
 

 

 

THE OPTIMAL NOMINAL PRICE OF A STOCK: 

A TALE OF TWO DISCRETENESSES 

By SIDA LI AND MAO YE  

 

Economists commonly assume that price and quantity are continuous 

variables, while in reality both are discrete variables. As U.S. regulation 

mandates a one-cent minimum tick size and a 100-share minimum lot size, 

we predict that less volatile stocks and more active stocks should choose 

higher prices to make pricing more continuous and quantity more discrete. 

Despite heterogeneous optimal prices, all firms achieve their optimal prices 

when their bid–ask spreads equal two ticks, when frictions from discrete 

pricing equal those from discrete lots. Empirically, our theoretical model 

explains 57% of cross-sectional variations in stock prices and 81% of cross-

sectional variations in stock liquidity. We find that most stock splits move 

the bid–ask spread closer to two ticks and that correct splits contribute 94 bps 

to split announcement returns. Optimal pricing can increase median U.S. 

stock value by 106 bps and total U.S. market capitalization by $93.7 billion. 
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1. INTRODUCTION 

Price and quantity are two of the most important variables in economics. In most 

economic models, price and quantity are continuous variables, but they are discrete in 

reality, even in most liquid markets such as U.S. stock exchanges. Regulation National 

Market System (Reg NMS) mandates a minimum price variation (the tick size) of one cent 

for stocks priced above $1 per share. Reg NMS also defines the minimum quantity of shares 

needed to establish a bid or offer as one round lot, which is 100 shares for most stocks.1 A 

U.S. firm can, therefore, choose a high price per share for a more continuous price but a 

more discrete quantity or a low price per share for a more discrete price but a more 

continuous quantity. 

Panel A in Figure 1 shows that stocks are most liquid when their prices are neither too 

high nor too low, and Panel B shows preliminary evidence that the trade-off between 

discrete quantity and discrete pricing drives this U-shaped pattern. Stocks whose prices are 

too low suffer from tick-size constraints. As the bid–ask spread cannot drop below one cent, 

the percentage bid–ask spread decreases with prices for stocks whose bid–ask spread is one 

cent, as indicated by the bottom left frontier in the figure. Stocks whose prices are too high 

suffer from lot-size constraints. Even for large firms such as Google and Amazon, the 

median depth at the National Best Bid and Offer (NBBO) and trade sizes are exactly 100 

shares. Once the lot size is binding, an increase in share prices amplifies the market maker’s 

obligation to maintain round lots; the percentage bid–ask spread tends to increase with 

prices because market makers lose more money once they are adversely selected. Also, 

Figure 1 indicates that the optimal price depends on characteristics: the optimal price seems 

to increase with a stock’s market cap. What, then, is the optimal price that maximizes 

liquidity? Which factors determine the optimal price? How large are the economic benefits 

 
1 See the final rule under Reg NMS issued by the U.S. Securities and Exchange Commission (SEC) Release 

No. 34-51808. Reg NMS offers some exemptions such that brokers may internalize their customers’ order 

flows at sub-penny prices and customers can trade fractions of shares on some occasions. The bid and ask 

price of a stock is, however, bounded by tick size and lot sizes. Also, these exemptions do not change the 

economic trade-offs modeled by our paper, as the tick (lot) constraint remains higher for low- (high-)priced 

stocks.  
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gained from managing the nominal price? Our paper provides both theoretical and 

empirical answers to these questions. 

 

 

FIGURE 1.—U-Shaped relationship between liquidity and prices: These figures illustrate the 

relationship between percentage spreads and nominal prices. Our sample includes all U.S.-listed 

common stocks that that are subject to the 1-cent tick size, a 100-share lot size, and at least a $1 

nominal price. For Panel A, we take the average spread across price baskets and group stocks by 

market caps. The lines consisting of squares, circles, and triangles represent small-, medium-, and 

large-cap stocks, respectively. Price baskets are selected such that each basket contains a similar 

number of stocks. In Panel B, we plot each firm as a triangle or asterisk, where larger shapes 

represent larger market-cap firms. Blue triangles represent stocks with 100 shares at the median 
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national best bid/offer (NBBO) depth while red asterisks represent stocks with median NBBOs of 

more than 100 shares. The bottom-left boundary represents the 1-cent tick size constraint. 

We discover a Two-Tick Rule for optimal pricing. Theoretically, we predict that firms 

should seek heterogeneous pricing based on their volatility and dollar volumes, but all 

firms reach their optimal prices when their bid–ask spreads are two ticks wide. Intuitively, 

as the friction caused by a discrete price equals one tick, all firms reach their optimal prices 

when the friction caused by the discrete lot also equals one tick, i.e., when their bid–ask 

spreads equal two ticks. Our empirical results support the two-tick prediction. Stock splits 

improve liquidity if they move the nominal spread towards two ticks, whereas those that 

move the spread away from two ticks reduce liquidity. We find that most stock splits move 

the nominal spread towards two ticks. As a result, stock splits reduce average percentage 

drops in the bid–ask spread by 15.22 bps. The liquidity gains obtained from stock splits 

generate a 94-bps increase in firm value. We estimate that the median U.S. stock value 

would increase by 106 bps if all firms were to move to their optimal prices. 

Our paper starts with a three-stage model. In the first stage, a regulator chooses tick 

and lot sizes. In the second stage, a firm sets its share price such that it minimizes the 

expected transaction cost for its traders. In the third stage, the market opens, where the 

stock is traded by three types of agents. A market maker posts competitive bid prices to 

sell and ask prices to buy, and her quote size cannot be smaller than one lot. Uninformed 

traders, who arrive with exogenous needs to buy or sell a security, choose how to divide 

their demand. For example, an uninformed trader can submit all his demand in one order 

or break his demand into a series of child orders of the minimum lot size. Informed traders 

know the value of a security before each jump, and they profit from adversely selecting the 

market maker. The market maker earns the bid–ask spread if an uninformed trader hits her 

quotes, but she loses money when an informed trader adversely selects her quotes. 

In Section 3, the regulator in our model mandates a discrete quantity but keeps pricing 

continuous. The main result reported in Section 3 is the Square Rule: an 𝐻-fold reduction 

in share price leads to an 𝐻2-fold reduction in the bid–ask spread and thereby an 𝐻-fold 

drop in the percentage spread. A lower price increases liquidity because of traders’ 

interactions in the third stage. To minimize the loss in price caused by informed traders, 
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the market maker always displays a minimum lot and refills the lot once it is consumed. 

Uninformed traders also break their demand into series of child orders of the minimum lot 

size. As the lot size is binding, an 𝐻-fold reduction in share price leads to an H-fold 

reduction in the loss for its market maker. In turn, the market maker can afford a percentage 

spread that is 𝐻  times tighter or a bid–ask spread that is 𝐻2  times tighter. A discrete 

quantity, therefore, favors a lower price per share. 

We report our main theoretical results in Section 4, where both price and quantity are 

discrete. When pricing becomes discrete, the competitive ask (bid) prices are the lowest 

(highest) prices above (below) the break-even ask (bid) prices. We find that the expectation 

of the widening effect is one tick for any break-even spread. This result decomposes bid–

ask spread 𝑠 into two components: a tick-driven component (∆) and a lot-driven component 

(𝑠 − ∆). The tick-driven component ∆ favors a higher price and the lot-driven component 

favors a lower price. The trade-off between these components leads to the two-tick rule: 

every stock reaches its optimal price when its bid–ask spread equals two ticks. The same 

two-tick bid–ask spread leads to heterogeneous optimal pricing. A volatile stock should 

choose low prices because greater volatility increases adverse selection risk and the firm 

should reduce its share price to reduce the loss its market makers experience. Holding 

volatility fixed, a stock whose dollar volume is higher, either because of its larger market 

cap or its higher turnover rate, should choose higher prices because the stock enjoy lower 

percentage spreads, making discrete pricing the main friction. 

Although a firm’s optimal prices depend on its fundamental characteristics, the 

Modified Square Rule in Section 4 indicates that a firm does not need to calibrate these 

characteristics to achieve its optimal price beyond observing its current bid–ask spread. 

When a stock splits, its tick-driven spread remains as one tick, but its lot-driven spread 

follows the square rule. The Modified Square Rule predicts that an H-for-1 split leads to a 

bid–ask spread of ∆ +
𝑠−∆

𝐻2
. In turn, a firm can choose H such that ∆ +

𝑠−∆

𝐻2
= 2∆ to achieve 

its optimal price. When ∆ = 1 cent, the optimal 𝐻 is √𝑠 − 1. 

In Section 5, we allow the regulator to change tick and lot sizes. We derive the Square 

Root Rule. Suppose that the regulator permanently increases the tick size from one cent to 
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five cents. The firm’s optimal response is a √5-for-1 reverse-split, which maintains the 

same contributions of the tick size (√5) and the lot size (√5). The Square-Root Rule leads 

to a spillover effect: a policy initiative that makes pricing more discrete would, in 

equilibrium, make quantity more discrete. The Two-Tick Rule still holds, but two ticks are 

now ten cents, leading to a √5 increase in the percentage spread. The Square Root Rule 

also applies to lot size. The best response to a 100-fold reduction in lot size is 10-for-1 

reserve splits, which creates a tenfold drop in the dollar lot size, the relative tick size and 

the percentage spread. Thus, we encourage the SEC to consider reducing tick and lot sizes 

to improve market liquidity. 

In Section 5, we also allow the regulator to switch from uniform tick and lot sizes to 

proportional tick and lot sizes. We find that proportional tick and lot sizes reduce liquidity. 

The intuition is as follows. The uniform system seems like a “one-size-fits-all” system but 

it allows a firm to choose an optimal price to balance discrete prices and quantities. The 

proportional system destroys this degree of freedom and reduces liquidity if the regulator 

uses any existing stock as the benchmark against which to jumpstart the proportional 

system. For example, consider a $300 stock and a $3 stock. Both have chosen the optimal 

two-cent spread, one cent from the tick and one cent from the lot. A proportional system 

based on a $30 stock will assign a tenfold wider tick size and a tenfold smaller lot size to 

the $300 stock, leading to a 10.1 cent spread (= 10 + 0.1). On the other hand, the $3 stock 

also loses its optimal tick–lot balance and achieves a bid–ask spread of 10.1 cents (= 0.1 +

10). Therefore, the proportional system harms liquidity because it imposes a uniform level 

of discreteness on stocks with heterogeneous characteristics. 

In Section 6, we test our empirical predictions in the cross-section. For a given nominal 

price, the Modified Square Rule predicts a firm’s liquidity, no matter whether the firm’s 

price is optimal. In the cross-section, the Modified Square Rule explains 81% of the 

variation in the bid–ask spread with only three variables modeled by our paper (price, dollar 

volume, and volatility). Our three-factor model of liquidity outperforms existing 

benchmarks (Madhavan 2000; Stoll 2000) even though we use only a subset of their 

explanatory variables. The main driver of this outperformance is the functional form. 
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Madhavan (2000) controls for 𝑝𝑟𝑖𝑐𝑒−1 while Stoll (2000) controls for 𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒). Both 

specifications impose a monotonic relationship between the nominal price and liquidity, 

but we find that their true relationship is U-shaped. We find that the 𝑅2 in Madhavan (2000) 

would rise from 0.62 to 0.81 and the 𝑅2 in Stoll (2001) would rise from 0.65 to 0.82 if they 

adopted our specification: subtracting one tick from the bid–ask spread to control for the 

tick-driven spread and then taking the log of the price to control for the lot-driven spread.  

Our model also helps to remove redundant variables that have been included in 

previous specifications. For example, all existing specifications control for the market cap, 

following the intuition that large stocks are more liquid. Our model suggests that the market 

cap affects liquidity through its impact on dollar volumes. Holding the share-turnover rate 

fixed, a large-cap stock is more liquid. Our model predicts that a small firm with higher 

turnover should, however, be as liquid as a large firm as long as their dollar volumes are 

the same. Our interpretation addresses a puzzle raised in Stoll (2000), who finds that the 

regression coefficient before the market cap is not always positive after controlling for the 

dollar volume. The 81% 𝑅2 in our regression suggests that future empirical research may 

use our three-factor model of liquidity as a benchmark to evaluate additional liquidity 

predictors. 

Our theoretical model also implies a two-factor model of share prices, and we find that 

volatility and dollar volume explain 57% of the cross-sectional variation in share prices. 

Our paper rationalizes several puzzles that have been documented in the behavioral finance 

literature. Baker, Greenwood, and Wurgler (2009) find it puzzling that volatile firms are 

more likely to split their stocks because these firms have a “greater chance of reaching a 

low price anyway.” Shue and Townsend (2018) provide a behavior-based interpretation. 

As investors think in part about stock-price changes in dollar rather than percentage units, 

low-priced stocks should experience more extreme return responses to news. We provide 

two alternative explanations for the negative volatility–price relationship. The first 

interpretation comes from tick constraints. Stocks whose volatility is higher face higher 

adverse selection risk and thereby higher percentage bid–ask spreads. Higher percentage 

bid–ask spreads then relieve tick constraints and provide stronger incentives for firms to 
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choose lower prices. The second interpretation comes from lot constraints. A rise in 

volatility increases market makers’ losses when they are adversely selected, and firms 

should choose lower prices to reduce the adverse-selection risk. Weld et al. (2009) find that 

firms choose prices that are similar to those chosen by similarly sized firms and industrial 

peers, and they conjecture that social norms drive such clustering. We find that the 

explanatory power of industry fixed effects is superseded by that of volatility. Therefore, 

firms in the same industry may choose similar prices because their volatilities are similar. 

Our model also rationalizes the cluster of nominal prices around size, as an increase in size 

or turnover increases dollar volume. An increase in dollar volume reduces the percentage 

spread and makes tick size a more binding constraint. Therefore, our paper not only 

rationalizes price clustering but also explains why large stocks cluster at higher prices. 

In Section 7, we test the empirical predictions using stock splits. First, we find that 

changes in bid–ask spreads after stock splits match almost exactly with what our theoretical 

model implies: a 1 bps increase in the percentage spread predicted by the Modified Square 

Rule leads to a 1.02 bps increase in the realized change. Second, we find that 1,077 of 

1,196 splits move the bid–ask spread closer to the two-tick optimum. Therefore, most splits 

are correct. Among the 107 incorrect splits, 74 make the correct decision to split, except 

that they choose a split ratio that is overly aggressive. Overall, the percentage spread drops 

by 15.22 bps after splits. The effect on liquidity is so significant that it affects firm value. 

We find that a 1 bps reduction in the predicted percentage spread increases firm value by 

6.18 bps. Therefore, correct split ratios increase firm value by 94 bps, which is more than 

one-third of the split-announcement return of 273 bps. 

Although we show that the nominal prices and stock splits that firms choose are overall 

rational, firms may still end up with suboptimal prices. Section 8 provides back-of-the-

envelope calculations for the benefit of moving towards optimal prices. The most salient 

evidence comes from firms that are similar in fundamentals but choose drastically different 

prices. For example, Amazon’s stock is priced at $3,305 per share and its bid–ask spread 

was 153 cents (4.62 bps), while Microsoft’s stock was priced at $255 per share and its bid–

ask spread is 1.95 cents (0.77 bps). We find that nominal prices explain this sixfold 
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difference in transaction costs. If Amazon were to split 13-for-1, the Modified Square Rule 

predicts a new nominal spread of  
153−1

132
+ 1 = 1.90 cents, which is similar to Microsoft’s 

spread.2 Amazon holders paid $684 million in the (half) bid–ask spread per year, but Apple 

holders paid only $60 million. The split ratio to achieve the optimal two-tick spread for 

Amazon is √152-for-1, which would save Amazon shareholders $574 million per year in 

transaction costs. Amazon’s market cap would increase by $3.96 billion. Overall, the 

market value of U.S. firms would increase by $93.7 billion if all firms were to move to 

their optimal prices. 

As the first study to examine discreteness in both pricing and quantity, our paper offers 

significantly different predictions than are implied by models where only one variable is 

continuous. Angel’s (1997) optimal tick-size hypothesis focuses only on price discreteness, 

and he predicts that firms can perfectly neutralize a twofold increase in the tick size through 

a 2-for-1 reverse split. By adding discrete quantities, we find that a 2-for-1 reverse split 

does not neutralize a twofold increase in the tick size. More surprisingly, a 2-for-1 reverse 

split leads to the same outcome as doing nothing at all. Although a 2-for-1 reverse split 

retains the original relative tick size, it also doubles the lot-driven spread, leaving the 

percentage spread unchanged, as if nothing had been done. Budish, Cramton, and Shim 

(2015, “BCS” hereafter), who consider a market with discrete quantities but continuous 

pricing, find that public information leads to a positive percentage spread. We find that this 

percentage spread is a linear function of lot size. Therefore, the percentage spread 

converges on zero when the lot size converges on zero. Holding lot size fixed, a firm can 

also reduce the dollar lot size and its percentage spread through aggressive stock splits 

when pricing is continuous. In our model, the economic factor that prevents such 

aggressive splits is discrete pricing. 

We address two questions in the corporate finance literature. 1) Why do firms split their 

 
2 Consistent with our model, Amazon announced a 20-for-1 split on March 9, 2022. The implementation date 

for the split is June 6, 2022. Since the split size is larger than we suggested, we predict their spread will 

decrease to less than 2 cents. Precisely speaking, our model predicts the spread will be around 
153−1

202
+ 1 =

1.38 cents. 
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stocks? 2) What explains the positive returns that follow splits? Our tick-and-lot channel 

helps us rationalize the puzzles raised by two canonical channels for stock splits: the 

signaling channel and the clientele channel. In the signaling channel, the cost of the signal 

comes from reduced liquidity (Brennan and Copeland, 1988), yet we find that splits 

increase liquidity. Also, Fama et al. (1969), Lakonishok and Lev (1987), and Asquith, 

Healy, and Palepu (1989) find that earnings, profits, and stock prices increase significantly 

before splits but not after splits. Their results do not support the signaling channel but 

support our tick-and-lot channel. A previous increase in a stock price increases the lot 

constraint on that stock, and stock splits provide the best response to lot constraints. In the 

clientele channel (Lamoureux and Poon, 1987 and Maloney and Mulherin, 1992), firms 

use stock splits to attract retail traders and expect that an increase in the number of 

uninformed traders increases volume and liquidity, yet we find that institutional holdings 

increase after splits in our sample. 

Our empirical studies focus on cross-sectional variation and event studies around a 

short time window, because the parameters in our model may change over a long period of 

time. Nevertheless, the economic drivers underlying our model provide a rationale for 

some long-term time trends following the proliferation of electronic trading. For example, 

we provide the first unified explanation of four salient facts that emerged after trading 

became automated: a reduction in the bid–ask spread (Hendershott, Jones, and Menkveld, 

2011), the decline in depth towards one lot (Angel, Harris, and Spatt, 2015), the dominance 

of one-lot trades (O’Hara, Yao, and Ye, 2014), and the proliferation of algorithmic traders 

who are not as fast as high-frequency traders (HFTs) (O’Hara, 2015). We generate these 

predictions in one model because we model interactions between distinct types of 

algorithmic traders, whereas most studies include at most one type of algorithmic trader: 

HFTs.3 Note that liquidity demanders’ execution algorithms do not need to execute as 

quickly as those of HFTs. They just need to be fast enough to slice and dice large latent 

demand into one-lot pieces. Also, one of the most vexing puzzles in the literature on 

 
3 A notable exception is Li, Wang, and Ye (2021), who study competition in liquidity provision between 

HFTs and slower execution algorithms. 
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nominal prices and tick size involves understanding why firms do not split 1-to-6.25 after 

the 2001 decimalization standard reduced tick size by a factor of 6.25 (Weld et al., 2009). 

Our Square Root Rule first reduces the gap from 6.25 to √6.25 = 2.5. The market crash 

of 2001 may then further fill the gap around the decimalization. Most importantly, our 

model predicts that the optimal price will be the same if tick size and lot size reduced by 

the same amount. The proliferation of electronic trading allows traders to slices their orders 

into smaller pieces and effectively reduce lot sizes. Electronic trading provides an incentive 

to choose high prices, which counteracts the incentive to reduce prices led by 

decimalization. Also, as decimalization is a one-time shock and electronic trading evolves 

over years, we see an increase in nominal prices and a lack of stock splits over the past two 

decades. We summarize these time trends in Figure 2. 
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FIGURE 2.—Simultaneous reduction of the proportional spread, market depth, and the number of 

stock splits: This figure shows the time trend in stock splits, the median depth, and the percentage 

spread from 2003 through 2016. Each dot represents a monthly observation. Our sample includes 

all NYSE-listed common stocks that have a 1 cent tick size, a 100-share lot size, and at least a $1 

nominal price throughout a given month. We calculate the monthly mean of the depth and spread 

for each stock and take the median across stocks. 

 

2. MODEL 

In this section, we set up a three-stage model, where the regulator, the firm, and traders 

make decisions sequentially. 

 

Stage 1: The regulator’s decision: The regulator moves first and sets the tick size ∆ 

and lot size 𝐿 at time 𝑡 = −2. In the benchmark model we present in Section 3, we consider 

continuous prices and discrete lots. Our main analysis in Section 4 reflects the uniform 

system in the U.S., where all stocks have the same discrete tick and lot sizes. In Section 5, 

we compare the uniform system with proportional tick and lot sizes, which incorporate 

regulations that apply in other countries. 

 

Stage 2: The firm’s decision: The firm in our model starts at value 𝑣 at time 𝑡 = −1. 

The firm chooses its price per share 𝑝 and shares outstanding ℎ such that 𝑝 =
𝑣

ℎ
. 4  The 

firm’s value 𝑣𝑡 then continuously evolves over 𝑡 ∈ (−1,+∞) as a Poisson jump process. 

The intensity of the jump is 𝜆𝐽 > 0 . The size of the jump is 𝜎𝑣𝑡  or −𝜎𝑣𝑡  at equal 

probability, so 𝑣𝑡  is martingale. The market opens at 𝑡 = 0 and 𝑡 ∈ (−1,0) reflects the 

implementation period. When the firm chooses ℎ through an IPO or stock split, it usually 

takes about a month to implement the change. Therefore, the firm knows only the 

distribution of its initial trading price when choosing ℎ. The firm’s objective is to maximize 

its expected liquidity, or, equivalently, minimize its traders’ expected transaction costs 

over 𝑡 ∈ (0, +∞). 

 
4 We allow ℎ to be a continuous variable. As Reg NMS allows traders to establish quotes in mixed lots such 

as lots of 101 shares, the true binding constraints in reality and in our model mean that a quote cannot be 

smaller than one lot (odd lots) in size. 
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Stage 3: The traders’ decision. The stock’s transaction costs are determined by three 

types of traders: a competitive market maker, uninformed traders, and informed traders. 

Uninformed traders aim to trade an exogenous fraction 𝜆𝐼 of the firm per unit time, and 

they aim to minimize their transaction costs by choosing how they slice and dice their 

parent orders into a series of child orders. We call this choice variable 𝜆𝑞, where 𝜆𝑞 is the 

Poisson arrival rate of child orders of 𝑞 lots. They choose all 𝜆𝑞 for 𝑞 ∈ 𝑁+ subject to the 

constraint that the total liquidity demand is 𝜆𝐼ℎ shares per unit time, i.e., ∑ 𝑞𝐿𝜆𝑞
∞
𝑞=1 = 𝜆𝐼ℎ. 

5For example, they can choose 

𝜆𝑞 = {
𝜆𝐼ℎ

𝐿
,    𝑓𝑜𝑟 𝑞 = 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

In this case, all uninformed orders arrive with the minimum round lot. We assume 

symmetric buy and sell liquidity demands, i.e., the frequency of buy and sell orders are 

both 
𝜆𝑞

2
.  

Denote the ask and bid prices on the limit order book as {𝐴𝑡
𝑞
, 𝐵𝑡

𝑞
}, where 𝑞 stands for 

the price for the 𝑞𝑡ℎ lot. The dollar transaction cost for a buy order sized 𝑞 is 

𝐶𝐵(𝑞) = ∑ (𝐴𝑡
𝑖 − 𝑝𝑡)𝐿

𝑞
𝑖=1 . 

The dollar transaction cost for a sell order sized 𝑞 is 

𝐶𝑆(𝑞) = ∑ (𝑝𝑡 − 𝐵𝑡
𝑖)𝐿𝑞

𝑖=1 . 

The uninformed traders minimize the total transaction cost per unit time 

min
𝜆𝑞

𝑞∈𝑁+

∑ [𝐶𝐵(𝑞) + 𝐶𝑆(𝑞)]
𝜆𝑞

2
∞
𝑞=1 . 

 
5 For model simplicity, we do not model mixed lot trades and quotes. 
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min
𝜆𝑞 𝑓𝑜𝑟 𝑞∈𝑁+

𝑠.𝑡.  ∑ 𝑞𝐿𝜆𝑞
∞
𝑞=1 =𝜆𝐼ℎ

∑ [𝐶𝐵(𝑞) + 𝐶𝑆(𝑞)]
𝜆𝑞

2
∞
𝑞=1 . 

Informed traders know the value of the stock before each jump, and they profit from 

adversely selecting the market maker. Upon arrival, they sweep all outstanding bids above 

the fundamental value or all asks below the fundamental value. Thus, the profit of informed 

traders is proportional to the outstanding depth on the limit order book. There are two ways 

to interpret the adverse-selection risk in our model. First, 𝑣𝑡 is common knowledge, but the 

market maker fails to cancel the stale quote. In this case, the market maker in our model is 

equivalent to the liquidity-providing HFT in BCS, and informed traders are equivalent to 

the stale-quote-sniping HFTs in BCS. Second, 𝑣𝑡  is private information but is revealed 

after each trade (Baldauf and Mollner, 2020; Admati and Pfleiderer 1988; Anshuman and 

Kalay 1998). Both scenarios lead to the same model. For the sake of tractability, we assume 

that informed traders can adversely select the market maker only once per piece of 

information. Without this simplification, the optimization problem for the firm is not well-

defined because the bid–ask spread would be a nonstationary function over time.6 All other 

firm fundamentals, 𝜎, 𝜆𝐼, and 𝜆𝐽, are public information for traders and the firm.  

After observing 𝜆𝑞, the market maker quotes competitive prices on the bid and ask 

sides of the market. Her choice variable is a set of bid and ask prices {𝐴𝑡
𝑞 , 𝐵𝑡

𝑞}, where 𝐴𝑡
𝑞
 

and 𝐵𝑡
𝑞 can be any number when pricing is continuous, but they need to be integer multiples 

of ∆ when pricing is discrete. In return, {𝐴𝑡
𝑞 , 𝐵𝑡

𝑞} affects 𝐶𝐵(𝑞) and 𝐶𝑆(𝑞) as well as the 

transaction costs of the uninformed traders. 

 

3. CONTINUOUS PRICING AND DISCRETE LOTS 

In this section, the regulator sets an exogenous  tick size of ∆ = 0 and a discrete lot size 

of 𝐿 > 0. We solve the model through backward induction. In subsection 3.1 we solve 

 
6  Glosten and Milgrom (1985), Vayanos (1999), and Back and Baruch (2004) characterize these non-

stationary bid–ask spreads, although their solutions are either very complicated or available only numerically. 
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traders’ optimal choices given share prices and tick and lot sizes. If we enforce ℎ = 1 and 

assume that adverse selection comes from public information, our model degenerates into 

BCS. Therefore, BCS is a special case of our model where the firm does not optimize its 

price and the regulator chooses suboptimal tick and lot sizes. In subsection 3.2 we discuss 

the firm’s choice of ℎ in Stage 2. 

 

3.1 Traders’ Choice 

Proposition 1 shows the optimal strategies for uninformed traders and the market maker. 

Uninformed traders’ optimal strategy is to submit a series of child orders of exactly one lot 

each. The market maker always displays one lot at the BBO and quickly refills another lot 

when the original lot is consumed. Intuitively, uninformed traders slice to the minimal lot 

because larger orders execute at worse prices. The proof of Proposition 1 shows this 

intuition in two steps. 

First, uninformed traders would not slice parent orders to child orders with 

heterogeneous sizes because larger order walk up and book and execute at worse price. 

Suppose uninformed traders choose two sizes, 𝑞1 and 𝑞2 (𝑞1 < 𝑞2).
7 Then the competitive 

market maker would quote two tiers of liquidity. She offers a better quote for the first 𝑞1 

lots because this quote executes against uninformed orders with sizes 𝑞1  and 𝑞2 . The 

competitive market maker then offers a worse quote for the next (𝑞2 − 𝑞1) lots because it 

executes only with order size 𝑞2. Therefore, 𝑞2 child orders execute at worse prices than 

𝑞1 child orders because the former walks up the book. Therefore, a profitable deviation for 

uninformed traders is to reduce the child order size from 𝑞2 to 𝑞1.  

Second, conditional on homogenous child order size, only child order sizes of one 

minimum lot, i.e., 𝑞 = 1, can sustain the equilibrium. In this case, the market maker can 

quote only one lot at the bid and ask, which minimizes her adverse-selection risk and 

thereby the bid–ask spread. Otherwise, suppose uninformed traders choose to slice parent 

orders into child orders of two lots. Then, the competitive market maker needs to maintain 

a quote for two lots. However, the market maker’s quotes will be adversely selected 

 
7 If there are more than two order sizes, denote the two smallest order size as 𝑞1 and 𝑞2. 
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entirely when price jump arrives, so the market maker’s loss-per-jump is proportional to 

her displayed quote size. Thus, an increase in quote size increases her loss during adverse 

selection, so the market maker’s break-even spread widens. An alternative way to 

understand the result is that a decrease of child order size 𝑞1 increases 𝜆𝑞1. Therefore, the 

arrival rate of uninformed child orders reach its maximum (
𝜆𝐼ℎ

𝐿
) when all child orders are 

one lot. As the intensity of adverse-selection 𝜆𝐽 is a constant, an increase in the arrival rate 

of uninformed child orders reduces the breakeven bid–ask spread. The uninformed traders 

submit a stream of small orders to satisfy their exogenous liquidity demand 𝜆𝐼.    

Our model predicts trading in minimum lots, which matches the empirical facts. 

O’Hara, Yao, and Ye (2014) find that more than 50% of trades are sized at exactly 100 

shares, and we find that this ratio is as high as 87.5% when the bid–ask spread is not 

bounded by one tick. 

Enjoying the benefit of slicing orders to the minimum lot, however, requires technology 

that makes it possible to slice the parent order into many child orders. Therefore, our model 

rationalizes algorithmic traders who are slower than HFTs. 8  Brogaard et al. (2015) 

document the existence of “SlowColos” who co-locate at a stock exchange but are slower 

than HFTs. Yet, it is unclear why they choose to be fast but not the fastest. We conjecture 

that execution algorithms constitute one type of SlowColo: they need to be fast enough to 

slice many child orders in a short time, but they do not need to be the fastest to reduce 

adverse-selection risk or to select other traders adversely. 

The next step in solving the equilibrium is to pin down the transaction cost, measured 

by percentage spread 𝒮𝑡
𝐿 =

𝑠𝑡
𝐿

𝑝𝑡
. 𝒮𝑡

𝐿 equates the revenue from uninformed traders with the 

loss from informed traders. The dollar arrival rate for uninformed traders is 𝜆𝐼𝑣𝑡 ≡ 𝜆𝐼𝑝𝑡ℎ, 

and the revenue required to provide liquidity to uninformed traders is 
𝒮𝑡
𝐿

2
 basis points. The 

intensity for an order to be sniped is 𝜆𝐽 and the marker maker loses 𝑝𝑡𝐿 ∙ (𝜎 −
𝒮𝑡

2
) when he 

 
8 To the best of our knowledge, the only other interpretation has been offered in a companion paper (Li, 

Wang, and Ye 2021), which shows that slow traders use execution algorithms to choose between market and 

limit orders. 
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is sniped. Therefore, the equilibrium percentage spread solves   

𝜆𝐼𝑝𝑡ℎ ∙
𝒮𝑡
𝐿

2
= 𝜆𝐽𝑝𝑡𝐿 ∙ (𝜎 −

𝒮𝑡

2
).                                           (1) 

The solution is  

𝒮𝑡
𝐿 =

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ+𝜆𝐽𝐿
.                                                           (2)  

 

The equivalent nominal bid–ask spread is   

𝑠𝑡
𝐿 ≡ 𝒮𝑡

𝐿𝑝𝑡 =
2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ+𝜆𝐽𝐿
𝑝𝑡.                                                  (3) 

 

Proposition 1. (Continuous pricing bid–ask spread) With zero tick size and lot size 

L, the equilibrium bid–ask spread is 𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ+𝜆𝐽𝐿
𝑝𝑡: 

(i) The market maker provides exactly 𝐿  shares of liquidity at 𝑝𝑡 ±
𝑠𝑡
𝐿

2
 and she 

refills L shares around 𝑝𝑡  after each trade.  

(ii) Uninformed traders slice their demand into a series of child orders. Each child 

order includes 𝐿 shares.  

(iii) Informed traders adversely select 𝐿  shares of liquidity per jump, and 𝑝𝑡 

updates afterwards. 

 

Our model degenerates to BCS when ℎ = 1, 𝐿 = 1 and ∆ = 0 and when 𝑣𝑡 is public 

information. The percentage spread converges to 0 when 𝐿 → 0 or ℎ → ∞. Therefore, our 

paper offers two possible solutions to the sniping problem in BCS. The policy solution is 

to reduce the lot size and the market solution is aggressive stock splits. The policy and 

market solutions are economically equivalent under continuous pricing. Effectively, both 

solutions reduce the market maker’s adverse-selection risk by making quantity more 

continuous. In Section 4 and 5, we show that policy and market solutions are no longer 

equivalent when price becomes discrete, because lot size reduction makes quantity more 

continuous without affecting price discreteness but stock splits make quantity more 

continuous while making the price more discrete.  
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Multiply both the denominator and the numerator of the equation by 𝑝𝑡, we have 

𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝐿𝑝𝑡
2

𝜆𝐼𝑝𝑡ℎ+𝜆𝐽𝑝𝑡𝐿
.                                                   (4) 

Notice that the denominator is equal to the dollar volume per unit of time. Denote  

𝐷𝑉𝑜𝑙𝑡 ≡ 𝜆𝐼𝑝𝑡ℎ + 𝜆𝐽𝑝𝑡𝐿 = 𝜆𝐼𝑣𝑡 + 𝜆𝐽𝑝𝑡𝐿.                              (5) 

Then we discover the following Square Rule for the bid–ask spread: 

 

Corollary 1 (Square Rule). Under continuous pricing, the nominal bid–ask spread 

𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝐿

𝐷𝑉𝑜𝑙𝑡
𝑝𝑡
2 is proportional to the square of the nominal price, controlling for the dollar 

trading volume and stock volatility. 

 

Corollary 1 shows that an increase in the nominal price leads to a quadratic increase in 

the bid–ask spread. A 𝑝𝑡-time increase comes from the linear increase in price, leaving the 

percentage spread unchanged. Another 𝑝𝑡 -time increase comes from the increase in 

adverse-selection risk, as the competitive market maker incurs higher costs for sustaining 

one-round-lot liquidity at the BBO. Combining the two effects, we have 𝑠𝑡
𝐿 ∝ 𝑝𝑡

2. 

 

3.2 The Firm’s Choice 

The firm aims to minimize its expected transaction cost by choosing ℎ. The firm’s dollar 

volume per unit of time is 𝜆𝐼𝑝𝑡ℎ + 𝜆𝐽𝑝𝑡𝐿, and the firm’s percentage spread is 𝒮𝑡
𝐿 =

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ+𝜆𝐽𝐿
. 

Therefore, the firm’s objective function is  

𝑚𝑖𝑛
ℎ
𝔼 [(𝜆𝐼𝑝𝑡ℎ + 𝜆𝐽𝑝𝑡𝐿) ∙

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ+𝜆𝐽𝐿
] = 𝔼[𝜎𝜆𝐽𝐿𝑝𝑡] = 𝜎𝜆𝐽𝐿 ∙ 𝔼[𝑝𝑡] = 𝜎𝜆𝐽𝐿𝑝 ≡ 𝜎𝜆𝐽𝐿 ∙

𝑣

ℎ
. 

  

Notice that minimizing the expected transaction cost is economically equivalent to 

minimizing the expected percentage spread. In fact, when the price is continuous, they are 

also mathematically equivalent. We make a technical assumption that the firm minimizes 

the expected total transaction cost because, when the tick size does not equal zero, the 

percentage spread includes a term 
∆

𝑝𝑡
 and 𝔼 (

∆

𝑝𝑡
) does not have an analytical form. 
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The firm’s objective function under continuous pricing is very intuitive: 𝜎𝜆𝐽𝐿 ∙
𝑣

ℎ
 is the 

market maker’s expected adverse-selection cost per unit of time. Thus, the firm’s objective 

function is to minimize its market maker’s adverse-selection cost. A decrease of either 𝐿 

or 𝑝 reduces dollar lot size 𝑝𝐿 and thereby the market maker’s adverse-selection costs. The 

market maker can still accommodate demand for liquidity with more trades at the smaller 

dollar lot size. Under continuous pricing, firms should choose ℎ → ∞ and 𝑝 → 0. The 

result is intuitive. When the lot size is the only friction, firms should split their stocks 

aggressively to minimize such friction. The constraint that prevents the firm from choosing 

very low prices comes from the other friction: discrete pricing. We consider the tradeoff 

between discrete pricing and discrete quantities in the next section. 

 

4. DISCRETE PRICING AND DISCRETE LOTS 

We present our main results in this section, where the regulator chooses a discrete tick 

size ∆ such that trades and quotes can occur only at the pricing grid {∆, 2∆, 3∆,⋯ }. As a 

firm cannot reduce its bid–ask spread below one tick, splits increase frictions caused by 

discrete prices and may increase expected transaction costs. The tick constraint, therefore, 

favors high prices. We solve the model through backward induction. In Subsection 4.1, we 

solve traders’ optimal decisions given ℎ, 𝐿, and ∆, and we quantify the frictions generated 

by the discrete tick size. In Subsection 4.2, the firm solves the optimal nominal shares 

outstanding  ℎ , balancing the frictions generated by lot and tick sizes. Subsection 4.3 

presents the formula for the optimal split ratio if the firm is traded at suboptimal price.  

 

4.1. Traders’ Decisions and Friction from the Tick Size 

Under discrete pricing, the market maker can no longer quote competitive prices at 

𝑝𝑡 ±
𝑠𝑡
𝐿

2
 . Lemma 1 shows that she quotes a bid price at the tick immediately below 𝑝𝑡 −

𝑠𝑡
𝐿

2
 

and an ask price at the tick immediately above 𝑝𝑡 +
𝑠𝑡
𝐿

2
. 

 

Lemma 1 (Discrete Pricing Bid–ask Spread). With tick size ∆, the competitive market 
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maker quotes an ask price, 𝐴𝑡 = 𝑝𝑡 +
𝑠𝑡
𝐿

2
+ [∆ −𝑚𝑜𝑑 (𝑝𝑡 +

𝑠𝑡
𝐿

2
, ∆)], and a bid price, 𝐵𝑡 =

𝑝𝑡 −
𝑠𝑡
𝐿

2
− [∆ −𝑚𝑜𝑑 (𝑝𝑡 −

𝑠𝑡
𝐿

2
, ∆)], where 𝑚𝑜𝑑(𝑥, 𝑦) ∈ [0, 𝑦) is the remainder of dividing 

x by y. 

 

Lemma 1 shows that the competitive market maker rounds up the continuous ask price 

to the tick immediately above and rounds down the bid price to the tick immediately below. 

This is because more aggressive quotes lose money while less aggressive quotes are not 

competitive. Therefore, discrete pricing widens the bid–ask spread.9 

Next, we calculate the widening effect for any break-even spread 𝑠𝑡
𝐿 . First, we can 

decompose the break-even spread into two components, 𝑠𝑡
𝐿 = 𝑎∆ + 𝑏,  where 𝑎 =

0,1,2,3, … and 𝑏 = 𝑚𝑜𝑑(𝑠𝑡
𝐿 , ∆). The first component is rendered in the multiple ticks and 

the second component is the residual that is narrower than one tick. Proposition 2 shows 

that the widening effect is either ∆ − 𝑏 or 2∆ − 𝑏 depending on the relative position of 𝑝𝑡 

within the tick grids, 𝑚𝑜𝑑(𝑝𝑡, ∆) . More importantly, Proposition 2 shows that the 

expectation of the widening effect is one tick. 

Proposition 2 (Average Widening Effect) Define the bid–ask spread under discrete 

prices as 𝑠𝑡
𝑡𝑜𝑡 = 𝐵𝑡 − 𝐴𝑡 and define the widening effect at any time 𝑡 as 𝑠𝑡

∆ = 𝑠𝑡
𝑡𝑜𝑡 − 𝑠𝑡

𝐿, 

where 𝑠𝑡
𝐿 is the competitive bid–ask spread under continuous pricing. We have 

 
9 Notice that 𝑠𝑡

𝐿  is the break-even spread for the first lot of liquidity. As discrete price widens the spread, the 

competitive market maker may quote more than one lot of liquidity at 𝐴𝑡 and 𝐵𝑡 . The exact depth at time 𝑡 

depends on the position of 𝑝𝑡  within the tick grid and the break-even spread 𝑠𝑡
𝐿. We do not characterize the 

depth in this model because depth does not affect outcomes in equilibrium. The uninformed traders never 

walk the book in equilibrium and they always buy at 𝐴𝑡 and sell at 𝐵𝑡 . It’s because uninformed traders decide 

their 𝑓(𝑞) before the trading starts. 𝑞 = 1 strictly dominates larger order size when the depth at the best 

prices is 1 lot. Since 𝑝𝑡 ±
𝑠𝑡
𝐿

2
 is moving around the tick throughout the trading session, is sometimes are very 

close to the tick grid, which leads to a 1 lot depth. Therefore, the uninformed investors ex-ante chooses 𝑞 =

1 and 𝐴𝑡 and 𝐵𝑡  provide sufficient statistics to calculate the uninformed traders’ transaction costs.  
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i) 𝑠𝑡
∆ =

{
  
 

  
 
∆ − 𝑏, 𝑖𝑓 {

𝑚𝑜𝑑(𝑝𝑡, ∆) ∈ [
𝑏

2
, ∆ −

𝑏

2
]  and 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑚𝑜𝑑(𝑝𝑡, ∆) ∈ [
∆

2
+
𝑏

2
, ∆) ∪ [0,

∆

2
−
𝑏

2
]  and 𝑎 𝑖𝑠 𝑜𝑑𝑑

2∆ − 𝑏, 𝑖𝑓 {
𝑚𝑜𝑑(𝑝𝑡, ∆) ∈ [0,

𝑏

2
) ∪ (∆ −

𝑏

2
, ∆)  and 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑚𝑜𝑑(𝑝𝑡, ∆) ∈ (
∆

2
−
𝑏

2
,
∆

2
+
𝑏

2
)  and 𝑎 𝑖𝑠 𝑜𝑑𝑑

 

 

ii) If 𝑝𝑡 ≫ ∆, 𝑚𝑜𝑑(𝑝𝑡, ∆)
𝑑
→𝑈[0, ∆) and 𝔼(𝑠𝑡

∆) = ∆. 

 

The intuition for the one-tick average widening effect is as follows. For a Poisson jump 

process, the distribution of 𝑝𝑡  follows a lognormal distribution. As the distribution is 

smooth, the residual of 𝑝𝑡  should not cluster at any specific position within the tick. 

Therefore  𝑚𝑜𝑑(𝑝𝑡, ∆) converges to uniform distribution because any residual value within 

the tick is equally likely.10 

When the residual of 𝑝𝑡 is uniformly distributed, the average widening effect is one 

tick in magnitude for any break-even bid–ask spread. Figure 3 presents the intuition for 

this result using a small break-even spread of 0.2 ticks and a large break-even spread of 0.8 

ticks. In this example, 𝑎 = 0 , but the intuition holds for any  𝑎 . Yellow dotted lines 

represent the tick grids, red (blue) upper solid lines represent the continuous pricing ask 

(bid) prices, and green arrows represent the widening effects. In the two panels on the left, 

𝑝𝑡 is “lucky” because the break-even bid and ask prices are at the same tick grid. Therefore, 

the widening effect is less than one tick (𝑠𝑡
∆ = ∆ − 𝑏). In the two panels on the left, 𝑝𝑡 is 

“unlucky” because the break-even bid and ask prices are at different tick grids. The 

widening effect is then more than one tick (𝑠𝑡
∆ = 2∆ − 𝑏) in magnitude. 

 
10 This argument is generally true for any distribution with a smooth, non-clustering probability density 

function. The only exception is when 
𝑝𝑡

∆
→ 0, i.e. when the nominal price of the stock is too low. In this case, 

𝑚𝑜𝑑(𝑝𝑡 , ∆) may cluster around 0. In the equilibrium of our model, the firm should not choose such a low 

price because it suffers from dramatic tick-size constraints. In reality, both the NYSE and NASDAQ delist a 

stock if its price falls under $1.00 (i.e. when 𝑝𝑡 < 100∆). Therefore, 𝑝𝑡 ≫ ∆ generally holds. In the same 

spirit, Anshuman and Kalay (1998) assume that 𝑝𝑡  follows a normal distribution whose variance increases in 

𝑡. When 𝑡 is large enough, the standard deviation of 𝑝𝑡  becomes much larger than the tick size, and 𝑝𝑡  is 
asymptotically uniformly distributed within the tick grids. 
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FIGURE 3. —Average widening effect of one tick: This figure illustrates the bid–ask widening 

effect. The red solid upper bars are the ask prices under continuous pricing and the blue solid lower 

bars are the bid prices under continuous pricing. The yellow dots represent the tick grids. The green 

arrows are the widening effects, where the ask prices move up to the next available tick grid and 

the bid prices move down to the next available tick grid. The two panels on the left illustrate the 

“lucky” cases where the bid–ask spread widens by less than 1 tick, and the two panels on the right 

illustrate the “unlucky” cases where the bid–ask spread widens by more than 1 tick. 

 

Proposition 2 shows that the expected widening effect for any break-even spread 𝑠𝑡
𝐿 is 

one tick. Figure 3 provides the intuition underlying this result using 𝑎 = 0 as an example. 

When 𝑏 is small, the best bid and ask are more likely to be in the same tick such that the 

widening effect is ∆ − 𝑏 but not 2∆ − 𝑏. However, a small 𝑏 increases ∆ − 𝑏 and 2∆ − 𝑏. 

The probability effect and the widening effect cancel out exactly when 𝑝𝑡 is uniformly 

distributed within the tick. For example, for a small 𝑏 = 0.2∆,  𝑝𝑡 ±
𝑠𝑡
𝐿

2
 are within the same 

tick 80% of the time, but the widening effect is either 0.8 ticks or 1.8 ticks. For a large 𝑏 =

0.8∆, 𝑝𝑡 ±
𝑠𝑡
𝐿

2
 are within the same tick only 20% of the time, but the widening effect is 

either 0.2 ticks or 1.2 ticks. In general, 𝑝𝑡 is lucky with probability  
∆−𝑏

∆
 and unlucky with 

probability 
𝑏

∆
 for any 𝑎. Therefore, the expectation for the widening effect is 
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𝔼(𝑠𝑡
∆) =

∆−𝑏

∆
∙ (∆ − 𝑏) +

𝑏

∆
∙ (2∆ − 𝑏) = ∆.                                     (6) 

Equation (6) implies that we can decompose the bid–ask spread under discrete pricing, 

𝑠𝑡
𝑡𝑜𝑡 , into a lot-driven component 𝑠𝑡

𝐿  and a tick-driven component 𝑠𝑡
Δ . The lot-driven 

component 𝑠𝑡
𝐿 is equal to the continuous pricing spread in Section 3, which follows the 

Square Rule. The tick-driven component equals to ∆ in expectation. An increase in the 

nominal price inflates the lot-driven spread but it dilutes the widening effect (or tick-driven 

spread) proportionately. 

 

4.2. The Firm’s Decision and the Optimal Nominal Price 

The firm chooses ℎ (and equivalently 𝑝 ≡
𝑣

ℎ
) to minimize the expected execution cost, 

given lot size 𝐿 and tick size ∆. The firm’s objective function is 

𝑚𝑖𝑛
𝑝
 𝔼 (

𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = 𝑚𝑖𝑛

𝑝
 𝔼 (

𝑠𝑡
𝐿 + 𝑠𝑡

𝛥

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙)

= 𝑚𝑖𝑛
𝑝
 𝔼

[
 
 
 

(

 

2𝜎𝜆𝐽𝐿𝑝𝑡
𝜆𝐼ℎ + 𝜆𝐽𝐿

+ 𝑠𝑡
𝛥

2𝑝𝑡
)

 ∙ (𝜆𝐼𝑝𝑡ℎ + 𝜆𝐽𝑝𝑡𝐿)

]
 
 
 

= 𝑚𝑖𝑛
𝑝
 𝔼 [𝜎𝜆𝐽𝑝𝑡𝐿 +

𝑠𝑡
𝛥

2
(𝜆𝐼ℎ + 𝜆𝐽𝐿)]

= 𝑚𝑖𝑛
𝑝
 [𝜎𝜆𝐽𝐿 ∙ 𝔼[𝑝𝑡] +

𝔼(𝑠𝑡
𝛥)

2
(𝜆𝐼ℎ + 𝜆𝐽𝐿)] = 𝑚𝑖𝑛

𝑝
[𝜎𝜆𝐽𝐿𝑝 +

Δ

2
𝜆𝐼
𝑣

𝑝
+
Δ

2
𝜆𝐽𝐿] 

(7) 

 

The first term in the last line (𝜎𝜆𝐽𝐿𝑝) measures the expected execution cost that is 

driven by the lot size. The second term (
Δ

2
𝜆𝐼

𝑣

𝑝
) measures the expected execution cost that 

is driven by the tick size. The third term represent the widening effect paid by snipers, 

which is a constant. Applying the inequality of arithmetic and geometric means, we have 

𝜎𝜆𝐽𝐿𝑝 +
Δ

2
𝜆𝐼

𝑣

𝑝
≥ 2√𝜎𝜆𝐽𝐿𝑝 ∙

Δ

2
𝜆𝐼

𝑣

𝑝
.                                       (8) 
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The equality holds only when 𝜆𝐽𝐿𝑝 =
Δ

2
𝜆𝐼

𝑣

𝑝
 , or when the impact of the lot size is equal 

to the impact of the tick size. The corresponding optimal nominal price is  

𝑝∗ = √
𝜆𝐼∆𝑣

2𝜎𝜆𝐽𝐿
.                                                         (9) 

Given the tick and lot sizes, formula (9) shows that the optimal nominal price decreases 

with volatility and increases with dollar volume. An increase in volatility, caused either by 

an increase in jump size 𝜎 or an increase in jump frequency 𝜆𝐽, reduces the optimal nominal 

price. Holding all else equal, an increase in volatility increases adverse-selection risk. 

Therefore, a firm should choose a lower price to reduce adverse-selection risk for its market 

makers, until the contribution of the lot size is again equal to the contribution of the tick 

size. Tick size constraints also provide an intuition for this result. An increase in volatility 

increases the percentage spread, and the bid–ask spread in dollars becomes less constrained 

by tick size. Therefore, the firm should choose lower price because of reduced tick size 

constraints.  

Formula (9) also shows that an increase in dollar volume, caused either by an increase 

in market cap 𝑣 or an increase in turnover rate 𝜆𝐼, increases the optimal price. Holding 

volatility fixed, an increase in market cap or turnover increases investors’ liquidity needs, 

reduces the percentage spread, and makes the discrete price a larger friction for the bid–

ask spread. Therefore, firms with larger market caps or higher turnover should choose 

higher prices. 

Proposition 3 shows that heterogeneous optimal prices lead to the same two-tick bid–

ask spread. Intuitively, firms choose heterogeneous prices because of their varying 

fundamental characteristics, but all firms reach optimal prices when the contribution of the 

tick size equals the contribution of the lot size.  Mathematically, this implies a two-tick 

bid–ask spread under a trivial assumption that a firm’s total shares outstanding ℎ is much 

larger than its lot size 𝐿.11 

 
11 The minimal shares outstanding in our sample is 56,600 round lots.  



24 

 

 

Proposition 3 (Golden Rule of Two Cents). When the tick size is ∆ and the lot size is 

𝐿, the optimal nominal price is 𝑝∗ = √
𝜆𝐼∆𝑣

2𝜎𝜆𝐽𝐿
 and 𝔼(𝑠 

𝑡𝑜𝑡) = ∆ ∙ (1 +
𝜆𝐼ℎ

𝜆𝐼ℎ+𝜆𝐽𝐿
). When ℎ ≫

𝐿, 𝔼(𝑠 
𝑡𝑜𝑡) ≈ 2∆. 

 

Proposition 3 indicates that stocks whose average bid–ask spreads are narrower than 

two ticks are more tightly constrained by the tick size, and those firms can infer that their 

nominal prices are too low. Stocks whose average bid–ask spreads are wider than two ticks 

are more strictly lot-bound and their prices are too high. Fortunately, a firm does not need 

to calibrate 𝜎, 𝜆𝐽, and 𝜆𝐼 to estimate its optimal price, because its current average bid–ask 

spread provides sufficient statistics for this decision. We introduce the optimal split ratio 

in the next subsection. 

 

4.3. Optimal Split Ratio: The Modified Square Rule 

In this subsection, we introduce the Modified Square Rule, which shows that the 

average bid–ask spread is a sufficient statistic for the firms to choose the optimal split ratio. 

Lemma 1 shows that 𝑠𝑡
𝑡𝑜𝑡 can be decomposed into two components: 𝑠𝑡

𝐿  and 𝑠𝑡
∆ . The 

expectation of the tick-driven  component 𝔼(𝑠𝑡
∆) is always ∆. Therefore  

𝔼(𝑠𝑡
𝑡𝑜𝑡) = 𝔼(𝑠𝑡

𝐿 + 𝑠𝑡
∆)  = 𝔼(𝑠𝑡

𝐿) + ∆.                                  (10) 

The lot-driven  component follows the Square Rule (Proportion 2). As 𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ+𝜆𝐽𝐿
𝑝𝑡, 

and the total shares outstanding ℎ ≫ 𝐿, we have 𝑠𝑡
𝐿 ≈

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ
𝑝𝑡. Similarly, the lot-driven 

spread after an 𝐻-for-1 split is 
2𝜎𝜆𝐽𝐿

𝜆𝐼𝐻ℎ+𝜆𝐽𝐿
∙
𝑝𝑡

𝐻
. When ℎ ≫ 𝐿, we have 

𝑠𝑡
𝐿,𝑝𝑜𝑠𝑡 ≈

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ𝐻2
𝑝𝑡 ≈

𝑠𝑡
𝐿

𝐻2
.                                         (11) 

Therefore, the expected post-split bid–ask spread is 
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𝔼(𝑠𝑡
𝑡𝑜𝑡,𝑝𝑜𝑠𝑡) = 𝔼(𝑠𝑡

𝐿,𝑝𝑜𝑠𝑡 + 𝑠𝑡
∆,𝑝𝑜𝑠𝑡) ≈ 𝔼(

𝑠𝑡
𝐿

𝐻2
+ 𝑠𝑡

∆,𝑝𝑜𝑠𝑡) =
𝔼(𝑠𝑡

𝐿)

𝐻2
+ ∆=

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

𝐻2
+ ∆.   (12) 

Therefore, the split ratio 𝐻  that achieves the optimal two-tick spread satisfies 

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

𝐻2
+ ∆= 2∆. The solution is 𝐻 

∗ = √
𝔼(𝑠𝑡

𝑡𝑜𝑡)−∆

∆
. In Corollary 2, we modify the Square 

Rule specified in Corollary 1 to accommodate discrete pricing: 

 

Corollary 2 (Modified Square Rule and the Optimal Split Ratio). When ℎ ≫ 𝐿, an 

𝐻-for-1 split changes the spread from 𝔼(𝑠𝑡
𝑡𝑜𝑡) to 

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

𝐻2
+ ∆. The split ratio to achieve 

the optimal price is 𝐻 
∗ = √

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

∆
. 

 

We test Corollary 2 empirically in Section 7. Before we move to the empirical tests, 

we analyze the impact of the regulator’s choice in Stage 1 of the game.  

5. POLICY IMPLICATIONS FOR TICK AND LOT SIZES 

In this section, we allow the regulator to change tick and lot sizes. In Subsection 5.1, 

we allow the regulator to increase or decrease the uniform tick and lot sizes.  In Subsection 

5.2, we allow the regulator to switch to proportional tick and lot sizes, in which case tick 

and lot sizes are functions of price. 

 

5.1. Tick and Lot Size Changes under a Uniform System 

Under uniform tick and lot sizes, Corollary 3 specifies the Square Root Rule, under 

which the firm’s best response, the change in normal price, and the change in liquidity all 

follow the square root of the change in tick and lot sizes. 

 

Corollary 3. (Square Root Rule) A firm’s optimal nominal price 𝑝∗ = √
𝜆𝐼∆𝑣

2𝜎𝜆𝐽𝐿
 

responds to tick- and lot-size changes by √∆/𝐿. When ℎ ≫ 𝐿 , the average nominal spread 
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under optimal pricing equals 2∆ regardless of 𝐿 and ∆. The smallest achievable execution 

cost 𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) ≈ √2𝜎𝑣𝜆𝐼𝜆𝐽Δ𝐿 is proportional to √∆𝐿. 

 

The comparative statistics of 𝑝∗ show that a firm’s optimal response to a change in tick 

or lot size is found in their square roots. For example, if regulators increase the tick size 

from one cent to five cents, firms should reverse-split their stocks by √5.12 This reverse-

split ratio is optimal because it changes the relative tick size and dollar lot size by the same 

proportion such that the marginal contribution of the tick size is still equal to the marginal 

contribution of the lot size. 

Second, transaction costs also change at the rate of the square root. To see this, recall 

that the optimal 1-for-√5 reverse split increases the lot-driven spread to 5 (= √5 × √5) 

cents, and the tick-driven spread remains 5 cents. The 1-for-√5 reverse split restores the 

two-tick optimal spread, except that the two ticks now equal ten cents. The optimal bid–

ask spread increases fivefold and the nominal price increases by a factor of √5, leading to 

a √5-fold increase in transaction costs. In summary, the Two-Tick rule always holds, but 

the firm’s optimal response changes in accordance with the Square Root Rule. 

The same intuition applies to a reduction in the lot size. In 2019, the SIP Operating 

Committee solicited comments for a policy initiative designed to reduce the friction 

associated with odd-lot trades, or orders involving fewer than 100 shares. Stock exchanges 

and institutional traders proposed a more aggressive plan: reduce the round-lot threshold 

to fewer than 100 shares.13 Corollary 3 indicates that a reduction in the lot size improves 

liquidity and that firms should reverse-split their stocks to take full advantage of this benefit. 

For example, if the SIP committee were to reduce the round lot from 100 shares to 1 share, 

 
12 Here we consider a permanent fivefold tick size increase. The U.S. Tick Pilot program increased the tick 

size temporarily for two years. It is possible that the fixed costs of splits may outweigh the benefits for first 

reverse-splitting and then splitting back to counteract a two-year temporary shock. 
13 NASDAQ’s comment letter pertaining to this plan suggests that “high value quotations with significant 

price discovery information would be protected, even if they were less than 100 shares.” Citadel and 

Blackrock also support lot-size reduction in their comment letters.  
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firms should reverse-split at a ratio of 1-to-√100 to maximize the benefit of the lot-size 

reduction. Such a reduction in the spread would also explain why broker-dealers, who often 

provide execution within the bid–ask spread against retail traders (Boehmer et al., 2020), 

oppose any reduction in the official lot size.14 A reduction in the lot size narrows the 

reference bid–ask spread in stock exchanges and thereby forces these brokers to offer better 

prices to retail traders. 

Corollary 3 shows that a policy initiative that aims to make prices (quantities) more 

discrete also makes quantities (prices) more discrete in equilibrium. To the best of our 

knowledge, we are the first to identify this spillover effect. Angel (1997) considers only 

discrete pricing, and he argues that a 1-for-5 reverse split would neutralize a fivefold 

increase in the tick size. When we add discrete quantities, a 1-for-5 reverse split neither 

neutralizes the increase in the tick size nor is the best response. In fact, Corollary 3 shows 

that a 1-for-5 reverse split leads to the same transaction costs as doing nothing at all. The 

intuition behind this is as follows. Although a 1-for-5 reverse split restores the relative tick 

size, such aggressive reverse splits cause a fivefold increase in the dollar lot size. In 

equilibrium, a fivefold increase in the dollar lot size leads to the same increase in the 

transaction cost as a fivefold increase in the tick size does. For example, consider a firm 

that currently has an optimal spread of two cents; one cent comes from the tick size and 

one cent comes from the lot size. An increase in the tick size from one cent to five cents 

raises the tick-driven spread to five cents, leading to a nominal spread of six cents, which 

is three times the previous level. After a 1-for-5 reverse split, the tick-driven spread remains 

at five cents. A fivefold increase in the lot size raises the lot-driven spread to 52. The 

nominal spread now becomes 5 + 52 . After adjusting for the fivefold increase in the 

nominal price, the transaction cost still increases by a factor of three (=
25+5

2×5
). In conclusion, 

a reverse split at the same rate as the increase in the tick size is equivalent to doing nothing 

at all. 

 
14 Retail broker-dealers such as TD Ameritrade oppose the idea of reducing lot size. Their justification is that 

“display of unprotected quotes will cause confusion and mistrust in the market.” Their comment letters can 

be found at https://www.ctaplan.com/oddlots. 

https://www.ctaplan.com/oddlots
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5.2 Proportional vs. Uniform Tick and Lot Sizes 

One plan for changing the lot size is to make it a function of price, such that high-priced 

stocks have smaller lot sizes.15 This plan essentially generates a proportional lot size, which 

leads to a uniform dollar lot size for all stocks. Also, in many European countries, Hong 

Kong, and Japan, the tick size increases with stock prices. Corollary 4 shows that if the tick 

size is proportional, firms should split their stocks to minimize friction driven by the lot 

size. On the other hand, if the lot size is proportional, firms should reverse-split to minimize 

the tick size friction. If both the lot and tick size are proportional, the choice of a nominal 

price becomes irrelevant. 

Corollary 4. (Proportional Tick and Lot Systems) (1) With fixed ∆ and proportional 

lot size 𝕃(𝑝) = 𝑘𝐿/𝑝, where 𝑘𝐿 is a constant, the firm’s optimal choice is 𝑝∗ → ∞ and 

𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = 𝜎𝜆𝐽𝑘

𝐿.(2) With fixed 𝐿 and proportional tick size ∆(𝑝) = 𝑘∆𝑝, where 𝑘∆ 

is a constant, the firm’s optimal choice is 𝑝∗ → 0 and 𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) =

𝑘∆𝜆𝐼𝑣

2
. (3) With 

proportional tick ∆(𝑝) = 𝑘∆𝑝  and lot 𝕃(𝑝) = 𝑘𝐿/𝑝,𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) ≡ 𝜎𝜆𝐽𝑘

𝐿 +
𝑘∆𝜆𝐼𝑣

2
 for 

any 𝑝. Adopting the proportional system in (3) with any reference price 𝑝Ω
  such that 𝑘∆ =

∆/𝑝Ω
  and 𝑘𝐿 = 𝐿𝑝Ω

  reduces liquidity for any stock with 𝑝 ≠ 𝑝Ω
 . 

 

In Table 1 we summarize the results derived from Corollary 4. The intuitions are as 

follows. Suppose the regulator chooses lot size 𝕃(𝑝) and tick size ∆(𝑝), where both can be 

constants. A firm that chooses a price 𝑝 then has a dollar lot size 𝑝𝕃(𝑝) and a relative tick 

 
15 For example, Blackrock (2019) “believes that a more elegant solution for the inclusion of odd lots would 

be to move from a ‘one-size-fits-all’ approach to a multi-tiered framework where round lot sizes are 

determined by the price of a security.” NASDAQ (2019) suggests “establishing a dollar threshold for the 

value of quotes to be protected, defined as price multiplied by the number of shares.” Consequentially, the 

SEC proposes a 3-tier lot size regime for the U.S. equities: 1 share for stocks priced at $10,000.01 or more 

per share, 10 shares for stocks priced $1,000.01 to $10,000.00 per share, 40 shares for stocks priced $250.01 

to $1,000.00 per share, and 100 shares for other stocks. 
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size  
∆(𝑝)

𝑝
. Given 𝑝𝕃(𝑝) and  

∆(𝑝)

𝑝
, the game in stage 3 is like the trading game under the 

uniform tick and lot sizes. The lot-driven spread still follows the Square Rule, except that 

it increases in the square of 𝑝𝕃(𝑝); the tick-driven spread is still one tick, except that one 

tick is now ∆(𝑝). 

TABLE 1 

Optimal Price with Fixed and Proportional Tick/Lot Sizes 

Lot Size 

Tick Size 
Fixed 𝐿 

Proportional 

𝕃(𝑝) = 𝑘𝐿/𝑝 

Fixed ∆ 𝑝 
∗ = √

𝜆𝐼∆𝑣

2𝜎𝜆𝐽𝐿
  𝑝 

∗ → ∞ 

Proportional  

∆(𝑝) = 𝑘∆𝑝 
𝑝 
∗ → 0 

Expected transaction cost 

does not depend on 𝑝 
  

In this table we summarize the firm’s optimal choices regarding price 𝑝 
∗ under various tick- 

and lot-size systems. Continuous pricing is a special case for the first row, where ∆ = 0, and 

continuous quantities is a special case for the first column, where 𝐿 = 0. Proportional tick and lot 

sizes are summarized in the second row and column, respectively. Reads: With fixed tick and lot 

sizes, firms choose the optimal nominal price 𝑝 
∗. Firms split (reverse-split) to the extreme if the 

tick (lot) size is proportional to the nominal price. If both tick and lot sizes are proportional, the 

nominal price no longer affects the firm’s liquidity. 

 

If one variable is uniform and the other is proportional, the firm’s optimal choice is to 

minimize the friction caused by the uniform variable. If tick size is proportional but lot size 

is uniform, stock splits do not change the proportional tick size 
∆(𝑝)

𝑝
 but reduce the dollar 

lot size. Therefore, the firm should split aggressively to reduce the lot-driven transaction 

cost. If the tick size is uniform but the lot size is proportional, reverse splits do not increase 

the dollar lot size but reduce the relative tick size. Therefore, the firm should choose a high 

price to minimize the tick-driven transaction cost. 

The most interesting contrast appears at the diagonal, where we compare uniform tick 

and lot sizes with proportional tick and lot sizes. Such a comparison depends on 𝑘∆ and 𝑘𝐿. 

A natural way to choose 𝑘∆ and 𝑘𝐿 is to use a representative stock. For example, a regulator 

can choose 𝑘∆  and 𝑘𝐿  such that the relative tick size and dollar lot sizes for a $30 
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benchmark stock do not change. Corollary 4 shows that such proportional systems would 

reduce liquidity for all stocks except the benchmark. The greater the distance between the 

stock price and the benchmark price, the greater the liquidity reduction. 

For example, a proportional system chooses to retain the relative tick size and dollar 

lot sizes for a $30 stock. The proportional system would impose a tenfold wider tick size 

and a 0.1-fold larger lot size on a $300 stock. If the $300 stock was at its equilibrium with 

a two-cent bid–ask spread, its tick-driven spread increases to ten cents, and its lot-driven 

spread reduces to 0.1 cents, leading to an increase in the total spread from two cents to 10.1 

cents.16 Symmetrically, the proportional system would impose a 0.1-fold larger tick size 

and tenfold larger lot size for a $3 stock. If the $3 stock currently trades with a two-cent 

bid–ask spread, its tick-driven spread would drop to 0.1 cents but its lot-driven spread 

would increase to 10 cents. The total spread is again 10.1 cents. Under uniform tick and lot 

sizes, a firm choosing a $300 ($3) price is more (less) liquid than a firm choosing a $30 

price, but adopting a proportional tick and lot system reduces liquidity for both the $300 

and the $3 stocks at the same magnitude. Corollary 4 implies that, if regulators want to 

switch from a uniform system to a proportional system, they should not use any existing 

stock as the benchmark. 

The uniform system may seem less flexible because it mandates the same tick and lot 

sizes for stocks listed at varying prices. Yet the uniform system actually gives firms the 

flexibility to choose the optimal balance between lot and tick sizes by adjusting nominal 

prices. More liquid stocks endogenously choose higher prices (i.e. higher dollar lot sizes 

and lower relative tick sizes), because the main friction comes from discrete pricing. Less 

liquid stocks endogenously choose lower prices (i.e. lower dollar lot sizes and higher 

relative tick sizes), because the main friction comes from trading large lots. The 

proportional system is actually less flexible because it mandates the same level of price 

and quantity discreteness for firms with varying fundamentals. 

As both 𝑘∆ and 𝑘𝐿 can equal 0, Table 1 also provides the results for continuous tick 

 
16 The change is linear in the change in lot size because the regulator does not change the price of the stock. 

Under the Square Rule, firm increases both its dollar lot size and the price, leading to a quadratic relationship. 
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and lot sizes. As we focus in our paper on modeling frictions caused by tick and lot sizes, 

the first best in our model is continuous tick and lot sizes. This result is consistent with 

Kyle and Lee (2017), who propose a fully continuous exchange. The uniform tick and lot 

sizes offer one degree of freedom for firms to balance between discrete pricing and 

quantities by choosing the nominal price. The proportional tick and lot sizes offer zero 

degrees of freedom because they mandate the same level of discreteness in price and 

quantity for stocks with heterogeneous characteristics. If the regulator uses an existing 

stock as the benchmark, the regulator may harm the liquidity of other stocks. The biggest 

victims would be those stocks whose optimal nominal prices (and implicitly the stock 

characteristics) differ to the greatest extent from the benchmark stock. 

 

6. CROSS-SECTIONAL TESTS 

In this section, we test our model in the cross-section. In Section 6.1, we show that the 

cross-sectional variation in the bid–ask spread follows the Modified Square Rule: our 

three-factor model of liquidity can explain 81% of the cross-sectional variation in the bid–

ask spread. In Section 6.2 we show that our model also explains 57% of the cross-sectional 

variation in the nominal price with only two variables. 

 

6.1 A three-factor empirical model of liquidity 

Corollary (1) implies a three-factor model of cross-sectional variation in the bid–ask 

spread. Supposing that 𝑠𝑡
𝑡𝑜𝑡 − 𝑠𝑡

∆ = 𝑠𝑡
𝐿, we have 

𝑠𝑡
𝑡𝑜𝑡 − 𝑠𝑡

∆ = 𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝐿

𝐷𝑉𝑜𝑙𝑡
𝑝𝑡
2.                                     (13) 

Taking the natural log on both sides, we obtain 

𝑙𝑜𝑔(𝑠𝑡
𝑡𝑜𝑡 − 𝑠𝑡

∆) = 2𝑙𝑜𝑔(𝑝𝑡) − 𝑙𝑜𝑔(𝐷𝑉𝑜𝑙𝑡) + 𝑙𝑜𝑔(𝜎𝜆𝐽) + 𝑐𝑜𝑛𝑠𝑡.        (14) 

 

Following the literature, our variable of interest is the time-weighted average spread. 

As our horizon is one month or more, it is safe to assume that 𝑝𝑡 has evolved over a long 

enough period of time such that the average widening effect 𝐸(𝑠𝑡
∆) becomes ∆ following 

Proposition 2. Therefore, we can write (14) in the form of an OLS test: 
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𝑙𝑜𝑔(𝑆𝑝𝑟𝑒𝑎𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − ∆)
𝑖
= 𝛿 ∙ 𝑙𝑜𝑔(𝑃𝑟𝑖𝑐𝑒)𝑖 + 𝑙𝑜𝑔(𝑉𝑜𝑙𝑢𝑚𝑒)𝑖 + 𝑙𝑜𝑔(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)𝑖 + 𝜀𝑖. (15) 

We use daily Trade and Quote (TAQ) data to compute the time-weighted bid–ask 

spread, trading volume, and the number of trades. We use Center for Research in Security 

Prices (CRSP) data to compute daily volatility in a given year. We also use CRSP to 

compute the daily average price and market cap. Our Modified Square Rule predicts 

that 𝛿 = 2. The null hypothesis is 𝛿 = 1: when the lot size does not impose a binding 

constraint on the bid–ask spread, 𝐵𝑖𝑑𝑎𝑠𝑘𝑠𝑝𝑟𝑒𝑎𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − ∆  should increase one-to-one in 

price.17 

Our sample includes all U.S.-listed common stocks (SHRCD 10 or 11) with a standard 

lot size of 100 shares and a standard tick size of 1 cent.18 Our main sample period is the 

year 2020, and we conduct robustness checks using previous years. We winsorize our 

variables at the 1% level. Table 2 presents the summary statistics of our sample. 

TABLE 2 

Summary Statistics 

 

 

  Mean Min Q1 Median Q3 Max Std.Dev N 

Nominal Price ($) 43.37 1.00 7.66 17.64 43.96 2884.50 100.72 3745 

Spread (cents) 16.84 1.00 2.82 6.48 16.13 318.07 32.47 3745 

SHROUT (Million) 127.20 0.57 18.15 40.08 93.02 8747.09 416.08 3745 

Log(Trades) 7.89 2.40 6.77 8.11 9.12 12.64 1.77 3615 

Log(Dollar Volume) 22.19 12.26 20.25 22.32 24.11 30.14 2.64 3745 

Log(Market Cap) 20.45 14.67 18.93 20.34 21.88 28.05 2.13 3745 

 

In this table we report the summary statistics for our U.S. listed stock sample for cross-sectional 

tests. We take a snapshot of the year of 2020 as our sample, and we take the annual average of the 

data. We require the stocks to have the standard 100-share lot size, a price above $1 over the course 

of the entire year, and at least 20 observations within the year. 

 

Panel A of Table 3 strongly rejects the null hypothesis that 𝛿 = 1. Therefore, the 

 
17 Consider two stocks that are identical except their nominal prices. If lot size does not impose any constraint 

on the order size, investors should submit orders of the same dollar size for both stocks. The market maker 

then displays the same dollar amount of liquidity, and the percentage spread is the same for both stocks. Then, 

we’ll have 𝛿 = 1 to adjust for their mechanical differences in share price.  
18 A stock whose price is below $1 has a tick size smaller than 1 cent and we find that 10 stocks have lot sizes 

of fewer than 100 shares because their prices are very high (e.g., Berkshire Hathaway).  
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percentage bid–ask spread depends strongly on the dollar lot size. The results reported in 

column (1) show that 𝛿 = 2.09, which is close to our model’s prediction of 𝛿 = 2. The 

coefficients for volatility and trading volume are quantitatively close to 1. Our 

parsimonious three-factor model captures most of the cross-sectional variation in the bid–

ask spread, with an 𝑅2 as high as 0.81. Columns (2)–(5) show similar results using years 

prior to 2020, indicating the robustness of the Modified Square Rule. 

We use Panel B of Table 3 to compare our three-factor model of liquidity with two 

canonical benchmarks: Madhavan (2000) and Stoll (2000). The results reported in column 

(1) show that the 𝑅2 of the three-factor model (0.81) is much higher than that in Madhavan 

(2000; see column 2, 0.62) and Stoll (2000; see column 3, 0.65), even though our three-

factor model includes only a subset of variables that have been included in previous 

benchmarks. This improvement in goodness of fit is surprising, because adding more 

explanatory variables should, at a minimum, mechanically increase the 𝑅2. The results 

displayed in columns (4)–(8) provide two explanations of this surprising outperformance, 

as we elaborate below. 

 

 

 

 

 

TABLE 3 

Lot-driven Spread and the Square Rule 

 

Panel A: Three-Factor Model of Liquidity 
 (1) (2) (3) (4) (5) (6) 

Dependent 

Variable 

 
Log(𝑠𝑡

𝐿) = Log(𝑠𝑡
𝑡𝑜𝑡 − ∆) 

Sample Period 2020 2019 2018 2017 2016 2015 

Log(𝑃𝑟𝑖𝑐𝑒𝑡) 2.09*** 2.08*** 2.12*** 2.06*** 2.08*** 2.06*** 

 (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) 

Log(Volatilityt) 0.96*** 1.19*** 1.16*** 1.07*** 1.17*** 1.14*** 

 (0.05) (0.03) (0.03) (0.03) (0.03) (0.03) 

Log(Volumet) -0.84*** -0.82*** -0.81*** -0.79*** -0.83*** -0.81*** 

 (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) 

Obs. 3745 3652 3736 3711 3713 3850 

R2 0.8063 0.8389 0.8003 0.7704 0.8095 0.8298 

Adj. R2 0.8061 0.8387 0.8001 0.7702 0.8093 0.8296 
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Panel B: Specification Horseraces for the Three-Factor Model 
 (1) (2) (3) (4) (5) (6) (7) 

Dependent 

Variable 
Log(𝑠𝑡

𝐿) 
𝒮𝑡
𝑡𝑜𝑡

2
(bps) 

𝒮𝑡
𝑡𝑜𝑡

2
(bps) Log(𝑠𝑡

𝐿) Log(𝑠𝑡
𝐿) Log(𝑠𝑡

𝐿) Log(𝑠𝑡
𝐿) 

Sample Period 2020 2020 2020 2020 2020 2020 2020 

Log(𝑃𝑟𝑖𝑐𝑒𝑡) 2.09***  6.20*** 2.24*** 2.32*** 2.26*** 2.38*** 

 (0.03)  (1.56) (0.03) (0.04) (0.03) (0.03) 

Log(Volatilityt) 0.96***     0.68*** 0.03 

 (0.05)     (0.06) (0.06) 

Log(Volumet) -0.84*** -30.46*** -19.17*** -0.57*** -0.75*** -0.60***  

 (0.02) (1.49) (2.67) (0.03) (0.07) (0.03)  

Log(MKTCAPt)  19.08*** 9.69*** -0.46*** -0.42*** -0.41*** -1.22*** 

  (1.71) (1.21) (0.04) (0.03) (0.04) (0.02) 

Log(Turnovert)        

        

Log(#𝑇𝑟𝑎𝑑𝑒𝑠𝑡)   -7.12***  0.10***   

   (2.72)  (0.07)   

Volatilityt * 10^2  5.40***  0.09***    

  (0.53)  (0.01)    

Variancet * 10^4   0.19***  0.01***   

   (0.02)  (0.00)   

1/(𝑃𝑟𝑖𝑐𝑒𝑡)  -39.91***      

  (5.17)      

Obs. 3745 3745 3745 3745 3745 3745 3745 

R2 0.8063 0.6191 0.6529 0.8133 0.8228 0.8207 0.7478 

Adj. R2 0.8061 0.6187 0.6524 0.8131 0.8226 0.8205 0.7476 

In this table we report the results of testing the Modified Square Rule on the cross-section of 

U.S. common stocks. In Panel A we report the results of regressing the log of lot-driven nominal 

spreads on the log of nominal prices, controlling for log(Volatility) and log(Volume). We take a 

snapshot of the most recent five years of U.S. listed common stocks as our sample, and we take the 

annual average of the data. We require the stocks to have the standard 100-share lot size, a price 

above $1 over the course of the entire year, and at least 20 observations within the year. In Panel B 

we use the results to compare the modified square rule with alternative specifications. In column 

(1) we report the results derived with our model, while for columns (2) and (3) we incorporate the 

specifications of Madhavan (2000) and Stoll (2000), respectively. For columns (4) and (5) we use 

our model’s dependent variable and Madhavan’s (2000) and Stoll’s (2000) independent variables. 

For columns (6)–(8) we estimate our model with alternative control variables. Statistically 

significant coefficient estimates are shown in bold and standard errors are shown in parentheses. 

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

 

First, our model provides a better functional form to control for price. Madhavan (2000) 

uses 𝑝𝑟𝑖𝑐𝑒−1 to control for the relative tick size, while Stoll (2000) uses 𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒). Both 

specifications imply a monotonic relationship between the price and the percentage spread. 
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In reality (as seen in Figure 1), the relationship between price and liquidity is U-shaped. 

Therefore, these two canonical benchmarks may mis-specify the relationship between price 

and liquidity, at least for recent years. One indicator of the misspecification is the 

coefficient estimate of the price. For example, the Madhavan (2000) specification shows 

that an increase in the price or a decrease in the relative tick size increases the percentage 

spread, despite overwhelming evidence showing that exogenous decreases in tick size 

reduce the percentage spread (see Bessembinder 2003; Albuquerque, Song, and Yao 2020). 

The economic factor that reconciles this contradiction is the dollar lot size. Exogenous 

changes in the tick size do not change the dollar lot size. Therefore, Bessembinder (2003) 

and Albuquerque, Song, and Yao (2020) show that an increased tick size increases the 

percentage spread while holding the dollar lot size fixed. An increase in price, however, 

reduces the relative tick size but increases the dollar lot size. The trade-off between tick 

and lot sizes also rationalizes why Stoll’s (2000) specification shows that the price does 

not correlate with the percentage spread, although the economic reasoning in Stoll (2000) 

suggests that the price should matter. Our model provides an interpretation that applies to 

this puzzle: the price matters for liquidity; it just does not matter in a monotonic way. 

Our model indicates that a better functional form in the regression would be to subtract 

one tick from the bid–ask spread to control for the tick size and use log (price) to control 

for the lot size. To obtain the results reported in columns (4) and (5), we change the 

specifications in Madhavan (2000) and Stoll (2000) in only one respect: we replace the 

dependent variable in their regressions, the percentage spread (the bid–ask spread divided 

by the price), with the log of the percentage lot-driven spread ((bid–ask spread – 1 cent) 

divided by price). This one-cent change makes a huge difference. The 𝑅2 in Madhavan’s 

(2000) specification increases from 0.62 to 0.81 while the 𝑅2 in Stoll’s (2000) specification 

increases from 0.65 to 0.82. Also, the coefficients for prices become statistically more 

significant. 

Second, our model enables us to remove redundant explanatory variables such as the 

market cap. Almost all empirical tests of liquidity control for the market cap, reflecting the 

intuition that large-cap stocks should be more liquid (Stoll 2000; Madhavan 2000). The 
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results reported in column (2) of Table 3 show that adding the market cap only marginally 

improves the explanatory power. Interestingly, Stoll (2000) documents a similar puzzle in 

his sample period: the market cap has very weak explanatory power for the percentage 

spread, and an increase in the market cap can increase the percentage bid–ask spread (Table 

1, p. 1481). 

Our model provides the intuition that explains why the market cap has almost no 

additional explanatory power for the percentage spread. Madhavan (2000) and Stoll (2000) 

also control for the dollar volume, and our model suggests that the market cap becomes a 

redundant variable after we control for the dollar volume. Notice that we model market cap 

as 𝑣𝑡, and it affects liquidity only through its product with 𝜆𝐼, the turnover rate. Therefore, 

our model indicates that the market maker cares more about the dollar trading volume that 

pays the bid–ask spread and less about firm size per se. A small-cap stock with high 

turnover is as liquid as a large-cap stock with low turnover if they have the same dollar 

volume, because the competitive market maker earns the same amount in transaction costs 

and ceteris paribus quotes the same bid–ask spread. 

The results reported in column (6) show that adding the market cap to our three-factor 

model increases the 𝑅2 by only 0.01. The results reported in column (7) show that the 𝑅2  

declines from 0.81 to 0.75 if we remove the dollar volume but keep the market cap. Thus, 

dollar volume is a much stronger predictor of stock liquidity: although the market cap 

appears to be a universal explanatory variable in most regressions, it does not directly affect 

the market maker’s decision regarding the bid–ask spread. 

 

6.2 A two-factor empirical model of nominal prices 

Proposition 3 predicts that a firm’s optimal nominal price is 𝑝 
∗ = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
. We test this 

relationship cross-sectionally. Taking the natural log on both sides, we obtain: 

𝑙𝑜𝑔(𝑝𝑡
∗) =

1

2
𝑙𝑜𝑔(𝜆𝐼𝑣𝑡) −

1

2
𝑙𝑜𝑔(𝜎𝜆𝐽) + 𝑐𝑜𝑛𝑠𝑡.                     (16) 

Rewriting (16) as a cross-sectional test gives us: 

𝑙𝑜𝑔(𝑃𝑟𝑖𝑐𝑒)𝑖 =
1

2
𝑙𝑜𝑔(𝐷𝑜𝑙𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒)𝑖 −

1

2
𝑙𝑜𝑔(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)𝑖 + 𝜀𝑖.        (17) 
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In Table 4 we report the test results for nominal prices. In column (1) we show that 

the two-factor model of volatility and dollar volume captures 57% of the cross-sectional 

variation in stock prices. We find that an increase in volatility decreases the nominal price. 

This result is consistent with the puzzle raised by Baker, Greenwood, and Wurgler (2009), 

who find “a somewhat unexpected result is the effect of volatility, which suggests that 

volatile firms have a greater, not lesser, propensity to manage prices downward.” Shue 

and Townsend (2021) provide a behavior-based interpretation of this puzzle. They 

hypothesize that investors think in part about stock-price changes in dollars rather than 

percentage units, leading to more extreme return responses to news by lower-priced stocks. 

Their interpretation focuses on the impact of price on volatility, whereas our interpretation 

focuses on the impact of volatility on price. 

We can interpret this result using either lot constraints or tick constraints. Because an 

increase in volatility increases adverse-selection risk for market makers, firms whose 

volatility is higher should choose a lower price to reduce the dollar lot size. Also, firms that 

experience greater volatility have a higher percentage spread and are less constrained by 

the tick size. Therefore, these stocks can achieve their optimal two-tick spreads at lower 

nominal prices. 

We also find that the nominal price increases with dollar volume. As stocks that trade 

in higher volumes tend to be larger stocks, we provide an interpretation for the observations 

in Baker, Greenwood, and Wurgler (2009) and Weld et al. (2009) that large stocks choose 

higher prices. An increase in the dollar volume reduces the percentage spread and the tick-

size constraints. Therefore, firms tend to choose higher prices to relieve tick-size 

constraints. 
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TABLE 4  

Two-Factor Model of Nominal Prices 

 
 (1) (2) (3) (4) 

Dependent 

Variable 
Log(𝑃𝑟𝑖𝑐𝑒)t 

Log(Volatilityt) -0.99***   -0.93*** 

 (0.04)   (0.04) 

Log(Volumet) 0.29*** 0.33*** 0.34*** 0.30*** 

 (0.01) (0.01) (0.03) (0.01) 

Industry FE N N Y Y 

Obs. 3745 3745 3745 3745 

R2 0.5664 0.4387 0.4811 0.5787 

Adj. R2 0.5661 0.4386 0.4775 0.5757 

In this table we report the results of testing the two-factor model on the cross-sectional nominal 

price of U.S. common stocks. We take a snapshot of U.S. listed common stocks in the year 2020 

as our sample, and we take the annual average of the data. We require the stocks to have the standard 

100-share lot size, a price higher than $1 during the entire year, and at least 20 observations within 

the year. In column (1) we report the results derived with our baseline model, while for columns 

(2), (3), and (4) we report results obtained when testing the predictive power of volatility and 

industry fixed-effects as suggested by Weld et al. (2009). Statistically significant coefficient 

estimates are shown in bold and standard errors are shown in parentheses. ***, **, and * denote 

significance at the 1%, 5%, and 10% levels, respectively. 

 

Weld et al. (2009) use industry fixed effects to explain nominal prices in the cross-

section. We reconfirm their results, as reported in columns (2) and (3). Starting with a 

univariate regression with log volume and adding industry fixed effects increases the 𝑅2  

from 0.44 to 0.48, so the marginal contribution of industry fixed effects is 0.04. When we 

add volatility to the regression, though, the industry fixed effects increase the 𝑅2 by only 

0.01, as reported in column (1) and column (4). Therefore, volatility subsumes most of the 

explanatory power of industry fixed effects. Therefore, a rational interpretation of the 

industry clustering found in Weld et al. (2009) is that firms in the same industry may be 

subject to similar volatility. 

In summary, we find that our model fits qualitatively with cross-sectional variations in 

nominal prices. The fit is less perfect than the fit for the bid–ask spread (0.57 vs. 0.81), and 

the coefficient on the estimate does not change one for one with model predictions. 

Interestingly, it is this imperfect fit that enables us to identify the impact of prices on the 

bid–ask spread. If all firms chose their prices following our model, log(price) would 
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correlate almost perfectly with log(volatility) and log(dollar volume), leading to 

collinearity. There are two possible, albeit not mutually exclusive, interpretations of the 

less perfect fit of firms’ behavior than of traders’ behavior. First, our model omits some 

important drivers of the firm’s choice but not of the traders’ choices. Second, firms respond 

to market-structure frictions to a lesser extent than traders do. Therefore, firms may end up 

with suboptimal nominal prices. We cannot rule out the first interpretation, but we find 

empirical evidence consistent with the second interpretation through stock splits. 

 

7 LIQUIDITY AND RETURNS AROUND STOCK SPLITS 

In this section, we use stock splits as a laboratory in which to test the implications of 

our model. In Section 7.1, we describe our data and sample. In Subsection 7.2, we show 

that our model matches changes in the percentage spread after splits. In Subsection 7.3, we 

show that most splits are correct because they tend to increase liquidity. In Subsection 7.4, 

we find that model-predicted changes in the percentage spread can explain the cross-

sectional variation in announcement returns on splits. 

 

7.1 Data, Sample, and Summary Statistics 

Our sample includes all U.S. common stock–split announcements (CRSP event code 

5523) from June 2003 through December 2020.19 We exclude reverse splits for two reasons. 

First, CRSP does not record reverse-split announcement dates. Second, reverse splits are 

usually mechanical and associated with bad news. For example, one major reason for 

reverse splits is that firms must comply with the minimum listing requirement of a $1.00 

minimum bid price (Martell and Webb 2008). 

We require stocks to be U.S.-listed common stocks (the SHRCD is 10 or 11) and have 

pre- and post-split prices higher than $1 per share. We use CRSP data for stock-split ratios 

and announcement dates, split-adjusted stock returns, and market returns around declare 

dates as well as control variables. We use millisecond TAQ data to calculate the time-

weighted quoted bid–ask spread and the quoted NBBO depth. To calculate cumulative 

 
19 The sample period begins in the month in which the millisecond TAQ data become available. 



40 

 

abnormal returns (CARs), we obtain daily Fama-French factor returns and risk-free rates 

from Kenneth French’s data library. We also require that the declaration date, the ex-date, 

and the split ratio be neither missing nor duplicated from CRSP. In addition, we use 

COMPUSTAT data to obtain annual reported numbers of shareholders and we aggregate 

13-F filings to calculate the institutional holdings of a stock one quarter before and after its 

split announcement. Variables are winsorized at the 1% level. Following Grinblatt, Masulis, 

and Titman (1984), we require that stock-split ratios be greater than or equal to 1.25 (5-

for-4). We end up with 1,196 stock splits. 

In Table 5 we report the descriptive statistics. Our sample comprises 912 unique stocks. 

The most common splits are 2-for-1 splits (649 times) and 1.5-for-1 splits (359 times) and 

the mean split ratio is 1.91. The average price before a split announcement is $59.49 and 

the average price after a split is $33.15. The number of trades increases by 74%, but the 

dollar trading volume almost does not change. This supports our hypothesis that execution 

algorithms slice and dice their latent interests into smaller dollar sizes after stock splits. 

Also, institutional holdings increased slightly, from 57.90% to 58.04%, indicating that 

retail traders’ holdings do not change dramatically. Therefore, changes in the compositions 

of retail/institutional holdings are unlikely to drive our results. 

 

TABLE 5 

Summary Statistics 

 

  Mean Min Q1 Median Q3 Max Std.Dev N 

Split Ratio 1.91 1.25 1.50 2.00 2.00 50.00 1.52 1196 

Pre-split price ($) 59.49 3.49 31.79 47.58 70.75 3311.00 105.02 1196 

Post-split price ($) 33.15 2.15 21.45 30.01 40.30 440.64 20.28 1196 

Market cap ($MM) 8.54 0.01 0.42 1.51 4.44 2206.91 68.60 1196 

Ex-ante spread (cents) 15.69 1.04 4.20 7.02 16.60 294.54 24.77 1196 

Ex-post spread (cents) 9.06 1.03 2.79 4.30 8.98 103.22 12.44 1196 

Predicted spread change (cts) -9.94 -291 -9.26 -3.98 -2.14 -0.02 19.68 1196 

Predicted spread change (bps) -15.2 -497 -12.7 -3.22 -0.99 7.76 34.86 1196 

Announcement CAR (%) 2.73 -28.7 -0.13 1.79 4.25 68.83 5.88 1196 

Ex-date CAR (%) 0.30 -38.9 -1.90 -0.01 2.01 156.68 6.50 1196 

Ex-ante volume ($MM) 39.69 0.01 1.19 9.12 35.28 491.63 80.15 1196 

Ex-post volume ($MM) 41.45 0.01 1.62 10.42 38.61 486.61 82.75 1196 
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Pre-split trades (thousands) 3.39 0.00 0.29 1.03 2.77 365.77 15.70 1141 

Post-split trades (thousands) 5.93 0.00 0.48 1.56 4.32 852.72 34.72 1163 

Pre-split inst. holding (%) 57.90 0.00 32.18 66.05 84.44 99.11 30.98 942 

Post-split inst. holding (%) 58.05 0.00 32.89 66.06 84.19 97.83 30.13 924 

Pre-split holders (thousands) 14.91 0.00 0.45 1.95 7.18 1234.00 65.86 753 

Post-split holders (thousands) 16.45 0.00 0.44 2.04 7.80 1426.00 71.60 758 

Log(holders change ratio) 0.03 -6.93 -0.10 -0.01 0.20 4.08 0.80 729 

 

In this table we report the summary statistics for our stock-split sample for September 2003–

December 2020. Institutional holdings are taken from 13-F filings for the quarters immediately 

before and after a split-announcement date. The announcement and ex-date CARs are cumulated 

announcement returns during dates [T-1, T+1], following Grinblatt, Masulis, and Titman (1984). 

Shareholder numbers are taken from the years immediately before and after stock-split 

announcements, and the logs of the changes are reported following Amihud, Mendelson, and Uno 

(1999). Other pre-split variables are measured in the 180-day-to-60-day window before split-

announcement days and post-split variables are measured in the 60-day-to-180-day window after 

split-implementation days. 

 

7.2. Spread Changes around Stock Splits 

In this subsection we show that changes in percentage spreads fit closely with the 

Modified Square Rule. We measure the bid–ask spread before splits as the time-weighted 

average bid–ask spread 180 to 60 days before a split-announcement day.20 We define 𝑅𝑖 as 

the predicted change in the percentage spread: 

𝑅𝑖 =
(𝑠𝑖
𝑝𝑟𝑒

−∆)/𝐻𝑖
2+∆

𝑝
𝑖
𝑝𝑜𝑠𝑡

/𝐻𝑖
 −

𝑠𝑖
𝑝𝑟𝑒

𝑝
𝑖
𝑝𝑜𝑠𝑡,                                               (18) 

where 
𝑠𝑖
𝑝𝑟𝑒

𝑝
𝑖
𝑝𝑜𝑠𝑡  is the percentage spread before splits and 

(𝑠𝑖
𝑝𝑟𝑒

−∆)/𝐻𝑖
2+∆

𝑝
𝑖
𝑝𝑜𝑠𝑡

/𝐻𝑖
  is the post-split 

percentage spread predicted by the Modified Square Rule. 

We define the realized change in the percentage spread, ∆𝒮𝑖, as the difference between 

the average percentage spread 180 to 60 days before announcement days and the average 

percentage spread 60 to 180 days after ex-dates. Following Weld et al. (2009), our control 

variables include market capitalization, price, volume, and turnover rates. 

 
20  Stock trades around split announcements are volatile (Ohlson and Penman, 1985). Therefore, when 

measuring the bid–ask spread, we exclude 60 days around the split window and consider the spread difference 

between the two relatively calm periods before the announcement and after the ex-date (the day that the split 

actually happens). 
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The results we report in Table 6 show that a predicted 1 bp increase in the spread leads 

to a 1.02 bps realized increase in the spread, with t-statistics of 5.11. Therefore, the 

Modified Square Rule strongly predicts the percentage spread after splits. Also, after 

controlling for 𝑅𝑖, we find that the split ratio does not explain the change in the percentage 

spread. 

 

TABLE 6 
Predictions of Changes in Bid–Ask Spreads 

 

Dependent 

Variable 

Realized 

∆𝒮𝑖 (bps) 

𝑅𝑖 (bps) 1.02*** 

 (0.20) 

Log(𝐻𝑖) 0.17* 

 (0.10) 

Controls Y 

Industry-Year FE Y 

Obs. 1196 

Adj. R2 0.336 

In this table we report the results obtained from regressing realized changes in the percentage 

spread on predicted spread changes. 𝑅𝑖 is the model-predicted change in the percentage spread (in 

bps). We control for the split ratio, which comes from the CRSP item FACSHR. Following Weld 

et al. (2009), other control variables include log(market cap), price, log(volume), and turnover rates. 

We also control for industry-year fixed effects to absorb any industry-year-specific shocks, where 

each industry is defined by reference to the first two digits of the NAICS classification. Statistically 

significant coefficient estimates are shown in bold and standard errors are shown in parentheses. 

Standard errors are adjusted for both heteroskedasticities and within correlations clustered by firm. 

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

7.3. Correct versus Incorrect Splits 

After showing that the changes in realized percentage spreads match almost one for 

one with the predictions derived from the Modified Square Rule, we consider whether 

splits improve liquidity. We find that firms in general make correct decisions for stock 

splits. 

Our model predicts that a split is correct if it moves the bid–ask spread closer to the 

two-tick optimum. Mathematically, a split is correct if 𝑅𝑖 < 0 and a split is incorrect if 
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𝑅𝑖 > 0, and 𝑅𝑖 reaches its minimum if the split ratio leads to the optimal two-tick spread. 

We find that 1,089 splits are “correct” and 107 splits are “incorrect.” Among the 107 

incorrect splits, 74 should have split, because their bid–ask spreads are higher than the two-

tick optimum. They choose split ratios that are so aggressive, though, that their new bid–

ask spreads are further away from the 2-tick optimal. We find that 𝑅𝑖, on average, decreases 

by 15.22 bps in our sample, providing additional evidence that splits are in general correct. 

 

7.4. Cumulative Abnormal Returns around Announcements 

Liquidity affects asset value (Amihud and Mendelson, 1986), and Figure 4 presents 

preliminary evidence that our model-predicted liquidity change affects returns on split 

announcements: firms in the group with correct splits realize an average announcement 

CAR of 2.87%, whereas those in the group with incorrect splits obtain an average 

announcement return of only 1.36%.21 

 
FIGURE 4.—Split-Announcement Returns: This figure shows the cumulative abnormal returns 

(CARs) around split-announcement dates. Our sample includes all U.S.-listed common stock splits 

 
21 Following Grinblatt, Masulis, and Titman (1984), we consider the window of announcement abnormal 

returns as dates -1, 0, and 1. 

http://scholar.google.com/scholar?q=Amihud+and+Mendelson&hl=en&as_sdt=0&as_vis=1&oi=scholart
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beginning in September 2003. We require the firm to choose at least a $1 nominal price before and 

after a split. We categorize stocks into two types based on Proposition 3. A split is “correct” if 

Proposition 3 predicts a decrease in the percentage spread and “incorrect” if Proposition 3 predicts 

an increase in the percentage spread. 

 

Insofar as splits are good news in general, both groups enjoy positive returns, but the 

1.51% difference indicates that predicted liquidity changes may contribute to the difference 

in returns. To test this hypothesis, we run the following regression: 

𝐶𝐴𝑅𝑖,[𝑇−1,𝑇+1] = 𝜃 ∙ 𝑅𝑖 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 × 𝑌𝑒𝑎𝑟 𝐹𝐸𝑡 + 𝜀𝑖.         (20) 

Following Weld et al. (2009), our control variables include market capitalization, price, 

volume, and turnover rates. As an additional robustness check, we also control for industry-

year fixed effects to absorb any industry and time-specific shocks, where each industry is 

defined by reference to the first two digits of the NAICS classification. We also control for 

institutional holding changes and the number of investor changes (following Amihud, 

Mendelson, and Uno (1999) and Dyl and Elliott (2006)) to control for the impact of the 

investor base.22 To reflect the information set of traders on the stock-split-announcement 

day, to avoid look-ahead bias we use the predicted spread change 𝑅𝑖 but not the realized 

spread change. 

The results reported in Table 7 show that our predicted spread change is significantly 

negatively associated with split-announcement abnormal returns. The results reported in 

column (1) indicate that a predicted 1 bps increase in the percentage spread is associated 

with −5.47  bps in announcement returns.23  After adding control variables, the results 

reported in column (3) show that a predicted 1 bps increase in the percentage spread is 

associated with −6.18 bps in announcement returns. As the mean of 𝑅𝑖  is −15.22 bps, 

correct split ratios contribute −15.22 × −6.18 = 94  bps to the overall average split-

announcement abnormal return of 273 bps. Therefore, a reduction in market-microstructure 

friction provides a partial explanation of why a seemingly cosmetic change, a stock split, 

 
22 These two variables are missing for more than half of the firms, so we do not add them in the baseline test. 

As the results reported in column (4) of Table 7 show, our results are robust to these additional controls in 

the reduced sample. 
23 The economic magnitude is similar to that reported in Albuquerque, Song, and Yao (2020). Using a 

controlled experiment, they find that a 43.5 to 48.2 bps increase in the bid–ask spread led to a 175 to 320 bps 

drop in asset values. 
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leads to positive returns. 

The Table 7 results show that the explanatory power of the tick-and-lot channel is 

orthogonal to two existing interpretations of splits and announcement returns from splits. 

Brennan and Copeland (1988) propose that firms use splits to convey positive signals about 

firm fundamentals, and the cost of such signals is reduced liquidity. Brennan and Copeland 

(1988) predict, therefore, that a larger reduction in liquidity should send a stronger signal 

and be associated with higher returns. We find, however, that splits improve liquidity and 

a greater improvement in liquidity leads to a higher return. Both patterns are inconsistent 

with the signaling channel. Lamoureux and Poon (1987) and Maloney and Mulherin (1992) 

propose that firms use stock splits to attract retail traders, and an increase in uninformed 

traders increases volume and liquidity. As seen in Table 5, we find that institutional 

holdings increased slightly after stock splits. The results reported in column (4) of Table 7 

show that the change in retail holdings, proxied by the number of shareholders and 

institutional holdings, does not affect announcement returns. 

 

TABLE 7 

Predicted Spread Changes and Abnormal Returns on Announcements 

 
Dependent 

Variable 
CARi,[T-1, T+1] (bps) 

  1 2 3 4 

𝑅𝑖 (bps) -5.47*** -4.42** -6.18*** -7.44** 
 (1.48) (2.06) (2.40) (3.72) 

Log(𝐻𝑖)  1.93 1.46 2.03 

  (1.29) (1.15) (1.62) 

Log(MktCapi,t-1)  4.52*** 4.81** 7.93*** 

  (1.59) (1.80) (2.28) 

Log(Pricei,t-1)  -5.80*** -6.29*** -9.15*** 

  (1.63) (1.76) (2.20) 

Turnoveri,t-1  5.53*** 5.63*** 9.16*** 

  (1.59) (1.81) (2.20) 

Log(Volumei,t-1)  -4.87*** -4.96*** -8.08*** 

  (1.54) (1.72) (2.17) 

Log(
𝐼𝑛𝑠𝑡𝐻𝑙𝑑𝑔𝑡+1𝑄

𝐼𝑛𝑠𝑡𝐻𝑙𝑑𝑔𝑡−1𝑄
)    7.38 

    (3.73) 

Log(
𝑇𝑂𝑇𝑆𝐻𝑡+1𝑦𝑟

𝑇𝑂𝑇𝑆𝐻𝑡−1𝑦𝑟
)    -0.16 

    (0.29) 

Industry-Year FE N N Y N 
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Obs. 1196 1196 1196 607 

Adj. R2 0.067 0.132 0.164 0.237 

In this table we report the results of regressing split-announcement CARs on predicted spread 

changes and announced split ratios with various controls. 𝑅 is the model-predicted change in the 

percentage spread. The split ratio comes from the CRSP item FACSHR. Following Weld et al. 

(2009), for column (2) we control for log(market cap), price, log(volume), and turnover rates before 

the splits. Industry-year fixed effects are added to obtain the results reported in column (3) to absorb 

any industry-year-specific shocks, where each industry is defined by reference to the first two digits 

of the NAICS classification. For column (4) we also control for changes in institutional holdings 

and shareholders, following Dyl and Elliott (2006) and Amihud, Mendelson, and Uno (1999). 

Institutional holdings are aggregated from quarterly 13-F filings before and after split 

announcements, and the numbers of shareholders are obtained from the COMPUSTAT annual item 

CSHR. Statistically significant coefficient estimates are shown in bold and standard errors are 

shown in parentheses. Standard errors are adjusted for both heteroskedasticities and within 

correlations clustered by firm. ***, **, and * denote significance at the 1%, 5%, and 10% levels, 

respectively. 

 

8. BACK-OF-THE-ENVELOPE CACULATION  

In Sections 6 and 7, we provide evidence of the value of managing nominal prices, and 

we also show that firms on average move their nominal prices in the right direction during 

stock splits. Yet we still find many firms choosing suboptimal prices. The clearest evidence 

of this comes from pairs of stocks with similar fundamentals but dramatically different 

prices. For example, the daily average price is $3,305 for Amazon and $255 for Microsoft. 

Their dramatic differences in share price and their similar fundamentals indicate that at 

most one firm can be at the correct price. Which firm, then, is closer to its optimal price? 

How large is the benefit  of moving to the optimal price? 

The Two-Tick Rule indicates that Amazon is further away from its optimal price, which 

is consistent with the empirical evidence. Microsoft has a bid–ask spread of 1.95 cents, 

which is very close to the two-tick optimal. Amazon has a bid–ask spread of 153 cents, 

which indicates that its price is too high. Indeed, we find that Microsoft’s percentage spread 

is 0.77 bps, which is much lower than Amazon’s percentage spread (4.62 bps). 

The sixfold difference in the percentage spread matches almost perfectly with the 

Modified Square Rule. Suppose that Amazon executes a 13-for-1 split such that its price is 

similar to the Microsoft price. The modified square rule predicts that Amazon’s bid–ask 
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spread should change to 
153−1

132
+ 1 = 1.90 cents. The bid–ask spread becomes very close 

to Microsoft’s bid–ask spread and the percentage spread experiences a sixfold reduction. 

The split ratio needed to generate the two-tick optimal spread is√
1.53−0.01

0.01
= 12.3, and the 

percentage spread further reduces to 0.74 bps. The reduction in transaction costs would 

save Amazon investors $684 million per year. Amazon’s market cap would increase by 

$3.89 billion based on our estimated elasticity of firm value to the percentage spread. 

Figure 5 formalizes the intuition presented in the previous anecdote. We extend Figure 

1 by adding three dashed lines that show the optimal percentage spreads if all firms in the 

basket choose the optimal prices predicted by our model, that is, nominal prices that 

generate two-tick bid–ask spreads. The horizontal axis presents the current price of the 

stock and the vertical axis presents the percentage spread. A larger vertical gap between 

the solid and dashed lines implies a greater gain in liquidity. 

 
FIGURE 5.—Economic gains from adopting optimal nominal prices: This figure shows the 

relationship between average percentage spreads and nominal prices. Our sample includes all U.S.-

listed common stocks that have a 1-cent tick size, a 100-share lot size, and at least a $1 nominal 

price. The lines with squares, circles, and triangles represent small-, medium-, and large-cap stocks, 
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respectively. Price baskets are selected such that each basket contains a similar number of stocks. 

The solid lines are observed percentage spreads (simple averages) for stocks within the same price–

size basket, and dashed lines are theoretically possible minimum spreads of the stocks in the same 

baskets. 

 

For large stocks, the biggest winners would be those with low prices such as General 

Electric, Ford, Bank of America, and SiriusXM. Almost no firms voluntarily split in this 

segment of the market: most of these stocks experienced very large price slides before the 

sample period and have not fully recovered. Their low prices led to binding tick sizes, and 

they almost always trade at a one-cent spread, which results in a very large percentage 

spread. We conjecture that such firms do not reverse-split because reverse splits are usually 

regarded as negative “signals,” and these firms would rather wait for (possible) price 

recovery to ease the binding tick size. We encourage these firms to ignore the negative 

connotations of reverse splits and escape the tick-binding restriction. One anecdote comes 

from competition between Ford and GM. Ford brought a price of $7 and GM brought a 

price of $30. We then find that the Modified Square Rule can explain why Ford’s 

percentage spread (14 bps) is four times greater than General Motors’ (3.3 bps). If Ford 

were to implement a 1-for-4 reverse split, its percentage spread would be similar to General 

Motors’. Ford investors would save $66 million per year if the company were to choose a 

price that is similar to GM’s. 

On the other side, a small firm should not choose a high price. Such a firm might choose 

a high price because people often consider a high-priced stock a prestigious stock (Weld et 

al. 2009). The cost of maintaining a minimum lot of 100 shares in liquidity is, however, 

very high for a small stock, leading to a large percentage spread for these stocks. 

We find that the median optimal price for large stocks (NYSE deciles) is $37.31, 

whereas the median small stock can sustain an optimal price of only $3.51. The results 

presented in Figure 5 suggest that a small-cap stock should not choose a high price, whereas 

a large stock should not choose a low price. 

Finally, we estimate the potential liquidity improvement that can be obtained with 

optimal pricing. After adopting optimal pricing, the median spreads will be reduced from 

42.85 bps to 25.66 bps, a 40% reduction. For small-cap stocks, the spread will decrease 
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from 153 bps to 91.7 bps. The spread for large-cap stocks will decrease from 14.00 bps to 

7.91 bps. Because the sensitivity of prices to liquidity changes that we report in Table 7 is 

6.18, we expect the value of the median U.S. stock to increase by (42.85-25.66) × 6.18 = 

106 bps after adopting optimal pricing. Small stocks tend to be the biggest winners when 

achieving optimal nominal prices, and their value will increase by 378 bps if they choose 

their best nominal prices, but the median large-cap stocks can also increase their value by 

37.6 bps. Summing up the potential gains for each stock, the total benefit of adopting 

optimal pricing is estimated to be $93.7 billion. The top benefiting firms would be Alphabet 

Inc. ($3.96 billion), Amazon ($3.89 billion), and UnitedHealth Group ($546 million). 

 

9. CONCLUSION 

Economic models often incorporate an implicit but important assumption—

continuous pricing and continuous quantities. In this paper, we offer the first study where 

both prices and quantities are discrete, and we show that these two seemingly small 

frictions help to address questions and puzzles in market microstructure, behavioral 

finance, and corporate finance. 

Regarding market microstructure, the Modified Square Rule explains 81% of cross-

sectional variation in the bid–ask spread. Our three-factor model of liquidity outperforms 

two canonical benchmarks (Madhavan 2000 and Stoll 2000) even though it uses a subset 

of their parameters. The key to this surprising outperformance comes from the functional 

form. Madhavan (2000) and Stoll (2000) assume a monotonic relationship between price 

and liquidity, following the intuition that an increase in price reduces the relative tick 

size. Our theoretical model and empirical specification capture the U-shaped 

relationships between price and liquidity by discovering the trade-off between discrete 

pricing and discrete quantities. We encourage researchers to consider our empirical 

specification when they search for new explanatory variables that are related to liquidity: 

using the bid–ask spread minus one tick as the dependent variable to control for tick-

driven spreads and then using log(price) as the independent variable to control for lot-

driven spreads. 
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Our paper resolves several puzzles in behavioral finance. Baker, Greenwood, and 

Wurgler (2009) find it unexpected that volatile stocks have a greater propensity to 

manage their price downward. We can explain this puzzle by reference to lot size or tick 

size. An increase in volatility increases adverse-selection risk for market makers, and a 

firm should reduce its share price or dollar lot size to mitigate such risk. An increase in 

volatility increases percentage spreads, relieves the tick constraint, and gives a firm a 

stronger incentive to choose a lower price. Our paper also rationalizes why firms with 

similar market caps and firms that operate in the same industry choose similar prices 

(Weld et al. 2009). Ceteris paribus, larger firms trade in higher dollar volumes with 

lower percentage spreads, and they should choose higher prices to relieve tick constraints. 

We find that volatility largely subsumes industry fixed effects. Therefore, firms in the 

same industry may choose similar prices because they experience similar volatility. 

Regarding corporate decisions, our paper proposes a two-tick optimal rule for stock 

splits. Firms have heterogenous optimal prices, but all firms reach their optimal prices 

when their bid–ask spreads equal two ticks, when tick-size friction is equal to lot-size 

friction. We find that most stock splits move bid–ask spreads closer to two ticks, and 

changes in liquidity following splits match almost one for one with the Modified Square 

rule. Therefore, our paper rationalizes stock splits. As an increase in liquidity increases 

stock value, we find that our tick-and-lot channel contributes 94 bps points to the average 

split-announcement return of 273 bps. We estimate that the median U.S. stock value 

would increase by 106 bps if all firms were to move to their optimal prices and total 

market value would increase by $93.7 billion. 

Our paper offers two policy implications. First, we discourage regulators from 

advancing the initiative to increase the tick size because it reduces liquidity, and we 

encourage them to advance the initiative to decrease the lot size because it improves 

liquidity. Second, we find that the move to a proportional tick-and-lot system reduces 

liquidity, if regulators choose the tick and lot size for any existing stock under the 

uniform system as the benchmark. The economic intuition behind this surprising result 

is that the uniform system is actually more flexible than the proportional system. A 
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uniform system allows firms to balance discrete prices with discrete quantities. A 

proportional system may reduce liquidity because it imposes the same level of 

discreteness on prices and quantities for all firms. 
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APPENDIX A: PROOFS 

A.1. Proof of Proposition 1 and Corollary 1 

The uninformed investors choose arrival rate 𝜆𝑞  for 𝑞 ∈ 𝑁+  subject to the total 

liquidity demand constraint ∑ 𝑞𝐿𝜆𝑞
∞
𝑞=1 = 𝜆𝐼ℎ, where 𝑞 is the order size in round lots. We 

aim to show that 𝜆𝑞 = 0 for any 𝑞 > 1 in equilibrium. That is, uninformed traders choose 

to slice their orders to minimum lots to achieve the lowest transaction costs. We first solve 

the market maker’s quoted spreads for a given 𝜆𝑞 and then solve the uninformed trader’s 

optimal 𝜆𝑞 through backward induction.  

Observing the 𝜆𝐼, 𝜆𝐽, ℎ, 𝜎, and 𝜆𝑞 for 𝑞 ∈ 𝑁+, the competitive market maker quotes a 

liquidity schedule on both the bid and ask sides. The market maker supplies multiple layers 

of liquidity sized 𝐿 shares per layer. It’s because for the 𝑞𝑡ℎ layer of liquidity, the market 

maker can trade only with liquidity demanding orders that are larger or equal to 𝑞 round 

lots, which arrives at Poisson intensity ∑ 𝜆𝑥
∞
𝑥=𝑞 . We denote the spread for the 𝑞𝑡ℎ layer as 

𝑠𝑡
𝑞
, and the market maker quotes at 𝑝𝑡 ±

𝑠𝑡
𝑞

2
.  

Besides the uninformed investor arrival rate, all market maker quotes are subject to 

adverse selection risks with Poisson intensity 𝜆𝐽. Therefore, with probability 
∑ 𝜆𝑥
∞
𝑥=𝑞

∑ 𝜆𝑥
∞
𝑥=𝑞 +𝜆𝐽

, the 

market maker meets an investor and earns a spread of 
𝑠𝑡
𝑞

2
. With probability 

𝜆𝐽

∑ 𝜆𝑥
∞
𝑥=𝑞 +𝜆𝐽

, a 

value jump occurs, the market maker is adversely selected, and the loss for the 𝑞𝑡ℎ layer is 

𝜎𝑝𝑡 −
𝑠𝑡
𝑞

2
. The equilibrium 𝑞𝑡ℎ layer of the bid-ask spread 𝑠𝑡

𝑞
 should equalize the payoff 

from providing liquidity and sniping stale quotes, which leads to:  

                                          
∑ 𝜆𝑥
∞
𝑥=𝑞

∑ 𝜆𝑥
∞
𝑥=𝑞 +𝜆𝐽

𝑠𝑡
𝑞

2
=

𝜆𝐽

∑ 𝜆𝑥
∞
𝑥=𝑞 +𝜆𝐽

 (𝜎𝑝𝑡 −
𝑠𝑡
𝑞

2
).              

𝑠𝑡
𝑞 =

2𝜎𝑝𝑡
 𝜆𝐽

∑ 𝜆𝑥
∞
𝑥=𝑞 +𝜆𝐽

.                       for 𝑞 ∈ N+.  (A.1) 

We have 𝑠𝑡
1 ≤ 𝑠𝑡

2 ≤ ⋯ ≤ 𝑠𝑡
𝑞 ≤ ⋯ ≤ 2𝜎𝑝𝑡, where the 𝑞𝑡ℎ equality is taken only when 

𝜆𝑞 = 0.  
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The transaction cost for uninformed traders is ∑ [𝐶𝐵(𝑞) + 𝐶𝑆(𝑞)]
𝜆𝑞

2
∞
𝑞=1  per unit time, 

where 𝐶𝐵(𝑞) = 𝐶𝑆(𝑞) = ∑
𝑠𝑡
𝑥

2

𝑞
𝑥=1 . Thus, 

∑ [𝐶𝐵(𝑞) + 𝐶𝑆(𝑞)]
𝜆𝑞

2
∞
𝑞=1 = ∑

𝜆𝑞

2
∙ ∑ 𝑠𝑡

𝑥𝑞
𝑥=1

∞
𝑞=1 = ∑ 𝑠𝑡

𝑥 ∙ ∑
𝜆𝑞

2
∞
𝑞=𝑥

∞
𝑥=1 . 

The second equality holds by swapping the order of summation. In other words, the 

spread 𝑠𝑡
𝑥  are paid at intensity 

𝜆𝑥+𝜆𝑥+1+⋯

2
. We show that in order to minimize the 

transaction costs, the uninformed traders should choose only one order size 𝑞∗, so 𝜆𝑥 = 0 

for all 𝑥 ≠ 𝑞∗. Otherwise, suppose there exist 𝑞1 < 𝑞2 such that 𝜆𝑞1 > 0 and 𝜆𝑞2 > 0. We 

have 𝑠𝑡
𝑞1 < 𝑠𝑡

𝑞2 because the market maker quotes a wider spread for 𝑞2. The uninformed 

traders have a strictly better strategy by choosing 𝜆𝑞 = {
𝜆𝐼ℎ

𝑞1𝐿
, 𝑓𝑜𝑟 𝑞 = 𝑞1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 24 

Then, we show that 𝑞∗ = 1. Notice that 𝑠𝑡
𝑞 =

2𝜎𝑝𝑡
 𝜆𝐽

∑ 𝜆𝑥
∞
𝑥=𝑞 +𝜆𝐽

 decreases in ∑ 𝜆𝑥
∞
𝑥=𝑞 . Since 

the best 𝜆𝑞 that maximizes ∑ 𝜆𝑥
∞
𝑥=𝑞  is 𝜆𝑞 = {

𝜆𝐼ℎ

𝐿
,   𝑓𝑜𝑟 𝑞 = 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. In this case, we reach the 

one-layer minimum possible spread of 

𝑠𝑡
1 =

2𝜎𝑝𝑡
 𝜆𝐽

𝜆𝐼ℎ

𝐿
+𝜆𝐽

.                                                      (A.2) 

Finally, recall that 𝐷𝑉𝑜𝑙𝑡 ≡ 𝜆𝐼𝑝𝑡ℎ + 𝜆𝐽𝑝𝑡𝐿 = 𝜆𝐼𝑣𝑡 + 𝜆𝐽𝑝𝑡𝐿 is the total dollar volume 

per-unit-of-time. We therefore directly derive Corollary 1, which specifies that the dollar 

bid–ask spread 𝑠𝑡
1,𝐿 =

2𝜎𝜆𝐽𝐿

𝐷𝑉𝑜𝑙𝑡
𝑝𝑡
2 , where the superscript 𝐿 means lot-driven spread. Since 

we’ve proved 𝑞 = 1 is the equilibrium, we drop the superscript “1” and use 𝑠𝑡
𝐿 in the rest 

of the paper. ■ 

 

A.2. Proof of Lemma 1 and Proposition 2 

 
24 Reducing all child orders to size 𝑞1 reduces transaction costs through two channels. First, uninform traders 

no longer walk up the book and pay higher spreads 𝑠𝑡
2, … , 𝑠𝑡

𝑞
> 𝑠𝑡

1. Second, slicing orders to smaller size 

increases order arrive rate, so the competitive market maker quotes a narrower 𝑠𝑡
1. 
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The quoted bid–ask spread at 𝐴𝑡 = 𝑝𝑡 +
𝑠𝑡
𝐿

2
+ [∆ −𝑚𝑜𝑑 (𝑝𝑡 +

𝑠𝑡
𝐿

2
, ∆)] and 𝐵𝑡 = 𝑝𝑡 −

𝑠𝑡
𝐿

2
− [∆ −𝑚𝑜𝑑 (𝑝𝑡 −

𝑠𝑡
𝐿

2
, ∆)] is competitive because any quotes that improve the bid and 

ask prices by one tick would lose money. In this proof, we calculate the average widening 

effect in two steps. First, we show that, under our Poisson jump process, 𝑝𝑡 converges to a 

lognormal distribution and the residual 𝑚𝑜𝑑(𝑝𝑡, ∆) tends to be uniformly distributed 

within the tick. Second, we solve 𝑠𝑡
∆ = 𝐵𝑡 − 𝐴𝑡 − 𝑠𝑡

𝐿  and show that the uniform 

distribution leads to an average widening effect of ∆, so the tick-constrained spread is one 

tick wider than the continuous case in expectation. 

First, observe the process that 𝑣 jumps up or down by 𝜎% following a Poisson process 

with intensity 𝜆𝐽. We then have  

𝑣𝑡 = 𝑣 ∙ (1 + 𝜎)𝑢 ∙ (1 − 𝜎)𝑑,                                     (A.3) 

where 𝑢~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝜆𝐽𝑡

2
) and 𝑑~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (

𝜆𝐽𝑡

2
). Taking the log on both sides, we have 

𝑙𝑜𝑔(𝑣𝑡) = 𝑙𝑜𝑔(𝑣) + 𝑢 ∙ 𝑙𝑜𝑔(1 + 𝜎) + 𝑑 ∙ 𝑙𝑜𝑔(1 − 𝜎).                 (A.4) 

When the jump has occurred sufficient many times, we apply the central limit theorem 

to (A.4) and 𝑙𝑜𝑔(𝑣𝑡) converges in distribution to a normal distribution with mean 𝜇(𝑡) =

𝑙𝑜𝑔(𝑣) +
𝜆𝐽𝑡

2
∙ 𝑙𝑜𝑔(1 + 𝜎) +

𝜆𝐽𝑡

2
∙ 𝑙𝑜𝑔(1 − 𝜎)  and variance Φ(𝑡) = (

𝜆𝐽𝑡

2
𝑙𝑜𝑔(1 + 𝜎))

2

+

(
𝜆𝐽𝑡

2
𝑙𝑜𝑔(1 − 𝜎))

2

. Then, 𝑣𝑡  follows the lognormal distribution ℒ𝒩(𝜇(𝑡),Φ(t)), and 𝑝𝑡
  

follows the lognormal distribution ℒ𝒩 (
𝜇(𝑡)

ℎ
,
Φ(𝑡)

ℎ2
). 

Next, we estimate the maximum fluctuation of the probability distribution function 

within a tick. Let 𝑔(𝑝) be the probability distribution function of the lognormal distribution. 

We compare 𝑔 (𝑝 +
∆

2
) and 𝑔 (𝑝 −

∆

2
) and show that, for any 𝑝 ≫ ∆, the relative difference 

|
𝑔(𝑝+

∆

2
)−𝑔(𝑝−

∆

2
)

𝑔(𝑝)
| is in the order of 

∆

𝑝
. With this estimation, the residual of 𝑝 within a tick is 

almost uniformly distributed. 
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Since 𝑝 ≫ ∆ , we have 𝑔 (𝑝 +
∆

2
) − 𝑔 (𝑝 −

∆

2
) ≈ ∆𝑔′(𝑝) , and |

𝑔(𝑝+
∆

2
)−𝑔(𝑝−

∆

2
)

𝑔(𝑝)
| ≈

|
∆𝑔′(𝑝)

𝑔(𝑝)
| . Inserting the pdf of the lognormal distribution ℒ𝒩 (

𝜇(𝑡)

ℎ
,
Φ(𝑡)

ℎ2
) into 𝑔(𝑝), we have: 

|
∆𝑔′(𝑝)

𝑔(𝑝)
| =

∆

𝑝
(1 +

𝑙𝑜𝑔(𝑝)−𝜇(𝑡)/ℎ

Φ(𝑡)/ℎ2
) .                                 (A.5) 

When 𝑡 → ∞ , Φ(𝑡)  goes to infinity in the order of 𝑡2 , and 
𝑙𝑜𝑔(𝑝)−𝜇(𝑡)/ℎ

Φ(𝑡)/ℎ2
 becomes 

negligible. Thus, for any 𝑝 ≫ ∆, the relative difference |
𝑔(𝑝+

∆

2
)−𝑔(𝑝−

∆

2
)

𝑔(𝑝)
| is on the order of 

∆

𝑝
, which is small. The difference is greatest when 

𝑝

∆
 is smallest (i.e., when 𝑝 = $1.005 and 

𝑓($1.00)/𝑓($1.01) ≈ 10−2 if ∆= $0.01). For a median $35 stock, the maximum range is 

even smaller, at 
1

3500
, and mostly negligible, and 𝑝𝑡  is almost equally likely to lie at 

$35.0001 and $35.0099.25 

We now solve 𝑠𝑡
∆ as a function of 𝑚𝑜𝑑(𝑝𝑡, ∆) and 𝑠𝑡

𝐿 ≡ 𝑎∆ + 𝑏, where 𝑎 = 0,1,2,3,… 

and 𝑏 = 𝑚𝑜𝑑(𝑠𝑡
𝐿 , ∆). We consider breakpoints where 𝑝𝑡 ±

𝑠𝑡
𝐿

2
 coincides with the tick grids 

because those breakpoints are boundary cases between “lucky” and “unlucky” scenarios. 

When 𝑎 is an even number, 𝑝𝑡 −
𝑠𝑡
𝐿

2
 coincides with a tick grid when 𝑚𝑜𝑑(𝑝𝑡, ∆) =

𝑏

2
, and 

𝑝𝑡 +
𝑠𝑡
𝐿

2
 coincides with a tick grid when 𝑚𝑜𝑑(𝑝𝑡, ∆) = ∆ −

𝑏

2
. For any 𝑚𝑜𝑑(𝑝𝑡, ∆) ∈

[
𝑏

2
, ∆ −

𝑏

2
] (the “lucky” case), the continuous-pricing bid–ask spread is confined within 𝑎 +

1 ticks. Otherwise, the “unlucky” case arises. When 𝑎 is an odd number, 𝑝𝑡 −
𝑠𝑡
𝐿

2
 coincides 

with a tick grid when 𝑚𝑜𝑑(𝑝𝑡, ∆) =
∆

2
+
𝑏

2
, and 𝑝𝑡 +

𝑠𝑡
𝐿

2
 coincides with a tick grid when 

𝑚𝑜𝑑(𝑝𝑡, ∆) =
∆

2
−
𝑏

2
. For any 𝑚𝑜𝑑(𝑝𝑡, ∆) ∈ (

∆

2
−
𝑏

2
,
∆

2
+
𝑏

2
)  (the “unlucky” case), the 

 
25  In principle, any differentiable 𝑓(𝑝)  with a bounded 𝑓′(𝑝)  would lead to an approximately uniform 

distribution within a tick, as long as the variation in 𝑝 is much larger than a tick so that in any neighborhood 

of a specific 𝑝, 𝑓(𝑝) does not exhibit large variation or a concentrated mass (Anshuman and Kalay 1985). 

This is arguably the case for all NYSE and NASDAQ listed stocks where the tick size is at most one 

hundredth of the stock price. 
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continuous pricing bid–ask spread can only be confined within 𝑎 + 2 ticks. Otherwise, the 

“lucky” case arises. 

The last step is to show that the widening effect is one tick with a uniformly distributed 

𝑚𝑜𝑑(𝑝𝑡, ∆). The probability that “lucky” cases arise is its interval length divided by ∆. For 

both odd and even 𝑎, the interval length is ∆ − 𝑏, so the probability is 
∆−𝑏

∆
. The probability 

that the “unlucky” scenario arises is then 
𝑏

∆
. The widened spread is [(𝑎 + 1)∆ −

(𝑎∆ + 𝑏)] = ∆ − 𝑏 in “lucky” cases and 2∆ − 𝑏 in “unlucky” cases. We have 𝔼(𝑠𝑡
∆) =

∆−𝑏

∆
∙ (∆ − 𝑏) +

𝑏

∆
∙ (2∆ − 𝑏) = ∆.26 ■ 

 

A.3. Proof of Proposition 3 

Define ℎ∗ the shares outstanding under the optimal 𝑝∗, Equation (9) becomes 

𝑝∗ = √
𝜆𝐼∆𝑣

2𝜎𝜆𝐽𝐿
= √

𝜆𝐼∆𝑝∗ℎ∗

2𝜎𝜆𝐽𝐿
⇒ 𝑝∗ =

𝜆𝐼∆ℎ
∗

2𝜎𝜆𝐽𝐿
.                                 (A.6) 

Recall Equation (4) that 𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝐿𝑝𝑡

𝜆𝐼ℎ+𝜆𝐽𝐿
. Inserting (A.6) into equation (4), the expected 

lot-driven spread under optimal pricing is 

𝔼(𝑠𝑡
𝐿,∗) =

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ∗+𝜆𝐽𝐿
𝔼(𝑝𝑡) =

2𝜎𝜆𝐽𝐿

𝜆𝐼ℎ∗+𝜆𝐽𝐿
𝑝∗ =

𝜆𝐼∆ℎ
∗

𝜆𝐼ℎ∗+𝜆𝐽𝐿
.                        (A.7) 

Here 𝔼(𝑝𝑡) = 𝑝
∗ because 𝑝𝑡 is a martingale. Therefore,  

𝔼(𝑠 
𝑡𝑜𝑡,∗) = 𝔼(𝑠𝑡

𝐿,∗) + 𝔼(𝑠𝑡
∆) =

𝜆𝐼∆ℎ
∗

𝜆𝐼ℎ∗+𝜆𝐽𝐿
+ ∆= ∆ ∙ (1 +

𝜆𝐼ℎ
∗

𝜆𝐼ℎ∗+𝜆𝐽𝐿
).             (A.8) 

When ℎ∗ ≫ 𝐿, we have 𝔼(𝑠 
𝑡𝑜𝑡,∗) ≈ 2∆. ■ 

 

 
26 There is another intuitive way to understand this result. If the midpoint price 𝑝𝑡  is uniformly distributed in 

the sub-tick granularity, the bid and ask prices 𝑝𝑡 ±
𝑠𝑡
𝐿

2
 are both uniformly distributed in the sub-tick 

granularity for any 𝑠𝑡
𝐿. Therefore, the average widening effect on both the bid and the ask sides is 

∆

2
, and the 

total widening effect is ∆. 
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A.4. Proof of Corollary 2 

Observing a time-weighted average nominal spread 𝔼(𝑠𝑡
𝑡𝑜𝑡), its lot-driven  component 

𝔼(𝑠𝑡
𝐿) = 𝔼(𝑠𝑡

𝑡𝑜𝑡) − ∆ will be changed to 
𝔼(𝑠𝑡

𝑡𝑜𝑡)−∆

𝐻2
 due to the square rule, and the tick-

driven  component remains ∆. Therefore, our theory predicts that the ex-post nominal 

spread is 
𝔼(𝑠𝑡

𝑡𝑜𝑡)−∆

𝐻2
+ ∆ . 27  The nominal price also changes from 𝑝𝑡

  to 𝑝𝑡
 /𝐻 , so the 

percentage spread 
𝔼(𝑠𝑡

𝑡𝑜𝑡)

𝑝𝑡
  will change to 

(𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆)/𝐻2+∆

𝑝𝑡
 /𝐻

. We have 

(𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆)/𝐻2+∆

𝑝𝑡
 /𝐻

=
𝔼(𝑠𝑡

𝑡𝑜𝑡)−∆

𝑝𝑡
 ∙

1

𝐻
+

∆

𝑝𝑡
 ∙ 𝐻 ≥ 2√

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

𝑝𝑡
 ∙

∆

𝑝𝑡
 .                 (A.9) 

The equality holds only when  

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

𝑝𝑡
 ∙

1

𝐻
=

∆

𝑝𝑡
 ∙ 𝐻 ⇒ 𝐻∗ = √

𝔼(𝑠𝑡
𝑡𝑜𝑡)−∆

∆
.                           (A.10) 

Therefore, the optimal 𝐻  depends only on the ratio of the observed time-weighted 

average spread 𝔼(𝑠𝑡
𝑡𝑜𝑡) and the tick size ∆. ■ 

 

A.5. Proof of Corollary 3 

From Proposition 3, we have 𝑝∗ = √
𝜆𝐼∆𝑣

2𝜎𝜆𝐽𝐿
, which is proportional to √

∆

𝐿
. Insert 𝑝∗ into 

(7), we have 

𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = √2𝜎𝑣𝜆𝐼𝜆𝐽Δ𝐿 (1 + √

𝜆𝐽Δ𝐿

8𝜎𝑣𝜆𝐼
).                          (A.11) 

Note that 𝑣 = ℎ𝑝 , so the second term is negligible when ℎ ≫ 𝐿  and the expected 

transaction cost is proportional to √∆𝐿. Thus, although the optimal nominal spread is 2∆ 

and does not depend on firm fundamentals, the optimal transaction cost does. Intuitively, 

more volatile firms (𝜎𝜆𝐽) need to choose lower prices to incentivize the market makers to 

 
27 Again, we do not need to observe firm fundamentals (𝜎, 𝑣𝑡, 𝜆𝐼, and 𝜆𝐽) to calculate the spread changes 

caused by a stock split, because the observed spread is a sufficient statistics in determining the split ratio.  
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quote the two-tick spread. On the other hand, firms with higher latent liquidity demand (𝜆𝐼) 

and larger market cap (𝑣) can choose higher nominal prices to reach the two-tick nominal 

spread. ■ 

 

A.6. Proof of Corollary 4 

In Equation (7), the expected transaction cost 𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = 𝜎𝜆𝐽𝐿𝑝 +

Δ

2
𝜆𝐼

𝑣

𝑝
+
Δ

2
𝜆𝐽𝐿 

depend on the firm’s choice of 𝑝. Inserting the proportional lot size 𝐿 = 𝕃(𝑝) = 𝑘𝐿/𝑝, we 

have: 

𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = 𝜎𝜆𝐽𝑘

𝐿 +
Δ

2
𝜆𝐼

𝑣

𝑝
+
Δ

2
𝜆𝐽

𝑘𝐿

𝑝
.                                      (A.12) 

(A.12) indicates that the seemingly flexible proportional lot size imposed a unified 

dollar lot size 𝑘𝐿 on all stocks, and the lot-driven component is dependent only on 𝑘𝐿 but 

not on 𝑝. In other words, the firms cannot adjust their nominal prices to reduce market 

makers’ adverse-selection costs, and their nominal price choices affect only the relative 

tick size. Therefore, the expected transaction cost decreases monotonically with 𝑝. The 

proportional lot size essentially removes one side of the tick/lot trade-off and encourages 

𝑝 → ∞. 

On the other hand, if we insert the proportional tick size Δ(𝑝) = 𝑘∆𝑝 into (7), we have: 

𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = 𝜎𝜆𝐽𝐿𝑝 +

𝑘∆

2
𝜆𝐼𝑣 +

𝑘∆𝑝

2
𝜆𝐽𝐿.                               (A.13) 

(A.13) indicates that the proportional tick-size system imposed a unified relative tick 

size 𝑘∆ on all stocks. No firms can reduce their transaction costs below 
𝑘∆

2
𝜆𝐼𝑣. With a 

uniform lot size and a proportional tick size, the transaction cost increases monotonically 

with 𝑝. The proportional tick size essentially removes the other side of the tick/lot trade-

off and encourages 𝑝 → 0, where 𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) =

𝑘∆

2
𝜆𝐼𝑣. 

Similarly, when both proportional tick- and lot-size systems are implemented, we have: 

𝔼(
𝑠𝑡
𝑡𝑜𝑡

2𝑝𝑡
∙ 𝐷𝑣𝑜𝑙) = 𝜎𝜆𝐽𝑘

𝐿 +
𝑘∆

2
𝜆𝐼𝑣 +

𝑘∆

2
𝜆𝐽𝑘

𝐿 .                               (A.14) 
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Under the fixed ∆  and 𝐿  system, firms adjust their nominal prices to choose their 

optimal dollar lot sizes and relative tick sizes. (A.14) shows that the proportional tick and 

lot system is a one-size-fits-all system: it imposes a unified dollar lot size and relative tick 

size on all stocks. Next, we show that such a system harms liquidity provision if 𝑘𝐿 and 𝑘∆ 

is selected using any representative stock. 

We denote 𝜒(𝑝) =
𝑝

𝑝Ω
  as the distance between the representative price 𝑝Ω

  and a stock 

priced at 𝑝. For a stock optimally priced at 𝑝, its new tick size is 𝜒 times  ∆, while its new 

lot size becomes  𝜒−1  times 𝐿 . Insofar as the tick- (lot-) driven percentage spread is 

proportional to the tick (lot) size, the new nominal spread is (𝜒−1 + 𝜒)∆. Observe that 

(𝜒−1 + 𝜒)∆≥ 2∆, where the equality holds only if 𝑝𝑡
 = 𝑝Ω

  (i.e., its tick and lot sizes are 

unchanged). The bid–ask spread widens for all stocks, with 𝑝𝑡
 ≠ 𝑝Ω

 .■ 

 

 


