reduce in-
stances of How into Boolean formulas. So, sinceMajority is defined in terms of Boolean
functions, the same reduction converts instances of MajorityHow into instances of
Majority. Hence, because MajorityHow is a PP-complete problem (Gill, 1977), the
corollary above implies that MajorityHow is an NP-hard problem.

Problem D (2Sat).

• Instance: A Boolean formula defined over N input variables

F : {True, False}N 7→ {0, 1}
where no clause contains more than 2 variables.

• Question: Is there an assignment x ∈ {True, False}N such that F(x) = 1?

Theorem D (Cook, 1971). 2Sat is solvable in polynomial time.
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Proof (Proposition 2.4a). If there is no alternation, then stocks only have positive
neighbors. So, a stock Z will be affected by an initial shock to the stocks in A if and
only if there is a path from stock s ∈ A connecting to stock Z. Without alternation,
there is no way for two different paths in an index-fund rebalancing cascade to interfere
with one another. And, since within a single path, each stock has only O (stock A)
or 1 (all other stocks) incoming links at any point in time, there would be no need to
create clauses with more than two variables in the proof of Proposition 2.3a. Thus,
without alternation, How is reducible to 2Sat. And, this reduction implies it’s solvable
in polynomial time (Cook, 1971).

Proof (Proposition 2.4b). If there are no loops, then there is either a single path
from any stock s to stock Z or no such path. After all, if there is more than one
path, then these two paths would define a closed loop. As a result, no stock can have
more than 1 incoming link. And so, the rebalancing cascade rules can be encoded
using clauses with no more than 2 variables as in the proof of Proposition 2.4a. Thus,
without loops, How is reducible to 2Sat. And, this reduction implies that it’s solvable
in polynomial time (Cook, 1971).

Problem E (SmoothHow). Suppose that the updating rule in Equation (6) was changed
to the following for some θ ∈ (0, 1):

us,t+1 = 1
|In+s,t+1|+|In−s,t+1|

·
(∑

s′∈In−s,t+1
xs′,t −

∑
s′′∈In+s,t+1

xs′′,t

)
xs,t+1 = θ · (xs,t + us,t+1)

• Instance: A choice for stock Z; a market structure M; a time T = Poly[S]; a
positive constant ε > 0; and, the power set Â ⊆ 2S of all ε-small sets A ⊆ S.

• Question: Does there exist a A ∈ Â such that EffectM,T (A, Z) < 0?

Proposition 2.4c (Necessity of Thresholds, Restated). Let i denote an instance of
SmoothHow. There’s a polynomial-time algorithm, F, such that for any δ > 0∑

|i|=N, i/∈Prob1{F(i)=1} < δ

Proof (Proposition 2.4c). Because θ < 1, the effect of a long direct path connecting
to stock Z (i.e., where each stock in the path has exactly one incoming neighbor) will
decay at an exponential rate. A direct path from stock A to stock Z that involves
(K − 1) intermediary stocks will have an affect on stock Z proportional to θK . And,
the effects of any indirect paths (i.e., where each stock in the path has more than
one incoming neighbor) will decay even fast due to averaging. Having more than
one incoming neighbor presents that possibility that a stock will be hit by both a
positive and a negative shock at the same time. So, to get an approximate solution
to SmoothHow, just compute the effect of all direct paths connecting to stock Z of
length K = Poly[S]. If there exists a path with a negative effect, then answer ‘Yes’;
otherwise, answer ‘No’.
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B Tables

Summary Statistics, ETFs

a) Time Series

Avg Sd 1% 25% 50% 75% 99%

#etf 1049 153 863 911 1012 1206 1337

#bmark 876 128 731 768 832 1006 1117

mktCap [$1b] 1291 584 2 984 1420 1683 2283

b) Cross-Section

Avg Sd 1% 25% 50% 75% 99%

#stock 241 505 1 29 75 243 2335

Table 1: Summary statistics for the ETF market. Data is from ETF Global. Sample period
runs from January 2010 to December 2015. Panel a) reports monthly aggregates for the
entire ETF market. #etf: number of ETFs in the sample each month. #bmark: number
of different benchmarks reported by these ETFs. mktCap: total market capitalization of the
ETF industry each month in billions of dollars. Panel b) reports cross-sectional statistics
for fund-month observations. #stock: number of stocks held by an ETF in a given month.
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Summary Statistics, Trading

a) Announcements

Avg Sd Min 25% 50% 75% Max
#ancmt
month 14.73 5.19 4 11 14 19 28

#stockZ
ancmt 1077.02 1151.21 162 456 641 912 4509

b) Stocks

Avg Sd Min 25% 50% 75% Max

#etfOwned 17.39 16.38 1.00 2.87 13.29 27.17 60.08

ln(etfRebalVlm) 7.62 2.81 0.65 5.81 8.24 9.68 12.58

etfOrdImbal −0.03 0.14 −0.72 −0.05 −0.02 0.01 0.22

amihud [%/$1m] 0.85 3.90 0.00 0.00 0.01 0.07 18.09

baSpread [%] 0.01 0.01 0.00 0.00 0.00 0.01 0.05

Table 2: Summary statistics for trading data. Announcement data is from Thompson
Financial. Stock-market data is from CRSP and TAQ. Sample period runs from January
2010 to December 2015. Panel a) reports summary statistics for the M&A announcement
data. #ancmt

month
: number of announcements per month. #stockZ

ancmt
: number of stocks that are

unrelated to the stock named as the target of each M&A announcement. Panel b) reports
cross-sectional summary statistics at the stock-month level. #etfOwned: number of ETFs
that own each stock. ln(etfRebalVlm): log ETF rebalancing volume. etfOrdImbal: ETF
order imbalance, which ranges from [−1, 1]. amihud: Amihud (2002) liquidity measure quoted
in units of percent per $1m of trading volume. baSpread: bid-ask spread quoted as a percent
of the closing price.
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Rebalancing Volume, Stock A

ln(etfRebalVlmA,t) [%]

Actual Announcements Placebo

1{t=tA+1} 22.07
(11.66)

? −10.23
(11.78)

22.14
(11.71)

? −10.15
(11.82)

−16.47
(17.41)

1{t=tA} 165.62
(10.25)

??? 167.78
(10.28)

??? 165.69
(10.30)

??? 166.87
(10.33)

??? −11.47
(15.42)

1{t=tA−1} 60.66
(10.52)

??? 63.94
(10.35)

??? 60.93
( 9.82)

??? 64.19
( 9.56)

??? −10.53
(19.38)

1{t=tA−2} 5.16
( 8.33)

6.81
( 8.28)

10.98
(17.90)

1{t=tA−3} −2.45
( 9.38)

−2.45
( 9.35)

−13.28
(16.43)

1{t=tA−4} 13.70
( 9.71)

14.19
( 9.72)

13.21
(21.36)

1{t=tA−5} 3.59
( 9.15)

5.81
( 9.14)

7.45
(15.92)

ln(vlmA,t−1) 12.29
( 0.41)

??? 12.29
( 0.41)

??? 12.29
( 0.41)

???

ln(vlmA,t−2) 3.85
( 0.29)

??? 3.85
( 0.29)

??? 3.85
( 0.29)

???

ln(vlmA,t−3) 3.09
( 0.34)

??? 3.09
( 0.34)

??? 3.09
( 0.34)

???

Month-Year FE Y Y Y Y Y

Stock-Specific FE Y Y Y Y Y

R2 57.0% 57.1% 57.0% 57.1% 27.0%

Observations 5,197,276 5,197,276

Table 3: Effect of initial M&A announcements on ETF rebalancing volume for stock
A. For the first 4 columns, the data is panel containing each M&A target in the window
t ∈ {tA − 20, . . . , tA + 5}. The fifth column uses a new dataset of randomly selected M&A
announcement dates for the same target companies. tA denotes date of M&A announce-
ment for stock A. ln(vlmA) is log trading volume for stock A. Table reports results for the
regression: ln(etfRebalA,t) = α+ β · 1{t=tA−1} + γ · 1{t=tA} + δ · 1{t=tA+1} + · · ·+ εA,t.
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Rebalancing Volume, Stock Z

ln(etfRebalVlmZ,t) [%]

afterAncmtA,t 4.98
(0.28)

??? 4.85
(0.28)

??? 3.27
(0.39)

??? 3.02
(0.39)

???

manyNbrsA→Z,t 95.58
(3.25)

??? 94.05
(3.23)

???

afterAncmtA,t × manyNbrsA→Z,t 3.70
(0.55)

??? 3.02
(0.55)

???

ln(vlmZ,t) 32.38
(1.72)

??? 31.45
(1.70)

???

Announcement FE Y Y Y Y

Stock-Specific FE Y Y Y Y

R2 52.6% 53.0% 53.3% 53.6%

Observations 14,736,786 14,736,786

Table 4: Effect of initial M&A announcements on ETF rebalancing volume for stock Z.
Data is panel containing each stock Z that is unrelated to the target stock A in the window
t ∈ {tA − 20, . . . , tA + 5}. For stock Z to be unrelated to a particular stock A, it has to be
twice removed in the network of ETF holdings. It can’t have been recently held by any ETF
that also recently held stock A. And, it can’t have been held by any ETF that also held a
stock that was held by another ETF that held stock A. i.e., the chain has to be A−B−C−Z
or longer. afterAncmtA is an indicator variable for the 5 days following the announcement
of stock A as an M&A target. manyNbrsA→Z is an indicator variable for stock Z having an
above-median number of neighbors relative to stock A’s M&A announcement. ln(vlmZ) is log
trading volume for stock Z. Table reports results for the regression: ln(etfRebalVlmZ,t) =
α+β·afterAncmtA,t+γ·manyNbrsA→Z,t+δ·{afterAncmtA,t×manyNbrsA→Z,t}+· · ·+εA→Z,t.
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Order Imbalance, Stock Z

etfOrdImbalZ,t [bps]

afterAncmtA,t 0.75
(0.11)

??? 0.74
(0.11)

??? 0.63
(0.16)

??? 0.63
(0.16)

???

manyNbrsA→Z,t −0.92
(0.10)

??? −0.87
(0.10)

???

afterAncmtA,t × manyNbrsA→Z,t 0.24
(0.21)

0.22
(0.21)

ln(vlmZ,t) −1.25
(0.08)

??? −1.24
(0.08)

???

Announcement FE Y Y Y Y

Stock-Specific FE Y Y Y Y

R2 1.4% 1.4% 1.4% 1.4%

Observations 13,755,851 13,755,851

Table 5: Effect of initial M&A announcements on ETF order imbalance for stock Z. Data
is panel containing each stock Z that is unrelated to the target stock A in the window t ∈
{tA − 20, . . . , tA + 5}. For stock Z to be unrelated to a particular stock A, it has to be twice
removed in the network of ETF holdings. It can’t have been recently held by any ETF that
also recently held stock A. And, it can’t have been held by any ETF that also held a stock
that was held by another ETF that held stock A. i.e., the chain has to be A − B − C − Z
or longer. afterAncmtA is an indicator variable for the 5 days following the announcement
of stock A as an M&A target. manyNbrsA→Z is an indicator variable for stock Z having an
above-median number of neighbors relative to stock A’s M&A announcement. ln(vlmZ) is
log trading volume for stock Z. Table reports results for the regression: etfOrdImbalZ,t =
α+β·afterAncmtA,t+γ·manyNbrsA→Z,t+δ·{afterAncmtA,t×manyNbrsA→Z,t}+· · ·+εA→Z,t.
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Liquidity Measures, Stock Z

amihudZ,t [%/$1m] baSpreadZ,t [bps]

afterAncmtA,t 0.80
(0.63)

0.84
(1.09)

0.17
(0.06)

??? 0.18
(0.10)

?

manyNbrsA→Z,t −4.61
(1.51)

??? −5.31
(0.40)

???

afterAncmtA,t × manyNbrsA→Z,t −0.09
(1.41)

−0.04
(0.12)

Announcement FE Y Y Y Y

Stock-Specific FE Y Y Y Y

R2 6.7% 6.7% 52.8% 52.9%

Observations 14,736,786 14,736,786

Table 6: Effect of initial M&A announcements on liquidity for stock Z. Data is panel
containing each stock Z that is unrelated to the target stock A in the window t ∈ {tA −
20, . . . , tA+5}. For stock Z to be unrelated to a particular stock A, it has to be twice removed
in the network of ETF holdings. It can’t have been recently held by any ETF that also recently
held stock A. And, it can’t have been held by any ETF that also held a stock that was held by
another ETF that held stock A. i.e., the chain has to be A−B−C −Z or longer. amihudZ
is Amihud (2002) illiquidity measure in units of % per million dollars. baSpreadZ is bid-ask
spread as a fraction of closing price. afterAncmtA is an indicator variable for the 5 days
following the announcement of stock A as an M&A target. manyNbrsA→Z is an indicator
variable for stock Z having an above-median number of neighbors relative to stock A’s M&A
announcement. For y ∈ {amihud, baSpread}, table reports results for the regression: yZ,t =
α+β·afterAncmtA,t+γ·manyNbrsA→Z,t+δ·{afterAncmtA,t×manyNbrsA→Z,t}+· · ·+εA→Z,t.
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Unconditional Panel Regression

ln(etfRebalVlms,t) [%] amihuds,t [%/$100m] baSpreads,t [bps×100]

#nhbrss,t 0.12
(0.01)

??? 0.06
(0.01)

??? −1.47
(0.31)

??? −0.63
(0.27)

?? −0.88
(0.08)

??? −0.25
(0.06)

???

Month-Year FE Y Y Y

#etf-Specific FE Y Y Y

Stock-Specific FE Y Y Y Y Y Y

R2 60.6% 43.4% 6.5% 6.5% 53.6% 53.7%

Observations 4,915,505 4,966,292 4,986,730

Table 7: Unconditional relationship between number of neighbors and a stock’s ETF rebal-
ancing volume and liquidity. Data consists of a panel containing all stock-month observations
in our sample. #nbrss is the number of neighboring stocks to stock s in the ETF rebalancing-
rule network. amihuds is Amihud (2002) illiquidity measure in units of % per 100 million
dollars. baSpreads is bid-ask spread as a fraction of closing price times 100. #etf-specific
fixed effects denote indicator variables for the number of ETFs that hold a given stock in a
given month. For y ∈ {ln(etfRebalVlm), amihud, baSpread}, table reports results for the
regressions ys,t = α+ β ·#nbrss,t + · · ·+ εs,t.
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The aggregation of private information and the dynamics of liquidity supply and demand are

closely intertwined in financial markets. In dealer markets, informed and uninformed investors

trade via market orders and, thus, take liquidity, while dealers provide liquidity and try to extract

information from the arriving order flow (e.g., as in Kyle (1985) and Glosten and Milgrom (1985)).

However, in limit order markets — the dominant form of securities market organization today

— the relation between who has information and who is trying to learn it and who supplies and

demands liquidity is not well understood theoretically.1 Recent empirical research highlights the

role of informed traders not only as liquidity takers but also as liquidity suppliers. O’Hara (2015)

argues that fast informed traders use market and limit orders interchangeably and often prefer limit

orders to marketable orders. Fleming, Mizrach, and Nguyen (2017) and Brogaard, Hendershott,

and Riordan (2016) find that limit orders play a significant empirical role in price discovery.2

Our paper presents the first rational expectations model of a dynamic limit order market with

asymmetric information and history-dependent Bayesian learning. In particular, learning is not

constrained to be Markovian. The model represents a trading day with market opening and closing

effects. Our model lets us investigate the information content of different types of market and limit

orders, the dynamics of who provides and demands liquidity, and the non-Markovian information

content of the trading history. In addition, we study how changes in the amount of adverse selection

— in terms of both asset-value volatility and the arrival probability of informed investors — affect

equilibrium trading strategies, liquidity, price discovery, and welfare. We have three main results:

• Increased adverse selection does not always worsen market liquidity as in Kyle (1985). Li-

quidity can improve if informed traders with better information trade more aggressively by

submitting more limit-orders at the inside quotes rather than using market orders.

1See Jain (2005) for a discussion of the prevalence of limit order markets. See Parlour and Seppi (2008) for a
survey of theoretical models of limit order markets. See Rindi (2008) for a model of informed traders as liquidity
providers.

2Gencay, Mahmoodzadeh, Rojcek, and Tseng (2016) investigate brief episodes of high-intensity/extreme behavior
of quotation process in the U.S. equity market (bursts in liquidity provision that happen several hundreds of time
a day for actively traded stocks) and find that liquidity suppliers during these bursts significantly impact prices by
posting limit orders.
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• The relation between limit and market orders and their information content depends on the

size of private information shocks relative to the tick size. Indeed, the information content of

orders can even be opposite the order direction and aggressiveness.

• The learning dynamics are non-Markovian in that the order history has information in addi-

tion to the current state of the limit order book. In particular, the incremental information

content of arriving limit and market orders is history-dependent.

Dynamic limit order markets with uninformed investors are studied in a large literature. This

includes Foucault (1999), Parlour (1998), Foucault, Kadan, and Kandel (2005), and Goettler,

Parlour, and Rajan (2005). There is some previous theoretical research that allows informed traders

to supply liquidity. Kumar and Seppi (1994) is a static model in which optimizing informed and

uninformed investors use profiles of multiple limit and market orders to trade. Kaniel and Liu

(2006) extend the Glosten and Milgrom (1985) dealership market to allow informed traders to post

limit orders. Aı̈t-Sahalia and Saglam (2013) also allow informed traders to post limit orders, but

they do not allow them to choose between limit and market orders. Moreover, the limit orders

posted by their informed traders are always at the best bid and ask prices. Goettler, Parlour,

and Rajan (2009) allow informed and uninformed traders to post limit or market orders, but their

model is stationary and assumes Markovian learning. Roşu (2016b) studies a steady-state limit

order market equilibrium in continuous-time with Markovian learning and additional information-

processing restrictions. These last two papers are closest to ours. Our model differs from them

in two ways: First, they assume Markovian learning in order to study dynamic trading strategies

with order cancellation, whereas we simplify the strategy space (by not allowing dynamic order

cancellations and submissions) in order to investigate non-Markovian learning (i.e., our model has

a larger state space with full order histories). Second, we model a non-stationary trading day with

opening and closing effects. Market opens and closes are important daily events in the dynamics of

liquidity in financial markets. Bloomfield, O’Hara, and Saar (2005) show in an experimental asset

market setting that informed traders sometimes provide more liquidity than uninformed traders.

Our model provides equilibrium examples of liquidity provision by informed investors.

A growing literature investigates the relation between information and trading speed (e.g., Biais,
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Foucault, and Moinas (2015); Foucault, Hombert, and Roşu (2016); and Roşu (2016a)). However,

these models assume Kyle or Glosten-Milgrom market structures and, thus, cannot consider the

roles of informed and uninformed traders as endogenous liquidity providers and demanders. We

argue that understanding price discovery dynamics in limit order markets is an essential precursor

to understanding speedbumps and cross-market competition given the real-world prevalence of limit

order markets.

1 Model

We consider a limit order market in which a risky asset is traded at five times tj ∈ {t1, t2, t3, t4, t5}

over a trading day. The fundamental value of the asset after time t5 at the end of the day is

ṽ = v0 + ∆ =


v̄ = v0 + δ with Pr(v̄) = 1

3

v0 with Pr(v0) = 1
3

v
¯

= v0 − δ with Pr(v
¯
) = 1

3

(1)

where v0 is the ex ante expected asset value, and ∆ is a symmetrically distributed value shock. The

limit order market allows for trading through two types of orders: Limit orders are price-contingent

orders that are collected in a limit order book. Market orders are executed immediately at the best

available price in the limit order book. The limit order book has a price grid with four prices,

Pi ∈ {A2, A1, B1, B2}, two each on the ask and bid sides of the market. The tick size is equal to

κ > 0, and the ask prices are A1 = v0 + κ
2 , A2 = v0 + κ, ; and by symmetry the bid prices are

B1 = v0 − κ
2 , B2 = v0 − κ. Order execution in the limit order book follows time and price priority.

Investors arrive sequentially over time to trade in the market. At each time tj one investor

arrives. Investors are risk-neutral and asymmetrically informed. A trader is informed with prob-

ability α and uninformed with probability 1−α. Informed investors know the realized value shock

∆ perfectly. Uninformed investors do not know ∆, so they use Bayes’ Rule and their knowledge

of the equilibrium to learn about ∆ from the observable market dynamics over time. An investor

arriving at time tj may also have a personal private-value trading motive, which — we assume
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for tractability — causes them to adjust their valuation of v0 to βtjv0 where the factor βtj may

be greater than or less than 1. Non-informational private-value motives include preference shocks,

hedging needs, and taxation. The absence of a non-informational trading motive would lead to the

Milgrom and Stokey (1982) no-trade result. The factor βtj at time tj is drawn from a truncated

normal distribution, Tr[N (µ, σ2)], with support over the interval [0, 2]. The mean is µ = 1, which

corresponds to a neutral private valuation. Traders with neutral private factors tend to provide

liquidity symmetrically on both the buy and sell sides of the market, while traders with extreme

private valuations provide one-sided liquidity or actively take liquidity. The parameter σ determines

the dispersion of a trader’s private-value factor βtj , as shown in Figure 1, and, thus, the probability

of large private gains-from-trade due to extreme investor private valuations.

The sequence of arriving investors is independently and identically distributed in terms of

whether they are informed or uninformed and in terms of their individual private-value factors

βtj . In one specification of our model, only uninformed investors have private valuations, while

in a second richer specification both informed and uninformed investors have private valuations.

A generic informed investor is denoted as I, where we denote the informed investor as Iv̄ if the

value shock is positive (∆ = δ), as Iv
¯

if the shock is negative (∆ = −δ), and as Iv0 if the shock is

zero (∆ = 0). Informed investors arriving at different times during the day all have the identical

asset-value information (i.e., there is only one realized ∆). Uninformed investors are denoted as U .

An investor arriving at time tj can take one of seven possible actions xtj : One possibility is

to submit a buy or sell market order MOAi,tj or MOBi,tj to buy or sell immediately at the best

available ask or bid respectively in the limit order book at time tj . A subscript i = 1 indicates that

the best standing quote at time tj is at the inside prices A1 or B1, and i = 2 means the best quote

is at the outside prices A2 or B2. Alternatively, the investor can submit one of four possible limit

orders LOAi and LOBi on the ask or bid side of the book, respectively. A subscript i = 1 denotes

an aggressive limit order posted at the inside quote, and i = 2 is a less aggressive limit order at the

outside quotes.3 Yet another alternative is to choose to do nothing (NT ).

For tractability, we make a few simplifying assumptions. Limit orders cannot be modified or

3For tractability, it is assumed that investors cannot post buy limit orders at A1 and sell limit orders at B1. This
is one way in which the investor action space is simplified in our model.
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Figure 1: Distribution of Traders’ Private-Value Factors - β ∼ Tr[N (µ, σ2)]. This figure
shows the truncated Normal probability density Function (PDF) of trader private-value factors βtj with a mean µ = 1
and three different values of dispersion σ.
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canceled after submission. Thus, each arriving investor has one and only one opportunity to submit

an order. There is also no quantity decision. Orders are to buy or sell one share. Lastly, investors

can only submit one order. Taken together, these assumptions let us express the traders’ action set

as Xtj = {MOBi,tj , LOA1, LOA2, NT, LOB2, LOB1,MOAi,tj}, where each of the orders denotes

an order for one share.4

In addition to the arriving informed and uninformed traders, there is a market-making trading

crowd that submits limit orders to provide liquidity. By assumption, the crowd just posts single

limit orders at the outside prices A2 and B2. The market opens with an initial book submitted by

the crowd at time t0. After the order-submission by arriving informed and uninformed investors at

each time tj , the crowd replenishes the book at the outside prices, as needed, when either side of

the book is empty. Otherwise, if there are limit orders on both sides of the book, the crowd does

not submit any further limit orders. For tractability, we assume public limit orders by the arriving

informed and uninformed investors have priority over limit orders from the crowd. The focus of our

4The action space Xtj of orders that can be submitted at time tj includes market orders at the standing best bid
or offer at time tj . Our notation MOBi,tj and MOAi,tj reflects the fact that the bid or offer at time tj is not a fixed
number but rather depends on the incoming state of the limit order book. There is no time script in the limit order
notation LOA1, ... because these are just limit orders at particular fixed prices in the price grid.
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model is on market dynamics involving information and liquidity given the behavior of optimizing

informed and uninformed investors. The crowd is simply a modeling device to insure it is always

possible for arriving investors to trade with market orders if they so choose.

Market dynamics over the trading day are intentionally non-stationary in our model in order

to capture market opening and closing effects. When the market opens at t1, the only standing

limit orders in the book are those at prices A2 and B2 from the trading crowd.5 At the end of the

day all unexecuted limit orders are cancelled. The state of the limit order book at a generic time

tj during the day is

Ltj = [qA2
tj
, qA1
tj
, qB1
tj
, qB2
tj

] (2)

where qAi
tj

and qBi
tj

indicate the total depths at prices Ai and Bi at time tj . The limit order book

changes over time due to the arrival of new limit orders (which augment the depth of the book)

and market orders (which remove depth from the book) from arriving informed and uninformed

investors and due to the submission of limit orders from the crowd. The resulting dynamics are:

Ltj = Ltj−1 +Qtj + Ctj j = 1, . . . , 5 (3)

5In practice, daily opening limit order books include uncancelled orders from the previous day and new limit
orders from opening auctions. For simplicity, we abstract from these interesting features of markets.
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where Qtj is the change in the limit order book due an arriving investor’s action xtj ∈ Xtj at tj :
6

Qtj = [QA2
tj
, QA1

tj
, QB1

tj
, QB2

tj
] =



[−1, 0, 0, 0] if xtj = MOA2

[0,−1, 0, 0] if xtj = MOA1

[+1, 0, 0, 0] if xtj = LOA2

[0,+1, 0, 0] if xtj = LOA1

[0, 0, 0, 0] if xtj = NT

[0, 0,+1, 0] if xtj = LOB1

[0, 0, 0,+1] if xtj = LOB2

[0, 0,−1, 0] if xtj = MOB1

[0, 0, 0,−1] if xtj = MOB2

(4)

where “+1” with a limit order denotes the arrival of an additional order at a particular limit price

and “−1” with a market order denotes execution of an earlier BBO limit order and where Ctj is

the change in the limit order book due to any limit orders submitted by the crowd

Ctj =


[1, 0, 0, 0] if qA2

tj−1
+QA2

tj
= 0

[0, 0, 0, 1] if qB2
tj−1

+QB2
tj

= 0.

[0, 0, 0, 0] otherwise.

(5)

A potentially important source of information at time tj is the observed history of orders at prior

times t1, .., tj−1. In particular, when traders arrive in the market, they observe the history of market

activity up through the current standing limit order book at the time they arrive. However, since

orders from the crowd have no incremental information beyond that in the arriving investor orders,

we exclude them from the notation for the portion of the order-flow history used for informational

updating of investor beliefs, which we denote by Ltj−1 = {Qt1 , . . . , Qtj−1}.

Investors trade using optimal order-submission strategies given their information and any private-

value motive. If an uninformed investor arrives at time tj , then his order xtj is chosen to maximize

6There are nine alternatives in (4) because we allow separately for cases in which the best bid and ask for market
sells and buys at time tj are at the inside and outside quotes.
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his expected terminal payoff

max
x∈Xtj

wU (x |βtj ,Ltj−1) = E[(βtj v0 + ∆− p(x)) f(x)|βtj ,Ltj−1 ] (6)

=

 [βtj v0 + E[∆ |Ltj−1 , θ
x
tj ]− p(x)]Pr(θxtj |Ltj−1) if x is a buy order

[p(x)− (βtj v0 + E[∆ |Ltj−1 , θ
x
tj ])]Pr(θ

x
tj |Ltj−1) if x is a sell order

where p(x) is the price at which order x trades, and f(x) denotes the amount of the submitted order

that is actually “filled.” If x is a market order, then p(x) is the best standing quote on the other side

of the market at time tj , and f(x) = 1 for a market buy and f(x) = −1 for a market sell (i.e., all of

the order is executed). If x is a non-marketable limit order, then the execution price p(x) is its limit

price, but the fill amount f(x) is random variable equal to zero if the limit order is never executed

and equal to 1 if a limit buy is filled and −1 if a limit sell is filled. If the investor does not trade

— either because no order is submitted (NT ) or because a limit order is not filled — then f(x) is

zero. In the second line of (6), the expression θxtj denotes the set of future trading states in which

an order x submitted at time tj is executed.7 This conditioning matters for limit orders because

the sequence of subsequent orders in the market, which may or may not result in the execution of

a limit order submitted at time tj , is correlated with the asset value shock ∆. For example, future

market buy orders are more likely if the ∆ shock is positive (since the average Iv investors will

want to buy but not the average Iv investor). Uninformed investors rationally take the relation

between future orders and ∆ into account when forming their expectation E[∆ |Ltj−1 , θ
x
tj ] of what

the asset will be worth in states in which their limit orders are executed. The second line of (6) also

makes clear that uninformed investors use the prior order history Ltj−1 in two ways: It affects their

beliefs about limit order execution probabilities Pr(θxtj |Ltj−1) and their execution-state-contingent

asset-value expectations E[∆ |Ltj−1 , θ
x
tj ].

7A market orders xtj is executed immediately at time tj and so is executed for sure.

8



An informed investor who arrives at tj chooses an order xtj to maximize her expected payoff

max
x∈Xtj

wI(x |v, βtj ,Ltj−1) = E[(βtj v0 + ∆− p(x)) f(x)|βtj ,Ltj−1 ] (7)

=

 [βtj v0 + ∆ − p(x)]Pr(θxtj |v,Ltj−1) if x is a buy order

[p(x)− (βtj v0 + ∆)]Pr(θxtj |v,Ltj−1) if x is a sell order

The only uncertainty for informed investors is about whether any limit orders they submit will be

executed. Their belief about order-execution probabilities Pr(θxtj | v,Ltj−1) are conditioned on both

the trading history up through the current book and on their knowledge about the ending asset

value. Thus, informed traders condition on Ltj−1 , not to learn about the value shock ∆ (which

they already know) or about future investor private-value factors βtj (which are i.i.d. over time),

but rather because they understand that the trading history is an input in the trading behavior of

future uninformed investors with whom they might trade in the future. Our analysis considers two

model specifications for the informed investors. In the first, informed investors have no private-

value motive, so that their β factors are equal to 1. In the second specification, their β factors are

random and are independently drawn from the same truncated normal distribution Tr[N (µ, σ2)]

as the uninformed investors.

The optimization problem in (6) defines sets of actions xtj ∈ Xtj that are optimal for the

uninformed investor at different times tj given different private-value factors βtj and order histories

Ltj−1 . These optimal orders can be unique, or there may be multiple orders which make the

uninformed investor equally well-off. The optimal order-submission strategy for the uninformed

investor is a probability function ϕUtj (x|βtj ,Ltj−1) that is zero if the order x is suboptimal and equals

a mixing probability over optimal orders. If an optimal order x is unique, then ϕtj (x|βtj ,Ltj−1) =

1. Similarly, the optimization problem in (7) can be used to define an optimal order-submission

strategy ϕItj (x|βtj , v,Ltj−1) for informed investors at time tj given their factor βtj , their knowledge

about the asset value v, and the order history Ltj−1 .
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1.1 Equilibrium

An equilibrium is a set of mutually consistent optimal strategy functions and beliefs for uninformed

and informed investors for each time tj , given each order history Ltj−1 , private-value factor βtj ,

and (for informed traders) private information v. This section explains what “mutually consistent”

means and then gives a formal definition of an equilibrium.

A central feature of our model is asymmetric information. The presence of informed traders

means that, by observing orders over time, uninformed traders can infer information about the

asset value v and use it in their order-submission strategies. More precisely, uninformed traders

rationally learn from the trading history about the probability that v will go up, stay constant, or

go down. However, investors cannot learn about the private values (β) or information status (I or

U) of future traders since, by assumption, these are both i.i.d over time. Informed traders do not

need to learn about v since they know it directly. However, they do condition their orders on v

(both because v is the final stock value and also because v tells them what types of informed traders

will arrive in the future along with the uninformed traders). Informed investors also condition on

the order-flow history Lt−1, since Lt−1 affects the trading behavior of future investors.8

The underlying economic state in our model is the realization of the asset value v and a realized

sequence of investors who arrive in the market. The investor who arrives at time tj is described

by two characteristics: their status as being informed or uninformed, I or U , and their private-

value factor βtj . The underlying economic state is exogenously chosen over time by Nature. More

formally, it follows an exogenous stochastic process described by the model parameters δ, α, µ,

and σ. A sequence of arriving investors together with a pair of strategy functions — which we

denote here as Φ = {ϕUtj (x|βtj ,Ltj−1), ϕItj (x|βtj , v,Ltj−1)} — induce a sequence of trading actions

xtj which — together with the predictable actions of the trading crowd — results in a sequence of

observable changes in the state Ltj of the limit order book. Thus, the stochastic process generating

paths of order histories is induced by the economic state process and the strategy functions. Given

the order-path process, several probabilistic quantities can compute directly: First, we can com-

8The order history Lt−1 is an input in the uninformed-investor learning problem and, thus, is an input in their
order-submission strategy. In addition, since future informed investors know that Lt−1 can affect uninformed investor
trading behavior, it also enters the order-submission strategies of future informed investors.
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pute the unconditional probabilities of different paths Pr(Ltj ) and the conditional probabilities

Pr(Qtj |Ltj−1) of particular order book changes Qtj due to arriving investors given a prior his-

tory Ltj−1 . Certain paths of orders are possible (i.e., have positive probability Pr(Ltj )) given the

strategy functions {ϕUtj (x|β,Ltj−1), ϕItj (x|β, v,Ltj−1)}, and certain paths of orders are not possible

(i.e., for which Pr(Ltj ) = 0). Second, the endogenous order-path process also determines the order-

execution probabilities Pr(θxtj | v,Ltj−1) and Pr(θxtj |Ltj−1) for informed and uninformed investors

for various orders x submitted at time tj . Computing each of these probabilities is simply a matter

of listing all of the possible underlying economic states, mechanically applying the order-submission

rules, identifying the relevant outcomes path-by-path, and then taking expectations across paths.

Let ` denote the set of all feasible histories {Ltj : j = 1, . . . , 4} of physically available orders

of lengths up to four trading periods. A four-period long history is the longest history a order-

submission strategy can depend on in our model. In this context, feasible paths are simply sequences

of actions from the action choice sets Xtj over time without regard to whether they are possible

in the sense that they occur with positive probability given the strategy functions Φ. Let ` in,Φ

denote the subset of all possible trading paths in ` that have positive probability, Pr(Ltj ) > 0,

given a pair of order strategies Φ. Let ` off,Φ denote the complementary set of trading paths that

are feasible but not possible given Φ. This notation will be useful when discussing “off equilibrium”

beliefs. In our analysis, strategy functions Φ are defined for all feasible paths in `. In particular,

this includes all of the possible paths in ` in,Φ given Φ and also the paths in ` off,Φ. As a result, the

probabilities Pr(Qtj |Ltj−1), Pr(θxtj | v,Ltj−1) and Pr(θxtj |Ltj−1) are always well-defined, because

the continuation trading process going forward — even after an unexpected order-arrival event (i.e.,

a path Ltj−1 ∈ ` off,Φ) — is still well-defined.

The stochastic process for order paths and its relation to the underlying economic state also

determine the uninformed-investor expectations E[v |Ltj−1 , θ
x
tj ] of the terminal asset value given

the previous order history (Ltj−1) and conditional on future limit-order execution (θxtj ). These

expectations are determined as follows:

• Step 1: The conditional probabilities πvtj = Pr(v|Ltj ) of a particular final asset value v = v̄, v0

or v given a possible trading history Ltj ∈ ` in,Φ up through time tj is given by Bayes’ Rule.
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At time t1, this probability is

πvt1 =
Pr(v,Lt1)

Pr(Lt1)
=
Pr(Lt1 |v)Pr(v)

Pr(Lt1)
=
Pr(Qt1 |v)Pr(v)

Pr(Qt1)
(8)

=
Pr(Qt1 |v, I)Pr(I) + Pr(Qt1 |U)Pr(U)

Pr(Qt1)
Pr(v)

=
Eβ[ϕIt1(xt1 |βIt1 , v)|v]α+ Eβ[ϕUt1(xt1 |βUt1)](1− α)

Pr(Qt1)
πvt0

where the prior is the unconditional probability πvt0 = Pr(v), xt1 is the order at time t1 that

leads to the order book change Qt1 , and βIt1 and βUt1 are independently distributed private-

value β realizations for informed and uninformed investors at time t1.9 At times tj > t1, the

history-conditional probabilities are given recursively by10

πvtj =
Pr(v,Ltj )

Pr(Ltj )
=
Pr(v,Qtj ,Ltj−1)

Pr(Qtj ,Ltj−1)
(9)

=

 Pr(Qtj |v,Ltj−1 , I)Pr(I|Ltj−1)Pr(v|Ltj−1)

+Pr(Qtj |v,Ltj−1 , U)Pr(U |Ltj−1)Pr(v|Ltj−1)


Pr(Qtj |Ltj−1)

=
Eβ[ϕItj (xtj |β

I
tj , v,Ltj−1)|v,Ltj−1 ] α+ Eβ[ϕUtj (xtj |β

U
tj ,Ltj−1)|Ltj−1 ] (1− α)

Pr(Qtj |Ltj−1)
πvtj−1

Given these probabilities, the expected asset value conditional on the order history is

E[ṽ|Ltj−1 ] = πv̄tj−1
v̄ + πv0

tj−1
v0 + π

v
tj−1

v (10)

• Step 2: The conditional probabilities πvtj given a “feasible but not possible in equilibrium”

order history Ltj ∈ ` off,Φ in which a limit order book change Qtj that is inconsistent with

the strategies Φ at time tj are set as follows:

9A trader’s information status (I or U) is independent of the asset value v, so P (I|v) = Pr(I) and Pr(U |v) =
Pr(U). Furthermore, uninformed traders have no private information about v, so the probability Pr(Qt1 |U) with
which they take a trading action Qt1 does not depend on v.

10A trader’s information status is again independent of v, and it is also independent of the past trading history
Lt1 . While the probability with which an uninformed trader takes a trading action Qt1 may depend on the past
order history Ltj , it does not depend directly on v which uninformed traders do not know.
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1. If the priors are fully revealing in that πvtj−1
= 1 for some v, then πvtj = πvtj−1

for all v.

2. If the priors are not fully revealing at time tj , then πvtj = 0 for any v for which πvtj−1
= 0

and the probabilities πvtj for the remaining v’s can be any non-negative numbers such

that πv̄tj + πv0
tj

+ π
v
tj

= 1.

3. Thereafter, until any next unexpected trading event, the subsequent probabilities πvtj′

for j′ > j are updated according to Bayes’ Rule as in (9).

• Step 3: The execution-contingent conditional probabilities π̂vtj = Pr(v|Ltj−1 , θ
x
tj ) of a final

asset value v conditional on a prior path Ltj−1 and on execution of a limit order x submitted

at time tj is

π̂vtj =
Pr(Ltj−1)Pr(v|Ltj−1) Pr(θxtj−1

|v,Ltj−1)

Pr(θxtj ,Ltj−1)
(11)

=
Pr(θxtj |v,Ltj−1)

Pr(θxtj |Ltj−1)
πvtj−1

This holds when adjusting for a future execution contingency both when the probabilities

πvtj−1
given the prior history Ltj−1 are for possible paths in ` in,Φ (from (8) and (9) in Step 1)

and also for feasible but not possible paths in ` off,Φ (from Step 2). These execution-contingent

probabilities π̂vtj are used to compute the execution-contingent conditional expected value

E[ṽ|Ltj−1 , θ
x
tj ] = π̂v̄tj v̄ + π̂v0

tj
v0 + π̂

v
tj
v
¯

(12)

used by uninformed traders to compute expected payoffs for limit orders. In particular, the

probabilities in (12) are the execution-contingent probabilities π̂vtj from (11) rather than the

probabilities πvtj from (9) that just condition on the prior trading history but not on the future

states in which the limit order is executed.

Given these updating dynamics, we can now define an equilibrium.

Definition. A Perfect Bayesian Nash Equilibrium of the trading game in our model is a collec-

tion {ϕU, ∗tj
(x|βtj ,Ltj−1), ϕI, ∗tj (x|βtj , v,Ltj−1), P r∗(θxtj | v,Ltj−1), P r∗(θxtj |Ltj−1), E∗[ṽ|Ltj−1 , θ

x
tj ]} of
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order-submission strategies, execution-probability functions, and execution-contingent conditional

expected asset-value functions such that:

• The equilibrium execution probabilities Pr∗(θxtj | v,Ltj−1) and Pr∗(θxtj |Ltj−1) are consistent

with the equilibrium order-submission strategies {ϕU, ∗tj+1
(x|βtj+1 ,Ltj ), . . . , ϕ

U, ∗
t5

(x|βt5 ,Lt4)}

and {ϕI, ∗tj+1
(x|βtj+1 , v,Ltj ), . . . , ϕ

I, ∗
t5

(x|βt5 , v,Lt4)} after time tj .

• The execution-contingent conditional expected asset values E∗[ṽ|Ltj−1 , θ
x
tj ]} agree with Bayesian

updating equations (8), (9), (11), and (12) in Steps 1 and 3 when the order x is consistent with

the equilibrium strategies ϕU, ∗tj
(x|βtj ,Ltj−1) and ϕI, ∗tj (x|βtj , v,Ltj−1) at date tj and, when x is

an off-equilibrium action inconsistent with the equilibrium strategies, with the off-equilibrium

updating in Step 2.

• The positive-probability supports of the equilibrium strategy functions ϕU, ∗tj
(x|βtj ,Ltj−1) and

ϕI, ∗tj (x|βtj , v,Ltj−1) (i.e., the orders with positive probability in equilibrium) are subsets of

the sets of optimal orders for uninformed and informed investors computed from their op-

timization problems (6) and (7) and the equilibrium execution probabilities and outcome-

contingent conditional asset-value expectation functions Pr∗(θxtj | v,Ltj−1), Pr∗(θxtj |Ltj−1),

and E∗[ṽ|Ltj−1 , θ
x
tj ].

Appendix A explains the algorithm used to compute the equilibria in our model. To help with

intuition, the next section walks through the order-submission and Bayesian updating mechanics

for a particular path in the extensive form of the trading game.

Our equilibrium concept differs from the Markov Perfect Bayesian Equilibrium used in Goettler

et al. (2009). Beliefs and strategies in our model are path-dependent; that is to say, traders use

Bayes Rule given the full prior order history when they arrive in the market. In contrast, Goettler

et al. (2009) restricts Bayesian updating to the current state of the limit order book and does not

allow for conditioning on the previous order history. Roşu (2016b) also assumes a Markov Perfect

Bayesian Equilibrium. The quantitative importance of the order history is considered when we

discuss our results in Section 2.
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1.2 Illustration of order-submission mechanics and Bayesian updating

This section uses an excerpt of the extensive form of the trading game in our model to illustrate

order-submission and trading dynamics and the associated Bayesian updating process. The partic-

ular trading history path in Figure 2 is from the equilibrium for the model specification in which

informed and uninformed investors both have random private-value motives. The parameter values

are κ = 0.10, σ = 1.5, α = 0.8, and δ = 0.16, which is a market with a relatively high informed-

investor arrival probability and large value shocks. In this example, Nature has chosen an economic

state in which there is good news (v) about the asset, and the realized sequence of arriving traders

over time is {I, U, U, I, I}. At each node shown here, Figure 2 reports the total book Ltj of limit

orders from both arriving investors and the crowd. Trading starts at t1 with a book [1, 0, 0, 1] con-

sisting of no orders from informed and uninformed investors (since none have arrived yet) plus the

additional limit orders from the trading crowd (i.e., 1 each at the outside prices A2 and B2). For

simplicity, our discussion here only reports a few nodes of the trading game with their associated

equilibrium strategies. For example, we do not include NT at the end of t1, since, as we show later

in Section 2.2, NT is not an equilibrium action at t1 for these parameters.

Investors in our equilibrium choose from a discrete number of possible orders given their re-

spective information and any private-value trading motives. Along the particular equilibrium path

considered here, the optimal strategies do not involve any randomization. Optimal orders are unique

given the inputs. However, orders are random due to randomness in the private factor β. Figure 2

shows below each order type at each time the probabilities with which the different orders are sub-

mitted by the trader who arrived. For example, if an informed trader Iv arrives at t1, she chooses

a limit order LOA2 to sell at A2 with probability 0.118. Each of these unique optimal orders is

associated with a different range of β types (for both informed and uninformed investors) and value

signals (for informed investors). Figure 3 illustrates where the order-submission probabilities come

from by superimposing the upper envelope of the expected payoffs for the different optimal orders

at time t1 on the truncated Normal β distribution. It shows how different β ranges correspond to

a discrete set of optimal orders delimited by the β thresholds. At each trading time, as the trading

game progresses along this path, traders submit orders (or do not trade) following their equilibrium
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order-submission strategies. The equilibrium execution probabilities of their orders depend on the

order-submission decisions of future traders, which, in turn, depend on their trading strategies

and the input information (i.e., their β realizations, any private knowledge about v, and the order

history path when they arrive). At time t1, the initial trader has rational-expectation beliefs that

the execution probability of her LOA2 order posted at t1 is 0.644.11 This equilibrium execution

probability depends on all of the possible future trading paths proceeding from submission time t1

up through time t5. For example, one possibility is that the LOA2 order will be hit by an investor

arriving at time t2 who submits a market order. Another possibility (which is what happens along

this particular path) is that an uninformed trader will arrive at t2 and post a limit order LOA1

to sell at A1, thereby undercutting the earlier LOA2 order — so that the book at the end of t2

is [2, 1, 0, 1]). In this scenario, the initial LOA2 order from t1 will only be executed provided that

the LOA1 order submitted at t2 is executed first. For example, the probability of a market order

MOA1 hitting the limit order at A1 at t3 is 0.365, and then the probability of another market order

hitting the initial limit sell at A2 is 0.423 at t4 and 0.505 at t5.12 Therefore, there is a chance that

the LOA2 order from t1 will still be executed even after it is undercut by the order LOA1 at t2.

The path in Figure 2 also illustrates Bayesian updating in the model. After the investor at t1 has

been observed submitting a limit order LOA2, the uninformed trader who arrives in this example at

time t2 — who just knows the submitted order at time t1 but not the identity or information of the

trader at time t1 — updates his equilibrium conditional valuation to be E[ṽ|LOA2] = 1.056 and his

execution-contingent expectation given his limit order LOA1 at time t2 to be E[ṽ|LOA2, θ
LOA1
t2

] =

1.089. In subsequent periods, later investors observe additional realized orders and then further

update their beliefs.

11Some of the numerical values discussed here are from equilibrium calculations reported in more detail in Tables
3 and 4 and Table B2 in Appendix B. Others are unreported calculations available from the authors upon request.

12Due to space constraints, we do not include the t4 node in Figure 2.
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Figure 2: Excerpt of the Extensive Form of the Trading Game. This figure shows one possible
trading path of the trading game with parameters α = 0.8, δ = 0.16, µ = 1, σ = 1.5, κ = 0.10, and 5 time periods.
Before trading starts at time t1, the incoming book [1, 0, 0, 1] from time t0 consists of just the initial limit orders
from the crowd at A2 and B2. Nature selects a realized final value v = {v̄, v0, v} with probabilities { 1

3
, 1

3
, 1

3
}. At

each trading period nature also selects an informed trader (I) with probability α and an uninformed trader (U) with
probability 1 − α. Arriving traders choose the optimal order at each period which may potentially include limit
orders LOAi (LOBi) or market orders at the best ask, MOAi,t, or at the best bid, MOBi,t. Below each optimal
trading strategy we report in italics its equilibrium order-submission probability. Boldfaced equilibrium strategies
and associated states of the book (within double vertical bar) indicate the states of the book that we consider at each
node of the chosen trading path.
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A1 0
B1 0
B2 1

t0 v̄

t1

I
MOA2 LOB1 LOB2 LOA2 LOA1 MOB2

0.256 0.282 0.030 0.118 0.314 0.000
1 1 1 ‖ 2 ‖ 1 1
0 0 0 ‖ 0 ‖ 1 0
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1 1 2 ‖ 1 ‖ 1 1
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...
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U
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t4
I

...

t5

I
MOA2 MOB2 NT
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Figure 3: β Distribution and Upper Envelope for Informed Investor Iv̄ at time t1.
This figure shows the private-value factor β ∼ Tr[N (µ, σ2)] distribution superimposed on the plot of the expected
payoffs the informed investor Iv̄ with good news at time t1 for each equilibrium order type MOA2, MOB2, LOA2,
LOA1, LOB1, LOB2, NT , (solid colored lines) when the total book (including crowd limit orders) opens Lt0 = [1
0 0 1]. The dashed line shows the investor’s upper envelope for the optimal orders. The vertical black lines show
the β-thresholds at which two adjacent optimal strategies yield the same expected payoffs. For example LOA1 is the
optimal strategy for values of β between 0 and the first vertical black line; LOA2 is instead the optimal strategy for
the values of beta between the first and the second vertical lines; and so forth. The parameters are α = 0.8, δ = 0.16,
µ = 1, σ = 1.5, and κ = 0.10.
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2 Results

Our analysis investigates how liquidity supply and demand decisions of informed and uninformed

traders and the learning process of uninformed traders affect market liquidity, price discovery, and

investor welfare. This section presents numerical results for our model. We first consider a model

specification in which only uninformed investors have a random private-value trading motive. In a

second specification, we generalize the analysis and show the robustness of our findings and extend

them. The tick size κ is fixed at 0.10, and the private-value dispersion σ is 1.5 throughout.

We focus on two time windows. The first is when the market opens at time t1. The second

is over the middle of the trading day from times t2 through t4. We look at these two windows

because our model is non-stationary over the trading day. Much like actual trading days, our

18



model has start-up effects at the beginning of the day and terminal horizon effects at the market

close. When the market opens at time t1, there are time-dependent incentives to provide, rather

than to take, liquidity: The incoming book is thin (with limit orders only from the crowd), and

there is the maximum time for future investors to arrive to hit limit orders from t1. There are also

time-dependent disincentives to post limit orders. Information asymmetries are maximal at time

t1, since there has been no learning from the trading process. Over the day, information is revealed

(lessening adverse selection costs), but the book can also become fuller (i.e., there is competition

in liquidity provision from earlier limit orders which have time priority at their respective limit

prices), and the remaining time for market orders to arrive and execute limit orders becomes

shorter. Comparing these two time windows shows how market dynamics change over the day. The

market close at t5 is also important, but trading then is straightforward. At the end of the day,

investors only submit market orders (or do not trade), because the execution probability for new

limit orders submitted at t5 is zero given our assumption that unfilled limit orders are canceled

once the market closes.

We use our model to investigate three questions: First, who provides and takes liquidity, and how

does the amount of adverse selection affect investor decisions to take and provide liquidity? Second,

how does market liquidity vary with different amounts of adverse selection? Third, how does the

information content of different types of orders depend on an order’s direction, aggressiveness, and

on the prior order history?

The amount of adverse selection can change in two ways: The proportion of informed traders can

change, and the magnitude of asset value shocks can change. We present comparative statics using

four different combinations of parameters with high and low informed-investor arrival probabilities

(α = 0.8 and 0.2) and high and low value-shock volatilities (δ = 0.16 and 0.02). We call markets

with δ = 0.02 low-volatility markets and markets with δ = 0.16 high-volatility markets, because the

arriving information is small relative to the tick size κ = 0.10 in the former parameterization and

larger relative to the tick size in the later. In high-volatility markets, the final asset value v given

good or bad news is beyond the outside quotes A2 or B2, and so even market orders at the outside

prices are profitable for informed traders. However, in low-volatility markets, v is always within
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the inside quotes A1 and B1, and so market orders are never profitable for informed investors.

2.1 Uninformed traders with random private-value motives

In our first model specification, only uninformed traders have random private values. Informed

traders have fixed neutral private-value factors β = 1. Thus, as in Kyle (1985), there is a clear

differentiation between investors who speculate on private information and those who trade for

purely non-informational reasons. Unlike Kyle (1985), informed and uninformed investors can

trade using limit or market orders rather than being restricted to just market orders.

2.1.1 Trading strategies

We begin by investigating who supplies and takes liquidity and how these decisions change with

the amount of adverse selection. Table 1 reports results about trading early in the day at time t1

using a 2× 2 format. Each of the four cells corresponds to a different combination of parameters.

Comparing cells horizontally shows the effect of a change in the value-shock size δ while holding

the arrival probability α for informed traders fixed. Comparing cells vertically shows the effect of a

change in the informed-investor arrival probability while holding the value-shock size fixed. In each

cell corresponding to a set of parameters, there are four columns reporting conditional results for

informed investors with good news, neutral news, and bad news about the asset (Iv, Iv0 , Iv) and for

an uninformed investor (U) and a fifth column with the unconditional market results (Uncond). The

table reports the order-submission probabilities and several market-quality metrics. Specifically, we

report expected bid-ask spreads conditioning on the three informed-investor types E[Spread |Iv] and

on the uninformed trader E[Spread |U ], the unconditional expected market spread E[Spread], and

expected depths at the inside prices (A1 and B1) and total depths (A1+A2 and B1+B2) on each side

of the market. As we shall see, our results are symmetric for the directionally informed investors

Iv and Iv and on the buy and sell sides of the market. In addition, we report the probability-

weighted contributions to the different investors’ welfare (i.e., expected gains-from-trade) from

limit and market orders respectively, and their total expected welfare.13 Table B1 in Appendix B

13Let W (βt1) and W (v, βt1) denote the value functions when (6) and (7) are evaluated at time t1 using the
optimal strategies for the uninformed and informed investors respectively. The total welfare gain is E[W (βt1)] for
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provides additional results about conditional and unconditional future execution probabilities for

the different orders (PEX(xt1)) and also the uninformed investor’s updated expected asset value

E[v|xt1 ] given different types of buy orders xt1 at time t1.

Table 2 shows average results for times t2 through t4 during the day using a similar 2×2 format.

The averages are across time and trading histories. Comparing results for time t1 with the trading

averages for t2 through t4 shows intraday changes in properties of the trading process. There is no

table for time t5, because only market orders are used at the market close.

Result 1 Changes in adverse selection due to the value-shock size δ affect trading strategies

differently than changes in the informed-investor arrival probability α.

The fact that different forms of adverse selection affect investors’ trading decisions differently

can been shown theoretically from first principles. Suppose the informed-investor arrival probability

α is close to zero. If the value-shock volatility δ is close to zero, then directionally informed investors

Iv̄ and Iv with good or bad news never use market orders, since the final asset value v is always

between the inside bid and ask prices. However, if δ is sufficiently large, then investors with good

and bad news will start to use market orders given the guaranteed execution. Thus, the set of orders

used by directionally informed investors can change in these small α scenarios when δ changes. In

contrast, consider a market in which δ is close to zero. Now informed investors with good or bad

news never use market orders for any informed-investor arrival probability α. Thus, the set of

orders used by directionally informed investors never changes to include market orders in these

small δ scenarios when α changes.

the uninformed investor where the expectation is taken over βt1 and E[W (v, βt1)] for the informed investor where
the expectation is taken over v and βt1 .
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Table 1: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed
Traders with β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for
two different informed-investor arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ (0.16
and 0.02). The private-value factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each cell
corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask
spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market after order
submissions at time t1, and expected welfare of the market participants. The first four columns in each parameter
cell are for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U).

The fifth column (Uncond.) reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0 0.500 0.650 0.143 0.335 0 0.500 1.000 0.052 0.410
LOA1 0 0 0.350 0 0.093 0 0 0 0.079 0.016
LOB1 0.350 0 0 0 0.093 0 0 0 0.079 0.016
LOB2 0.650 0.500 0 0.143 0.335 1.000 0.500 0 0.052 0.410

MOA2 0 0 0 0.357 0.071 0 0 0 0.369 0.074
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0 0.357 0.071 0 0 0 0.369 0.074
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 0.265 0.300 0.265 0.300 0.281 0.300 0.300 0.300 0.284 0.297
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.143 1.429 1.000 1.500 2.000 1.131 1.426
E[Depth A1 |·] 0 0 0.350 0 0.093 0 0 0 0.079 0.016
E[Depth B1 |·] 0.350 0 0 0 0.093 0 0 0 0.079 0.016
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.143 1.429 2.000 1.500 1.000 1.131 1.426

E[Welfare LO |·] 0.034 0.053 0.034 0.018 0.029 0.069 0.029 0.015
E[Welfare MO |·] 0 0 0 0.337 0 0 0 0.339
E[Welfare |·] 0.034 0.053 0.034 0.355 0.029 0.069 0.029 0.354

LOA2 0 0.500 0.110 0.063 0.091 0 0.500 1.000 0.063 0.150
LOA1 0 0 0.890 0.374 0.358 0 0 0 0.397 0.318
LOB1 0.890 0 0 0.374 0.358 0 0 0 0.397 0.318
LOB2 0.110 0.500 0 0.063 0.091 1.000 0.500 0 0.063 0.150

MOA2 0 0 0 0.064 0.051 0 0 0 0.040 0.032
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0 0.064 0.051 0 0 0 0.040 0.032
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 0.211 0.300 0.211 0.225 0.228 0.300 0.300 0.300 0.221 0.236
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.436 1.449 1.000 1.500 2.000 1.460 1.468
E[Depth A1 |·] 0 0 0.890 0.374 0.358 0 0 0 0.397 0.318
E[Depth B1 |·] 0.890 0 0 0.374 0.358 0 0 0 0.397 0.318
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.436 1.449 2.000 1.500 1.000 1.460 1.468

E[Welfare LO |·] 0.273 0.146 0.273 0.316 0.081 0.150 0.081 0.360
E[Welfare MO |·] 0 0 0 0.099 0 0 0 0.064
E[Welfare |·] 0.273 0.146 0.273 0.415 0.081 0.150 0.081 0.424
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Table 2: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed Traders with β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results
for two different informed-investor arrival probabilities α (0.8 and 0.2) and for two different asset-value volatilities
δ (0.16 and 0.02). The private-value factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each
cell corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask
spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market after order
submissions at times t2 through t4, and expected welfare for the market participants. The first four columns in each
parameter cell are for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed

traders (U). The fifth column (Uncond.) reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0 0.191 0.051 0.157 0.096 0.399 0.255 0.108 0.026 0.209
LOA1 0 0.258 0.257 0.023 0.142 0.192 0.239 0.288 0.064 0.205
LOB1 0.257 0.258 0 0.023 0.142 0.288 0.239 0.192 0.064 0.205
LOB2 0.051 0.191 0 0.157 0.096 0.108 0.255 0.399 0.026 0.209

MOA2 0.493 0 0 0.286 0.189 0 0 0 0.347 0.069
MOA1 0.001 0 0 0.031 0.006 0 0 0 0.058 0.012
MOB1 0 0 0.001 0.031 0.006 0 0 0 0.058 0.012
MOB2 0 0 0.493 0.286 0.189 0 0 0 0.347 0.069
NT 0.198 0.061 0.198 0.007 0.124 0.013 0.010 0.013 0.011 0.012

α = 0.8
E[Spread |·] 0.217 0.212 0.217 0.251 0.223 0.227 0.228 0.227 0.278 0.237
E[Depth A2+A1 |·] 1.047 2.276 2.480 1.755 1.899 2.165 2.300 2.433 1.608 2.161
E[Depth A1 |·] 0 0.438 0.829 0.243 0.387 0.226 0.362 0.506 0.131 0.318

E[Depth B1 |·] 0.829 0.438 0 0.243 0.387 0.506 0.362 0.226 0.131 0.318
E[Depth B1+B2 |·] 2.480 2.276 1.047 1.755 1.899 2.433 2.300 2.165 1.608 2.161
E[Welfare LO |·] 0.010 0.020 0.010 0.106 0.014 0.013 0.014 0.005
E[Welfare MO |·] 0.009 0 0.009 0.298 0 0 0 0.354
E[Welfare |·] 0.019 0.020 0.019 0.405 0.014 0.013 0.014 0.359

LOA2 0 0.358 0.508 0.102 0.139 0.375 0.389 0.443 0.093 0.155
LOA1 0 0.122 0.258 0.056 0.070 0.044 0.096 0.116 0.066 0.070
LOB1 0.258 0.122 0 0.056 0.070 0.116 0.096 0.044 0.066 0.070
LOB2 0.508 0.358 0 0.102 0.139 0.443 0.389 0.375 0.093 0.155

MOA2 0.130 0 0 0.219 0.184 0 0 0 0.218 0.175
MOA1 0.088 0 0 0.119 0.101 0 0 0 0.120 0.096
MOB1 0 0 0.088 0.119 0.101 0 0 0 0.120 0.096
MOB2 0 0 0.130 0.219 0.184 0 0 0 0.218 0.175
NT 0.016 0.035 0.016 0.006 0.010 0.022 0.030 0.022 0.005 0.009

α = 0.2
E[Spread |·] 0.205 0.190 0.205 0.280 0.264 0.221 0.217 0.221 0.300 0.284
E[Depth A2+A1 |·] 1.305 2.089 2.512 1.583 1.660 1.932 2.091 2.257 1.576 1.680
E[Depth A1 |·] 0.194 0.451 0.740 0.301 0.333 0.346 0.414 0.442 0.262 0.290
E[Depth B1 |·] 0.740 0.451 0.194 0.301 0.333 0.442 0.414 0.346 0.262 0.290
E[Depth B1+B2 |·] 2.512 2.089 1.305 1.583 1.660 2.257 2.091 1.932 1.576 1.680

E[Welfare LO |·] 0.119 0.086 0.119 0.052 0.060 0.064 0.060 0.050
E[Welfare MO |·] 0.018 0 0.018 0.343 0 0 0 0.342
E[Welfare |·] 0.137 0.086 0.137 0.394 0.060 0.064 0.060 0.392
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Our numerical analysis illustrates this first result and also other facets of how adverse selection

affects investor trading strategies. Consider the directionally informed investors Iv̄ and Iv with

good or bad news. First, hold the informed-investor arrival probability α fixed and increase the

amount of adverse selection by increasing the value-shock volatility δ. In a low-volatility market

in which value shocks ∆ are small relative to the tick size, informed traders with good and bad

news are unwilling to pay a large tick size to trade on their information and instead act as liquidity

providers who supply liquidity asymmetrically depending on the direction of their information.

This can be seen in Table 1 where in both of the two parameter cells on the right (with α = 0.8

and 0.2 and a small δ = 0.02) informed investors Iv̄ and Iv at time t1 use limit orders at the outside

quotes A2 and B2 exclusively. In contrast, in a high-volatility market where value shocks are large

relative to the tick size, informed investors with good or bad news trade more aggressively. This

can be seen in the left two parameterization cells (with α = 0.8 and 0.2 and a large δ = 0.16)

where now informed investors Iv̄ and Iv use limit orders at both the inside quotes A1 and B1 as

well at the outside quotes with positive probability at time t1. Now compare this to a change in

the amount of adverse selection due to a change in the informed-investor arrival probability α while

holding the value-shock size δ fixed. In this case, changing the amount of adverse selection does

not affect which orders informed investors with good and bad news use at time t1. This can be

seen by comparing the lower two parameter cells (with δ = 0.02 and 0.16 and a small α) with the

upper two parameter cells (with the same δs and a larger α).

The average order-submission probabilities at times t2 through t4 in Table 2 are qualitatively

similar to those for time t1. In low-volatility markets, informed investors Iv̄ and Iv with good and

bad news tend to supply liquidity via limit orders following strategies in which order-submission

probabilities are somewhat skewed on the two sides of the market in the direction of their small

amount of private information. In contrast, in high-volatility markets, informed investors Iv̄ and

Iv switch from providing liquidity on both sides of the market at times t2 to t4 to using a mix

of taking liquidity via market orders and supplying liquidity via limit orders on the same side of

the market as their information. Thus, once again, the trading strategies for informed investors Iv̄

and Iv are qualitatively similar holding δ fixed and changing α, but their trading strategies change
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qualitatively when α is held fixed and δ is changed.

Next, consider informed investors I0 who know that the value shock ∆ is 0 and, thus, that

the unconditional prior v0 is correct. Tables 1 and 2 show that their liquidity provision trading

strategies are qualitatively the same at time t1 and on average over times t2 through t4. In constrast,

uninformed investors U become less willing to provide liquidity via limit orders at the inside quotes

as the adverse selection problem they face using limit orders worsens. Rather, they increasingly

take liquidity via market orders or supply liquidity by less aggressive limit orders at the outside

quotes. This reduction in liquidity provision at the inside quotes by uninformed investors happens

at time t1 (Table 1) and at times t2 through t4 (Table 2) both when the value shocks become larger

and when the arrival probability of informed investors increases.

Two equilibrium effects are noteworthy in this context. First, while the uninformed U investors

reduce their liquidity provision at the inside quotes as adverse selection increases, the I0 informed

investors increase their liquidity provision at the inside quotes. This is because I0 informed investors

have an advantage in liquidity provision over the uninformed U investors in that there is no adverse

selection risk for them. These results are qualitatively consistent with the intuition of Bloomfield,

O’Hara and Saar (BOS, 2005). Informed traders are more likely to use limit orders than market

orders when the value-shock volatility is low (and, thus, the profitability from trading on information

asymmetries is low), and to use market orders when the reverse is true.

Second, uninformed U investors are unwilling to use aggressive limit orders at the inside quotes

when the adverse selection risk is sufficiently high as in the upper left parametrization (α = 0.8 and

δ = 0.16). This explains the fact that informed investors Iv̄ and Iv use aggressive limit orders at

the inside quotes with a higher probability at time t1 in the lower left parametrization (0.890 with

α = 0.2 and δ = 0.16) than in the upper left parameterization (0.350). At first glance this might

seems odd since competition from future informed investors (and the possibility of being undercut

by later limit orders) is greater when the informed-investor arrival probability is large (α = 0.8)

than when α is smaller. However, in equilibrium there is camouflage from the uninformed U

investors limit orders at the inside quotes in the lower left parametization, whereas limit orders

at the inside quotes are fully revealing in the upper left parametrization. As a result, Table B1
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in Appendix B shows that the execution probabilities for the fully revealing limit orders at prices

which are revealed to be far from the asset’s actual value are much lower (0.078) relative to the

non-fully revealing limit orders (0.717).

2.1.2 Market quality

Market liquidity changes when the amount of adverse selection in a market changes. The standard

intuition, as in Kyle (1985), is that liquidity deteriorates given more adverse selection. For example,

Roşu (2016b) also finds worse liquidity (a wider bid-ask spread) given higher value volatility. How-

ever, we find that the standard intuition is not always true.

Result 2 Liquidity need not always deteriorate when adverse selection increases.

Markets can become more liquid given greater value-shock volatility if, given the tick size, high

volatility makes the value shock ∆ large relative the price grid. In addition, different measures of

market liquidity — expected spreads, inside depth, and total depth — can respond differently to

changes in adverse selection.

The impact of adverse selection on market liquidity follows directly from the trading strategy

effects discussed above. Two intuitions are useful in understanding our market liquidity results.

First, different investors affect liquidity differently. Informed traders with neutral news (Iv0) are

natural liquidity providers. Their impact on liquidity comes from whether they supply liquidity

at the inside (A1 and B1) or outside (A2 and B2) prices. In contrast, informed traders with

directional news (Iv̄ and Iv) and uninformed traders (U) affect liquidity depending on whether

they opportunistically take or supply liquidity. Second, the most aggressive way to trade (both on

directional information and private values) is via market orders, which takes liquidity. However,

the next most aggressive way to trade is via limit orders at the inside prices. Thus, changes in

market conditions (i.e., δ and α) that make informed investors trade more aggressively (i.e., that

reduce their use of limit orders at the outside prices A2 and B2) can potentially improve liquidity

if their stronger trading interest migrates to aggressive limit orders at the inside quotes (A1 and

B1) rather than to market orders.
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Our analysis shows that the standard intuition that adverse selection reduces market liquidity

depends on the relative magnitudes of asset-value shocks and the tick size. In Table 1, the expected

spread narrows at time t1 (markets become more liquid) when the value-shock volatility δ increases

(comparing parameterizations horizontally so that α is kept fixed). Liquidity improves in these

cases because the informed traders Iv and Iv submit limit orders at the inside quotes in these high-

volatility markets, whereas they only use limit orders at the outside quotes in low-volatility markets.

In constrast, the expected spread at time t1 widens when the informed-investor arrival probability

α increases holding the value-shock size δ constant, as predicted by the standard intuition. The

evidence against the standard intuition is even stronger in Table 2. At times t2 through t4, the

expected spread narrows both when information becomes more volatile (δ is larger) and when there

are more informed traders (when α is larger). The qualitative results for the expected depth at the

inside quotes goes in the same direction as the results for the expected spread. This is because both

results are driven by limit-order submissions at the inside quotes. The results for adverse selection

and total depth at both the inside and outside quotes are mixed. For example, total depth at time

t1 increases in Table 1 when value-shock volatility δ increases when the informed-investor arrival

probability α is high (comparing horizontally the two parametrizations on the top), but decreases

in δ when the informed α is low. In contrast, average total depth at times t2 through t4 in Table

2 is decreasing in the value-shock volatility (comparing parameterizations horizontally). This is

opposite the effect on the inside depth. Thus, different metrics for liquidity give mixed results.

The main result in this section is that the relation between adverse selection and market liquidity

is more subtle than the standard intuition. Increased adverse selection can improve liquidity.

The ability of investors to choose endogenously whether to supply or demand liquidity and at

what limit prices is what can overturn the standard intuition. Goettler et al. (2009) also have a

model specification with informed traders who have no private-value trading motive and uninformed

having only private-value motives. In their model, when volatility increases, informed traders reduce

their provision of liquidity and increase their demand of liquidity; with the opposite holding for

uninformed traders. Our results are more nuanced. Increased value-shock volatility is associated

with increased liquidity supply in some cases and with decreased liquidity in others. This is because
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the tick size of the price grid constrains the prices at which liquidity can be supplied and demanded.

2.1.3 Information content of orders

Traders in real-world markets and empirical researchers are interested in the information content

of different types of arriving orders.14 A necessary condition for an order to be informative is

that informed investors use it. However, the magnitude of order informativeness is determined

by the mix of equilibrium probabilities with which both informed and uninformed traders use an

order. If uninformed traders use the same orders as informed investors, they add noise to the price

discovery process, and orders become less informative. In our model, the mix of information-based

and noise-based orders depends on the underlying proportion of informed investors α and and the

value-shock volatility δ.

We expect different market and limit orders to have different information content. A natural

conjecture is that the sign of the information revision associated with an order should agree with

the direction of the order (e.g., buy market and limit orders should lead to positive valuation

revisions). Another natural conjecture is that the magnitude of information revisions should be

greater for more aggressive orders. However, while the order-sign conjecture is true in our first

model specification, the order-aggressiveness conjecture does not always hold here.

Result 3 Order informativeness is not always increasing in the aggressiveness of an order.

This, at-first-glance surprising, result is another consequence of the impact of the tick size on

how informed investors trade on their information. As a result, the relative informativeness of

different market and limit orders can flip in high-volatility and low-volatility markets. The result is

immediate for market orders versus (less aggressive) limit orders in low-volatility markets in which

informed investors avoid market orders (see Table 1). However, this reversed ordering can also hold

for aggressive limit orders at the inside quotes (A1 and B1) versus less aggressive limit orders at

the outside quotes (A2 and B2).

14Fleming et al. (2017) extend the VAR estimation approach of Hasbrouck (1991) to estimate the price impacts of
limit orders as well as market orders. See also Brogaard et al. (2016).
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Figure 4 shows the informativeness of different types of orders at time t1. Informativeness at

time t1 is measured here as the Bayesian revision E[v|xt1 ] − E[v] in the uninformed investor’s

expectation of the terminal value v after observing different types of orders xt1 at time t1. The

informational revisions for the different orders are plotted against the respective order-execution

probabilities on the horizontal axis. Orders with higher execution probabilities are statistically more

aggressive than orders with low execution probabilities. The results for the four parameterizations

are indicated using different symbols: high vs low informed-investor arrival probabilities (circles vs

squares), and high vs low value-shock volatility (large vs small symbols). These are described in the

figure legend. For example, in the low α and high δ scenario (large squares), the informativeness

of a limit buy order at B1 at time t1 is 0.026 and the order-execution probability is 78.9 percent

(see Table B1 in the Appendix B).

Consider first markets with high informed-investor arrival probabilities. The case with a high

informed-investor arrival probability and high value-shock volatility is denoted with large circles.

Informed investors in this case use limit orders at both the outside quotes (LOA2 and LOB2) and

inside quotes (LOA1 and LOB1) at time t1, so these are therefore the only informative orders.

Since uninformed investors also use the outside limit orders, they are not fully revealing, however

the inside limit orders are fully revealing. Thus, the price impacts for the inside and outside limit

orders here are consistent with the order-aggressiveness conjecture. The market orders (MOB2

and MOA2) are also used in equilibrium, but only by uninformed investors (U). Thus, they are

not informative. While market orders would be profitable for the informed investors, the potential

price improvement with the limit orders leads informed investors to use the limit orders despite

the zero price impact and guaranteed execution probability of the market orders. Since both inside

and outside limit orders have larger price impacts than the market orders, this case is inconsistent

with the order-aggressiveness conjecture.

Next, consider the case of low value-shock volatility and high informed-investor arrival prob-

ability, denoted here with small circles. Once again, the order-aggressiveness conjecture is not

true. The most informative orders are now, not the most aggressive orders, but rather the most

patient limit orders posted at A2 and B2 (since these are the only orders used by informed in-
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Figure 4: Informativeness of Orders after Trading at Time t1 for the Model with Informed Traders
with β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This figure plots the Informativeness of
the equilibrium orders at the end of t1 against the probability of order execution. Four different combinations of
informed-investor arrival probabilities and value-shock volatilities are considered. The informativeness of an order is
measured as E[v|xt1 ]− E[v], where xt1 denotes one of the different possible equilibrium orders at time t1.

vestors). The market orders and more aggressive inside limit orders are non-informative here (since

only uninformed investors with extreme βs use them). In this case, this — again at first glance

perhaps counterintuitive — result is a consequence of the fact that the informed trader’s potential

information is small relative to the tick size. Low-volatility makes market orders unprofitable for in-

formed traders given good and bad news, and it also increases the importance of price improvement

attainable through limit orders deeper in the book relative to limit orders at the inside quotes.

Similar results hold when the proportion of insiders is low (α = 0.2). When the asset-value

volatility is high (large squares), the most aggressive orders (LOB1 and LOA1) are again the

most informative ones in contrast to the market orders. However, when volatility is low (small

squares), the most informative orders, as before, are the least aggressive orders (LOB2 and LOA2).

30



Therefore, the potential failures of the order-aggressiveness conjecture are robust to variation in

informed-investor arrival probabilities and value-shock volatility.

2.1.4 Non-Markovian learning

This section investigates the role of the order history on Bayesian learning at times later in the day.

One of the main differences between our model and Goettler et al. (2009) and Roşu (2016b) is that

they assume that information dynamics are Markovian and that the current limit order book is a

sufficient statistic for the information content of the prior trading history. Thus, the first question

we consider is whether the prior order history has information about the asset value v in excess of

the information in the current limit order book.

The candlestick plots in Figure 5 measure the incremental information content of order histories

as the difference E[v|Ltj (Ltj )]−E[v|Ltj ], which is the uninformed investors’ expected asset value

conditional on an order history path Ltj (Ltj ) ending with a particular limit order book Ltj at time

tj net of the corresponding expectation conditional on just the ending book Ltj . In particular, we

are interested in books Ltj that can be preceded in equilibrium by more than one different prior

history. If learning is Markov, then order histories Ltj (Ltj ) preceding a book Ltj should convey

no additional information beyond Ltj ; in which case the difference in expectations should be zero.

The candlestick plots show the maximum and minimum values, the interquartile range, and the

median of the incremental information of the prior history. The horizontal axis in the plots shows

the times t1 through t4 at which different orders xtj are submitted. Time t1 is included in the plot

because books at t1 can potentially be produced by different sequences of investor actions xt1 and

crowd responses at t1. Each plot is for a different combination of adverse-selection parameters.

The main result from Figure 5 is that there is substantial informational variation in the Bayesian

revisions conditional on different trading histories.

Result 4 The price discovery dynamics can be significantly non-Markovian.

As expected, the variation in the incremental information content of the prior trading history in

Figure 5 is greater when the shock volatility δ is greater (note the differences in vertical scales).
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Figure 5: Informativeness of the Order History for the Model with Informed Traders with β = 1
and Uninformed Traders with β ∼ Tr[N (µ, σ2)] for Times t1 through t4. This figure shows the
incremental information content of the past order history in excess of the information in the current limit order book
observed at the end of time tj as measured by E[v|Ltj (Ltj )] − E[v|Ltj ] where Ltj (Ltj ) is a history ending in the
limit order book Ltj . We only consider books Ltj when they occur in equilibrium in the different trading periods.

The candlesticks indicate for each of these two metrics the maximum, the minimum, the median and the 75th (and
25th) percentile respectively as the top (bottom) of the bar.
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Given that learning is non-Markov, our next question is about how the size of the valuation

revisions depends on the prior trading history. In Figure 6, the horizontal axis shows the price

impact of different equilibrium orders at t1, and the vertical axis gives the corresponding cumulative

price impact of the sequence of a given action at time t1 and different subsequent equilibrium actions

at time t2. Consistent with our previous analysis, the size of the valuation revision depends crucially

on the insiders’ equilibrium strategies. As informed investors do not use market orders at t1 (see

Table 1), market orders have a zero price impact at t1 and, thus, the points for pairs of time t1
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Figure 6: Order Informativeness for the Model with Informed Traders with β = 1 and Uninformed
Traders with β ∼ Tr[N (µ, σ2)] for times t1 to t2 and parameters α = 0.8, δ = 0.16. The horizontal
axis reports E(v|xt1)−E(v) which shows how the uninformed traders’ Bayesian value-forecast changes with respect
to the unconditional expected value of the fundamental when uninformed traders observe at t1 an equilibrium order
xt1 . The vertical axis reports E(v|xt2 , xt1)−E(v) which shows how the uninformed traders’ Bayesian value-forecast
changes with respect to the unconditional expected value of the fundamental when uninformed traders observe at
xt2 at t2. We consider all the equilibrium strategies at t1 and t2 which are symmetrical. Red (green) circles show
equilibrium sell (buy) orders at t2.

and t2 price-impacts for sequences of a market order at t1 and then different orders at time t2 all

line up on the vertical axis line. Interestingly, there are no observations in the second and fourth

quadrants in our model, which means there are no sign reversals in the direction of the cumulative

price impacts. The first and third quadrants (which are perfectly symmetrical) show the pairs of

orders which have a positive and a negative price impact, respectively. The pairs with the highest

price impact are driven by the insiders’ equilibrium strategies at t1 and are limit orders at the

inside quotes followed any other order. In fact, Table 1 shows that insiders’ limit orders at the

inside quotes at t1 are fully revealing. So once more, the price impact does not depend on the
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aggressiveness of the orders but on the informed investors’ orders choice. Overall, Figure 6 also

confirms that the price impact is non-Markovian: for example the price impact of MOB2 at t2 may

be either positive or negative depending on whether it is preceded by LOB2 or LOA2 at t1.

2.1.5 Summary

The analysis of our first model specification has identified a number of empirically testable predic-

tions. First, liquidity and the relative information content of different orders differ in high-volatility

markets (in which value shocks are large relative to the tick size) vs. in low-volatility markets (in

which value shocks are small relative to the tick size). Second, the price impact of order flow varies

conditional on different trading histories and on the standing book when new orders are submitted.

2.2 Informed and uninformed traders both have private-value motives

Our second model specification generalizes our earlier analysis so that now informed investors

also have random private-valuation factors β with the same truncated Normal distribution β ∼

Tr[N (µ, σ2)] as the uninformed investors. Hence, informed traders not only speculate on their

information, but they also have a private-value motive to trade. As a result, informed investors

with the same signal may end up buying and selling from each other. This combination of trading

motives has not been investigated in earlier models of dynamic limit order markets. We use our

second model specification to show the robustness of the results in Section 2.1 and to extend them.

2.2.1 Trading strategies

Tables 3 and 4 report order submission probabilities and other statistics for our second model

specification for time t1 by itself and for averages over times t2 through t4. Since all investors

have private-value motives to trade, all investors use all of the possible limit orders at time t1.

In particular, now informed investors also use market orders at t1. Over times t2 through t4, all

investors again use all types of limit orders and also market orders. In particular, directionally

informed investors trade sometimes opposite their asset-value information because their private-

value motive adds non-informational randomness to their orders. Informed investor with neutral
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Table 3: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed and
Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different informed-investor
arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ (0.16 and 0.02). The private-value
factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each cell corresponding to a set of parameters
reports the equilibrium order-submission probabilities, the expected bid-ask spreads and expected depths at the
inside prices (A1 and B1) and total depths on each side of the market after order submisions at time t1, and the
expected welfare of the market participants. The first four columns in each parameter cell are for informed traders
with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth column (Uncond.)

reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0.118 0.054 0.031 0.064 0.067 0.054 0.048 0.042 0.048 0.048
LOA1 0.314 0.446 0.282 0.426 0.363 0.438 0.452 0.466 0.452 0.452
LOB1 0.282 0.446 0.314 0.426 0.363 0.466 0.452 0.438 0.452 0.452
LOB2 0.031 0.054 0.118 0.064 0.067 0.042 0.048 0.054 0.048 0.048

MOA2 0.256 0 0 0.009 0.070 0 0 0 0 0
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0.256 0.009 0.070 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 0.240 0.211 0.240 0.215 0.227 0.210 0.210 0.210 0.210 0.210
E[Depth A2+A1 |·] 1.432 1.500 1.312 1.491 1.430 1.492 1.500 1.508 1.500 1.500
E[Depth A1 |·] 0.314 0.446 0.282 0.426 0.363 0.438 0.452 0.466 0.452 0.452
E[Depth B1 |·] 0.282 0.446 0.314 0.426 0.363 0.466 0.452 0.438 0.452 0.452
E[Depth B1+B2 |·] 1.312 1.500 1.432 1.491 1.430 1.508 1.500 1.492 1.500 1.500

E[Welfare LO |·] 0.259 0.445 0.259 0.410 0.446 0.446 0.446 0.446
E[Welfare MO |·] 0.187 0 0.187 0.015 0 0 0 0
E[Welfare |·] 0.446 0.445 0.446 0.425 0.446 0.446 0.446 0.446

LOA2 0.063 0.051 0.042 0.051 0.051 0.049 0.048 0.046 0.048 0.048
LOA1 0.356 0.449 0.476 0.449 0.445 0.441 0.452 0.464 0.452 0.452
LOB1 0.476 0.449 0.356 0.449 0.445 0.464 0.452 0.441 0.452 0.452
LOB2 0.042 0.051 0.063 0.051 0.051 0.046 0.048 0.049 0.048 0.048

MOA2 0.063 0 0 0 0.004 0 0 0 0 0
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0.063 0 0.004 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 0.217 0.210 0.217 0.210 0.211 0.210 0.210 0.210 0.210 0.210
E[Depth A2+A1 |·] 1.419 1.500 1.518 1.500 1.496 1.490 1.500 1.510 1.500 1.500
E[Depth A1 |·] 0.356 0.449 0.476 0.449 0.445 0.441 0.452 0.464 0.452 0.452
E[Depth B1 |·] 0.476 0.449 0.356 0.449 0.445 0.464 0.452 0.441 0.452 0.452
E[Depth B1+B2 |·] 1.518 1.500 1.419 1.500 1.496 1.510 1.500 1.490 1.500 1.500

E[Welfare LO |·] 0.394 0.445 0.394 0.442 0.447 0.446 0.447 0.446
E[Welfare MO |·] 0.059 0 0.059 0 0 0 0 0
E[Welfare |·] 0.453 0.445 0.453 0.442 0.447 0.446 0.447 0.446
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Table 4: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different
informed-investor arrival probabilities α (0.8 and 0.2) and for two different asset-value volatilities δ (0.16 and 0.02).
The private-value factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each cell corresponding to a
set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask spreads and expected
depths at the inside prices (A1 and B1) and total depths on each side of the market after order submissions at times
t2 through t4, and the expected welfare of the market participants. The first four columns in each parameter cell are
for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0.140 0.121 0.090 0.114 0.117 0.127 0.123 0.119 0.123 0.123
LOA1 0.108 0.058 0.050 0.067 0.071 0.057 0.053 0.048 0.053 0.053
LOB1 0.050 0.058 0.108 0.067 0.071 0.048 0.053 0.057 0.053 0.053
LOB2 0.090 0.121 0.140 0.114 0.117 0.119 0.123 0.127 0.123 0.123

MOA2 0.275 0.192 0.113 0.195 0.194 0.207 0.194 0.181 0.194 0.194
MOA1 0.158 0.127 0.062 0.122 0.117 0.133 0.128 0.124 0.129 0.128
MOB1 0.062 0.127 0.158 0.122 0.117 0.124 0.128 0.133 0.129 0.128
MOB2 0.113 0.192 0.275 0.195 0.194 0.181 0.194 0.207 0.194 0.194
NT 0.003 0.003 0.003 0.005 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.8
E[Spread |·] 0.253 0.259 0.253 0.274 0.259 0.268 0.269 0.268 0.269 0.268
E[Depth A2+A1 |·] 1.599 1.600 1.537 1.563 1.576 1.590 1.593 1.596 1.593 1.593
E[Depth A1 |·] 0.301 0.339 0.338 0.314 0.324 0.324 0.333 0.344 0.333 0.334
E[Depth B1 |·] 0.338 0.339 0.301 0.314 0.324 0.344 0.333 0.324 0.333 0.334
E[Depth B1+B2 |·] 1.537 1.600 1.599 1.563 1.576 1.596 1.593 1.590 1.593 1.593

E[Welfare LO |·] 0.089 0.071 0.089 0.072 0.067 0.067 0.067 0.067
E[Welfare MO |·] 0.328 0.332 0.328 0.331 0.336 0.336 0.336 0.336
E[Welfare |·] 0.418 0.403 0.418 0.404 0.403 0.403 0.403 0.403

LOA2 0.131 0.123 0.114 0.122 0.122 0.124 0.123 0.122 0.123 0.123
LOA1 0.059 0.054 0.049 0.053 0.054 0.053 0.053 0.052 0.053 0.053
LOB1 0.049 0.054 0.059 0.053 0.054 0.052 0.053 0.053 0.053 0.053
LOB2 0.114 0.123 0.131 0.122 0.122 0.122 0.123 0.124 0.123 0.123

MOA2 0.257 0.194 0.137 0.196 0.196 0.202 0.194 0.186 0.194 0.194
MOA1 0.160 0.127 0.090 0.127 0.127 0.133 0.128 0.124 0.128 0.128
MOB1 0.090 0.127 0.160 0.127 0.127 0.124 0.128 0.133 0.128 0.128
MOB2 0.137 0.194 0.257 0.196 0.196 0.186 0.194 0.202 0.194 0.194
NT 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.2
E[Spread |·] 0.266 0.267 0.266 0.269 0.269 0.269 0.269 0.269 0.269 0.269
E[Depth A2+A1 |·] 1.547 1.595 1.636 1.591 1.591 1.587 1.593 1.599 1.592 1.592
E[Depth A1 |·] 0.288 0.334 0.378 0.332 0.332 0.327 0.333 0.339 0.333 0.333
E[Depth B1 |·] 0.378 0.334 0.288 0.332 0.332 0.339 0.333 0.327 0.333 0.333
E[Depth B1+B2 |·] 1.636 1.595 1.547 1.591 1.591 1.599 1.593 1.587 1.592 1.592

E[Welfare LO |·] 0.068 0.068 0.068 0.067 0.067 0.067 0.067 0.067
E[Welfare MO |·] 0.348 0.334 0.348 0.335 0.336 0.336 0.336 0.336
E[Welfare |·] 0.416 0.403 0.416 0.402 0.403 0.403 0.403 0.403
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news Iv0 no longer just provide liquidity using limit orders. Now, due to their private-value motive,

they sometimes also take liquidity using market orders.

Consider next the impact of adverse selection on trading behavior. Tables 3 and 4 show at time

t1 and on average over times t2 through t4 respectively that the effects of an increase in value-shock

volatility on the strategies of informed traders with good or bad news differs when we consider

traders’ own vs. opposite sides of the market. In particular, the “own” side of the market for an

informed investor with good news is the bid (buy) side of the limit order book. The effect on the

informed trader’s own-side behavior is similar to the previous model specification in Section 2.1.

With higher value-shock volatility, the private information about the asset value is more valuable,

and both Iv̄ and Iv
¯

investors change some of their aggressive limit orders into market orders. Table

3 shows that, when δ is increased with α fixed at 0.8, the Iv̄ investors at time t1 reduce the strategy

probability for LOB1 orders from 0.466 to 0.282 and increase the strategy probability for MOA2

orders from 0 to 0.256, and symmetrically Iv
¯

investors shifts from LOA1 to MOB2.

The effects of higher volatility on uninformed traders slightly differs at t1 as opposed to times

t2 through t4. At t1 uninformed traders post slightly more aggressive orders when they demand

liquidity (the strategy probabilities for MOA2 and MOB2 increase from 0 to 0.009), and more

patient orders when they supply liquidity (the strategy probabilities for LOB2 and LOA2 increase

slightly from 0.048 to 0.064). This change in order-submission strategies is the consequence of

uninformed traders facing higher adverse selection costs. They feel safer hitting the trading crowd

at A2 and B2 and offering liquidity at more profitable price levels to make up for the increased

adverse selection costs. In later periods t1 through t4, as uninformed traders learn about the

fundamental value of the asset, they still take liquidity at the outside quotes (the probabilities of

MOA2 and MOB2 increase slightly to 0.195 in Table 4), but move to the inside quotes to supply

liquidity (LOA1 and LOB1 increase to 0.067 for times t2 through t4). As they learn about the

future value of the asset, uninformed traders perceive less adverse selection costs and can afford to

offer liquidity at more aggressive quotes. In contrast, the effects of increased value-shock volatility

on the trading behavior of Iv0 investors are relatively modest both at time t1 and at times t2

through t4.
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The effects of an increase in the value-shock volatility is different on the opposite side than on

the own side. For example, when the volatility δ increases from 0.02 to 0.16, Iv̄ investors at time t1

switch on the own side from LOB1 limit orders to aggressive MOA2 market orders but at the same

time they switch on the opposite side from aggressive limit orders to more patient limit orders. The

reason why Iv̄ investors with low private-values become more patient when selling via limit orders

on the opposite side is that they know that the execution probability of limit sells at A2 is higher

because other Iv̄ investors in future periods will hit limit sell orders at A2 more aggressively given

that v̄ is much bigger (see the increased order submission probabilities for MOA2 in Table 4).

2.2.2 Market quality

The effect of value-shock volatility on market liquidity is mixed in our second model specification.

This is not surprising given the different effects of increased volatility on informed-investor trading

behavior on the own and opposite sides of the market. At time t1, holding the informed-investor

arrival probability α fixed, increased value-shock volatility leads to wider spreads and less total

depth. However, the average effects over times t2 through t4 switches with increased asset-value

volatility leading now to narrower spreads and smaller depth. This is due — in particular in the high

α markets — to uninformed traders perceiving greater adverse selction costs and therefore being

less willing to supply liquidity. Interestingly, the effects of an increase in the arrival probability of

informed investors (α) on the equilibrium strategies is qualitatively similar to that of an increase

in volatility (δ) in this second model specification.

Lastly, our model shows how an increase in volatility and in the proportion of insiders affect

the welfare of market participants. When volatility increases, directional informed investors are

generally better off as their signal is stronger and hence more profitable: At t1 their welfare is

unchanged with high proportion of insiders (0.446), whereas it increases in all the other scenarios,

with low proportion of insiders (0.453) and in later periods with both high and low α (0.418 and

0.416). At t1 uninformed traders are worse off because liquidity deteriorates with higher volatility.

At later periods the result is ambiguous: there are cases in which the uninformed investors are

better off and cases in which they are worse off.
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2.2.3 Information content of orders

Figure 7 plots the Bayesian revisions for different orders at time t1 against the corresponding order-

execution probabilities for our second model specification. Once again, the magnitudes and signs

of the Bayesian updates depends on the mix of informed and uninformed investors who submit

these orders. Consider, for example, the market with both high value-shock volatility and a high

informed-investor arrival probability (large circles). The most informative orders are the market

orders MOA2 and MOB2 as they are chosen much more often by informed investors than by

uninformed investors (See Table 3). However, the next most aggressive orders are the inside limit

orders LOB1 and LOA1, and they are less informative than the less aggressive LOB2 and LOA2

limit orders. Even though the aggressive limit orders LOB1 and LOA1 are posted with a relatively

high probability (0.282 and 0.314) by informed investors Iv̄ and Iv, they are also submitted with

even high probabilities by uninformed investors (0.426), and Iv0 informed investors with neutral

(0.446). As a result, they are less informative.15 Thus, this is another example in which order

informativeness is not increasing in order aggressiveness.

Perhaps more surprisingly, the order-sign conjecture need not hold in our second model spe-

cification:

Result 5 The Bayesian value revision can be opposite the direction of an order.

This is to say that the direction of orders is sometimes different from the sign of their information

content. For example, a limit sell LOA1 signals good news (rather than bad news as one might

expect) because limit sells at A1 are used by informed investor to trade on the opposite side of

their information (i.e., due to their private-value β factors) more frequently than these orders are

used to trade on the same side of their information. In particular, Iv investors usually sell using

market orders MOB2 rather than using limit sells. This goes back to our previous discussion of

how informed investors trade differently on the own side of their information (when their private

value β reinforces the trading direction from their information) and on the opposite side of their

information (when their β reverses the trading incentive from their information).

15The informativeness of limit orders LOA1 and LOB1 in Table B2 in Appendix B are 0.004 and−0.004 respectively,
whereas the informativeness of limit orders LOA2 and LOB2 are 0.056 and −0.056 respectively.
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Figure 7: Informativeness of Orders at the End of t1 for the Model with Informed and Uninformed Traders both with β ∼
Tr[N (µ, σ2)]. This figure plots the Informativeness of the equilibrium orders at the end of t1 against the probability of execution. We consider four
different combinations of informed investors arrival probability. The informativeness of an order is measured as E[v|xt1 ]− E[v], where xt1denotes one of
the different possible orders that can arrive at time t1.
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2.2.4 Non-Markovian price discovery

This section continues our investigation of the importance of non-Markovian effects in information

aggregation. Figure 8 shows once again the variation in the incremental information E[v|Ltj (Ltj )]−

E[v|Ltj ] of prior order histories Ltj (Ltj ) preceding different books Ltj . The plots here confirm our

earlier results about non-Markovian learning.

Figure 8: History Informativeness for Informed and Uninformed Traders both with
β ∼ Tr[N (µ, σ2)] for times t2 through t4. This Figure shows the incremental information content of
the past order history in excess of the information in the current limit order book observed at the end of time tj
as measured by E[v|Ltj (Ltj )] − E[v|Ltj ] where Ltj (Ltj ) is a history ending in the limit order book Ltj . We only
consider books Ltj when they occur in equilibrium in the different trading periods. The candlesticks indicate for

each of these two metrics the maximum, the minimum, the median and the 75th (and 25th) percentile respectively
as the top (bottom) of the bar.
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Figure 8 shows the uninformed investor’s expectation of the asset value conditional on the path

and various books. It also shows the expectation of these expectations across the paths, which, by
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iterated expectation, is the expectation conditional on the book. Again, we see that the trading

history has substantial information content above and beyond the information in the book alone.

The figure also shows the standard deviation of the valuation forecast errors. Here again, the

information updating dynamics are non-Markovian.

2.3 Summary

The results for our second model specification — with a richer specification of the informed investors’

trading motives — confirm and extent the analysis from our first model specification.

• When all market participants trade not only to speculate on their signal but also to satisfy

their private-value motive, all investors use both market and limit orders in equilibrium.

• Increased adverse selection affects informed-investor trading behavior differently when they

trade with their information versus (because of private-value shocks) against their informa-

tion. As a result, the effect of asset-value volatility and informed investor arrival probability

on market liquidity is mixed.

• The informativeness of orders can be opposite the order aggressiveness and now also the order

direction. The information content of order arrivals is again history-dependent.

3 Robustness

Our analysis makes a number of simplifying assumptions for tractability, but we conjecture that our

qualitative results are robust to relaxing these assumptions. We consider two of these assumptions

here. First, our model of the trading day only has five periods. Relatedly, our analysis abstracts

from limit orders being carried over from one day to the next. However, our results about the impact

of adverse selection on investor trading strategies and about order informativeness are driven in

large part by the relative size of information shocks and the tick size rather than by the number

of rounds of trading. In addition, increasing the trading horizon leads to longer histories that are

potentially even more informative. Second, arriving investors are only allowed to submit single

orders that cannot be cancelled or modified subsequently. However, it seems likely that order-flow
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histories will still be informative if orders at different points in time are correlated due to correlated

actions of returning investors.

4 Conclusions

This paper has studied information aggregation and liquidity provision in dynamic limit order

markets. We show a number of notable theoretical properties in our model. First, informed investors

switch between endogenously demanding liquidity via market orders and supplying liquidity via

limit orders. Second, the information content/price impact of orders can be non-monotone in the

direction of the order and in the aggressiveness of their orders. Third, the information aggregation

process is non-Markovian. In particular, the prior order history has information content beyond

that in the current limit order book.

Our model suggests several directions for future research. Most importantly, our analysis

provides a framework for empirical research about the changing price impacts of order flow condi-

tional on order-flow history and time of day. There are also promising directions for future theory.

First, the model can be enriched by allowing investors to trade dynamically over time (rather

than just submitting an order one time) and to face quantity decisions and to use multiple orders.

Second, the model could be extended to allow for trading in multiple co-existing limit order mar-

kets. This would be a realistic representation of current equity trading in the US. Third, the model

could be used to study high frequency trading in limit order markets and the effect of different

investors being able to process and trade on different types of information at different latencies.

5 Appendix A: Algorithm for computing equilibrium

The computational problem to solve for a Perfect Bayesian Nash equilibrium in our model (as

defined in Section 1.1) is complex. Given investors’ equilibrium beliefs, the optimal order-submission

problems in (6) and (7) require computing limit-order execution probabilities and stock-value ex-

pectations that are conditional on both the past order history and on future state-contingent limit-

order execution at each time tj at each node of the trading game. For an informed trader (who
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knows the asset value v), there is no uncertainty about the payoff of a market order. In contrast, the

payoff of a market order for an uninformed trader entails uncertainty about the future asset value

and, therefore, computing the optimal order requires computing the expected stock value E[v|Ltj−1 ]

conditional on the prior trading history up to time tj . For limit orders, the expected payoff depends

on the future limit-order execution probabilities, Pr(θxtj |v,Ltj−1) and Pr(θxtj |Ltj−1), for informed

and uninformed investors, which depend, in turn, on the optimal order-submission probabilities of

future informed and uninformed investors. In addition, the uninformed investors’ learning problem

for limit orders requires uninformed investors to extract information about the expected future

stock value E[v|Ltj−1 , θ
x
tj ] from both the past trading history and also from state-contingent future

order execution given that the future states in which limit orders are executed are correlated with

the stock value. Thus, optimal actions at each time tj depend on past information and future

order-flow contingencies where future orders also depend on the then-prior histories at future dates

(which include the action at time tj) as traders dynamically update their equilibrium beliefs as the

trading process unfolds. Thus, the learning problem for limit order beliefs is both backward- and

forward-looking. Lastly, rational expectations (RE) involves finding a fixed point so that the equi-

librium beliefs underlying the optimal order-submission strategies are consistent with the execution

probabilities and value expectations that the endogenous optimal strategies produce in equilibrium.

Our numerical algorithm uses backward induction to solve for optimal order strategies given a

set of asset-value beliefs for all dates and nodes in the trading game and uses an iterative recursion

to solve for RE equilibrium asset-value and order-execution beliefs. The backward induction makes

order-execution probabilities consistent with optimal future behavior by later-arriving investors. It

also takes future state-contingent execution into account in the uninformed investors’ beliefs. Given

a set of history-contingent asset-value probability beliefs, we start at time t5 — when traders only

use market orders which allows us to compute the execution probabilities of limit orders at t4 —

and recursively solve the model for optimal order strategies back to time t1. We then embed the

optimal order strategy calculation in an iterative recursion to solve for a fixed point for the RE

asset-value beliefs. For a generic round r in this recursion, the outgoing asset-value probabilities

πv,r−1
tj

from round r−1 are used iteratively as incoming asset-value beliefs in round r. In particular,
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these beliefs are used in the learning problem of the uninformed investor to extract information

about the ending asset value v from the prior trading histories. They also affect the behavior

of informed investors whose order-execution probability beliefs depend in part on the behavior

of uninformed traders. Thus, the recursion for a generic round r involves solving by backward

induction for optimal strategies for buyers

max
x∈Xtj

wI, r(x | v,Ltj−1) = [βtj v0 + ∆− p(x)]Prr(θxtj | v,Ltj−1) (13)

and

max
x∈Xtj

wU, r(x |Ltj−1) = [βtj v0 + Er[∆ |Ltj−1 , θ
x
tj ]− p(x)]Prr(θxtj |Ltj−1) (14)

where

Er[∆|Ltj−1 , θ
x
tj ] = (π̂v̄, rtj

v̄ + π̂v0, r
tj

v0 + π̂
v, r
tj
v)− v0 (15)

π̂v, rtj
=

Prr(θxtj |v,Ltj )

Prr(θxtj |Ltj )
πv, r−1
tj

(16)

and where the calculations for sellers are symmetric. Note that at each time tj the backward

induction has already determined the future contingencies θxtj for limit order executions at times t >

tj . Thus, the order-execution probabilities Prr(θxtj | v,Ltj−1) and Prr(θxtj |Ltj−1), and the history-

and execution-contingent probabilities π̂v, rtj
and associated asset-value expectations Er[∆|Ltj−1 , θ

x
tj ]

are “mongrel” moments in that they are computed using the outgoing history-contingent asset value

beliefs πv, r−1
tj

from round r−1 and then updated given the order-execution contingencies computed

by backward induction in round r using the round r− 1 asset-value beliefs. At the end of round r,

we then compute updated outgoing asset-value beliefs πv,rtj for round r, which are used as incoming

beliefs for the next round r + 1. The recursion is iterated to find a RE fixed point πvtj in the

uninformed investor beliefs.

The fixed-point recursion is started in round r = 1 by setting the initial asset-value beliefs πv,0tj

of uninformed traders at each time tj in the backward induction to be the unconditional priors
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Pr(v) in (1). In particular, the algorithm starts by ignoring conditioning on history in the initial

round r = 1. Hence the traders’ optimization problems in (14) and (13) in round r = 1 simplify to:

max
x∈Xtj

wI,r=1(x | v,Ltj−1) = [βtj v0 + ∆− p(x)]Pr1(θxtj | v) (17)

max
x∈Xtj

wU,r=1(x |Ltj−1) = [βtj v0 + E1[∆|θxtj ]− p(x)]Pr1(θxtj ) (18)

The order-execution contingencies in round r are modeled as follows: In each round r given

the asset-value beliefs πv,r−1
tj

in that round, we solve for investors’ optimal trading strategies by

backward induction. Starting at t5, the execution probability for new limit orders is zero, and

therefore optimal order-submission strategies only use market orders. Given the linearity of the

expected payoffs in the private-value factor β in (13) and (14), the optimal orders for an informed

trader at t5 are16

xI,rt5 (β|Lt4 , v) =


MOBi,t5 if β ∈ [0, β

MOBI,r
i,t5

,NT I,r
t5 )

NT if β ∈ [β
MOBI,r

i,t5
,NT I,r

t5 , β
NT I,r

t5
,MOAI,r

i,t5 )

MOAi,t5 if β ∈ [β
NT I,r

t5
,MOAI,r

i,t5 , 2]

(19)

where for each possible combination of MOBi,t5 = MOB1,MOB2 and MOAi,t5 = MOA1,MOA2

β
MOBI,r

i,t5
,NT I,r

t5 =
Bi,t5 −∆

v
(20)

β
NT I,r

t5
,MOAI,r

i,t5 =
Ai,t5 −∆

v

are the critical thresholds that solve wI,r(MOBi,t5 |v,Lt4) = wI,r(NT |v,Lt4) and wI,r(NT |v,Lt4) =

wI,r(MOAi,t5 |v,Lt4), respectively. The optimal trading strategies and β thresholds for an unin-

16For instance, an informed trader would post a MOA1 only if the payoff is positive and thus outperforms the NT
payoff of zero, i.e, βv + ∆−A1 > 0 or β > A1−∆

v
.
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formed traders are similar but the conditioning set does not include the asset value v:

xU,rt5 (β|Lt4) =


MOBi,t5 if β ∈ [0, β

MOBU,r
i,t5

,NTU,r
t5 )

NT if β ∈ [β
MOBU,r

i,t5
,NTU,r

t5 , β
NTU,r

t5
,MOAU,r

i,t5 )

MOAi,t5 if β ∈ [β
NTU,r

t5
,MOAU,r

i,t5 , 2]

(21)

where

β
MOBU,r

i,t5
,NTU,r

t5 =
Bi,t5 − Er−1[∆|Lt4 ]

v
(22)

β
NTU,r

t5
,MOAU,r

i,t5 =
Ai,t5 − Er−1[∆|Lt4 ]

v

Given the β ranges associated with each possible action at t5, we compute the submission

probabilities associated with each optimal order at t5 using the truncated-Normal density n(·) for

the private factor β.17 At time t4 these are the execution probabilities for new limit orders by an

informed investor at the different possible best bids and asks, Bi,t4 and Ai,t4 respectively at time

t5:

Prr(θLOBi
t4

|Lt3 , v) =

 α
[ ∫ βMOB

I,r
i,t5

,NT
I,r
t5

0 n(β) dβ
]

+
(

1− α
)[ ∫ βMOB

U,r
i,t5

,NT
U,r
t5

0 n(β)dβ
]

0 otherwise

(23)

Prr(θLOAi
t4

|Lt3 , v) =


α
[ ∫ 2

β
NT

I,r
t5

,MOA
I,r
i,t5

n(β) dβ
]

+
(

1− α
)[ ∫ 2

β
NT

U,r
t5

,MOA
U,r
i,t5

n(β) dβ
]

0 otherwise

(24)

where the book is either empty at A1 and/or B1 (but may have non-crowd limit orders at the

outside prices) or is empty except for just crowd orders at A2 and B2. The analogous execution

17The discussion here is for the case where both informed and uninformed investors have random private factors β.
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probabilities for an uninformed investor arriving at time t4 are:

Prr(θLOBi
t4

|Lt3) =

 α
[∑

v∈{v,v0,v} π̂
v,r
t4

∫ βMOB
Iv,r
i,t5

,NT
Iv,r
t5

t5
0 n(β) dβ

]
+
(

1− α
)[ ∫ βMOB

U,r
i,t5

,NT
U,r
t5

t5
0 n(β) dβ

]
0 otherwise

(25)

Prr(θLOAi
t4

|Lt3) =


α
[∑

v∈{v,v0,v} π̂
v,r
t4

∫ 2

β
NT

Iv,r
t5

,MOA
Iv,r
i,t5

n(β) dβ
]

+
(

1− α
)[ ∫ 2

β
NT

U,r
t5

,MOA
U,r
i,t5

n(β) dβ
]

0 otherwise

(26)

At t4 there is only one period before the end of the trading game. Thus, the execution probability

of a limit order is positive if and only if the order is posted at the best price on its own side of

the market (Ai,t4 or Bi,t4), and if there are no non-crowd limit orders already standing in the limit

order book at that price at the time the new limit order is posted.

Having obtained the execution probabilities in (23) – (26) for the different limit orders at t4, we

next derive the optimal order-submission strategies at t4. The incoming book can be configured in

many different ways at t4 depending on the different possible prior order paths Lt3 in the trading

game up through time t3. As the payoffs of both limit and market orders are functions of β, we

rank all the payoffs of adjacent optimal strategies in terms of β and equate them to determine the

β thresholds at time t4.18 Consider, for example, an order path such that t4 has only crowd orders

in the book, so that new limit and market orders are both potentially optimal orders at t4. For an

18Recall that the upper envelope only includes strategies that are optimal.
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informed trader, the the optimal orders are given by:

xI,rt4 (β|Lt3 , v) =



MOB2 if β ∈ [0, β
MOBI,r

2,t4
,LOAI,r

1,t4 )

LOA1 if β ∈ [β
MOBI,r

2,t4
,LOAI,r

1,t4 , β
LOAI,r

1,t4
,LOAI,r

2,t4 )

LOA2 if β ∈ [β
LOAI,r

1,t4
,LOAI,r

2,t4 , β
LOAI,r

2,t4
,NT I,r

t4 )

NT if β ∈ [β
LOAI,r

2,t4
,NT I,r

t4 , β
NT I,r

t4
,LOBI,r

2,t4 )

LOB2 if β ∈ [β
NT I,r

t4
,LOBI,r

2,t4 , β
LOBI,r

2,t4
,LOBI,r

1,t4 )

LOB1 if β ∈ [β
LOBI,r

2,t4
,LOBI,r

1,t4 , β
LOBI,r

1 ,MOAI,r
2,t4 )

MOA2 if β ∈ [β
LOBI,r

1,t4
,MOAI,r

2,t4 , 2]

(27)

and for an uninformed trader the optimal strategies are qualitatively similar but with different

values for the β thresholds given the uninformed investor’s different information.19 As the payoffs

of both limit and market orders are functions of β, we can rank all the payoffs of adjacent optimal

strategies in terms of β and equate them to determine the β thresholds at t4. For example, for the

first β threshold we have:

β
MOBI,r

2,t4
,LOAI,r

1,t4
t4

= β ∈ R s.t. wI,rt4 (MOB2 | v, β,Lt3) = wI,rt4 (LOA1 | v, β,Lt3) (28)

and we obtain the other thresholds similarly.

The next step is to use the β thresholds together with the truncated Normal cumulative dis-

tribution N(�) for β to derive the probabilities of the optimal order-submission strategies at each

possible node of the extensive form of the game at t4. For example, the submission probability of

LOAI,r1 is:

Prr[LOAI,r1 |Lt3 , v] = N(βLOA
I,r
1 ,LOAI,r

2 |Lt3 , v)− N(βMOBI,r
2 ,LOAI,r

1 |Lt3 , v) (29)

and the submission probabilities of the equilibrium strategies can be obtained in a similar way.

Next, given the market-order submission probabilities at t4 — which together with the execution

19If the incoming book from t3 has non-crowd orders on any level of the book, the equilibrium strategies would
be different. For example, if the book has a LOA1 limit order, then new limit orders on the ask side cannot be
equilibrium orders since their execution probability would be zero.
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probabilities at t5 determine the execution probabilities for new limit orders at time t3 — we

can solve the optimal orders at t3 and then recursively continue to solve the model by backward

induction in this fashion back to time t1.

Off-equilibrium beliefs: At each time tj , round r of the recursion needs history-contingent asset-

value beliefs πv,r−1
tj

= Prr−1(v|Ltj ) from round r − 1 for all feasible paths that traders may use.

Beliefs for paths that occur with positive in round r− 1 are computed using Bayes’ rule to update

the probability Prr−1(v|Ltj−1) of the time-tj−1 sub-path Ltj−1 that path Ltj extends. In contrast,

Bayes’ Rule cannot be used to update probabilities of paths that involve orders that are not used

with positive probability in round r− 1. Our algorithm deals with this by setting Prr−1(v|Ltj ) to

be Prr−1(v|Lt) where Lt is the longest positive-probability sub-path from t0 to some time t < tk

in round r−1 that is contained in path Ltj . For example, consider a path {MOA2,MOB2, LOA1}

at time t3 where orders {MOA2,MOB2} are used with positive probability at times t1 and t2 in

round r−1, but LOA1 is not used at time t3 after the first two orders in round r−1. Our recursion

algorithm sets the round r−1 belief uninformed traders use for path {MOA2,MOB2, LOA1} to be

their round r − 1 belief for the positive-probability sub-path {MOA2,MOB2}. If instead MOB2

is not a positive-probability order at t2 in round r − 1, then we assume that uninformed traders

use their belief at t1 conditional on the shorter sub-path {MOA2}. Finally, if MOA2 is also not a

positive-probability order at t1 in round r− 1, then we assume that traders use their unconditional

prior belief Pr(v).

Mixed strategies: We allow for both pure and mixed strategies in our Perfect Bayesian Nash

equilibrium. When different orders have equal expected payoffs, we assume that traders randomize

with equal probabilities across all such optimal orders. By construction, the expected payoffs of

two different strategies are the same in correspondence of the β thresholds; however because we are

considering single points in the support of the β distribution, the probability associated with any

strategy that corresponds to those specific points is equal to zero. This means that mixed strategies

that emerge in correspondence of the β thresholds, although feasible, have zero probability. Mixed

strategies may also emerge in the framework in which informed traders have a fixed neutral private-
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value factor β = 1 (section 2.1). More specifically it may happen that the payoffs of two perfectly

symmetrical strategies of Iv0 are the same, and in this case Iv0 randomizes between these two

strategies.

In the setting of our model where informed traders have fixed neutral private-value factors

β = 1, it may happen that both informed and uninformed traders switch their strategies back and

forth from one round to the next. When this happens, to reach an equilibrium we assume that

the informed traders play mixed strategies and at each subsequent round strategically reduce the

probability with which they choose the most profitable strategy until the equilibrium is reached.

As an example at t1 informed traders with positive news, Iv̄, play LOB2 in round r = 1. However,

in round r = 2 in the subsequent periods uninformed traders do not send market orders to sell at

B2 and in round r = 3, informed traders react by changing their strategy to LOB1. However, in the

subsequent periods uninformed traders do not send market orders to sell, this time at B1. To find

an equilibrium, we assume that at each round informed traders play mixed strategies and assign

a greater weight to the most profitable strategy. In this case we assume they start playing LOB2

with probability 0.99 and LOB1 with probability 0.01. If these mixed strategies do not lead to

an equilibrium outcome, in the subsequent round we assume that the informed traders play LOB2

with probability 0.98 and LOB1 with probability 0.02. We proceed by lowering the probability

with which informed traders choose the most profitable strategy until we reach an equilibrium set

of strategies.

Convergence: RE beliefs for a Perfect Bayesian Nash equilibrium are obtained by solving the

model recursively for multiple rounds. In particular, the asset-value probabilities πv,1tj from round

r = 1 from above are used as the priors to solve the model in round r = 2 (i.e., the round 1

probabilities are used in place of the unconditional priors used in round 1).20 The asset-value

probabilities πv,2tj from round r = 2 are then used as the priors in round r = 3 and so on. The

recursive iteration is continued until the updating process converges to a fixed point, which are the

RE beliefs. In particular, the recursive process has converged to the RE beliefs when uninformed

traders no longer revise their asset-value beliefs. Operationally, we consider convergence to the RE

20In the second round of solutions we again solve the full 5-period model.
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beliefs to have occurred when the probabilities πv, rtj
, πv0, r

tj
and π

v, r
tj

in round r are “close enough”

to the corresponding probabilities from round r − 1:

πv, ∗tj when
∣∣∣πv, rtj

− πv, r−1
tj

∣∣∣ < 10−7

πv0, ∗
tj

when
∣∣∣πv0, r
tj
− πv0, r−1

tj

∣∣∣ < 10−7

π
v, ∗
tj

when
∣∣∣πv, rtj

− πv, r−1
tj

∣∣∣ < 10−7

(30)

A fixed-point solution to this recursive algorithm is an equilibrium in our model.

6 Appendix B: Additional numerical results

The tables is this section provide additional information on the execution probabilities of limit

orders for informed investor with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv
¯
) and for unin-

formed traders. The tables also report the asset value expectations of the uninformed investor at

time t2 after observing all the possible buy orders submissions at time t1. The expectations for sell

orders are symmetric with respect to 1. Table B1 reports results for our first model specification

in which only uninformed traders have a random private value factor. Table B2 reports results for

our second model in which both the informed and uniformed traders have private-value motives.
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Table B1: Order Execution Probabilities and Asset-Value Expectation for Informed Traders with
β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of
the informed-investor arrival probability α (0.8 and 0.2) and for two different values of the asset-value volatility δ (0.16
and 0.02). σ = 1.5. For each set of parameters, the first four columns report the equilibrium limit order probabilities
of executions for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders

(U). The fifth column (Uncond.) reports the unconditional order-execution probabilities in the market. Next, the
columns report conditional and unconditional future order execution probabilities and the asset-value expectations
of an uniformed investor at time t2 after observing different order submissions at time t1.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LOA2|·) 0.955 0.175 0.055 0.395 0.395 0.180 0.229 0.170 0.193 0.193
PEX(LOA1|·) 0.989 0.125 0.078 0.397 0.397 0.323 0.323 0.323 0.323 0.323
PEX(LOB1|·) 0.078 0.125 0.989 0.397 0.397 0.323 0.323 0.323 0.323 0.323
PEX(LOB2|·) 0.055 0.175 0.955 0.395 0.395 0.170 0.229 0.180 0.193 0.193

α = 0.8
E[v|LOB1 |·] 1.160 1.000
E[v|LOB2 |·] 1.083 1.013
E[v|MOA1 |·]
E[v|MOA2 |·] 1.000 1.000

PEX(LOA2|·) 0.651 0.487 0.394 0.511 0.511 0.514 0.499 0.476 0.496 0.496
PEX(LOA1|·) 0.886 0.766 0.717 0.789 0.789 0.792 0.792 0.790 0.791 0.791
PEX(LOB1|·) 0.717 0.766 0.886 0.789 0.789 0.790 0.792 0.792 0.791 0.791
PEX(LOB2|·) 0.394 0.487 0.651 0.511 0.511 0.476 0.499 0.514 0.496 0.496

α = 0.2
E[v|LOB1 | ·] 1.026 1.000
E[v|LOB2 | ·] 1.013 1.009
E[v|MOA1 | ·]
E[v|MOA2 | ·] 1.000 1.000
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Table B2: Order Execution Probabilities and Asset-Value Expectation for Informed and Uninformed
Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of the informed-investor
arrival probability α (0.8 and 0.2) and for two different values of the asset-value volatility δ (0.16 and 0.02). σ = 1.5.
For each set of parameters, the first four columns report the equilibrium limit order probabilities of executions for
informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports the unconditional order-execution probabilities in the market. Next, the columns report
conditional and unconditional future order execution probabilities and the asset-value expectations of an uniformed
investor at time t2 after observing different order submissions at time t1.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LOA2|·) 0.644 0.502 0.410 0.519 0.135 0.502 0.487 0.472 0.487 0.116
PEX(LOA1|·) 0.913 0.834 0.702 0.817 0.392 0.849 0.837 0.824 0.836 0.470
PEX(LOB1|·) 0.702 0.834 0.913 0.817 0.392 0.824 0.837 0.849 0.836 0.470
PEX(LOB2|·) 0.410 0.502 0.644 0.519 0.135 0.472 0.487 0.502 0.487 0.116

α = 0.8
E[v|LOB1 |·] 0.996 1.000
E[v|LOB2 |·] 0.944 0.999
E[v|MOA1 |·]
E[v|MOA2 |·] 1.156

PEX(LOA2|·) 0.525 0.494 0.470 0.496 0.402 0.490 0.487 0.483 0.487 0.394
PEX(LOA1|·) 0.853 0.833 0.813 0.833 0.737 0.839 0.837 0.834 0.837 0.745
PEX(LOB1|·) 0.813 0.833 0.853 0.833 0.737 0.834 0.837 0.839 0.837 0.745
PEX(LOB2|·) 0.470 0.494 0.525 0.496 0.402 0.483 0.487 0.490 0.487 0.394

α = 0.2
E[v|LOB1 |·] 1.003 1.000
E[v|LOB2 |·] 0.996 1.000
E[v|MOA1 |·]
E[v|MOA2 |·] 1.160
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