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 Trading Costs and Returns for US Equities:  
The Evidence from Daily Data 

Abstract 
 This study examines various measures of trading costs estimated from high-

frequency data, the extent to which these measures can be estimated from daily data, and 

finally the relation between the daily-based proxies and stock returns (where trading cost 

is viewed as a characteristic). The high-frequency estimates of trading cost achieve 

partial agreement. Posted spreads and effective costs are highly correlated. Price impact 

measures and other statistics from dynamic models, however, are only modestly 

correlated with each other. Among the set of proxies constructed from daily data, a Gibbs 

estimate of the effective cost stands out, achieving a correlation of 0.944 with the 

corresponding TAQ estimate. Both the Gibbs estimate of effective cost and the illiquidity 

ratio covary positively with risk-adjusted returns, but the relations exhibit marked 

seasonality and are not robust to the use of alternative measures of correlation. 

 

JEL classification codes: C15, G12, G20
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1. Introduction 

 The notion that agents take into consideration trading costs, and that these costs affect 

equilibrium expected returns, motivates studies that span market microstructure and asset pricing 

(surveyed in Easley and O'Hara (2002)).  Empirical studies that bridge the two fields often 

encounter difficulties, however, arising from differences in the data samples and frequencies 

favored by each area. Asset pricing tests generally require daily or monthly samples that are 

large in cross-section and time span.  Microstructure measures, on the other hand, are generally 

estimated with high-frequency trade and quote data. This limits their availability to the relatively 

small and recent data samples for which these data exist.1 In reconciling the conflicting needs of 

the two approaches, asset pricing considerations appear predominant. This is because precision 

in estimation of expected returns depends on the length of the data sample, not the sampling 

frequency (Merton (1980)).  This establishes the importance of liquidity measures that can be 

constructed from data of daily or lower frequency.  

 The ultimate contribution of the present study is an empirical analysis of the relationship 

between expected returns and a broad set of liquidity characteristics estimated from daily data. 

The set includes the Amivest liquidity ratio (Cooper, Groth, and Avera (1985)), the Amihud 

(2002) illiquidity measure, the Pastor and Stambaugh (2003) reversal coefficient, and the Gibbs 

estimate of the effective cost of trading. The last, based on the Roll (1984) model of the spread, 

is developed and applied to futures data in Hasbrouck (2004). The Gibbs estimate uses a 

Bayesian perspective and incorporates a non-negativity prior on the spread. (The usual estimate 

                                                 
1 Microstructure data commonly used in asset pricing studies include: beginning/end of year 

average spreads for NYSE stocks, 1955-1979 (Stoll and Whalley (1983), based on Fitch data, 

also used by numerous subsequent studies); average Nasdaq spreads, 1973-1990 (CRSP, see 

Eleswarapu (1997)); Institute for the Study of Securities Markets (1983-1992); and, TAQ (1993-

present). 
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of the Roll model is infeasible in the frequently encountered case of a positive in-sample return 

autocovariance.) 

The empirical asset pricing framework is that suggested by Brennan, Chordia, and 

Subrahmanyam (1998) (BCS). Most tests of asset pricing models follow Fama and MacBeth 

(1973) in forming size- and characteristic-ranked portfolios. When there are few characteristics, 

this approach may enhance statistical power. The procedure is problematic, however, when 

potential characteristics are numerous, as results may be sensitive to sort ordering.  The BCS 

procedure avoids this requirement and so allows all of the liquidity measures to be evaluated in 

an even-handed fashion. 

 The plausibility of the conclusions from the asset pricing tests, however, depends on the 

quality of the daily-based liquidity measures. En route to the expected return estimations, 

therefore, the paper undertakes a detailed analysis of these measures.  This is accomplished by 

comparing daily and commonly used high-frequency measures, drawn from a sample where it is 

feasible to estimate both. 

 The study of asset pricing and liquidity is divided into two streams, according to whether 

liquidity is viewed primarily as a security characteristic or a risk factor. The present study adopts 

the characteristic perspective, following Stoll and Whalley (1983), Amihud and Mendelson 

(1986), Eleswarapu and Reinganum (1993), Chalmers and Kadlec (1998) and Eleswarapu (1997) 

among others.   In this view agents equalize expected returns net of trading costs, and securities 

with higher trading costs must have higher gross expected returns. Various theoretical models 

predict that this effect should not be substantial because agents blunt the impact of trading costs 

by adjusting their portfolios less frequently (Constantinides (1986), Heaton and Lucas (1996), 

Vayanos (1998)). The extent to which they actually do this, however, remains a puzzle. Actual 

trading volumes are much higher than the theoretical equilibrium models predict. 

The risk-factor perspective stresses stochastic variation in trading costs (Acharya and 

Pedersen (2002), Pastor and Stambaugh (2003), Sadka (2004)). A security’s exposure to 

aggregate liquidity variation leads to risk that is non-diversifiable and therefore conceivably 
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priced like any other source of risk. The risk-factor and characteristic views are not incompatible. 

Cross-sectional and deterministic components of variation in liquidity could be priced as 

characteristics, while stochastic variation over time may give rise to a risk factor. The empirical 

frameworks are quite different, however. In estimating a liquidity characteristic at a point in 

time, it is reasonable to take its average over a recent period. Determination of its properties as a 

risk factor, however, requires a time series sample long enough to accurately characterize the 

stochastic variation. Risk-factor analysis thus places heavier demands on the data. 

 The paper finds that the sample distributions of all estimated high-frequency liquidity 

measures exhibit numerous extreme values. Although some of these may be artifacts of data 

errors, it is also likely that the extreme values arise from large cross-sectional variation in actual 

trading costs. Concordance across the measures also varies. The simple single-trade measures 

comprising average intraday spread, the closing spread and the effective cost have correlations of 

about ninety-five percent. When the set is expanded to include measures derived from dynamic 

models of prices and signed trades, however, the correlations are generally modest at best. Thus, 

there is no overall concordance, and no single measure that captures all dimensions of liquidity. 

Stoll (2000) arrives at similar conclusions, using a panel of liquidity measures that partially 

overlaps the set used in the present study. 

 The study next examines the correlations between the high-frequency liquidity estimates 

and the proxies constructed from daily data. The simple single-trade measures are relatively easy 

to proxy.  The Roll estimate of the bid-ask spread (with infeasible estimates set to zero) performs 

well, achieving a correlation of 0.852 with the average effective cost computed from high-

frequency data. The Gibbs estimate, however, does even better, attaining a 0.944 correlation. 

Thus, effective cost can reasonably be proxied from daily data. Daily proxies for price impact 

and reversal liquidity measures are less successful. 

 The paper finds mixed evidence that liquidity is a priced characteristic. When BCS risk-

adjusted returns are regressed against the proxies individually, both the Gibbs estimate of the 

effective cost and the illiquidity ratio are positively correlated with BCS risk-adjusted returns. 
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These results, however, are not robust. The relations between liquidity measures and risk-

adjusted returns are sensitive to extreme values. Moreover, these relations exhibit marked 

seasonality, with January values being the highest. This is consistent with Eleswarapu and 

Reinganum (1993). 

 The paper is organized as follows. The next section summarizes measures of trading cost 

based on high-frequency trade and quote data. Section 3 describes the proxies constructed from 

daily data. Reversal measures, however, are sufficiently distinct to warrant a separate discussion 

in Section 4.  Section 5 describes the construction of the high-frequency/daily comparison 

sample and the estimation details. The properties and interrelations of these measures are 

discussed in Section 6. The remaining two sections examine the long-term evidence. Section 8 

describes the time-series and cross-section properties of the Gibbs estimates of effective cost in 

the CRSP daily data file. Section 9 presents the asset-pricing specifications. A brief summary 

concludes the paper in Section 10. 

2. Microstructure-based measures of transaction costs and liquidity 

 This section discusses measures generally motivated by microstructure models and 

estimated with high-frequency data. The following describes in turn posted and effective spreads, 

and impact measures based on dynamic models of prices and trades. Reversal measures are 

discussed separately in section 4. 

a. Spreads: posted and effective 

One common framework for imputation of transaction cost is the implementation 

shortfall approach (Perold (1988)). This approach focuses on the difference between the actual 

portfolio return and the return that would have been achieved had all purchases and sales 

occurred at hypothetical prices that were free of trading costs. The difference is the cost of 

implementing the strategy. 

For a single executed trade this suggests measuring the cost as the difference between the 

average transaction price and a hypothetical benchmark price taken prior to the initial trade. One 
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common benchmark is the midpoint of the bid and ask prevailing at the time of the order 

submission. For a trade executed at the bid or ask, the implied cost is one-half the bid-ask spread. 

For the spread and related measures, the analysis explores both log and level forms, but with 

emphasis on the former. The log spread prevailing before the kth trade is , where ak k ks a b= −

k

k 

and bk are the log ask and bid prices. The level spread is k kS A B= − , where  and k kB A are the 

bid and ask prices in dollars per share. 

In many markets and for a variety of reasons, market orders often transact at prices better 

than the posted quotes. This motivates use of the log effective cost, defined for the kth trade as  

  (1) 
, for a buy order
, for a sell order

k k
k

k k

p m
c

m p
−⎧

= ⎨ −⎩

where pk is the log trade price and mk is the log quote midpoint prevailing at the time the order 

was received. The level effective cost, Ck, is defined analogously. The effective cost is most 

meaningful for small market orders that can be accommodated in a single trade. The effective 

cost occupies a prominent role in US securities regulation. Under SEC rule 11ac1-5, market 

centers must periodically report summary statistics of this measure. 

 Accurate computation of the effective cost requires knowledge of order characteristics, 

most importantly the arrival time and direction (buy or sell). Studies of order data are common 

(e.g., Keim and Madhavan (1995), Harris and Hasbrouck (1996), Chan and Lakonishok (1997) 

and Conrad, Johnson, and Wahal (2001)), but none of the samples spans a long history. When 

order data are unavailable, the effective cost is often estimated from transaction and quote data.  

A trade priced above the midpoint of the bid and ask (prevailing at the time of the trade report or 

a brief time earlier) is presumed to be a buy order; a trade priced below the midpoint is presumed 

to be a sale. Effective costs computed in this fashion are often used in academic studies (see 

Bessembinder and Kaufman (1997) and Bessembinder (2003a)).  

b. Measures based on dynamic models 

 Many economic models imply joint dynamics for orders and price changes that involve 

both permanent and temporary effects. The former reflect the information content of the order, 
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with Kyle (1985) and Glosten and Milgrom (1985) exemplifying the two main approaches. The 

latter arise from transient liquidity effects, inventory control behavior, price discreteness, etc. In 

addressing practical trading problems, the principal advantage of the dynamic models over the 

single-trade approaches discussed above lies in their ability to project execution costs when 

trades are distributed over time. 

The literature contains a large number of approaches. The following specification is 

representative. The evolution of the log quote midpoint is: 

 1t t tm m Q utλ−= + +  (2) 

Here, t indexes five-minute intervals, and Qt is a measure of the cumulative signed order flow 

over the interval. Defining as the direction of the kth trade  (+1 if buyer-initiated, –1  if seller-

initiated, 0 if indeterminate), the measure used here is the sum 
kq

t
t k N

Q
∈

= kq∑  where Nt is the 

number of trades in the interval. Alternative specifications that involved signed dollar volume 

and signed square-root dollar volume gave similar results and are not reported. The λ coefficient 

in Eq. (2) measures the impact of orders on prices. 

c. Other measures 

Reversal measures quantify the transient effects of order imbalances. While the measures 

discussed in the present section are based on high-frequency trade and quote data, however, 

reversal measures are usually implemented with daily price and volume data. It will facilitate the 

exposition, therefore, to defer discussion of reversal measures until section 4. 

Even within the class of high-frequency measures, however, the set described above is far 

from exhaustive. {Easley, Hvidkjaer, et al. 2002 #4820} estimate return specifications in which 

liquidity is measured by the estimated probability of informed trading, PIN (also see Easley, 

Kiefer, and O'Hara (1997); Easley and O'Hara (2002)). Sadka (2004) estimates permanent and 

transitory trade impact coefficients in a dynamic framework similar to, but more comprehensive 

than the model given in Eq. (2). The properties of these estimates and relation to the present set 

are discussed in section 6.  
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3.  Transaction cost and liquidity measures based on daily data 

 Estimation of the measures discussed in the previous section generally requires intraday 

quote and trade data. I now turn to measures that can be estimated using daily return and volume 

data.  

a. Moment estimates of the Roll model, cM and cMZ 

 Roll (1984) suggested a simple model of the spread in an efficient market. Following the 

notation used earlier, the model may be stated as: 

 1k k

k k

m m uk

kp m c q
−= +

= +
. (3) 

The time subscript, k, can be thought of as indexing successive trades. mk is the log quote 

midpoint prevailing prior to the trade, pk is the log trade price, qk is the direction indicator, and c 

is the effective cost (cf. Eq. (1)), which is presumed constant.  The model may also be specified 

using levels in lieu of logs for the price variables. It has essentially the same form under time 

aggregation. In particular, the time subscript can be viewed as indexing days (“t”) rather than 

trades, with qt being interpreted as the direction variable for the last trade of the day. The 

estimation approaches described below take this perspective.  

 The Roll model is usually estimated by method-of-moments. The model implies  

 ( )1 1t t t t t tp m c q m c q c q u− −∆ = + − + = ∆ + t

)

,  (4) 

from which it follows that ( 1,t tc Cov p p −= − ∆ ∆ . The moment estimate, denoted cM, is the 

sample analog of this. It possesses all the usual properties of GMM estimators, including 

consistency and asymptotic normality. Moment estimation for this model is relatively easy to 

implement and often satisfactory. 

 cM only exists, however, if the first-order sample autocovariance is negative. In samples 

of daily frequency this is often not the case. In annual samples of daily returns, Roll found 

positive autocovariances in roughly half the cases. Harris (1990) discusses this and other aspects 

of this estimator. His results show that positive autocovariances are more likely for low values of 
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the spread. Accordingly, one simple remedy to the problem is to assign an a priori value of zero. 

I define the moment/zero estimate as: 

 ( ) ( )1 1, , if ,

0, otherwise
MZ t t t tCov p p Cov p p

c − −
⎧ − ∆ ∆ ∆ ∆ ≤⎪= ⎨
⎪⎩

0

)u

 

The corresponding estimates based on a price level model are denoted CM and CMZ. 

Gibbs-sampler estimates of the Roll model, cGibbs and CGibbs

 Hasbrouck (2004) advocates Bayesian estimation using the Gibbs sampler. To complete 

the Bayesian specification, I assume here that ( 2~ . . . 0,
d

tu i i d N σ  and that the data sample is 

{ }1 2, , , Tp p p p≡ … .  The prior for c is  where the “+” superscript denotes 

restriction to the positive domain. The prior for 

( 2,~ 0,
d

prior
cc N σ+ )

2
uσ  is inverted gamma distribution, 

(2 ~ ,
d

u IG )σ α β . Numerical values for the prior parameters are discussed in section 5. In the 

Bayesian approach, the unknowns comprise both the model parameters { }2, uc σ and the latent 

data, i.e., the trade direction indicators { }1, , Tq q q≡ … and the efficient prices { }1, , Tm m m≡ … . 

The parameter posterior density ( ), uf c pσ  is not obtained in closed-form, but is instead 

characterized by a random sample of draws. These draws are constructed by iteratively drawing 

from the full conditional distributions. The Gibbs estimate of c, denoted cGibbs, is the sample 

mean of the posterior draws. The Gibbs estimate of the level effective cost, denoted CGibbs, is 

constructed in a similar fashion. 

 The Gibbs estimate offers some advantages over the moment estimate. First, the prior can 

restrict the effective cost estimates to be positive. Second, within the framework of the model, 

the posterior is an exact small sample distribution. A third advantage stems from the CRSP 

convention of reporting the midpoint of the closing bid and ask (flagged as a negative value) in 

lieu of the transaction price if there are no trades on a particular day. 

 The implications of the CRSP convention differ for the moment and Gibbs estimates. The 

moment estimate is based on the sample return autocovariance, which is proportional to 1t tt
r r−∑ . 

The summand here is ( ) ( )1 1 1t t t t t tr r p p p p− − −= − − 2− . In principle, since the model applies to trade 
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prices, a term should be included only if it encompasses a sequence of three trade prices. For 

many stocks, however, this would drastically reduce the sample size. To avoid this attenuation, 

the present study uses all closing prices in the moment estimates irrespective of whether they 

represent trades or quote midpoints.  

 The Gibbs estimate, on the other hand, is easily generalized to accommodate quote 

midpoints.  Specifically, if a quote midpoint is reported on day t, the trade direction indicator is 

set to zero.  From Eq. (3), this implies t tp m= . Intuitively, this prevents the observation from 

contributing directly to the estimate of c, but allows one or both of the adjacent prices to 

contribute (assuming that they have valid transaction prices).2

 This treatment of the Roll model is almost certainly misspecified in a number of 

important respects. Actual samples of stock returns typically contain many more extreme 

observations than the normal density plausibly admits. Trade directions are unlikely to be 

independent of the efficient price evolution. Realized prices are discrete. The effective cost is 

unlikely to be constant within a sample, etc. Hasbrouck (2004) discusses various extensions to 

deal with some of these features, but for the sake of computational expediency and programming 

simplicity, the present paper uses the most basic form of the sampler. 

 Lest misspecification appear to be a major concern, it must be emphasized that the Gibbs 

estimates (like all daily proxies considered here) is compared against values constructed 

independently from high-frequency data. There is accordingly no immediate need to assess the 

appropriateness of the model assumptions or implementation procedures. If the Gibbs estimates 

are strongly correlated with the corresponding high-frequency values, these concerns are of 

secondary importance. 

                                                 
2 Formally, this procedure can be justified by embedding the Roll model in a more general 

framework in which observation of a quote midpoint or trade price is determined randomly (and 

independently of the other variables). 
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 The Gibbs sampler generates random draws from the parameter posterior, thus 

characterizing the entire distribution. By tabulating, say, the 0.05 and 0.95 quantile points of the 

distribution, one could in principle establish a confidence band for the estimate. Unlike the mean 

point estimate, however, the estimated confidence limits cannot easily be validated by 

comparison to estimates constructed independently. 

b. The (Amivest) liquidity ratio, L 

 The effective cost estimates discussed in the prior two section use only daily price data. 

The remaining measures use volume data as well. This imposes a practical limitation because the 

interpretation of reported volume may depend on institutional arrangements. Volume in an order-

driven market (such as the NYSE) is not, for example, generally comparable to volume in a 

quote-driven market (such as Nasdaq). 

The Amivest liquidity ratio is the average ratio of volume to absolute return: 

 d dL Vol r=  (5) 

where the average is taken over all days in the sample for which the ratio is defined, i.e., all days 

with nonzero returns. It is based on the intuition that in a liquid security, a large trading volume 

may be realized with small change in price. This measure has been used in the studies of Cooper, 

Groth, and Avera (1985), Amihud, Mendelson, and Lauterbach (1997), and Berkman and 

Eleswarapu (1998), among others. Sample distributions of L often exhibit extreme values.  

Cooper et al and Amihud et al use ( )log L in subsequent analysis.  The present study employs the 

square-root transform in lieu of the log. (Zero values of L can in principle exist.) Furthermore, 

the transform is applied to the daily ratios, i.e., before averaging. This transformed variant is 

defined as 

 1/ 2
d dL Vol= r .  (6) 

c. The illiquidity ratio, I 

 Amihud (2002) suggests measuring illiquidity as: 
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 d dI r Vol=  (7) 

where rd is the stock return on day d and Vold is the reported dollar volume. The average is 

computed over all days in the samples for which the ratio is defined, i.e. days with nonzero 

volume. This measure loosely corresponds to λ in Eq. (2), but whereas λ measures the return 

impact of a cumulative signed order flow, I captures the absolute return impact of a cumulative 

unsigned volume. This measure is used as a risk factor by Acharya and Pedersen (2002). 

Analogously to the liquidity ratio, the square-root variant is defined as  

 1/ 2
d dI r Vol= . (8) 

4. Reversal measures 

Reversal measures of liquidity summarize the association between return and lagged 

order flow. The intuition is that order flow induces a price adjustment that initially overshoots, 

then subsequently reverts to, true value. This might arise, for example, due to inventory 

adjustments by market makers.  

Drawing on this intuition, Pastor and Stambaugh (2003) suggest estimating liquidity by γ  

in the regression (using present notation): 

 ( )1 1 1
e e

t t t tr r sign r V Dollar
tθ ϕ γ− − −= + + + ε  (9) 

where  is the stock’s excess return (over the CRSP value-weighted market return). γ is 

expected to be negative, with magnitude increasing with illiquidity.  Pastor and Stambaugh 

estimate this specification using daily return and volume data. 

e
tr

 The logic of this specification is most apparent from a specification suggested by Pastor 

and Stambaugh that is similar to Eq. (9), but involves signed order flow. In present notation: 

 ( )1
e

t t tr X Xφ − tu= − +  (10) 

Where  is the excess return over a market-wide common factor, ue
tr t is a firm-specific 

component, and Xt is the signed dollar order flow on day t. By comparison with Eq. (9), it is 

apparent that lagged order flow  is being proxied by dollar volume, signed by excess 

return.  Pastor and Stambaugh find that when they simulate data using Eq. (10) and estimate via 

( 1tX − )
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Eq. (9), φ and the γ  estimated from Eq. (9) are very highly correlated. The present study 

investigates the correspondence by estimating Eq. (9) from CRSP data, and estimating Eq. (10) 

using signed order flow constructed from TAQ data. 

5. The comparison sample and estimation 

a. Construction of the comparison sample 

 The comparison sample is a random selection of firm-years for which both TAQ (high 

frequency) and CRSP (daily) data are available. For each of the eleven years 1993-2003, 250 

firms are chosen at random from the CRSP database. To be eligible for selection in a given year, 

a firm has to satisfy the following criteria: 

1. The issue is an ordinary common share (CRSP share code 10, 11 or 12). 

2. The issue is present in the CRSP database on the last trading day of the year. 

3. There is no change of trading venue, ticker symbol or cusip identifier after August of the 

year. 

The first criterion simply limits the sample to those issues usually considered in asset pricing 

tests. The remaining criteria are imposed to ensure reasonable homogeneity in a firm’s trading 

characteristics over the year.  The selection is made based on information in the CRSP events 

file. Of the 2,750 firms selected, two were subsequently determined to have no valid return or 

price observations for the year, and were dropped from the sample. Of the remaining 2.748 firm-

years, 719 were NYSE listings, 344 were Amex, and 1,785 were Nasdaq. 

 Asset pricing studies sometimes exclude low-priced stocks (e.g., below five dollars). This 

practice is deliberately avoided in the present study. Casual observation suggests that transaction 

costs are indeed high for low-price stocks. In investigating the effects of transactions costs, 

therefore, the observations corresponding to these firms might well be the most informative. 

Some studies also exclude firms where the value of an estimated statistic is determined to be 

extreme. There is a sensible rationale for this, in that extreme values often reflect errors or other 

features of the data that render the observation inappropriate for the model. These filters are not 



Page 13 

used in the present study because considerable anecdotal evidence (as well as the statistics 

presented below) suggest that actual transaction costs are highly leptokurtotic. Generally in the 

present study, estimates are only excluded (in practice, set to ‘missing’) when the estimate is 

based on a small number of observations, and the presumed estimation error would be high. The 

discussion now turns to estimation details. 

b. Estimation of TAQ-based liquidity measures 

 Estimates are computed for individual firms using up to a year’s worth of data. The TAQ 

quote record is filtered to remove quotes with zero bid or ask, offers greater than five times the 

bid and spreads greater than five dollars. Only quotes from a stock’s primary listing exchange are 

used, and only quotes posted during regular trading hours. Spreads are first averaged within the 

day, weighted by the time the spread was in force (i.e., the time to the next quote revision or 

market close). The daily values are then averaged across all days. These average level and log 

spreads are denoted S and s, respectively. 

 The other measures involve transaction as well as quote data. The TAQ transaction 

record is filtered to remove all trades with nonstandard settlement or corrections. Trades from all 

venues are retained, not just the primary listing exchange. Trades are signed and effective costs 

computed using quote midpoints prevailing two seconds prior to the reported trade time.  When 

there are at least 100 trades in a month, effective cost outliers (observations above the 95th 

percentile) were removed. The effective cost observations are averaged over each month, 

weighted by dollar volume of the trade, and these monthly observations are then averaged over 

the year. The resulting level and log effective cost estimates are denoted C and c, respectively. 

 Using quote and signed trade data aggregated over five-minute intervals, Eq. (2) 

is estimated for each month in which there are at least twenty-five intervals over which the price 

change is non-zero and the cumulative signed-trades are non-zero. The coefficient estimate used 

in subsequent analysis is the average of the monthly estimates, and is denoted λ5 min.  A similar 

specification is estimated where the data are time-aggregated over days. For this estimation the 

CRSP daily return is used as the dependent variable, and one estimation is computed using all 
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the days in the year. The coefficient estimate from this regression is denoted λDay. When there 

are fewer than fifty days with non-zero returns, the estimate is dropped from subsequent analysis. 

The reversal coefficient φ is estimated in a similar fashion using Eq. (10).  

c. Estimation of CRSP-based liquidity measures 

 The remaining measures are based solely on CRSP price, return and volume data. The 

moment estimates of effective cost, cM and cMZ, are estimated using the sample first-order 

autocovariance (section 3). If this autocovariance is positive, cM is set to “missing”, and cMZ is set 

to zero. The level effective cost estimates CM and CMZ are constructed in a similar fashion. 

 For the Gibbs estimate, the prior for the effective cost is constructed as a normal 

distribution truncate to the positive region, denoted ( )2, 0, Prior
cN µ σ+ = .  (Note that 

2, and Prior
cµ σ are merely the parameters of the density. Due to the truncation, the actual mean 

and variance of the distribution are different.) For the effective cost and log effective cost 

estimates, 2,Prior
cσ  and 2,Prior

Cσ  are both set to unity. In case of the log effective cost, a value of 

c=1 for a US equity would be extremely, arguably implausibly, high. So the unit interval (0, 1) 

would be expected to contain all actual values. Within this region, the normal density does not 

exhibit extreme variation. These remarks also apply, although to a lesser degree, for the level 

effective cost, C.  

 Although this prior is fairly broad, it is not completely uninformative. This is deliberate 

and necessary. In the Gibbs sampler, simulation of the posterior for c requires estimation via 

regression of Eq. (4). This estimation is conditional on simulated values of q. In the process, 

there is a possibility that at a particular draw all of the qt are either –1 or +1. In this case, all of 

right-hand-side variables in the regression (the ∆qt ) are zero. The estimated regression 

coefficient is therefore undefined, and the new value of c must be drawn from the prior. 

 The Gibbs sampler is initialized by setting the trade direction indicators to the sign of the 

most recent price change (except for prices reported as quote midpoints). Next, 1,000 sweeps of 

the sampler are computed. The first 200 draws are discarded (as a burn-in period, to minimize 

start-up effects. Parameter estimates are determined as the mean of the final 800 draws. The 
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number of sweeps was chosen to achieve a manageable computation time. One thousand draws 

would not be considered sufficient in many applications, but experimentation with more draws 

did not materially change the estimates. 

The liquidity coefficient L and its square-root variant L1/2 are estimated using Eqs. (5) and 

(6). The illiquidity coefficients I and I1/2 are estimated using Eqs. (7) and (8). The reversal 

coefficient γ is estimated from Eq. (9). 

 As noted above, although censoring of extreme values per se is not consistent with the 

aims of the paper, estimates are dropped when they are based on few observations. Specifically, 

moment estimates of the effective cost and log effective cost require at least fifty price 

observations. In the development of the  estimate, each monthly estimate going into the 

overall average is computed subject to a minimum of twenty-five five-minute intervals over 

which the price change is non-zero and the cumulative signed-trades are non-zero.  L and L

5min
iλ

1/2 

estimates require at least fifty days where the return (the denominator in  (5) or (6)) is nonzero. 

Similarly, I and I1/2 estimates require at least fifty days where the volume (the denominator in  

(7) or (8)) is nonzero. The γ  estimate requires at least fifty observations. For the Gibbs estimates, 

there must be at least fifty days on which there was a trade. 

6. Analysis of the comparison sample. 

a. The TAQ measures 

Table 1 reports summary statistics for the total comparison sample. It will be useful to 

first discuss the mean estimates for all variables, and then turn to estimates of the higher-order 

moments. 

The mean posted log spread is 0.0381 (approximately 4%), or in levels, $0.277 per share. 

The corresponding log and level effective costs are 0.0141 and $0.101.  These are somewhat 

smaller than one-half the corresponding spread, the value that would result if all trades occurred 

at posted quotes. The magnitude of the mean price impact coefficient, λ5 min, implies that a buy 

order causes an increase of 0.0017 in the log quote midpoint (approximately 17 basis points). 
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The corresponding estimate based on data aggregated over one day, λDay, is somewhat higher, 

0.0024. The daily reversal coefficient φ is negative. 

The sample distributions of all the TAQ measures exhibit many extreme values. Excess 

kurtosis (relative to the normal distribution) are notably high. Skewness coefficients generally 

indicate distributions skewed to the right.  

Can these extreme values be considered spurious? While it is not practical to verify each 

observation, casual evidence and the sentiments of practitioners suggest that for some stocks, 

trading costs are indeed high. By way of example, the highest average posted spread in this 

sample is associated with First State Corp. (ticker FSBT) in November, 1996. In the CQ file for 

that month, there are numerous days when the stock is 22 bid/offered at 26 for the entire day, a 

spread of four dollars. Effective costs, while lower than half this value, are nevertheless still 

quite high. As an example, late in the day on November 13, 1996, the market was 23.50 

bid/offered at 26, and a trade occurred at a price of 24.75 (an effective cost of one dollar per 

share). 

b. CRSP measures 

The remaining variables are based on daily CRSP data. The moment estimate of the log 

effective cost, cM, is feasible for only 1,938 of the 2,748 firms (roughly two-thirds). The mean 

value of 0.0193 is substantially higher than the mean TAQ estimate (c, 0.0141). This suggests 

that most of the infeasible observations correspond to relatively low values. Consistent with this, 

the variant of the moment estimate in which infeasible values are set to zero, cMZ,  has a mean of 

0.0137, which is quite close to the TAQ estimate. Moment estimates for the level effective cost,  

CM and CMZ, are similar. The Gibbs estimates of level and log effective cost ( )  

also have means and medians close to the corresponding estimates based on TAQ data. 

 and Gibbs GibbsC c

The liquidity and illiquidity measures, L and I, exhibit remarkably high skewness and 

kurtosis. These in turn are likely to arise from extreme values in the underlying return and 

volume data. Gabaix, Gopikrishnan, Plerou, and Stanley (2003) find that distribution tails for 

volumes and returns follow power laws with exponents 3/2 and 3 respectively, implying that 
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volume moments of order greater than 3/2 and return moments of order greater than 3 are not 

finite. This does not imply that expected values for I and L are infinite, but it does suggest that 

estimates are likely to dominated by extreme values. The liquidity ratio implicitly uses volume in 

the numerator, and might therefore be expected to be particularly ill-behaved. The variants I1/2 

and L1/2 have lower, though still elevated, kurtosis. 

The average γ estimate is not negative in this sample, contrary to expectation, but the 

kurtosis is extreme. A least-squares estimate, γ is essentially a ratio involving products and cross-

products of returns and volume. For the same reasons discussed in connection with I and L, the 

estimate is likely to be dominated by extreme values. 

The table also summarizes estimates of the standard deviation of price changes σ∆P  and 

that of log price changes pσ∆ . The latter approximates the standard deviation of returns, but does 

not reflect dividends. The σ∆p estimates are generally higher than the Gibbs estimates of the 

random-walk variance . The former impound bid-ask bounce, while the latter in principle 

do not. 
,

Gibbs
u Logσ

7. Correlations 

Within the set of liquidity measures, there are two important groups of correlations. The 

TAQ-based liquidity measures reflect the spread, price impact and reversal attributes of the 

market. The correlations within this set indicate the overlap, the extent to which one measure 

might (ideally) capture variation in the others. The other important correlations are those 

between the TAQ-based measures and their CRSP-based counterparts. These will indicate the 

validity of the latter as proxies for the former. 

In all cases, four sorts of correlations are considered. In addition to the usual Pearson 

correlations, Spearman (rank-order) correlations are reported. These assess nonlinear monotonic 

associations. They are more robust to outliers than Pearson correlations, an important 

consideration given the high kurtosis of the measures. In addition, however, there are situations 

in which an economic model might suggest the direction, but not the linearity, of a liquidity 

effect. 
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The study also considers (for both Pearson and Spearman) correlations, the partial 

correlations, where the set of conditioning variables consists of log market capitalization, the 

standard deviation of price changes, the standard deviation of log price changes, and the average 

price. These variables are certainly associated with trading costs, yet in many situations will have 

alternative roles or proxy for other effects. The partial correlations measure a relation when the 

explanatory power of these variables has been removed. 

a. Correlations involving the TAQ-based measures 

Table 2 reports the correlations for a representative set of TAQ-based measures. The 

correlations between the log spread and the log effective cost are all over 0.9. This strong 

association is consistent with the results of most other studies. Correlations involving the level 

spread and level effective cost (not reported) are very similar.3  The correlation between effective 

cost and log effective cost is only 0.158. The principal difference between these measures is the 

price level, but the partial Pearson correlation is also low (0.199). The Spearman correlations are 

somewhat higher. 

The model used to define the price impact coefficients, Eq. (2), is in principle invariant to 

time aggregation: λ5 min and λday should be equal (in the population, but not necessarily in sample 

estimates). Since daily estimations are somewhat easier to program, it is useful to consider 

whether the day estimate can reliably proxy for the five-minute estimate. The correlations are 

indeed positive, but weaker than one might hope, ranging from 0.477 (Spearman partial) to 0.771 

(Spearman). 

                                                 
3 Numerous asset pricing studies, rely on closing (end-of-day) NYSE spreads (Stoll and Whalley 

(1983), Amihud and Mendelson (1986), Amihud and Mendelson (1989), Eleswarapu and 

Reinganum (1993), Kadlec and McConnell (1994), and Eleswarapu (1997), among others). The 

correlation between end-of-day spread and time-weighted spread for the NYSE firms in the 

comparison sample is 0.925. 
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The reversal coefficient φ estimated from signed data is negatively correlated with the 

daily price impact coefficient λday. This is in principle reasonable, since φ is positively and λday 

negatively related to liquidity. It might further suggest that reversal and impact attributes of 

liquidity are essentially similar. The relation can more directly be explained, however, by noting 

that if the dominant effect is contemporaneous, then ( )1t tX X− −  in (10) might be serving in part 

as a noisy proxy for –Xt.  Alternative specifications suggest that this is likely. In regressions of 

the form , the λ coefficients tend to dominate the φs.   ( )1
e

t t t tr X X Xλ φ −= + − + tu

The study also considers correlations involving the probability of informed trading (PIN, 

Easley, Hvidkjaer, and O'Hara (2002)) and permanent/transitory impact coefficients (Sadka 

(2004)). The samples considered in these studies are smaller than the present sample. Both 

studies examine only NYSE/Amex stocks, and they impose somewhat more demanding data 

requirements on the individual firms. The correlations between these alternative measures 

(kindly supplied by the authors) and the present set may be summarized as follows.  Sadka’s 

transitory impact measure is strongly positively correlated with the effective cost; the permanent 

impact measure is modestly positively correlated with the present impact estimate. PIN is 

modestly correlated with both the effective cost and impact coefficient. The correlations are large 

enough to suggest a measure of commonality, but not so large as to establish that any measure is 

redundant. 

b. Proxy relationships for effective cost and log effective cost 

 The next sets of results are the crux of the analysis, addressing the question of how well 

high-frequency measures can be proxied using daily data. The daily proxies for log and level 

effective costs are the moment and Gibbs estimates. Since the basic moment estimates cM and CM 

are infeasible for about a third of the sample, the estimates used in assessing the correlations are 

those for which infeasible values are set to zero (cMZ and CMZ).  The correlations are reported in 

Table 3. 

 In comparing the proxy validity of the moment and Gibbs estimates, there is a clear 

winner. While both are at least moderately positively correlated with the corresponding TAQ 
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measures, the correlations for the Gibbs estimates are uniformly higher. The CRSP estimate 

cGibbs has a Pearson correlation of 0.944 with the TAQ measure c; the moment estimate cMZ  

achieves a correlation of 0.852. The difference between them is even larger for Spearman and 

partial correlations. The correlations involving the level effective cost are slightly lower, but the 

Gibbs estimate is still clearly dominant. 

 These results suggest that the Gibbs estimates are very attractive proxies for log and level 

effective cost, retaining substantial validity even when controlling for variation in capitalization, 

standard deviation and price level.  

c. Proxy relations for price impact and reversal measures 

Table 4 reports correlations that assess the validity of the daily proxies (L, L1/2, I, I1/2, and 

γ) for the TAQ-based five-minute impact coefficient λ5 min and the reversal measure φ. For λ5 min 

the results can be summarized as follows. First, the illiquidity measures dominate the liquidity 

measures. One would expect λ5 min to be positively correlated with I and I1/2, and negatively 

correlated with L and L1/2. This is generally the case, but the Pearson partial correlations for L 

and L1/2 are positive. Furthermore, the correlations involving I and I1/2 generally have higher 

magnitudes. The second important feature of the table is that the square-root variants dominate 

the original measures. There is not much difference in the Spearman and Spearman partial 

correlations. These reflect rankings, and the square-root transformation does not greatly affect 

the orderings. The Pearson correlations, however, are stronger.  

 The correlation patterns involving the reversal measures, however, are less clear. The 

CRSP-based estimate γ is weakly and inconsistently correlated with the TAQ-based estimate φ.  

φ is, on the other hand, moderately negatively correlated with the illiquidity measures.  

d. Summary of the proxy results 

This phase of the analysis has established several important results. The Gibbs estimate 

of effective cost is an excellent proxy for the high-frequency measure. The moment estimate 

(which may be easier to implement) is less powerful, but still may be adequate in many 
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situations. The correlation between the impact coefficient and the illiquidity measure is 

moderately positive, but the best performance is achieved when square-root of the return/volume 

ratio is averaged. The liquidity ratio, on the other hand, is a poor proxy. On a stock-by-stock 

basis, reversal measures are problematic. 

8. The Gibbs estimates: further results and discussion 

The analysis in the last section strongly supports the general use of the Gibbs sampler as 

a proxy for effective cost in the comparison sample, a random cross section of firms, 1993-2003. 

The present section explores the properties of this estimate in two other samples: the Dow stocks 

in 1993-2003, and the full CRSP daily database, 1962 to the present. The Dow application is 

important because it graphically demonstrates the limitations and shortcomings of the estimate. 

The long-term sample is interesting for historical purposes, and as background for the return 

estimations to follow. 

a. The Dow stocks, 1993-2003 

The period beginning in 1993 is an era of profound change in the trading mechanisms for 

US stocks. There were important trends, such as increased fragmentation and automation. There 

were also important discrete events, notably the decrease in the tick size from one-eighth to one-

sixteenth, the subsequent decrease to one penny, and (in the case of Nasdaq stocks) the order 

handling rules. These events induced dramatic and visible changes in effective costs (see 

Bessembinder (1999), Jones and Lipson (2001), Bessembinder (2003b), Werner (2003), Chung, 

Charoenwong, and Ding (2004), Chakravarty, Wood, and Van Ness (2004)). The present section 

investigates the ability of the Gibbs estimate to track these shifts in the Dow stocks (see in 

particular Jones (2001)). The analysis covers the NYSE stocks continuously included in the 

Dow-Jones index from 1993 to 2003. Survivorship effects are not important for present 

purposes. 

 Figure 1 plots the average daily effective cost over the sample (dollar-volume-weighted 

for each firm, but equally-weighted across firms) estimated from TAQ data. The salient and 
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familiar features are the sharp drops occurring at the tick-size regime shifts.  The figure also 

depicts the average of the Gibbs estimates of the effective cost based on CRSP data. 

(Computation of these estimates was essentially similar to the procedure used for the comparison 

sample, except that I introduced sample breaks at the tick regime shifts.) 

 The Gibbs estimate performs poorly in this sample. The overall level of the estimate is 

substantially higher than the TAQ-based effective cost. More disturbingly, it increases 

substantially after the first tick-size reduction, while the TAQ-based estimate drops. The 

evidence cannot be explained as an artifact induced by one or two firms. While some firms are 

“better behaved” than others, the graph is a fair and reasonable summary of the Gibbs estimate’s 

dismal performance. 

 How can this be reconciled with the very encouraging results of the correlation analysis 

discussed earlier? One conjecture might be that there is something about the Gibbs estimate that 

critically depends on a relatively large tick size. The strong correlations reported in the last 

section do not, however, deteriorate subsequent to the tick reductions. Computed separately for 

each of the years 2000 to 2003, the Pearson correlations ( ), GibbsCorr c c  are 0.864, 0.0.914, 0.843 

and 0.932. These are only slightly lower than the overall correlation in the comparison sample 

(0.944). 

 A more plausible explanation involves the relative size of the effective cost and the 

standard deviation of the efficient price. Simulations suggest that the Gibbs sampler “allocates” 

price changes (cf. Eq. (4)) between ut and c∆qt in a fashion similar to what one might attempt 

intuitively and visually from a price plot. That is, c∆qt components are identified by excessive 

reversals or spikes. When c is small relative to σu, however, it is difficult to differentiate the 

contribution of the efficient price change and the contribution of transactions costs.  From Table 

1, between the fifth and ninety-fifth percentiles, the log effective cost goes from 0.0011 to 

0.0467, approximately a forty-fold increase. The standard deviation of log price changes, 

however, only goes from 0.014 to 0.095, roughly a seven-fold increase. Volatility does not 

increase commensurately with effective cost. As a result, there are many firms in the sample 
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(high-cost firms, in particular) for which the Gibbs estimate is relatively accurate.  This finding is 

nevertheless sobering because it suggests that the Gibbs estimate measures effective costs only 

when they are large.  

A related issue arises in the analysis of effective costs by listing exchange. For Nasdaq, 

Amex and the NYSE, the respective Pearson proxy correlations ( ), GibbsCorr c c  are 0.947, 0.911, 

and 0.705. Relative to the other exchanges, the NYSE has low average effective costs and lower 

overall sample variation. Even in the NYSE sample, however, the Gibbs estimate performs 

markedly better than that moment estimate, for which the corresponding correlation is only 

0.409. 

b. Broader sample 

 In view of the strong performance of the Gibbs effective cost estimates in the comparison 

sample, it is interesting to consider the properties of these estimates over the full historical 

sample (beginning in 1963) for which daily CRSP data are available. To this end, annual 

estimates of the daily-based trading cost estimates and proxies were computed for all firms in the 

daily CRSP file. 

 Nasdaq closing prices are not extensively reported on the CRSP database until the middle 

of 1982 (with Nasdaq’s introduction of the National Market System). Due to relatively small 

numbers of stocks, however, the Nasdaq estimates developed in this paper are only reported 

beginning in 1985. The CRSP Nasdaq sample also changed markedly in 1992 with the inclusion 

of the Nasdaq SmallCap market. 

 Figure 1 plots the annual average  values for exchange and market capitalization 

subsamples. As in Fama and French (1992), NYSE/Amex breakpoints are also used for Nasdaq 

sample.  

Gibbsc

 The NYSE/Amex estimates provide a more complete picture of the long-run time-series 

variation. Although the series appears roughly stationary, there is substantial volatility, with the 

largest peak occurring around 1975. In 1975, commission levels dropped following the SEC’s 

deregulation. It is possible that liquidity suppliers increased posted and effective spreads to 
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compensate for decreased commission revenue. Another possible explanation is short-run 

stickiness in absolute dollar spreads. Most market indices dropped over 1974. At the new lower 

price levels, relative spreads would be higher. 

 For both NYSE/Amex and Nasdaq firms, time variation in effective costs is concentrated 

in the lowest-capitalization subsample. This is particularly true for the Nasdaq lowest-

capitalization firms, for which average effective cost goes from around one percent in the early 

1980’s to roughly four percent in the early 1990’s. This may in part reflect the changes in 

composition of the Nasdaq population. Smaller, but still quite noticeable variation in effective 

cost occurs in the other Nasdaq capitalization quartiles. The NYSE/Amex firms in the lowest 

capitalization subsample have effective costs that vary approximately between 0.5% and 1.5%. 

There has been no dramatic change in effective costs for the higher capitalization quartiles, but 

(recalling the Dow results) the accuracy of the Gibbs estimate is apt to be poorer in these groups. 

9. Liquidity and stock returns 

 This section examines the relation between expected returns and liquidity, viewed as a 

characteristic and proxied by one or more of the daily-based measures cGibbs, I1/2, and γ.  In light 

of the results of section 7, both cGibbs and I1/2 are the best proxies for effective cost and trade 

impacts, while γ  is the only CRSP-based reversal measure considered.  In studies that focus on a 

single liquidity proxy, asset pricing tests usually follow the Fama and MacBeth (1973) approach. 

This requires the formation of portfolios based on size (or beta) and the liquidity proxy. Since the 

present study aims at an impartial evaluation of a set of proxies, however, approaches that 

require portfolio construction are undesirable. As an alternative, I follow the approach of 

Brennan, Chordia, and Subrahmanyam (1998) (BCS).  

The BCS procedure is based on an approximate factor model in which the return on the 

jth security is given by: 

 jt j j t jtR ER f eβ= + + , (11) 
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where ft is a vector of factor realizations at time t, and βj contains the factor loadings for security 

j. The APT implies j F jER R β λ− = , where λ is the vector of factor risk premia, and that realized 

returns satisfy: 

 jt Ft j t jtR R F eβ− = +  (12) 

where tF tfλ= + . The key question is the extent to which the security characteristics can explain 

the residual in Eq. (12).  To implement the test, estimates of the factor loadings, denoted ˆ
jβ , are 

computed using data prior to time t. The implied risk-adjusted returns are then computed as 

 ( )* ˆ
jt jt Ft j tR R R Fβ= − +  (13) 

In the original BCS procedure, the risk-adjusted returns are regressed against the 

characteristics. Denote by Zjt a vector of predetermined characteristics for security j. At each t, 

the risk-adjusted returns are then regressed against this set: 

 *
jt t jt jtR d Z e= + �  (14) 

Let  denote the OLS estimate of dˆ
td t. BCS suggest two approaches to summarizing the time 

series of these estimates. The raw overall estimate, denoted , is simply the average.  ˆ
rawd

 Alternatively, to eliminate possible biases arising from estimation errors in the factor 

loadings ˆ
jβ , BCS propose a purged estimator, denoted . An element of this vector  

is computed as the intercept in a time series regression of on the factor realizations F

ˆ
purgedd ,

ˆ
purged kd

ˆ
ktd t. Both 

raw and purged estimates are computed in the present analysis.  As an additional robustness 

check, however, I also compute the various types of correlations between risk-adjusted returns 

and the liquidity proxies. 

 The full set of characteristics includes the liquidity proxies (cGibbs, I1/2, and γ) and other 

variables suggested by BCS: the log market capitalization, logMktCap; the lagged return for the 

stock over the second and third prior month, r23; the return over lagged months four through six, 

r46; and the return over lagged months seven through twelve, r712. 

 Table 5 reports the raw coefficient estimates based on Eq. (14). The purged coefficient 

estimates are similar and are not reported. Specifications (1)-(3) incorporate one liquidity proxy 
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at a time. In the estimates for the NYSE/Amex sample, the cGibbs and I1/2 coefficients have the 

anticipated sign and significance in the specifications where they are included one at a time. In 

the Nasdaq sample, this is only the case for cGibbs.  These findings suggest that cGibbs is the best 

single proxy. In specification (4), however, which includes all proxies, the picture is less clear, as 

there is no clear winner.  

 Relative to the others, the cGibbs measure possesses the virtue of an economically 

interpretable magnitude. This enables us to address the reasonableness of the coefficient. In the 

NYSE/Amex sample, the coefficient of cGibbs is approximately 0.3. This implies that a stock with 

an average effective cost of one percent would have a monthly expected liquidity premium of 30 

basis points (3.6% on an annual basis). This might seem high, but a one percent effective cost is 

well above average in this sample. suggests that this level is exceeded (on average) only in the 

lowest market capitalization quartile, and here only a small portion of the time. It should also be 

noted that the effective cost is generally a fraction of the posted bid-ask spread. 

 In the Nasdaq sample, the coefficient of cGibbs is approximately 0.2. Although this point 

estimate is lower than the NYSE/Amex value, Nasdaq effectives costs are much higher. Figure 2 

suggests that an effective cost of two percent would not be extreme in the lowest Nasdaq quartile 

(and this is using NYSE breakpoints). A two percent effective cost would imply a monthly 

liquidity premium of forty basis points.  

 Alternative tests, however, cast doubt on the robustness of these findings.  For the same 

reasons discussed in connection with the investigation of the liquidity proxies, it is useful to 

consider various sorts of correlations (Pearson, Spearman, partial) between risk-adjusted returns 

and the proxies. Analogously to the raw coefficient estimates, a correlation between risk-adjusted 

returns and a proxy is estimated across firms for each t. Inference is based on the average of 

these correlations across time. 

 Table 6 reports the time-series average correlations and their associated t-statistics. The 

pattern of Pearson correlations is similar to that suggested by the regression estimates, i.e., 

generally positive correlations between the risk-adjusted returns and the liquidity proxies. The 



Page 27 

Spearman correlations, however, are negative. The change of sign suggests that the positive 

Pearson correlations arise from outliers. The table also reports partial correlations, in which 

control for the other variables in the regression (logMktCap, r23, r46, and r712). These are of 

varying sign and significance. 

 Previous research also suggests an interaction between seasonality and estimated liquidity 

effects. To assess this, Table 7 reports average correlations separately for January and non-

January months. The patterns are striking. For correlations involving cGibbs, the January 

correlations are all positive and generally significant, while the non-January correlations are 

uniformly negative and generally significant. For correlations involving I1/2 or γ, the signs are 

mixed for both January and non-January correlations. This is similar to the results obtained by 

Eleswarapu and Reinganum (1993), with a different sample and liquidity measure. The reasons 

for the seasonality are unclear, and warrant further investigation. 

10. Conclusion 

This study moves from analysis of microstructure-based liquidity measures, to evaluation 

of liquidity proxies computed from daily data, and finally the use of these proxies as 

characteristics in expected return specifications. There are significant gains in sample size from 

using daily proxies in lieu of high-frequency measures: the latter are only generally available 

back to 1983 (the start of ISSM); the former back to 1962 (the start of the CRSP daily file). 

The study conducts a critical examination of the correlations between the daily proxies and the 

underlying high-frequency measures, and of the concordance among the latter. These analyses 

are performed in a comparison sample, consisting of 250 randomly-chosen firms in each of the 

years 1993-2003, for which both high-frequency (TAQ) and daily (CRSP) data exist. 

There exists no single comprehensive measure of liquidity. The microstructure measures 

constructed here include posted spreads, effective costs, and measures based on dynamic models 

of prices and signed trades. All estimates exhibit extreme values. While it is impossible to rule 

out the possibility that some of these are spurious, it is also likely that trading costs for some 

companies are truly very high. 
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 Posted spreads (both intraday and closing) and average effective costs are relatively easy 

to estimate and interpret. They are also highly correlated. The measures derived from dynamic 

trade and price models, while arguably more comprehensive, are more difficult to estimate and 

interpret. The correlations within this set suggest modest concordance at best. Reversal 

measures, which summarize the effect of lagged order flow on future expected returns, appear to 

be the least correlated with the other measures. 

It is quite feasible to estimate effective costs from daily return data. Gibbs estimates of 

the Roll model, using roughly a year’s worth of data, are highly correlated with log effective 

costs. The usual moment estimates of the Roll model are not as highly correlated, but may 

nevertheless be adequate in some situations. High-frequency dynamic price impact measures of 

liquidity are more difficult to proxy, but the Amihud (2002) illiquidity measure appears 

moderately correlated. Reversal measures are still more problematic. 

When the daily liquidity proxies are introduced into asset pricing tests modeled on 

Brennan, Chordia, and Subrahmanyam (1998), both the Gibbs estimate of effective cost and the 

illiquidity ratio are positively correlated with risk-adjusted returns in the NYSE/Amex sample. In 

the Nasdaq sample, only the Gibbs estimate is positively correlated. Although these results 

provide modest support for the hypothesis that trading cost is a priced characteristic, they are not 

robust. With alternative correlation measures, the relation between returns and liquidity varies 

considerably in significance and direction.  Moreover, the relation is markedly seasonal for both 

NYSE/Amex and Nasdaq firms, with the strongest effect arising in January. 

There are a number of promising directions for future research. First, since the Gibbs 

estimate of the effective cost relies solely on the transaction price record, the technique can 

readily be applied to historical and international settings where only trade prices are available. 

The present application is to daily data, but there is in principle no reason why the approach 

would not be useful in weekly or monthly data. Of course, as the frequency drops, drift and 

diffusion in the efficient price become more pronounced relative to the effective cost, and hence 

the signal-to-noise ratio is likely to be lower. 
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 A second line of inquiry is refinement of the Gibbs estimation procedure. It seems 

particularly worthwhile to consider estimation of c jointly with β. The estimates of c should be 

improved because the market return is a useful signal in estimating the change in the efficient 

price ( )t tm u∆ = , which is here taken as unconditionally normal. The estimate of β should also 

be improved, however, because the specification essentially purges the price change of bid-ask 

bounce in the firm’s return. 
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Table 1. Summary statistics for comparison sample 

The comparison sample is a set of firms randomly drawn from the combined CRSP/TAQ population. In each of the 
years 1993-2003, 250 firms were drawn. For each firm, the variables in the table are estimated based on 
(approximately) one year’s worth of data. Table values are calculated across firms. S and s are the time-weighted 
average level and log of the posted bid-ask spread. C and c are the dollar-volume-weighted average level and log 
effective cost; λ5 min is the signed trade impact coefficient estimated over five-minute intervals; λDay is the signed 
trade impact coefficient estimated over day intervals; φ is the daily signed reversal coefficient; CM and cM are the 
moment estimates of the level and log effective cost, with infeasible values set to ‘missing’; CMZ and cMZ are the 
moment estimates of the level and log effective cost, with infeasible values set to zero; I is the illiquidity ratio; I1/2 is 
the square-root illiquidity ratio; L is the liquidity ratio; L1/2 is the square-root liquidity ratio; γ is the Pastor-
Stambaugh reversal coefficient; MktCap is the end-of-year equity market capitalization ($ million); 
logMktCap=log(MktCap); Price is the end-of-year share price; σ∆p is the standard deviation of daily log price 
changes; σ∆P is the standard deviation of daily level price changes. 

  N Mean Median 5th %’ile 95th %’ile Skewness Kurtosis

s 2,718 0.0381 0.0228 0.0025 0.1231 5.1 59.4
c 2,703 0.0141 0.0088 0.0011 0.0467 3.4 23.3
S 2,718 $0.277 $0.187 $0.044 $0.740 4.3 28.1
C 2,703 $0.101 $0.073 $0.022 $0.242 6.5 72.2

λ5 min 2,388 0.001664 0.000893 0.000091 0.005813 5.6 56.7
λDay 2,677 0.002388 0.000896 0.000018 0.009126 6.2 58.9

TAQ-based 
measures 

φ×106 2,677 -0.235951 -0.012369 -1.090235 -0.000013 -10.0 138.1

cM 1,938 0.0193 0.0144 0.0028 0.0521 3.3 21.7
cMZ 2,742 0.0137 0.0086 0.0000 0.0448 3.2 20.8
CM 1,886 $0.145 $0.108 $0.022 $0.373 5.0 47.7
CMZ 2,742 $0.100 $0.063 $0.000 $0.319 4.7 46.5
cGibbs 2,724 0.015 0.009 0.002 0.048 3.6 24.6

,
Gibbs
u Logσ  2,724 0.038 0.032 0.012 0.084 1.9 7.4

CGibbs 2,724 $0.119 $0.089 $0.024 $0.293 3.9 25.7

,
Gibbs
u Levelσ  2,724 $0.464 $0.317 $0.073 $1.290 5.5 53.2

I 2,727 7.3645 0.1864 0.0008 31.0932 33.0 1,389.5
I1/2 2,727 0.8405 0.3107 0.0255 3.5113 5.2 52.0
L 2,736 4,412.1 26.3 0.3 3,964.9 49.2 2,507.7
L1/2 2,736 11.6 4.1 0.3 49.3 4.0 22.0
γ×106 2,742 15.256 0.202 -30.748 155.111 -24.5 1,012.3
MktCap 2,748 $1,193 $117 $5 $4,779 11.9 199.7
logMktCap 2,748 4.8882 4.7594 1.6861 8.4719 0.2 -0.3
Price 2,748 $16.61 $11.26 $0.78 $49.88 3.8 33.3
σ∆p 2,747 0.0434 0.0365 0.0141 0.0946 2.1 9.0

CRSP-based 
measures 

σ∆P 2,747 $0.497 $0.362 $0.091 $1.314 5.4 52.3
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Table 2.  Correlations between TAQ estimates in the comparison sample 

The comparison sample is a set of firms randomly drawn from the combined CRSP/TAQ population. In each of the 
years 1993-2003, 250 firms were drawn. For each firm, the variables in the table are estimated based on 
(approximately) one year’s worth of data. s is the log spread; c, the log effective cost; C, the level effective cost;  
λ5 min is the signed trade impact coefficient estimated over five-minute intervals; λDay is the signed trade impact 
coefficient estimated over day intervals; φ is the daily signed reversal coefficient. Partial correlations control for 
share price, log market capitalization, the standard deviation of price changes and the standard deviation of log price 
changes. 

 s c C λ5 Min λDay φ 

s 1.000 0.981 0.184 0.556 0.762 -0.632

c 0.981 1.000 0.158 0.580 0.753 -0.639

C 0.184 0.158 1.000 0.030 0.179 0.021

λ5 Min 0.556 0.580 0.030 1.000 0.740 -0.675

λDay 0.762 0.753 0.179 0.740 1.000 -0.744

Pearson 

φ -0.632 -0.639 0.021 -0.675 -0.744 1.000

s 1.000 0.987 0.367 0.636 0.823 -0.733

c 0.987 1.000 0.322 0.656 0.821 -0.753

C 0.367 0.322 1.000 0.178 0.384 -0.088

λ5 Min 0.636 0.656 0.178 1.000 0.771 -0.623

λDay 0.823 0.821 0.384 0.771 1.000 -0.751

Spearman 

φ -0.733 -0.753 -0.088 -0.623 -0.751 1.000

s 1.000 0.927 0.204 0.196 0.459 -0.298

c 0.927 1.000 0.199 0.246 0.465 -0.294

C 0.204 0.199 1.000 -0.020 0.096 0.040

λ5 Min 0.196 0.246 -0.020 1.000 0.596 -0.570

λDay 0.459 0.465 0.096 0.596 1.000 -0.609

Pearson partial 

φ -0.298 -0.294 0.040 -0.570 -0.609 1.000

s 1.000 0.936 0.657 0.063 0.350 -0.045

c 0.936 1.000 0.677 0.121 0.371 -0.066

C 0.657 0.677 1.000 0.112 0.330 -0.010

λ5 Min 0.063 0.121 0.112 1.000 0.477 -0.212

λDay 0.350 0.371 0.330 0.477 1.000 -0.325

Spearman partial 

φ -0.045 -0.066 -0.010 -0.212 -0.325 1.000
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Table 3. Proxies for log and level effective cost in the comparison sample 

The comparison sample is a set of firms randomly drawn from the combined CRSP/TAQ population. In each of the 
years 1993-2003, 250 firms were drawn. For each firm, the variables in the table are estimated based on 
(approximately) one year’s worth of data. C and c are the level and log effective costs (estimated from TAQ data). 
CMZ and cMZ are the moment estimates where infeasible values are set to zero (estimated from CRSP data). CGibbs and 
cGibbs are the Gibbs estimates (based on CRSP data). Partial correlations control for share price, log market 
capitalization, the standard deviation of price changes and the standard deviation of log price changes. 

 cMZ cGibbs CMZ CGibbs

c 0.852 0.944 0.037 0.029 
Pearson 

C 0.085 0.122 0.578 0.748 

c 0.724 0.883 0.192 -0.048 
Spearman 

C 0.162 0.227 0.383 0.660 

c 0.602 0.848 0.210 0.353 
Pearson partial 

C 0.232 0.261 0.484 0.683 

c 0.357 0.579 0.312 0.461 
Spearman partial 

C 0.196 0.426 0.242 0.521 
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Table 4. Proxy correlations for price impact and reversal measures 

The comparison sample is a set of firms randomly drawn from the combined CRSP/TAQ population. In each of the 
years 1993-2003, 250 firms were drawn. For each firm, the variables in the table are estimated based on 
(approximately) one year’s worth of data. λ5 min is the signed trade impact coefficient estimated over five-minute 
intervals (based on TAQ data); φ is the signed reversal coefficient (based on TAQ data) ; L is the liquidity ratio; L1/2 
is the square-root liquidity ratio; γ is the Pastor-Stambaugh reversal coefficient. Partial correlations control for share 
price, log market capitalization, the standard deviation of price changes and the standard deviation of log price 
changes. 

 I I1/2 L L1/2 γ 

λ5 Min 0.537 0.721 -0.038 -0.296 0.181 
Pearson 

φ -0.615 -0.764 0.017 0.138 -0.225 

λ5 Min 0.762 0.771 -0.765 -0.774 0.186 
Spearman 

φ -0.786 -0.800 0.814 0.811 -0.278 

λ5 Min 0.396 0.557 0.002 0.097 0.070 
Pearson partial 

φ -0.510 -0.628 -0.007 -0.109 -0.091 

λ5 Min 0.416 0.455 -0.441 -0.475 -0.074 
Spearman partial 

φ -0.203 -0.262 0.341 0.334 -0.018 
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Table 5. Risk-adjusted return regressions 

The sample consists of stocks present in the CRSP monthly and daily files, restricted to ordinary shares. Monthly 
risk-adjusted returns are computed in accordance with the Brennan, Chordia, and Subrahmanyam (1998) procedure 
using updated Fama and French (1992) factors. In each month, in cross-section, the risk-adjusted returns are 
regressed against the indicated variables. The table reports the raw averages of the coefficients (across time), and the 
associated t-statistics. cGibbs is the Gibbs estimate of the log effective cost, I1/2 is the square-root illiquidity ratio, and 
γ is the Pastor and Stambaugh (2003) reversal measure, all of which are based on CRSP daily data from the prior 
calendar year. logMktCap is the log of the equity market capitalization (end of prior year); r23 is the return over 
lagged months one and two; r46 is the return over lagged months four through six; r7to12 is the return over lagged 
months seven through twelve. 

NYSE/Amex Nasdaq 
 

(1) (2) (3) (4) (1) (2) (3) (4) 

-0.006 -0.009 0.001 -0.010 -0.005 -0.005 0.009 -0.006 Intercept 
(-1.96) (-2.70) (0.21) (-2.78) (-0.88) (-0.68) (1.48) (-0.98) 

0.333 0.143 0.291  0.085 cGibbs

(3.89) (1.54) (3.54)  (0.73) 

 158.788 116.679 142.746  112.944 I1/2 ×106

 (5.65) (3.86) (1.59)  (1.36) 

 3.468 -0.909 18.227 14.497 γ 
 (1.52) (-0.41) (0.70) (0.75) 

-0.001 -0.000 -0.002 -0.000 -0.001 -0.000 -0.003 -0.000 logMktCap 
(-2.13) (-0.33) (-3.66) (-0.40) (-0.85) (-0.55) (-3.80) (-0.32) 

0.007 0.007 0.007 0.007 0.005 0.006 0.006 0.006 r23 
(2.19) (1.94) (2.10) (2.08) (1.09) (1.14) (1.27) (1.13) 

0.012 0.011 0.011 0.011 0.005 0.004 0.005 0.005 r46 
(4.16) (3.75) (3.99) (3.90) (1.23) (1.18) (1.48) (1.32) 

0.013 0.012 0.012 0.013 0.011 0.010 0.010 0.010 r7to12 
(6.54) (6.07) (6.17) (6.40) (3.94) (3.53) (3.83) (3.73) 

R2 0.058 0.056 0.053 0.066 0.042 0.042 0.040 0.049 
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Table 6. Risk-adjusted return correlations 

The sample consists of stocks present in the CRSP monthly and daily files, restricted to ordinary shares. Monthly 
risk-adjusted returns are computed in accordance with the Brennan, Chordia, and Subrahmanyam (1998) procedure 
using updated Fama and French (1992) factors. In each month, in cross-section, the risk-adjusted returns are 
correlated with the indicated liquidity proxy. The table reports the averages of the correlations (across time), and the 
associated t-statistics. cGibbs is the Gibbs estimate of the log effective cost, I1/2 is the square-root illiquidity ratio, and 
γ is the Pastor and Stambaugh (2003) reversal measure, all of which are based on CRSP daily data from the prior 
calendar year. Partial correlations control for logMktCap (the log of the equity market capitalization, end of prior 
year), r23 (the return over lagged months one and two), r46 (the return over lagged months four through six), and 
r7to12 (the return over lagged months seven through twelve). 

NYSE/Amex Nasdaq 
 

cGibbs I1/2 γ cGibbs I1/2 γ 

0.019 0.028 0.010 0.025 0.031 0.006 Pearson (2.84) (4.56) (3.33) (3.55) (4.73) (1.40) 

-0.036 -0.026 -0.006 -0.035 -0.019 -0.018 Spearman (-5.80) (-3.90) (-3.24) (-5.16) (-2.51) (-5.33) 

-0.006 0.007 0.000 -0.005 0.000 -0.002 Pearson partial (-3.38) (4.23) (0.02) (-1.07) (0.03) (-0.40) 

-0.015 0.009 -0.000 -0.015 0.009 0.001 Spearman partial (-9.84) (5.72) (-0.20) (-3.15) (1.83) (0.14) 
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Table 7. Monthly seasonality in the risk-adjusted return correlations 

The sample consists of stocks present in the CRSP monthly and daily files, restricted to ordinary shares. Monthly 
risk-adjusted returns are computed in accordance with the Brennan, Chordia, and Subrahmanyam (1998) procedure 
using updated Fama and French (1992) factors. In each month, in cross-section, the risk-adjusted returns are 
correlated with the indicated liquidity proxy. The table reports the averages of the correlations (across time), and the 
associated t-statistics. cGibbs is the Gibbs estimate of the log effective cost, I1/2 is the square-root illiquidity ratio, and 
γ is the Pastor and Stambaugh (2003) reversal measure, all of which are based on CRSP daily data from the prior 
calendar year. Partial correlations control for logMktCap (the log of the equity market capitalization, end of prior 
year), r23 (the return over lagged months one and two), r46 (the return over lagged months four through six), and 
r7to12 (the return over lagged months seven through twelve). 

NYSE/Amex Nasdaq 
 

cGibbs I1/2 γ cGibbs I1/2 γ 

0.262 0.245 0.059 0.180 0.150 0.051Pearson (13.49) (13.17) (5.25) (8.97) (7.22) (2.82)

0.187 0.182 0.027 0.106 0.103 0.040Spearman (8.03) (6.82) (4.36) (6.28) (5.11) (5.17)

0.077 -0.008 0.006 0.032 -0.041 -0.002Pearson partial (13.43) (-1.42) (1.21) (1.92) (-2.53) (-0.12)

0.053 -0.027 0.004 0.004 -0.054 -0.004

January 

Spearman partial (10.28) (-4.62) (0.86) (0.25) (-3.24) (-0.27)

-0.003 0.008 0.005 0.011 0.020 0.002Pearson (-0.40) (1.47) (1.78) (1.62) (3.14) (0.42)

-0.056 -0.045 -0.009 -0.047 -0.030 -0.023Spearman (-10.22) (-7.29) (-4.91) (-7.28) (-3.91) (-6.88)

-0.013 0.008 -0.000 -0.009 0.004 -0.002Pearson partial (-7.64) (4.92) (-0.32) (-1.71) (0.79) (-0.38)

-0.021 0.013 -0.001 -0.017 0.015 0.001

Non-January 

Spearman partial (-13.43) (7.51) (-0.46) (-3.35) (2.82) (0.22)
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Figure 1. TAQ and CRSP/Gibbs estimates of log effective costs for the Dow Stocks 

Log effective cost estimates from TAQ and CRSP (Gibbs). Averages for all NYSE stocks in the Dow index from 
1993 to 2003. Vertical lines mark the dates when the NYSE fully implemented sixteenth pricing (July 1, 1997), and 
decimal pricing (January 29, 2001). 
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Figure 2. Average log effective cost, Gibbs estimates, 1962-2003 

Annual averages of Gibbs estimates of log effective cost for all ordinary shares on the CRSP daily file. For both 
NYSE/Amex and Nasdaq, market capitalization subsamples are defined using NYSE breakpoints. 
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