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1. Introduction

A market is efficient when an asset is traded at a unique price reflecting its fundamental
value. Financial intermediaries play a crucial role in supporting the efficient functioning of
financial markets, as they bring together parties that wish to trade and share risks. This is
especially true for over-the-counter (OTC) markets, which are not organised based on cen-
tralised exchanges but rely on intermediation of dealers, who provide immediacy to their
clients. However, the ability of dealers to provide market liquidity depends on their capac-
ity to bear risks. Therefore, market efficiency may suffer potential setbacks in periods when
dealers’ risk-bearing capacity is impaired.1

Against this backdrop, the fundamental question we address in this paper is whether
dealer constraints have adverse implications on market inefficiency by impeding the arbitrage
process that leads to efficient price formation. To analyse this question, we study prices and
volumes in the foreign exchange (FX) market based on a globally representative FX trade data
set from CLS group. The FX market is the largest financial market in the world and often also
regarded as one of the most liquid and efficient ones. As such, one may expect our findings
about the key mechanisms to also apply to other important, yet less liquid, OTC markets.

The contribution of this paper is threefold. First, we provide a novel analytical method to
identify and measure market (in)efficiency in spot FX markets that we label “price inefficiency
metric” (PIM). The construction of PIM builds on the well-known triangular relation among
exchange rates (e.g., Chaboud, Chiquoine, Hjalmarsson, and Vega, 2014; Foucault, Kozhan,
and Tham, 2016) and is composed of two main frictions affecting price efficiency: the funda-
mental violation of the law of one price and the associated transaction cost that traders would
incur to restore no-arbitrage conditions. Our second contribution is to document novel empir-
ical findings connecting market efficiency to dealers’ constraints. In particular, we show that
when dealers are unconstrained they support market efficiency accommodating their clients’
trading demands. Thus, the forces of arbitrage can freely operate through dealers’ elastic
liquidity supply and eliminate any fundamental mispricing. However, when dealers are con-
strained – i.e., when they face tightening Value-at-Risk, leverage or funding conditions – their
willingness to provide liquidity to their clients decreases. Consequently, the relation between
their intermediated volume and our price inefficiency metric breaks down. Lastly, we pro-
vide a tractable model that formalises the intuition on how market efficiency deteriorates
when markets are more volatile and when dealers are more constrained.

A good understanding of the functioning of OTC markets – especially those that, like the
FX market, are crucial to the transmission of monetary policy – is important for a variety
of reasons. For central banks, regulators, and financial stability agencies, the question is
particularly relevant in light of the post-crisis efforts to strengthen the resilience of OTC
markets and the intermediaries that support their functioning.

1See “Holistic Review of the March Market Turmoil,” Financial Stability Board, November 2020.
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Our study sheds light on the interplay between the efficiency of the pricing mechanism
and the liquidity in OTC markets on the one hand as well as the financial health of their
intermediaries on the other. From an academic perspective, an important tenet in financial
economics is that ample market liquidity begets price efficiency. However, prior research has
highlighted that frictions faced by financial intermediaries can hamper the arbitrage process.2

Our study provides new evidence on how constraints faced by dealers impede their liquidity
provision and as a consequence adversely affect market efficiency.

Our paper consists of three main parts. The starting point of our analysis is to propose
a novel analytical method for measuring market inefficiency: the price inefficiency metric
(PIM). The conceptual underpinning of PIM is a no-arbitrage relation that ties together triplets
of currency pairs. Every triplet comprises one non-dollar currency pair (e.g., AUDJPY) and
two USD legs (e.g., USDAUD and USDJPY) that are required to synthetically replicate the
non-dollar pair. Specifically, we decompose PIM into two components: i) the fundamental vi-
olation of the law of one price (VLOOP), and ii) the transaction costs that traders would incur
in triangular arbitrage transactions (TCOST). Put differently, VLOOP captures fundamental
mispricing in the sense of price dislocations in the triangular no-arbitrage relation across cur-
rency crosses, whereas TCOST is the cumulative transaction cost that an arbitrageur would
face to eliminate any fundamental mispricing. The main advantages of PIM are threefold: i)
it is model- and preference-free, ii) it can be derived from a simple accounting identity, and
iii) it is grounded in the principle of no-arbitrage.

Based on our FX trade data from CLS, we document two novel empirical results. First,
PIM tends to move up when volatility is higher and FX dealers are more constrained. Second,
VLOOP and TCOST exhibit strong commonality but VLOOP is an order of magnitude smaller
than TCOST. In addition to confirming the virtues of our methodology, these results suggest
that the FX spot market is efficient in normal times, given that price dislocations are relatively
small and arbitraging them away is most of the time not profitable for the average trader
due to prohibitively high transaction costs. Our results further indicate the important role
of dealers in supporting market efficiency, as their intermediation is no longer connected to
efficient pricing when they are constrained.

In the second part, we go one step further by linking our price inefficiency metric to
dealer-intermediated FX trading volumes. To do so, we mostly rely on so-called logistic
smooth transition regression (LSTAR) methods that are particularly well-suited to capture
shifts in relations across different regimes. The main goal of our analysis is to investigate
how the relation between dealer-intermediated volume and market efficiency changes across
two regimes: i) normal times when dealers are largely unconstrained, and ii) stressed peri-
ods when dealers face more tightening economic conditions. To capture such regime shifts
we construct a composite measure that aggregates a multitude of constraints impacting deal-
ers’ liquidity provision. Specifically, we define our time-varying “dealer constraint measure”

2See Gromb and Vayanos (2010) for an excellent survey of the literature.
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DCM as the first principal component of the top 10 FX dealer banks’ i) Value-at-Risk measure
(measured at quarterly frequency), ii) He, Kelly, and Manela (2017) leverage ratio (quarterly),
iii) credit default swap (CDS) premia (daily), and iv) funding costs (daily) that are particularly
relevant for debt-financed positions and market-making functions (see, e.g. Andersen, Duffie,
and Song, 2019). To this set of variables we also add the daily JP Morgan Global FX Volatility
index, which can be thought of as an analogue of the VIX index in the FX market.

Two novel findings arise from this regime-dependent analysis: First, dealer-intermediated
trading volume (VLM) and our price inefficiency metric (PIM) co-move in tandem (correla-
tion of 67% on average between the two measures). In other words, when trading volumes
spike we also observe higher volatility and a weakening of market efficiency. This positive
correlation holds for each of the two components of PIM: deviations from fundamentals and
arbitrage transaction costs. Second, we find that the relation between PIM and VLM sig-
nificantly weakens when dealers become more constrained. Although both VLM and PIM
are on average at least 21–29% higher than normal in the constrained regime, the correlation
between the two is insignificant or even negative in periods when dealers are constrained.
We interpret this result as the elasticity of dealer banks’ liquidity provision, which decreases
by up to 70-80% in the constrained regime. While dealer-intermediated volume goes up as
dealers accommodate transaction demands by end-users, they also increase bid-ask spreads,
rendering it more difficult for arbitrageurs to correct fundamental mispricing. As such, while
intermediated FX volumes tend to rise in the constrained regime, this rise seems to be insuf-
ficient to compensate for the deterioration in market efficiency. All these findings also hold
individually for each price inefficiency component, that is, for deviations from fundamen-
tals (VLOOP) and arbitrage transaction costs (TCOST). In addition, they remain qualitatively
unchanged when considering each determinant of the dealer constraint measure as a single
regime variable rather than using the composite measure.

In the third part of the paper we rationalise our novel empirical findings with a simple
partial equilibrium model. Building on standard microstructure theory (see e.g., Grossman
and Miller, 1988; Hendershott and Menkveld, 2014), the model features two periods, three
currency pairs, and two types of agent: i) a risk-averse and debt-financed dealer supplying
liquidity and ii) liquidity traders with exogenous trading demands. Heterogeneity in pri-
vate values in the latter group results in demand imbalances across the three currency pairs
(Gabaix and Maggiori, 2015), which in turn generate price pressure. Such pressure pushes
the exchange rates of the three currency pairs away from their fundamental value, resulting in
deviations from the law of one price. However, in equilibrium such deviations are difficult to
arbitrage away due to the transaction costs stemming from bid-ask spreads. In other words,
the spreads are a manifestation of limits to arbitrage (Shleifer and Vishny, 1997). These two
conceptual sources of market inefficiency in our model manifest themselves empirically via
the price inefficiency metric PIM. When the dealer is unconstrained, she is able to interme-
diate among liquidity traders. These unconstrained periods coincide with small spreads and
small deviations of exchange rates from the fundamental value, resulting in a small PIM.
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When the dealer becomes more constrained, both the spreads and the deviations increase
along with a more inelastic liquidity supply by the dealer, leading to a higher PIM.

Our simple model provides an economic reasoning to the novel empirical findings on the
positive correlation between PIM and dealer-intermediated volume. When volatility is high,
the larger dispersion of private values of the liquidity traders pushes up their demand and
the net imbalance. The high volatility, coupled with the large net imbalance gives rise to two
effects: First, it leads dealers to increase their quoted spreads, and second it generates devi-
ations of exchange rates from the fundamental value. The combination of these two forces
pushes PIM higher. In the case when the dealer is unconstrained, she is capable of provid-
ing liquidity and thereby allowing arbitrageurs to channel capital to take advantage of price
discrepancies. Dealer-intermediated volume and PIM are hence positively correlated. Thus,
such a positive correlation captures the elasticity of liquidity provision. It represents how
intermediated market depth (i.e., dealer-intermediated volume) responds to pricing disloca-
tions (i.e., PIM). In an efficient OTC market where liquidity provision is elastic, market depth
should increase in pricing dislocations. However, when the dealer is constrained, the spread
she charges can be prohibitively high, deterring some market participants from trading. In-
termediated volume therefore will still increase but at a slower pace, which in turn mutes the
correlation between dealer-intermediated volume and PIM. This attenuated relation between
the two variables in turn reflects a drop in dealers’ elasticity of liquidity provision.

As suggested by the model, both PIM and dealer-intermediated volume are equilibrium
outcomes. Hence, to overcome the classic problem that regressing price inefficiency on trad-
ing volume might lead to biased estimates, we use a granular instrumental variable (GIV)
approach. Following the work by Gabaix and Koijen (2020), we construct our GIV as the
difference between the size- and equal-weighted average of daily dealer-intermediated trad-
ing volume. Clearly, when there is not enough cross-sectional granularity in the data, then
this approach may not work. However, this does not concern our setup since trading volume
exhibits a high degree of heterogeneity in the cross-section of currency pairs. Indeed, the
inspection of the main idiosyncratic events identified by the GIV analysis provides a support-
ive narrative. Overall, we find consistent estimates for the elasticity of PIM with respect to
dealer-intermediated volume using GIV as an instrument for the latter.

We contribute to three strands of literature. First, our work is related to the broader
literature that emphasises the role of intermediary frictions in affecting asset prices and, in
particular, risk premia (e.g., Gârleanu and Pedersen, 2011; He and Krishnamurthy, 2011, 2013;
Adrian and Boyarchenko, 2012; Adrian, Etula, and Muir, 2014; He et al., 2017). Our main con-
tribution is to show how constrained financial intermediaries reduce their liquidity provision
in times of markets stress by raising bid-ask spreads and by curtailing volume. This finding is
consistent with the idea that market-wide liquidity conditions depend on intermediaries’ bal-
ance sheet capacity (Adrian and Shin, 2010) and that intermediary leverage and banks’ risk
management practices (e.g. following Value-at-Risk methodologies) tend to be pro-cyclical
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(Adrian and Shin, 2013). Lastly, our findings pointing to price inefficiency associated with
inelastic liquidity provision are consistent with slow-moving intermediated capital causing
distortions in pricing relations (Duffie, 2010).

Second, we add to the literature on limits to arbitrage. While prior research has mostly
focused on constrained arbitrageurs (e.g., Shleifer and Vishny, 1997; Gromb and Vayanos, 2002;
Hombert and Thesmar, 2014), we study the role of constrained dealers and how their ability
to provide immediacy contributes to market inefficiency. Our key contribution is to show
that the relation between price inefficiency and trading volume critically depends on the risk-
bearing capacity of dealers. In addition, a large body of prior research has studied limits to
arbitrage in equity markets (see Gromb and Vayanos, 2010). However, many of the frictions,
such as short sale constraints which are considered a major explanation in equities (e.g., Chu,
Hirshleifer, and Ma, 2020), do not apply to FX. Related to the stock market literature, recent
studies document widespread mispricings in stressful conditions (Pasquariello, 2014), com-
monality in arbitrage deviations (Rösch, Subrahmanyam, and van Dijk, 2016), and limits to
arbitrage impacting market liquidity (Rösch, 2021). We add to this branch of the literature by
identifying constrained intermediaries as the main driving force behind such commonalities
and by showing how their liquidity provision impacts arbitrage trading activity.

Lastly, we contribute to the literature on FX microstructure on understanding the role of
trading volume. Our key angle here is to study the relation of both quantities (i.e., information
on trading volume from CLS Group) and prices. In contrast to the FX order flow literature
(e.g., Evans, 2002; Evans and Lyons, 2002, 2005), the literature on trading volume is relatively
scarce due to the lack of comprehensive data sets. Earlier research has focused largely on
the inter-dealer segment, which is dominated by two platforms: Reuters (e.g., Evans, 2002;
Payne, 2003; Foucault et al., 2016) and EBS (e.g., Chaboud, Chernenko, and Wright, 2008;
Mancini, Ranaldo, and Wrampelmeyer, 2013; Chaboud et al., 2014). Alternative sources of
spot FX trading volume are proprietary data sets from specific dealer banks (e.g., Bjønnes
and Rime, 2005; Menkhoff, Sarno, Schmeling, and Schrimpf, 2016). The relatively recent
public access to CLS data has enabled researchers to study customer-dealer volume at a
global scale (Hasbrouck and Levich, 2018, 2021; Ranaldo and Santucci de Magistris, 2018;
Cespa, Gargano, Riddiough, and Sarno, 2021; Ranaldo and Somogyi, 2021). We contribute to
this strand of literature by investigating the impact of constrained financial intermediaries’
liquidity provision on FX market efficiency and its components (i.e., price dislocations and
arbitrage transaction costs).

The remainder of the paper is structured as follows. Section 2 describes our data and
key variables. Section 3 contains the main empirical analysis and further robustness checks.
Section 4 outlines a simple model of how market efficiency depends on dealer constraints.
Section 6 concludes. A separate Online Appendix provides all proofs, additional results, and
robustness checks not reported in the paper.
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2. Measuring market (in)efficiency in FX markets

2.1. Data sources

Note that the data excludes any trades between two market makers or two price takers
and hence only includes trading activity that is intermediated by FX dealer banks. This data
set is publicly available from CLS or via Quandl.com, a financial and economic data provider.
CLS data have been used in prior research, among others, by Fischer and Ranaldo (2011),
Hasbrouck and Levich (2018, 2021), Ranaldo and Santucci de Magistris (2018), Cespa et al.
(2021), and Ranaldo and Somogyi (2021). The full sample period spans from November 2011
to September 2020 and includes data for 18 major currencies and 33 currency pairs.

Our goal is to construct measures of market efficiency that we derive from triangular
no-arbitrage trades involving one non-dollar currency pair (e.g., AUDJPY) and two dollar
legs (i.e., USDAUD and USDJPY). Hence, we exclude the USDHKD, USDILS, USDKRW,
USDMXP, USDSGD, and USDZAR from our sample because there are no further non-dollar
currency pairs involving the respective quote currencies (i.e., HKD, ILS, KRW, MXP, SGD,
and ZAR). Furthermore, to maintain a balanced panel, we also remove all currency pairs
involving the Hungarian forint (HUF), which enters the data set later, on 7 November 2015.3

We pair the hourly FX volume and order flow data with intraday spot bid and ask quotes
from Olsen, a well-known provider of high-frequency data. Olsen compiles historical tick-
by-tick data from various electronic trading platforms, both from the inter-dealer and dealer-
customer segments. The indicative bid and ask quotes are directly available for all 25 currency
pairs but do not correspond to actually executable transaction prices. This is not an issue for
our purposes for two reasons: First, we are interested in measuring price efficiency rather than
identifying actual triangular arbitrage opportunities in the global spot FX market. Second,
on average, the correlation of Olsen indicative quotes with tradeable EBS best bid and offer
prices is around 99% and the mean absolute error is roughly 3.3%.4 Eventually, notice that
both CLS and Olsen data are sampled at the hourly frequency.

2.2. Key variables

We explore market efficiency in the FX market using a new “price inefficiency metric,” or
in short PIM. Our measure encompasses two dimensions: i) violations of the law of one
price (VLOOP), and ii) arbitrage transaction cost (TCOST). As a first step, we explain how

3This filtering leaves us 15 non-dollar currency pairs (i.e., AUDJPY, AUDNZD, CADJPY, EURAUD, EURCAD,
EURCHF, EURDKK, EURGBP, EURJPY, EURNOK, EURSEK, GBPAUD, GBPCAD, GBPCHF, and GBPJPY) and 10
dollar pairs (i.e., USDAUD, USDCAD, USDCHF, USDDKK, USDEUR, USDGBP, USDJPY, USDNOK, USDNZD,
and USDSEK) that are used to synthetically replicate each of the non-dollar pairs.

4To be precise, we estimate correlations and mean absolute errors individually for 25 currency pairs over the
full-year of 2016. For brevity, we relegate these results to the Online Appendix.
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we derive the two components and then elaborate how they jointly form the comprehensive
price inefficiency metric PIM.

VLOOP captures the price dispersion for two assets or trading positions with the same
intrinsic value, while TCOST refers to the trading costs to arbitrage such violations. Con-
ceptually, we derive both measures from the well-known triangular arbitrage trade that takes
advantage of three exchange rates (e.g., Chaboud et al., 2014; Foucault et al., 2016). The
VLOOP component of the triangular arbitrage trade can be computed with midquote prices
reflecting the intrinsic values of the direct and indirect positions. The TCOST can be measured
with the bid and ask quotes (depending on the base and quote currency).

There are two notable advantages of this decomposition that lead to our price inefficiency
measure. First, it is model- as well as preference-free and second, it can be derived from a
simple accounting identity.

Deriving PIM from the triangular no-arbitrage relation. To derive VLOOP, consider a
trader exchanging one euro (EUR) to some amount of US dollar (USD), exchanging the
amount of US dollar to some amount of Canadian dollar (CAD) and exchanging back the
amount of Canadian dollar to euro instantaneously at time t. The final amount of such a
round-trip transaction measured in euro is given as:

∆t ≡
3

∏
i=1

Pi,t, (1)

where P1,t =
1

USDEURmid
t

, P2,t = USDCADmid
t , and P3,t =

1
EURCADmid

t
denote midquote exchange

rates expressed as the amount of quote currency per unit of base currency, for instance, 1.255
CAD per USD (i.e., indirect quotation).

The trader has identified a seemingly profitable violation of the law of one price if ∆t is
greater than unity. Note that if ∆t is less than one, then the trader could still try to go into
the opposite direction, that is, first exchange one unit of Canadian dollar to euro, and then
subsequently euro to US dollar and then US dollar to euro. Note that ∆t is independent
of the currency that an arbitrageur is endowed with at the starting point of the round-trip
(i.e., CAD, EUR or USD). Figure 1 provides a schematic overview of how to detect seemingly
profitable deviations from no-arbitrage conditions.

To derive TCOST, we consider the same trader as above but now incorporate transaction
costs by accounting for bid-ask spreads. Specifically, for every transaction that a trader makes,
she pays the midquote price plus the half-spread. To reflect this, we replace the midquote
prices in Eq. (1) by bid and ask prices, that is, P1,t = 1

USDEURask
t

, P2,t = USDCADbid
t , and

P3,t = 1
EURCADask

t
, respectively. The superscripts ’bid’ and ’ask’ refer to the price at which

someone sells and buys one currency for another currency. Clearly, a positive ∆t corresponds
to a true arbitrage opportunity as the deviations from the fundamental value are large enough
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Figure 1: Identifying a triangular arbitrage opportunity

Note: This figure provides a schematic overview of two triangular arbitrage strategies, where the arrows denote
the direction. Panel A shows the hypothetical profit of a trader starting with one euro, first exchanging it to

1
0.819 = 1.221 US dollars, then exchanging 1.221 US dollars to Canadian dollars at the midquote price of 1.255
Canadian dollars per US dollar. This yields 1.532 Canadian dollars that are exchanged back to euros at the
CADEUR midquote that is equivalent to 1

EURCADMID = 1
1.505 . Such a round trip yields 1.018 euros or equivalent a

positive return of 1.8% in this example. Panel B embraces the same logic but going the opposite direction, that is,
first from euro to Canadian dollar, to US dollar and then back to euro yielding a negative return of −1.8%.

relative to the incurred transaction costs.5 Figure 2 provides an overview of such a triangular
arbitrage trade when including bid and ask prices. Note that the bid and ask prices in this
example are just for illustrative purposes and do not correspond to actual data.

The last step in the derivation of the price inefficiency metric consists of taking the log on
both sides of Eq. (1), and exploiting the fact that bid and ask prices are the midquote plus
half the bid-ask spread. This yields the following expression:

log(∆t) ≡ log
( USDCADmid

t

USDEURmid
t · EURCADmid

t

)
︸ ︷︷ ︸

VLOOPt

+ log
( 1− USDCADbas

t
2

(1 + USDEURbas
t

2 ) · (1 + EURCADbas
t

2 )

)
︸ ︷︷ ︸

TCOSTt

, (2)

where the superscripts ’mid’ and ’bas’ denote the midquote price (i.e., the average of the
bid and ask price) and relative bid-ask spread (i.e., the difference between ask and bid price
relative to the midquote), respectively. The first part of Eq. (2) (i.e., VLOOPt) captures the
violations from the law of one price, whereas the second part (i.e., TCOSTt) captures the
cumulative arbitrage transaction costs of performing such a triangular arbitrage trade. No-

5It is worth to emphasise at this point that the bid and ask prices that we retrieve from Olsen are indicative
quotes and hence not executable. In our sample, such seemingly profitable opportunities occur on average with a
relative frequency of less than 0.2 percent.
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Figure 2: Triangular arbitrage trade with transaction costs

Note: This figure provides a schematic overview of two triangular arbitrage strategies, where the arrows denote
the direction. Panel A shows the profit of first exchanging one euro to 1

0.83 = 1.21 US dollars at the ask price,
then exchanging 1.21 US dollars to Canadian dollars at the bid price of 1.25 Canadian dollars per US dollar.
This yields 1.51 Canadian dollars that are exchanged back to euros at the CADEUR bid price that is equivalent
to 1

EURCADASK = 1
1.52 . Such a round trip yields 0.991 euros or equivalent a negative return of −0.9%. Panel B

embraces the same logic but going the opposite direction, that is, first from euro to Canadian dollar, to US dollar
and then back to euro.

arbitrage violations VLOOPt may be positive or negative depending on the direction of the
trade (see Figure 1) but will be identical in absolute terms (if measured in logs) irrespective
of the initial endowment of the trader (i.e., CAD, EUR or USD). On the contrary, arbitrage
transaction costs TCOSTt are by nature always negative and correspond to the minimum
required return that an arbitrageur would have to earn for the triangular no-arbitrage trade
to break even (see Figure 2). Thus, TCOSTt possesses a natural interpretation of being a
measure of “limits to arbitrage” (Shleifer and Vishny, 1997). Note that TCOSTt is contingent
on the direction of the trade (see Figure 2).

Based on this decomposition, we derive an encompassing price inefficiency measure (PIM)
that we define as the sum of VLOOP and the absolute value of TCOST:

PIMt = Et[VLOOPt + abs(TCOSTt)|VLOOPt > 0], (3)

where abs() denotes the absolute value and PIMt is computed conditional on VLOOP being
positive. Hence, PIMt is by construction always positive, with a higher reading of PIM coin-
ciding with greater inefficiency. Following our methodology, we compute VLOOPt, TCOSTt,
and PIMt for k = 1, 2, ..., 15 triplets of currency pairs. A triplet of currency pairs is defined
as one non-dollar currency pair (e.g., EURCAD) plus the two USD legs (e.g., USDEUR and
USDCAD). We prune the hourly time-series of VLOOPt, TCOSTt, and PIMt, respectively, for
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heavy outliers, which we define as observations in the top and bottom 1.5 percentiles of the
data. Since the signs of VLOOPt, TCOSTt, and PIMt are always the same, we hereinafter
focus on absolute values to support the economic interpretation of these measures. Eventually,
we can also compute daily measures of VLOOPt, TCOSTt, and PIMt by summing up hourly
observations for each day. Specifically, we interpret VLOOPt as the daily cumulative devia-
tions from the fundamental value, TCOSTt as a measure of daily liquidity frictions, and PIMt

as the daily composite price inefficiency measure in the FX market.

Empirical illustrations. Figure 3 shows the time-series and cross-sectional variation of hourly
no arbitrage violations VLOOPt (left y-axis) and arbitrage transactions costs TCOSTt (right y-
axis), respectively. Both measures of market efficiency exhibit intuitive properties in the sense
that they surge during periods of market stress and mean-revert during calm periods. The
large spike during the Covid-19 market turmoil in March and April 2020 is particularly well
pronounced across all 15 triplets of currency pairs and is indicative of the global nature of
the stress. The correlation of VLOOPt and TCOSTt is positive for the entire cross-section and
ranges from 12–39%. We interpret this as evidence of commonality in no-arbitrage violations
and market liquidity in the broader sense (Rösch, 2021).

Table 1 reports the time-series average of hourly triangular no arbitrage deviations VLOOP
and arbitrage transaction costs TCOST. In addition, it also tabulates hourly averages of direct
trading volume in non-dollar currency pairs (e.g., AUDJPY) and synthetic trading volume
in dollar pairs (e.g., USDAUD and USDJPY). By “synthetic” we refer to the average trading
volume in two dollar currency pairs within a currency pair triplet, for instance, AUDJPY,
USDAUD, and USDJPY, that we abbreviate as AUD-USD-JPY. Each row corresponds to one
triplet of currency pairs.

This simple summary statistics table conveys two key messages: First, deviations from
fundamentals VLOOP are an order of magnitude smaller than arbitrage transaction costs
TCOST. We interpret this result as a sign of overall market efficiency given that a seemingly
profitable violation of triangular no-arbitrage can oftentimes not be exploited by the average
trader because transactions costs are prohibitively high. Second, trading volume in non-dollar
currency pairs is considerably smaller relative to the synthetic volume in dollar currency
pairs.6 This is essentially the case for all 15 triplets of currency pairs but the effect is less
pronounced for the ones involving the NOK and SEK, where the euro crosses play a bigger
role. Consequently, the average relative bid-ask spread and realised volatility are somewhat
smaller in the more heavily traded dollar currency pairs than in non-dollar pairs.

6Somogyi (2021) provides both theoretical and empirical evidence in favour of the idea that strategic comple-
mentarity in price impact can explain these cross-sectional differences between dollar and non-dollar pairs.
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Figure 3: No-arbitrage violations and arbitrage transaction costs

Note: This figure plots the absolute value of 24-hour moving average of hourly triangular no arbitrage deviations
VLOOPt (left y-axis) and arbitrage trading costs TCOSTt (right y-axis), respectively, for 15 triplets of currency
pairs. Both variables are measured in basis points. The numbers in the titles refer to the correlation coefficient of
VLOOPt and TCOSTt. The sample covers the period from 1 November 2011 to 30 September 2020.

3. Elasticity of liquidity provision and dealer constraints

This section presents evidence consistent with our hypothesis that dealers support market
efficiency during calm periods but that their liquidity provision does not keep up sufficiently
with trading demands when they are constrained. The analysis is split into two parts. We first
start with some motivating evidence that the relationship between intermediated volumes
and price efficiency depends on dealers’ financial health. We then draw on logistic smooth
transition regressions to study more rigorously the state-dependent nature of this relation.
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Table 1: Summary statistics

PIM in bps Volume in $bn Bid-ask spread in bps Volatility in bps

VLOOP TCOST Direct Synthetic Direct Synthetic Direct Synthetic

AUD-USD-JPY 0.24 4.88 0.18 2.55 4.15 2.93 14.38 11.21
AUD-USD-NZD 0.29 5.85 0.09 1.00 4.44 3.72 9.32 12.70
CAD-USD-JPY 0.30 4.67 0.03 2.66 4.29 2.61 12.66 9.47
EUR-USD-AUD 0.19 4.52 0.14 3.86 3.54 2.82 11.54 10.97
EUR-USD-CAD 0.28 4.25 0.08 3.97 3.55 2.49 10.15 9.12
EUR-USD-CHF 0.21 3.98 0.37 3.38 2.62 2.71 6.38 9.50
EUR-USD-DKK 0.14 3.89 0.09 3.09 2.54 2.65 1.82 9.22
EUR-USD-GBP 0.19 4.07 0.61 4.08 3.19 2.48 9.52 9.62
EUR-USD-JPY 0.21 3.90 0.65 4.83 3.14 2.42 11.43 9.69
EUR-USD-NOK 0.26 7.69 0.24 3.13 6.25 4.70 11.01 11.95
EUR-USD-SEK 0.23 6.86 0.27 3.13 5.41 4.21 9.18 11.28
GBP-USD-AUD 0.20 5.08 0.04 1.80 4.22 2.99 12.53 11.26
GBP-USD-CAD 0.29 4.69 0.03 1.91 4.00 2.67 10.85 9.41
GBP-USD-CHF 0.19 4.94 0.03 1.32 4.09 2.88 10.69 9.89
GBP-USD-JPY 0.19 4.47 0.20 2.77 3.85 2.59 12.78 9.99

Note: This table reports the time-series average of hourly triangular no arbitrage deviations VLOOP in basis
points (bps), cumulative trading costs TCOST in bps, direct trading volume in non-dollar currency pairs (e.g.,
AUDJPY) in $bn, synthetic trading volume in dollar pairs (e.g., the average across USDAUD and USDJPY) in $bn,
as well as direct and synthetic relative bid-ask spreads and realised volatility in dollar and non-dollar currency
pairs in bps, respectively. Each row corresponds to a triplet of currency pairs, for example, AUDJPY, USDAUD,
and USDJPY that we abbreviate as AUD-USD-JPY. The sample covers the period from 1 November 2011 to 30
September 2020.

3.1. Motivating evidence

For motivational purposes, we first present some descriptive evidence of how trading volume
and price inefficiency co-move over time. In a second step, we then compute conditional
correlations to show how the relation weakens as FX dealer banks become more constrained.

To measure dealer banks’ risk-bearing capacity we derive a composite dealer constraint
measure (DCM) that we compute in two steps. First, we create four time-series based on
cross-sectional averages of the top 10 FX dealer banks’ (see Euromoney FX surveys) i) value-
at-risk of the trading book (measured at quarterly frequency), ii) He et al. (2017) leverage ratio
(quarterly), iii) credit default swap (CDS) premia (daily) and iv) debt funding costs (daily). To
this set of variables we also add the daily JP Morgan Global FX Volatility index as a measure
of FX market stress. See the Online Appendix for a detailed description of how we retrieve
and compute each of these variables.

All of these factors can typically generate important constraints on dealer behaviour. For
example, self-imposed or regulatory-driven VaR-limits force dealers to scale back their market
making or proprietary trading. Similarly, their need for to reduce their market making activity
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and liquidity provision is linked to their risk profile reflected in high leverage and CDS
premia. High risk exposure can lead to an immediate increase in funding costs and valuation
adjustments (XVA), including debt and funding value adjustments (Andersen et al., 2019).
The latter two are both a measure of dealers’ funding liquidity that can in turn induce dealers
to curtail their intermediation activities.

Since FX dealers typically operate on a global scale and provide liquidity in many curren-
cies (and other asset classes) at once, they are even more exposed to these issues. In this set-
ting, intermediaries might be forced to reduce liquidity provision in all currency pairs when
they endure trading losses (Kyle and Xiong, 2001) and/or experience funding constraints in
a specific position (Cespa and Foucault, 2014).

Second, we extract the first principal component that explains around 72% of the total
variance and serves as our composite measure of dealer constraints. Hence, the key advantage
of our dealer constraint measure DCM is that it encompasses a range of different factors that
can all impact dealers’ risk appetite and willingness to warehouse risk. By doing so, we are
able to extract common information of all these factors and obtain a measure of the financial
health of global dealers available at the daily frequency.

Figure 4 plots our price inefficiency measure PIM and total trading volume VLM against
our dealer constraint measure DCM. For ease of illustration, we show the cross-sectional
average of PIM and VLM across triplets of currency pairs. There are two key takeaways
from this figure: First, price inefficiency and trading volume covary positively and exhibit
a correlation of 67%. In Section 4 we provide a simple theory that can explain why the
contemporaneous relationship between trading volume and price inefficiency is positive in a
well-functioning market under normal conditions. This result directly stems from the fact that
both volume and price inefficiency positively hinge on the volatility of exchange rates, which
(as we will show later based on our model) in turn reflects investors’ disagreement about
fundamentals. Second, the correlation between trading volume VLM and price inefficiency
PIM tends to weaken whenever there is a large spike in the dealer constraint measure DCM
(grey shaded areas).

Table 2 takes the descriptive analysis one step further by computing conditional correla-
tion coefficients of (log) changes in price inefficiency PIM, trading volume VLM, and realised
volatility VOL across the quantiles of the dealer constraint measure DCM. Consistent with
our intuition, we find that the correlation weakens as our dealer constraint measure DCM
and/or realised volatility increases. For instance, the conditional correlation based on the
highest DCM decile (i.e., when dealers are most constrained) is a mere 17%, and hence eco-
nomically and statistically significantly lower than the full-sample correlation of 31%. We
also observe an almost monotonic increase in the price inefficiency measure across the DCM
quantiles.

These initial results suggest that market efficiency deteriorates when dealers are more
constrained. Taken together, we interpret this as circumstantial evidence that in constrained
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Figure 4: Market efficiency, dealer constraints, and intermediated volume

Note: This figure plots the cross-sectional average of our price inefficiency measure (PIM, black solid line) against
total trading volume (VLM, black dashed line) in units of standard deviations. Both time-series correspond to 22-
day moving averages. The grey line plots our dealer constraint measure (DCM) that we define as the first principal
component of the top 10 FX dealers’ (based on the Euromoney FX survey) quarterly Value-at-Risk measure (VaR),
quarterly He et al. (2017) leverage ratio (HKM), daily credit default spread (CDS), daily debt funding cost (DFC),
as well as the daily JP Morgan Global FX Volatility index (VXY). The grey shaded areas correspond to times when
DCM exceeds its 75% quantile. The sample covers the period from 1 November 2011 to 30 September 2020.

periods there is less trading volume than what would be price efficient.

3.2. Smooth transition regression

We next briefly describe our econometric approach that is based on a simple smooth tran-
sition regression (LSTAR) model (e.g., van Dijk, Teräsvirta, and Franses, 2002; Christiansen,
Ranaldo, and Söderlind, 2011). Let G(zt−1) be a logistic function depending on the 1-day
lagged regime variable zt−1

G(zt−1) = (1 + exp(−γ′(zt−1 − c)))−1, (4)
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Table 2: Price inefficiency characteristics across top DCM quantiles

Top DCM quantile cor(PIM, VLM) t-stat Mean(PIM) in % Mean(VLM) in $bn Mean(VOL) in % #Obs

least constrained 1.00 0.31 1.18 148.66 0.56 2,185
0.90 0.31 0.12 1.20 150.73 0.57 1,957
0.80 **0.29 2.03 1.24 154.06 0.59 1,728
0.70 ***0.29 3.13 1.28 158.29 0.61 1,501
0.60 ***0.26 5.95 1.32 160.40 0.63 1,272
0.50 ***0.25 6.45 1.34 159.70 0.63 1,043
0.40 ***0.24 7.49 1.36 163.30 0.63 815
0.30 ***0.17 12.19 1.39 169.44 0.63 586
0.20 ***0.19 9.04 1.42 177.17 0.60 358

most constrained 0.10 ***0.17 6.34 1.52 180.63 0.65 129

Note: This table shows the conditional correlation coefficient of our price inefficiency measure PIM and total
trading volume VLM across the top quantiles of the dealer constraint measure (DCM, column 1). The underlying
data are based on a panel of 15 currency pair triplets. The asterisks *, **, and *** indicate that the correlation is
significantly different from the full sample (in the first line) estimate at the 90%, 95%, and 99% levels. Column
3 reports the corresponding test statistic for the conditional correlation corτ being equal to the full sample
correlation corτ=1.00, where τ ∈ 0.1, 0.2, ..., 0.9 corresponds to top DCMt quantiles. The test statistic for equal
correlations is based on the Fisher z-transformation. Columns 4 to 7 report the average PIMk,t (Mean(PIM)) in
%, the average VLMk,t (Mean(VLM)) in $bn, the average realised volatility (Mean(VOL)) in % in dollar pairs,
and the average number of observations (#Obs). The full sample covers the period from 1 November 2011 to 30
September 2020.

where the parameter c is the central location and the vector γ determines the steepness of
G(zt−1). Hence, the LSTAR model is of the form

yk,t = λt + αk + [1− G(zt−1)]β
′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, (5)

where the dependent variable is a measure of market (in)efficiency (i.e., VLOOP, TCOST or
PIM) and fk,t (wk,t) are state-dependent (state-independent) regressors. We include both cross-
sectional αk and time-series λt fixed effects to control for any unobservable heterogeneity that
is constant across triplets of currency pairs k and time t, respectively. For estimation, we use
the generalised method of moments (GMM) and determine the optimal parameters γ and c
by nonlinear least squares minimising the concentrated sum of squared errors.7 Note that
the slope coefficients in Eq. (5) vary smoothly with the regime variable zt−1 from β1 at low
values of γ′zt−1 to β2 at high values of γ′zt−1. There are two interesting boundary cases:
First, if β1 = β2 we effectively have a linear regression. Second, the limit case where γ → ∞
is equivalent to a linear regression with a dummy variable.

The state-dependent explanatory variable fk,t is the total trading volume (i.e., VLMk,t) that
is defined as the sum of all trading volume in one non-dollar as well as two dollar currency
pairs within within a particular currency pair triplet k. The state-independent variable is the
realised variance (i.e., RVk,t) in the direct non-dollar currency pair (e.g., AUDJPY) that we

7Our inference is based on a Driscoll and Kraay (1998) covariance matrix that allows for random clustering
and serial correlation up to 8 lags. We choose the optimal bandwidth using the plug-in procedure for automatic
lag selection by Andrews and Monahan (1992) and Newey and West (1994), respectively.
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estimate following Barndorff-Nielsen and Shephard (2002) as the sum of squared intraday
midquote returns. Note that across all regression specifications both LHS and RHS variables
are taken in logs and first differences. The obvious advantage of this is twofold: First, regres-
sion coefficients are straightforward to be interpreted as percentage point changes. Second,
FX volume in levels is non-stationary and persistent (see Ranaldo and Santucci de Magistris,
2018), hence taking first-differences is an effective remedy to render the series stationary.

Table 3 shows the passage from a linear model with a dummy or an interaction term to
a non-linear smooth transition regression (LSTAR). To be specific, the first three columns in
this table report the results from estimating a linear model (OLS) of the form

PIMk,t = λt + αk + β′1 fk,t + ρ′ fk,t · Dt−1 + δ′wk,t + εk,t, (6)

where fk,t and wk,t collect all regressors and Dt−1 is a 1-day lagged interaction variable cap-
turing periods of heightened dealer constraints. Note that the estimate of ρ corresponds to
the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1) of
the LSTAR model in Eq. (5). In column 1, we simply interact our dealer constraint measure
DCMt with total trading volume. In column 2, Dt is equal to one if DCMt is above its 75%
quantile in period t. Note that the specifications in columns 1 and 2 are a simple, yet intuitive,
approximation of non-linear regression models. In column 3, Dt is a logistic transformation
of DCMt based on 1/[1 + exp(−γDCMt)], where γ determines the steepness of the function.
For simplicity, we set γ = 1 but the results in column 3 are robust for values of γ ranging
from 1 to 12. Lastly, in column 4 the table shows results from a smooth transition regres-
sion (LSTAR) as in Eq. (5), which constitutes our preferred econometric approach. Again, the
logistic function G(zt−1) depends on 1-day lagged values of our dealer constraint measure
DCMt. Note that across each of the four specifications we control for the realised variance
in the direct non-dollar currency pair (e.g., AUDJPY).8 Moreover, in the Online Appendix
we show that our findings are robust to including the cross-currency basis (Du, Tepper, and
Verdelhan, 2018) as a control for funding liquidity (Andersen et al., 2019; Rime, Schrimpf,
and Syrstad, 2021).

There is a consistent picture that arises across all four specifications in Table 3: the differ-
ence between the slope coefficient on total trading volume in constrained and unconstrained
periods is negative and highly statistically significant. Moreover, the estimated slope coef-
ficients are almost identical for the linear model with dummy (column 2) and the LSTAR
model (column 4). In both cases, the difference in the slope coefficients (i.e., β2 − β1) is at
least 80% lower when dealer banks’ are constrained and hence less willing or able to cater
their customers’ trading demands.

Taken together, these results highlight the state-dependent nature of the relation between

8In principle, one might also want to control for liquidity, for instance, by including relative bid-ask spreads.
However, this is problematic since the price inefficiency measure PIM already includes different half-spreads.
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our price inefficiency metric and dealer-intermediated trading volume.9 We can interpret the
estimated coefficient linking PIM and DCM as an elasticity. From this perspective, our results
suggest that dealers’ liquidity provision is generally elastic in normal times, supporting mar-
ket efficiency. But, when dealers face constraints their liquidity supply becomes less elastic,
which adversely affects both the efficiency of prices and the level of transaction costs.

Table 3: From linear model with dummies to smooth transition regression

PIM

Linear Dummy Logistic LSTAR

γ 1.00 ***4.90
c **−0.04

Unconstrained volume ***0.07 ***0.09 ***0.14 ***0.11
[10.00] [11.40] [9.41] [10.64]

Constrained volume ***0.06 0.01 0.00 *0.02
[6.90] [0.38] [0.06] [1.72]

Realised variance ***0.03 ***0.03 ***0.03 ***0.03
[8.13] [8.17] [8.15] [8.17]

Constrained-Unconstrained ***−0.02 ***−0.09 ***−0.13 ***−0.09
[4.81] [4.92] [4.97] [4.64]

R2 in % 3.41 3.45 3.46 3.46
Avg. #Time periods 2,185 2,185 2,185 2,185
#Currency triplets 15 15 15 15
Currency triplet FE yes yes yes yes
Time-series FE yes yes yes yes

Note: In columns 1 to 3 this table reports results from estimating a linear model (OLS) of the form
PIMk,t = λt + αk + β′1 fk,t + ρ′ fk,t ·Dt−1 + δ′wk,t + εk,t, where fk,t and wk,t collect all regressors and Dt−1 is a 1-day
lagged interaction variable capturing distressed market periods. Note that the estimate of ρ corresponds to the
difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1) in column 4. In column
1, Dt is the dealer constraint measure DCMt. In column 2, Dt is equal to one if DCMt is above its 75% quantile
in period t. In column 3, Dt is a logistic transformation of DCMt based on 1/[1 + exp(−γDCMt)], where γ

determines the steepness of the function. In column 4 the table shows results from a smooth transition regression
(LSTAR) of the form PIMk,t = λt + αk + [1− G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + δ′wk,t + εk,t, where fk,t (wk,t) are

state-dependent (state-independent) regressors and G(zt−1) is a logistic function depending on the state variable
zt−1. The regime variable is the 1-day lagged value of DCMt. The optimal parameters γ and c are determined
by nonlinear least squares minimising the concentrated sum of squared errors. Both dependent and independent
variables are taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September
2020. The test statistics based on Driscoll and Kraay (1998) robust standard errors (using the plug-in procedure
for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets.
Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

To hone some further intuition for the LSTAR model, we plot the resulting time path of

9Note that our estimates for the difference in the slope coefficients across constrained and unconstrained
regimes are very similar when using PIM as a regressor and VLM as the dependent variable.
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the fitted regime function G(DCMt) in Graph A of Figure 5. Except for the first two years of
the sample, the fitted G(DCMt) is mostly close to 0 (it is less than 0.25 on 45% of the days
in the sample) and occasionally increases above 0.75 (29% of the days). These upward spikes
are particularly pronounced during the European sovereign debt crisis through 2014/15, un-
certainty around Brexit and US elections in 2016, and the Covid-19 period in 2020. Hence,
the unconstrained regime (when β1 is the effective slope coefficient) corresponds to a normal
market situation, while the constrained regime (when the effective slope coefficient is close to
β2) represents periods when dealers face constraints in their risk-bearing capacity.

To assess the economic importance of dealers’ risk-bearing capacity for changes in the
price inefficiency measure PIM, we consider the fitted value of the LSTAR model in column
4 of Table 3. Panels B and C in Figure 5 show our fitted log changes in PIM split into two
parts: the first part (Panel B) is driven by the unconstrained regime [1 − G(DCMt)]β̂′1 fk,t,
whereas the second part (Panel C) is determined by the constrained regime G(DCMt)β̂′2 fk,t.
By construction, the total fitted changes in PIM add up to the sum of these two subcompo-
nents. Hence, it is precisely during normal periods, when dealers’ risk-bearing capacity is
most important for explaining changes in PIM. This result is driven by the observation that
trading volume and price inefficiency co-move significantly during times when dealers are
largely unconstrained. On the contrary, during constrained regimes the channel is almost
completely muted as illustrated by the small fitted values in Panel C of Figure 5.

Thus far, we have mainly focused on the time-series dimension of the relation between
trading volume and price inefficiency but have not delved deeper into the cross-section of
currency pair triplets. To explore the cross-sectional heterogeneity, we estimate the LSTAR
model individually for 15 triplets of currency pairs. We further contrast the result with a sim-
ple linear model that does not distinguish between constrained and unconstrained regimes.
We report these analyses in Table 4. In particular, Panel A shows the results from estimating
a linear model (OLS) of the form

PIMk,t = αk + βk VLMk,t + δk RVk,t + εk,t, (7)

where VLMk,t is the total trading volume within each currency pair triplet k and RVk,t the re-
alised variance in the non-dollar currency pair. In Panel B the same table shows results based
on the LSTAR model in Eq. (5), where the regime variable is again the 1-day lagged value of
the dealer constraint measure DCMt. As before, both dependent and independent variables
are taken in logs and changes to support the interpretation of the regression coefficients as
percentage point changes (or, equivalently, elasticities).

Table 4 strongly supports the idea that constraints on dealers non-trivially impact the re-
lation between trading volume and price inefficiency. In particular, the difference between the
parameter estimates of constrained and unconstrained regimes (i.e., β2 − β1) is significantly
negative for 11 out of 15 triplets of currency pairs. In line with this finding, the R2s of these
regressions are rather close to the linear model. This is entirely expected, given that the co-
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Figure 5: Time-series of fitted G(CDS) and price inefficiency measure

Note: Panel A of this figure shows the fitted regime function G(DCMt), using the point estimates in column 4 of
Table 5. Panel B shows the cross-sectional average of the part of the fitted log changes in PIMk,t that is driven by
unconstrained state coefficients ([1− G(zt−1)]β

′
1 fk,t). Panel C shows the cross-sectional average of the part driven

by the constrained state coefficients (G(zt−1)β′2 fk,t). By construction, the fitted values for log changes in PIMk,t

are the sum of Panels B and C. The sample covers the period from 1 November 2011 to 30 September 2020.

efficient with respect to trading volume in constrained regimes is close to zero. In sum, both
results are consistent with the idea that in calm periods dealers channel liquidity to the FX
market supporting market efficiency but are less willing to do so when they are constrained.
In other words, the elasticity of liquidity provision by dealers is significantly lower during
periods when our measure of dealer constraints is high.

We dig deeper into the relation between trading volume VLM and the two determinants
of our price inefficiency measure, namely, violations of triangular no-arbitrage VLOOP and
the transaction costs TCOST incurred by arbitrage trades. Table 5 reports results from daily
fixed effects LSTAR panel regressions based on Eq. (5), where the dependent variable yk,t is
a measure of market efficiency (i.e., VLOOP, TCOST or PIM) and the regime variable is the
1-day lagged value of the dealer constraint measure DCMt. Moreover, in columns 2, 4, and 6
we include currency pair specific realised variance in non-dollar pairs as a control variable.

Two findings stand out: First, trading volume covaries significantly less with VLOOP and
TCOST during times when dealers are more constrained. Second, it is above all the rela-
tion between VLOOP and trading volume that strongly diverges and even exhibits negative
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coefficients in the constrained regime.

Our preliminary explanation, which we formalise below based on a simple model (see
Section 4), is that there are two main forces at play when dealers are constrained. On the
one hand, dealers will post more conservative bid and ask quotes thus increasing transaction
costs (higher TCOST). On the other hand, a higher spread will discourage trading including
arbitrage activity, which in turn makes dealers’ incoming customer flows less imbalanced
and hence implies a lower VLOOP. In our model (see Section 4 below), volatility is one
of the underlying forces of market dynamics and price inefficiency. The primitive source of
volatility (and hence trading volume) in the model are diverging private values among market
participants (i.e., disagreement).

To account for the effect of disagreement, we have explored regression specifications in-
cluding alternative high-frequency measures of disagreement. For instance, we consider the
dispersion of order flows of corporates, funds, non-bank financials, and banks (Cespa et al.,
2021) as well as the volume-volatility ratio (Liu and Tsyvinski, 2020) as control variables and
have found that our key empirical results remain qualitatively unchanged.10 Furthermore, the
estimates for the composite price inefficiency measure PIM strongly resemble the ones based
on TCOST. This result is not surprising given that TCOST is both theoretically and empirically
an order of magnitude larger than VLOOP (see Table 1 and Figure 6, respectively).

4. A simple model of constrained market efficiency

This section presents a static partial equilibrium model that rationalises the two main empir-
ical findings from the previous section:

1. Price inefficiency is higher when volatility is higher and FX dealer banks are more
constrained (Figure 4 and Table 2).

2. Price inefficiency and dealer-intermediated volume co-move when the dealers are un-
constrained but the positive correlation weakens significantly when dealers become
more constrained (Tables 3 to 5).

The model features two periods (t = 0, 1), three currency pairs (e.g., EURCAD, USDEUR,
USDCAD) and two types of agents: liquidity traders and one representative dealer. At t = 0,
liquidity traders arrive and trade with the dealer. At t = 1, the uncertainty is resolved.

4.1. Trading environment

FX spot contracts. Let us denote the three currency pairs as x, y, and z. Let p denote the
exchange rates of the three currency pairs [px, py, pz]T at t = 0 whereby the base currency for

10These additional findings are available upon request.
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Table 5: Smooth transition panel regression with DCM as state variable

VLOOP TCOST PIM

(1) (2) (3) (4) (5) (6)

γ *12.01 *12.01 ***12.05 ***12.04 ***4.95 ***4.90
c ***0.80 ***0.80 ***0.76 ***0.74 ***−0.11 ***−0.04

Unconstrained volume ***0.10 ***0.08 ***0.12 ***0.09 ***0.14 ***0.11
[3.69] [2.96] [15.46] [11.04] [13.79] [10.64]

Constrained volume −0.06 −0.07 **0.03 0.01 ***0.05 *0.02
[1.15] [1.43] [2.41] [0.72] [3.96] [1.72]

Realised variance **0.02 ***0.03 ***0.03
[2.05] [7.98] [8.17]

Constrained-Unconstrained ***−0.15 ***−0.15 ***−0.09 ***−0.08 ***−0.09 ***−0.09
[2.70] [2.66] [5.24] [4.89] [4.89] [4.64]

R2 in % 0.10 0.13 2.47 3.79 2.26 3.46
Avg. #Time periods 2,182 2,182 2,186 2,185 2,185 2,185
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

measure of market efficiency (i.e., VLOOP, TCOST, or PIM), fk,t (wk,t) are state-dependent (state-independent)
regressors, and G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the
1-day lagged value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by
nonlinear least squares minimising the concentrated sum of squared errors. Both dependent and independent
variables are taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September
2020. The test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering
and serial correlation (using the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992;
Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and
99% levels.

the first currency pair is the EUR and that for the other two it is the USD. For instance, for
currency pair x, 1 EUR = px CAD. More specifically, let ak and bk denote the ask and bid price
of currency k, and mk and sk denote the mid-quote and the spread of currency k.

The agents trading the currency pairs at t = 1 get the fundamental value, in which there
is no difference between the direct FX rate (EURCAD) and the correspondent synthetic rate
computed with two indirect rates (USDEUR and USDCAD). We denote the fundamental value
of the three currency pairs as ẽ = [ẽx, ẽy, ẽz]T. The mean and variance of the fundamental value
are e = [ex, ey, ez]T and σ = [σ, σ, σ]T, respectively. Note that the three fundamental values
are intimately linked via ex = eyez.

Liquidity traders. We model liquidity demand in a reduced form, following the classic
market microstructure literature (see e.g., Grossman and Miller, 1988; Hendershott and
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Menkveld, 2014). At t = 0, there is L unit mass of liquidity traders in each currency pair
where L is increasing in σ. In addition, L is a decreasing function of the transaction cost,
that is, the (absolute) spread s quoted by the dealer. Let λ denote the slope coefficient, and
L = λσ(1− s). A π fraction of the liquidity traders in currency pair x are buyers and the rest
are sellers. For currency pair y, a π fraction of liquidity traders are sellers and the rest are
buyers. For currency pair z, half of them are buyers, whereas the other half are sellers.

The demand is imbalanced across the three currency pairs due to different private values,
following the spirit of Gabaix and Maggiori (2015). For simplicity, suppose π is larger than
1/2, the liquidity traders impose net buying pressure (2π− 1) in currency pair x and net sell-
ing pressure (1− 2π) in currency pair y. As a result, the liquidity traders’ demand imbalance
(i.e., the net buying pressure) in each of the three currencies is given as

d = λσ(1− s)× [2π − 1, 1− 2π, 0]T. (8)

Dealer. There is a representative and competitive dealer, à la Foucault, Pagano, and Roell
(2013, Sec. 3.5). The dealer is risk-averse and is endowed with equity capital that is worth
E and makes the market at t = 0. Being competitive and starting with zero inventory, she
decides on her positions in the three currency pairs q, where qk > 0 means the dealer sells
the currency pair k, taking the market-clearing prices p as given.

The dealer is assumed to be debt-financed and incurs a funding cost (e.g., Scott, 1976;
Binsbergen, Graham, and Yang, 2010). For simplicity, suppose the debt financing costs across
the three currency pairs are the same and are denoted as δ. Moreover, the dealer’s leverage
(i.e., asset-equity ratio) across the three currency pairs is the same and denoted as γ. The
cost of debt financing is proportional to the net positions in the three currency pairs: δγ1T|q|
where 1 = [1, 1, 1]T. Let ρ denote the risk-aversion coefficient. Hence, the utility of the
leveraged dealer is given as

UD = E
(

pTq− eTq− δγ1T|q|︸ ︷︷ ︸
Debt cost

)
− ρ

2
Var

(
pTq− eTq− δγ1T|q|︸ ︷︷ ︸

Debt cost

)
. (9)

Thus, the constraints examined in Section 3 are captured via i) the mean-variance type of
risk aversion (i.e., Value-at-Risk and FX volatility) and ii) the debt funding cost (i.e., leverage
ratio in He et al. (2017), CDS spreads, and dealer debt financing cost).11 Note that the mean-
variance utility function is commonly used in the literature. The only deviation of our setup
is to explicitly introduce the debt financing cost.

11“Constrained” in our context refers to impaired risk-bearing capacity, which does not necessarily imply bind-
ing restrictions. Hence, in the model, the dealer is not subject to any additional (regulatory) binding constraints.
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Market clearing. The market clearing condition is the following: At t = 0, the liquidity
traders’ demand is equal to the dealer’s position q. In other words,

d = q (10)

4.2. Price inefficiency measure (PIM)

At t = 0, the supply function of the dealer is pinned down by her first order condition:

∂UD

∂qk =


ak − δγ− ek︸ ︷︷ ︸

marginal value of selling

− ρσ2qk︸ ︷︷ ︸
price impact

if qk > 0,

bk + δγ− ek︸ ︷︷ ︸
marginal value of buying

− ρσ2qk︸ ︷︷ ︸
price impact

if qk < 0.
(11)

The first order condition suggests that there are two components in the dealer’s supply
function. One is about the marginal valuation of buying and selling due to the debt financing
cost. The other component is the price impact, which depends on the dealer’s risk aversion.

Let η denote δγ. When the debt funding cost δ is higher, or when the dealer is more
leveraged (a higher γ), η is higher. Thus, η is a measure of how constrained the dealer is. The
higher η, the more constrained the dealer is. Thus, the supply function is

qk =


ak−η−ek

ρσ2 if qk > 0,
bk+η−ek

ρσ2 if qk < 0.
(12)

Facing the liquidity traders’ demand, the bid and ask prices for the three currency pairs
are pinned down by the following market clearing conditions (see Eqs (13) to (15)). There are
two equations for each currency pair: one is when the dealer is buying (i.e., bid price) and the
other is when the dealer is selling (i.e., ask price). Taking the first condition as an example,
the left-hand side is the selling amount from the liquidity traders and the right-hand side is
the buying amount from the dealer for currency pair x. Eventually, in equilibrium, the bid
price of currency pair x is determined by market clearing:

−λσ(1− sx)(1− π) =
bx + η − ex

ρσ2 , λσ(1− sx)π =
ax − η − ex

ρσ2 ; (13)

−λσ(1− sy)π =
by + η − ey

ρσ2 , λσ(1− sy)(1− π) =
ay − η − ey

ρσ2 ; (14)

−1
2

λσ(1− sz) =
bz + η − ez

ρσ2 ,
1
2

λσ(1− sz) =
az − η − ez

ρσ2 . (15)

Solving the system of equations, the bid-ask spreads for the three currency pairs turn out
to be the same. The intuition for this hinges on the simplified assumption that the dealers’
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debt financing cost and leverage as well as the volatility of fundamental values are the same
across the three currency pairs.12 Therefore, in this setup, the bid-ask spread is

s =
2η + λρσ3

1 + λρσ3 . (16)

Thus, the bid-ask spread increases in η. In other words, when the dealer is more con-
strained, either because leverage is high, or due to high debt financing cost, the bid-ask spread
is also higher. Moreover, as the dealer-intermediated volume is proportional to (1− s), the
model implicitly assumes that s < 1 since volume cannot be negative. That means η < 1/2.
In this case, one finds that the bid-ask spread increases in σ. Substituting s into the market
clearing conditions, the mid-quotes are13

mx = ex +
λρσ3(1− 2η)

1 + λρσ3

(
π − 1

2

)
, my = ey +

λρσ3(1− 2η)

1 + λρσ3

(
1
2
− π

)
, mz = ez. (17)

The mid-quotes of currency pair x and y deviate from their fundamental values. The ef-
fects of volatility and the dealer’s constraint on the mid-quotes are directional and depend on
the (net) demand imbalance of the three currency pairs. Take currency pair x as an example.
The buying pressure from the liquidity traders dominates their selling pressure, which pushes
up its mid-quote above its fundamental value. In other words, due to the buying pressure,
the dealer charges a mark-up on currency pair x. This mark-up increases in the imbalance,
which is λσ(1− s)(2π − 1) and the dealer’s risk aversion (ρσ2/2). When the dealer is more
constrained, the higher spread she charges will deter part of the liquidity demand. The ac-
tions of the dealer will thus ultimately reduce trading volume and hence curb the imbalance.
As a result, the mark-up decreases in the dealer’s constraint η.

The effect of volatility is a result from three channels: First, higher volatility leads to a
higher spread, dampening the trading volume and henceforth the mark-up. Second, more
volatility itself is a reflection of greater disagreement (e.g., Hong and Sraer, 2016), hence a
higher demand for liquidity provision and a higher mark-up. Third, more volatility increases
the dealer’s risk aversion and hence raises the mark-up. It turns out that the overall effect of
volatility is to increase the mark-up implying that the second and the third channels dominate
the first one. Note that for currency pair y, the mark-down is a symmetric case of the mark-up
in x. Contrarily, for currency pair z, there is no mark-up or mark-down as there is no (net)
order flow imbalance by assumption.

12Relaxing the assumption of homogeneous volatility across currency pairs (i.e., having currency pair specific
volatility) does not change the results qualitatively because the market clearing conditions Eqs (13) to (15) are also
currency pair specific.

13Although mz = ez in our model, it is an arbitrary choice. With a slightly different setup on the demand
imbalance, the same could hold for the other two currency pairs. More generally, as long as the demand imbalance
across the three currency pairs is not exactly the same, the size of the deviations of the mid-quotes from the
fundamental values is different, generating violations of the law of one price. For brevity, our modeling focuses
on one simple example.
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The deviation of the mid-quotes charged by the dealer from the fundamental values repre-
sents a violation of the law of one price, leading to a positive VLOOP. However, such positive
deviations are not necessarily profitable arbitrage opportunities because of transaction costs
(TCOST), that is, bid-ask spreads, which define the arbitrage bounds (Shleifer and Vishny,
1997). Thus, the combination of VLOOP and TCOST reflects market (in)efficiency. Following
our definition of PIM in Eq. (3), we have that

PIM = VLOOP + |TCOST| = log
(

mx

mymz

)
+ log

(
(1− s

2mx )

(1 + s
2my )(1 + s

2mz )

)
. (18)

4.3. The links between the model and the empirical results

As shown in Eq. (18), the effect of volatility and the dealer’s constraint on PIM is trans-
mitted both via the (relative) bid-ask spreads and the mid-quotes. Figure 6 visualizes these
effects. Intuitively, when volatility is high, the deviations of the mid-quotes from the funda-
mental value are larger (due to the larger mark-up in x and larger mark-down in y), pushing
up the VLOOP. Meanwhile, a higher volatility also means a higher bid-ask spread and thus a
higher TCOST. As a result, PIM increases in volatility.

Regarding the effect of the dealer’s constraint, there are two forces. On the one hand,
when the dealer is more constrained, the spread is higher, that is, a higher TCOST. On the
other hand, a higher spread also discourages trading and makes the net order flow less
imbalanced. As a consequence, the deviation from the law of one price is smaller and hence
VLOOP is smaller. Overall, the first channel dominates the second one, and hence PIM
increases in the dealer’s leverage and her debt financing cost.

Proposition 1 summarizes these results. It formalizes the intuition behind the empirical
findings in Table 2 showing that more severe dealer constraints (higher DCM) (reflecting
higher η) are associated with higher volatility and price inefficiency (PIM). In addition, across
different parameter specifications, it turns out that the VLOOP is much smaller than TCOST,
which is also one of the stylized facts from the data (see Table 1). Proposition 1 summarises
these results, which are consistent with the empirical findings in Tables 3 to 5.

Proposition 1: The price inefficiency metric (PIM) is higher when

i) the volatility of the currency pairs is higher;

ii) the (representative) dealer is more levered;

iii) the debt funding cost for the dealer is higher.

Proof. See Online Appendix.

Next, we investigate the dealer’s elasticity of liquidity provision, which corresponds to
the regression coefficients on dealer-intermediated volume in the previous section. Note that
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Figure 6: The effects of volatility and the dealer’s constraint on PIM
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Note: This figure shows how volatility and the dealer’s constraint affect PIM. The baseline parameters are π =

0.7, λ = 1, σ = 1, γ = 1.5, δ = 0.1, ρ = 1, ex = 1.32, ey = 1.1, ez = 1.2.

both volume and PIM are equilibrium outcomes. The dealer-intermediated volume is14

VLM = 3λσ
1− 2η

1 + λρσ3 . (19)

Taking the first order derivative with respect to σ, we have

∂VLM
∂σ

= 3λ(1− 2η)
(1− 2λρσ3)

(1 + λρσ3)2 . (20)

As η < 1/2, (1− 2η) is positive. Thus, when ρ < 1/(2λσ3), the dealer-intermediated
volume increases in volatility. Intuitively, as discussed above, a higher volatility affects vol-
ume via two channels: First, it reflects a higher trading demand and second, it deters some
trading volume due to the concurrent rise in the bid-ask spread. When the dealer’s risk
aversion coefficient ρ is small, the former dominates the latter. As shown in Table 2, the
dealer-intermediated volume increases in volatility, indicating that the parameter space of
interest is ρ < 1/(2λσ3). Thus, for the rest of this section, we focus on this case.

When the dealer is more constrained, that is, η is high, the higher bid-ask spread results
into a slower increase of the dealer-intermediated volume. Lemma 1 summarises this result.

Lemma 1: When the dealer is more constrained, volume increases in volatility at a slower pace.

Proof. See the discussions preceding this lemma.

14Note that the scalar 3 comes from assuming three currency pairs.
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Recall that PIM increases in volatility for all η (see Proposition 1). Hence, as volatility
increases, the dealer-intermediated volume positively correlates with PIM. Such a positive
correlation captures the elasticity of liquidity provision and corresponds to the coefficient on
trading volume in the regression analysis. In essence, such a positive correlation between
dealer-intermediated volume and PIM represents how intermediated market depth responds
to price dislocations. If both market depth and pricing distortions are large, then liquidity
provision is apparently more elastic and resilient to demand and supply shocks.

Figure 7 visualises the elasticity of liquidity provision. When the dealer is unconstrained,
that is, η is small, the dealer-intermediated volume is high and PIM is low (see the grey
line). In general, liquidity provision seems to be rather elastic as both variables are positively
correlated conditional on different realisations of volatility. However, when the dealer is
constrained, the line shifts towards the lower right (see black line). To see this, compare the
slope of the two tangent lines, capturing the elasticity of liquidity provision across the two
market states: i) unconstrained dealers and low volatility and ii) constrained dealers and high
volatility. Beyond doubt, the slope of the latter is much flatter and hence indicates that the
elasticity of liquidity provision is smaller when dealers are more constrained. This is because
the dealer charges a higher spread that leads to a slower increase in the amount of equilibrium
trading volume. Proposition 2 summarises these results.

Proposition 2: The dealer-intermediated volume positively correlates with PIM. This positive correla-
tion, capturing the elasticity of liquidity provision, weakens when the dealer is more constrained.

Proof. See the Online Appendix.

Proposition 2 finds compelling support in our empirical analyses. Specifically, Table 2
shows that dealer-intermediated trading volume increases even when dealers are more con-
strained. However, the state-dependent correlation between intermediated volume and PIM
weakens when dealer constraints intensify. This key result holds true no matter which econo-
metric model is applied (Table 3), for almost all currency pair triplets (Table 4), for both price
inefficiency components (VLOOP and TCOST), and after controlling for volatility (Table 5).

5. Additional tests and robustness

Our model suggests that both volume and PIM are equilibrium outcomes. In this case, re-
gressing PIM on volume could lead to biased estimates when the shocks (or disturbances) on
liquidity demand and supply are correlated due to potentially omitted variables. To address
this issue, we follow Gabaix and Koijen (2020) and use a granular instrumental variable (GIV)
approach. On top of that, we provide two additional robustness tests.
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Figure 7: The elasticity of liquidity provision
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Note: This figure plots the dealer-intermediated volume against PIM. The baseline parameters are π = 0.7, λ =

1, ρ = 1, ex = 1.32, ey = 1.1, ez = 1.2. σ varies between 0.5 and 0.7. The unconstrained dealer is with η = 0.05 while
the constrained one is with η = 0.2. The solid lines indicate the equilibrium outcomes when varying volatility.
The grey dashed line indicates the derivative of volume with respect to PIM when the dealer is unconstrained
and the volatility is low, while the black dashed line is the derivative of volume with respect to PIM when the
dealer is constrained and the volatility is high.

Granular instrumental variables. To mitigate the omitted variable bias (OVB) in the smooth
transition regressions setup, we construct our granular instrumental variable (GIV) following
the work by Gabaix and Koijen (2020). Their approach is particularly well-suited for our
analysis because it allow us to systematically identify idiosyncratic spikes in trading volume
by leveraging the cross-sectional heterogeneity of the data. Given the interconnected nature
of the FX market, these idiosyncratic shocks do not only affect the aggregate level of trading
volume in the FX market but also the extent to which trading volume is concentrated in
individual triplets of currency pairs. With these assumptions in place, we define our GIV as
the difference between the size and equal weighted average of hourly dealer-intermediated
trading volume:

GIVt =
15

∑
i=1

Si,t−1VLMi,t −
1
15

15

∑
i=1

VLMi,t (21)
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where Si,t =
VLMi,t

∑15
i=1 VLMi,t

is the relative volume share of currency pair triplet i at time t. We
sum up hourly GIV estimates over the course of the trading day to obtain a daily time-series
of idiosyncratic shocks. The intuition is that by taking the difference between size and equal
weighted averages the common component is washed out across currency pair triplets and
the residual corresponds to the idiosyncratic shock part. Note that these idiosyncratic spikes
are driven by triplets of currency pairs that are “large” in the sense that they amass a lot of
trading volume compared to the average currency triplet. Clearly, when there is not enough
granularity in the data, then the GIV approach may not work. This concern does certainly
not apply to our volume data set, which exhibits a high degree of heterogeneity in the cross-
section of currency pair triplets (see Table 1).

Table 6 shows the results of applying the GIV approach to our LSTAR model Eq. (5).
Note that we cannot include time-series fixed effects because the GIV is the same for all
15 triplets of currency pairs. The (unreported) first stage coefficient is highly significant
(with an F-statistic well above 10) suggesting that we have identified an economically relevant
instrument. The second stage results in Table 6 are fully in line with the OLS estimates
in Table 6 suggesting that the OVB is negligible. Specifically, the difference between the
trading volume coefficient across constrained and unconstrained regimes remains negative
and statistically significant. This result does not only hold for our price inefficiency measure
PIM but also its components based on violations of triangular no-arbitrage conditions VLOOP
and arbitrage transaction costs TCOST. To be specific, the elasticity of PIM with respect to
dealer-intermediated volume is 0.11 percentage points in normal times but just around 0.05
percentage points when dealers are constrained. Put differently, dealers’ elasticity of liquidity
provision drops by more than 50% in times of market stress. This results is consistent with the
idea that dealer-intermediated trading volume promotes market efficiency in normal times
but fails to do so when dealer constraints become (economically) binding.

To hone some economic intuition for our GIV we perform a narrative check in the spirit of
Gabaix and Koijen (2020). The top 20 idiosyncratic shocks can be classified into three broad
categories: monetary policy announcements, large asset price moves, and political uncertainty
in the US, EU, and Japan, respectively. This is consistent with the idea that the GIV approach
defines idiosyncratic shocks as the difference between the size and equal weighted averages
of the endogenous variable. Table 7 gives an overview of the economic narratives for the top
20 idiosyncratic events. For instance, notice that the Swiss franc de-pegging on 15 January
2015, which was arguably exogenous and largely unanticipated, shows up very prominently
in this list. As an additional robustness test, we include the first 3 principal components of
the total trading volume within each currency pair triplet as a control variable (see Table B.3
in the Online Appendix).

Different components of dealer constraints. Next, we consider the same LSTAR specifi-
cation as in Eq. (5) but instead of our dealer constraint measure DCM we use its five con-

30



Table 6: LSTAR panel regression with DCM as state variable and granular instrument

VLOOP TCOST PIM

γ 12.08 12.10 4.99 12.03 12.01 12.01
c ***1.11 ***1.11 **1.11 *0.84 −0.12 −0.11

Unconstrained volume ***0.16 ***0.12 ***0.12 ***0.08 ***0.15 ***0.11
[6.78] [5.18] [8.02] [6.61] [9.76] [7.25]

Constrained volume 0.07 0.04 ***0.06 **0.04 ***0.08 ***0.05
[1.61] [1.01] [2.61] [2.42] [3.78] [2.85]

Realised variance ***0.08 ***0.06 ***0.07
[10.05] [6.37] [6.92]

Constrained-Unconstrained *−0.09 −0.08 **−0.06 **−0.05 ***−0.07 ***−0.06
[1.67] [1.63] [2.28] [2.31] [2.60] [2.59]

R2 in % 0.95 1.77 7.30 11.16 7.44 11.29
Avg. #Time periods 2,280 2,280 2,285 2,284 2,284 2,284
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE no no no no no no

Note: This table reports results from the second stage of a granular instrumental variable approach that we
apply to the daily fixed effects LSTAR panel regressions of the form yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t +

G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a measure of market efficiency (i.e., VLOOP,
TCOST, or PIM), fk,t (wk,t) are state-dependent (state-independent) regressors, and G(zt−1) is a logistic function
depending on the regime variable zt−1. The regime variable is the 1-day lagged value of the dealer constraint
measure DCMt. The optimal parameters γ and c are determined by nonlinear least squares minimising the
concentrated sum of squared errors. Both dependent and independent variables are taken in logs and changes.
The sample covers the period from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll
and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in
procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in
brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

stituents. In particular, we use the 1-day lagged value of primary FX dealer banks’ quarterly
Value-at-Risk measure (VaR), quarterly He et al. (2017) leverage ratio (HKM), daily credit
default spread (CDS), daily funding cost yield (DFC), and the daily JP Morgan Global FX
Volatility index (VXY) as regime variables. Figure 8 shows the time-series variation of these
five measures that exhibit reasonably high correlations ranging from 35% to 90% percent.

Table 8 reports the estimates of using each of the five aforementioned measures as a state
variable and jointly considers all five of them in the last column. The difference between the
constrained and unconstrained coefficients is negative and significant across all six specifica-
tions. Moreover, the estimates are fully in line with our baseline specification based on our
dealer constraint measure DCM in terms of economic magnitudes. Again, the robustness of
our results is not surprising given the strong co-movement across these five different regime
variables.
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Table 7: Narrative analysis

Date Event

03/12/2015 ECB decides to decrease the interest rate on the deposit facility by 10 BPS to -0.30%

31/10/2014 Bank of Japan expands its monetary stimulus and injects JPY 80 tn into the economy

04/09/2014 ECB cuts rates and buys governments bonds as part of its quantitative easing programme

10/11/2011 Italy auctions EUR 5 tn worth of governments bonds as investors lose confidence in the country

06/11/2014 Key ECB interest rate targets remain unchanged

04/04/2013 Bank of Japan has surprised markets with the size of its latest stimulus package

10/03/2016 ECB sets the main refinancing rate to 0% and accelerates its monthly purchase of assets to EUR 80 bn

29/01/2016 Bank of Japan adopts negative interest rates

03/11/2011 ECB cuts benchmark interest rates by 0.25%

05/06/2014 ECB announces a cut in benchmark interest rates

13/01/2012 Standard & Poor’s downgrades France and eight other eurozone countries due to the ongoing debt crisis

15/01/2015 The Swiss National Bank (SNB) abandons the peg against the EUR

09/11/2011 Italy heads deeper into the financial crisis as the 10-year government bond yield spikes above 7%

25/05/2012 Spain’s fourth largest bank, Bankia, asks the government for a bailout worth EUR 19 bn

04/12/2014 Markets fall as the ECB does not announce quantitative easing and keeps interest rates unchanged

24/05/2013 Japan’s central bank governor has vowed to stabilise the country’s bond market

18/01/2012 IMF adjusts its growth forecast downward as the European sovereign debt crisis continues

25/02/2013 Japanese markets are boosted by new central bank nominee, Haruhiko Kuroda

09/11/2016 US stock market rallies as Donald Trump wins the US presidential election

24/08/2015 Sharp fall in the US and European stock market as concerns over China’s slowing economic growth.

Note: This table summarises the economic narratives for the top 20 idiosyncratic events encompassing our
granular instrumental variables approach. The top 20 idiosyncratic shocks can be classified into three broad
categories: monetary policy announcements, large stock market moves, and political uncertainty in the US, EU,
and Japan, respectively.

Inter-bank vs customer volumes Lastly, we decompose trading volume into to inter-bank
and customer-bank volume to better understand which market segments suffer the most from
reduced liquidity provision when dealer constraints tighten. Specifically, the CLS customer-
bank order flow data comprises three groups of customers, that is, corporates, funds, and
non-bank financials.15 Note that bilateral trades between two such customer groups are quasi
non-existent given the two-tier structure of the FX market (Rime and Schrimpf, 2013) and
hence also do not form part of the data that CLS provides. As a result, the customer-bank data
only contains trades that pass through an FX dealer bank (e.g., Citi Bank or UBS). Moreover,
the inter-bank data includes trades between two banks that are members of the CLS system.
Some of these banks are GSIBs, whereas others include lower-tier banks outside of the main
dealer community (e.g., Danske Bank or Commerzbank).

Table 9 reports the results of estimating the LSTAR model in Eq. (5) based on inter-bank
and customer-bank volume rather than total trading volume. To be precise, we define total
trading volume in each customer group as the sum of buy and sell volume in a given currency

15See Cespa et al. (2021) and Ranaldo and Somogyi (2021) for a detailed description of the CLS flow data set.
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Figure 8: State variables

Note: This figure plots different state variables that we observe at the daily and quarterly frequency, respectively.
Observations have been standardised by subtracting the full sample mean and dividing by the full sample stan-
dard deviation of every state variable. The five state variables are the 1-day lagged value of primary FX dealer
banks’ i) quarterly Value-at-Risk measure (VaR, dashed black line), ii) quarterly He et al. (2017) leverage ratio
(HKM, dashed grey line), iii) daily credit default spread (CDS, solid black line), iv) daily funding cost yield (DFC,
solid black line with grey circles), and v) the daily JP Morgan Global FX Volatility index (VXY, solid grey line).
The sample covers the period from 1 November 2011 to 30 September 2020.

pair. There is an interesting picture that arises: On the one hand, the coefficients related to
unconstrained volume of the inter-bank segment are higher than those of the customer-bank
segment suggesting a more elastic of liquidity provision in the former. On the other hand,
the elasticity of liquidity provision significantly weakens with dealer constraints for both
customer-bank and inter-bank trading activity. However, the economic magnitudes of the
constrained minus unconstrained coefficients suggest that large dealer banks mainly curtail
their liquidity provision in transactions with other banks. Of course, this does not rule out
the possibility that dealers charge higher spreads to their customers as well when they are
more constrained.

To summarise, the first robustness check has delved into the determinants of our com-
posite dealer constraint measure, whereas the second robustness test has sought to better
understand how dealer constraints affect customer-dealer and inter-dealer relations. Overall,
these tests corroborate our previous results and support the main mechanisms of our model.
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Table 8: Smooth transition regression with different state variables

PIM

VaR HKM CDS DFC VXY All

γVaR ***12.04 *12.10
γHKM ***4.98 **12.10
γCDS ***12.03 **12.10
γDFC ***4.33 12.10
γVXY ***12.02 *12.09
c ***0.36 ***0.60 ***−0.21 ***−0.27 ***0.26 ***0.50

Unconstrained volume ***0.09 ***0.09 ***0.11 ***0.12 ***0.09 ***0.09
[11.46] [10.96] [11.64] [7.27] [10.43] [11.24]

Constrained volume 0.02 0.02 *0.02 ***0.04 ***0.04 0.00
[1.04] [1.55] [1.68] [3.28] [3.14] [0.22]

Realised variance ***0.03 ***0.03 ***0.03 ***0.03 ***0.03 ***0.03
[8.41] [8.44] [8.43] [8.21] [8.58] [8.16]

Constrained-Unconstrained ***−0.08 ***−0.07 ***−0.09 ***−0.08 ***−0.06 ***−0.10
[4.46] [3.73] [5.39] [3.15] [3.59] [4.87]

R2 in % 3.33 3.26 3.40 3.34 3.28 3.45
BIC 51.57 51.58 51.56 50.82 51.58 50.80
Avg. #Time periods 2,284 2,284 2,284 2,185 2,284 2,185
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
PIMk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where fk,t (wk,t) are state-dependent

(state-independent) regressors and G(zt−1) is a logistic function depending on the regime variable zt−1. The
regime variables are the 1-day lagged value of primary FX dealer banks’: quarterly Value-at-Risk measure (VaR,
column 1), quarterly He et al. (2017) leverage ratio (HKM, column 2), daily credit default spread (CDS, column 3),
daily funding cost yield (DFC, column 4), and the daily JP Morgan Global FX Volatility index (VXY, column 5).
Note that we assign an equal weight to each top 10 FX dealer bank (based on the Euromoney FX survey) when
computing a cross-sectional average. Column 6 includes all 5 regime variables jointly. The optimal parameters
γ and c are determined by nonlinear least squares minimising the concentrated sum of squared errors. Both
dependent and independent variables are taken in logs and changes. The sample covers the period from 1
November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust standard
errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic lag
selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and
*** denote significance at the 90%, 95%, and 99% levels.

Dealers promote market efficiency in normal times through elastic liquidity provision. As
such, dealer intermediation contributes to greater market efficiency: tight spreads and infor-
mative prices. However, during periods of market stress the FX dealer banks are constrained
and as a result their intermediation activities cannot keep up with the deterioration of market
efficiency.
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Table 9: Smooth transition regression with different customer groups

VLOOP TCOST PIM

Non-bank Bank Non-bank Bank Non-bank Bank

γ 14.90 **20.10 *20.08 **20.00 *20.03 **20.08
c ***1.10 ***0.84 ***0.18 ***0.76 ***0.15 ***0.76

Unconstrained volume *0.03 ***0.08 ***0.02 ***0.09 ***0.03 ***0.09
[1.86] [2.66] [5.56] [9.60] [5.25] [9.90]

Constrained volume −0.04 −0.12 0.00 −0.01 0.00 −0.02
[1.30] [1.51] [0.01] [0.40] [0.16] [0.76]

Realised variance **0.02 *0.02 ***0.04 ***0.03 ***0.04 ***0.03
[2.28] [1.71] [9.02] [7.15] [9.13] [7.35]

Constrained-Unconstrained **−0.07 **−0.19 ***−0.02 ***−0.10 ***−0.03 ***−0.11
[2.04] [2.36] [2.99] [3.82] [3.16] [3.90]

R2 in % 0.10 0.14 3.00 3.92 2.72 3.57
Avg. #Time periods 1979 1979 1982 1982 1982 1982
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

measure of market efficiency (i.e., VLOOP, TCOST, or PIM), fk,t (wk,t) are state-dependent (state-independent)
regressors, and G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variable is the
1-day lagged value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by
nonlinear least squares minimising the concentrated sum of squared errors. Both dependent and independent
variables are taken in logs and changes. The sample covers the period from 1 September 2012 to 30 September
2020. The test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering
and serial correlation (using the plug-in procedure for automatic lag selection by Newey and West, 1994) are
reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

6. Conclusion

In this paper, we have studied whether dealer constraints have adverse implications on market
efficiency. Using a unique data set of prices and volumes in the FX market, we provide a novel
analytical method to identify and measure market (in)efficiency, and its main components:
the fundamental violation of the law of one price and the associated transaction cost that
traders would incur to restore no-arbitrage conditions. Second, we uncover the following
novel empirical findings: On the one hand, when dealers are unconstrained they support
market efficiency by providing liquidity to their customers. On the other hand, when dealers
are constrained, for instance, when they face Value-at-Risk, leverage, or funding constraints,
their liquidity provision is impaired and consequently the relation between intermediated
volume and price efficiency breaks down. We rationalise our findings with a theoretical
model outlining how market efficiency deteriorates when markets are more volatile and when
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dealers are more constrained.

We obtain our results for the FX spot market, which is commonly regarded as one of
the world’s most liquid markets in the world. However, we believe that our findings also
have implications for other over-the-counter (OTC) markets. For instance, broadly similar
mechanisms could be at play when pricing distortions emerge between similar government
bonds (Hu, Pan, and Wang, 2013) with pronounced deviations from a smooth yield curve (as
observed during the Covid-19 crisis). We leave the study of the role of dealer constraints on
the efficiency of other important OTC markets (e.g., government and corporate bonds, OTC
derivatives) to future research.
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Appendix A. Other data sources

Major FX dealer banks are at the heart of our composite dealer constraint measure. For
each year from 2011 to 2020, we retrieve the ranking of the top 10 FX dealer banks from the
Euromoney FX surveys, which are publicly available. See Table 1 for an overview of the top
10 FX dealer banks over the sample period from 2011 to 2020. Note that this implies that
we do not include any non-bank financial liquidity providers (i.e., XTX, HC Tech or Jump
Trading), which are privately held companies. What follows lists the data source for each of
the five subcomponents of our composite dealer constraint measure (DCM).

• Value-at-Risk (VaR) is retrieved directly from the financial statements for each of the
top 10 dealer banks. The frequency is quarterly.

• Leverage ratio (HKM) is computed following the work by He et al. (2017) as book
debt (i.e., short plus long term debt) relative to the sum of market equity (i.e., shares
outstanding times share price) and book debt that are retrieved from Bloomberg for
each dealer bank. The frequency is quarterly.

• Credit default spread (CDS) with 5 year maturity is retrieved from Bloomberg for each
dealer bank. The CDS premia are denominated in dollars for US banks and in euros for
all Europeans banks, including the UK domiciled ones. The frequency is daily.

• Debt Funding cost (DFC) is retrieved from iBoxx for each dealer bank corresponding
to the average bond issuance cost across different maturities and major currencies (i.e.,
USD, EUR, and GBP). The frequency is daily.

• JP Morgan Global Volatility index (VXY) is not dealer bank specific but a global stress
factor that we retrieve directly from Bloomberg. The frequency is daily.

Table 1: Top 10 FX dealer banks

Rank 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

1 Deutsche Bank Deutsche Bank Deutsche Bank Citi Bank Citi Bank Citi Bank Citi Bank JP Morgan JP Morgan JP Morgan
2 Barclays Citi Bank Citi Bank Deutsche Bank Deutsche Bank JP Morgan JP Morgan UBS Deutsche Bank UBS
3 UBS Barclays Barclays Barclays Barclays UBS UBS Bank of America Citi Bank Deutsche Bank
4 Citi Bank UBS UBS UBS JP Morgan Deutsche Bank Bank of America Citi Bank UBS Citi Bank
5 JP Morgan HSBC HSBC HSBC UBS Bank of America Deutsche Bank HSBC State Street HSBC
6 HSBC JP Morgan JP Morgan JP Morgan Bank of America Barclays HSBC Goldman Sachs HSBC Goldman Sachs
7 RBS RBS RBS Bank of America HSBC Goldman Sachs Barclays Deutsche Bank Bank of America State Street
8 Credit Suisse Credit Suisse Credit Suisse RBS BNP Paribas HSBC Goldman Sachs Standard Chartered Goldman Sachs Bank of America
9 Goldman Sachs Morgan Stanley Morgan Stanley BNP Paribas Goldman Sachs Morgan Stanley Standard Chartered State Street Barclays BNP Paribas
10 Morgan Stanley Goldman Sachs Bank of America Goldman Sachs RBS BNP Paribas BNP Paribas Barclays BNP Paribas Barclays

Note: This table reports the ranking of the top 10 FX dealer banks for the years 2011 to 2020 from the Euromoney
FX surveys. Note that this ranking only includes banks and excludes any non-bank financial liquidity providers
(i.e., XTX, HC Tech or Jump Trading), which are privately held companies.

40



Appendix B. Additional empirical results

Table 2: Summary statistics

PIM in bps Volume in $bn Bid-ask spread in bps Volatility in bps VLOOP>TCOST in %

VLOOP TCOST Direct Synthetic Direct Synthetic Direct Synthetic

AUD-USD-JPY 0.24 4.88 0.18 2.55 4.15 2.93 14.38 11.21 0.18
AUD-USD-NZD 0.29 5.85 0.09 1.00 4.44 3.72 9.32 12.70 0.02
CAD-USD-JPY 0.30 4.67 0.03 2.66 4.29 2.61 12.66 9.47 0.43
EUR-USD-AUD 0.19 4.52 0.14 3.86 3.54 2.82 11.54 10.97 0.04
EUR-USD-CAD 0.28 4.25 0.08 3.97 3.55 2.49 10.15 9.12 0.07
EUR-USD-CHF 0.21 3.98 0.37 3.38 2.62 2.71 6.38 9.50 0.10
EUR-USD-DKK 0.14 3.89 0.09 3.09 2.54 2.65 1.82 9.22 0.05
EUR-USD-GBP 0.19 4.07 0.61 4.08 3.19 2.48 9.52 9.62 0.03
EUR-USD-JPY 0.21 3.90 0.65 4.83 3.14 2.42 11.43 9.69 0.66
EUR-USD-NOK 0.26 7.69 0.24 3.13 6.25 4.70 11.01 11.95 0.05
EUR-USD-SEK 0.23 6.86 0.27 3.13 5.41 4.21 9.18 11.28 0.05
GBP-USD-AUD 0.20 5.08 0.04 1.80 4.22 2.99 12.53 11.26 0.02
GBP-USD-CAD 0.29 4.69 0.03 1.91 4.00 2.67 10.85 9.41 0.05
GBP-USD-CHF 0.19 4.94 0.03 1.32 4.09 2.88 10.69 9.89 0.03
GBP-USD-JPY 0.19 4.47 0.20 2.77 3.85 2.59 12.78 9.99 0.62

Note: This table reports the time-series average of hourly triangular no arbitrage deviations VLOOP in basis
points (bps), cumulative trading costs TCOST in bps, direct trading volume in non-dollar currency pairs (e.g.,
AUDJPY) in $bn, synthetic trading volume in dollar pairs (e.g., the average across USDAUD and USDJPY) in
$bn, as well as direct and synthetic relative bid-ask spreads and realised volatility in dollar and non-dollar
currency pairs in bps, respectively. The last column shows the relative share of VLOOP>TCOST in %. Each row
corresponds to a triplet of currency pairs, for example, AUDJPY, USDAUD, and USDJPY that we abbreviate as
AUD-USD-JPY. The sample covers the period from 1 November 2011 to 30 September 2020.
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Table B.1: Comparison EBS vs Olsen bid and ask quotes

RMSE MAE CORR

BID ASK BID ASK BID ASK

AUDJPY 0.286 0.232 0.131 0.126 0.996 0.997
AUDNZD 0.001 0.001 0.001 0.001 0.999 0.999
AUDUSD 0.001 0.002 0.001 0.001 0.998 0.997
CADJPY 0.335 0.315 0.148 0.147 0.995 0.996
EURAUD 0.003 0.002 0.002 0.002 0.998 0.998
EURCAD 0.002 0.002 0.001 0.001 0.998 0.998
EURCHF 0.001 0.001 0.001 0.001 0.993 0.992
EURDKK 0.001 0.001 0.001 0.001 0.991 0.988
EURGBP 0.001 0.001 0.001 0.001 1.000 1.000
EURJPY 0.211 0.201 0.124 0.124 0.999 0.999
EURNOK 0.016 0.012 0.008 0.008 0.996 0.998
EURSEK 0.009 0.009 0.006 0.006 0.999 0.999
EURUSD 0.002 0.002 0.001 0.001 0.997 0.998
GBPAUD 0.004 0.005 0.003 0.003 1.000 0.999
GBPCAD 0.004 0.004 0.003 0.003 0.999 0.999
GBPCHF 0.003 0.003 0.002 0.002 0.999 0.999
GBPJPY 0.523 0.590 0.251 0.257 0.999 0.999
GBPUSD 0.002 0.003 0.001 0.001 1.000 0.999
NZDUSD 0.001 0.001 0.001 0.001 0.999 0.999
USDCAD 0.002 0.002 0.001 0.001 0.999 0.999
USDCHF 0.001 0.001 0.001 0.001 0.998 0.998
USDDKK 0.007 0.007 0.005 0.005 0.999 0.999
USDJPY 0.178 0.194 0.112 0.111 1.000 0.999
USDNOK 0.014 0.016 0.010 0.010 0.998 0.998
USDSEK 0.018 0.013 0.009 0.008 0.999 0.999

Note: This table reports the root mean squared error (RMSE, columns 1 and 2), the mean absolute error (MAE,
columns 3 and 4), and the pairwise correlation coefficient (CORR, columns 5 and 6) for bid and ask quotes based
on EBS and Olsen data, respectively. The sample covers the period from 4 January 2016 to 30 December 2016.
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Table B.2: Correlations in percent

VLOOP TCOST VOD VOS BAD BAS RVD

TCOST ***28.10
VOD ***−0.48 ***6.19
VOS ***4.93 ***16.53 ***61.87
BAD ***23.24 ***74.34 ***1.85 ***9.59
BAS ***20.68 ***75.85 ***17.01 ***34.91 ***83.36
RVD ***15.52 ***37.78 ***27.43 ***37.57 ***54.60 ***49.05
RVS ***13.22 ***44.43 ***31.47 ***55.92 ***45.59 ***69.84 ***74.85

Note: This table reports the pairwise correlation coefficient of hourly triangular no arbitrage deviations VLOOP,
cumulative trading costs TCOST, direct trading volume VOD in non-dollar currency pairs (e.g., AUDJPY),
synthetic trading volume VOS in dollar pairs (e.g., the average across AUDUSD and USDJPY), relative bid-ask
spread BAD and realised volatility RVD in non-dollar currency pairs, as well as relative bid-ask spreads BAS
and realised volatility RVS in dollar currency pairs in percent (%). Significant correlations at the 90%, 95%, and
99% levels are represented by asterisks *, **, and ***, respectively. The sample covers the period from 1 November
2011 to 30 September 2020.
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Figure B.1: Trading volume and market efficiency

Note: This figure plots total trading volume VOLk,t against our price inefficiency measure PIMk,t for 15 triplets
of currency pairs. Currency pair triplets are denoted as XXX-USD-YYY, consisting of two dollar currency pairs
(i.e., USDXXX, and USDYYY) as well as one non-dollar currency pair (i.e., XXXYYY). The percentages in the
titles report the Pearson correlation coefficient between VOLk,t and PIMk,t. Both time-series correspond to 22-day
moving averages. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure B.2: Autocorrelated trading volume

Note: This figure plots the autocorrelation coefficient of total trading volume VOLk,t for 15 triplets of currency
pairs. Currency pair triplets are denoted as XXX-USD-YYY, consisting of two dollar currency pairs (i.e., USDXXX,
and USDYYY) as well as one non-dollar currency pair (i.e., XXXYYY). The solid lines are approximate 95%
confidence bounds. Both time-series correspond to 22-day moving averages. The sample covers the period from
1 November 2011 to 30 September 2020.
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Table B.3: LSTAR panel regression with DCM as state variable and granular instrument

VLOOP TCOST PIM

(1) (2) (3) (4) (5) (6)

γ 12.01 12.03 12.03 12.03 4.98 12.07
c ***1.10 ***1.10 *0.93 −0.14 **1.10 −0.11

Unconstrained volume ***0.17 ***0.12 ***0.12 ***0.11 ***0.13 ***0.11
[7.05] [5.46] [8.31] [7.30] [9.05] [7.42]

Constrained volume *0.08 0.04 ***0.07 ***0.04 ***0.07 ***0.05
[1.70] [1.11] [3.33] [2.60] [2.95] [3.07]

Realised variance ***0.08 ***0.06 ***0.06
[9.99] [6.48] [6.92]

PC1 *0.00 *0.00 *0.00 **0.00 *0.00 **0.00
[1.76] [1.83] [1.92] [2.00] [1.95] [2.01]

PC2 ***−0.01 ***−0.01 ***0.00 ***0.00 ***0.00 ***0.00
[3.99] [4.01] [3.81] [3.65] [3.91] [3.72]

PC3 0.00 0.00 0.00 0.00 0.00 0.00
[0.72] [0.40] [0.96] [0.53] [0.71] [0.23]

Constrained-Unconstrained *−0.09 −0.08 **−0.06 ***−0.06 **−0.07 **−0.06
[1.65] [1.62] [2.26] [2.69] [2.24] [2.54]

R2 in % 1.11 1.91 7.91 11.99 7.79 11.77
Avg. #Time periods 2,280 2,280 2,285 2,284 2,284 2,284
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE no no no no no no

Note: This table reports results from the second stage of a granular instrumental variable approach that we
apply to the daily fixed effects LSTAR panel regressions of the form yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t +

G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a measure of market efficiency (i.e., VLOOP,
TCOST, or PIM), fk,t (wk,t) are state-dependent (state-independent) regressors, and G(zt−1) is a logistic function
depending on the regime variable zt−1. The regime variable is the 1-day lagged value of the dealer constraint
measure DCMt. PC1, PC2, and PC3 are the first three principal components of endogenous trading volume.
The optimal parameters γ and c are determined by nonlinear least squares minimising the concentrated sum of
squared errors. Both dependent and independent variables are taken in logs and changes. The sample covers the
period from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.
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Figure B.3: Principal component analysis

Note: This figure plots the share of variation (in %) across currency pair triplets explained by the first 5 principal
components (PCs). The top figure is based on our price inefficiency metric PIM, whereas the bottom figure is
based on total trading volume VLM. The sample covers the period from 1 November 2011 to 30 September 2020.
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Table B.4: Smooth transition regression with different state variables using market shares

PIM

γVaR ***12.07 11.02
γHKM ***12.03 7.55
γCDS ***8.78 10.17
γDFC ***5.31 10.12
γVXY ***12.07 9.16
c ***0.36 ***0.68 ***−0.23 ***−0.09 ***0.26 ***0.36

Unconstrained volume ***0.09 ***0.09 ***0.11 ***0.11 ***0.09 ***0.09
[11.46] [11.45] [11.15] [9.03] [10.43] [11.44]

Constrained volume 0.02 0.01 *0.02 *0.03 ***0.04 0.00
[1.04] [0.34] [1.87] [1.81] [3.14] [0.26]

Realised variance ***0.03 ***0.03 ***0.03 ***0.03 ***0.03 ***0.03
[8.41] [8.40] [8.43] [8.17] [8.58] [8.17]

Constrained-Unconstrained ***−0.08 ***−0.08 ***−0.09 ***−0.08 ***−0.06 ***−0.09
[4.46] [4.75] [5.30] [3.78] [3.59] [5.02]

R2 in % 3.33 3.33 3.39 3.37 3.28 3.46
BIC 51.57 51.57 51.56 50.81 51.58 50.80
Avg. #Time periods 2,284 2,284 2,284 2,185 2,284 2,185
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
PIMk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where fk,t (wk,t) are state-dependent

(state-independent) regressors and G(zt−1) is a logistic function depending on the regime variable zt−1. The
regime variables are the 1-day lagged value of primary FX dealer banks’: quarterly Value-at-Risk measure (VaR,
column 1), quarterly He et al. (2017) leverage ratio (HKM, column 2), daily credit default spread (CDS, column
3), daily funding cost yield (DFC, column 4), and the daily JP Morgan Global FX Volatility index (VXY, column
5). Note that we weight each top 10 FX dealer bank (based on the Euromoney FX survey) by its relative market
share when computing a cross-sectional average. Column 6 includes all 5 regime variables jointly. The optimal
parameters γ and c are determined by nonlinear least squares minimising the concentrated sum of squared
errors. Both dependent and independent variables are taken in logs and changes. The sample covers the period
from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.
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Table B.5: LSTAR panel regression with DCM as state variable and CIP as a control

VLOOP TCOST PIM

(1) (2) (3) (4) (5) (6)

γ *12.02 **12.08 ***12.04 **12.06 ***4.93 **12.02
c ***0.80 ***−0.41 ***0.76 ***0.74 ***−0.11 ***0.74

Unconstrained volume ***0.10 ***0.12 ***0.12 ***0.12 ***0.14 ***0.13
[3.69] [2.81] [15.46] [12.60] [13.79] [12.65]

Constrained volume −0.06 0.00 **0.03 *0.03 ***0.05 0.03
[1.15] [0.02] [2.41] [1.85] [3.96] [1.39]

CIP basis 0.00 0.00 *0.00
[1.05] [0.65] [1.73]

Constrained-Unconstrained ***−0.15 **−0.12 ***−0.09 ***−0.09 ***−0.09 ***−0.10
[2.70] [2.10] [5.24] [4.81] [4.89] [4.69]

R2 in % 0.10 0.08 2.47 2.32 2.26 2.17
AIC 90.48 91.04 48.16 48.95 50.44 51.05
BIC 89.06 88.91 46.74 46.82 49.02 48.93
Avg. #Time periods 2,182 1,978 2,186 1,981 2,185 1,981
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
PIMk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where fk,t (wk,t) are state-dependent

(state-independent) regressors and G(zt−1) is a logistic function depending on the regime variable zt−1. The
regime variable is the 1-day lagged value of the dealer constraint measure DCMt. The optimal parameters γ and
c are determined by nonlinear least squares minimising the concentrated sum of squared errors. Both dependent
and independent variables are taken in logs and changes. The sample covers the period from 1 September 2012
to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for
random clustering and serial correlation (using the plug-in procedure for automatic lag selection by Andrews
and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance
at the 90%, 95%, and 99% levels.
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Figure B.4: Constrained-unconstrained coefficient and t-stat

Note: This figure plots the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1)
of the LSTAR model in Eq. (5) conditional on varying the number of lags in the regime variable DCMt−n for
n = 1, 2, ..., 22. The sample covers the period from 1 November 2011 to 30 September 2020.
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Table B.6: LSTAR panel regression ‘London hours’ with DCM as state variable

VLOOP TCOST PIM

γ **12.03 **12.04 **12.07 ***4.98 ***4.91 ***4.98
c ***1.03 ***1.02 ***0.70 ***0.52 ***−0.09 **−0.03

Unconstrained volume ***0.10 **0.06 ***0.13 ***0.10 ***0.16 ***0.12
[3.94] [2.17] [11.91] [7.90] [12.45] [9.11]

Constrained volume *−0.10 **−0.13 0.03 0.00 **0.04 0.01
[1.80] [2.40] [1.53] [0.13] [2.40] [0.42]

Realised variance ***0.05 ***0.03 ***0.04
[4.13] [3.81] [5.44]

Constrained-Unconstrained ***−0.20 ***−0.19 ***−0.10 ***−0.09 ***−0.12 ***−0.11
[3.32] [3.19] [4.61] [4.24] [5.68] [5.16]

R2 in % 0.11 0.25 1.80 2.73 1.91 2.91
Avg. #Time periods 2,173 2,173 2,186 2,185 2,185 2,185
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
PIMk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is

a measure of market efficiency (i.e., VLOOP, TCOST, or PIM), fk,t (wk,t) are state-dependent (state-independent)
regressors, and G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variable is the
1-day lagged value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by
nonlinear least squares minimising the concentrated sum of squared errors. Both dependent and independent
variables are taken in logs and changes. When aggregating hourly to daily data we omit any observations
outside of the main London stock market trading hours (i.e. from 7 am to 5 pm GMT). The sample covers the
period from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.
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Appendix C. Proofs for the model

Proposition 1.

Proof. Let Σ denote λρσ3, we can rewrite Eq. (18) as

ePIM =
1
2

(
mx

mymz

)2 (2my + s)(2mz + s)
2mx − s

. (C.1)

As the logarithmic transformation is linear, ∂ePIM

∂Σ shares the same sign with ∂PIM
∂σ . Note
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∂Σ = (π − 1
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(C.2)

Note that 1− s = 1−2η
1+Σ , the model is only meaningful if η < 1

2 as otherwise the volume
will turn negative. Furthermore, as ∂s

∂Σ = 1−2η
(1+Σ)2 , ∂ePIM

∂Σ can be rewritten as
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1− 2η

(1 + Σ)2
(2my + s)(2mz + s)

my2(2mx − s)

(
π − 1

2

)
(mx + my)

)

+
1

2mz2

(
mx

my

)2
2my + s

2mx − s
1− 2η

(1 + Σ)2 + (2mz + s)
4(mx + my)

(
(1− π) 1−2η

(1+Σ)2

)
(2mx − s)2

 . (C.3)

As 1
2 < π < 1, ∂ePIM

∂Σ > 0. In other words, PIM increases in σ. Similarly, ∂ePIM

∂η shares the
same sign with ∂PIM

∂η . Note that ∂mx

∂η = −(2π − 1) Σ
1+Σ , ∂my

∂η = −(1− 2π) Σ
1+Σ , ∂mz

∂η = 0 and
∂s
∂η = 2

1+Σ . Based on the chain rule, we have

∂ePIM

∂η
=

∂ePIM

∂mx
∂mx

∂η
+

∂ePIM

∂my
∂my

∂η
+

∂ePIM

∂s
∂s
∂η

,

=
1

2mz2

(
(2π − 1)

my2
(2my + s)(2mz + s)

2mx − s

(
Σ

1 + Σ

)
(mx + my)

)
+

1
2mz2

(
mx

my

)2 (2my + s
2mx − s

2
1 + Σ

+ (2mz + s)
4(mx + my) ((2π − 1)Σ + 1)

(1 + Σ)(2mx − s)2

)
. (C.4)
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As 1
2 < π < 1, ∂ePIM

∂η > 0. In other words, PIM increases in the dealer’s leverage (γ) and
the debt financing cost (δ).

Proposition 2.

Proof. The positive correlation between volume and PIM comes directly from Proposition 1.
As both PIM and volume increases in volatility, the two are also positively correlated. Such a
positive correlation captures the elasticity of liquidity provision (ELP) and can be written as

ELP =
∂PIM

∂σ
∂VLM

∂σ

=
ρσ2

(1−2λρσ3)
(1+λρσ3)2

e−PIM ∂ePIM

∂Σ
(1− 2η)

. (C.5)

Taking the derivative of ELP with respect to η, we have

∂ELP
∂η

=
ρσ2

(1−2λρσ3)
(1+λρσ3)2

∂e−PIM

∂η

∂
∂ePIM

∂Σ
(1−2η)

∂η
. (C.6)

Obviously, the first part of Eq. (C.6) is independent of η. The second part is negative as

∂e−PIM

∂η
= − 1

ePIM2
∂ePIM

∂η︸ ︷︷ ︸
>0, from Proposition 1

. (C.7)

From Eq. (C.3), the third part can be simplified as

∂ ∂ePIM

∂Σ
1

1−2η

∂η
=

∂

∂η

1
2mz2

(
1

(1 + Σ)2
(2my + s)(2mz + s)

my2(2mx − s)

(
π − 1

2

)
(mx + my)

)

+
∂

∂η

1
2mz2

(
mx

my

)2
2my + s

2mx − s
1

(1 + Σ)2 + (2mz + s)
4(mx + my)

(
(1− π) 1

(1+Σ)2

)
(2mx − s)2

 ,

=
∂

∂η

ePIM(mx + my)

(1 + Σ)2

(
1

mx2

(
π − 1

2

)
+

1
(2mz + s)(mx + my)

+
4(1− π)

(2mx − s)(2my + s)

)
(C.8)

Note that ∂mx

∂η = −(2π − 1) Σ
1+Σ , ∂my

∂η = −(1− 2π) Σ
1+Σ , ∂mz

∂η = 0 and ∂s
∂η = 2

1+Σ , thus mz and
mx + my do not vary with η. In addition, PIM increases in η. Thus, the first part of Eq. (C.8)
increases in η. For the second part, we can see that it increases in η because

∂

∂η

(
1

mx2

(
π − 1

2

)
+

1
(2mz + s)(mx + my)

+
4(1− π)

(2mx − s)(2my + s)

)
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=
2(2π − 1)

mx3
Σ

1 + Σ
+

2
(mx + my)(2mz + s)2

1
1 + Σ

+

+
16(1− π)(mx + my)

((2mx − s)(2my + s))2

(
(2π − 1)

Σ
1 + Σ

+
1

1 + Σ

)
> 0. (C.9)

Hence, the third part of Eq. (C.6) is positive. As a result, ELP decreases in η.
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