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Less Is More

Abstract

We show in a model of over-the-counter trading that customers in equilibrium may choose to con-
tact very few dealers to incentivize maximum liquidity provision—“less is more.” This happens when
dealers’ liquidity supply is sufficiently elastic to competition. This mechanism is orthogonal to con-
ventional concerns, such as contacting or search cost, private information, and relationship. A social
planner would mandate even fewer contacts than the market outcome, where customers induce ex-
cessive dealer competition. The model predicts endogenous market power, yields implications for
regulation and design of electronic platforms, and speaks to customers’ search behavior and their ex-
ecution quality.

Keywords: over-the-counter markets, dealers, trading connections, request-for-quote

(There are no competing financial interests that might be perceived as influencing the analysis, discussion, and/or results
of this article.)



1 Introduction

In over-the-counter (OTC) markets, customers approach dealers for their service of liquidity provision.

A well-known and robust empirical feature is that customers do not reach out to all available dealers.

This is true for both conventional phone-based OTC trading and electronic request-for-quote (RFQ)

platforms.¹

At first glance, it might seem beneficial for a liquidity-seeking customer to always contact more

dealers: they have larger aggregate capacity to provide more liquidity and are likely to compete more

fiercely in price. So what prevents customers from reaching out to all dealers? The literature has

pointed to several considerations, for example, search or contact costs, information leakage, and rela-

tionship with dealers. (The related literature is reviewed later on p. 5.) This paper turns these channels

off and proposes a mechanism that sheds new light on customer-dealer interactions, examines market

design implications, and generates testable empirical predictions.

The premise is that it is costly for dealers to provide service (liquidity) to customers. Therefore,

dealers strategically choose their service,² trading off the marginal service cost and the marginal ex-

pected trading gain. One key determinant of a dealer’s trading gain is competition—the number of

other dealers that the customer is contacting: more competitors, less trading gain, and lower willing-

ness to provide service. A customer thus chooses only a small number of dealers to shield them from

too much competition, leaving just enough rent on the table to induce their quality service. In sum,

¹ For example, Hendershott et al. (2020) document that in the corporate bond market, one-third of the customers in
their sample contact only one dealer. O’Hara, Wang, and Zhou (2018) show that a customer trades with between one and
19 dealers per bond per year, with at least three-quarters of them trading only with one dealer. In the foreign exchange
forward market, Hau et al. (2021) show that an average customer trades only with 1.8 dealers (out of more than 200), and
in a later sample, Collin-Dufresne, Hoffmann, and Vogel (2022) find that a customer trades with about three to 13 dealers
per month (again, out of more than 200). Evidence specifically regarding RFQ platforms includes: Riggs et al. (2020)
report that when trading index credit default swaps (CDS), customers on average query about 4.1 dealers, while the upper
bound is 5 on Bloomberg Swap Exchange Facility (SEF) and unrestricted on Tradeweb SEF. Allen andWittwer (2021) cite
annual reports from CanDeal, a multi-dealer platform in Canada, that more than 40% of RFQ auctions did not exhaust the
maximum number of dealers allowed.

² Dealer service can be thought of as how attentive a dealer is to customers’ requests, how much effort they spend in
finding inventories for customers, the effectiveness in providing quotes timely and firmly, etc. See, e.g., Bessembinder,
Spatt, and Venkataraman (2020) for a review of fixed-income markets and dealers’ role and service.
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contacting fewer dealers can secure more liquidity provision—“less is more.”

Section 2 studies a baseline model, where dealers’ service cost is exogenous, to make concrete the

above less-is-more mechanism. Section 2.1 sets up the model, and Section 2.2 characterizes the equi-

librium. Section 2.3 pinpoints the trade-off that a customer faces: Contacting more dealers positively

improves the customer’s expected trading gain because there is better matching—it is more likely that

at least one dealer is able to provide (sufficient) liquidity (timely). However, facing more competition,

every dealer expects less trading profit and, consequently, lowers her service to the customer accord-

ing to the marginal service cost. This novel negative service effect hurts the customer, who therefore

wants to reduce her dealer contacts.

The analysis further shows that the magnitude of the service effect is governed by dealers’ “compe-

tition elasticity.” In the model, a dealer strategically chooses her service to the customer, wary of how

aggressive her competitors are. Intuitively, if more service is provided by others, then less expected

trading gain is left, and the dealer reduces her own service by walking down the marginal service cost

function. The competition elasticity essentially measures the speed of the “walking down.” The larger

this elasticity is, the more sensitive are the dealers to each other’s service, and the more severe is the

negative service effect.

Indeed, in equilibrium, the customer refrains from reaching out to all dealers only if the competi-

tion elasticity is sufficiently large. Contacting one more dealer is too costly in this case, because the

additional competition from this dealer would significantly reduce the customer’s overall service from

all dealers. Avoiding such a liquidity drought, the customer optimally contacts only few dealers.³

Section 3.1 shows that the novel service effect works only if the dealers observe the number of

competitors, i.e., the customer’s dealer contacts. The reason is that if they do not observe this informa-

tion, dealers will not be able to react to each others’ service competition—the competition elasticity

³ Although we motivate our model from customer-dealer trades, the less-is-more mechanism can also play a role in
inter-dealer trades, and therefore echos the empirical finding that most dealers only trade with very few connected dealers
in core–periphery networks. See Maggio, Kermani, and Song (2017), Hollifield, Neklyudov, and Spatt (2017), and Li and
Schurhoff (2019) for empirical evidence.
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would become zero, thus shutting down the negative service effect. The customer would then see only

the matching benefit of more dealers and, contrary to real data, would exhaust all dealers.

Assuming the observability of customers’ outside options (the number of the customer’s other

dealers) is realistic. Private conversations with practitioners suggest that dealers typically know their

customers’ outside options from, e.g., repeated interactions, due diligence processes, and/or fulfill-

ing compliance requirements. In electronic OTC trading, the number of contacted dealers is directly

communicated to the dealers on many RFQ platforms (Riggs et al., 2020). In fact, the model analysis

further reveals that customers have an incentive to commit to contacting a subset of dealers.

Section 3.2 studies the regulation and the optimal design of OTC markets. Consider a social plan-

ner who can mandate how many dealers a customer should contact. Under mild regularity conditions,

the planner always mandates (weakly) fewer dealers than chosen by the customer. In particular, the

customer ignores—but the planner accounts for—the intensified dealer competition, which makes the

dealers worse off overall. This negative externality concern lends theoretical support for the popular

RFQ market design that restricts the maximum number of dealers a customer can contact in each in-

quiry. Summarizing the above, Section 3.3 makes two specific market design recommendations for

RFQ platforms: (i) dealers should always be able to observe how many other dealers a customer is

contacting, and (ii) in general it is desirable to constrain customers’ dealer contacts, especially if such

constraints are made contingent on the customer’s proposed trade size.

Section 4.1 enriches the baseline model by introducing multiple, possibly heterogeneous, cus-

tomers and by endowing dealers with certain limited resources (e.g., time, attention, labor, etc.) needed

to serve customers. Section 4.2 shows that, in equilibrium, when choosing her service to a particular

customer, a dealer trades off the expected trading gain against the opportunity cost of spending the

limited resources on this customer (as opposed to on other customers). Such an endogenous oppor-

tunity cost thus replaces the exogenous service cost in the baseline. In other words, dealers’ resource

constraint can microfound the premise that dealer service is costly.

Such limited resources are particularly relevant during a short period when, for example, dealers’
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infrastructure and hiring are fixed. The model extension, therefore, is well-suited for studying how

sudden market stress shocks—such as downgrades of corporate bonds, the volatility in March 2020

due to COVID-19, and themarket turmoil caused byUK’s “mini-Budget,”—affect customers’ behavior

in contacting dealers and, in turn, dealers’ service to customers. To do so, Section 4.3 considers

two groups of customers, non-urgent versus urgent, and examines different forms of stress shocks by

varying the total number of customers, the composition of non-urgent and urgent types, and the degree

of urgency.

One robust finding is that non-urgent customers always reduce their dealer contacts as the stress

shock exacerbates. In fact, it is possible that they completely drop out of trading if the stress becomes

severe enough. Intuitively, this is because dealers find it more profitable to allocate their limited re-

sources to serving urgent customers, for they are willing to pay more to trade, and even more so as

the market stress shock amplifies their urgency. In other words, non-urgent customers are increasingly

“crowded out” by the urgent ones as market stress exacerbates.

Perhaps surprisingly, all customers, not just the non-urgent type, might contact fewer dealers when

the market is under stress. This happens when under the stress, more customers become urgent: Fac-

ing more urgent customers, dealers understand that their limited resources should earn higher trading

gain; that is, each unit of the resource becomes more expensive, bearing a higher opportunity cost.

To incentivize dealers to provide such increasingly more expensive service, customers then have to

sacrifice further by contacting fewer of them—that is, less is more.

Empirical findings seem to support the above prediction. For example, O’Hara and Zhou (2021)

document that when corporate bonds are under fire sell, trading volume via electronic RFQ platforms

drops relative to voice trading. That is, consistent with the prediction, when under market stress, cus-

tomers overall contact fewer dealers by moving away from RFQ platforms, where they simultaneously

contact multiple dealers, to conventional voice trading, where it is more difficult and costly to reach

multiple dealers.
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Contribution and related literature

The paper primarily contributes to the theoretical models that study how customers choose their dealers

in OTC trading. The literature has examined several important considerations:

• First, there is exogenous search or contact costs that prevent customers from reaching all dealers.

This is seen in early theoretical searchmodels such as Stigler (1961) and applied to OTCmarkets

as in Duffie, Dworczak, and Zhu (2017) and Riggs et al. (2020), among others.

• Second, customers’ private information influences how they contact dealers. On the one hand,

they may want to use more dealer “connections” to hide their private information, as evidenced

by Kondor and Pintér (2022). They may refrain from using too many dealers if the concern

of information leakage is dire, as discussed and analyzed by Burdett and O’Hara (1987), Liu,

Vogel, and Zhang (2017), Baldauf and Mollner (2022), and Pinter, Wang, and Zou (2022).

• Third, customer-dealer relationship, often modeled in a repeated trading game, can play an im-

portant role. For example, Bernhardt et al. (2005) show that relationship endogenously arises

and sustains price improvement for the customer, who thus remains with the dealer. Desgranges

and Foucault (2005) show that relationship, as in repeated trading, can shield a dealer from being

adversely selected by a customer, who, in equilibrium, trades with the dealer only when unin-

formed. Hendershott et al. (2020) develop a steady-state equilibrium model, where customers

choose the number of dealers (i.e., the network size), by trading off the execution speed (the

intensity of finding a counterparty) against an exogenous relationship utility flow.

The less-is-more mechanism differs from the above, as there is no exogenous contact cost and no

information asymmetry in the one-period trading game.⁴

The paper further contributes to the theory of electronic RFQ platforms. Vogel (2019) studies a

hybrid OTC market, with both conventional voice trading and electronic RFQ trading, where both the

⁴ Despite the static nature of the model, the less-is-more mechanism helps establish the customer-dealer relationship
as well as customers’ dealer networks. To see this, one can cast the one-period game in this paper as one in a steady-state
equilibrium. The endogenous dealer number, identified by the less-is-more mechanism, then corresponds to the “dealer
network size” choice in Hendershott et al. (2020), effectively endogenizing their exogenous relationship utility flows.
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dealer number and their response rate (service) are exogenous. In a search setting, Glebkin, Yueshen,

and Shen (2022) endogenize dealers’ response rate by determining it jointly with the equilibrium asset

allocation but keep the number of dealer contacts exogenous. This paper endogenizes both the number

of contacts and the response rate. The model suggests novel channels to consider when designing or

regulating RFQ platforms, such as whether dealers should be allowed to see how many other dealers

customers are contacting, whether an upper bound on the number of contacts should be imposed, etc.

Additionally, positive predictions from the model echo existing empirical evidence on RFQ platforms,

for example, from Hendershott and Madhavan (2015) and O’Hara and Zhou (2021).

In an independent work,Wang (2022) explores a setting similar to a special case of Levin and Smith

(1994) (when the asset value is common knowledge) and finds that customers only want to contact as

few dealers as possible in RFQ platforms. This is because, in both works, auction bidders (dealers)

incur a fixed entry (trading) cost, which implies an infinitely large competition elasticity (as shown

in Example 3 in Section 2.3). As a result, the negative service effect becomes extreme, pushing the

customer to choose the fewest possible dealers—a corner solution. With a more general service cost

function, however, this paper shows that customers’ dealer choices can be interior, echoing empirical

evidence as seen in, e.g., Riggs et al. (2020) and Allen and Wittwer (2021). Our work thus further

contributes to the literature on auctions with endogenous entry (e.g., Levin and Smith, 1994; Menezes

and Monteiro, 2000) by highlighting the importance of bidders’ competition elasticity.

Existing studies that endogenize dealers’ expertise acquisition, such as Glode and Opp (2020) and

Li and Song (2021), show that a concentrated market structure (like an OTC market) can incentivize

dealers to acquire more expertise to produce valuable information, thus improving social welfare (un-

der certain information structures), compared to amore competitivemarket structure (like a centralized

exchange). Notably, Glode and Opp (2020) share a similar prediction with the less-is-more mecha-

nism that a concentrated OTC market might supply more liquidity to investors than a seemingly more

competitive exchange market. Abstracting away from any form of information asymmetry, instead,

this paper obtains this result via dealers’ costly participation. We explicitly characterize the condition
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under which the service effect alone can induce the less-is-more outcome.

The model has additional implications for the execution quality in OTCmarkets. Following Duffie,

Gârleanu, and Pedersen (2005), a large volume of the literature determines the trading price in OTC

markets via exogenous Nash bargaining-power parameters. In the current paper, the customer effec-

tively runs a first-price auction among dealers, whose endogenous service in turn determines not only

the equilibrium price but also dealers’ response rates, trading probability, and trading gain splits—that

is, there is endogenous bargaining power. The model, therefore, yields rich predictions regarding the

execution quality in OTC markets. Notably, O’Hara, Wang, and Zhou (2018) argue that “interacting

with a smaller network of dealers can make the [customer] more important to those dealers and hence

elicit more favorable executions” (p. 324), and the less-is-more mechanism effectively formalizes this

idea. The endogenous dealer response rate and trading probability further speak to Hendershott et al.

(2022a), who study the “true cost of immediacy” by accounting also for failed trades.

2 A model of costly dealer service

2.1 Model setup

Agents. There are 𝑚̂ homogeneous risk-neutral dealers, indexed by 𝑖 ∈ {1, ..., 𝑚̂}, where 𝑚̂ ≥ 2 is

an integer. In this section, we consider one customer, labeling her as customer 𝑗 (to be consistent with

Section 4). We assume that the customer wants to trade one asset. Her trade size is normalized to one

unit, and, without loss of generality, we assume that she wants to buy. Her reservation value for the

unit is denoted by 𝜋 𝑗 (> 0), while the dealers value it at 0, thus ensuring positive trading gain.

Timing of events.

1. The customer reaches out to a set D 𝑗 ⊂ {1, ..., 𝑚̂} of dealers, with whom she is “in business.”

Since the dealers are homogeneous, the choice ofD 𝑗 simplifies to randomly selecting𝑚 𝑗 dealers
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out of {1, ..., 𝑚̂}, where 0 ≤ 𝑚 𝑗 ≤ 𝑚̂. Below we refer to𝑚 𝑗 as the customer’s “dealer choice.”⁵

2. Every business dealer 𝑖 ∈ D 𝑗 observes the customer’s type 𝜋 𝑗 and her dealer choice𝑚 𝑗 . Dealer 𝑖

then privately chooses her “service” for the customer 𝑗 . We write such service as 𝜃𝑖 𝑗 with a

normalized support of ∈ [0, 1]. Such service is costly: The dealer incurs a cost of 𝜁 (𝜃𝑖 𝑗 ) for

serving each customer 𝑗 . We assume that 𝜁 (·) is convexly increasing, from 𝜁 (0) = 0, and is

thrice differentiable, with the first- and the second–order derivatives denoted by ¤𝜁 (·) and ¥𝜁 (·),

respectively. We show in Appendix A that assuming a convex 𝜁 (·) is without loss of generality.

3. Nature makes independent Bernoulli draws {𝐴𝑖 𝑗 }𝑖∈D𝑗 with respective success rates {𝜃𝑖 𝑗 }𝑖∈D𝑗 .

We say a dealer 𝑖 is “ready” for the customer 𝑗 if 𝐴𝑖 𝑗 = 1. Only when ready can a dealer 𝑖

respond to the customer 𝑗 , by making a take-it-or-leave-it offer (TIOLIO) at price 𝑝𝑖 𝑗 . No dealer

observes whether others are ready.

4. The customer 𝑗 then compares all available TIOLIOs and chooses the best price 𝑝 𝑗 , i.e.,

𝑝 𝑗 = argmin
𝑝∈{𝑝𝑖 𝑗 |𝐴𝑖 𝑗=1 }

𝑝(1)

to trade with the quoting dealer. If there are multiple dealers quoting the same best price, the

customer randomly chooses one to trade with. If there is no offer, there is no trade.

Equilibrium. The equilibrium is characterized by three sets of endogenous objects: (i) the cus-

tomer’s dealer choice𝑚 𝑗 ; (ii) the dealers’ service {𝜃𝑖 𝑗 }; and (iii) the dealers’ quotes 𝑝𝑖 𝑗 (when𝐴𝑖 𝑗 = 1).

All agents maximize their respective expected trading profits. The analysis below focuses on symmet-

ric equilibria in which the homogeneous dealers choose the same (ii) and (iii).

Remarks

Remark 1 (Customer’s reservation value). By normalizing the homogeneous dealers’ reservation value

to zero, the customer’s reservation value 𝜋 𝑗 is the expected gains from trade. Such trading gains can

arise from, for example, the customer’s urgency to trade (willingness to trade), hedging need, and

⁵ We assume away costs associated with the dealer choice. This differentiates our model from, e.g., Riggs et al. (2020).
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sentiment.

Remark 2 (Dealers’ learning about clients). We assume that each dealer 𝑖 ∈ D 𝑗 perfectly observes both

𝜋 𝑗 and𝑚 𝑗 of the customer 𝑗 , because of the non-anonymity of OTC markets. For example, a dealer

needs to do her due diligence, e.g., to “know your customers (KYC).” Alternatively, dealers can also

learn about {𝜋 𝑗 ,𝑚 𝑗 } from repeated interactions (which we do not explicitly model) with the customer.

The assumption that dealers can perfectly observe {𝜋 𝑗 ,𝑚 𝑗 } is not as restrictive as meets the eye: For 𝜋 𝑗 ,

what matters is the expected gains from trade, and we only need to assume such an expectation exists.

For 𝑚 𝑗 , as will be shown in Section 3.1, the customer, in fact, has incentive to truthfully reveal this

information to her dealers (and commit to it).

Remark 3 (Dealers’ costly service and readiness). Dealers serve their customers by providing timely

trading opportunities, for example, by arranging the inventory that the customer wants (or providing in-

ventory space when the customer seeks to sell). We model the quality of such service via 𝜃𝑖 𝑗 ∈ [0, 1], a

higher value of which indicates, for example, more effort by the dealer to arrange the inventory wanted.

Only when the inventory is successfully arranged (i.e., when 𝐴𝑖 𝑗 = 1) is the dealer “ready” to quote to

the customer. Thus 𝜃𝑖 𝑗 also reflects the timeliness and the firmness of a dealer’s quote. Such effort to

arrange inventory is costly. There is labor costs, like hiring professionals to cover trading desks day and

night, doing risk management and due diligence, and fulfilling regulatory compliance requirements.

In addition, serving timely and firm quotes means commitments to trade, implying costly margins and

collaterals for arranging inventories and for clearing. These service costs are summarized in 𝜁 (𝜃𝑖 𝑗 ),

which we later endogenize in Section 4 via dealers’ resource constraints. Since such service or effort

is a dealer’s hidden action, we assume that 𝜃𝑖 𝑗 is unobservable by other dealers.

Remark 4 (RFQ trading). Our setup closely matches many electronic trading platforms that adopt

the RFQ protocol. In such platforms, a customer endogenously chooses 𝑚 𝑗 , the number of dealers

from whom she requests a quote. In doing so, the customer’s intended trade size and side, as well as

her identity, are revealed to the dealers (Riggs et al., 2020; O’Hara and Zhou, 2021), who can thus

observe (or estimate) the trading gain 𝜋 𝑗 . However, depending on the platform,𝑚 𝑗 may or may not be
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observed by dealers. For example, “dealers observe how many other dealers a customer contracts” on

Bloomberg SEF and Tradeweb SEF (p. 858, Riggs et al., 2020); but on MarketAxess, “[t]he dealers

do not know the number or identities of the other dealers contacted” (p. 370, O’Hara and Zhou, 2021).

We discuss this contrast in the market design through the lens of a welfare analysis in Sections 3.1–3.2.

Remark 5 (Voice trading). Our setup also speaks to conventional voice trading in OTC markets. Such

voice trading is typically modeled as bilateral meetings between a customer and a dealer (when they

are matched), as in, e.g., Duffie, Gârleanu, and Pedersen (2005). We argue that a customer can instead

approach multiple dealers, especially when she seeks to execute a trade in a timely fashion. A case

in point is the Public Sector Purchase Program (PSPP) by European Central Bank: when purchasing

a bond, the executing central bank approaches multiple dealers to seek quotes and then trades at the

best price (Hammermann et al., 2019), effectively running a first-price auction among selected dealers

as in our model. Breckenfelder, Collin-Dufresne, and Corradin (2022) study the PSPP via a similar

first-price auction model.

2.2 Equilibrium analysis

We analyze the equilibrium backwards. Section 2.2.1 first solves dealers’ quoting strategy {𝑝𝑖 𝑗 } (if they

are ready to quote), assuming symmetric service to the same customer 𝑗 ; that is, 𝜃𝑖 𝑗 = 𝜃 𝑗 for all 𝑖 ∈ D 𝑗 .

Section 2.2.2 then looks for a Nash equilibrium, where the symmetric service𝜃 𝑗 is a function of dealers’

information {𝑚 𝑗 , 𝜋 𝑗 } about the customer 𝑗 . Finally, Section 2.2.3 studies the customer 𝑗’s optimal

dealer choice𝑚 𝑗 .

2.2.1 Dealers’ quoting

Consider a dealer 𝑖 ∈ D 𝑗 , i.e., a business dealer of the customer 𝑗 , who is ready to quote (𝐴𝑖 𝑗 = 1). The

dealer would like to capture the full surplus by quoting 𝑝𝑖 𝑗 ↑ 𝜋 𝑗 , just below the customer’s reservation

value. However, she faces (𝑚 𝑗 − 1) potential competitors, as their quotes (ask prices) might be lower
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than 𝑝𝑖 𝑗 . Yet, each competitor 𝑖′ ∈ D 𝑗 (and 𝑖′ ≠ 𝑖) is able to quote only probabilistically (when𝐴𝑖′ 𝑗 = 1).

That is, the dealers in D 𝑗 engage in a price competition against unknown number of competitors.

Such price competition differs from the standard Bertrand competition, in which every dealer

quotes her reservation price of 𝑝𝑖 𝑗 = 0 and the customer gets the full surplus 𝜋 𝑗 . Here, every dealer 𝑖 ∈

D 𝑗 has the incentive to charge a higher price, 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 for some 𝛼𝑖 𝑗 ∈ (0, 1]. This is because she

might actually be the only dealer who is ready, in which case her TIOLIO at 𝑝𝑖 𝑗 is the only available

offer to the customer. As long as 𝛼𝑖 𝑗 ≤ 1, the customer 𝑗 will accept it and the dealer 𝑖 pockets the

profit of 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 . In a Nash equilibrium, however, the fraction 𝛼𝑖 𝑗 cannot be deterministic, as

the undercutting argument of Bertrand competition will drive 𝛼𝑖 𝑗 ↓ 0, and yet, in this case, it would

be strictly better off to quote some 𝛼𝑖 𝑗 > 0. This heuristic discussion is formalized in the proof and

summarized by the following lemma.

Lemma1 (Mixed-strategy quoting). Suppose the dealers inD 𝑗 have followed a symmetric strategy

to provide service 𝜃𝑖 𝑗 = 𝜃 𝑗 (> 0) to the customer 𝑗 . Then there exists a unique mixed-strategy

equilibrium, in which each dealer 𝑖 with 𝐴𝑖 𝑗 = 1 quotes 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 , where 𝛼𝑖 𝑗 is a random variable,

i.i.d. across 𝑖, with c.d.f. 𝐹 (𝛼𝑖 𝑗 ;𝜃 𝑗 ,𝑚 𝑗 ) := 1
𝜃 𝑗
−

(
1
𝜃 𝑗
− 1

)
𝛼
− 1
𝑚𝑗 −1

𝑖 𝑗 , distributed on 𝛼 ∈
[
(1 − 𝜃 𝑗 )𝑚 𝑗−1, 1

]
.

Note that when𝑚 𝑗 = 1, 𝐹 (·) degenerates to a single probability mass at the maximum 𝛼𝑖 𝑗 = 1. We can

then use the above lemma to compute dealer and customer’s respective expected trading gains.

Lemma 2 (Endogenous split of trading gain). Under Lemma 1, a dealer 𝑖 who is ready to quote

(𝐴𝑖 𝑗 = 1) expects a revenue of (
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗(2)

when quoting to the customer 𝑗 . Furthermore, the customer 𝑗 expects a trading gain of

𝜋c
𝑗 :=

(
1 − (1 − 𝜃 𝑗 )𝑚 𝑗 −𝑚 𝑗𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1)𝜋 𝑗 .(3)

These expressions can be interpreted as follows. Under the mixed strategy given in Lemma 1, a dealer

who is ready to quote (𝐴𝑖 𝑗 = 1) must be indifferent from choosing any price in the relevant support.
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In particular, if she chooses 𝑝𝑖 𝑗 ↑ 𝜋 𝑗 , then she wins the price competition, earning 𝜋 𝑗 , only if all her

competitors are absent, which happens with probability (1 − 𝜃 𝑗 )𝑚 𝑗−1. Note that unconditionally, the

dealer therefore expects 𝜃𝑖 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 , which is monotone increasing in the dealer’s service 𝜃𝑖 𝑗 .

This is consistent with the evidence fromHendershott et al. (2022b) that more active dealers have more

order flow. In Section 2.2.2, we use this expression to derive dealers’ optimal service choice 𝜃 𝑗 .

As given in (3), the customer 𝑗 expects a fraction of the total trading gain 𝜋 𝑗 . This fraction is less

than 1, for two reasons: (i) with probability (1 − 𝜃 𝑗 )𝑚 𝑗 , none of her𝑚 𝑗 dealers is ready and there is

no trade; and (ii) each of the 𝑚 𝑗 dealers is ready with probability 𝜃 𝑗 and, in that case, expects (2).

This fraction is strictly positive, implying that even though the customer only faces TIOLIOs, she

has endogenous bargaining power, due to the above price competition among dealers. Section 2.2.3

uses (3) to derive the customer’s optimal dealer choice𝑚 𝑗 .

2.2.2 Dealers’ service to the customer

Consider a dealer 𝑖 ∈ D 𝑗 . She knows that the number of competing dealers is𝑚 𝑗 −1. She also takes as

given these competing dealers’ symmetric service choice of 𝜃𝑖′ 𝑗 = 𝜃 𝑗 , ∀𝑖′ ∈ D 𝑗 and 𝑖′ ≠ 𝑖. Using (2),

before 𝐴𝑖 𝑗 realizes, dealer 𝑖 expects a payoff of 𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 , where 𝜃𝑖 𝑗 is her service to client 𝑗 .

In Appendix A, we show that it suffices to consider only a pure strategy of 𝜃𝑖 𝑗 , thanks to the convexity

of the service cost 𝜁 (·). Therefore, dealer 𝑖’s problem is

max
𝜃𝑖 𝑗∈[0,1]

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜁
(
𝜃𝑖 𝑗

)
(4)

Its solution is characterized by the following proposition.

Proposition 1 (Dealers’ symmetric service). In a symmetric-strategy equilibrium, every dealer 𝑖 ∈

D 𝑗 chooses the same service 𝜃𝑖 𝑗 = 𝜃 𝑗 for customer 𝑗 :

𝜃 𝑗 = 1{𝜋 𝑗> ¤𝜁 (0)}𝑔
(
𝑚 𝑗 , 𝜋 𝑗

)
,

where 𝑔(·) is an implicit function of 𝜃 𝑗 , given by
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 = ¤𝜁 (𝜃 𝑗 ), and 1{·} is an indicator.

12



We provide some intuition here and leave the formal proof to the appendix. The implicit func-

tion 𝑔(·) is defined by the first-order condition of (4) with respect to 𝜃𝑖 𝑗 :(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 ) = 0,(5)

with the symmetric 𝜃𝑖 𝑗 = 𝜃 𝑗 . In words, 𝑔(·) solves the symmetric 𝜃 𝑗 that equates the marginal benefit

and cost: The marginally higher probability to win the price competition and earn (2) must break even

with the marginal cost of ¤𝜁 (𝜃 𝑗 ). The solution 𝑔(·), however, might be constrained by the requirement

of 𝜃 𝑗 ∈ [0, 1]. In particular, we show in the proof that only the lower bound 𝜃 𝑗 ≥ 0 might bind, hence

the indicator function in the proposition.

An important implication of Proposition 1 is that the optimal service 𝜃 𝑗 decreases in𝑚 𝑗 . Assum-

ing𝑚 𝑗 as a nonnegative real number,⁶ then the following derivative is well-defined:

d𝜃 𝑗
d𝑚 𝑗

= 1{𝜋 𝑗> ¤𝜁 (0)} ·
(1 − 𝜃 𝑗 ) ln(1 − 𝜃 𝑗 )

𝑚 𝑗 − 1 + (1 − 𝜃 𝑗 ) ¥𝜁 (𝜃 𝑗 )/ ¤𝜁 (𝜃 𝑗 )
≤ 0.(6)

Indeed, if there are too many potential competitors (large𝑚 𝑗 ), doing business with the customer is not

going to be very profitable, and there is no point providing much costly service to her.

2.2.3 The customer’s choice of dealers

The customer 𝑗 , before trading starts, chooses 𝑚 𝑗 dealers to maximize her ex-ante expected trading

gain 𝜋c
𝑗 , given by (3), subject to dealers’ optimal service 𝜃 𝑗 (Proposition 1).

Proposition 2 (Customers’ dealer choice). If 𝜋 𝑗 ≤ ¤𝜁 (0), the customer will not trade and is in-

different to choosing any 𝑚 𝑗 ∈ [0, 𝑚̂]. If 𝜋 𝑗 > ¤𝜁 (0), there always exists some 𝑚 𝑗 ∈ (1, 𝑚̂] that

maximizes the customer’s ex-ante payoff 𝜋c
𝑗 , as given in (3).

Several features of the proposition are worth highlighting. First, only if the customer is “large” enough

will she approach dealers initially—that is, if the trading gain 𝜋 𝑗 is too small (≤ ¤𝜁 (0)), no dealer will

⁶ While it is natural to think of𝑚 𝑗 as an integer (number of dealers), for simplicity, we treat it as a nonnegative real
number. That is, we allow the customer to contact, for example,𝑚 𝑗 = 4.7 dealers, with the rough interpretation that she
plays a mixed strategy between choosing 4 and 5 dealers.
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serve her (𝜃 𝑗 = 0, Proposition 1) and, knowing this, this customer 𝑗 would not bother to open accounts

with dealers. (More precisely, she is indifferent to contacting any dealer or not, as none will serve her.)

Second, there is a lower bound of 𝑚 𝑗 > 1 (if 𝜋 𝑗 > ¤𝜁 (0)). Intuitively, doing business with only

one dealer effectively waives the dealer from competition with others. As such, the dealer extracts

all the trading gain, and the customer expects 𝜋c
𝑗 = 0, following (3) with𝑚 𝑗 = 1. Instead, choosing

any𝑚 𝑗 > 1 induces at least some competition among dealers, capturing some 𝜋c
𝑗 > 0.

Third, the proposition is only about the existence of the optimal𝑚 𝑗 . Such existence readily follows

the fact that the support of𝑚 𝑗 is bounded by [0, 𝑚̂] and that the objective 𝜋c
𝑗 is continuous in𝑚 𝑗 . We

provide a more detailed characterization of the optimal𝑚 𝑗 in Section 2.3, where we discuss when𝑚 𝑗

is interior or cornered and when it is unique.

2.2.4 Summary of equilibrium

In summary, the equilibrium is as follows:

(i) The customer 𝑗 chooses𝑚 𝑗 dealers for her D 𝑗 , where𝑚 𝑗 is given in Proposition 2.

(ii) Every dealer 𝑖 ∈ D 𝑗 provides symmetric service 𝜃𝑖 𝑗 = 𝜃 𝑗 as given in Proposition 1.

(iii) If 𝐴𝑖 𝑗 = 1, then dealer 𝑖 ∈ D 𝑗 quotes an ask price 𝑝𝑖 𝑗 according to Lemma 1.

For the subsequent analysis to be meaningful, we focus on the case of a large customer with 𝜋 𝑗 > ¤𝜁 (0)

in the rest of Section 2, for otherwise there is no trading (Proposition 2).

2.3 When less is more

One key result of ourmodel is that customers do not always exhaust the available dealers; that is, they do

business with fewer dealers to maximize their expected trading gains—less is more. Mathematically,

this requires the optimal dealer choice𝑚 𝑗 to be interior, 1 < 𝑚 𝑗 < 𝑚̂. To study when this happens,

we decompose the effects of a marginally larger 𝑚 𝑗 on the customer’s expected trading gain 𝜋c
𝑗 by

examining the derivative of 𝜋c
𝑗 with respect to𝑚 𝑗 .
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Lemma 3 (Customer’s tradeoff). Suppose 𝜋c
𝑗 , as given by (3), is differentiable in𝑚 𝑗 . Then

d𝜋c
𝑗

d𝑚 𝑗
=

𝜕𝜋c
𝑗

𝜕𝑚 𝑗︸︷︷︸
≥0, direct effect

+

≤0, indirect effect︷    ︸︸    ︷
𝜕𝜋c

𝑗

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

,

where the direct effect is always positive and the indirect effect is always negative.

That is, by chain rule, we see a pair of opposing effects:

• Matching effect: A larger 𝑚 𝑗 helps the customer reach more dealers, who will more likely

be able to serve her when she needs to trade and will compete more fiercely to provide better

quotes. This is the direct effect of
𝜕𝜋c

𝑗

𝜕𝑚 𝑗
, and it is always positive, inducing the customer to contact

as many dealers as possible.

• Service effect: On the other hand, as𝑚 𝑗 increases, dealers know that they face more competition

and expect less revenue. Hence, the lowered expected revenue drives them to reduce their service

to the customer. This novel indirect service effect is always negative, because dealers reduce

their service facing more competition, following (6).

A key determinant in the net effect of
d𝜋c

𝑗

d𝑚 𝑗
is dealers’ “competition elasticity,” defined as

𝜀 :=
d
(
ln

(
1 − 𝜃𝑖 𝑗

) )
−d

(
ln

(
1 − 𝜃 𝑗

)𝑚 𝑗−1
) .(7)

In words, 𝜀 (> 0) captures how sensitive a dealer 𝑖 is to competition: If the competing dealers serve

more to customer 𝑗 (reducing their no-service probability by d
(
ln

(
1 − 𝜃 𝑗

)𝑚 𝑗−1
)
), dealer 𝑖 will serve

less (increasing her own no-service probability by d
(
ln

(
1 − 𝜃𝑖 𝑗

) )
). The larger (more positive) 𝜀 is, the

more aggressively dealer 𝑖 reduces her service. In other words, the competition elasticity (7) effectively

measures the strength of the service effect. If 𝜀 is sufficiently large, the service effect dominates, thus

making the customer unwilling to reach out to more dealers.

Under the optimal symmetric service 𝜃 𝑗 given by Proposition 1, the competition elasticity can be

simplified. In particular, for 𝜋 𝑗 > ¤𝜁 (0), dealer 𝑖’s first-order condition (5) holds with 𝜃𝑖 𝑗 = 𝜃 𝑗 > 0.
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Substituting the (5)-implied
(
1 − 𝜃 𝑗

)𝑚 𝑗−1 = ¤𝜁 (𝜃 𝑗 )/𝜋 𝑗 into the denominator of (7), we obtain

𝜀 (𝜃 𝑗 ) =
1

1 − 𝜃 𝑗

¤𝜁 (𝜃 𝑗 )
¥𝜁 (𝜃 𝑗 )

, for 𝜃 𝑗 ∈ (0, 1).(8)

That is, given the dealers’ optimal service (Proposition 1), the competition elasticity depends only on

the shape of the service cost 𝜁 (·). Belowwe study 𝜀 (·) to characterize when the customer’s equilibrium

choice of𝑚 𝑗 is interior and when it is unique.

2.3.1 Interior solution with sufficiently many dealers

To examine when𝑚 𝑗 is interior, we first relax the customer’s dealer choice from𝑚 𝑗 ∈ [1, 𝑚̂] to𝑚 𝑗 ∈

[1,∞). This avoids the “mechanical” corner solution when 𝑚̂ is too small—for example, if 𝑚̂ = 1,

then a corner solution of𝑚 𝑗 = 𝑚̂ = 1 always arises. A sufficient condition for𝑚 𝑗 < ∞ is given below.

Proposition 3 (Not using infinitely many dealers𝑚 𝑗 ). When there are sufficiently many dealers

(𝑚̂ → ∞), the customer 𝑗’s optimal dealer choice𝑚 𝑗 is finite if

𝜀 (0) > 2.(9)

Furthermore, 𝜀 (𝜃 𝑗 ) > 2 at this optimal𝑚 𝑗 , where 𝜃 𝑗 is the optimal dealer service given by Proposi-

tion 1.

Intuitively, condition (9) effectively requires the competition elasticity 𝜀 to be sufficiently large, so

that the negative service effect is severe enough to deter the customer from reaching out to too many

dealers.

Belowwe introduce a general class of service cost functions, which can ensure sufficiently large 𝜀 (0)

as required by (9):

𝜁 (𝜃 ) =


𝑎

1−𝑏

(
1 − (1 − 𝜃 )1−𝑏

)
+ 𝑐𝜃, if 𝑏 ≠ 1; and

−𝑎 ln(1 − 𝜃 ) + 𝑐𝜃, if 𝑏 = 1.

(10)

The competition elasticity, under this class of 𝜁 (·), can be found as 𝜀 (0) = 𝑎+𝑐
𝑎𝑏 , and it satisfies (9) for

various parameter values of {𝑎, 𝑏, 𝑐}. In particular, (10) nests the following special cases.
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Example 1 (Constant competition elasticity). If the parameters satisfy 𝑎 > 0, 𝑏 > 0, and 𝑐 = 0, then

this class of 𝜁 (·) is convexly increasing and satisfies 𝜁 (0) = 0, as assumed in Section 2.1. Furthermore,

the competition elasticity is constant, 𝜀 (𝜃 ) = 1/𝑏, satisfying (9) if 𝑏 < 1
2 . Such a cost function 𝜁 (·) is

reminiscent of constant relative risk aversion (CRRA) utility functions.

Example 2 (Linearly decreasing competition elasticity). If 𝑎 > 0, 𝑏 = 1, and 𝑐 > 0, it can be seen that

the resulting 𝜁 (·) is also convexly increasing and satisfies 𝜁 (0) = 0, as assumed in Section 2.1. The

competition elasticity becomes 𝜀 (𝜃 ) = 1 + 𝑐
𝑎 (1 − 𝜃 ) and satisfies (9) if 𝑐 > 𝑎.

Example 3 (Infinitely large competition elasticity). If 𝑎 = 0, the cost function becomes 𝜁 (𝜃 ) = 𝑐𝜃 .

This linear service cost can be seen as the result of dealers paying a fixed cost of 𝑐 > 0 only when

ready (𝐴𝑖 = 1), for example, due to regulatory compliance, clearing requirements, or risk management.

Jovanovic and Menkveld (2022) assume such a cost function to study quote dispersion in limit order

markets. In particular, the constant competition elasticity becomes 𝜀 ↑ ∞, satisfying (9). Wang (2022)

also assumes such a cost function and, because of the infinite competition elasticity, finds that the

customer only wants to contact as few dealers as possible.

Example 4 (Quadratic service cost). If 𝑏 = −1, then the cost function becomes 𝜁 (𝜃 ) = −𝑎
2𝜃

2+ (𝑎+𝑐)𝜃 .

It is also convexly increasing and satisfies 𝜁 (0) = 0, as assumed in Section 2.1, if 𝑎 < 0 and 𝑎 + 𝑐 > 0.

The implied competition elasticity is 𝜀 (𝜃 ) = − 𝑐
𝑎

1
1−𝜃 − 1 and satisfies (9) if 𝑐 > −3𝑎.

2.3.2 Interior solution with finite dealers

We now return to the more realistic setting of finite dealers, i.e., 𝑚̂ < ∞. To facilitate subsequent

analyses, we impose a regularity condition to ensure that 𝜋c is quasi-concave in𝑚 𝑗 .

Lemma 4 (A sufficient condition for uniqueness). It is sufficient to assume that

d𝜀 (𝜃 )
d𝜃

≤ 0 for all 𝜃 ∈ [0, 1](11)

to ensure that 𝜋c
𝑗 is quasi-concave on𝑚 𝑗 ∈ (1,∞).
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To see the intuition, note that the benefit of increasing𝑚 𝑗—the positive matching effect—always di-

minishes with𝑚 𝑗 .⁷ On the cost side, the service loss exacerbates with𝑚 𝑗 . This is because when𝑚 𝑗

is small (large), each dealer knows that she faces low (high) competition and will provide a lot of (lit-

tle) service to the customer, i.e., 𝜃 𝑗 is high (low). The monotone decreasing 𝜀 (·) then implies that an

increase in𝑚 𝑗 reduces a large (small) amount of service 𝜃 𝑗 when𝑚 𝑗 is large (small). In other words,

the negative service effect, following d𝜀
d𝜃 ≤ 0, is more severe when𝑚 𝑗 is large—the customer’s cost of

losing service exacerbates with𝑚 𝑗 . Combining the diminishing benefit and the exacerbating cost, the

quasi-concavity guarantees that the optimal𝑚 𝑗 is unique.

It is worth emphasizing that the condition (11) is sufficient but not necessary for the optimal𝑚 𝑗 to

be unique in the support of [1, 𝑚̂]. In Example 4, for instance, 𝜀 (𝜃 ) is monotone increasing in 𝜃 , thus

not satisfying (11), but it can still be shown that the customer’s objective 𝜋c
𝑗 remains quasi-concave.

(Examples 1–3 clearly satisfy (11).)

With the help of (9) and (11), we can now obtain additional useful comparative statics and, further,

refine the equilibrium characterization of𝑚 𝑗 given earlier in Proposition 2.

Corollary 1 (When less is more). Assume (9) and (11). Then the customer 𝑗’s optimal dealer

choice𝑚 𝑗 is unique. Further, both𝑚 𝑗 and the dealers’ optimal service 𝜃 𝑗 are (weakly) increasing

in 𝜋 𝑗 . In particular, the customer chooses fewer dealers than available, i.e.,𝑚 𝑗 < 𝑚̂, if and only if

𝜋 𝑗 <
¤𝜁 (𝜃 )

(1 − 𝜃 )𝑚̂−1
,(12)

where 𝜃 ∈ (0, 1) is a unique exogenous threshold given by (B.4) in the proof.

Intuitively, dealers compete more fiercely for larger customers; that is, all else being equal, a customer

with larger 𝜋 𝑗 receives more service 𝜃 𝑗 . Hence, increasing𝑚 𝑗 induces more service from all dealers

for a customer with larger 𝜋 𝑗 . Further, under (11), the competition elasticity 𝜀 is (weakly) lower with

more service 𝜃 𝑗 , thus weakening the negative service effect of increasing𝑚 𝑗 . Therefore, both of these

⁷ Recall from (6) that𝑚 𝑗 and 𝜃 𝑗 are negatively related. Therefore, when𝑚 𝑗 is small, 𝜃 𝑗 is large, and a marginal increase
in𝑚 𝑗 increases the trading probability significantly by such a large 𝜃 𝑗 . If𝑚 𝑗 has become very large, each of the dealers
provides very low 𝜃 𝑗 , as does the marginal additional dealer, adding very little to the trading probability.
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Figure 1: A customer’s dealer choice and dealers’ service to her. This figure plots the equilibrium𝑚 𝑗 (solid
line, left axis) and 𝜃 𝑗 (dashed line, right axis) as functions of customer type 𝜋 𝑗 , varying in 𝜋 𝑗 ∈ [100, 102] on the
horizontal axis (log scale). Dealers’ service cost function 𝜁 (·) is parameterized as in Example 1, with 𝑎 = 3.0
and 𝑏 = 0.44. The total number of dealers is set at 𝑚̂ = 10.

effects incentivize a larger customer (larger 𝜋 𝑗 ) to reach out to more dealers.⁸

Figure 1 illustrates the patterns. The customer’s 𝜋 𝑗 is plotted on the horizontal axis in log scale.

The solid line (left axis) shows that she only reaches out to𝑚 𝑗 > 0 dealers if she is “large enough,”

i.e., when 𝜋 𝑗 > ¤𝜁 (0). As 𝜋 𝑗 increases, she does business with more dealers, until she exhausts all

of them, i.e., 𝑚 𝑗 = 𝑚̂ for 𝜋 𝑗 > ¤𝜁 (𝜃 )/(1 − 𝜃 )𝑚̂−1. Dealers’ symmetric service 𝜃 𝑗 , the dashed line

(right axis), also increases with 𝜋 𝑗 as, intuitively, dealers are willing to provide more service for larger

customers. Notably, however, its initially increase is slower than later, when𝑚 𝑗 is capped at 𝑚̂. This

is because initially there are new, competing dealers introduced by the customer’s increasing𝑚 𝑗 , and

such competition on the extensivemargin dampens the existing dealers’ incentive to serve the customer.

Once 𝑚 𝑗 = 𝑚̂ is capped, such an extensive-margin competition stops, allowing 𝜃 𝑗 to increase faster

with 𝜋 𝑗 .

⁸ Note also that (12) can be equivalently rewritten as 𝑚̂ > 1 + ln( ¤𝜁 (𝜃 )/𝜋 𝑗 )
ln(1−𝜃 ) . That is, it is essentially a variation of

“sufficiently many dealers” as studied in Section 2.3.1. In other words, because of (11), the requirement of a sufficiently
large 𝑚̂ can be translated into a requirement of small 𝜋 𝑗 to ensure interior𝑚 𝑗 .
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3 Market design implications

A key assumption in the model is that every dealer of a customer 𝑖 observes the customer’s dealer

choice 𝑚 𝑗 . In conventional OTC trading, such observability can arise from dealers’ due diligence

exercises and/or repeated interactions with the customer. On RFQ platforms, such observability is a

market design choice—indeed, some, but not all, RFQ platforms reveal𝑚 𝑗 to dealers (see Remark 4).

This section studies related market design issues for RFQ platforms. To set the stage, Section 3.1 first

studies the observability of𝑚 𝑗 . Section 3.2 then examines welfare implications. Finally, Section 3.3

makes concrete market design suggestions.

3.1 The observability of the customer’s dealer choice

To illustrate the idea, this subsection considers an RFQ platform where the customer can choose,

before trading starts, whether to reveal her choice𝑚 𝑗 to her dealers. If she chooses to reveal so, the

equilibrium characterized in Sections 2.2–2.3 applies.

What will happen if she does not reveal𝑚 𝑗? The customer still chooses𝑚 𝑗 ∈ [0, 𝑚̂] to maximize

her expected payoff 𝜋c
𝑗 as given by (3). However, her dealers’ (symmetric) service 𝜃 𝑗 can no longer be

a function of the unobservable𝑚 𝑗 . Assuming differentiability, therefore,

d𝜋c
𝑗

d𝑚 𝑗
=

𝜕𝜋c
𝑗

𝜕𝑚 𝑗︸︷︷︸
≥0, direct effect

+

=0, indirect effect︷    ︸︸    ︷
𝜕𝜋c

𝑗

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

=
𝜕𝜋c

𝑗

𝜕𝑚 𝑗
≥ 0.

Compared to the decomposition in Lemma 3, it can be seen that the indirect negative service effect,

which used to balance the direct positive matching effect, is no longer in effect, because d𝜃 𝑗
d𝑚 𝑗

= 0.

With
d𝜋c

𝑗

d𝑚 𝑗
> 0, the customer 𝑗 will then contact as many dealers as possible, i.e.,𝑚 𝑗 = 𝑚̂.

Consequently, the dealers in equilibrium also know that𝑚 𝑗 = 𝑚̂. Their symmetric optimal service

choice 𝜃 𝑗 is then a special case of Proposition 1, with𝑚 𝑗 = 𝑚̂. Recall from (6) that d𝜃 𝑗
d𝑚 𝑗

≤ 0. Therefore,
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the customer, in fact, gets the lowest service of

𝜃 𝑗 := 1{𝜋 𝑗> ¤𝜁 (0)}𝑔(𝑚̂, 𝜋 𝑗 ).

Intuitively, this is because the customer always contacts all dealers, intensifying their competition and

driving down their profit, which no longer justifies any quality service. In turn, this lowest service 𝜃 𝑗

makes the customer (weakly) worse off.

Proposition 4 (Truthful revelation of 𝑚 𝑗 ). Assume (9) and (11). Every customer 𝑗 individually

(weakly) prefers truthfully revealing her dealer choice𝑚 𝑗 . That is, 𝜋c
𝑗 (𝑚 𝑗 ) ≥ 𝜋c

𝑗 (𝑚̂), where𝑚 𝑗 is the

equilibrium outcome given in Corollary 1; and the inequality is strict if ¤𝜁 (0) < 𝜋 𝑗 < ¤𝜁 (𝜃 )/(1−𝜃 )𝑚̂−1.

Proposition 4 also shows that a sufficiently large customer (𝜋 𝑗 ≥ ¤𝜁 (𝜃 )/(1 − 𝜃 )𝑚̂−1) is indifferent about

revealing her𝑚 𝑗 or not. This is because the dealers are okay with not observing her𝑚 𝑗 , as they know

that such a large customer does business with all dealers no matter what.

3.2 Welfare and customers’ dealer choice

The above analysis shows that customers weakly prefer that the RFQ platform directly reveals their

dealer choices𝑚 𝑗 to the contacted dealers. Do dealers also benefit from the observability of𝑚 𝑗? Is

trading more efficient overall? In this subsection, we study how welfare is affected by 𝑚 𝑗 , before

continuing with concrete market design suggestions in Section 3.3.

A general expression of welfare. Suppose the customer 𝑗 contacts 𝑚 𝑗 dealers and receives an

amount of 𝜃𝑖 𝑗 service from dealer 𝑖 ∈ D 𝑗 . The trading gain of 𝜋 𝑗 is realized as long as at least one

dealer out of𝑚 𝑗 is ready, i.e., with probability 1 −∏
𝑖∈D𝑗

(1 − 𝜃𝑖 𝑗 ). To provide such service, a dealer 𝑖

incurs a cost of 𝜁 (𝜃𝑖 𝑗 ). Therefore, welfare is calculated as

𝑤 = ©­«1 −
∏
𝑖∈D𝑗

(1 − 𝜃𝑖 𝑗 )ª®¬𝜋 𝑗 −
∑
𝑖∈D𝑗

𝜁 (𝜃𝑖 𝑗 ).(13)
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For example, if dealer service is symmetric, 𝜃𝑖 𝑗 = 𝜃 𝑗 , then welfare becomes

𝑤 =
(
1 − (1 − 𝜃 𝑗 )𝑚 𝑗

)
𝜋 𝑗 −𝑚 𝑗𝜁 (𝜃 𝑗 ) .(14)

Social plannermandating𝑚 𝑗 . Belowwe study how a social planner mandates the customer’s dealer

choice 𝑚 𝑗 to maximize welfare and compare the result with the above market outcome.⁹ The man-

date 𝑚 𝑗 is understood also by the dealers. That is, dealers effectively observe 𝑚 𝑗 , and they still en-

dogenously choose their symmetric service 𝜃 𝑗 according to Proposition 1. Hence, for the rest of this

section, we examine only the case of 𝜋 𝑗 > ¤𝜁 (0) to ensure that there is trading. Then the planner’s

objective function, the welfare expression 𝑤 , remains as given in (14), subject to the symmetric 𝜃 𝑗 ,

implied by (5). Denote by 𝑚P
𝑗 the planner’s optimal choice. To compare, denote by 𝑚M

𝑗 the market

outcome of customer 𝑗’s dealer choice, as given in Corollary 1.

Proposition 5 (Planner’s mandate of𝑚 𝑗 ). Assume (9) and (11). Then, welfare𝑤 is quasi-concave

in 𝑚 𝑗 , and the planner’s optimal choice 𝑚P
𝑗 is unique in [1, 𝑚̂] and is always (weakly) lower than

the market outcome: 𝑚P
𝑗 ≤ 𝑚M

𝑗 . Specifically, let ℎ(𝜃 ) := −(1 − 𝜃 ) ln(1 − 𝜃 ) ¤𝜁 (𝜃 ) − 𝜁 (𝜃 ). Then,

if lim𝜃↑1 ℎ(𝜃 ) < 0, the planner always chooses 𝑚P
𝑗 = 1. If instead lim𝜃↑1 ℎ(𝜃 ) ≥ 0, there exists a

unique threshold 𝜃 ∗ ∈ (0, 1] such that ℎ(𝜃 ∗) = 0 and

(i) if ¤𝜁 (0) < 𝜋 𝑗 ≤ ¤𝜁 (𝜃 ∗), then𝑚P
𝑗 = 1 < 𝑚M

𝑗 ;

(ii) if ¤𝜁 (𝜃 ∗) < 𝜋 𝑗 < ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1, then 1 < 𝑚P
𝑗 = 1 + ln( ¤𝜁 (𝜃∗)/𝜋 𝑗 )

ln(1−𝜃∗) < 𝑚M
𝑗 ≤ 𝑚̂; and

(iii) if 𝜋 𝑗 ≥ ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1, then𝑚P
𝑗 =𝑚M

𝑗 = 𝑚̂.

We provide a heuristic discussion on why 𝑚P
𝑗 ≤ 𝑚M

𝑗 . For simplicity, consider case (ii) above,

where both 𝑚P
𝑗 and 𝑚M

𝑗 are interior, so that we can make use of the first-order derivatives to build

intuition. The welfare expression (14) is the sum of the customer’s trading gain and those of the𝑚 𝑗

dealers: 𝑤 = 𝜋c
𝑗 +𝑚 𝑗𝜋

d
𝑗 , where 𝜋d

𝑗 = 𝜃 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜁
(
𝜃 𝑗

)
follows (4). The planner’s first-order

⁹ We believe that mandating𝑚 𝑗 is the most realistic and plausible policy intervention. In an electronic RFQ platform,
mandating the𝑚 𝑗 choice can be achieved by stipulating how many dealers a customer can reach in one “click.” Although
it does not happen in equilibrium, if a customer only chooses fewer dealers than stipulated, the platform could randomly
select other dealers to fill the difference.

22



derivative is then

d𝑤
d𝑚 𝑗

=
d𝜋c

𝑗

d𝑚 𝑗
+ 𝜋d

𝑗 +𝑚 𝑗

d𝜋d
𝑗

d𝑚 𝑗
.

The first component,
d𝜋c

𝑗

d𝑚 𝑗
, reflects the customer’s consideration, as studied in Section 2.2.3. In partic-

ular, when choosing her optimal𝑚 𝑗 = 𝑚M
𝑗 , unlike the planner, the customer does not internalize the

following two effects on the dealers:

• The second term 𝜋d
𝑗 , which is positive, reflects the marginal dealer’s additional trading gain.

• The third term 𝑚 𝑗
d𝜋d

𝑗

d𝑚 𝑗
, which, rather intuitively, is always negative,¹⁰ reflects the intensified

competition among the dealers.

While the two effects are in opposite directions in general, we show in the proof that at the market

outcome 𝑚M
𝑗 , the negative competition effect dominates, i.e., 𝜋d

𝑗 + 𝑚 𝑗
d𝜋d

𝑗

d𝑚 𝑗
< 0. Intuitively, this is

because at the customer’s optimal 𝑚M
𝑗 , the dealers’ competition elasticity 𝜀 (𝜃 𝑗 ) is necessarily very

severe (Proposition 3), limiting their profit 𝜋d
𝑗 . Not accounting for such dealer losses, the customer

chooses a large optimal𝑚M
𝑗 to satisfy her first-order condition

d𝜋c
𝑗

d𝑚 𝑗
= 0. Therefore, d𝑤 𝑗

d𝑚 𝑗

���
𝑚 𝑗=𝑚M

𝑗

< 0, and

the planner always wants to (locally) reduce her dealer choice𝑚P
𝑗 below the market outcome𝑚M

𝑗 .

Social planner mandating both 𝑚 𝑗 and {𝜃𝑖 𝑗 }. The social planner can also mandate dealers’ ser-

vice {𝜃𝑖 𝑗 }. Such regulations, though, might appear rather “invasive” as the planner has to interfere

with how dealers run their businesses, and we do not consider such policies realistic. Nevertheless,

for completeness, we briefly discuss this case below.

Note that from the planner’s perspective, asking a customer not to contact certain dealers is the

same as asking those dealers not to provide service to the customer. For example, if the planner wants

customer 𝑗 not to contact dealer 𝑖, forcing 𝑖 ∉ D 𝑗 is equivalent to requiring 𝜃𝑖 𝑗 = 0. The planner’s

¹⁰ Indeed,
d𝜋d

𝑗

d𝑚 𝑗
=

𝜕𝜋d
𝑗

𝜕𝑚 𝑗
+ 𝜕𝜋d

𝑗

𝜕𝜃 𝑗

d𝜃 𝑗

d𝑚 𝑗
, but

𝜕𝜋d
𝑗

𝜕𝜃 𝑗
= 0 by the envelope theorem (as dealers choose their optimal 𝜃 𝑗 ). Hence,

d𝜋d
𝑗

d𝑚 𝑗
=

𝜕𝜋d
𝑗

𝜕𝑚 𝑗
= 𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 ln(1 − 𝜃 𝑗 ) < 0.
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problem can then be rewritten as

max
{𝜃𝑖 𝑗 }

(
1 −

𝑚̂∏
𝑖=1

(1 − 𝜃𝑖 𝑗 )
)
𝜋 𝑗 −

𝑚̂∑
𝑖=1

𝜁 (𝜃𝑖 𝑗 ).

We say that a customer is effectively in business with𝑚P
𝑗 =

∑𝑚̂
𝑖=1 1{𝜃𝑖 𝑗>0} dealers.

Proposition 6 (Planner’s mandate of both𝑚 𝑗 and {𝜃𝑖 𝑗 }). Assume (9) and (11). Further, if 𝜀 (𝜃 ) >

1 for all 𝜃 ∈ [0, 1], then the social planner chooses𝑚P
𝑗 = 1, so that each customer is effectively in

business with at most one dealer.

Intuitively, when the competition elasticity is sufficiently high, choosing additional dealers results in

all of them significantly reducing their service and lowering the trading probability. To avoid such

inefficiency, the planner therefore chooses𝑚P
𝑗 = 1.

3.3 Market design recommendations

The above welfare analysis suggests that the market outcome is in general inefficient. In particular,

since customers do not internalize dealers’ competition cost, from a social planner’s point of view,

they reach out to “too many” dealers, whose lowered profitability can be socially costly. Allowing

dealers to observe the customer’s number of dealer contacts mitigates the excessiveness (𝑚M
𝑗 ≤ 𝑚̂) but

does not fully address the issue (𝑚P
𝑗 ≤ 𝑚M

𝑗 ). Following Proposition 5, we now make two qualitative

recommendations regarding the design of RFQ platforms.

First, the platform should make observable the number of dealers chosen by the customer.

Corollary 2 (Dealer competition observability). Following Proposition 5, welfare is weakly

higher when dealers observe customers’𝑚 𝑗 choice than when there is no such observability.

Proposition 4 has shown that customers are better off with such observability (𝜋c
𝑗 (𝑚M

𝑗 ) ≥ 𝜋c
𝑗 (𝑚̂)). So

are the contacted dealers, because with the observability, the customers contact fewer dealers (𝑚M
𝑗 ≤

𝑚̂), reducing their competition. The 𝑚̂−𝑚M
𝑗 uncontacted dealers are worse off (because they no longer

participate in trading), but they also no longer need to provide the costly service. Corollary 2 effectively

shows that netting the above effects, welfare is always improved by the observability.
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Figure 2: Social planner’s welfare-maximizing dealer choice𝑚P
𝑗 vs. the market outcome𝑚M

𝑗 . This figure
plots the planner’s welfare-maximizing choice of𝑚P

𝑗 (solid line, left axis) and the customer’s choice𝑚M
𝑗 (dashed

line, right axis) as functions of the customer type 𝜋 𝑗 , varying in 𝜋 𝑗 ∈ [3 × 100, 104] on the horizontal axis (log
scale). Dealers’ service cost function 𝜁 (·) is parameterized as in (10), with 𝑎 = 1.0, 𝑏 = 2.5, and 𝑐 = 10.0. The
total number of dealers is set at 𝑚̂ = 5.

Second, the platform should restrict a customer’s maximum number of dealer contacts, because

the welfare-maximizing𝑚P
𝑗 is typically smaller than the market outcome𝑚M

𝑗 . Notably, different cus-

tomers’ trades should be subject to different restrictions:

Corollary 3 (Number of dealers and trade size). Following Proposition 5, thewelfare-maximizing

dealer choice𝑚P
𝑗 is weakly increasing in the trading gain size 𝜋 𝑗 .

Intuitively, since dealer service is (socially) costly, only large customers can justify the service costs

from contacting more dealers. In practice, some RFQ platforms do impose a cap on the number of

dealers a customer can contact: 5 on Bloomberg SEF (Riggs et al., 2020) and 4 on CanDeal (Allen and

Wittwer, 2021). However, our model questions such a one-size-fits-all approach. Figure 2 illustrates

the idea. The blue solid line indicates𝑚P
𝑗 , the socially optimal number of dealer contacts, while the red

dashed line indicates the market outcome 𝑚M
𝑗 . Following Proposition 5, 𝑚P

𝑗 is always weakly lower

than𝑚M
𝑗 , thus supporting the contact caps imposed by Bloomberg SEF and CanDeal. However, as the
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trading gain size 𝜋 𝑗 increases, so does𝑚P
𝑗 , suggesting that if a customer enters a large trade size in the

RFQ protocol, she should be allowed to contact more dealers. This is the market design idea implied

by Corollary 3: A customer should be allowed to contact more dealers only if she wants to execute a

sufficiently large position. If the trade size is small, the platform should limit her contact to contain

the otherwise excessive dealer competition (and the socially wasteful dealer service cost).

It can be seen that both recommendations above aim to curb customers’ excessive dealer contacting,

which lowers dealers’ expected profit. While in our model dealers’ ex-ante participation 𝑚̂ is exoge-

nous, in more realistic settings, the lowered dealer profit can reflect in, for example, their reluctance in

joining in RFQ platforms. This could contribute to the sluggish growth of electronic OTC trading, as

evidenced by O’Hara and Zhou (2021). Our recommendations can alleviate the negative externality

from customers to dealers, thus encouraging the latter’s participation and improving efficiency.¹¹

4 Endogenizing dealers’ service cost

The previous analysis has assumed an exogenous dealer service cost 𝜁 (·). One natural source of such

a cost is dealers’ capacity constraints, like their computational power, limited labor force, and funding

and inventory constraints, under which they will have to optimally allocate their limited capacity to

serve different customers. This section studies such a model extension: Section 4.1 sets up the model,

Section 4.2 characterizes the equilibrium, and Section 4.3 provides model predictions regarding dealer

and customer behavior when the market is under stress.

¹¹ It should be noted, however, that the welfare improvement of our second recommendation is achieved at the cost
of customers, whose endogenous participation in electronic platforms might be discouraged in a richer model environ-
ment. Transfers from dealers to customers, e.g., in the form of rebate to customers, can therefore offset such distributional
inefficiency.
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4.1 Model setup

We extend the setting of Section 2.1 by (i) introducing multiple customers and (ii) imposing a resource

constraint on dealers’ service. The details are discussed below.

Agents. We maintain the total number of homogeneous dealers as 𝑚̂, the same as in Section 2.1.

We then consider a continuum of customers of mass 𝑛 (> 0), indexed by 𝑗 ∈ [0, 𝑛]. Their types 𝜋 𝑗 ,

reflecting the total trading gains, can vary across 𝑗 .

Finding dealers. Each customer 𝑗 makes a dealer choice𝑚 𝑗 as in Section 2.1.

Remark 6 (A continuum of customers). Since the dealers are homogeneous, each customer 𝑗 randomly

chooses to do business with𝑚 𝑗 of them. Assuming a continuum of customers therefore helps ensure

that every dealer receives almost surely the same amount of customers, so that dealers remain homoge-

neous. The customers can differ in their types 𝜋 𝑗 , reflecting different customers’ urgency (willingness)

to trade, the asset classes they specialize in, and/or their sophistication.

Dealers’ service. Denote a dealer 𝑖’s customers by C𝑖 ⊂ [0, 𝑛]. As before, each dealer 𝑖 observes

both her customers’ types 𝜋 𝑗 and their dealer choices𝑚 𝑗 , for all 𝑗 ∈ C𝑖 . The dealer 𝑖 then chooses her

service 𝜃𝑖 𝑗 ∈ [0, 1] to every customer 𝑗 ∈ C𝑖 , subject to a resource constraint of∫
𝑗∈C𝑖

𝜉 (𝜃𝑖 𝑗 )d 𝑗 ≤ 1,(15)

where 𝜉 (·) translates the service 𝜃𝑖 𝑗 to the limited resource, and we normalize the endowment of this

resource to be one unit. We assume that 𝜉 (·) is convexly increasing, starting from 𝜁 (0) = 0, and thrice

differentiable, with the first- and the second-order derivatives denoted, respectively, by ¤𝜉 (·) and ¥𝜉 (·).

Remark 7 (Dealers’ resource constraint). A dealer’s resource constraint Equation (15) can arise for

various reasons. First and foremost, time is limited. For example, it takes specifically trained traders

to run time-consuming simulations to assess complicated structural products. If no pricing is obtained

in time, the client might walk away for other options. Second, labor force is also limited. Experienced

traders are few and maybe even fewer for the specific asset class that the client is interested. Risk
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management staff are also important, as they approve or reject trades based on, for example, clients’

creditworthiness, riskiness of trades, and the dealer’s balance sheet. The back office is costly but

necessary to run, owing to the heavy compliance and regulatory requirements. Third, the dealer’s

balance sheet capacity is limited. If inventory or capital has already been exhausted to facilitate other

trades, a dealer will have to decline a client’s request to trade.

Remark 8 (Cost functions 𝜁 (·) vs. 𝜉 (·)). Previously in Section 2, a dealer pays a cost of 𝜁 (𝜃𝑖 𝑗 ), in

dollars, to provide service 𝜃𝑖 𝑗 to customer 𝑗 . In this section, there is no dollar cost in serving customers.

Instead, each dealer is endowed with one unit of certain resource (e.g., time and/or labor), using which

she can serve customers. The function 𝜉 (·) translates the amount of service 𝜃𝑖 𝑗 into such limited

resources. While 𝜉 (𝜃𝑖 𝑗 ) is not costly per se, as will be shown in Section 4.2.2, it implies a shadow cost

to the dealer when the resource constraint binds. Such a shadow cost thus endogenizes the exogenous

cost 𝜁 (·) assumed in Section 2.

Trading. The trading process remains as in Section 2.1.

Equilibrium. The three sets of equilibrium objects remain as in Section 2.1. In particular, we still

focus on equilibria in which the homogeneous dealers use symmetric strategies, both in quoting to

their customers and in choosing service 𝜃𝑖 𝑗 for a same customer 𝑗 . The only difference is that now

dealers need to account for the resource constraint (15) in optimizing their services {𝜃𝑖 𝑗 }.

4.2 Equilibrium analysis

As in Section 2.2, we analyze the equilibrium backwards. Much of the analysis remains the same as

before, except that in studying dealers’ service (Section 4.2.2), we will explicitly derive how dealers’

resource constraint endogenizes the previously exogenous service cost 𝜁 (·).

28



4.2.1 Dealers’ quoting

Given a symmetric service strategy, where every dealer 𝑖 ∈ D 𝑗 provides the same service 𝜃𝑖 𝑗 = 𝜃 𝑗

to her customer 𝑗 , the equilibrium quoting strategy in Section 2.2.1 remains the same. In particular,

Lemmas 1 and 2 still hold.

4.2.2 Dealers’ service to customers

Consider a dealer 𝑖. She observes {𝑚 𝑗 , 𝜋 𝑗 } for 𝑗 ∈ C𝑖 and takes as given the competing dealers’

symmetric service of 𝜃𝑖′ 𝑗 = 𝜃 𝑗 , ∀𝑖′ ∈ D 𝑗 . Using (2), therefore, the dealer 𝑖’s problem is

max
𝜃𝑖 𝑗∈[0,1], ∀𝑗∈C𝑖

∫
𝑗∈C𝑖

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗d 𝑗, subject to
∫
𝑗∈C𝑖

𝜉
(
𝜃𝑖 𝑗

)
d 𝑗 ≤ 1.

We assume for now that the capacity constraint will bind in equilibrium, i.e.,
∫
𝑗∈C𝑖 𝜉

(
𝜃𝑖 𝑗

)
d 𝑗 = 1, and

later provide the necessary and sufficient condition in Section 4.2.4 for this assumption. The dealer’s

problem then has the following equivalent Lagrangian∫
𝑗∈C𝑖

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗d 𝑗 − 𝜅 ·
(∫

𝑗∈C𝑖
𝜉
(
𝜃𝑖 𝑗

)
d 𝑗 − 1

)
,(16)

where𝜅 (> 0) is the shadow cost implied by the capacity constraint. Belowwe take𝜅 as given and solve

for dealers’ symmetric service 𝜃 𝑗 , until later in Section 4.2.4, where 𝜅 is pinned down in Lemma 5.

Endogenous cost 𝜁 (·). It can be seen from (16) that, additively, each customer 𝑗 ∈ C𝑖 contributes[
𝜃𝑖 𝑗 ·

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜅𝜉
(
𝜃𝑖 𝑗

) ]
d 𝑗(17)

to dealer 𝑖’s objective function. That is, in choosing the optimal service 𝜃𝑖 𝑗 to customer 𝑗 , dealer 𝑖 sepa-

rately solves maximization problems for all 𝑗 ∈ C𝑖 , exactly as the problem (4) studied in Section 2.2.2.

The only difference is that the previously exogenous service cost 𝜁 (·) now becomes

𝜁
(
𝜃𝑖 𝑗

)
= 𝜅𝜉

(
𝜃𝑖 𝑗

)
,(18)
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with the endogenous resource shadow cost 𝜅. Taking 𝜅 as given, dealers’ symmetric service 𝜃 𝑗 is still

characterized by Proposition 1, with the cost function 𝜁 (·) given by (18).

4.2.3 Customers’ choices of dealers

Taking the shadow cost 𝜅 (> 0) as given, then a customer 𝑗’s optimization problem is exactly the same

as in Section 2.2.3, with the cost function specified as in (18). Proposition 2 then holds, guaranteeing

the existence of the optimal 𝑚 𝑗 ∈ [0, 𝑚̂]. Note that using (18), the competition elasticity 𝜀 (·), as

defined in (8), now becomes

𝜀 (𝜃 𝑗 ) =
1

1 − 𝜃 𝑗

𝜅 ¤𝜉 (𝜃 𝑗 )
𝜅 ¥𝜉 (𝜃 𝑗 )

=
1

1 − 𝜃 𝑗

¤𝜉 (𝜃 𝑗 )
¥𝜉 (𝜃 𝑗 )

.

That is, following Section 2.3, as the key determinant of when the optimal𝑚 𝑗 ∈ (1, 𝑚̂), 𝜀 (𝜃 𝑗 ) remains

fully characterized by the exogenous function 𝜉 (·), independent of 𝜅. In particular, we shall continue

to assume (9) and (11), so that Corollary 1 holds for those 𝜋 𝑗 > ¤𝜁 (0) = 𝜅 ¤𝜉 (0). (As before, if 𝜋 𝑗 <

¤𝜁 (0) = 𝜅 ¤𝜉 (0), this customer 𝑗 never receives any service and is indifferent to choosing any𝑚 𝑗 .)

4.2.4 Dealers’ resource shadow cost

To summarize, thus far we have characterized the dealer’s quoting strategies (in Section 4.2.1), their

optimal symmetric service 𝜃 𝑗 (in Section 4.2.2), and customers’ optimal dealer choice 𝑚 𝑗 (in Sec-

tion 4.2.3), taking as given dealers’ resource shadow cost 𝜅 (> 0). To characterize the equilibrium,

therefore, it remains to determine 𝜅.

To do so, consider a dealer 𝑖. Since a customer 𝑗 ∈ [0, 𝑛] chooses to do business with𝑚 𝑗 random

dealers, the probability that 𝑖 and 𝑗 form a business pair is P[ 𝑗 ∈ C𝑖] =𝑚 𝑗/𝑚̂. The dealer then provides

service 𝜃 𝑗 to customer 𝑗 by spending 𝜉 (𝜃 𝑗 ) resources. Therefore, the dealer’s resource constraint is∫
𝑗∈C𝑖

𝜉 (𝜃𝑖 𝑗 )d 𝑗 =
∫ 𝑛

0

𝑚 𝑗

𝑚̂
𝜉 (𝜃𝑖 𝑗 )d 𝑗 ≤ 1.(19)

The following lemma gives the exact parameter condition under which the above resource constraint
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binds, so that 𝜅 > 0, as previously assumed in Section 4.2.2.

Lemma 5 (Shadow cost). Assume (11). Dealers’ resource constraint (19) binds if and only if

𝑛𝜉 (1) > 1,(20)

under which the equality version of (19) uniquely determines the resource shadow cost 𝜅 (> 0).

To intuitively understand (20), note that if resource is unconstrained, then dealers will always provide

maximum service 𝜃𝑖 𝑗 = 1 for all customers, and every customer will choose the maximum number

of 𝑚̂ dealers. From the left-hand side of (19), the total resource spent in this case is 𝑛𝜉 (1). Therefore,

(20) simply ensures that the endowed unit of resource is insufficient for such maximum uses.

4.2.5 Summary of equilibrium

Summarily, assuming (9), (11), and (20) in this model extension, a dealer’s service cost function 𝜁 (·)

becomes 𝜅𝜉 (·), where 𝜅 (> 0) is dealers’ symmetric resource shadow cost and is uniquely determined

by the binding resource constraint (19). The equilibrium is characterized by:

(i) every customer 𝑗 contacts𝑚 𝑗 dealers, where𝑚 𝑗 is given in Corollary 1;

(ii) every dealer 𝑖 provides symmetric service 𝜃𝑖 𝑗 = 𝜃 𝑗 as given in Proposition 1; and

(iii) every dealer 𝑖, if ready for customer 𝑗 , quotes an ask price 𝑝𝑖 𝑗 according to Lemma 1.

As discussed in Section 2.2.4, the equilibrium is unique up to all trading customers, i.e., those who

have 𝜋 𝑗 > ¤𝜁 (0) = 𝜅 ¤𝜉 (0).

4.3 Predictions: Market in stress

To sharpen empirical predictions of the model, we examine, through the lens of our model, market

stresses, such as downgrades of corporate bonds, the volatility in March 2020 due to COVID-19, and

the market turmoil caused by UK’s “mini-Budget,” for example. To model such stress shocks, we

consider the following parametrization of customer types {𝜋 𝑗 }: A fraction 𝑓ℎ ∈ [0, 1] of the mass-

𝑛 customers are high-type with 𝜋ℎ, and the rest 𝑓𝑙 = 1 − 𝑓ℎ are low-type (0 <) with 𝜋𝑙 < 𝜋ℎ. We
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interpret the high-type as more urgent customers, hence with larger trading gain, than the low-type.

The parametrization allows us to examine three different forms of market stress: larger 𝑛 (more cus-

tomers, lower per-capita dealer resource), higher 𝑓ℎ (larger fraction of urgent customers), and higher 𝜋ℎ

(higher relative urgency). Although these shocks can all be thought of as market stress events, their

implications can be rather different.

4.3.1 Larger 𝑛: More customers wanting to trade

One source of market stress is that increasingly more customers want to trade, especially in a short

time frame, during which dealers’ resource capacity cannot be easily adjusted and, hence, the resource

available to each customer becomes smaller. We model such a shock via an exogenous increase in 𝑛,

the total size of customers, and focus on the effects on the two sets of endogenous variables, the dealers’

service allocation {𝜃ℎ, 𝜃𝑙 }, and the customers’ dealer choices {𝑚ℎ,𝑚𝑙 }. The results are summarized in

the following proposition.

Proposition 7 (Market stress: Increased customer size,𝑛). As the customer size𝑛 increases, both

dealer service 𝜃 𝑗 and customers’ dealer choice𝑚 𝑗 (weakly) decreases.

Figure 3(a)–(b) illustrate the patterns. It can be seen that dealers always provide less service to the

low-type customers than to the high-type (𝜃𝑙 < 𝜃ℎ); and, knowing so, the low-type customers do

business with fewer dealers than do the high-type (𝑚𝑙 ≤ 𝑚ℎ). Further, as 𝑛 increases, the lower per-

capita resource limits dealers’ service; hence, both 𝜃ℎ and 𝜃𝑙 decrease with 𝑛. Notably, the low-type

customers’ service first drops to zero, at around𝑛 ≈ 20, when the dealers find that their limited resource

is too scarce to serve the less-profitable low-type customers. Consistently, from then on,𝑚𝑙 = 0—the

low-type customers are “crowded out” for sufficiently large 𝑛.

Due to such a crowding-out effect, our model yields a novel empirical prediction that, during

market stress times, the number of realized trades can be non-monotone in the severity of the stress.

This result might be counterintuitive at first glance: Should customers not trade more aggressively

when under stress, especially when there are more of them (larger 𝑛)? Our model highlights that,
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Figure 3: Market stress due to increased customer size, 𝑛. This figure plots how the customer size 𝑛, varying
from 𝑛 = 1 to 𝑛 = 103, affects dealers’ service in Panel (a), customers’ dealer choice in (b), the number of trades
in (c), and customers’ execution quality in (d). There are two types of customers. A fraction of 𝑓ℎ = 0.2 of them
have higher urgency to trade, with 𝜋ℎ = 1, and the rest 𝑓𝑙 = 0.8 of them have 𝜋𝑙 = 0.1. There is a total of 𝑚̂ = 10
dealers, and their service cost function 𝜉 (·) is parameterized as in Example 1, with 𝑎 = 1.0 and 𝑏 = 0.45.
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when dealers’ service is constrained, not all customers will be served equally and some might be

crowded out, creating nonmonotonicity.¹² The pattern is illustrated in Figure 3(c), where the number

of low-type trades (the “//” patched area) initially increases with 𝑛 but then quickly drops to zero (at

around𝑛 ≈ 20), thus creating a hump in the total number of trades. In contrast, the number of high-type

trades (the “\\” patched area) increases with 𝑛, as the high-type is always served.

Figure 3(d) depicts customers’ execution quality, measured as their expected trading gain as a

percentage of the total trading gain, i.e., 𝜋c
𝑗 /𝜋 𝑗 for a type- 𝑗 customer, where 𝜋c

𝑗 follows (3) for 𝑗 ∈

{𝑙, ℎ}. The measure is inspired by O’Hara, Wang, and Zhou (2018), who examine the execution quality

of OTC trading by comparing the realized trading prices, and by Hendershott et al. (2022a), who

demonstrate the importance of accounting for the probability of trading failure in measuring execution

quality. Our measure nests both aspects, as reflected in (3). Consistent with the evidence fromO’Hara,

Wang, and Zhou (2018), our model predicts better execution quality for a more active customer (type-

ℎ, higher urgency), comparing the solid line with the dashed line. Further, as the stress exacerbates,

the difference in the execution quality widens (until the low-types drop out).

4.3.2 Higher 𝜋ℎ: Relative urgency to trade

Market stress can alternatively take the form of an urgency shock on some customers. That is, some

of the originally homogeneous customers might become more eager to trade, as reflected in their in-

creased 𝜋ℎ (> 𝜋𝑙 ). Such a shock makes dealers more willing to spend their limited resource on serving

the high-type customers, and, knowing this, the high-type customers also choose to do business with

more dealers. Receiving the lower residual service, the low-type customers then contact fewer dealers.

¹² We recognize that the specific assumption of 𝜋 𝑗 matters for this effect. For example, if, instead, 𝜋 𝑗 is a smooth function
of 𝑗 , then the crowding out of the low-type customers will be smooth as well, and there will be no kink in Figure 3(c).
However, the key underlying mechanism remains: certain low-type customers might be crowded out as dealers’ resource
constraint tightens.
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Figure 4: Market stress due to higher relative urgency, 𝜋ℎ/𝜋𝑙 . This figure plots how the urgency of high-
type customers 𝜋ℎ, relative to the low-type 𝜋𝑙 , varying from 𝜋ℎ/𝜋𝑙 = 1 to 𝜋ℎ/𝜋𝑙 = 103, affects dealers’ service
in Panel (a), customers’ dealer choice in (b), number of trades in (c), and customers’ execution quality in (d).
There are two types of customers, with total mass 𝑛 = 10. A fraction of 𝑓ℎ = 0.2 of them have higher urgency
to trade, with 𝜋ℎ, and the rest 𝑓𝑙 = 0.8 of them have 𝜋𝑙 = 1. There is a total of 𝑚̂ = 10 dealers, and their service
cost function 𝜉 (·) is parameterized as in Example 1, with 𝑎 = 1.0 and 𝑏 = 0.45.
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Proposition 8 (Market stress: Higher relative urgency, 𝜋ℎ/𝜋𝑙 ). As 𝜋ℎ/𝜋𝑙 increases, the high-type

(low-type) customers receive more (less) service and their dealer choices increase (decrease).

Figure 4(a)–(b) illustrate the patterns. Unlike the market stress seen in Figure 3 (increasing 𝑛), the

relative urgency makes trading with the high-type customers more profitable, but less with the low-

type less, for the dealers. Therefore, they cater to serving the high-types, who receive more service

from and also reach out to more dealers (higher 𝜃ℎ and𝑚ℎ). In fact, if the relative profitability of the

high-types becomes high enough (𝜋ℎ/𝜋𝑙 ≈ 250), the low-type customers completely drop out.

Figure 4(c) further illustrates that the crowding out of the low-type customers can be so severe

that the overall trading can be hampered—less trading in more stressed times: The total number of

trades (the sum of the “//” and the “\\” areas) decreases, at least initially, with the relative urgency 𝜋ℎ/𝜋𝑙 .

Consistent with the above, Figure 4(d) shows that the high-type customers’ execution quality continues

to improve, at the cost of the low-types’.

4.3.3 More urgent customers, 𝑓ℎ

Yet another form of market stress is a shock that makes more customers feel urgent to trade, that is,

an increase in the fraction 𝑓ℎ of high-type customers. Figure 5 illustrates the effects of such a shock.

Notably, like the shock of an increase in 𝜋ℎ, the low-type customers are crowded out—they receive

less service 𝜃𝑙 and also choose fewer dealers𝑚𝑙—because dealers turn to serving the more profitable

high-type customers. New to the shock in 𝑓ℎ, the high-type customers also receive less service and,

hence, reach out to fewer dealers, i.e., both 𝜃ℎ and 𝑚ℎ drop with 𝑓ℎ. This is because the high-type

customers also compete against each other for dealers’ limited resources. In other words, there is not

only the inter-type crowding-out effect seen before, but also an intra-type crowding-out effect.

Proposition 9 (Market stress: A larger fraction of urgent customers, 𝑓ℎ). As 𝑓ℎ increases, both

the high-type and the low-type customers receive less service and their dealer choices decrease.

Figure 5(c) illustrates the implication for trading activity. As more customers become high-type

(more urgent to trade), the remaining low-type customers achieve fewer and fewer trades, not only
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Figure 5: Market stress due to a larger fraction of urgent customers, 𝑓ℎ. This figure plots how the fraction of
urgent customer 𝑓ℎ, varying from 𝑓ℎ = 0 to 𝑓ℎ = 1, affects dealers’ service in Panel (a), customers’ dealer choice
in (b), number of trades in (c), and customers’ execution quality in (d). There are two types of customers, with a
total mass of 𝑛 = 10. A fraction of 𝑓ℎ of them have higher urgency to trade, with 𝜋ℎ = 1, and the rest 𝑓𝑙 = 1 − 𝑓ℎ
of them have 𝜋𝑙 = 0.1. There is a total of 𝑚̂ = 10 dealers, and their service cost function 𝜉 (·) is parameterized
as in Example 1, with 𝑎 = 1.0 and 𝑏 = 0.45.

37



because 𝑓𝑙 = 1 − 𝑓ℎ decreases, but also because both 𝜃𝑙 and 𝑚𝑙 are lower. On the other hand, the

high-type customers in total trade more: Despite the fact that both 𝜃ℎ and𝑚ℎ decrease, making each of

them less likely to trade, there are more of them as 𝑓ℎ increases. Together these two opposing effects

generate the V-shaped pattern in aggregate.

Figure 5(d) shows that as the fraction of high-type customers increases, both types’ execution

quality deteriorates. This is again because of the crowding-out effect, both across types and within

the ℎ-type. Compared to the case of a relative urgent shock shown in Figure 4(d), it can be seen that

depending on the nature of the market stress, the more urgent customers’ execution quality can either

improve or worsen with the severity of the stress.

5 Conclusion

This paper studies how customers choose their dealers in OTC trading. Muting the existing consid-

erations (e.g., search costs, information concerns, and relationships), we develop a model and show

that customers still refrain from exhausting all available dealers. The key friction lies in dealers’

costly service to customers. Dealers then trade off such costs against the expected profit from trading,

which is negatively affected by their competitors, i.e., the number of other dealers whom customers

are contacting. Because of such a negative “service effect”—a novel mechanism emphasized in this

paper—customers in equilibrium choose not to reach out to too many dealers. The model further

speaks to regulation and market design issues in OTC trading. More over, model-implied empirical

predictions speak to customer and dealer behavior during market stress periods.

Appendix

A Dealers’ convex service cost
Section 2 assumes that the cost of dealer’s service 𝜁 (·) is convex. This appendix shows that this
assumption is without loss of generality: any 𝜁 (·) can be naturally “convexified” in our setting (and so
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is the 𝜉 (·) in Section 4).
Consider a dealer 𝑖 ∈ D 𝑗 , who needs to choose her service 𝜃𝑖 𝑗 to customer 𝑗 . In doing so, she

incurs a service cost of 𝜁 (𝜃𝑖 𝑗 ) : [0, 1] → R+, which may or may not be convex. The dealer can play a
mixed strategy with c.d.f. 𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ) for 𝜃𝑖 𝑗 ∈ [0, 1].

Suppose all other dealers inD 𝑗 play a symmetric strategy (possibly mixed) of𝐺 𝑗 (·) with mean 𝜃 𝑗 ∈
[0, 1]. It is easy to see that the analysis in Section 2.2.1 still goes through, and, in particular, both
Lemma 1 and 2 hold: This is because a dealer 𝑖 who is ready only cares about other dealers’ probability
of being ready, i.e., 𝜃 𝑗 , the expectation of their possibly mixed strategy 𝜃𝑖′ 𝑗 (𝑖′ ∈ D 𝑗 and 𝑖′ ≠ 𝑖).

Therefore, with the mixed strategy𝐺𝑖 𝑗 (·), dealer 𝑖’s problem (4) becomes

max
𝐺𝑖 𝑗 (·)

𝜃𝑖 𝑗
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 −
∫ 1

0
𝜁 (𝜃𝑖 𝑗 )d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ),

where

𝜃𝑖 𝑗 := E[𝜃𝑖 𝑗 ] =
∫ 1

0
𝜃𝑖 𝑗d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 )

is the dealer’s expected amount of service under the mixed strategy𝐺𝑖 𝑗 (·). To solve the above problem,
the dealer can proceed in the following two steps. First, she chooses a mixed strategy 𝐺𝑖 𝑗 (·) to solve
the following cost minimization problem, fixing any arbitrary expected service 𝜃𝑖 𝑗 ∈ [0, 1]:

𝜁 (𝜃𝑖 𝑗 ) := min
𝐺𝑖 𝑗 (·)

∫ 1

0
𝜁 (𝜃𝑖 𝑗 )d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ), s.t.

∫ 1

0
𝜃𝑖 𝑗d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ) = 𝜃𝑖 𝑗 .

The minimized 𝜁 (𝜃𝑖 𝑗 ) is the effective cost function of providing an expected amount of service 𝜃𝑖 𝑗 .
Note that 𝜁 (·) is by definition the lower boundary of the convex hull of the graph of 𝜁 (·) and therefore
is a convex function in 𝜃 .¹³ Note also that, while we began the analysis assuming the dealer is serving
a specific customer 𝑗 , the indirect cost 𝜁 (·) does not depend on 𝑗 .

Then in the second step, the dealer solves

max
𝜃𝑖 𝑗∈[0,1]

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜁 (𝜃𝑖 𝑗 ),

which is identical to (4) studied in Section 2.2.2. Effectively, the above analysis shows that whatmatters
is the “convexified” dealers’ service cost 𝜁 (·), and, hence, it is without loss of generality to assume
that 𝜁 (·) is convex in the first place. Moreover, it follows immediately from the above analysis that
when 𝜁 (·) is convex, it suffices to focus on pure strategies in 𝜃𝑖 𝑗 .

¹³ The definition of 𝜁 (·) is similar to the concept of concavification in ? and is closely related to the notion of a
biconjugate function in convex analysis (?).
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B Proofs

Lemma 1
Proof. Consider first the trivial case of𝑚 𝑗 = 1. There is then only one dealer in D 𝑗 , who will always
quote the highest possible price, i.e., the customer’s reservation value 𝜋 𝑗 . This can be viewed as a
degenerate mixed strategy with c.d.f. 𝐹 (𝛼) converging to a unity probability mass at 𝛼 = 1, as stated
in the proposition.

Next consider 𝑚 𝑗 ≥ 2. Without loss of generality, a dealer’s strategy can be written as 𝛼𝜋 𝑗 by
choosing 𝛼 ∈ [0, 1]. Suppose 𝛼 has a c.d.f. 𝐹 (𝛼) with possible realizations [0, 1] (some of which
might have zero probability mass). The following four steps pin down the specific form of 𝐹 (·) so that
it sustains a symmetric equilibrium.
Step 1: There are no probability masses in the support of 𝐹 (·). If at 𝛼∗ ∈ (0, 1] there is some non-zero
probability mass, then any dealer has an incentive to deviate to quoting with the same probability mass
but at a level infinitesimally smaller than 𝛼∗. In this way, she converts the strictly positive probability
of tying with others at 𝛼∗ to winning over them. (The undercut costs no expected revenue as it is
infinitesimally small.) If at 𝛼∗ = 0 there is non-zero probability mass, again, any dealer who is ready
will deviate, this time to an 𝛼 just slightly above zero. This is because allocating probability mass at
zero brings zero expected profit. Deviating to a slightly positive 𝛼 , therefore, brings strictly positive
expected profit. Taken together, there cannot be any probability mass in 𝛼 ∈ [0, 1]. Note that this rules
out any pure symmetric-strategy equilibria.
Step 2: The support of 𝐹 (·) is connected. The support is not connected if there is (𝛼1, 𝛼2) ⊂ [0, 1] on
which there is zero probability assigned and there is probability density on 𝛼1. If this is the case, then
any dealer will deviate by moving the probability density on 𝛼1 to any 𝛼 ∈ (𝛼1, 𝛼2). Such a deviation
is strictly more profitable because doing so does not affect the probability of winning (if one wins at
bidding 𝛼1, she also wins at any 𝛼 > 𝛼1) and because 𝛼 > 𝛼1 is selling at a higher price.
Step 3: The upper bound of the support of 𝐹 (·) is 1. The logic follows Step 2. Suppose the upper
bound is 𝛼∗ < 1. Then, allocating the probability density at 𝛼∗ to 1 is a profitable deviation: It does
not affect the probability of winning and upon winning sells at a higher price.
Step 4: Deriving the c.d.f. 𝐹 (·). Consider a specific dealer called 𝑖. Suppose all other dealers in D 𝑗 ,
who are ready, quote according to some same distribution 𝐹 (·). Quoting 𝛼𝜋 𝑗 , 𝑖 gets to trade with the
customer if, and only if, such a quote is the best. The customer examines all quotes received. For each
of the𝑚 𝑗 − 1 contacts, with probability 1−𝜃 𝑗 the dealer is not ready and in this case 𝑖’s quote beats the
no-quote. With probability 𝜃 𝑗 , the contacted dealer is indeed ready and quotes at 𝛼′. Then, only with
probability P(𝛼 < 𝛼′) = 1 − 𝐹 (𝛼) will 𝑖’s quote win. Taken together, for each of the𝑚 𝑗 − 1 potential
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competitor, 𝑖 wins with probability
(
1 − 𝜃 𝑗

)
+𝜃 𝑗 · (1−𝐹 (𝛼)), and he needs to win all these𝑚 𝑗−1 times to

capture the trading gain of 𝛼𝜋 𝑗 . That is, 𝑖 expects a profit of
(
1 − 𝜃 𝑗𝐹 (𝛼)

)𝑚 𝑗−1𝛼𝜋 𝑗 . In particular, at the
highest possible 𝛼 = 1, the above expected profit simplifies to

(
1 − 𝜃 𝑗

)𝑚 𝑗−1Δℎ𝑑 , because 𝐹 (1) = 1. In a
mixed-strategy equilibrium, 𝑖 must be indifferent to quoting any values of 𝛼 in the support. Equating
the two expressions above and solving for 𝐹 (·), one obtains the c.d.f. stated in the proposition. It can
then be easily solved that the lower bound of the support must be at

(
1 − 𝜃 𝑗

)𝑚 𝑗−1, where 𝐹 (·) reaches
zero. This completes the proof. □

Lemma 2
Proof. Given the mixed-strategy equilibrium, a dealer who is ready is indifferent to quoting any
price 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 when 𝛼𝑖 𝑗 is in the support. In particular, by setting 𝛼𝑖 𝑗 = 1, the expression in (2)
is obtained. Since there are𝑚 𝑗 such dealers, who each has a probability 𝜃 𝑗 to be ready, they in total
expect𝑚 𝑗𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 . The probability of trading is 1 − (1 − 𝜃 𝑗 )𝑚 𝑗−1. Therefore, the customer
expects the residual (3). □

Proposition 1
Proof. The first-order derivative of (4) with respect to 𝜃𝑖 𝑗 is

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃𝑖 𝑗 ), which, by sym-
metry of 𝜃 𝑗 = 𝜃𝑖 𝑗 , becomes

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 ) and is monotone decreasing in 𝜃 𝑗 ∈ [0, 1], owing
to the assumed convexity of 𝜁 (·). Therefore, at the lower bound 𝜃 𝑗 = 0, if the derivative is still neg-
ative, i.e., if 𝜋 𝑗 ≤ ¤𝜁 (0), the optimal symmetric solution is 𝜃 𝑗 = 0. At the upper bound 𝜃 𝑗 = 1, the
derivative evaluates to be − ¤𝜁 (1) < 0, implying that the optimal symmetric 𝜃 𝑗 is never constrained
from above. Hence, as long as 𝜋 𝑗 > ¤𝜁 (0), the first-order condition of

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 ) implies a
unique solution of 𝜃 𝑗 = ℎ(𝑚 𝑗 , 𝜋 𝑗 ). □

Proposition 2
Proof. Following Proposition 1, customers with 𝜋 𝑗 ≤ ¤𝜁 (0) will only receive 𝜃 𝑗 = 0. Hence, they
are indifferent in their choices of 𝑚 𝑗 . Below we consider customers with 𝜋 𝑗 > ¤𝜁 (0), in which
case dealers’ first-order condition (5) holds and their optimal symmetric service 𝜃 𝑗 = 𝑔(𝑚 𝑗 , 𝜋 𝑗 ),
following Proposition 1. Note that the customer’s objective 𝜋c

𝑗 , as given in (3), is a function of
both 𝑚 𝑗 and 𝜃 𝑗 . Substituting 𝜃 𝑗 = 𝑔(𝑚 𝑗 , 𝜋 𝑗 ), we then obtain a univariate optimization problem of
max𝑚 𝑗∈[1,𝑚̂] 𝜋

c
𝑗 (𝑚 𝑗 , 𝜃 𝑗 = 𝑔(𝑚 𝑗 , 𝜋 𝑗 )). Given the bounded support [1, 𝑚̂], an optimal 𝑚 𝑗 that maxi-

mizes 𝜋c
𝑗 always exists. The optimal𝑚 𝑗 > 1 because at𝑚 𝑗 = 1, 𝜋c

𝑗 = 0 (as, intuitively, the monopolist
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dealer extracts all trading gain). By increasing to some𝑚 𝑗 > 1, instead, the customer expects non-zero
trading gain. □

Lemma 3
Proof. Directly evaluating the direct effect gives

𝜕𝜋c
𝑗

𝜕𝑚 𝑗
= −(1 − 𝜃 𝑗 )𝑚 𝑗−1 (𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 )

)
𝜋 𝑗 .(B.1)

Note that𝑚 ≥ 1 and that ln(1−𝜃 ) ≤ 0. Hence, the above is no smaller than−(1−𝜃 𝑗 )𝑚 𝑗−1(𝜃 𝑗+ln(1−𝜃 𝑗 )).
Note further that 𝜃 𝑗 ≤ − ln(1 − 𝜃 𝑗 ) for all 𝜃 𝑗 ∈ [0, 1). Therefore, the direct effect is weakly positive.
Directly evaluating the indirect effect gives

𝜕𝜋c
𝑗

𝜕𝜃 𝑗

𝜕𝜃 𝑗

𝜕𝑚 𝑗
= (𝑚 𝑗 − 1)𝑚 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−2𝜃 𝑗 ·

d𝜃 𝑗
d𝑚 𝑗

,

which is weakly negative, because𝑚 𝑗 ≥ 1, 𝜃 𝑗 ∈ [0, 1], and d𝜃 𝑗
d𝑚 𝑗

≤ 0 following (6). □

Proposition 3
Proof. We first show that if there is an interior solution of𝑚 𝑗 < ∞, then 𝜀 (𝜃 𝑗 ) > 2. In this case, the
customer’s first-order condition

d𝜋c
𝑗

d𝑚 𝑗
= 0 holds, i.e., following the analysis in the proof of Proposition 2,

(𝑚 𝑗 − 1) (𝜃 𝑗 + (1 − 𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))
𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 )

+ 1
𝜀 (𝜃 𝑗 )

= 0.(B.2)

Define 𝑣 (𝑥) := −𝑥 ln(1− 𝑥)/(𝑥 + (1− 𝑥) ln(1− 𝑥)), which is increasing in 𝑥 ∈ (0, 1) from 𝑣 (0) = 2 to
lim𝑥↑1 𝑣 (𝑥) = ∞. Then rearrange (B.2) to get 𝜀 (𝜃 𝑗 ) = (𝑣 (𝜃 𝑗 )𝑚 𝑗 −1)/(𝑚 𝑗 −1) > (2𝑚 𝑗 −1)/(𝑚 𝑗 −1) > 2,

where the first inequality follows 𝑣 (𝜃 𝑗 ) > 𝑣 (0) = 2.
Consider now the sufficiency of 𝜀 (0) > 2. In the limit of𝑚 𝑗 → ∞, the 𝜃 𝑗 implied by (5) converges

to 𝜃 𝑗 → 0. Then the left-hand side of (B.2) converges to −1
2 + 1/𝜀 (𝜃 𝑗 ) < 0. That is, in the limit

of𝑚 𝑗 → ∞, 𝜋c
𝑗 is decreasing. Therefore, there must exist some𝑚 𝑗 < ∞ that maximizes 𝜋c

𝑗 . □

Lemma 4
Proof. Following Proposition 1, customers with 𝜋 𝑗 ≤ 𝜅 ¤𝜁 (0) will only receive 𝜃 𝑗 = 0. Hence, 𝜋𝑐

𝑗 = 0 for
any𝑚 𝑗 . Belowwe consider customerswith 𝜋 𝑗 > 𝜅 ¤𝜁 (0). Evaluating the first-order derivative of (3) with
respect to𝑚 𝑗 yields that its sign is the same as the left-hand side of (B.2). Recall from dealers’ first-
order condition (5) and (6) that 𝜃 𝑗 is a monotone decreasing function in𝑚 𝑗 . Therefore, the left-hand
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side of (B.2) can be seen as a function 𝑓 (𝜃 𝑗 (𝑚 𝑗 ),𝑚 𝑗 )). Hence, at any stationary point𝑚∗
𝑗 ∈ (1, +∞)

(if exists), then sign
[
d2𝜋𝐶
d𝑚2

𝑗

] ���
𝑚 𝑗=𝑚∗

𝑗

= sign
[
𝜕𝑓
𝜕𝑚 𝑗

+ 𝜕𝑓
𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

] ���
𝑚 𝑗=𝑚∗

𝑗

, where

𝜕𝑓

𝜕𝑚 𝑗
=

(𝜃 𝑗 + ln(1 − 𝜃 𝑗 )) (𝜃 𝑗 + (1 − 𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))
(𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))2

< 0,

for the numerator is negative (see the proof of Lemma 3); and

𝜕𝑓

𝜕𝜃 𝑗
=

𝑚 𝑗 (𝑚 𝑗 − 1) (𝜃 2𝑗 − (1 − 𝜃 𝑗 )(ln(1 − 𝜃 𝑗 ))2)
(1 − 𝜃 𝑗 )(𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))2

− 1
𝜀 (𝜃 𝑗 )2

d𝜀 (𝜃 𝑗 )
d𝜃 𝑗

.

It can be shown that 𝜃 2𝑗 − (1 − 𝜃 )(ln(1 − 𝜃 𝑗 ))2 is positive. Therefore, if d𝜀
d𝜃 𝑗 < 0, then 𝜕𝑓

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

< 0 and
𝜋c
𝑗 is strictly concave at any stationary point. That is, 𝜋c

𝑗 is a quasi-concave function in𝑚 𝑗 . □

Corollary 1
Proof. Existence and uniqueness. The existence of the customer’s optimal𝑚 𝑗 follows Proposition 2.
Under (11), 𝜋c

𝑗 is quasi-concave in𝑚 𝑗 , thus guaranteeing the uniqueness.
Monotonicity of𝑚 𝑗 and 𝜃 𝑗 in 𝜋 𝑗 . Accounting for the cap of 𝑚̂, following the analysis in the proof of
Proposition 3, the optimal𝑚 𝑗 as a function of 𝜃 𝑗 ∈ [0, 1] can be written as

𝑚 𝑗 =𝑚(𝜃 𝑗 ) := min

{
𝑚̂, 1 +

𝑣 (𝜃 𝑗 ) − 1

𝜀 (𝜃 𝑗 ) − 𝑣 (𝜃 𝑗 )

}
.(B.3)

which is (weakly) increasing in 𝜃 𝑗 . We now obtain two conditions, (5) and (B.3), for the two equilib-
rium objects {𝜃 𝑗 ,𝑚 𝑗 }. Substituting (B.3) into (5) yields (1 − 𝜃 𝑗 )𝑚(𝜃 𝑗 )−1𝜋 𝑗 = ¤𝜁 (𝜃 𝑗 ). The left-hand side
is monotone decreasing, while the right-hand side is increasing in 𝜃 𝑗 , thus yielding a unique solution
of 𝜃 𝑗 ∈ (0, 1). Clearly, the implied 𝜃 𝑗 is increasing in 𝜋 𝑗 . Therefore, the equilibrium𝑚 𝑗 = 𝑚(𝜃 𝑗 ) is
also increasing in 𝜋 𝑗 . Recall from (B.3) that𝑚 𝑗 is (weakly) increasing in 𝜃 𝑗 . Hence, 𝜃 𝑗 is also (weakly)
increasing in 𝜋 𝑗 .
When 𝑚 𝑗 is interior. Following (B.3), 𝑚 𝑗 increases with 𝜃 𝑗 but is capped by 𝑚̂. By continuity,
therefore, there is a unique threshold 𝜃 ∈ (0, 1) at which𝑚 𝑗 = 𝑚̂:

𝑚̂ = 1 + 𝑣 (𝜃 ) − 1

𝜀 (𝜃 ) − 𝑣 (𝜃 )
.(B.4)

That is, the optimal𝑚 𝑗 = 𝑚̂ if and only if the equilibrium 𝜃 𝑗 ≥ 𝜃 , at which (5) becomes (1−𝜃 )𝑚̂−1𝜋 𝑗 =
¤𝜁 (𝜃 ). Using the monotonicity above, therefore,𝑚 𝑗 < 𝑚̂ if and only if 𝜋 𝑗 < ¤𝜁 (𝜃 )/(1 − 𝜃 )𝑚̂−1. □
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Proposition 4
Proof. Following Proposition 2, if 𝜋 𝑗 ≤ ¤𝜁 (0), then it does not matter whether the customer reveals𝑚 𝑗

or not, as she never gets any service; i.e., 𝜋c
𝑗 (𝑚 𝑗 ) = 𝜋c

𝑗 (𝑚̂) = 0. Now suppose 𝜋 𝑗 > ¤𝜁 (0). Fol-
lowing Corollary 1, if the equilibrium 𝑚 𝑗 = 𝑚̂, then 𝜋c

𝑗 (𝑚 𝑗 ) = 𝜋c
𝑗 (𝑚̂). If instead the endogenous

optimal𝑚 𝑗 < 𝑚̂, then it follows that 𝜋c
𝑗 (𝑚 𝑗 ) > 𝜋c

𝑗 (𝑚̂). □

Proposition 5
Proof. The shape of 𝑤 (𝑚 𝑗 ). Welfare 𝑤 as a function of𝑚 𝑗 is given by (14). For now we ignore the
constraint of𝑚 𝑗 ≤ 𝑚̂ and examine the whole support of𝑚 𝑗 ∈ [1,∞) to characterize the shape of 𝑤 .
The first-order derivative is given by the ℎ(·) function stated in the proposition:

d𝑤
d𝑚 𝑗

=
𝜕𝑤

𝜕𝑚 𝑗
+ 𝜕𝑤

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

= −(1 − 𝜃 𝑗 )𝑚 𝑗 ln(1 − 𝜃 𝑗 )𝜋 𝑗 − 𝜁 (𝜃 𝑗 ) = ℎ(𝜃 𝑗 ),

where the second equality holds because 𝜕𝑤
𝜕𝜃 𝑗

= 𝑚 𝑗 ·
(
(1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 )

)
= 0 following dealers’

first-order condition (5); and the third equality makes use of (5) again by substituting (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 .
The second-order derivative then becomes d2𝑤 𝑗

d𝑚2
𝑗
= ¤ℎ(𝜃 𝑗 ) d𝜃 𝑗

d𝑚 𝑗
, where d𝜃 𝑗

d𝑚 𝑗
< 0 following (6) and

¤ℎ(𝜃 𝑗 ) = ¤𝜁 (𝜃 𝑗 ) ln
(
1 − 𝜃 𝑗

)
− (1 − 𝜃 𝑗 ) ¥𝜁 (𝜃 𝑗 ) ln

(
1 − 𝜃 𝑗

)
= − ln

(
1 − 𝜃 𝑗

) ¤𝜁 (𝜃 𝑗 ) ( 1
𝜀 (𝜃 𝑗 )

− 1

)
.

It follows that d2𝑤 𝑗

d𝑚2
𝑗
> 0 if and only if 𝜀 (𝜃 𝑗 ) > 1. In particular, (5) implies that as 𝑚 𝑗 increases, 𝜃 𝑗

eventually drops to lim𝑚 𝑗→∞ 𝜃 𝑗 = 0, at which (9) ensures that 𝜀 (0) > 2 > 1. Also, lim𝑚 𝑗→∞
d𝑤
d𝜃 𝑗 =

lim𝜃 𝑗→0
d𝑤
d𝜃 𝑗 = 0. Therefore, for sufficiently large𝑚 𝑗 , 𝑤 must be convexly decreasing. Then, follow-

ing (11), for small 𝑚 𝑗 , 𝑤 may be concave initially, before becoming convexly decreasing. In other
words, 𝑤 is quasi-concave in𝑚 𝑗 . The quasi-concavity implies that the optimal𝑚 𝑗 is uniquely deter-
mined by the first-order condition of d𝑤

d𝑚 𝑗
= 0, or ℎ(𝜃 𝑗 ) = 0, if a non-zero solution of it exists.¹⁴

Suppose ℎ(𝜃 𝑗 ) = 0 has a non-zero solution. Given the quasi-concavity, in this case, the non-zero
solution uniquely maximizes𝑤 . Denote by 𝜃 ∗ ∈ (0, 1] the unique non-zero solution to ℎ(𝜃 𝑗 ) = 0. Note
that such a threshold 𝜃 ∗ is determined only by the shape of the service cost 𝜁 (·). Then following (5),
the unconstrained optimal𝑚 𝑗 is given by𝑚∗ = 1 + ln( ¤𝜁 (𝜃∗)/𝜋 𝑗 )

ln(1−𝜃∗) . However, the planner’s optimal𝑚P
𝑗 is

subject to the constraint of𝑚 𝑗 ∈ [1, 𝑚̂]. We then have two potential corners:
• If𝑚∗ ≤ 1, which is equivalent to 𝜋 𝑗 < ¤𝜁 (𝜃 ∗), then𝑚P

𝑗 = 1.
• If𝑚∗ ≥ 𝑚̂ (> 1), which is equivalent to 𝜋 𝑗 > ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1, then𝑚P

𝑗 = 𝑚̂.

¹⁴ The first-order condition ℎ(𝜃 𝑗 ) = 0 has a trivial solution of 𝜃 𝑗 = 0. But 𝜃 𝑗 = 0 produces the minimum welfare of zero
(no dealer service) and, hence, cannot be optimal. We ignore this welfare-minimizing root to the first-order condition.
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These two corners correspond to the cases (i) and (iii) in the proposition. Otherwise, i.e., when 1 <

𝑚∗ < 𝑚̂, then𝑚P
𝑗 =𝑚∗ is interior, as stated in (ii).

Suppose ℎ(𝜃 𝑗 ) = 0 has no non-zero solution. It is possible that ℎ(𝜃 𝑗 ) = 0 does not have non-zero
solution. In this case, the quasi-concavity, together with the fact that 𝑤 decreases for sufficiently
large𝑚 𝑗 , implies that𝑤 is monotone decreasing in𝑚 𝑗 , and, therefore, the optimal choice is𝑚P

𝑗 = 1.
When does ℎ(𝜃 𝑗 ) = 0 have no non-zero solution? Note that under (9) and (11), ℎ(𝜃 𝑗 ) initially
decreases and may eventually increase in 𝜃 𝑗 . Also, ℎ(0) = 0. Therefore, there is no solution toℎ(𝜃 ) = 0

if and only if lim𝜃↑1 ℎ(𝜃 ) < 0.
Comparison between𝑚P

𝑗 and𝑚M
𝑗 . It remains to compare𝑚P

𝑗 with the market outcome𝑚M
𝑗 . To do so,

we examine the marginal value of increasing𝑚 𝑗 in the customer’s problem and the planner’s problem.
Letting 𝜋d

𝑗 =
1
𝑚 𝑗

(𝑤 𝑗 − 𝜋c
𝑗 ) be the expected profit of each dealer, we have

d(𝑚 𝑗𝜋
d
𝑗 )

d𝑚 𝑗
=

d𝑤 𝑗

d𝑚 𝑗
−

d𝜋c
𝑗

d𝑚 𝑗
= ¤𝜁 (𝜃 𝑗 )

[
𝜃 𝑗 −

𝜁 (𝜃 𝑗 )
¤𝜁 (𝜃 𝑗 )

+𝑚 𝑗𝜃 𝑗 ln(1 − 𝜃 𝑗 )
1/𝜀 (𝜃 𝑗 )

𝑚 𝑗 − 1 + 1/𝜀 (𝜃 𝑗 )

]
.

We evaluate
d(𝑚 𝑗𝜋

d
𝑗 )

d𝑚 𝑗
at the planner’s unconstrained optimal choice of𝑚P

𝑗 (i.e., the𝑚 𝑗 implied (5) at 𝜃 𝑗 =
𝜃 ∗). From the previous analysis, the corresponding 𝜃 ∗ satisfies −(1 − 𝜃 ∗) ¤𝜁 (𝜃 ∗) ln(1 − 𝜃 ∗) − 𝜁 (𝜃 ∗) = 0.
Further, at 𝜃 ∗,𝑤 must be locally concave and, hence, 𝜀 (𝜃 ∗) < 1. Thus,

d(𝑚𝜋d
𝑗 )

d𝑚 𝑗

���
𝑚 𝑗=𝑚P

𝑗

= ¤𝜁 (𝜃 ∗)
[
𝜃 ∗ + (1 − 𝜃 ∗) ln(1 − 𝜃 ∗) +𝑚P

𝑗 𝜃
∗ ln(1 − 𝜃 ∗) 1/𝜀 (𝜃 ∗)

𝑚P
𝑗 − 1 + 1/𝜀 (𝜃 ∗)

]
< ¤𝜁 (𝜃 ∗) [𝜃 ∗ + (1 − 𝜃 ∗) ln(1 − 𝜃 ∗) + 𝜃 ∗ ln(1 − 𝜃 ∗)] = ¤𝜁 (𝜃 ∗) [ln(1 − 𝜃 ∗) + 𝜃 ∗] < 0.

This shows that at the planner’s unconstrained optimal mandate𝑚P
𝑗 , the customer has positive marginal

value of increasing 𝑚 𝑗 . Therefore, the customer always chooses 𝑚M
𝑗 weakly greater than 𝑚P

𝑗 , with
𝑚M

𝑗 > 𝑚P
𝑗 when𝑚P

𝑗 < 𝑚̂. □

Proposition 6
Proof. We prove the statement by contradiction. Suppose customer 𝑗 is effectively in business with at
least two dealers in the solution to the planner’s problem. Let dealers 1 and 2 have 𝜃1 𝑗 > 0 and 𝜃2 𝑗 > 0.
Note that it is never optimal for the planner to mandate any dealer to provide full service (𝜃𝑖 𝑗 = 1) and
another dealer to provide positive service, since the planner can save cost without reducing expected
trading gains by only keeping the dealer with full service. Therefore, both 𝜃1 𝑗 and 𝜃2 𝑗 are interior in
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(0, 1), and they must satisfy the planner’s first-order conditions, for 𝑖 ∈ {1, 2}:
𝜕𝑤

𝜕𝜃𝑖 𝑗
=

∏
𝑘≠𝑖

(
1 − 𝜃𝑘 𝑗

)
𝜋 𝑗 − ¤𝜁 (𝜃𝑖 𝑗 ) = 0.

Nowwe verify the second-order condition with respect to 𝜃1 𝑗 and 𝜃2 𝑗 by examiningwhether the Hessian
matrix evaluated at 𝜃1 𝑗 and 𝜃2 𝑗 is negative (semi-)definite. We write down the sub-matrix and simplify
it using the FOCs as follows,

𝜕2𝑤 𝑗

𝜕𝜃21𝑗

𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗
𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗

𝜕2𝑤 𝑗

𝜕𝜃22𝑗

 =

[
− ¥𝜁 (𝜃1 𝑗 ) −Π𝑘>2(1 − 𝜃𝑘 𝑗 )𝜋 𝑗

−Π𝑘>2(1 − 𝜃𝑘 𝑗 )𝜋 𝑗 − ¥𝜁 (𝜃2 𝑗 )

]
,

=

[
− ¥𝜁 (𝜃1 𝑗 ) − ¤𝜁 (𝜃1 𝑗 )/(1 − 𝜃2 𝑗 )

− ¤𝜁 (𝜃2 𝑗 )/(1 − 𝜃1 𝑗 ) − ¥𝜁 (𝜃2 𝑗 )

]
.

Next we calculate the determinant of the matrix,������
𝜕2𝑤 𝑗

𝜕𝜃21𝑗

𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗
𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗

𝜕2𝑤 𝑗

𝜕𝜃22𝑗

������ = ¥𝜁 (𝜃1 𝑗 ) ¥𝜁 (𝜃2 𝑗 ) −
¤𝜁 (𝜃1 𝑗 ) ¤𝜁 (𝜃2 𝑗 )

(1 − 𝜃1 𝑗 ) (1 − 𝜃2 𝑗 )
= ¥𝜁 (𝜃1 𝑗 ) ¥𝜁 (𝜃2 𝑗 )

[
1 − 𝜀 (𝜃1 𝑗 )𝜀 (𝜃2 𝑗 )

]
< 0.

The last inequality holds because ¥𝜁 (·) > 0 and 𝜀 (·) > 1 for any 𝜃 ∈ (0, 1). The negative determinant
indicates that the matrix is not negative semi-definite. Thus, 𝜃1 𝑗 and 𝜃2 𝑗 do not satisfy the second-order
condition, and therefore cannot form a local maximum. The contradiction shows that there is at most
one dealer providing service to the customer if the planner mandates both {𝜃𝑖 𝑗 } and𝑚 𝑗 . □

Corollary 2
Proof. Given (9) and (11), Proposition 5 shows that: a) welfare 𝑤 𝑗 is quasi-concave in 𝑚 𝑗 and b)
𝑚𝑃

𝑗 ≤ 𝑚𝑀
𝑗 ≤ 𝑚̂. It follows immediately that welfare is weakly decreasing in𝑚 𝑗 between𝑚𝑃

𝑗 and 𝑚̂.
Therefore, the welfare at𝑚 𝑗 =𝑚𝑀

𝑗 (when𝑚 is observable) is weakly higher than the welfare at𝑚 𝑗 = 𝑚̂

(when𝑚 is unobservable). □

Corollary 3
Proof. This is a direct implication of Proposition 5. When ¤𝜁 (0) < 𝜋 𝑗 ≤ ¤𝜁 (𝜃 ∗),𝑚P

𝑗 = 1. When ¤𝜁 (𝜃 ∗) <
𝜋 𝑗 < ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1,𝑚P

𝑗 = 1 + ln( ¤𝜁 (𝜃∗)/𝜋 𝑗 )
ln(1−𝜃∗) increases from 1 to 𝑚̂. When 𝜋 𝑗 ≥ ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1,

𝑚P
𝑗 = 𝑚̂. □
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Lemma 5
Proof. Monotonicity of𝑚 𝑗 and 𝜃 𝑗 in 𝜅. Given 𝜅, dealer 𝑖 chooses

{
𝜃𝑖 𝑗

}
to maximize

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜅𝜉
(
𝜃𝑖 𝑗

)
,

and customer 𝑗 chooses𝑚 𝑗 to maximize

𝜋c
𝑗 :=

(
1 − (1 − 𝜃 𝑗 )𝑚 𝑗 −𝑚 𝑗𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1)𝜋 𝑗 .

Note that if we replace 𝜋 𝑗 with 𝜋 𝑗/𝜅 and 𝜅 with 1, the optimal𝑚 𝑗 and 𝜃 𝑗 remains the same. Therefore,
The effect of an increase in𝜅 on𝑚 𝑗 and 𝜃 𝑗 is isomorphic to a decrease in 𝜋 𝑗 . In the proof of Corollary 1,
we have shown that 𝑚 𝑗 and 𝜃 𝑗 continuously increases in 𝜋 𝑗 . This implies that that both 𝑚 𝑗 and 𝜃 𝑗

( 𝑗 = ℎ, 𝑙) continuously decrease in 𝜅.
Uniqueness of 𝜅. When (19) binds, it implies at most one solution of 𝜅. This is because, given that
both𝑚 𝑗 and 𝜃 𝑗 are monotone decreasing in 𝜅, so is the left-hand side of (19).
Existence of 𝜅. Next, we characterize when a solution of 𝜅 > 0 exists. On the one hand, in the upper
limit of 𝜅 ↑ ∞, there is clearly no service from any dealer 𝑖 for any customer 𝑗 , i.e., 𝜃𝑖 𝑗 = 0: dealers’
first-order condition (16) fails for any 𝜃 𝑗 > 0. Then 𝜁 (𝜃 𝑗 ) → 𝜁 (0) = 0 and

∫ 𝑛

0
𝑚 𝑗

𝑚̂ 𝜉 (𝜃𝑖 𝑗 )d 𝑗 → 0 < 1,
for any 𝑛 > 0 (because𝑚 𝑗 < 𝑚̂ < ∞). On the other hand, if 𝜅 ↓ 0, then (5) implies 𝜃 𝑗 ↑ 1 > 𝜃 ,𝑚 𝑗 ↑ 𝑚̂
(Proposition 2), and hence,

∫ 𝑛

0
𝑚 𝑗

𝑚̂ 𝜉 (𝜃𝑖 𝑗 )d 𝑗 → 𝑛𝜁 (1). Therefore, there is a unique solution of 𝜅 > 0 if
and only if 𝑛𝜁 (1) > 1. □

Proposition 7
Proof. Under the parametrization in Section 4.3, the dealers’ resource constraint (19) becomes∫

𝑗∈C𝑖
𝜉 (𝜃𝑖 𝑗 )d 𝑗 =

𝑛

𝑚̂
[𝑓ℎ𝑚ℎ𝜉 (𝜃ℎ) + 𝑛𝑓𝑙𝑚𝑙𝜉 (𝜃𝑙 )] = 1.(B.5)

In the proof of Lemma 5, we have shown that both 𝑚 𝑗 and 𝜃 𝑗 are decreasing in 𝜅. Thus, the left-
hand side of (B.5) is decreasing in 𝜅. To sustain the resource constraint (B.5), an increase in 𝑛 must
correspond to an increase in the dealers’ shadow cost 𝜅, and thus both𝑚 𝑗 and 𝜃 𝑗 decrease, 𝑗 ∈ {𝑙, ℎ}.

□

Proposition 8
Proof. In the proof of Lemma 5 we have shown that both 𝑚 𝑗 and 𝜃 𝑗 increase in 𝜋 𝑗/𝜅. Therefore, if
we focus on the two-type parametrization, the binding resource constraint (B.5) implies that 𝜋ℎ/𝜅 and
𝜋ℎ/𝜅 must move in different directions when 𝜋ℎ/𝜋𝑙 increases. Note that 𝜋ℎ/𝜋𝑙 = (𝜋ℎ/𝜅)/(𝜋𝑙/𝜅). It
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follows immediately that an increase in 𝜋ℎ/𝜋𝑙 leads to an increase in 𝜋ℎ/𝜅 and a decrease in 𝜋ℎ/𝜅, and
thus an increase (decrease) in𝑚ℎ and 𝜃ℎ (𝑚𝑙 and 𝜃𝑙 ). □

Proposition 9
Proof. We have already shown that the left-hand side of (B.5) is decreasing in 𝜅 (Proposition 7). Also
note that the left-hand side of (B.5) is increasing in 𝑓ℎ. To keep the resource constraint (B.5) hold, an
increase in 𝑓ℎ must correspond to an increase in the dealers’ shadow cost 𝜅, and thus a decrease in both
𝑚 𝑗 and 𝜃 𝑗 ( 𝑗 = ℎ, 𝑙). □
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