MVN package

Empirical Market Microstructure
(2006, Oxford University Press)

Companion Mathematica notebook

Joel Hasbrouck
Copyright 2007, Joel Hasbrouck. All rights reserved.

This package defines a multivariate normal distribution "object" (i.e, a representation for variables that are
multivariate normal), and various routines to work with them. The notebook should be stored as a package.

m Properties of the multivariate normal distribution:
The package implements functionality based on the following relations.

Consider a multivariate normal distribution:

%= g s B = () varix <z (0 0 @
The partitions here must be consistent, but are otherwise arbitrary. Either X1 or X, or both may be scalars.
IfX~MVN (1, =), then

E[X1 | X2] = p1 + (X2 - p2) 535 %1)

Var [Xy | X2] = S11 - 212 325 21 (3)
Consider a linear transform Y = AX + b, where A is a rectangular matrix and b is a column vector. Then:

Y~MVN (A +b, AZA") 4)

BeginPackage [""MVN™ "] ;

7 The MVN "object”

MVN: zusage =
“"MVN[u,2,v] is an object that represents a multivariate normal distribution
with mean vector p and covariance matrix =. The third parameter, v,
is list of Mathematica expressions that correspond to the variables.
(Typically they are variable names or formulas for the variables.)";

MVN.nb

GetMean: :usage =
"GetMean[mvn] where mvn is an MVN object returns the mean vector of mvn.™;

SetMean: :usage = ""SetMean [mvn,uNew] where mvn is an
MVN object returns mvn with the mean vector set to uNew.";

GetVariance: :usage = ""GetVariance [mvn] where
mvn is an MVN object returns the variance matrix of mvn.';

SetVariance: :usage =
“"SetVariance [mvn,=New] where mvn is an MVN object returns mvn
with the variance matrix set to =New.';

GetLabel : :usage =
“"GetLabel [mvn] where mvn is an MVN object returns the label vector of mvn.";

SetLabel : :usage =
"SetLabel [MVN,v2] returns an MVN object in which the vector of
variable expressions is replaced by v2.";

StandardMVN: :usage =
"StandardMWN[n,x] returns an MVN of order n with zero mean and
a covariance matrix equal to the identity matrix. The
variables are labeled X;,...,Xx,. 1T the second argument
is omitted, the variables are labeled z,,...,z,";

LinearForm: :usage =
“"LinearForm[mvnl,b,c] (where b is a matrix and c is a vector) returns
an MVN that describes a linear transformation of mvnl. IFf
mvnl=MVN[u,=,v] then the return MVN is the distribution of b.v+c.
LinearForm[mvnl,b] returns an MVN giving the distribution of b.v";

MakeLinearForm: :usage =
""MakeLinearForm [MVNO,b] returns an MVN object representing the
distribution of a set of linear combinations of the variables
in MVNO=MVN[u,=,v]. b is a list of expressions defining
linear combinations of v (and a constant, if desired).";

MVNConditional : :usage =
"MVNConditional [MVNO,v1l,v2] returns an MVN object representing a
conditional multivariate normal distribution. MVNO=MVNO[u,=,v] is
the joint distribution. v2 is a list of the conditioning variables;
vl is a list of the target variables. Both vl and v2 must map to
(correspond to) v. MVNConditional [MVNO,v1l] returns the conditional
distribution of vl conditioned on all variables that are not in v1.";

MVN.nb

Format [MVN[uLocal _, =Local_, vLocal _]] := RowBox][

{mpForm[vLocal], " ~ ", StyleBox[~, FontSize » 16, FontWeight - Bold], " ("

mpForm[uLocal], *,", mpForm[=zLocal], *)"}] // DisplayForm

Begin[" Private "];

7 DisplayForm formatting of MVN objects

— General::spell : Possible spelling error: new symbol
name "Bold" is similar to existing symbols {Fold, Hold}. More..

7 Getting and setting parameters

GetMean[MVN[u_, =_, v_]] := GetElement[u];

SetMean [MVN[u_, =_, V_], uNew_] = MVN[uNew, =, V]

— General::spelll:
Possible spelling error: new symbol name *"SetMean™ is similar to

existing symbol "GetMean". More..

GetVariance [MVN[u_, =_, v_]] = GetElement[xz]

SetVariance [MVN[u_, =_, v_], =New_] 1= MVN[u, =New, V]

— General::spelll:
Possible spelling error: new symbol name *'SetVariance" is similar

to existing symbol "GetVariance". More..

GetLabel [MVN[u_, =_, V_]] := GetElement[V];

SetLabel [MVN[u_, =_, V_], V2_] 2= MVN[u, =, V2]

— General::spelll:
Possible spelling error: new symbol name *SetLabel™ is similar to

existing symbol "GetLabel". More..
7 Constructing and transforming MVN's

StandardMVN[1, v_: Global~z] := MVN[O, 1, v]

StandardMVN[n_, v_: Global~z] :=
MVN[Table[O, {n}], ldentityMatrix[n], Table[v;, {i, 1, n}]]

LinearForm[MVN[u_, = _,Vv_], b_, c_:0] :=
MVN[b.ToVector[u] +c, b.ToMatrix[Z] -Transpose [b], b.ToVector [V] + C]

4 MVN.nb

MakeLinearForm [MVN[u_, = , v_], vNew_] := Module[{b, b0},
b = Transpose [Coefficient[ToVector [vNew], #, 1] & /@ ToVector[v]];
b0 = ToVector [vNew] - b.ToVector|[v];
LinearForm[MVN[u, =, v], b, bO]
1

[Conditional distributions

MVNConditional [MVN[u_, =_, Vv_], vla_, v2a_: 0] := Module[{Vvl, v2, i1, i2},
vl = ToVector [vla];
il = Position[v, #] &/evl // Flatten;

i2=
If[v2a=!=0,
v2 = ToVector [v2a]; Position[v, #] & /@v2 // Flatten,
Complement [Range [Length[ToVector[v]]], il]
1;
MVN [

pLIEL]] + (VI[§2]1] -u[[§2]])-Inverse[=[[i2, §i2]]]-=[[i2, il]],
=[[il, §1]] - =[[il, i2]].Inverse[=[[i2, i2]]1]-=Z[[i2, i1]],
VI[i1]]]

1

— General::spelll: Possible spelling error: new symbol

name "vRange" is similar to existing symbol "Range". More..

7 Helper functions

mpForm[x_] := Which[MatrixQ[x] && ((Times @ee Dimensions @ x) == 1), x[[1, 1]1],
VectorQ[x] && (Length[x] ==1), x[[1]], True, MatrixForm([x]];

GetElement[x_] := Which[MatrixQ[x] && ((Times @e Dimensions @ x) == 1), x[[1, 1]1],
VectorQ[Xx] && (Length[x] ==1), x[[1]], True, X];

ToVector [x_] := Flatten[{x}];
ToMatrix[x_] := Which[MatrixQ[x], X, VectorQ[X], {xX}, True, {{X}}]1;
End[];

EndPackage[]

