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Abstract

Retail trading flow is segregated from non-retail flow in U.S. equities, consistent with market

segmentation. We model theoretically two methods of executing segregated retail trades: a)

broker’s routing, whereby brokers evaluate and allocate orders based on each market maker’s

aggregate performance, and b) order-by-order auctions, where market makers bid on each

individual order, a market structure recently proposed by the SEC. We find that order-by-order

auctions improve allocative efficiency among market makers, but a winner’s curse problem in the

auction can reduce retail investor welfare, particularly at times of limited liquidity. Introducing

more market participants who compete for retail orders can harm both total efficiency and

investor welfare if these new market participants have superior information compared to incumbent

wholesalers. Empirical analysis of Retail Liquidity Programs (RLP) currently offered by exchanges

shows that these programs behave similar to order-by-order auctions in our model.
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I. Introduction

Retail order flow in U.S. equities is segregated, with retail brokers routing almost all their

retail customer orders directly to market makers. These market makers assume a best execution

obligation once they receive the order, whether they privately internalize trades off-exchange, or

fill the retail orders from liquidity sourced from other sources, like exchanges or alternative trading

systems (such as “dark pools”). Retail trades are attractive to market makers, either due to lower

adverse selection, as in Battalio and Holden (2001), or due to their trades being less correlated, as

in Baldauf, Mollner, and Yueshen (2022). In both cases market makers are willing to give retail

investors better prices than the exchanges due to greater ability to segregate orders. Recently, the

SEC has proposed a change in market structure with the goal of potentially increasing competition

among market makers.1 While previous academic work has explored whether retail flow should be

segregated and its value, once segregated, the question of how retail flow should be executed is

comparatively unexplored.

We model and evaluate empirically two distinct methods of executing segregated retail trades:

broker’s routing and an order-by-order auction. Our broker’s routing model closely resembles the

current market structure, with retail brokers determining where to route each order to maximize

execution quality. While retail brokers use recent past competing market maker performance to

inform routing decisions, they do not communicate with the market maker prior to routing each

individual order. Our order-by-order auction models the SEC’s proposed Rule 615, which would

mandate auctions for retail trades Securities and Exchange Commission (2022). These auctions

would only be available for retail market orders, but any market participant could bid on each

individual order, yet no one would be required to bid on any given order.

We evaluate both models with a focus on inventory cost and competition. In our model, a

broker receives an order from a retail investor and chooses one market maker to execute the order.

Executing the order incurs (marginal) inventory costs for market makers. We assume that each

market maker i has a private liquidity signal yi, and that inventory cost is affected by both the

market maker’s private signal and the average signal of all market makers. Intuitively, each private

1In remarks before the SIFMA Annual meeting, SEC Chair Gensler stated “I’ve also sought recommendations
around how to instill greater competition for retail market orders on an order-by-order basis, through auctions. With
greater competition, more market participants would have access to these retail market orders.” Gensler (2022).
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signal can be thought of as the inventory position of market maker i, with a market maker’s

willingness to trade depending both on his private inventory and the aggregate liquidity of all

market makers. To obtain the order, market participants submit their spreads simultaneously to

the broker, and the one with the lowest bid can obtain the order. The key difference between

broker’s routing and order-by-order auctions is the market participants’ information set when they

submit their spreads. We solve the market equilibrium under both trading mechanisms and then

identify differences in welfare distribution, inventory-management, and order allocation efficiency

that arise under each of the two market structures.

In the broker’s routing setting, market makers can only observe a noisy version of their liquidity

signals when submitting their spreads. The symmetric equilibrium bid (spread) strategy is monotone

in the noisy signal, which may be different from the true liquidity signal that determines inventory

cost. The broker routes the order to the market maker who submits the lowest spread. This delivers

a highly competitive outcome–with relatively low expected market maker profits–because market

makers’ bidding strategies rely less on their signals, which are just noisy versions of their true

private liquidity signals. This closely mirrors the current system of order routing in equities, where

market makers agree to accept order flow from brokers, but there is no pre-trade communication

on individual orders. Brokers route to a market maker, and the market maker must accept the

order. In practice, evaluation of trades is done on a periodic (e.g., daily, weekly, or monthly) basis,

and market makers compete on the aggregate execution quality they deliver, rather than bidding

against each other on each individual order. This is consistent with our setting that when they

compete, they only observe noisy information about their true liquidity/shocks when receiving the

order, and the spread is less sensitive to their true liquidity cost/positions. The broker’s routing

setting delivers strong competition, but the lack of communication on any specific trade means that

a trade may be routed to a market maker who has observed high ex-post inventory cost, leading to

inefficient order allocation and inventory management.

In the order-by-order auction model, in contrast, brokers bid after observing their true liquidity

signals. This is motivated by the proposal that all retail orders have to be auctioned order

by order, and thus when market makers compete for retail orders, they already have accurate

information about the marginal inventory cost of executing the order. In the auction, market

makers’ symmetric equilibrium bid (spread) is increasing their private signals yi, and thus in
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equilibrium, the participant with the lowest realized inventory cost will always win the auction

with the most aggressive bid, leading to the first best allocative efficiency. The common-value

nature of the auction, however, creates a winner’s curse problem; whichever participant wins

the auction learns that all other participants had higher signals of cost. Consequently, market

participants bid conservatively in the auction, and thus they will earn a positive expected profit

from the auction because of the strategic concern. We show that this effect is more severe in order-

by-order auctions (compared to broker’s routing) when competition happens after market makers

observe more precious liquidity signals. This implies that when the common-value component in

the inventory cost is more important, the welfare effect from the winner’s curse is more significant,

and thus investor’s welfare is more likely to be lower under order-by-order auctions compared to

that under broker’s routing.

We then examine further the welfare comparison between order-by-order auctions and broker’s

routing. The welfare of investors can be lower in the order-by-order auction setting at times

of limited liquidity. Intuitively, market makers compete after observing their signals. When

their signals are more precise about their true liquidity signals, they are more informationally

heterogeneous, and their bidding strategies will rely more on their observed signals. Limited

liquidity leads to less pressure from auction competitors, less aggressive bids, and larger profits

for trading against retail orders. While order-by-order auctions have higher allocative efficiency

than broker’s routing, order-by-order auctions have less competition than broker’s routing.

We then extend our baseline model to include institutional traders, as a key objective of the

SEC proposal is to enable institutional traders to trade directly with retail investors in auctions.

While institutional traders can increase the number of bidders in an auction, they also have

superior information about the fundamental value of the asset. Incumbent wholesalers, who have

an inventory signal but have no information about the fundamental value, respond by bidding more

cautiously in the auction. As a result, the overall welfare of retail investors can further decline in the

switch to order-by-order auctions. Moreover, we also find an interesting market segmentation result

due to asymmetric information. When information asymmetries between institutional investors and

incumbent wholesalers are sufficiently severe, only institutional investors will effectively compete

for high-quality (low-cost) orders, while all market participants compete for low-quality (high-cost)

orders. This leads to heterogeneous impacts of switching to order-by-order auctions on orders with
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different qualities.

We then examine impacts of market design in the cross-section of liquidity. Under broker’s

routing, a broker can evaluate a wholesaler on the performance across all orders, including different

sizes, or stocks of different liquidity. This enables cross-subsidization, where wholesalers may make

losses trading small stocks, compensated by profits trading large stocks. Switching to order-by-

order auctions can substantially decrease market maker incentives to trade small stocks. As a result,

the drop in small-stock liquidity, as well as retail investor welfare, can be particularly precipitous

in smaller, less liquid stocks.

While order-by-order auctions only exist as an SEC proposal, we identify a currently-existing

close empirical analogue of Retail Liquidity Programs (RLP). Exchange RLP’s allow market participants

to provide liquidity to retail orders at will by posting hidden limit orders which are only accessible by

retail investor orders. When there is at least one round lot (100 shares) of RLP interest, exchanges

will disseminate an RPI Flag in the market data indicating the presence of RLP liquidity, though

not revealing the exact size or price of the order. If multiple participants post in an RLP, the

participant with the most aggressively priced order will have first priority for any incoming retail

market order, mirroring the potential competitiveness and allocative efficiency of an order-by-order

auction. Unlike the broker’s routing system, where market makers must accept any flow the broker

routes to them, posting limit orders in a RLP is entirely voluntary: there may be many market

participants posting limit orders, or none at all.

Five exchanges currently offer Retail Liquidity Programs. RLPs have times with high levels of

market participant interest, with at least one-sided interest quoted for 20% of the day in Russell

1000 stocks, and over 50% of the day for our sample of liquid ETFs. The trading volume executed

in RLPs, however, is small, averaging less than 0.3% of total trading volume, despite exchange

trading fees being substantially reduced for trades in the program.

Volume in RLPs is higher in stocks that are tick constrained, consistent with RLPs being

particularly effective in more liquid stocks. Volume in RLPs increases during periods of higher

volatility, while volume for off-exchange sub-penny trading decreases. Under the pecking order

theory of Menkveld, Yueshen, and Zhu (2017), RLPs would rank high in the pecking order of

venues, with market makers already sourcing liquidity from them to the extent that liquidity is

available. Order imbalances during times when the RPI Flag is active are much lower than order

5



imbalances during the times when the RPI Flag is not active, providing further support for the

volatility-sensitive nature of voluntary market participant participation in RLP programs. Price

impacts of trades in RLP programs are more sensitive to volatility; when volatility is 1% higher,

exchange sub-penny trades have a price impact ten basis points higher, while off-exchange trades

have a price impact of only two basis points higher. Consistent with our model, market makers

appear to consistently provide stable execution quality, while the RLPs function like order-by-order

auctions in our model, with much more variation in outcomes.

When the RPI Flag is active, mid-quote trading is more common off-exchange as well as on-

exchange. The distribution of sub-penny trades is roughly similar, with most of the shift in volume

coming from at-quote trading switching to mid-quote trading. These mid-quote trades could come

from either retail trading or non-retail hidden liquidity trades; only sub-penny on-exchange trades

are anonymously identifiable as having a retail participant. Quoted bid-ask spreads tend to be

more stable when the retail flag is active, consistent with RLPs supplying liquidity during times

of high liquidity. When the retail flag is not active, quoted bid-ask spreads tend to be much wider

before and after trades.

The SEC notion of an order-by-order auction seeks to “instill greater competition for retail

market orders.” Under the current system of broker’s routing, each order is sent to a single market

maker with no pre-trade communication, and competition is measured by aggregate execution

quality. Switching to an order-by-order auction offers a tempting increase in allocative efficiency,

as the market participant with the most optimistic signal always wins an auction. But this comes

with a drawback, as the participant who wins by outbidding all competitors with less optimistic

signals suffers the auction winner’s curse. Participants scale back their bids, and obtain increased

welfare in the order-by-order system. Retail investor welfare can decrease in the switch to order-

by-order trading, particularly for volatile stocks and stocks with few competing liquidity providers.

II. Literature and Contribution

Several prior papers argue retail segmentation is optimal as a market design. Battalio and

Holden (2001) argue retail investors have lower adverse selection, while Baldauf et al. (2022) argue

retail investors are less correlated. Under both cases, it is optimal to segregate retail flow, but
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different mechanisms for segregating retail flow are not explored. Motivated by the recent SEC call

for order-by-order competition, our paper provides a theoretical analysis into two possible methods

of executing retail trades: the current system of broker’s routing, and a hypothetical order-by-order

system. We show that the proposed order-by-order system would potentially increase allocative

efficiency, but decreases retail investor welfare in less liquid stocks.

Several studies examine how retail participants themselves impact market liquidity. Eaton,

Green, Roseman, and Wu (2022), for example, highlight how retail traders can increase order

imbalances and volatility, while Parlour and Rajan (2003) argue segmentation decreases consumer

welfare, as it leads to a subsidization of retail limit orders. We do not explore the market vs.

limit order trade-off, but instead focus on retail marketable orders. Under the SEC vision, retail

marketable orders would primarily interact with market maker and non-market maker limit orders

through an order-by-order system similar to the current Retail Liquidity Programs. We empirically

analyze these RLP programs and find that they have low liquidity in small stocks and at volatile

times, matching our model prediction of how order-by-order systems would function.

One possible analogue to order-by-order trading exists in the option markets, where a considerable

share of volume executes in auctions. Bryzgalova, Pavlova, and Sikorskaya (2022) show that these

auctions are correlated with retail trading measures, while Ernst and Spatt (2022) present empirical

analysis of specific rules, such as a price-match guarantee and out-sized allocation, which prevent

competition in option auctions. Hendershott, Khan, and Riordan (2022) present a model and

empirical evidence that auctions in option markets are imperfectly competitive.

Several recent studies have looked at payment for order flow and segmentation. Comerton-Forde,

Malinova, and Park (2018) show that a Canadian trade-at rule which decreases retail segmentation

leads to liquidity improvements to lit markets but harms retail trade execution quality. Hu and

Murphy (2022), Jain, Mishra, O’Donoghue, and Zhao (2020), and Schwarz, Barber, Huang, Jorion,

and Odean (2022) all explore variation in execution quality among brokers. Market makers can offer

two possible forms of superior prices: PFOF (payments from market makers to brokers) and price

improvement (payments from market makers directly to retail customers). Brokers may or may not

pass on the total extent of PFOF revenue back to their customers in the form of lower commissions,

as documented in Battalio, Jennings, and Selway (2001), while Schwarz et al. (2022) and Battalio

and Jennings (2022) highlight that brokers prioritize execution quality even along dimensions not
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reflected in SEC 605 reports. In our welfare analysis, we assume that market makers compete

solely on price improvement, akin to PFOF being either zero or entirely passed through to retail

investors. Our focus is not on the revenue split of PFOF vs. price improvement, but rather what

form of market design delivers overall superior or inferior welfare to final retail investors.

Liquidity varies considerably in the cross-section of stocks. Corwin and Coughenour (2008)

argue specialists allocate attention to more liquid stocks during times of market stress, while Foley,

Liu, Malinova, Park, and Shkilko (2020) show how tying DMM assignments in large and small

stocks can lead to substantial increases in liquidity for small stocks with little to no observed harm

for large stocks. In an extension to our model, we show how broker’s routing can enable a similar

cross-subsidization, which is not possible under order-by-order auctions.

Previous studies (Bernhardt and Hughson (1997) and Biais, Martimort, and Rochet (2000))

show that market makers can earn positive profits when competing for orders. Bernhardt and

Hughson (1997) emphasize the importance of order splitting in the duopoly case, while Biais et al.

(2000) study common-value auctions where multiple market makers compete for an informed order.

In both papers, the key friction is the asymmetric information from the liquidity demand side, which

refers to informed traders. Our study also predicts that market makers will earn positive profits in

both the broker’s routing and order-by-order auction settings. However, in contrast to the previous

studies, there is no asymmetric information from the liquidity demand side in our model since

retail orders are typically uninformed. In our model, market makers receive private signals about

their inventory position, which weakens competition and ensures positive profits in equilibrium.

Additionally, we extend our study to institutional traders who can privately obtain signals about

asset quality and compete for order flows, as suggested by the SEC. We show that the additional

adverse selection on the liquidity supply side may exacerbate market inefficiency, leading to a novel

market segmentation prediction.

Our empirical analysis focuses on Retail Liquidity Programs (RLP) offered by several exchanges.

Jain, Linna, and McInish (2021) provide an overview of the NYSE Retail Liquidity Program in

2015. Five exchanges now operate RLPs, and we analyze current RLP data through the lens

of learning about potential execution quality under the SEC’s proposed order-by-order auctions.

RLPs provide a competitive process for both traditional market makers and institutional investors

to enter limit orders which offer potential price improvement to retail trades, but empirically suffer
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from the same winner’s curse problem we identify in our theoretical model.

III. Model

The model consists of only two dates, time 0 and time 1, and there is no discounting. There

are three types of market players: a (retail) investor, a broker, and N > 3 ex-ante identical market

makers indexed by i ∈ {1, 2, ...N}. Our focus is the strategic interactions among market makers,

so we abstract away from agency problems between the investor and the broker, and assume that

the broker’s objective is to maximize the investor’s welfare, which in our model is equivalent to

minimizing the spread.

At time 0, the broker receives a one unit sell order from the investor, and sends it to a market

maker to execute the order by the end of time 0.2 We assume that the retail investor is trading

only for liquidity reasons, so there is no information about asset value contained in the direction

of the order. If market maker i executes the order, it has to hold the position until time 1 which

incurs (marginal) inventory cost ζi. The structure of ζi is specified later in this section. Let si be

the half bid-ask spread offered by market maker i, then the profit that market maker i receives at

time 1 is

si − ζi.

We consider a tractable framework with linear equilibrium in the literature of common-value

auctions (Klemperer (1999), Menezes and Monteiro (2004)). At time 0, each market maker i

receives an i.i.d private liquidity shock yi. For simplicity, we assume that yi is drawn from an

uniform distribution U [−1
2 ,

1
2 ]. The inventory cost ζi has the following structure

ζi = c0 + c1
1

N

N∑
j=1

yj + c2yi,

where c0, c1 and c2 are positive constants. Since each market maker can only observe his own

liquidity shock, the inventory cost ζi is not fully observed by market maker i. The cost function

consists of three components. The first term c0 is the unconditional expected inventory cost of

2The direction of the order does not change our results.
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executing the order, which is the same for all market makers. The second term

c1
1

N

N∑
j=1

yj

represents ζi’s exposure to the aggregate liquidity shock 1
N

∑N
j=1 yj . When c1 is higher, the

inventory cost of executing the order is more sensitive to the aggregate liquidity shock. The third

term

c2yi

represents ζi’s exposure to the individual liquidity shock yi, and the coefficient c2 measures the

sensitivity. In our model, the coefficients (c0, c1, c2) are exogenous, and are determined by stock

characteristics. For example, a stock that is about to announce earnings may have a very high

c1, with market makers very concerned about aggregate inventory imbalances. In contrast, a tick-

constrained stock with low informational asymmetries may have a very low c1 value, with market

makers not very concerned about aggregate inventories.

A. Order-by-order Auction

First, we consider a hypothetical order-by-order auction mechanism. We model the order-by-

order auction as a common-value auction. In order-by-order auctions, each market maker i submits

the spread si after privately observing the realization of signal yi at time 0, and thus it can choose

its spread strategy according to its assessment of inventory cost. The broker observes spreads

offered by all market makers, and sends the order to the winner with the lowest spread at the end

of time 0. If more than one market makers submit the lowest spread, then the winner is chosen

randomly among those who submit the lowest spread. At time 1, all players collect their payoffs.

We focus on symmetric equilibria such that all market makers choose the same strategy.

Intuitively, when observing a higher signal realization yi, the inventory cost ζi tends to be larger

for market maker i, and thus it will submit a higher spread si. We conjecture (and verify later)

that there exists a linear symmetric equilibria where all market makers choose the same strategy

si (y) = s (y) where

s = k0 + k1y.
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We solve the equilibrium using the standard mechanism design approach. Heuristically, suppose

all market makers except market maker i follow the aforementioned equilibrium strategy. We

consider market maker i’s expected profit U (z, y) where y is the private signal observed by market

maker i, and

s̃ = k0 + k1z

is the spread that market maker i submits to the broker. In equilibrium, we must have

∂U (z, y)

∂z

∣∣∣∣
z=y

= 0.

The following proposition summarizes our results.

Proposition 1. In the model of order-by-order auctions, there exists a linear symmetric equilibrium

in which the spread submitted by market maker i ∈ {1, 2, ...N} is

si (yi) = k0 + k1yi,

where

k0 = c0 +
c1
4N

(
N − 1 +

2

N

)
+

c2
2N

and

k1 =
N − 1

N

(
c1
2

N + 2

N
+ c2

)
.

Proof. See Appendix.

First, as we discussed earlier, the equilibrium strategy si (yi) is increasing in yi with sensitivity

k1 =
N − 1

N

(
c1
2

N + 2

N
+ c2

)
.

This sensitivity k1 is increasing in both c1 and c2. When c1 and c2 are increasing, market maker

i’s inventory cost is more sensitive to its private signal yi. As a result, its spread si will also be

more sensitive to the private signal yi. The constant term k0 is an increasing function of all three

constants c0, c1 and c2. Intuitively, k0 is increasing in c0, as a higher expected inventory cost forces
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market makers to bid wider spreads. Furthermore, k0 is also increasing in both c1 and c2. Note that

k0 is the submitted spread when any market maker observes the average signal y = 0. When both

c1 and c2 increase, the variation of inventory cost will be larger among market makers. As a result,

the marginal cost of losing the bid from marginally increasing the spread is lower, which motivates

the market maker to choose a higher spread. Intuitively, when market makers are ex-post more

different from each other, they are consequently willing to choose a more aggressive equilibrium

strategy. The monotonicity of the equilibrium spread also implies that the winner is always the

market maker with lowest signal realization, and thus the lowest inventory cost. Order-by-order

auctions therefore achieve the first-best outcome in terms of efficient allocation of the retail order,

as the retail order is always matched to the market maker with the lowest inventory cost.

B. Broker’s routing

In this section, we consider the market equilibrium under broker’s routing. In our model, we

highlight the key difference between broker’s routing and order-by-order auctions as market makers’

different information sets when choosing spreads. Specifically, under broker’s routing, market

makers do not receive accurate signals about inventory cost when they compete. In practice, brokers

and market makers establish long-term relationships. Market-maker performance is evaluated in

the aggregate but not order-by-order, and market makers do not have a choice in when they want

to accept order flow from the broker; when a broker sends, they must fulfill the order either by

internalizing the order, or paying take fees to fill the order at the exchange. Focusing on this

key difference, we model broker’s routing by assuming that each market maker i only receives a

noisy signal about yi when submitting the spread si, and they are not able to adjust their offered

spreads ex-post. Formally speaking, there is an additional stage, time -1, at which each market

maker i receives a signal wi. The signal wi has the following structure. With probability p0,

wi = yi; and with probability 1 − p0, wi is drawn from a uniform distribution U
[
−1

2 ,
1
2

]
which is

uninformative and is independent of all other variables in the model. Each market maker i does

not know whether wi equals to yi or not, and only understands that wi = yi with probability p0.

Under broker’s routing, all market makers submit their spreads at the end of time -1.

We still focus on symmetric equilibria in this case. In the model of broker’s routing, each market

maker i only observes imperfect signal wi when they submit their spread ti(wi). Similar to our
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discussion in order-by-order auctions, we conjecture (and verify later) that there exists a linear

symmetric equilibria where all market makers choose the same strategy t(w), where

t = K0 +K1w.

We refer readers to the appendix for more details and only present the equilibrium result.

Proposition 2. In the model of broker’s routing, there exists a linear symmetric equilibrium in

which the spread submitted by market maker i ∈ {1, 2, ...N} is

t (wi) = K0 +K1wi,

where

K0 = c0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c1 + 2Nc2

]
and

K1 =
N − 1

N

(
c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

)
.

Proof. See Appendix.

While we model broker’s routing as a form of auction, it can also be natural to consider quantity

competition in broker’s routing (Kyle (1985), Baldauf et al. (2022)). Our goal here is to set up

a comparable benchmark for order-by-order auctions which feature price competition, we likewise

consider price competition for the broker’s routing system.

We highlight the key difference between order-by-order auctions and broker’s routing as the

different information environment when they compete. In our model of broker’s routing, if p0 = 1,

it becomes the model of order-by-order auctions. At the other extreme when p0 = 0, market makers

are homogeneously uninformed when they submit their spreads, as they have not yet observed their

private signals. As a result, Bertrand competition obtains, and all market makers will earn zero

expected profit in equilibrium. Therefore, the unique symmetric equilibrium spread in this case

must be

ti = E (ci) = E

c0 + c1
1

N

N∑
j=1

yj + c2yi

 = c0
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for all i ∈ {1, 2, ...N}.

Although all market makers earn a non-negative expected profit, their ex-post profit can be

positive or negative, depending on the realized inventory cost. In other words, market makers will

lose money on some trades. In contrast, the realized profit in order-by-order auctions must be

non-negative for all market makers for all trades. Second, under broker’s routing, the order will be

obtained by the market maker with lowest signal wi, who may not be the one with lowest inventory

cost as wi is just a noisy signal of yi. As a result, welfare loss incurs due to inefficient inventory

management in equilibrium. We present more detailed welfare analysis in the next subsection.

C. Welfare analysis: Order-by-order auctions vs. broker’s routing

In our model, the retail order is always executed, but inventory cost and equilibrium spreads

differ between order-by-order auctions and broker’s routing. We denote WM , WI and Wtotal as the

market makers’ expected profit, the investor’s expected profit and the total welfare, respectively:

1. The expected total profit of all market makers WM : the expected equilibrium spread minus

the incurred inventory cost;

2. The expected total profit of the retail investor WI : the expected negative equilibrium spread;

3. The total welfare Wtotal: the expected negative incurred inventory cost, which is Wtotal =

WM +WI .

Under order-by-order auctions, the market maker with the lowest signal realization executes the

order in equilibrium, so the expected total profit of all market makers is

WOBO
M = E

E

k0 + k1r − c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r

 .

The investor’s expected profit is

WOBO
I = −E

{
E
[
k0 + k1r|min

i
yi = r

]}
,
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and the total welfare is

WOBO
total = E

E

−c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r

 .

Total welfare is the sum of the welfare of market makers and investors: WOBO
total = WOBO

M +WOBO
I .

Based on our equilibrium results, we obtain the following Lemma.

Lemma 1. Under order-by-order auctions, the welfare outcomes of the equilibrium characterized

by Proposition 1 are

WOBO
M =

1

N + 1

( c1
N

+ c2

)
,

WOBO
I = −

[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]
,

WOBO
total = −

(
c0 −

N − 1

N + 1

c2
2

)
.

Proof. See Appendix.

Order-by-order auctions implement the first best allocation, and the total welfare is

WOBO
total = −

(
c0 −

N − 1

N + 1

c2
2

)
.

WOBO
total is decreasing in the expected inventory cost c0. Total welfare under order-by-order auctions

WOBO
total is increasing in c2, because c2 determines the variation of inventory cost among all market

makers. When c2 is higher, the expected lowest inventory cost will be lower, and thus the total

welfare is higher. WOBO
total is independent of c1, because the aggregate component

c1
1

N

N∑
j=1

yj

in the inventory cost always has zero mean. That is, aggregate contribution of the second component

in the inventory cost is always zero, no matter how large is c1.

Costs incurred from the parameter c0 are borne exclusively by the investor and do not factor

into market makers’ welfare. An increase in the aggregate liquidity parameter c1 leads to an

improvement in market makers’ welfare as each market maker’s private information becomes more
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relevant in the calculation of inventory costs, resulting in a more diverse bidding strategy. This,

in turn, leads to market makers earning a higher information rent from the auction. Since c1 has

no impact on total welfare, when c1 increases, investor welfare will decrease due to market makers

earning higher information rents. On the other hand, an increase in c2 has the same impact on

both the investor’s and market makers’ welfare. Both parties benefit from an increase in c2 as it

reduces the correlation in market makers’ inventory costs, leading to an overall improvement in

total welfare, which is shared between the investor and market makers.

Under broker’s routing, all welfare calculations are similar, except that market makers only

observe noisy signals about yi. For simplicity of exposition, we skip the intermediate steps and

only present the final results.

Lemma 2. Under broker’s routing, the welfare outcomes of the equilibrium characterized by Proposition

2 are

WBR
M =

p0 (2c1 − p0c1 +Nc2)

N (1 +N)
,

WBR
I = −

[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

WBR
total = WBR

M +WBR
I = −

(
c0 − p0

N − 1

N + 1

c2
2

)
.

Proof. See Appendix.

Having solved for welfare outcomes in the model of broker’s routing setting and order-by-order

auctions, we next compare welfare between the two systems in the following proposition.

Proposition 3. WBR
total < WOBO

total ; W
BR
M < WOBO

M ; WBR
I < WOBO

I if and only if c2
c1

> 2(1−p0)
N(N−3) .

Proof. See Appendix.

Proposition 3 is a direct result of Lemma 2. Note that the only aggregate welfare loss in this

setting is from inefficient inventory management. The total welfare improvement

WOBO
total −WBR

total = (1− p0)
N − 1

N + 1

c2
2
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is increasing in N and decreasing in p0. Intuitively, when the ex-ante signal is less noisy (p0 is

higher), the order is more likely to be obtained by the market maker with the lowest inventory

cost, and thus the welfare loss will be lower. The magnitude of welfare improvement also depends

on the number of market makers. When there are more maker makers, the first best allocation

will be more efficient as their inventory costs are not perfectly correlated. Order-by-order auctions

implement the first best outcome, while the outcome of broker’s routing depends on the precision of

the ex-ante signal, and is less sensitive to the number of market makers. Consequently, the welfare

improvement from broker’s routing to order-by-order auctions is higher when there are more market

makers. Lastly, the welfare improvement is also increasing in c2, as it determines the importance

of allocative efficiency gain from routing the order to the lowest-cost dealer. The broker’s routing

system, in contrast, is less sensitive to c2, as it also depends on the noise from the ex-ante signal.

Market maker profit WM is higher under order-by-order auctions, and the difference is:

WOBO
M −WBR

M =
1

N + 1

(
(1− p0)

2 c1
N

+ (1− p0)c2

)
.

The difference in market-maker welfareWOBO
M −WBR

M is increasing in c1 and c2. When c1 and c2 are

higher, the private signals that market makers observe become more important in their inventory

cost. Market makers are, effectively, more different ex-post. The ex-post heterogeneity generates

the expected positive profit they earn under order-by-order auctions. The difference WOBO
M −WBR

M

is also increasing in (1 − p0), as the precision of the noisy signal in the model of broker’s routing

determines the competitiveness of the market. When the signal is noisier, i.e., (1 − p0) is higher,

the market under broker’s routing is more competitive, resulting in a lower expected equilibrium

spread, and thus the difference in spreads under these two mechanisms will be larger.

The contrast between WBR
I and WOBO

I depends on the level of c1
c2
, reflecting the trade-off

between more efficient inventory management and higher rent earned by market makers. Since

there is a common-value component in the inventory cost, and market participants’ information is

independent, they bid conservatively in equilibrium due to the strategic concern of the winner’s

curse problem. This gives market participants positive expected profit in equilibrium, which in

turn hurts the investor’s welfare. This effect is more severe when market participants’ information
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is closer to the true liquidity signal, as verified by the following result:

∂2WBR
I

∂c1∂p0
= − 2(1− p0)

N(1 +N)
< 0.

When the parameter of the common-value component c1 increases, the investor’s welfare will

decrease. The above result shows that this effect is more severe when the precision p0 is higher.

Note that our order-by-order auction model is equivalent to the broker’s routing model when p0 = 1,

this implies that when c1 is higher, investor’s welfare is more likely to be lower under order-by-order

auctions, which is our prediction in Proposition 3.

A direct result from Proposition 3 is that switching to order-by-order auctions has heterogeneous

impacts on stocks with different inventory cost structures. Compared to small, illiquid stocks, large,

liquid stocks usually can be executed by the market makers and thus rely less on the interdealer

market.3 As a result, c2
c1

will be relatively larger for large liquid stocks and the smaller stock is

more likely to breach the threshold 2(1−p0)
N(N−3) . Order-by-order auctions are therefore more likely to

harm investor welfare in small illiquid stocks compared to large liquid stocks.

We do not directly model the endogenous entry of market makers, but our model gives implications

for how market competition and liquidity provision change welfare outcomes in partial equilibrium

analysis. Proposition 3 implies that when the number of market makers N is small, the investor’s

welfare is likely lower upon switching to order-by-order auctions. Here N measures the number

of active market makers who provide liquidity. During time periods when market makers are not

willing to provide liquidity (for example, due to market uncertainty or high inventory cost), our

model predicts that switching to order-by-order auctions will be more likely to hurt investors. If

investor protection is more important during market distress, our result highlights the unintended

negative effect of order-by-order auctions during time periods when liquidity provision is limited.

D. The role of institutional traders

In the order-by-order proposal released by the SEC, the entry of institutional traders has been

highlighted as a key feature of order-by-order auctions.4 The SEC hopes that, relative to the

3See a microfoundation of this intuition in the appendix.
4As the SEC chairman Gary Gensler mentioned, “...individual investors don’t necessarily get the best prices that

they could get if institutional investors, like pension funds, could systematically and directly compete for their orders.”
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current broker’s routing system, order-by-order auctions will allow institutional traders to increase

competition for retail trades.5 This hope, however, ignores the fact that institutional traders usually

have superior information about asset quality compared to wholesalers (eg. Glosten and Milgrom

(1985)). Allowing institutional traders to compete for retail orders may increase informational

asymmetry among bidders in order-by-order auctions, and lead to a less efficient equilibrium

outcome. In this section, we build a model to examine this extension and show that the entry

of institutional investors brings in more adverse selection, can harm market outcomes.

To extend our model to include institutional traders, we make two (minimal) changes in the

baseline model. First, apart from the N wholesalers6 who always provide market-making service,

there are N0 ≥ 2 institutional traders who can also provide liquidity only in order-by-order auctions.

This is consistent with the market design suggested in the SEC proposal, in which institutional

investors are absent in the current broker’s routing system, but can be active and provide more

competition in order-by-order auctions. We assume that institutional traders i ∈ {1, 2, ...N0} also

receive i.i.d private signals yi at time 0, which follows uniform distribution U
[
−1

2 ,
1
2

]
. The private

signal yi plays a similar role as that for wholesalers, as discussed later in the model.

Second, we consider the following (new) inventory cost structure

ζ̃i = c̃0 + c1
1

Ñ

Ñ∑
j=1

yj + c2yi, (1)

where c̃0 is a random variable that can be c0 − δc or c0 + δc
7 with equal probabilities, and Ñ is

the number of active market makers. In broker’s routing, we only have wholesalers competing for

retail orders, so Ñ = N ; and in order-by-order auctions, both wholesalers and institutional traders

can compete for retail orders, so Ñ = N + N0 in this case. Note that E (c̃0) = c0, that is, the

unconditional expectation of inventory cost remains the same in this extension.

Institutional traders have an information advantage over wholesalers. Specifically, all institutional

traders can observe the realization of c̃0 at time 0, while wholesalers only know the distribution

Gensler (2021)
5A “wholesaler is often chosen by a formula that depends on past execution quality of the wholesaler, its

relationship with the broker-dealer, and other factors. In addition, the bilateral nature of the wholesaler business
model not only restricts contemporaneous competition among wholesalers, it also restricts opportunities for other
market participants” Securities and Exchange Commission (2022).

6These are the market makers in our baseline model.
7Without loss of generality, we assume δc ≥ 0.
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of c̃0. This implies that when competing for retail orders, institutional traders can condition their

bids on the realization of c̃0, while wholesalers can only use distributional information of c̃0.
8

This information asymmetry captures the nature that institutional traders are more informed of

the characteristics of assets traded, market conditions or future price movement, and can change

wholesalers’ behavior in equilibrium due to concern about the adverse selection problem.

Let’s first consider the market equilibrium in the broker’s routing system. Since institutional

investors are absent in broker’s routing, the only difference between this extension and our baseline

model is the structure of inventory cost. The additional randomness in the inventory cost (1) has

no impact on market equilibrium, because all wholesalers are risk neutral and thus only care about

the expectation of the c̃0. Recall that E (c̃0) = c0, which is the same as in the baseline model.

Proposition 4. With inventory cost structure (1), under broker’s routing, the equilibrium bidding

strategies and welfare outcomes are the same as characterized by Proposition 2 and Lemma 2.

The market equilibrium is unchanged under broker’s routing, thus we view it as a suitable

benchmark of the (new) model with institutional traders. However, the equilibrium does change

under order-by-order auctions due to the entry of institutional traders. First, consider the case

when δc = 0, when institutional traders have no informational advantage compared to wholesalers.

In this case, the only effect is enhanced the competition in order-by-order auctions, which is a

direct result of the increased number of bidders competing for the retail order. With Proposition

1 obtained in our baseline model, to obtain the new market equilibrium, we simply replace the

number of bidders N in the baseline model with (N +No), because institutional traders are ex-ante

identical to wholesalers in this special case. The following Proposition characterizes the equilibrium

strategies.

Proposition 5. When there are N0 institutional traders and δc = 0, under order-by-order auctions,

there exists a linear symmetric equilibrium in which the spread submitted by wholesaler or institutional

trader i is

s̃i (yi) = k̃0 + k̃1yi

8We can also interpret ±δc as private information of asset quality, and keep the inventory cost structure unchanged.
This will not change our model outcomes.
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where

k̃0 = c0 +
c1

4 (N +N0)

(
N +No − 1 +

2

N +N0

)
+

c2
2 (N +N0)

and

k̃1 =
N +N0 − 1

N +N0

(
c1
2

N +N0 + 2

N +N0
+ c2

)
.

We consider the total welfare W̃OBO
total , the investor’s welfare W̃OBO

I , and wholesalers’ welfare

W̃OBO
W . Institutional traders’ welfare W̃OBO

IT satisfies

W̃OBO
IT = W̃OBO

total − W̃OBO
I − W̃OBO

W .

Denote the total welfare, the investor’s welfare, and wholesalers’ welfare under broker’s routing as

W̃BR
total, W̃

BR
I , and W̃BR

W , respectively. We then compare welfare outcomes under broker’s routing

and order-by-order auctions in this extension.

Proposition 6. When there are N0 institutional traders and δc = 0, we have the following results

on welfare comparison:

1. W̃BR
total < W̃OBO

total ;

2. W̃BR
W < W̃OBO

W if and only if N(N+1)
(N+N0)(N+N0+1) > p0 and

c2
c1

> − 1
N+N0

N(N+1)
(N+N0)(N+N0+1)

−p0
(N+N0)(2−p0)

N

N(N+1)
(N+N0)(N+N0+1)

−p0
;

3. W̃BR
I < W̃OBO

I if and only if c2
c1

>
1

(N+N0)(1+N+N0)
− p0(2−p0)

N(N+1)

N+N0−3
2(N+N0+1)

− p0(N−3)
2(N+1)

.

When institutional traders provide liquidity in order-by-order auctions but have no informational

advantage, the total welfare unambiguously improves when switching from broker’s routing to

order-by-order auctions. Since the order is always obtained by the market maker with the lowest

ex-post inventory cost under order-by-order auctions and their inventory costs are not perfectly

correlated, having institutional traders in order-by-order auctions always makes the order allocation

more efficient. The effect on investor’s welfare is ambiguous, which is higher under order-by-order

auctions if and only if c2
c1

is greater than a threshold

1
(N+N0)(1+N+N0)

− p0(2−p0)
N(N+1)

N+N0−3
2(N+N0+1) −

p0(N−3)
2(N+1)

,
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qualitatively similar to the Proposition 3 in the baseline model. If

1

(N +N0) (1 +N +N0)
− p0 (2− p0)

N (N + 1)
< 0, (2)

the threshold is always negative, and the investor’s welfare always improve under order-by-order

auctions, irrespective of the level of c2
c1
. Condition (2) concerns the number of new institutional

traders providing liquidity under order-by-order auctions. Under the joint assumption that institutional

traders have no informational advantage when they compete for retail orders (i.e., when δc = 0)

and that order-by-order auctions can attract sufficiently many institutional traders, investors

will unambiguously benefit from switching to order-by-order auctions, as the benefit of efficient

inventory management will dominate any decreases in competition. This is precisely the intuition

motivating the SEC’s proposal on order-by-order auctions, and our above results highlight the

underlying assumptions required for it to hold.

After switching to order-by-order auctions, the wholesalers’ welfare is increasing if and only

if two conditions are satisfied. First, the number of new institutional investors N0 has to be low

enough, i.e.,

N (N + 1)

(N +N0) (N +N0 + 1)
> p0.

Unconditionally, all wholesalers and institutional traders can obtain the order with equal probabilities.

When there are sufficiently many institutional investors, the wholesalers’ welfare mechanically

decreases due to the competition. When there are sufficiently many new institutional traders in

order-by-order auctions, the wholesalers will surely be worse off.

Second, c2
c1

must exceed the threshold:

c2
c1

>
− 1

N+N0

(
N

N+N0

1
N+N0+1 − p0

(1+N)
(2−p0)(N+N0)

N

)
N

N+N0

1
N+N0+1 − p0

1+N

. (3)

Note that wholesalers’ welfare unambiguously improves from broker’s routing to order-by-order

auctions in our baseline model. However, with the entry of institutional traders, the wholesalers’

welfare increases only when

c2
c1
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is sufficiently high, because the entry of new institutional traders also decreases the total welfare of

all market makers (wholesalers and institutional traders). When c2
c1

is sufficiently high, the market

makers’ inventory cost will be more heterogeneous ex-post, creating more information rent for them.

So the wholesalers’ welfare is higher under order-by-order auctions only when c2
c1

is sufficiently high.

We next consider the case when institutional investors have at least some informational advantage,

that is, when δc > 0. We still focus on symmetric linear strategies where all institutional traders

choose the same linear strategy and all wholesalers choose the same linear strategy. When δc > 0,

institutional traders can condition their bids on the realization of c̃0. Intuitively, when observing

c̃0 = c0 − δc, institutional traders will submit lower bids, and when c̃0 = c0 + δc, they will submit

higher bids. In contrast, wholesalers cannot condition their spreads on the realizations of c̃0, but

just the distributional information c0. Wholesalers are more likely to win auctions when c̃0 = c0+δc

than when c̃0 = c0 − δc, as institutional traders will bid more aggressively in the latter case. This

leads to adverse selection for wholesalers, as they are more likely to win auctions when c̃0 > E(c̃0). A

winner’s curse argument implies that wholesalers will submit more conservative bids in equilibrium.

When δc is sufficiently large, the winner’s curse concern becomes so severe, such that all wholesalers

will be completely out of competition for high-quality (low-cost) stocks, and can only obtain the

retail order when c̃0 = c0 + δc. Consequently, when c̃0 = c0 − δc, institutional traders will face no

competition from wholesalers, which can reduce retail investor welfare. The following proposition

formalizes this intuition:

Proposition 7. Let s̃− (y; δc) and s̃+ (y; δc) be two bidding strategies, where

s̃− (y; δc) = k̃−0 (δc) + k̃−1 (δc) yi

with

k̃−0 (δc) = c0 − δc +
c1
4N0

(
No − 1 +

2

N0

)
+

c2
2N0

k̃−1 (δc) =
N0 − 1

N0

(
c1
2

N0 + 2

N0
+ c2

)
,

and

b̃+ (y; δc) = k̃+0 (δc) + k̃+1 (δc) y
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with

k̃+0 (δc) = c0 + δc +
c1

4 (N +N0)

(
N +N0 − 1 +

2

N +N0

)
+

c2
2 (N +N0)

k̃+1 (δc) =
N +N0 − 1

N +N0

(
c1
2

N +N0 + 2

N +N0
+ c2

)
.

When there are N0 institutional traders, there exists a threshold δ > 0, such that when δc > δ, there

exists an equilibrium of order-by-order auctions in which

1. the wholesalers always choose bidding strategy s̃+ (y; δc);

2. institutional traders choose bidding strategy s̃+ (y; δc) when observing c0 + δc and s̃− (y; δc)

when observing c0 − δc.

The threshold δ satisfies the following condition

k̃−0 + k̃−1
1

2
< k̃+0 − k̃+1

1

2
.

This implies that when the true state is c̃0 = c0 − δc, the highest possible spread offered by

institutional traders is still lower than the lowest possible spread offered by wholesalers, and thus

wholesalers will never obtain the order in this case, irrespective of their signal realizations. When

the true state is c̃0 = c0+δc, wholesalers and institutional traders will choose the symmetric bidding

strategy b̃+ (y; δc), and thus all players will obtain the order with equal probabilities in this case.

If we interpret the random variable c̃0 as the heterogeneous quality of stocks, then in equilibrium,

institutional traders compete effectively only for retail orders of high-quality stocks, while all market

makers compete for orders of low-quality stocks. The market for low-quality stocks becomes more

competitive due to an increase in the number of bidders, while the market for high-quality stocks

may become less competitive as institutional traders are the only effective bidders. The presence

of adverse selection can weaken competition and potentially harm total welfare, as our following

proposition illustrates.

Proposition 8. When there are N0 institutional traders and δc > δ, we have the following results

on welfare comparison:

1. W̃BR
total < W̃OBO

total if and only if N0 > N0, where N0 is a constant solved in appendix by (B6);
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2. W̃BR
W < W̃OBO

W if and only if p0 <
1
2

N
N+N0

1+N
N+N0+1 and c2

c1
>

− 1
N+N0

(
1
2

N
N+N0

1
N+N0+1

− p0
(1+N)

(2−p0)(N+N0)
N

)
1
2

N
N+N0

1
N+N0+1

− p0
1+N

;

3. W̃BR
I < W̃OBO

I if and only if p0 <
1− 2

N+N0+1
− 2

N0+1

1− 4
N+1

and c2
c1

>
1

(N+N0)(N+N0+1)
+ 1

N0(N0+1)
− 2p0(2−p0)

N(1+N)

1−p0+
4p0
N+1

− 2
N+N0+1

− 2
N0+1

.

The comparison of total welfare between broker’s routing and order-by-order auctions is complicated

by the presence of adverse selection. The transition from broker’s routing to order-by-order auctions

results in an improvement in total welfare only when there is a sufficient number of institutional

traders providing liquidity. However, the absence of wholesalers can result in a decrease in market

competitiveness for high quality stocks, leading to an inefficient outcome for their trading. While

low quality stocks may experience an increase in market competitiveness, this gain may not be

enough to offset the welfare loss from the trading of high quality stocks.

In accordance with Proposition 6, the welfare effects on both investors and wholesalers are

similar. Both parties are likely to benefit from stocks with a high c2
c1
. As previously noted in our

baseline model (and appendix), stocks with a high c2
c1

tend to be large and highly liquid, leading to

welfare losses for small, illiquid stocks.9

E. Heterogeneous stocks and cross-subsidization

In our baseline model, we consider a unit order from a single stock, and the equilibrium and

welfare outcomes depend on parameters (c0, c1, c2). In this section, we extend our baseline model

to heterogeneous stocks with different characteristics (c0, c1, c2). For order-by-order auctions, this

extension is straightforward, as the stock characteristics (c0, c1, c2) is publicly observable when

market makers compete. Then the market equilibrium (spread, allocation, and welfare outcomes)

can still be captured by our baseline model. The extension, however, is less straightforward for

broker’s routing. This is because broker’s routing features the long-term relationship between

brokers and market makers, and thus the competition among market makers happens before the

order actually arrives and the order characteristics are observed. As a result, market outcomes

among heterogeneous stocks under broker’s routing will be less differentiated compared to that

under order-by-order auctions. Our model predicts that compared to order-by-order auctions,

there is less variation in equilibrium spreads among stocks under broker’s routing. Based on

9This is also in line with the concerns expressed by practitioners, who generally believe that the transition to
order-by-order auctions may negatively impact small and illiquid stocks.
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this observation, we can also highlight a cross-subsidization effect: under broker’s routing, the

equilibrium spreads of high-cost stocks are relatively low (compared to that under order-by-order

auctions), while the equilibrium spreads of low-cost stocks are relatively high. This cross-subsidization

effect implies that switching from broker’s routing to order-by-order auctions not only changes the

retail investors’ total welfare, but also changes the welfare distribution when retail investors have

different portfolio holdings.

To capture this idea, we consider a pool of orders characterized by a joint cumulative distribution

G (c0, c1, c2), and the realization of (c0, c1, c2) is independent of all other variables in the model.

For simplicity, we assume that G has full support on (0,∞)× (0,∞)× (0,∞), and is continuously

differentiable everywhere. We consider a model with the following timeline:

1. At time -1, the cumulative distribution function G (c0, c1, c2) becomes public information, and

each market maker i observes his private noisy signal wi;

2. At time 0, an order with characteristics (c0, c1, c2) is drawn from distribution G, and each

market maker i observes his private signal yi. The broker then sends the order (c0, c1, c2) to

one market maker which is determined by the allocation mechanism;

3. At time 1, all random variables are realized and all market participants collect their payoffs.

As we discussed in the baseline model, under broker’s routing, market makers compete and submit

their spreads at time -1, while under order-by-order competition, they submit their spreads at time

0. Let’s first introduce the following variables

c̄0 =

∫∫∫
c0dG (c0, c1, c2) = E(c0),

c̄1 =

∫∫∫
c1dG (c0, c1, c2) = E(c1),

c̄2 =

∫∫∫
c2dG (c0, c1, c2) = E(c2).

Under order-by-order auctions, since order characteristics (c0, c1, c2) are public, the equilibrium

and welfare outcomes are the same as characterized by Lemma 1 and Lemma 2 in our baseline

model.
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Under broker’s routing, since only distributional information G is available when market makers

compete at time -1, the equilibrium strategy will only depend on the distributional information

G but not the specific order characteristics (c0, c1, c2). The new equilibrium of broker’s routing is

characterized by the following Proposition.

Proposition 9. In the extension of heterogeneous stocks, under broker’s routing, there exists an

equilibrium in which every market maker who observes signal w chooses to submit spread

T̄ (w) = K̄0 + K̄1w

where

K̄0 = c̄0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c̄1 + 2Nc̄2

]
and

K̄1 =
N − 1

N

(
c̄2p0 +

2c̄1p0
N

+
c̄1 (N − 2) p0

2N
+

c̄1 (1− p0) p0
2N

)
.

Since all market makers are risk neutral and the equilibrium is linear in the baseline model, we

still obtain a linear equilibrium in this extension. Consider K0 and K1 in the baseline model as

functions of (c0, c1, c2), the equilibrium strategy in this extension satisfies

T̄ (w) = E (t (w)) = E (K0 +K1w) = K̄0 + K̄1w.

Then market makers choose an average bidding strategy in this extension. Note that both K0 and

K1 are increasing functions of c0, c1 and c2, this result implies that, compared to our baseline model

results, the equilibrium spread in this extension is relatively low for stocks with high inventory cost

characteristics, and high for stocks with low inventory cost characteristics.

The welfare impacts impacts are also heterogeneous. To be specific, we consider the welfare

outcomes for any specific order with characteristics (c0, c1, c2). The following Lemma summarizes

our results.

Lemma 3. In the equilibrium characterized by Proposition 9, the investor’s welfare W̄BR
I , the total
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welfare W̄BR
total and market makers’ welfare W̄BR

M are

W̄BR
heter,I = −

[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
,

W̄BR
heter,total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
,

W̄BR
heter,M = W̄BR

heter,total − W̄BR
heter,I

= (c̄0 − c0) +
p0

2 (N + 1)
[(N − 1) c2 − (N − 3) c̄2] + p0

(2− p0) c̄1
N (1 +N)

.

The total welfare in Lemma 3 is the same as that in the baseline model. Note that in our

model, the total welfare is only determined by inventory cost but not the equilibrium spread, as

the spread is just a transfer between market makers and the investor. Since the order is always

obtained by the market maker with the lowest signal wi, and introducing heterogeneity in stocks

does not change allocative efficiency, we conclude that the total welfare is the same as that in the

baseline model for any order (c0, c1, c2) in this extension. However, the equilibrium spread does

change. Specifically, now the investor’s welfare (which is the negative expected equilibrium spread)

becomes

−
[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
which only depends on the average levels (c̄0, c̄1, c̄2) but not order characteristics (c0, c1, c2). Note

that under order-by-order auctions, the investor’s welfare is

−
[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]

which depends on order characteristics (c0, c1, c2). Then investors will be worse off after switching to

order-by-order auctions if c0 is high, c1 is high, or c2 is low. This highlights our cross-subsidization

effect under broker’s routing that market makers charge low equilibrium spreads for high-cost stocks

and high equilibrium spreads for low-cost stocks. This cross-subsidization effect also implies that

switching from broker’s routing to order-by-order auctions may have unintended effects on retail

investors’ welfare distribution. For example, investors who mainly trade small, illiquid stocks with
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high average inventory cost c0 will be worse off after switching to order-by-order auctions, while

those who trade large, liquid stocks with low average inventory cost c0 will be better off.

The market maker’s welfare is

(c̄0 − c0) +
p0

2 (N + 1)
[(N − 1) c2 − (N − 3) c̄2] + p0

(2− p0) c̄1
N (1 +N)

which depends on the difference between order characteristics (c0, c1, c2) and the average levels

(c̄0, c̄1, c̄2). Under order-by-order auctions, the market maker welfare is

1

N + 1

( c1
N

+ c2

)

which is always positive. However, under broker’s routing, marker makers make more profit from

stocks with relatively low inventory cost, and incur loss from stocks with high average inventory

cost, and the welfare (or net profit) from executing a specific order may be negative. This is

consistent with our observation that under the current broker’s routing system, market makers

sometimes lose by providing liquidity for small, illiquid stocks but they can make a profit from

executing large liquid stocks. On average, they can make positive expected profit from market

making. Our result implies that, after switching to order-by-order auctions, market makers will

only submit spreads that are high enough such that they can earn a positive expected profit on

every individual order.

IV. Retail Liquidity Programs

Several exchanges have developed retail liquidity programs (RLP). These programs enable

market makers to enter hidden limit orders which improve on the NBBO but are only accessible to

retail orders. These hidden limit orders can be priced in any one-tenth of a cent increment, with

the exception of the IEX RLP which only allows pricing at the mid-quote. While the orders are

hidden, if there is more than one round lot of interest at a price which improves the NBBO, the

exchange will disseminate an indicative flag highlighting that there is a resting limit order, but it

will not indicate the price or size of the order.

Retail Liquidity Programs offer the closest existing analogue to the contemplated order-by-
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order competition system for retail orders.10 If multiple market makers place limit orders, for

example, the market maker with the best priced limit order will win any incoming retail market

order. In approving RLPs, the SEC itself has frequently highlighted the same objectives that it has

for proposing order-by-order competition, namely to increase the number of market participants

interacting with retail orders. These RLP limit orders are only accessible to incoming market

orders from retail investors, preserving the segmentation of retail investors, but also having entirely

voluntary participation: market makers may chose to stop bidding for incoming orders at any time.

We analyze RLPs as a way to gain insight into how the order-by-order system would function, and

identify similarities between our model and the current utilization of RLP programs.

A. Program Details

NYSE was the first to operate a RLP, on August 1, 2012.11 The NYSE RLP was initially

approved as a pilot and given several temporary pilot extensions until permanent approval on

February 15, 2019. Any NYSE member can submit a Retail Price Improvement Order (RPI). An

RPI order can be submitted in $0.001 increments, and must improve the best bid or offer on the

NYSE or NYSE Arca book by at least $0.001. The size and exact price of resting RPI orders are

non-displayed, but the orders do trigger indicative messages on the SIP and NYSE proprietary data

feeds indicating whether there is any RPI interest at the ask, any RPI interest at the bid, or any RPI

interest at both. Incoming marketable retail orders can trade against resting RPI orders. Incoming

retail orders will first trade against the best-priced orders; if there is a non-displayed order which

is not RPI at the mid-quote, the retail order would trade against the mid-quote interest before

trading against any RPI orders priced between the mid-point and near side. Retail marketable

orders can be set to only trade against RPI and non-displayed orders, or to trade against any RPI

and non-displayed orders and then subsequently against the displayed best quotes up to the limit

price.

10Bishop (2022) notes: “Exchanges already have ways for retail orders to be identified and treated specially by
market makers, called retail liquidity programs (RLPs). The details differ across exchanges, but they typically allow
market participants (including market makers and institutional investors) to submit orders that will interact solely
or distinctly with retail-identified orders. Such orders operate on the continuous books of the exchanges, rather than
executing via auctions. It seems that such existing mechanisms can deliver a similar benefit to retail investors through
order-by-order competition among market makers and institutional investors.”

11The introduction of the data field for the RLP led to the $400 million trading glitch at Knight Capital Group on
the first day that the new data field was active.
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The NYSE Retail Liquidity Program charges no trading fee to qualifying retail market orders.

The NYSE RLP program also pays $0.0003 credit to a Retail Liquidity Provider whenever their

RPI limit order fills a retail market order. To qualify as a Retail Liquidity Provider on the NYSE,

a firm must maintain a resting RPI order which improves the best bid or offer for at least 5% of

the trading day.

This 5% rule distinguishes the NYSE Retail Liquidity Program from those offered by NASDAQ

and BATS, with both competing programs being developed shortly after the NYSE program. The

BATS program was approved as a pilot on November 27, 2012, while the NASDAQ program

was approved as a pilot on February 15, 2013. Both programs have no requirement to provide

liquidity for a certain percentage of the trading day, and are therefore potentially more accessible

to non-market-making firms. In approving the NASDAQ RLP, the SEC notes that ”the Program

might also create a desirable opportunity for institutional investors to interact with retail order

flow that they are not able to reach currently. Today, institutional investors often do not have

the chance to interact with marketable retail orders that are executed pursuant to internalization

arrangements. Thus, by submitting RPI Orders, institutional investors may be able to reduce

their possible adverse selection costs by interacting with retail order flow” SEC (2013). The SEC

identifies the same desirable feature, that of more potential counter parties for retail trades, that

are highlighted in a potential move to order-by-order competition.

The Investors Exchange (IEX) offers a retail liquidity program whereby retail liquidity providers

can enter hidden mid-point peg limit orders which are only available to retail market orders. All

mid-point peg orders enter the same time priority queue, whether or not they are only available to

retail investors, and both have queue priority over the IEX D-limit order, which is the discretionary

limit order which takes advantage of the IEX speed bump to reprice when it detects a crumbling

quote. The IEX RLP only takes mid-point orders, and disseminates a RLP indicative flag when

there is at least one round lot of RLP interest. All eligible retail orders have no trading fees, either

for the retail broker or the retail liquidity provider.

The IEX RLP is the most recent program, first offering the RLP trading functionality on

October 1, 2019. IEX initially had no RLP indicators, but added indicators on October 13, 2021.

Unlike other retail liquidity programs, the IEX program only allows mid-quote prices. Therefore,

while the size available is hidden, an advertised RLP indicator from IEX confirms that at least 100
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shares are available at the specific price of the mid-quote. To offer RLP indicators, the program

required an approved exemption from SEC Rule 242.602, as the RPI would indicate a specific price

and a minimum quantity of shares, but would not be accessible to non-retail marketable orders.

The Members Exchange MEMX applied to create an RLP program, but was denied by the SEC

on February 14, 2022. The MEMX proposal differed from previous proposals in the determination

of price-time priority. Under the MEMX proposal, incoming retail market orders first interact with

hidden RPI orders before interacting with hidden non-RPI orders, even if the hidden non-RPI are

at the same price level and have time priority. MEMX argued that because hidden RPI orders do

contribute to the dissemination of the RPI interest indicator, they should have priority over hidden

non-RPI orders at each price level, analogous to standard practice of non-hidden orders having

priority over hidden orders at each price level. The SEC disagreed, and ruled that the change in

priority would violate Section (6)(b)(5) and Section 11A of the Exchange Act.12

B. Data and Summary Statistics

We obtain NYSE TAQ (Trade and Quote) data from January 1, 2019 to May 30, 2022. We

examine all securities in the Russell 3000 index, as well as the 100 most frequently traded ETFs,

provided these securities are priced above $1 per share. To exclude fractional shares, as documented

by Bartlett, McCrary, and O’Hara (2022), we exclude any orders for exactly 1 share, as these may

be orders for a fractional share which rounds up to 1 share.

Retail Liquidity Program (RLP) Indicators are distributed through the SIP, and are available

in TAQ Data. As indicators may be disseminated even when an exchange’s visible posted best bid

or offer (BBO) is not at the official NBBO, we obtain retail indicator flags from the TAQ Quotes

file. For each trade occurring at an exchange with an RLP, we check whether the trade occurred

with an active RPI Flag by matching the RLP quotes for that exchange using the participant

timestamp. We also construct an indicator for whether any RLP from the five different programs

is active at any point in time, and match this to both on-exchange and off-exchange trades using

the participant timestamps.

12Ironically, in the Order-by-Order proposal from the SEC, auctions would be required to give auction responses
higher priority than hidden limit orders (Securities and Exchange Commission (2022), Proposed Rule 615 Section IV
C.5.) In other words, MEMX’s RLP was denied because it proposed giving resting RPI orders priority over hidden
resting limit orders, but auctions would be required to give auction responses priority over hidden resting limit orders.
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Retail Liquidity Programs have indicative interest for a large portion of the trading day. Figure

1 plots the percentage of time, by asset, that there is at least one-sided RPI interest. ETFs often

have resting RPI orders for 50 to 75% of the trading day. For stocks of the Russell 1000, NYSE,

CBOE, and NASDAQ have resting RPI orders for over 20% of the day. For stocks of the Russell

2000, both CBOE and NASDAQ have resting RPI orders for over 20% of the day. While some of

the differences in RPI shares across assets may come from the different rules, as outlined in section

V.A, there is also a considerable listing-exchange advantage. NYSE Arca’s retail liquidity program,

for example, has RPI interest for less than 20% of the trading day for Russell 1000 or Russell 2000

stocks, but has RPI interest for over 75% of the trading day for ETFs in our sample.

Figure 1. Time Share of Retail Liquidity Programs. We plot the average time that an RPI
indicator is active, measured as percentage of time active out of the total trading day. Our sample
can be divided into three groups: stocks in the Russell 1000 index, stocks in the Russell 2000
index, and ETFs from our sample. We provide a fourth (overlapping) group, “Tick Constrained”,
comprised of any stock or ETF which meets the criteria of having a quoted bid-ask spread of one
penny at least 50% of the day for at least one-third of the days of our sample.
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While the percentage of the trading day with RPI interest is considerable, the volumes executed

through RPI programs are diminutive. Figure 2 depicts the trading volume split of trades when the

exchange’s RPI Flag is active, and the trading volume split when it is not. Sub-penny executions

are less than 1% of total trading volume at exchanges, even when the RPI Flag is active. On-

exchange mid-quote trading volume is considerably higher when the RPI Flag is active, but still

represents less than 5% of total trading volume. Furthermore, this mid-quote volume is a mixture
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of both retail interest, including from the IEX RLP which only allows retail RPI orders to be

priced at mid-quote, and non-RLP program hidden mid-quote liquidity. The vast majority of mid-

quote and sub-penny trading occurs off-exchange. When RPI Flags are active, a larger share of

off-exchange volume occurs at sub-penny or mid-quote prices. Table I presents the exact total

volumes in our sample executed when RPI programs are active, and when they are not. Note that

exchange sub-penny volume when there is no RPI Flag is small but non-zero. This sub-penny

volume when there is no RPI Flag can arise from hidden RLP liquidity of less than one round lot,

as the RPI Flag is only disseminated when there is at least one round lot of interest. Another

possible explanation for this discrepancy is inaccuracy in the timestamp-based matching of the sort

described by Schwenk-Nebbe (2021), who show that the exchange processing and dissemination of

quotes is typically several microseconds faster than that of trades.

There is a considerable discrepancy between the share of time that retail liquidity programs

have RPL flags active, and the share of trading volume which executes in RLP. Figure 3 highlights

that RPI interest is much lower in the morning, and increases throughout the day for most RLP

programs. Across each time interval, the IEX RLP is active for a notably smaller percentage of time

relative to any competing RLPs, as the IEX RLP requires orders to be placed at mid-quote, while

competitor programs only require a minimum of 10 mils of improvement relative to the NBBO.

The RLP flags also display no indication of the size available, with the flag only indicating whether

there is at least one round lot.

The total volume share of Retail Liquidity Programs is stable during our sample period. As

Panel A of Figure 4 depicts, on-exchange sub-penny retail trades are consistently less than 0.2%

of total volume for the Russell 1000 and Russell 2000 stocks in our sample. The volume share

of ETFs and tick-constrained stocks is slightly higher, at around 0.2% to 0.5% of total trading

volume. We define a stock as tick-constrained if it has a one penny bid-ask spread for at least

50% of the trading day for at least one-third of the trading days in our sample. For these stocks,

competition for a marketable order is potentially larger due to the tick constraint, with increased

interest in providing liquidity in an RLP. In Panel B of Figure 4, we plot the volume of any exchange

sub-penny or mid-quote executions while the RPI Flag is active. While this will include some non-

retail hidden liquidity, it also captures retail interest at mid-quote, which is crucial as the IEX RLP

only allows pricing retail price improvement at mid-quote. For ETFs and tick-constrained stocks,
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Table I: Summary Volumes By Each Price Increment. This table presents summary total
trading volume (in billions of dollars) in our sample for each sub-penny category of trade: at-quote,
mid-quote, and sub-penny. Panel A of Figure presents volume for exchange trades. We define an
RPI Flag as active if there is contemporaneous RLP interest at the exchange where trade occurs.
Panel B presents the volume for off-exchange trades. Note that Panel B is off-exchange trades only,
and we define the RPI Flag as active if there is contemporaneous RLP interest at any exchange
with an RLP program.
Our sample can be divided into three asset groups: stocks in the Russell 1000 index, stocks in the
Russell 2000 index, and ETFs from our sample. We provide a fourth (overlapping) asset group,
“Tick Constrained”, comprised of any stock or ETF which meets the criteria of having a quoted
bid-ask spread of one penny at least 50% of the the day for at least one-third of the days of our
sample.

Panel A: Exchange Trades

RLP Volume Percent
Asset Class Flag Mid-quote At Quote Sub-penny Mid-quote At Quote Sub-penny

ETF Active 2259 35868 414 3.2 51 0.6
ETF None 317 9160 55 0.5 13 0.1
Russell 1000 Active 3162 60890 235 1.7 32 0.1
Russell 1000 None 1933 50111 99 1.0 27 0.1
Russell 2000 Active 283 5376 13 1.5 28 0.1
Russell 2000 None 306 6012 2.6 1.6 31 0.01
TickConstrained Active 2767 40510 400 3.3 48 0.5
TickConstrained None 676 12773 67 0.8 15 0.1

Panel B: Off-Exchange Trades

RLP Volume Percent
Asset Class Flag Mid-quote At Quote Sub-penny Mid-quote At Quote Sub-penny

ETF Active 3626 9070 5751 5.2 13 8.2
ETF None 537 1909 1134 0.8 2.7 1.6
Russell 1000 Active 8638 20795 10127 4.6 11 5.4
Russell 1000 None 5895 16953 8756 3.1 9.0 4.7
Russell 2000 Active 743 2161 822 3.8 11 4.2
Russell 2000 None 723 2107 833 3.7 11 4.3
TickConstrained Active 4740 9643 6456 5.6 12 7.7
TickConstrained None 1257 3079 1869 1.5 3.7 2.2
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Figure 2. Volume Share of Venues. We plot the percentage of volume which executes either at
the quote, at the mid-quote, or at a sub-penny price for both on-exchange and off-exchange venues.
On both types of venues, a higher percentage of volume occurs at the quote when there is no RPI
Flag active, and a higher share of volume executes at sub-penny and mid-quote prices when the
RPI Flag is active.
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exchange sub-penny and mid-quote volume when the RPI Flag is active is around 0.5% to 1.0% of

trading volume. While this is a small share of total trading volume, it represents a much larger

fraction of retail-only trading volume.
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Figure 3. Intra-day Time Share. We plot the average share of time that the RPI Flag is active
throughout the trading day on January 3, 2022. For each exchange, we divide the trading day into
30-minute intervals and calculate the average across stocks of the percentage of time for which the
RPI Flag is active. One-sided liquidity is the percentage of time for which there is a quote on either
the bid, the ask, or both, and therefore includes the time for which there is two-sided liquidity (i.e.,
a flag indicating RPI interest on both the bid and ask at the same time).
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Figure 4. Volume Share of Sub-penny Retail Liquidity Programs. For each day, we plot
the share of volume which executes in a retail liquidity program, out of total volume. Our sample
can be divided into three groups: stocks in the Russell 1000 index, stocks in the Russell 2000
index, and ETFs from our sample. We provide a fourth (overlapping) group, “Tick Constrained”,
comprised of any stock or ETF which meets the criteria of having a quoted bid-ask spread of one
penny at least 50% of the day for at least one-third of the days of our sample. Panel A presents
the volume share of only exchange sub-penny executions while a RLP indicator is active, while
Panel B presents the volume share of all exchange sub-penny or mid-quote executions while a RLP
indicator is active.
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C. RLP Program Usage and Market Conditions

Under the current broker’s routing structure, market makers must accept order flow from

brokers. Market makers do have a choice in where to execute the trade, either by internalizing

the trade, or sourcing liquidity from an external venue like an exchange or dark pool. The choice

to externalize, however, is not without cost: market makers will fail to capture the spread on any

trades they externalize, must pay PFOF if the broker charges PFOF, and will have to pay any

trading fees associated with trading on an external venue. For marketable orders, these fees are

generally positive. In the model of order-by-order competition, in contrast, bidding is entirely at

will. After observing their signal, market makers can post liquidity when they desire to do so, and

may withdraw their quotes when they do not.

The current structure of exchange retail liquidity programs has this same at-will feature of

liquidity provision, with liquidity-providing participants in the program under no obligation to

guarantee execution of retail trades.13 As a result, exchange retail programs offer insight into the

potential workings of an order-by-order model, where market makers are under no obligation to

participate for all orders. While many market makers may wish to provide liquidity for orders in

large stocks during periods of low volatility, our model suggests this does not hold true for smaller

or less liquid stocks. Motivated by this reasoning, we estimate the following regression.

REGRESSION 1: For each asset i:

RPI Volume Sharei = α0 + α1Percent T ime At Minimum Spreadi + α2Market Capi

+ α3Average V olumei + ϵijkt

Results of Regression 1 are presented in Table II. We estimate volume as a percentage of total

volume, and as a percentage of total sub-penny volume. Exchange RLP volume is considerably

larger when assets spend a larger percentage of the day at the minimum bid-ask spread, is considerably

larger for larger market-cap stocks, and is considerably larger for stocks with higher average trading

volume. That small, less liquid stocks have little volume in RLP programs is consistent with the

13We note that the NYSE RLP does have a requirement that retail liquidity providers provide price-improving RPI
limit orders for at least 5% of the trading day on a certain fraction of trading days to qualify for superior trading fee
/ rebate pricing. As Figure 1 makes clear, this threshold is low compared to the percentage of time that RPI orders
are active.
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model prediction that small, less liquid stocks would struggle in the auction format.

Table II: Cross-Sectional Variation in Volume Shares. This table estimates Regression
1 with sub-penny volume, measured as a percentage of all volume, and as a percentage of sub-
penny priced volume. For stock i on date t, Percent T ime At Minimum Spreadit measures the
percentage of the trading day with a quoted bid-ask spread of one penny, V olatilityit measures the
standard deviation of 15-minute returns, Market Cap measures the market capitalization of the
stock in billions, and Average Volume measures the average trading volume in billions. Observations
are at the stock (or ETF) level for the sample of securities described in Section VB.

Dependent variable:

Percentage of Percentage of Only
All Volume Sub-penny Volume

(1) (2)

Market Cap 0.120∗∗∗ 0.926∗∗

(0.035) (0.417)

Percent Time at 0.001∗∗∗ 0.013∗∗∗

Minimum Spread (0.0001) (0.001)

Average Volume 0.041∗∗∗ 0.380∗∗∗

(0.004) (0.042)

Constant 0.058∗∗∗ 0.931∗∗∗

(0.002) (0.030)

Observations 2,590 2,590
R2 0.159 0.108

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Retail investors placing market orders may arrive at any time in the day, including during

periods of stress. Even under the generous assumption that their orders are uncorrelated with

aggregate institutional order flow, half their order flow would be in the same direction as aggregate

institutional order flow. To investigate the relationship between retail liquidity program volume and

price movements, we estimate Regression 2 with volume and price impacts, with fixed effects for each

stock and date, and present the results in Table III. We directly compare on-exchange sub-penny

trades with off-exchange sub-penny trades, as these off-exchange trades are the closest analogue

to on-exchange trades. Barardehi, Bernhardt, Da, and Warachka (2022) document, however, that

sub-penny trading may be driven not by the activity of retail investors, but the extent to which

better improvement opportunities (such as mid-quote trading) are not available.
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REGRESSION 2: For each asset i on date t:

VolumeShareit = α0 + α1Percent T ime At Minimum Spreadit + α2V olatilityit

+ α3Average V olumei + α4Absolute Intraday Returnit +X + ϵit

Retail liquidity programs offer less price improvement on average than off-exchange wholesalers.

Retail liquidity programs average an improvement of around 10% of the spread. Sub-penny off-

exchange trades offer an average improvement of roughly 20% of the spread, while Dyhrberg,

Shkilko, and Werner (2022) use SEC Rule 605 reports to estimate that wholesalers offer, on average,

price improvement of 40% of the spread. Under the pecking-order theory of Menkveld et al. (2017),

investors target low-cost-low-immediacy venues first, and if they fail to find liquidity, they access

higher-cost-higher-immediacy venues, particularly at times of market stress or volatility. Consistent

with this prediction, we find that on-exchange trading in RLP programs is very sensitive to intra-

day volatility, with larger volatility being associated with more exchange sub-penny trading. For

off-exchange trading, the opposite is true, with larger volatility associated with less off-exchange

sub-penny trading.

While the Retail Liquidity Programs are the only way that on-exchange trades can be priced in

sub-penny increments, retail trades can trade in a variety of methods, with Barber, Huang, Jorion,

Odean, and Schwarz (2022) estimating that less than 35% of retail trading takes place at sub-penny

prices. Figure 5 depicts the distribution of order sizes for on-exchange and off-exchange sub-penny

orders, as a fraction of the NBBO. While a large fraction of sub-penny trades in both venues are

odd-lot trades, a far larger share of off-exchange sub-penny trades are for a quantity of shares larger

than available at the best bid or offer. Over 2.1% of off-exchange sub-penny trades are for more

than 5 times the available shares than the respective national best bid or offer, while only 0.7% of

on-exchange sub-penny are for larger than the respective national best bid or offer.

In the economic analysis for the proposed Order-by-Order Competition Rule, the SEC argues

that orders with lower price impact are equivalent to lower adverse selection risk: ”Marketable

orders internalized by wholesalers feature lower price impacts, i.e., have lower adverse selection

risk.” Securities and Exchange Commission (2022) As one measure of adverse selection, we explore

the pattern of order imbalances for on-exchange RLP trades and off-exchange sub-penny trades,
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Table III: Panel Variation in Volume and Price Impact. This table estimates Regression
2 with sub-penny volume, expressed as a percentage of total trading volume, and price impact,
measured in basis points 30 seconds after trade. Observations are at the stock-day level. Volatility
measures the standard deviation of 15-minute price changes. Percent time at Minimum Spread
measures the percentage of time the stock spread is a single tick, while absolute intraday return
measures the absolute value of the intraday return. We include a fixed effect for each stock and
date, and cluster standard errors by stock and by date. Note that Price Impact cannot be calculated
when there is zero volume, thus Columns 4, 5, and 6 differ in the number of stock-days with zero
volume in each category.

Dependent Variable:

Volume Price Impact

Venue: Exchange Off Off Exchange Off Off
RPI Active: TRUE TRUE FALSE TRUE TRUE FALSE

(1) (2) (3) (4) (5) (6)

Percent Time At 0.001 −0.028∗∗∗ 0.027∗∗∗ 0.021 0.050 −0.072∗

Minimum Spread (0.010) (0.005) (0.009) (0.021) (0.038) (0.037)

Volatility 6.592∗∗∗ −2.464∗∗∗ −4.128∗∗∗ 9.520∗∗ 2.281∗∗∗ 1.221
(0.510) (0.261) (0.471) (4.582) (0.381) (0.745)

Absolute Intraday 1.324∗∗∗ −0.819∗∗∗ −0.505∗∗∗ −0.650 0.251 −0.162
Return (0.041) (0.034) (0.032) (0.662) (0.306) (0.127)

Observations 1,965,888 1,965,888 1,965,888 682,727 1,771,969 1,885,905
R2 0.417 0.248 0.380 0.013 0.002 0.003
Residual Std. Error 38.068 27.755 31.363 392.416 403.481 438.930

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

42



Figure 5. Size Distribution. We plot the distribution of order sizes, as a percentage of the
NBBO, for all sub-penny trades occurring in the stocks of our sample on January 3, 2022. We
truncate the distribution of orders at 5 times the NBBO. Of all sub-penny trades, 2.1% of all
off-exchange sub-penny trades are larger than five times the NBBO, while 0.7% of on-exchange
sub-penny trades are larger than five times the NBBO.
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depicted in Figure 6. When the retail flag is active, order imbalances are tightly clustered around a

near-zero imbalance, with as many buys arriving as sells. When the retail flag is not active, order

imbalances have a distribution with a much larger variance, with a much greater likelihood of large

positive or negative order imbalances. This is consistent with the entirely discretionary nature of

the RLPs. The SEC views the opportunity for ”institutional investors to interact with retail flow”

as desirable14, but it is important to note that institutional investors may be eager to buy from

retail investors at times, or sell to retail investors at times, but unlikely to want to stand ready to

buy or sell to retail investors at any time on demand.

We also investigate the interaction between RLP trading volume and prior or subsequent quoted

bid-ask spreads, both when the RPI Flag is active and inactive. Figure 7 presents the ratio of quoted

spreads before and after trades. We first divide trading volume into on-exchange and off-exchange

trades, and then further divide volume into sub-penny, mid-quote, and at-quote bins. For each

individual stock, we observe the quoted bid-ask spread qt+i, where i can be ±30 seconds, ±3

milliseconds, or ±1 milliseconds. We then calculate the average spread q̄t+i separately for when

14See SEC (2013).
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Figure 6. Distribution of Order Imbalances. For each stock-day observation, we calculate
the total order imbalance among trades occurring when the RPI Flag is active, and the total order
imbalance among trades occurring when the RPI Flag is not active. For stock i on date t with

flag j, imbalance is calculated as Imbalanceijt =
∑

Buyijt−
∑

Sellijt∑
Buyijt+

∑
Sellijt

. We plot the distribution of

imbalances, with the tails truncated to an imbalance of ±50%. Panel A presents the imbalance
distribution for ETFs, Panel B for stocks in the Russell 1000 Index, Panel C for stocks of the
Russell 2000 Index, and Panel D for stocks and ETFs which are tick-constrained, defined as having
at a one-penny bid-ask spread least 50% of the trading day for at least one-third of the trading
days in our sample.
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the RPI Flag is or is not active, and plot the ratio q̄i
q̄ . When the retail flag is active, off-exchange

spreads are very stable, with the same bid-ask spread before and after a trade. When the retail

flag is not active, off-exchange spreads before and after a trade tend to be around 2 to 4% wider
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on average, for all categories of pricing. The large discrepancy in quoted spread ratios before and

after a trade provides additional suggestive evidence for the pecking order of Menkveld et al. (2017).

The discrepancy in spread ratios around the timing of on-exchange mid-quote and sub-penny trades

occur at a momentarily liquid time, when quoted spreads are narrow. In contrast with on-exchange

trading, the off-exchange trading spread ratios are far more consistent, with the quoted spread

width at the time of trades being very similar to the quoted spread width before or after the trade.
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Figure 7. Spread Ratios Around Trades. We plot the change in spreads around the timing of
a trade, separately for trades occurring when the RPI Flag is active, and trades occurring when it
is not active. For trades occurring at time t, we calculate the quoted spread qt as well as the quoted
spread qt+i occurring at a time-offset of i. We then calculate the mean quoted spreads q̄ and q̄+i,
and plot their ratio r = q̄i

q̄ . We consider time offsets of 30 seconds prior to trade, 3 milliseconds
prior to trade, 1 millisecond prior to trade, 1 millisecond after trade, 3 milliseconds after trade, and
30 seconds after trade.
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D. SEC Proposal And Current RLP Usage

The SEC’s economic analysis of the Proposed Rule 615 suggests that under the new auction

format, institutional traders would give retail traders better trade prices.15 While the SEC’s

analysis uses CAT data, the IEX RLP offers an alternative method for estimation of the interest of

institutions in trading with retail at mid-quote. The IEX RLP allows market participants to post

limit orders priced at the mid-quote which are only available to retail traders.

Figure 3 shows that the IEX RLP has, on average, any interest less than 20% of the trading

day. Furthermore, the IEX RLP has two-sided interest less than 5% of the trading day. Figure 8

plots mid-quote trading volume at IEX; total hidden mid-quote orders at IEX (both RLP-only and

traditional hidden orders) comprise around 1% to 1.5% of total U.S. equity trading volume, with

no obvious change in this volume around the time the IEX RLP is created on October 1, 2019. The

IEX RLP began distributing an indicator message when RLP volume is available on October 13,

2021. We note that of the mid-quote volume occurring at IEX, the share of mid-quote orders which

are retail orders trading with RLP liquidity is only around 0.05% to 0.10% of total U.S. equities

trading volume.16

The SEC analysis of CAT data finds that there are many institutional dark orders priced at

mid-quote during the time retail investors are active. The suggestion in the SEC economic analysis

that these institutional traders will trade with retail at mid-quote in auctions raises the question

of why these institutional traders so infrequently seek to trade with retail in the IEX RLP. One

possible explanation is that institutions are seeking other large institutions, and do not view the

value of trading with retail as worth the risk of information leakage, and switching to auctions

would not change the general economics of this calculation.17 Another possibility is that posting

15The SEC reports that “On average, 51% of the shares of individual investor marketable orders internalized by
wholesalers are executed at prices less favorable than the NBBO midpoint (Wholesaler Pct Exec Shares Worse Than
Midpoint). Out of these individual investors shares that were executed at prices less favorable than the midpoint, on
average, 75% of these shares could have hypothetically executed at a better price against the non-displayed liquidity
resting at the NBBO midpoint on exchanges and NMS Stock ATSs.” Securities and Exchange Commission (2022)

16From the TAQ data, it is impossible to determine the exact portion of orders that are retail orders in the IEX
RLP program, but we can estimate an upper and lower bound. For the upper bound, we count all mid-quote
orders which occur when the IEX retail flag is active, though some of this volume may include non-retail mid-quote
orders interacting with hidden mid-quote liquidity. For the lower bound, we measure mid-quote volume which has
a simultaneous message update for the RLP program; this measures only retail orders which consume the available
RLP liquidity (necessitating an updated RLP message), but will miss retail orders which do not consume all available
RLP liquidity and therefore send no update message.

17The switch to auctions could potentially make the information leakage problem worse. When trading at mid-
quote, no trade direction is identified. In auctions, the trade direction of the incoming retail order would be identified,
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in the IEX RLP does not enable trading with retail at mid-quote. We investigate this claim by

looking at the distribution of trade prices as a function of the IEX RLP status.

FINRA Rule 5310 requires broker-dealers to route to the best market for a security under

prevailing market conditions. To the extent that RLPs offer improvement, wholesalers are already

required to route to them; to the extent that RLPs offer inferior price or size improvement, however,

wholesalers and brokers would be required to not route to them, provided they can obtain favorable

price improvement or size improvement off-exchange. In the proposed auctions, wholesalers could

internalize orders at mid-quote without routing to an auction. In the current market system,

wholesalers can internalize at mid-quote without routing to the IEX RLP.

We investigate whether wholesalers ever fill retail investor orders at prices worse than mid-quote

when the IEX RLP has potentially better prices available. We plot the distribution of sub-penny

prices for a single trading day in Figure 9. For both on-exchange and off-exchange trades, there is

more mid-quote volume when the IEX RPI Flag is active compared to when there is no active RPI

Flag, and there is more mid-quote volume when the flag is two-sided (interest in both buying and

interest in selling at the mid-quote) than when it is one-sided. While there are off-exchange sub-

penny fills at prices worse than mid-quote, Battalio, Jennings, Saglam, and Wu (2022) document

that many sub-penny trades are non-retail. For exchange trades, we note that there is precisely

zero activity in non-IEX Retail Liquidity Programs when the IEX RLP has two-sided liquidity.

Exchange RLP trades are guaranteed to be only retail, so the the complete absence of exchange

RLP trades is suggestive evidence that broker-dealers follow FINRA Rule 5310, and route to the

IEX RLP if there is active mid-quote interest and are unwilling to either internalize the order at

mid-quote or are unable to find an alternative source of mid-quote liquidity.

so that a mid-quote fill would indicate whether the non-retail auction bid was on the buy side or sell side.
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Figure 8. IEX Midquote Volume and Key RLP Rule Changes. The IEX Retail Liquidity
Program was introduced on October 1, 2019, with only hidden discretionary midpoint-peg orders.
On October 13, 2021, the Retail Liquidity Program changed the RLP order type to a midpoint-peg
order and began dissemination of an indicator of whether there was RLP interest. On November
22, 2021, the requirement that retail traders submit no more than 390 orders per day was lifted.
We plot total midquote volume on IEX (as a percentage of total equities trading volume) with the
solid red line. We plot midquote volume which occurs during the time that the IEX RLP is active
with the dotted green line. We plot the total midquote volume which occurs simultaneously with
an RLP message with the dashed blue line.
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Figure 9. Volume Share of Off-Exchange Sub-Penny Prices. For each possible sub-penny
price increment, we plot the volume occurring at this price increment, as a percentage share of
all volume occurring on that venue. We use data from trades occurring on January 3, 2022, and
separate trade volume into three categories: trades occurring when the IEX RLP has no interest,
trades occurring when the IEX RLP has one-sided interest, and trades occurring when the IEX
RLP has two-sided interest. Panel A presents the distribution of trades for off-exchange trades.
Panel B presents the distribution of trades for on-exchange trades. Note that on-exchange sub-
penny trades can only occur in increments of tenths of a cent.
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V. Conclusion

In the current market structure, retail brokers set up relationships with market makers, and send

individual orders to individual market makers. While market makers are evaluated on the aggregate

execution quality they deliver, there is no pre-trade communication over individual orders. The

SEC concept for order-by-order auctions would require each individual order to be exposed in a

bidding process.

Our model shows that a switch to order-by-order auctions comes with trade-offs. Allocative

efficiency is improved, as order-by-order auctions ensure that an incoming retail market order is

always routed to the market maker who has observed the lowest cost signal. Given the common-

value nature of the auction, however, there is a winner’s curse. Market makers obtain higher

profits in the auction relative to the broker’s routing system. Retail investors can be worse off in

the switch to order-by-order auctions, particularly in illiquid stocks or at times when interest in

voluntary liquidity provision is low, as market participants could opt not to provide any liquidity

in the auction.

Our model focuses on inventory cost and competition, and abstracts away from asymmetric

information. In bidding in order-by-order auctions, market makers only worry about aggregate

inventories. In practice, some market participants bidding in order-by-order auctions may be

seeking to trade directionally based on asset price information; this behavior would amplify the

winner’s curse problem in auctions. We also leave out a consideration of the trade correction and

execution guarantees that market makers provide to brokers, which order-by-order auctions would

not have.

We empirically evaluate Retail Liquidity Programs (RLPs) to gain insight into how an order-

by-order auction would function. Much like the proposed order-by-order auctions, these RLPs

allow any market participant to bid potential price improvement to incoming retail market orders.

While these RLPs offer potential price improving liquidity, this liquidity is very rarely offered in less

liquid stocks, and disappears in times of volatility. As in our theoretical model of order-by-order

auctions, observed trades in RLP programs tend to occur at times of lower volatility, on one side

of the market, and times when order imbalances are smaller.
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Appendix A. A microfoundation of inventory cost structure ζi

In our baseline model, we assume that the marginal inventory cost for market maker i to execute

a sell order is

ζi = c0 + c1
1

N

N∑
j=1

yj + c2yi.

In this section, we provide a microfoundation of this formulation, and illustrate the relations between

stock liquidity and cost parameters c0, c1 and c2.

We consider a one-period framework, with time t = 0, 1. There are N market makers labeled

by i = 1, 2..N . For any market maker i, if its total net long position is zi from time 0 to time 1,

then it incurs a total inventory cost

1

2
γz2i

during this time period, and thus the marginal cost of executing the sell order is γzi.
18 We assume

that at the beginning of time 0, each market maker i’s net long position is yi. The sell order is

then assigned to one of the N market makers according to a trading mechanism (broker’s routing

or order-by-order auctions). If market maker i obtains the sell order, it has to execute the order

by internalizing it, routing it to other market makers (inter-dealer market), or sending it to the

exchange. Right after market maker i receives the sell order, with probability α ∈ (0, 1), an

inventory shock arrives, the market maker can not internalize the order, and has to either send the

order to the exchange or execute it through the inter-dealer market. With probability η, there is

active trading of the stock on the exchange, and market maker i can send the order to the exchange

and close the position at cost s̄. With probability (1− η), the market maker i can only send the

order (randomly) to another market maker j. In this case, the cost is

γ0 + γyj

where γ0 is the fixed cost of connecting to another market maker and γyj is the price charged

by market maker j. For simplicity, we assume that market maker j offers competitive price γyj

which is its marginal inventory cost. For simplicity, we make two implicit assumptions here. First,

s̄ is large enough, so it’s always optimal for the market maker to internalize the order when the

18This quadratic cost structure is commonly used in the literature (eg. Baldauf Mollner and Yuezhen 2022).
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inventory shock is absent, and second, γ0 is large enough so it’s always optimal for the market

maker to send the order to the exchange but not other market makers if possible.

Then the expected (marginal) cost of market maker i obtaining the sell order is

(1− α) γyi + α

ηs̄+ (1− η)
1

N − 1

∑
j ̸=i

(γ0 + γyj)

 .

The above cost can be rewritten as

[αηs̄+ (1− η) γ0] +
1

N

(
α (1− η) γN

N − 1

)∑
j

yj +

(
(1− α) γ − α (1− η) γ

N − 1

)
yi.

Let

c0 = αηs̄+ (1− η) γ0,

c1 =
α (1− η) γN

N − 1
,

and

c2 = (1− α) γ − α (1− η) γ

N − 1
,

then the marginal cost for market maker i to execute the sell order is

c0 + c1
1

N

N∑
j=1

yj + c2yi.

Stock liquidity is linked to the parameter η in our microfoundation. When a stock is more liquid,

it’s more likely to have active trading on the exchange at that moment, and thus η will be larger.

As a result, the ratio

c2
c1

=
N − 1

αγN

(
(1− α)

γ

1− η
− αγ

N − 1

)
will be larger. We utilize this interpretation in our discussions of model implications.
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Appendix B. Proofs

Proof of Proposition 1

Consider any i ∈ {1, 2...N} and (x, y) ∈
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, let

G (x|y) = Prob

[
min
−i

y−i ≤ x|yi = y

]

and

g (x|y) = dG (x|y)
dx

.

It’s easy to show

G (x|y) = 1−
(
1

2
− x

)N−1

,

g (x|y) = (N − 1)

(
1

2
− x

)N−2

.

Let

v (x, y) = E
[
ci|min

−i
y−i = x, yi = y

]

= c0 + c1E

 1

N

N∑
j=1

yj |min
−i

y−i = x, yi = y

+ c2E
[
yi|min

−i
y−i = x, yi = y

]

= c0 +
( c1
N

+ c2

)
y +

c1
N

x+ c1
N − 2

N

1

2

(
1

2
+ x

)
=

(
c0 + c1

N − 2

4N

)
+

c1
2
x+

( c1
N

+ c2

)
y.

We focus on symmetric equilibria. Suppose market maker i’s opponents use a continuous,

increasing strategy β (y) at time 0. And suppose market maker i observes signal y and reports

signal z, its expected profit is

Ui (z, y) = Prob

(
z ≤ min

−i
y−i|y

)[
β (z)− E

(
c|z ≤ min

−i
y−i, yi = y

)]
= [1−G (z|y)]

[
β (z)− 1

1−G (z|y)

∫ 1
2

z
g (x|y) v (x, y) dx

]

= [1−G (z|y)]β (z)−
∫ 1

2

z
g (x|y) v (x, y) dx.
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Market maker i’s optimization condition (necessary condition) is

∂Ui (z, y)

∂z

∣∣∣∣
z=y

= 0.

This is

−g (y|y)β (y) + (1−G (y|y))β′ (y) + g (y|y) v (y|y) = 0.

Simplifying the condition, we get

−β (y) +

(
1−G (y|y)
g (y|y)

)
β′ (y) + v (y|y) = 0. (B1)

Let’s conjecture that β (y) is linear, i.e., there exist k0, k1 such that

β (y) = k0 + k1y.

Substitute this into (B1), we have

− (k0 + k1y) +
1
2 − y

N − 1
k1 +

(
c0 + c1

N − 2

4N

)
+

c1
2
y +

( c1
N

+ c2

)
y = 0.

Then k0,k1 are solved by

−k0 +
1
2k1

N − 1
+ c0 + c1

N − 2

4N
= 0,

−k1 −
k1

N − 1
+

c1
2

+
c1
N

+ c2 = 0.

Then we get

k1 =
N − 1

N

(
c1
2

N + 2

N
+ c2

)
,

k0 = c0 +
c1
4N

(
N − 1 +

2

N

)
+

c2
2N

.

It’s easy to check that

∂Ui (z, y)

∂z

∣∣∣∣
z=y

= 0

is also the sufficient condition in the optimization problem in this linear equilibrium because of the

linearity of the equilibrium.
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Proof of Proposition 2

Consider any i ∈ {1, 2...N} and (x,w) ∈
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, let

G0 (x|w) = Prob

[
min
−i

w−i ≤ x|wi = w

]

and

g0 (x|w) =
dG (x|w)

dx
.

It’s easy to show

G (x|w) = 1−
(
1

2
− x

)N−1

,

g (x|w) = (N − 1)

(
1

2
− x

)N−2

.

Let

v (x,w) =E
[
ζi|min

−i
w−i = x;wi = w

]
=p0E

[
ζi|min

−i
w−i = x;wi = w;∃j ̸= i, wj = yj = x

]
+ (1− p0) p0E

[
ci|min

−i
w−i = x;wi = y;∄j ̸= i, wj = yj = x

]

=p0

c0 + c1

x+ (N − 2) p0
1
2
+x

2 + p0w

N

+ c2p0w


+ (1− p0)

c0 + c1

(N − 1) p0
1
2
+x

2 + p0w

N

+ c2p0w


=c0 + c1


(
p0x+ (1− p0) p0

1
2
+x

2

)
+ (N − 2) p0

1
2
+x

2 + p0w

N

+ c2p0w.

We focus on symmetric equilibria. Suppose all of market maker i’s opponents use a continuous,

increasing bid strategy

B (w) = K0 +K1w
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at time 0. When market maker i observes signal w and reports signal z, its expected profit is

Ui (z, w) = Prob

(
z ≤ min

−i
w−i|wi = w

)[
B (z)− E

(
ζi|z ≤ min

−i
w−i, wi = w

)]
= [1−G (z|w)]

[
B (z)− 1

1−G (z|w)

∫ 1

z
g (x|w) v (x,w) dx

]
= [1−G (z|w)]B (z)−

∫ 1

z
g (x|w) v (x,w) dx.

Market maker i’s marginal incentive is characterized by

∂Ui (z, w)

∂z
= −g (z|w)B (z) + (1−G (z|w))B′ (z) + g (z|w) v (z|w)

= g (z|w)
[
−B (z) +

(
1−G (z|w)
g (z|w)

)
B′ (z) + v (z|w)

]

= g (z|w)


−K0 −K1z +

1
2
−z

N−1K1 + c0

+c1

(
p0z+(1−p0)p0

1
2+z

2

)
+(N−2)p0

1
2+z

2
+p0w

N

+ c2p0w

 .

Let’s conjecture that in equilibrium we have

∂Ui (z, w)

∂z

∣∣∣∣
z=w

= 0. (B2)

This implies

− (K0 +K1w)+
1
2 − w

N − 1
K1+c0+c1


(
p0w + (1− p0) p0

1
2
+w

2

)
+ (N − 2) p0

1
2
+w

2 + p0w

N

+c2p0w = 0.

Since the above condition holds for all w, then K0,K1 are solved by

−K0 +
1
2K1

N − 1
+ c0 + c1

N − 2

4N
p0 +

c1 (1− p0) p0
4N

= 0,

−K1 −
K1

N − 1
+ c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

= 0.

60



Then we get

K1 =
N − 1

N

(
c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

)
, (B3)

K0 = c0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c1 + 2Nc2

]
. (B4)

We also need to verify that condition (B2) is a sufficient condition for optimization. Note that

g (z|w) > 0 and

−K0 −K1z +
1
2 − z

N − 1
K1 + c0 + c1


(
p0z + (1− p0) p0

1
2
+z

2

)
+ (N − 2) p0

1
2
+z

2 + p0w

N

+ c2p0w

is linear in z, then it’s clear that with (B3) and (B4), we must have that for all w,

∂Ui (z, w)

∂z
< 0 ⇐⇒ z > w,

confirming that (B2) is a sufficient condition for optimization.

Proof of Lemma 1

First let’s introduce the random variable

r = min
i

yi ∈
[
−1

2
,
1

2

]

and its CDF

H (r) = 1−
(
1

2
− r

)N

and PDF

h (r) = N

(
1

2
− r

)N−1

.
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Then the total expected profit of market makers is

WOBO
M =E

E

k0 + k1r − c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r


=E

{
k0 + k1r − c0 − c1

(
r + (N − 1)

(
1
2 + r

)
1
2

N

)
− c2r

}

=E

{(
1
2 − r

)
(c1 + c2N)

N2

}

=

∫ 1
2

− 1
2

(
1
2 − r

)
(c1 + c2N)

N2
N

(
1

2
− r

)N−1

dr

=
1

N + 1

( c1
N

+ c2

)
.

The expected total profit of investors WI is

WOBO
I = −E

[
k0 + k1r|min

i
yi = r

]
= −

∫ 1
2

− 1
2

(k0 + k1r)N

(
1

2
− r

)N−1

dr

= −
[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]

and the total welfare Wtotal is

WOBO
total = E

E

−c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r


= WOBO

M +WOBO
I

= −
(
c0 −

N − 1

N + 1

c2
2

)
.

Proof of Lemma 2

let’s introduce the random variable

r = min
i

wi ∈
[
−1

2
,
1

2

]
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and its CDF

H (r) = 1−
(
1

2
− r

)N

and PDF

h (r) = N

(
1

2
− r

)N−1

.

Then the total expected profit of market makers is

WBR
M =E

E

t (r)− c0 − c1
1

N

N∑
j=1

yj − c2yi|wi = min
j

wj = r


=E

{
K0 +K1r − c0 − c1

(
p0r + (N − 1) p0

(
1
2 + r

)
1
2

N

)
− c2p0r

}

=E
{ p0
4N2

[2Nc2 (1− 2r) + c1 (3− p0) (1− 2r) + c1N (1− p0) (1 + 2r)]
}

=

∫ 1
2

− 1
2

p0
4N2

[2Nc2 (1− 2r) + c1 (3− p0) (1− 2r) + c1N (1− p0) (1 + 2r)]N

(
1

2
− r

)N−1

dr

=
p0 (2c1 − p0c1 +Nc2)

N (1 +N)
.

The expected total profit of investors WI is

WBR
I = −E

[
K0 +K1r|min

i
wi = r

]
= −

∫ 1
2

− 1
2

(K0 +K1r)N

(
1

2
− r

)N−1

dr

= −
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

and the total welfare Wtotal is

WBR
total = E

E

−c0 − c1
1

N

N∑
j=1

yj − c2yi|wi = min
j

wj = r


= −

(
c0 − p0

N − 1

N + 1

c2
2

)
.
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Proof of Proposition 3

Both WBR
total < WOBO

total and WBR
M < WOBO

M are obvious. And

WBR
I < WOBO

I

⇐⇒−
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
< −

[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]
⇐⇒c2

c1
>

2(1− p0)

N(N − 3)
.

Proof of Proposition 4

Since wholesalers are not able to observe the realization of c̃0, they can condition their strategies

only on the distributional information about c̃0. We still focus on symmetric equilibria in this case,

and let’s conjecture that all wholesalers uses the same bidding strategy

β̃ (y) = k̃0 + k̃1y,

with k̃1 > 0. Similar to our baseline model, the wholesaler with lowest signal realization obtains

the order in equilibrium. We follow the proof of Proposition 2, notably, the function ṽ (x,w) =

E
[
ζ̃i|min−iw−i = x;wi = w

]
now becomes

ṽ (x,w) =E
[
ζ̃i|min

−i
w−i = x;wi = w

]
=p0E

[
ζ̃i|min

−i
w−i = x;wi = w;∃j ̸= i, wj = yj = x

]
+ (1− p0) p0E

[
ζ̃i|min

−i
w−i = x;wi = y; ∄j ̸= i, wj = yj = x

]

=p0

c0 + c1

x+ (N − 2) p0
1
2
+x

2 + p0w

N

+ c2p0w


+ (1− p0)

c0 + c1

(N − 1) p0
1
2
+x

2 + p0w

N

+ c2p0w


=c0 + c1


(
p0x+ (1− p0) p0

1
2
+x

2

)
+ (N − 2) p0

1
2
+x

2 + p0w

N

+ c2p0w,
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which implies that

ṽ (x,w) = v (x,w) .

The rest of the proof follows the proof of Proposition 2. So the equilibrium strategy is the same as

that in the baseline model.

Similarly, note that

E (c̃0) = c0,

the proof of welfare computation follows our proof of Lemma 2, and thus all welfare outcomes are

the same as that in our baseline model.

Proof of Proposition 5

When δc = 0, the institutional traders and wholesalers receive i.i.d signals, and they are

symmetric. Let’s conjecture that all market makers choose the same linear equilibrium strategy

β̃i (yi; δc = 0) = k̃0 (δc = 0) + k̃1 (δc = 0) yi.

The number of market makers is N+N0. We follow the proof of Proposition 1, the function v (x, y)

now becomes

ṽ (x, y) = E
[
ζ̃i|min

−i
y−i = x, yi = y

]

= c0 + c1E

 1

N

N+N0∑
j=1

yj |min
−i

y−i = x, yi = y

+ c2E
[
yi|min

−i
y−i = x, yi = y

]

= c0 +

(
c1

N +N0
+ c2

)
y +

c1
N +N0

x+ c1
N +N0 − 2

N +N0

1

2

(
1

2
+ x

)
=

(
c0 + c1

N +N0 − 2

4 (N +N0)

)
+

c1
2
x+

(
c1

N +N0
+ c2

)
y,

which is the v (x, y) function with (N +N0) wholesalers. For the rest of the proof, we follow the

proof of Proposition 1, and we can show that the equilibrium strategy is equivalent to that in

Proposition 1 with the number of wholesalers being N +N0.
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Proof of Proposition 6

Since the equilibrium of broker’s routing is the same as that in the baseline model, we have

W̃BR
total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
,

W̃BR
I = −

[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

and

W̃BR
W =

p0 (2c1 − p0c1 +Nc2)

N (1 +N)
.

For order-by-order auctions, the welfare outcomes are

W̃OBO
total = −

(
c0 −

N +N0 − 1

N +N0 + 1

c2
2

)
,

W̃OBO
I = −

[
c0 +

1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

]
,

and

W̃OBO
W =

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)
.

First, it’s obvious that

W̃OBO
total > W̃BR

total,

because p0 ∈ (0, 1) and N0 > 1. Second,

W̃BR
W < W̃OBO

W

⇐⇒p0 (2c1 − p0c1 +Nc2)

N (1 +N)
<

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)

⇐⇒
p0

(
2− p0 +N c2

c1

)
N (1 +N)

<
N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒p0 (2− p0)

N (1 +N)
+

p0
1 +N

c2
c1

<
N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒

(
N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> −
(

N

(N +N0)
2

1

N +N0 + 1
− p0 (2− p0)

N (1 +N)

)
⇐⇒

(
N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)
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Since

N

N +N0

1

N +N0 + 1
− p0

1 +N
>

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N
,

we know that

(
N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)

is equivalent to

N

N +N0

1

N +N0 + 1
− p0

1 +N
> 0 ⇐⇒ p0 <

N

N +N0

1 +N

N +N0 + 1

and

c2
c1

>
− 1

N+N0

(
N

N+N0

1
N+N0+1 − p0

(1+N)
(2−p0)(N+N0)

N

)
N

N+N0

1
N+N0+1 − p0

1+N

.

Finally,

W̃BR
I < W̃OBO

I

⇐⇒−
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
< −

[
c0 +

1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

]
⇐⇒p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

>
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

⇐⇒p0
2 (2− p0)− (N − 3)N c2

c1

2N (1 +N)
>

1

(N +N0) (N +N0 + 1)
− N +N0 − 3

2 (N +N0 + 1)

c2
c1

⇐⇒
(

N +N0 − 3

2 (N +N0 + 1)
− p0

(N − 3)

2 (1 +N)

)
c2
c1

>
1

(N +N0) (N +N0 + 1)
− p0

(2− p0)

N (1 +N)

⇐⇒c2
c1

>

1
(N+N0)(N+N0+1) −

p0(2−p0)
N(1+N)

N+N0−3
2(N+N0+1) − p0

(N−3)
2(1+N)

.

The last inequality holds because we always have N+N0−3
2(N+N0+1) − p0

(N−3)
2(1+N) > 0.

Proof of Proposition 7

We need to verify that this is indeed an equilibrium. Let δ = max {δc1, δc2} where δc1 is defined

by (??) and δc2 is defined by (B5).
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Let δc1 be the value that satisfies

k−0 + k−1 · 1
2
= k+0 − k+1 · 1

2
,

i.e.,

c0 − δc1 +
c1
4N0

(
N0 − 1 +

2

N0

)
+

c2
2N0

+
N0 − 1

N0

(
c1
2

N0 + 2

N0
+ c2

)
1

2

=c0 + δc1 +
c1

4 (N +N0)

(
N +N0 − 1 +

2

N +N0

)
+

c2
2 (N +N0)

− N +N0 − 1

N +N0

(
c1
2

N +N0 + 2

N +N0
+ c2

)
1

2
.

Then when δc > δc1,

[
k−0 − k−1 · 1

2
, k−0 + k−1 · 1

2

]
∪
[
k+0 − k+1 · 1

2
, k+0 + k+1 · 1

2

]
= ∅.

This implies that the under the equilibrium conjectured, when c̃0 = c0 − δc, only institutional

traders can obtain the order no matter what signals market participants observe.

Let’s first verify that it’s optimal for any institutional trader to choose s̃− (y; δc) if observing

c0 + δc , giving other market participants’ strategies. When c̃0 = c0 − δc, it’s clear that s̃
− (y; δc) is

an equilibrium if we only have N0 institutional traders in the market, as suggested by Proposition 1.

This is essentially the baseline model of order-by-order auctions with N0 bidders and unconditional

expected inventory cost being c0 − δc. This means that it’s optimal for any institutional trader

to choose s̃− (y; δc) if there are only N0 − 1 other institutional traders who also choose s̃− (y; δc)

and no wholesalers in the market. Adding N wholesalers choosing s̃+ (y; δc) does not change this

optimality, because given other institutional traders’ choice s̃− (y; δc), the N wholesalers will never

obtain any order in any state when c̃0 = c0 − δc.

Then let’s verify that it’s optimal for any institutional trader to choose s̃+ (y; δc) if observing

c0 + δc, given other market participants’ strategies. Following our Proposition 1 in the baseline

model of order-by-order auctions, s̃+ (y; δc) is an equilibrium with N + N0 market makers and

unconditional expected inventory cost being c0 + δc. So it’s optimal for any institutional trader to

choose s̃+ (y; δc) if there are other N +N0 − 1 market makers also choosing s̃+ (y; δc).

Finally, let’s verify that it’s optimal for any wholesaler i to choose s̃+ (y; δc), given other market
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participants’ strategies. Suppose the wholesaler i observes a signal yi, then the wholesaler’s utility

is

Ui =
1

2
U1 (si) +

1

2
U2 (si) ,

where U1 (U2) is wholesaler i’s profit when the state is c0 − δc (c0 + δc). It’s clear that for any yi,

we have

s̃+ (yi; δc) = arg max
si∈(k−0 +k−1 · 1

2
,∞)

Ui,

this is because when si ∈
(
k−0 + k−1 · 1

2 ,∞
)
,

[
k−0 − k−1 · 1

2
, k−0 + k−1 · 1

2

]
∪
[
k+0 − k+1 · 1

2
, k+0 + k+1 · 1

2

]
= ∅,

and thus we always have

U1 (si) = 0.

And

s̃+ (yi; δc) = arg max
si∈(k−0 +k−1 · 1

2
,∞)

U2.

It’s also clear that wholesaler will never choose si < k−0 −k−1 · 12 , as any si < k−0 −k−1 · 12 is dominated

by si = k−0 − k−1 · 1
2 . Suppose that wholesaler choose

si ∈
[
k−0 − k−1 · 1

2
, k−0 + k−1 · 1

2

]
.

Note that

k−0 + k−1 · 1
2
−
[(
c0 − δc

)
− c1 + c2

2

]
> 0,

and the upper bound of the profit in the case c0 − δc is

k−0 + k−1 · 1
2
−
[(
c0 − δc

)
− c1 + c2

2

]

because k−0 + k−1 · 12 is the highest spread in si ∈
[
k−0 − k−1 · 1

2 , k
−
0 + k−1 · 1

2

]
and

(
c0 − δc

)
− c1+c2

2 is

the lowest inventory cost. Besides, in the case c0 + δc, the wholesaler i will obtain the order with
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probability one. And the maximal profit is

k−0 + k−1 · 1
2
−
[(
c0 + δc

)
− c1 + c2

2

]
.

Then

U1 ≤ k−0 + k−1 · 1
2
−
[(
c0 − δc

)
− c1 + c2

2

]
.

And

U2 ≤ k−0 + k−1 · 1
2
−
[(
c0 + δc

)
− c1 + c2

2

]
.

Then

Ui ≤
1

2
U1 +

1

2
U2 ≤ k−0 + k−1 · 1

2
−
[
c0 −

c1 + c2
2

]
.

Then

Ui < 0 ⇐= k−0 + k−1 · 1
2
−
[
c0 −

c1 + c2
2

]
< 0 ⇐⇒ δc < δc2,

where

δc2 =
c1

4
(
Ñ −N

) ((Ñ −N
)
− 1 +

2

Ñ −N

)
+

c2

2
(
Ñ −N

) + k−1 · 1
2
+

c1 + c2
2

. (B5)

Then when

δc > δ = max {δc1, δc2} ,

we have

s̃+ (yi; δc) = k+0 + k+1 yi = arg max
si∈(−∞,∞)

Ui.

This implies that it’s optimal for any wholesaler i to choose s̃+ (y; δc), given other market participants’

strategies.
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Proof of Proposition 8

Since the equilibrium of broker’s routing is the same as that in the baseline model, we have

W̃BR
total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
,

W̃BR
I = −

[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

and

W̃BR
W =

p0 (2c1 − p0c1 +Nc2)

N (1 +N)
.

For order-by-order auctions, the welfare outcomes are

W̃OBO
total =− 1

2

(
c0 + δc −

N +N0 − 1

N +N0 + 1

c2
2

)
− 1

2

(
c0 − δc −

N0 − 1

N0 + 1

c2
2

)
=− c0 +

1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2
,

W̃OBO
I =− 1

2

[
c0 + δc +

1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

]
− 1

2

[
c0 − δc +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]
=− c0 −

1

2

[
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2 +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]

and

W̃OBO
W =

1

2

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)
.

First,

W̃OBO
total > W̃BR

total

⇐⇒− c0 +
1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2

> −
(
c0 − p0

N − 1

N + 1

c2
2

)
⇐⇒1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2

> p0
N − 1

N + 1

c2
2
.
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Then LHS of the above condition is increasing in N0, let N0 be the solution of

1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2

= p0
N − 1

N + 1

c2
2
, (B6)

then

N0 > N0 ⇐⇒ W̃OBO
total > W̃BR

total.

Second,

W̃BR
W < W̃OBO

W

⇐⇒p0 (2c1 − p0c1 +Nc2)

N (1 +N)
<

1

2

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)

⇐⇒
p0

(
2− p0 +N c2

c1

)
N (1 +N)

<
1

2

N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒p0 (2− p0)

N (1 +N)
+

p0
1 +N

c2
c1

<
1

2

N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒

(
1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> −
(
1

2

N

(N +N0)
2

1

N +N0 + 1
− p0 (2− p0)

N (1 +N)

)
⇐⇒

(
1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
1

2

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)
.

Since

1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N
>

1

2

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N
,

we know that

(
1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
1

2

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)

is equivalent to

1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N
> 0 ⇐⇒ p0 <

1

2

N

N +N0

1 +N

N +N0 + 1
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and

c2
c1

>
− 1

N+N0

(
1
2

N
N+N0

1
N+N0+1 − p0

(1+N)
(2−p0)(N+N0)

N

)
1
2

N
N+N0

1
N+N0+1 − p0

1+N

.

Finally,

W̃BR
I < W̃OBO

I

⇐⇒−
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
< −c0 −

1

2

[
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2 +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]
⇐⇒p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

>
1

2

[
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2 +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]
⇐⇒p0

2 (2− p0)− (N − 3)N c2
c1

N (1 +N)

>
1

(N +N0) (N +N0 + 1)
− N +N0 − 3

2 (N +N0 + 1)

c2
c1

+
1

N0 (N0 + 1)
− N0 − 3

2 (N0 + 1)

c2
c1

⇐⇒p0
2 (2− p0)

N (1 +N)
− p0

(
1− 4

N + 1

)
c2
c1

>
1

(N +N0) (N +N0 + 1)
− 1

2

(
1− 4

N +N0 + 1

)
c2
c1

+
1

N0 (N0 + 1)
− 1

2

(
1− 4

N0 + 1

)
c2
c1

⇐⇒
(
1− p0 +

4p0
N + 1

− 2

N +N0 + 1
− 2

N0 + 1

)
c2
c1

>
1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)
.

(B7)

We want to show that if

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
≤ 0,

we must have

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)
> 0.

Since N > 3, then both

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
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and

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)
> 0

are decreasing in p0 ∈ (0, 1). Then it’s sufficient to show the above argument holds when p0 = 1,

i.e., we need to show that if

1

N +N0 + 1
+

1

N0 + 1
≥ 2

N + 1
,

we must have

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
>

2

N (1 +N)
.

Note that

1

N +N0 + 1
+

1

N0 + 1
≥ 2

N + 1
⇐⇒ 1

N0 + 1
− 1

N + 1
≥ 1

N + 1
− 1

N +N0 + 1

⇐⇒ N −N0

(N0 + 1) (N + 1)
≥ N0

(N + 1) (N +N0 + 1)
,

and

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
>

2

N (1 +N)

⇐⇒ 1

N0 (N0 + 1)
− 1

N (1 +N)
>

1

N (1 +N)
− 1

(N +N0) (N +N0 + 1)

⇐⇒ 1

N0 (N0 + 1)
− 1

N (N0 + 1)
+

1

N (N0 + 1)
− 1

N (1 +N)

>
1

N (1 +N)
− 1

N (N +N0 + 1)
+

1

N (N +N0 + 1)
− 1

(N +N0) (N +N0 + 1)

⇐⇒ N −N0

N0N (N0 + 1)
+

1

N (N0 + 1)
− 1

N (1 +N)
>

1

N (1 +N)
− 1

N (N +N0 + 1)
+

N0

N (N +N0) (N +N0 + 1)
.

We already know that

1

N (N0 + 1)
− 1

N (1 +N)
≥ 1

N (1 +N)
− 1

N (N +N0 + 1)
,

then it’s sufficient to show

N −N0

N0N (N0 + 1)
>

N0

N (N +N0) (N +N0 + 1)
⇐⇒ N −N0

N0 (N0 + 1)
>

N0

(N +N0) (N +N0 + 1)
.
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Since

N −N0

(N0 + 1) (N + 1)
≥ N0

(N + 1) (N +N0 + 1)
,

we have

N −N0

N0 (N0 + 1)
≥ 1

N0

N0 (1 +N)

(N + 1) (N +N0 + 1)
=

1

(N +N0 + 1)
>

N0

(N +N0) (N +N0 + 1)
.

Then we show that for the condition (B7), if the LHS

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
≤ 0,

the RHS

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)

must be positive. Then the solution to the condition (B7) is

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
> 0 ⇐⇒ p0 <

1− 2
N+N0+1 − 2

N0+1

1− 4
N+1

,

and

c2
c1

>

1
(N+N0)(N+N0+1) +

1
N0(N0+1) −

2p0(2−p0)
N(1+N)

1− p0 +
4p0
N+1 − 2

N+N0+1 − 2
N0+1

.

Proof of Proposition 9

Consider any i ∈ {1, 2...N} and (x,w) ∈
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, let

G0 (x|w) = Prob

[
min
−i

w−i ≤ x|wi = w

]

and

g0 (x|w) =
dG (x|w)

dx
.

It’s easy to show

G (x|w) = 1−
(
1

2
− x

)N−1

,

g (x|w) = (N − 1)

(
1

2
− x

)N−2

.
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Let

v (x,w) =E
[
ζi|min

−i
w−i = x;wi = w

]
=p0E

[
ζi|min

−i
w−i = x;wi = w;∃j ̸= i, wj = yj = x

]
+ (1− p0)E

[
ci|min

−i
w−i = x;wi = y;∄j ̸= i, wj = yj = x

]

=p0

E (c0) + E (c1)

x+ (N − 2) p0
1
2
+x

2 + p0w

N

+ E (c2) p0w


+ (1− p0)

c0 + c1

(N − 1) p0
1
2
+x

2 + p0w

N

+ c2p0w


=c̄0 + c̄1


(
p0x+ (1− p0) p0

1
2
+x

2

)
+ (N − 2) p0

1
2
+x

2 + p0w

N

+ c̄2p0w.

We focus on symmetric equilibria. Suppose all of market maker i’s opponents use a continuous,

increasing bid strategy

B̄ (w) = K̄0 + K̄1w

at time 0. When market maker i observes signal w and reports signal z, its expected profit is

Ui (z, w) = Prob

(
z ≤ min

−i
w−i|wi = w

)[
B̄ (z)− E

(
ζi|z ≤ min

−i
w−i, wi = w

)]
= [1−G (z|w)]

[
B̄ (z)− 1

1−G (z|w)

∫ 1

z
g (x|w) v (x,w) dx

]
= [1−G (z|w)] B̄ (z)−

∫ 1

z
g (x|w) v (x,w) dx.
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Market maker i’s marginal incentive is characterized by

∂Ui (z, w)

∂z

=− g (z|w) B̄ (z) + (1−G (z|w)) B̄′ (z) + g (z|w) v (z|w)

=g (z|w)
[
−B̄ (z) +

(
1−G (z|w)
g (z|w)

)
B̄′ (z) + v (z|w)

]

=g (z|w)

−K̄0 − K̄1z +
1
2 − z

N − 1
K̄1 + c0 + c1


(
p0z + (1− p0) p0

1
2
+z

2

)
+ (N − 2) p0

1
2
+z

2 + p0w

N

+ c2p0w

 .

Let’s conjecture that in equilibrium we have

∂Ui (z, w)

∂z

∣∣∣∣
z=w

= 0. (B8)

This implies

−
(
K̄0 + K̄1w

)
+

1
2 − w

N − 1
K̄1+c̄0+c̄1


(
p0w + (1− p0) p0

1
2
+w

2

)
+ (N − 2) p0

1
2
+w

2 + p0w

N

+c̄2p0w = 0.

Since the above condition holds for all w, then K̄0,K̄1 are solved by

−K̄0 +
1
2K̄1

N − 1
+ c0 + c1

N − 2

4N
p0 +

c1 (1− p0) p0
4N

= 0

−K̄1 −
K̄1

N − 1
+ c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

= 0

Then we get

K̄1 =
N − 1

N

(
c̄2p0 +

2c̄1p0
N

+
c̄1 (N − 2) p0

2N
+

c̄1 (1− p0) p0
2N

)
, (B9)

K0 = c̄0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c̄1 + 2Nc̄2

]
. (B10)

We also need to verify that condition (B8) is a sufficient condition for optimization. Note that
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g (z|w) > 0 and

−K̄0 − K̄1z +
1
2 − z

N − 1
K̄1 + c0 + c1


(
p0z + (1− p0) p0

1
2
+z

2

)
+ (N − 2) p0

1
2
+z

2 + p0w

N

+ c2p0w

is linear in z, then it’s clear that with (B9) and (B10), we must have that for all w,

∂Ui (z, w)

∂z
< 0 ⇐⇒ z > w,

confirming that (B8) is a sufficient condition for optimization.

Proof of Lemma 3

Let’s introduce the random variable

r = min
i

wi ∈
[
−1

2
,
1

2

]

and its CDF

H (r) = 1−
(
1

2
− r

)N

and PDF

h (r) = N

(
1

2
− r

)N−1

.

First, we know that in our baseline model of broker’s routing, the total welfare is

WBR
total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
.

The total welfare only depends on inventory allocation but not equilibrium spread, as the equilibrium

spread is just a transfer between market makers and investors. In our extension of heterogeneous

stocks, it is still the market maker with lowest liquidity signal realization y that obtains the order,

so the order allocation is the same as that in our baseline model for any stocks (c0, c1, c2). Then
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the total welfare is this extension satisfies

WBR
heter,total = WBR

total = −
(
c0 − p0

N − 1

N + 1

c2
2

)
.

Since the equilibrium bidding strategy is

T (w) = K̄0 + K̄1w,

the investor’s welfare is

WBR
heter,I = −E

[
K̄0 + K̄1r|min

i
wi = r

]
= −

∫ 1
2

− 1
2

(
K̄0 + K̄1r

)
N

(
1

2
− r

)N−1

dr

= −
[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
.

By

WBR
heter,M = WBR

heter,total −WBR
heter,I ,

we know

WBR
heter,M = −

(
c0 − p0

N − 1

N + 1

c2
2

)
+

[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
= (c̄0 − c0) +

p0
2 (N + 1)

[(N − 1) c2 − (N − 3) c̄2] + p0
(2− p0) c̄1
N (1 +N)

.
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