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High-Frequency Quoting: 

Short-Term Volatility in Bids and Offers 

Abstract 

 

High-frequency changes, reversals, and oscillations can lead to volatility in a market’s bid and offer 

quotes. This volatility degrades the informational content of the quotes, exacerbates execution price 

risk for marketable orders, and impairs the reliability of the quotes as reference marks for the 

pricing of dark trades. This paper examines volatility on time scales as short as one millisecond for 

the National Best Bid and Offer in the US equity market. On average, in a 2011 sample, volatility at 

the one millisecond time scale is approximately five times larger than can be attributed to long-

term informational volatility. In addition, there are numerous localized episodes involving intense 

bursts of quote volatility. It is less clear, however, that this volatility can be tied to a recent rise in 

low-latency technology. Short-term volatility estimated over 2001-2011 historical sample is not 

characterized by a distinct trend. 
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I. Introduction 

Recent developments in market technology have called attention to the practice of high-frequency 

trading. The term is used commonly and broadly in reference to all sorts of fast-paced market 

activity, not just “trades”, but trades have certainly received the most attention. There are good 

reasons for this, as trades signify the actual transfers of income streams and risk. Quotes also play a 

significant role in trading process, however.  This paper accordingly examines short-term volatility 

in bids and offers of US equities, a consequence of what might be called high frequency quoting. 

 By way of illustration, Figure 1 depicts the National best bid (NBB) and National best offer 

(NBO) for AEP Industries (a Nasdaq-listed manufacturer of packaging products) on April 11, 2011. 

In terms of broad price moves, the day is not a particularly volatile one, and the bid and offer quotes 

are stable for long intervals. The placidity is broken, though, by several intervals where the bid 

undergoes extremely rapid changes.  The average price levels, before, during and after the episodes 

are not dramatically different. Moreover, the episodes are largely one-sided: the bid volatility is 

associated with an only moderately elevated volatility in the offer quote. Nor is the volatility 

associated with increased executions. These considerations suggest that the volatility is unrelated 

to fundamental public or private information. It appears to be an artifact of the trading process.  

It is not, however, an innocuous artifact. Bids and asks in all markets represent price signals, 

and, to the extent that they are firm and accessible, immediate trading opportunities. From this 

perspective, the noise added by quote volatility impairs the informational value of the public price. 

Most agents furthermore experience latency in ascertaining the location of the bid and offer price 

and in timing of their order delivery. Elevated short-term volatility increases the execution price 

risk associated with these delays. In US equity markets the National Best Bid and Offer are 

particularly important, because they are used as benchmarks to assign prices in so-called dark 

trades, a category that includes roughly thirty percent of all volume.1  

                                                             
1 Dark trading mechanisms do not publish visible bids and offers. They establish buyer-seller 
matches, either customer-to-customer (as in a crossing network) or dealer-to-customer (as in the 
case of an internalizing broker-dealer). The matches are priced by reference to the NBBO: generally 
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In the context of the paper’s data sample, the AEPI episode does not represent typical 

behavior. Nor, however, is it a singular event. It therefore serves to motivate the paper’s key 

questions. What is the extent of short-term volatility? How can we distinguish fundamental 

(informational) and transient (microstructure) volatility? Finally, given the current public policy 

debate surrounding low-latency activity, how has it changed over time? 

These questions are addressed empirically in a broad sample of US equity market data using 

summary statistics that are essentially short-term variances of bids and asks. Such constructions, 

though, inevitably raise the question of what horizon constitutes the “short term” (a millisecond? a 

minute?). The answer obviously depends on the nature of the trader’s market participation, as a 

collocated algorithm at one extreme, for example, or as a remotely situated human trader at the 

other. This indeterminacy motivates the use of empirical approaches that accommodate flexible 

time horizons. One class of standard tools that satisfies this requirement includes methods 

variously called time-scale, multi-resolution, or wavelet decompositions. The present analysis 

applies these tools to quote data.2 

The paper is organized as follows. The next section establishes the economic and 

institutional motivation for the consideration of local bid and offer variances with sliding time 

scales. Section III is a short presentation of the essentials of wavelet transformations and time-scale 

decompositions. The paper then turns to applications. Section IV presents an analysis of a recent 

sample of US equity data featuring millisecond time stamps. To extend the analysis to historical 

samples in which time stamps are to the second, Section V describes estimation in a Bayesian 

framework where millisecond time stamps are simulated. Section VI applies this approach to a 

historical sample of US data from 2001 to 2011. Connections to high frequency trading and 

volatility modeling are discussed in Section VII. A summary concludes the paper in Section VIII. 

                                                                                                                                                                                                    

at the NBBO midpoint in a crossing network, or at the NBB or the NBO in a dealer-to-customer 
trade. 
2 Hasbrouck and Saar  (2011) examine high-frequency activity within the Inet book. An early draft 
of the paper used wavelet analyses of message count data to locate periods of intense message 
traffic. 
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II. Timing uncertainty and price risk 

High frequency quote volatility may be provisionally defined as the short-term variance of the best 

bid and/or best offer (BBO), that is, the usual variance calculation applied to the BBO over some 

relatively brief window of time.  This section is devoted to establishing the economic relevance of 

such a variance in a trading context.  The case is a simple one, based on: the function and uses of the 

BBO; the barriers to its instantaneous availability; the role of the time-weighted price mean as a 

benchmark; and, the interpretation of the variance about this mean as a measure of risk. 

 In current thinking about markets, most timing imperfections are either first-mover 

advantages arising from market structure or delays attributed to costly monitoring. The former are 

exemplified by the dealer’s option on incoming orders described in Parlour and Seppi  (2003), and 

currently figure in some characterizations of high-frequency traders (Biais, Foucault and Moinas  

(2012);  Jarrow and Protter  (2011)). The latter are noted by Parlour and Seppi  (2008) and 

discussed by Duffie  (2010) as an important special case of inattention which, albeit rational and 

optimal, leads to infrequent trading, limited participation, and transient price effects (also, Pagnotta  

(2009)). 

 As a group these models feature a wide range of effects bearing on agents’ arrivals and their 

information asymmetries. An agent’s market presence may be driven by monitoring decisions, 

periodic participation, or random arrival intensity. Asymmetries mostly relate to fundamental 

(cash-flow) information or lagged information from other markets. Agents in these models 

generally possess, however, timely and extensive market information. Once she “arrives” in a given 

market, an agent accurately observes the state of that market, generally including the best bid and 

offer, depth of the book and so on. Moreover, when she contemplates an action that changes the 

state of the book (such as submitting, revising or canceling an order), she knows that her action will 

occur before any others’. 

 In reality, of course, random latencies in her receipt of information and the transmission of 

her intentions combine to frustrate these certainties about the market and the effects of her orders. 

The perspective of this paper is that for some agents these random latencies generate randomness 

in the execution prices, and that short-term quote variances can meaningfully measure this risk. 

Furthermore, although all agents incur random latency, the distributions of these delays vary 
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among participants. An agent’s latency distribution can be summarized by time-scale, and this in 

turn motivates time-scale decompositions of bid and offer variances. 

 While random latencies might well affect strategies of all traders, the present analysis 

focuses on someone who intends to submit a marketable order (one that seeks immediate 

execution) or an order to a dark pool. In either case, ignoring hidden orders, an execution will occur 

at the bid, the offer or at an average of the two. Assume, for the sake of timing notation, that there is 

one consistent atomic time stamp that is standardized and available throughout the market. 

Suppose that at time t (a trader transmits a marketable order, but knows that its actual time of 

arrival at the market is uniformly distributed on        . The mean and variance of the quote over 

this interval characterize the first two moments of the distribution of the execution price, 

conditional on a given price path.  

 Equivalently, the problem may be viewed as arising from latencies in transmission of the 

state of the market, where the trader knows her market information represents the state of market 

at some time in the interval        . These conjectures are obviously oversimplified. Random 

transmission latencies undoubtedly exist in both directions, and their distributions are unlikely to 

be uniform. In these more complicated scenarios, though, the price statistics computed over an 

interval equal to the average delay should still be useful. 

 The use of an average price in situations where there is execution timing uncertainty is a 

common principle in transaction cost analysis. Perold’s implementation shortfall measure is usually 

operationally defined for a buy order as the execution price (or prices) less some hypothetical 

benchmark price (and for a sell order as the benchmark less the execution price), Perold  (1988).  

As a benchmark price, Perold suggests the bid-ask midpoint prevailing at the time of the decision to 

trade. Many theoretical analyses of optimal trading strategies use this or similar alternative pre-

trade benchmark.  Practitioners, however, and many empirical analyses rely on prices averaged 

over some comparison period.  The most common choice is the value-weighted average price 

(VWAP), although the time-weighted average price (TWAP) is also used. One industry compiler of 

comparative transaction cost data notes, “In many cases the trade data which is available for 

analysis does not contain time stamps. …. When time stamps are not available, pension funds and 

investment managers compare their execution to the volume weighted average price of the stock 
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on the day of the trade” (Elkins-McSherry  (2012)).  This quote attests to the importance of 

execution time uncertainty, although a day is certainly too long to capture volatility on the scale of 

transmission and processing delays.  Average prices are also used as objectives by certain execution 

strategies.  A substantial portion of the orders analyzed by Engle, Ferstenberg and Russell  (2012) 

target VWAP, for example.  

 The situations discussed to this point involve a single trader and single market. In a 

fragmented market, the number of relevant latencies may be substantially larger. In the US there 

are presently about 17 “lit” market centers, which publish quotes. A given lit market’s quotes are 

referenced by the other lit markets, dark pools (currently around 30 in number), by executing 

broker-dealers (approximately 200), and by data consolidators (U.S. Securities and Exchange 

Commission  (2010)). The BBO across these centers, the National Best Bid and Offer (NBBO) is in 

principle well-defined. The NBBO perceived by any given market center, consolidator or other 

agent, however, comprises information subject to random transmission delays that differ across 

markets and receiving agents.  These delays introduce noise into the NBBO determination. Local 

time-averaging (smoothing) can help to mitigate the effects of this noise, while the local variance 

can help assess the importance of the noise. 

 As a final consideration, transmission delays can exacerbate the difficulties a customer faces 

in monitoring the handling of his order.  The recent SEC concept release notes that virtually all 

retail orders are routed to OTC market-makers, who execute the orders by matching the prevailing 

NBBO (U.S. Securities and Exchange Commission  (2010)). Stoll and Schenzler  (2006) note that 

these market-makers may possess a look-back option: To the extent that customers can’t verify 

their order delivery times or the NBBO perceived by the market-maker at the exact time of order 

arrival, the market-maker possesses flexibility in pricing the execution, and an economic interest in 

the outcome.  

 Timing uncertainty may also arise in the mandated consolidated audit trail (U.S. Securities 

and Exchange Commission  (2012)). The rule requires millisecond time-stamps on all events in an 

order’s life cycle (such as receipt, routing, execution and cancellation). This does not suffice to 

determine the information set (including knowledge of the NBBO) of any particular agent at any 

particular time. Thus, for example, a dealer’s precise beliefs about the NBBO at the time a customer 
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order was received will lie beyond the limits of regulatory verification. It must also be admitted, 

however, that a system that would permit such a determination in a fragmented market is unlikely 

to be feasible. 

III. Time-scale variance decompositions 

 This study uses short-term means and variances of bids and offers. Despite the apparent 

simplicity and directness of such computations, however, it should be noted at the outset that there 

are two significant departures from usual financial econometrics practices. 

 Firstly, although prices are assumed to possess a random-walk component (formally, a unit 

root), the mean and variance calculations are applied to price levels, not first differences. 

Differencing is sometimes described as high-pass filtering: it maintains the details of the process at 

the differencing frequency (one millisecond, in this study), but suppresses patterns of longer 

horizons. For example, if Figure 1 displayed the first difference of the bid instead of the level, the 

volatility episodes would still be apparent. It would not be obvious, however, that there was no net 

price change over these episodes. Of course if the price follows a random-walk with drift, a sample 

mean and variance computed over an interval won’t correspond to estimates of a global mean and 

variance for the process (which doesn’t exist).  Variances computed over intervals of a given length 

are nevertheless stationary, however, and amenable to statistical and economic interpretation. 

 The second point of contrast concerns the interpretation of “short-term”.  The techniques 

applied in this study treat the time-scale in a flexible, systematic manner. In most empirical 

analyses of high-frequency market data, the time scale of the model is determined at an early stage 

(sometimes by limitations of the data), and the proposed statistical model is parsimonious and of 

low order with respect to this time scale (for example, a fifth-order vector error correction model 

applied to bids and asks observed at a one minute frequency).  This approach is often perfectly 

adequate, and it can hardly be considered a devastating criticism to note that such data and models 

tend to focus on dynamics at a particular time scale and ignore variation over longer and shorter 

frames.  A phenomenon like high-frequency quoting, however, does not present an obvious choice 

for time scale. It is therefore advantageous to avoid that choice, and pursue an empirical strategy 

that treats all time scales in a unified manner. 
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  To this end, wavelet transformations, also known as time-scale or multi-resolution 

decompositions are widely used across many fields. The summary presentation that follows 

attempts to cover the material only to a depth sufficient to understand the statistical evidence 

marshaled in this study. Percival and Walden  (2000, henceforth PW) is comprehensive textbook 

presentation that highlights the connections to conventional stationary time series analysis. The 

present notation closely follows PW. Gençay, Selçuk and Whitcher  (2002) discuss economic and 

financial applications in the broader context of filtering. Nason  (2008) discusses time series and 

other applications of wavelets in statistics. Ramsey  (1999) and Ramsey  (2002) provides other 

useful economic and financial perspectives. Walker  (2008) is clear and concise, but oriented more 

toward engineering applications. 

 Studies that apply wavelet transforms to the economic analysis of stock prices loosely fall 

into two groups. The first set explores time scale aspects of stock comovements. A stock’s beta is a 

summary statistic that reflects short-term linkages (like index membership or trading-clientele 

effects) and long-term linkages (like earnings or national prosperity).  Wavelet analyses can 

characterize the strength and direction of these horizon-related effects (for example, Gençay, Selçuk 

and Whitcher  (2002);  In and Kim  (2006)). Most of these studies use wavelet transforms of stock 

prices at daily or longer horizons. A second group of studies uses wavelet methods to characterize 

volatility persistence (Dacorogna, Gencay, Muller, Olsen and Pictet  (2001);  Elder and Jin  (2007);  

Gençay, Selçuk, Gradojevic and Whitcher  (2009);  Gençay, Selçuk and Whitcher  (2002);  Høg and 

Lunde  (2003);  Teyssière and Abry  (2007)). These studies generally involve absolute or squared 

returns at minute or longer horizons. Wavelet methods have also proven useful for jump detection 

and jump volatility modeling Fan and Wang  (2007). Beyond studies where the focus is primarily 

economic or econometric lie many more analyses where wavelet transforms are employed for ad 

hoc stock price forecasting (Atsalakis and Valavanis  (2009);  Hsieh, Hsiao and Yeh  (2011), for 

example). 

III.A. The intuition of wavelet transforms: a microstructure perspective 

A wavelet transform represents a time series in terms of averages and differences in averages 

constructed over intervals of systematically varying lengths. By way of illustration, consider a non-
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stochastic sequence of eight consecutive prices:   [        .  A trader whose order 

arrival time is random and uniformly distributed on this set expects to trade at the overall mean 

price,   
 
 ∑    .  In the terminology of wavelet transforms, a mean computed over an interval is a 

wavelet smooth.  The time scale of the smooth is the horizon over which it is considered constant 

(eight, in this case).  The level of the smooth is                   ;     in this case (    ). The 

choice of sample length as an integer power of two is deliberate; generalizations will shortly be 

indicated.  The top-level smooth is       [     , that is, a row vector consisting of the 

mean repeated eight times (to conform to the original price vector).  The deviations from the mean 

define the wavelet rough,        . The variance         indicates the risk or uncertainty faced 

by this trader.  

 The sequence might also be considered from the perspective of a faster trader who might be 

randomly assigned to trade in the first or the last half of the sequence, in {         }    {       }, 

but within each of these sets faces order arrival uncertainty of length four. Her benchmark prices 

are defined by the smooth 

    [
       

 

       

 
] [      (1) 

where   denotes the Kronecker product:    is the mean of the first four values repeated four times 

joined to the mean of the second four values repeated four times. Each of the means is constant 

over a time scale of        The corresponding rough at this level is        . Finally consider a 

still-faster trader who is randomly assigned to one of the four intervals {   } {   } {   }     {   }, 

and within each interval faces random arrival over an interval of length two. The corresponding 

smooth is  

    [
     

 

     

 

     

 

     

 
] [    (2) 

Each of the four two-period means is constant over a time scale of       The rough is        . 

In all we have three decompositions embodying different time scales. The rough variances indicate 

the uncertainties faced by traders at each time scale. 
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 There is another way of looking at these decompositions. If the top-level smooth    

captures all variation at time scales of eight (and higher, if we allow the sequence to be embedded 

in a larger sample), then the corresponding rough    must capture variation at time scales four and 

lower. Similarly, the rough    must capture variation at time scales of two and lower. The 

difference between them defines the detail component         , which captures variation on 

a scale of four (only). Similarly,          captures variation on a time scale of two;       

captures variation on a time scale of one. The time scale of detail component    is denoted 

       . 

 Thus, in addition to the rough/smooth decompositions, we have a series of detail/smooth 

decompositions:                             . The advantage of the 

rough/smooth decompositions is that they correspond more closely to components of economic 

interest (the risk faced by traders at a particular and shorter time scales). The advantage of the 

detail/smooth decompositions is that they can be shown to be orthogonal:                . This 

orthogonality facilitates clean time-scale decompositions of variances.  

 The progression from coarser to finer time scales in this illustration follows the approach of 

an econometrician who summarizes the coarser features of a data set before moving on to the finer 

features. Most wavelet computations, though, including the standard pyramid algorithm, are 

implemented in the opposite direction, from fine to coarse.  

 The averages used in this example are simple arithmetic means. The process of generating 

these means at various time scales is formally called a discrete Haar transform. Alternative discrete 

wavelet transforms (DWTs) are generated by weighting the means in various ways. The discrete 

Haar transform is easy to generalize to any sequence of dyadic (integer power of two) length, but 

few data samples are likely to satisfy this requirement. A further drawback is that the transform is 

also sensitive to alignment. For example, if we rotate the price sequence one position, obtaining 

[        , the details, smooths and roughs are not correspondingly rotated.  

 The maximal overlap discrete wavelet transform (MODWT) is an alternative transform that 

fixes the alignment sensitivity and the power-of-two sample size limitation (PW, Ch. 5). In the 

MODWT, the detail and smooth components are averaged over all cyclic permutations. This is an 

accepted and widely-used approach, but it comes at the cost of orthogonality. Notationally 



 Page 10 

 

indicating the MODWT by a tilde “~”,  ̃  and  ̃  are not orthogonal, and       ̃   ̃   ̃   ̃  

 ̃   ̃   Sum-of-squares decompositions are still achievable under the MODWT (we can still 

compute the variances of smooths, roughs, and details), but these must be computed from the 

wavelet transform coefficients.  

III.B. Time-scale decompositions of difference-stationary processes 

In the example of the last section the price sequence is non-stochastic, and all of the randomness 

resides in the order arrival time. This device allows us to compute and interpret the means and 

variances implied by the wavelet transform without reference to the price dynamics. In this section 

we allow the price to follow a stochastic process. Order arrival randomness still serves to motivate 

interest in the wavelet means and variances, but this arrival process is not explicitly discussed. 

 The price process is assumed to be first-difference-stationary, which accommodates the 

usual basic framework of an integrated price with stationary first differences. Note that despite the 

presence of the random-walk component, we compute the transforms of price levels, rather than 

first differences.  

The wavelet variance at time scale    is denoted   (  ). For the DWT described here, 

  (  )     (  ), and the orthogonal sum-of-squares decomposition implies a parallel 

decomposition of sample variance. As in the discussion above, the variances of the wavelet roughs 

figure prominently in characterizing time-related execution price risk. They can be computed as 

   (  )  ∑   (  )
 
   . For the MODWT, the wavelet variances can’t be computed directly from the 

detail and smooth components, but they can be computed from the wavelet coefficients (PW Ch. 8). 

Wavelet variance, covariance and correlation estimates based on MODWT’s of bid and ask quotes 

are the foundation of the analysis. 

III.C. Variance ratios 

A long tradition in empirical market microstructure assesses the strength of microstructure 

effects using ratios that compare a short-term return variance to a long-term return variance 
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(Amihud and Mendelson  (1987);  Barnea  (1974);  Hasbrouck and Schwartz  (1988)).3 The idea is 

that microstructure imperfections introduce mispricing that inflates short-term variance relative to 

long-term fundamental variance. Ratios constructed from wavelet variances give a more precise 

and nuanced characterization of this effect because the long-term wavelet variance is effectively 

stripped of all short-term components, and the short-term wavelet variance can focus on a 

particular time scale.  

Suppose that a price evolves according to:           , where          
  

  
                     . A conventional variance ratio for horizons       might be defined as: 

 
             ⁄

             ⁄
 

            

            
 

 

 
   (3) 

If    , ratio estimates in excess of one indicate inflated short-term volatility. The   ⁄  term 

essentially normalizes the variances to the benchmark random walk. 

 A wavelet variance ratio is defined in a similar fashion, but with a different normalization 

term. PW (p. 337) show that for this random-walk the (Haar) wavelet variances of p are: 

    
 (  )  

  
 

 
(   

 

   
) (4) 

With this result it is natural to define a wavelet variance ratio as: 

       
      

      
 

   
     

   
     

 (5) 

The    
  divisors normalize the price wavelet variances similar to role of     in the conventional 

variance ration; the   
  parameter cancels. If the price process is a random walk, the wavelet 

variance ratio is unity. More generally, deviation from unity measures excess or subnormal 

volatility. 

                                                             
3 Return variance ratios are also used more broadly in economics and finance to characterize 
deviations from random-walk behavior over longer horizons (Charles and Darné  (2009);  Faust  
(1992);  Lo and MacKinlay  (1989)). 
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III.D. Extensions to coarser time scales 

The wavelet transforms in the present analysis are performed at a one-millisecond 

resolution. This is necessary to capture the high-frequency phenomena of primary interest. It is also 

useful, however, to measure relatively longer components, on the order of thirty minutes or so. 

These components can be computed directly from the one-millisecond data, but the computations 

are lengthy and burdensome. Instead the longer-horizon calculations are performed with a one-

second resolution. For these calculations, the millisecond prices are first averaged over each 

second, and the wavelet transforms are computed for the resulting series of one-second average 

prices. The corresponding wavelet variances at level j for these average prices are denoted   
 (    ) 

where the time scale in milliseconds is                .  

Under the assumption that the price follows a one-millisecond random-walk (that is, 

           where t indexes milliseconds), the sequence of one-second average prices is 

integrated with autocorrelated differences, an IMA(1,1) process. The wavelet variances are of the 

form      
 (    )      

 , where (as above) a indicates the pre-transform-averaging and    are 

proportionality factors. The    not have a simple closed-form representation (as in equation (4)), 

but they can be computer numerically. With these results, it is natural to construct a variance ratio 

that uses the finer (one millisecond) resolution for the smaller time scales and the coarser (one 

second) resolution for the longer time scales: 

       
      

  
 (    )

 
     

 (    )

   
     

 (6) 

III.E. Estimation 

Estimates of wavelet variances and related quantities are basically formed as sample analogues of 

population parameters. PW discuss computation and asymptotic distributions. In most 

applications, the wavelet variance estimate at a particular time scale is computed from the 

transformation of the full data series. In the present case, these estimates are formed over fifteen-

minute subintervals. There are several reasons for this. Firstly, it yields computational 

simplifications. Secondly, subinterval calculations can help characterize the distribution of the 

variance estimates. (PW suggest this for large samples, p. 315.) Thirdly and most importantly, 
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though, it offers a quick and approximate way to accommodate nonstationarity. The paper’s 

opening example suggests that high-frequency quoting might involve localized bursts. Interval-

based variance measures offer a simple way to detect these bursts.4 Figure 1 (and similar episodes) 

were located in this manner. 

IV. A cross-sectional analysis 

From a trading perspective, stocks differ most significantly in their general level of activity (volume 

measured by number of trades, shares or values). The first analysis aims to measure the general 

level of HFQ volatility and to relate the measures to trading activity in the cross-section for a recent 

sample of firms. 

IV.A. Data and computational conventions. 

The analyses are performed for a subsample of US firms using trading data from April, 2011 (the 

first month of my institution’s subscription.) The subsample is constructed from all firms present 

on the CRSP and TAQ databases from January through April of 2011 with share codes of 10, 11, or 

12, and with a primary listing on the New York, American or Nasdaq exchanges. I compute the daily 

average dollar volume based on trading in January through March, and form decile rankings on this 

variable. Within each decile I sort by ticker symbol and take the first ten firms.  Table 1 reports 

summary statistics, with subsamples are grouped into quintiles for brevity. 

The quote data are from the NYSE’s Daily TAQ file and constitute the consolidated quote 

feed for all stocks listed on a US exchange, with millisecond time-stamps.5 A record in the 

consolidated quote (CQ) file contains the latest bid and offer originating at a particular exchange. If 

the bid and offer establish the best in the market (the “National Best Bid and Offer,” NBBO) this fact 

is noted on the record. If the CQ record causes the NBBO to change for some other reason, a 

                                                             
4 Wavelet transformations are widely used in noise detection and signal de-noising. These 
techniques are certainly promising tools in the study of microstructure data. For present purposes, 
though, the simpler approach of interval computations suffices. 
5 The “daily” reference in the Daily TAQ dataset refers to the release frequency. Each morning the 
NYSE posts files that cover the previous day’s trading. The Monthly TAQ dataset, more commonly 
used by academics is released with a monthly frequency and contains time stamps in seconds.  
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message is posted to another file (the NBBO file). Thus, the NBBO can be obtained by merging the 

CQ and NBBO files. It can also be constructed (with a somewhat more involved computation) 

directly from the CQ file. Spot checks verified that these two approaches were consistent. 

The NBB and NBO are usually valid continuously from approximately 9:30 to 16:00 

(“normal” US trading hours). It is well known, however, that volatility is elevated at the start and 

finish of these sessions. This is particularly acute for low-activity firms. In these issues, sessions 

may start with wide spreads, which subsequently narrow appreciably before any trades actually 

occur. To keep the analysis free of this starting and ending volatility, I restrict the computations to 

the interval 9:45 to 15:45. 

For time scales ranging from one millisecond to 32.8 seconds (                  , wavelet 

transformations are computed on a one millisecond grid. With this resolution each day’s analysis 

interval contains                     observations (for each stock). For computational 

expediency, transformations on a one-second grid are computed for time scales of two seconds to 

                        . The overlap in time scales for the millisecond and second analyses 

serves as a computational check. To facilitate comparison of these analyses, the one-second prices 

are computed as averages of the one-millisecond prices (as opposed to, say, the price prevailing at 

the end of the second).  

IV.B. Rough variances 

As discussed in Sections II and III.A, the rough variance    (  ) measures the execution 

price uncertainty faced by trader with arrival time uncertainty at time scales    and shorter. The 

wavelet transforms are computed for bids and offers stated in dollars per share. This is meaningful 

because many trading fees (such as commissions and clearing fees) are assessed on a per share 

basis. Access fees, the charges levied by exchanges on taker (aggressor) sides of executions are also 

assessed per share. US SEC Regulation NMS caps access fees at 3 mils ($0.003) per share, and in 

practice most exchanges are close to this level. Practitioners regard access fees as significant to the 

determination of order routing decisions, and this magnitude therefore serves as a rough threshold 

of economic importance.   
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 Table 2 (Panel A) presents estimates for √   (  )  (that is, the standard deviation) in units 

of mils per share. For brevity, the table does not report estimates for all time scales. It will be 

recalled that the rough variance at a given time scale also impounds variation due to components at 

all shorter time scales.  For example, the standard deviation at the 64 millisecond time scale also 

captures variation at 32, 18, 8, 4, 2 and 1 millisecond time scales. Relative to access fees (three mils 

per share), short-term volatility is not particularly high. The access fee threshold is not reached in 

the full sample until the time-scale is extended to 4.1 seconds. At the lowest reported time scale (64 

milliseconds and below) the average volatility is only 0.4 mils.  

Most analyses involving investment returns or comparison across firms assume that share 

normalizations are arbitrary. From this perspective, it is sensible to normalize the rough variances 

by price per share. Table 2 Panel B reports estimates of √   (  )  ̅⁄  , where  ̅ is the average bid-

offer midpoint over the estimation interval, in basis points (0.01%). By this measure, too, volatility 

at the shortest time scale appears modest, 0.3 bp on average.  

In comparing the two sets of results, it appears that the basis point volatilities decline by a 

factor of roughly five in moving from the lowest to the highest dollar volume quintiles (Table 2, 

Panel B). Most of this decline, though, is due to the price normalization. From Table 1, the price 

increases by a factor of about ten over the quintiles. The volatilities in mils per share (Table 2, panel 

A) increase, but only by a factor of around two.  This relative constancy suggests that quote 

volatility is best characterized as a “per share” effect, perhaps due to the constancy of the tick size 

or the prevalence of per-share cost schedules. 

IV.C. Wavelet variance ratios 

Wavelet variance ratios normalize short-term variances by long-term variances under a 

random-walk assumption. Table 3 reports within-quintile means and standard errors. (The 

standard error computations assume independence across observations.) Figure 2 presents the 

means graphically, as a function of time scale. The variance ratios are normalized with respect to 

variation at the longest time scale in the analysis (                        ). The ratio at 34.1 

minutes is therefore unity by construction. If price dynamics followed a random walk, the variance 

ratios would be unity at all time scales, and the plots in the figure would be flat. 
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The table and figure summarize the results of analyses at a one-millisecond resolution, and 

(for the longer time scales) analyses of one-second averaged prices. From time scales of roughly 

four to sixty seconds, these two computations overlap, and at time scales that are approximately 

equal the two computations are in close agreement.  

The overall sample averages (first column) suggest substantial excess short-term volatility. 

The value of 5.36 at a one millisecond time-scale simply implies that volatility at this time-scale is 

over five times higher than would be implied by a random walk calibrated to 34.1 minute volatility. 

In the lowest two dollar volume quintiles, the volatility is inflated by a factor of approximately nine. 

The estimate for the highest dollar volume quintile is somewhat lower (at 1.83), but still implies a 

volatility inflation of 80 percent. 

IV.D. Bid and offer correlations by time scale 

The excess short-term volatility indicated by the high variance ratios (Table 3) suggests that the 

volatility is not of a fundamental or informational nature. Additional evidence on this point is 

suggested by examination of the correlations between bid and offer components on various time 

scales. Table 4 presents these estimates with standard errors; Figure 3 depicts the correlations 

graphically. For brevity, Table 4 does not present estimates based on the one-second resolution 

analysis over the time-scales where they overlap with the millisecond resolution analysis. The 

figure depicts all values, which visually confirms the consistency of the two sets of estimates in the 

overlap region. 

 Hansen and Lunde note that to the extent that volatility is fundamental, we would expect 

bid and offer variation to be perfectly correlated, that is, that a public information revelation would 

shift both prices by the same amount Hansen and Lunde  (2006). Against this presumption, the 

short-term correlation estimates are striking. At time scales of 128 ms or lower, the correlation is 

below 0.7 for all activity quintiles. For the shortest time scales and lower activity quintiles, the 

correlation is only slightly positive. This suggests that substantial high-frequency quote volatility is 

of a dinstinctly transient nature.  
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V. Time-scale decompositions with truncated time stamps. 

The analysis in the preceding section relies on a recent one-month sample of daily TAQ data. For 

addressing policy issues related to low-latency activity, it would be useful to conduct a historical 

analysis, spanning the period over which low-latency technology was deployed. Extending the 

analysis backwards, however, is not straightforward. Millisecond time-stamps are only available in 

the daily TAQ data from 2006 onwards.  Monthly TAQ data (the standard source used in academic 

research) is available back to 1993 (and the precursor ISSM data go back to the mid-1980s). These 

data are substantially less expensive than the daily TAQ, and they have a simpler logical structure. 

The time stamps on the Monthly TAQ and ISSM datasets are reported only to the second. At 

first glance this might seem to render these data useless for characterizing sub-second variation.  

This is unduly pessimistic. It is the purpose of this section to propose, implement and validate an 

approach for estimating sub-second (indeed, millisecond) characteristics of the bid and ask series 

using the second-stamped data. This is possible because the data generation and reporting process 

is richer than it initially seems.  

Specifically, the usual sampling situation in discrete time series analysis involves either 

aggregation over periodic intervals (such as quarterly GDP) or point-in-time periodic sampling 

(such as the end-of-day S&P index). In both cases there is one observation per interval, and in 

neither case do the data support resolution of components shorter than one interval. In the present 

situation, however, quote updates occur in continuous time and are disseminated continuously. The 

one second time-stamps arise as a truncation (or equivalently, a rounding) of the continuous event 

times. The Monthly TAQ data include all quote records, and it is not uncommon for a second to 

contain ten or even a hundred quote records. 

Assume that quote updates arrive in accordance with a Poisson process of constant 

intensity. If the interval       contains n updates, then the update times have the same distribution 

as the order statistics corresponding to n independent random variables uniformly distributed on 

the interval       (Ross  (1996), Theorem 2.3.1). Within a one-second interval containing n updates, 

therefore, we can simulate continuous arrival times by drawing n realizations from the standard 

uniform distribution, sorting, and assigning them to quotes (in order) as the fractional portions of 
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the arrival times. These simulated time-stamps are essentially random draws from true 

distribution. This result does not require knowledge of the underlying Poisson arrival intensity. 

We make the additional assumption that the quote update times are independent of the 

updated bid and ask prices. (That is, the “marks” associated with the arrival times are independent 

of the times.) Then the wavelet transformations and computations on the time-stamp-simulated 

series constitute a draw from their corresponding posterior distributions. 

 This estimation procedure can be formalized in a Bayesian Markov-Chain Monte Carlo 

(MCMC) framework.  To refine the estimates, we would normally make repeated iterations 

(“sweeps”) over the sample, simulating the update times, computing the wavelet transforms, and  

It also bears mention that bid and ask quotes are paired. That is, a quote update with a time-stamp 

of 9:30:01 contains both a bid and ask price. We may not know exactly when within the second the 

update occurred, but we do know that the bid and ask were updated (or refreshed, if not changed) 

at the same time. This alignment strengthens the inferences about the wavelet correlations. 

 It is readily granted that few of the assumptions underlying this model are completely 

satisfied in practice. For a time-homogeneous Poisson process, inter-event durations are 

independent. In fact, inter-event times in market data frequently exhibit pronounced serial 

dependence, and this feature is a staple of the autoregressive conditional duration and stochastic 

duration literature (Engle and Russell  (1998);  Hautsch  (2004)). In Nasdaq Inet data, Hasbrouck 

and Saar  (2011) show that event times exhibit intra-second deterministic patterns. Suboordinated 

stochastic process models of security prices suggest that transactions (not wall-clock time) are 

effectively the “clock” of the process (Shephard  (2005)). 

 There exists, however, a simple test of the practical adequacy of the randomization 

procedure. The time-stamps of the data analyzed in the last section are stripped of their millisecond 

remainders. New millisecond remainders are simulated, the random-time-stamped data are 

analyzed, and we examine the correlations between the two sets (original and randomized) of 

estimates. Table 5 summarizes the cross-firm distribution of these correlations. For the wavelet 

variances, the agreement between original and randomized estimates is very high for all time scales 

and in all subsamples. Even at the briefest time scale of one millisecond, the median correlation is 

0.991. At time-scales of one second and above, the agreement is near perfect. 
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Given the questionable validity of some of the assumptions, and the fact that only one draw 

is made for each second’s activity, this agreement might seem surprising. It becomes more 

reasonable, however, when one considers the extent of averaging underlying the construction of 

both original and randomized estimates. There is explicit averaging in that each wavelet variance 

estimate formed over a fifteen-minute interval involves (with a millisecond resolution) 900,000 

inputs. As long as the order is maintained, a small shift in a data point has little impact over the 

overall estimate. Finally, inherent in the wavelet transformation is an (undesirable) averaging 

across time scales known as leakage (PW, p. 303). 

 Agreement between original and randomized bid-ask correlations is weaker, although still 

under the circumstances, quite good. The median correlation of one millisecond components is 

0.219 (in the full sample), but this climbs to 0.577 at a time scale of 128 ms. The reason for the 

poorer performance of the randomized correlation estimates is simply that the wavelet covariance 

between two series is sensitive to relative alignment. When a bid change is shifted even by a small 

amount relative to the offer, the inferred pattern of comovement is distorted.  

 Across dollar volume quintiles, the correlations generally improve for all time scales. This is 

true for both wavelet variances and correlations, but is more evident in the latter. This is a likely 

consequence of the greater incidence, in the higher quintiles, of multiple quote records within the 

same second. Specifically, for a set of n draws from the uniform distribution, the distribution of any 

order statistic tightens as n increases. (For example, the distribution of the 499th order statistic in a 

sample of 500 in a given second is tighter than the distribution of the first order statistic in a sample 

of one.) Essentially, an event time can be located more precisely within the second if the second 

contains more events. This observation will have bearing on the analysis of historical samples with 

varying numbers of events. 

 In working with Monthly TAQ data, Holden and Jacobsen  (2012, HJ) suggest assigning sub-

second time stamps by evenly-spaced interpolation. If there is one quote record in the second, it is 

assigned a millisecond remainder of 0.500 seconds; if two records, 0.333 and 0.667 seconds, and so 

on. HJ show that interpolation yields good estimates of effective spreads. It is not, however, 

equivalent to the present approach. Consider a sample in which each one-second interval contains 

one quote record. Even spacing places each quote at its half-second point. As a result, the separation 
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between each quote is one second. For example, a sequence of second time stamps such as 

10:00:01, 10:00:02, 10:00:03 … maps to 10:00:01.500, 10:00:02.500, 10:00:03.500, and so on. The 

interpolated time stamps are still separated by one second, and therefore the sample has no 

information regarding sub-second components.  In contrast, a randomized procedure would sweep 

the space of all possibilities, including 10:00:01.999, 10:00:02.000, …, which provides for 

attribution of one-millisecond components.  Of course, as the number of events in a given one-

second interval increases, the two approaches converge: the distribution of the kth order statistic in 

a sample of n uniform observations collapses around its expectation,       ⁄  as n increases. 

 For one class of time-weighted statistics in this setting, interpolated time stamps lead to 

unbiased estimates.  Consider a unit interval where the initial price,   , is known, and there are n 

subsequent price updates            at occurring at times            . The time-

weighted average of any price function      is       ∑               
 
   , where    

            . Assuming a time-homogeneous Poisson arrival process, the     are distributed (as 

above) as uniform order statistics. This implies           ⁄ , the linear interpolated values. If 

the marks (the   ) are distributed independently of the   ,  [              ∑      
 
   . This 

result applies to time-weighted means of prices and spreads (assuming simultaneous updates of 

bids and offers). It also applies to wavelet transforms and other linear convolutions. It does not 

apply to variances (or wavelet variances), however, which are nonlinear functions of arrival times. 

VI. Historical evidence 

This section describes the construction and analysis of variance estimates for a sample of US stocks 

from 2001 to 2011. In each year, I construct variance estimates for a single representative month 

(April) for a subsample of firms. 

The historical span is problematic in some respects. The period covers significant changes 

in market structure and technology. Decimalization had been mandated, but was not completely 

implemented by April, 2001. Reg NMS was adopted in 2005, but was implemented in stages. Dark 

trading grew over the period. Market information and access systems were improved, and latency 

emerged as a key concern of participants. The period also includes many events related to the 

financial crisis, which are relatively exogenous to equity market structure. 
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The net effect of these developments as they pertain to the present study is that it can safely 

be asserted that over the period the very nature of bid and ask quotations changed. Markets in 

2001 were still dominated by what would later be called “slow” procedures. Quotes were often set 

manually. Opportunities for automated execution against these quotes were limited (cf. the NYSE’s 

odd-lot system, and Nasdaq’s Small Order Execution System).  With the advent of Reg NMS, the 

NBBO became much more accessible (for automated execution). 

VI.A. Data 

The data for this phase of the analysis are drawn from CRSP and Monthly TAQ datasets. In each 

year, from all firms present on CRSP and TAQ in April, with share codes in (10, 11, 12), and with 

primary listings on the NYSE, American and Nasdaq exchanges, I draw a subsample of thirty firms. 

The sampling scheme is random, and stratified by market capitalization.6 Quote data are drawn 

from TAQ. 

 Table 6 reports summary statistics. The oft-remarked increase in the intensity of trading 

activity is clearly visible in the trends for median number of trade and quote records. From 2001 to 

2011, the average compound growth rate in trades is about 26 percent. The average compound 

growth rate in quotes is about 31 percent. 

 As described in the last section, all of a firm’s quote records in a given second are assigned 

random, but order preserving, millisecond remainders. The NBBO is constructed from these quote 

records. This yields a NBBO series with (simulated) millisecond time stamps. From this point, 

calculation of wavelet transformations and normalizations follows the procedure described in the 

cross-sectional analysis. 

VI.B. Results 

The presentation of results largely parallels that of the cross-sectional analysis, except that the 

variation is across time instead of the cross-section. Panel A of Table 7 summarizes select rough 

volatilities in mils per share. There is certainly variation from year-to-year, but no time scale 

                                                             
6 As of April, 2001, Nasdaq had not fully implemented decimalization. For this year, I do not sample 
from stocks that traded in sixteenths. 
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suggests an increasing trend. Panel B of Table 7 summarizes the price-normalized volatilities in 

basis points. There is more variation here, and one year in the latter part of the sample (2009) has 

the highest value. This year also has the lowest average share price, however, suggesting that the 

2009 value is mostly an artifact of the normalization. 

 Table 8 summarizes the wavelet variance ratios. Under the null hypothesis of a 

homoscedastic random walk, these should be unity for all time scales. As in the cross-sectional 

analysis, however, they are substantially in excess of one at the shorter time-scales. The general 

behavior across time is suggestive, but not definitive. For sub-second time scales, the first two years 

(2001 and 2002) generally have the lowest ratios.  All ratios are generally largest for 2010, but are 

lower in 2011. (Recall that by construction, these are normalized to 34-minute volatility in each 

year, a procedure that should in principle control for variation in fundamental volatility.)  Thus the 

overall picture depicts a roughly increasing volatility, but the trend is certainly not monotonic and 

standard errors are large. 

 Given the media attention devoted to low-latency activity and the undeniable growth in 

quote volume, the absence of a strong trend in quote volatility seems surprising. There are several 

possible explanations. In the first place, “flickering quotes” drew comment well before Reg NMS and 

during time when quotes were dominated by human market makers (Harris  (1999);  U.S. 

Commodities Futures Trading Commission Technology Advisor Committee  (2001)). The practice of 

“gapping” the quotes is also an artifact of this era (Jennings and Thirumalai  (2007)). In short, the 

quotes may have in reality been less unwavering than popular memory holds. The apparent 

discrepancy between quote volatility and quote volume can be explained by appealing to the 

increase in market fragmentation and consequent growth in matching quotes. 

 The introductory example of AEPI quotes noted the abrupt starting and stopping of extreme 

quote volatility periods. A final possibility then is that while quote volatility has not increased on 

average, there is an increased incidence of extreme, but brief, episodes. Finding (or not finding) 

these episodes seems to be a fruitful area for further research, and the localized nature of wavelet 

transforms suggests that they will be useful tools in this search. 
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VII. Discussion 

From an economic perspective, high frequency quote volatility is connected most closely to other 

high frequency and low latency phenomena in modern markets. From a statistical perspective, it is 

connected to volatility modeling.  

VII.A. High-frequency quoting and high-frequency trading 

Most definitions of algorithmic and high-frequency trading encompass many aspects of market 

behavior (not just executions), and would be presumed to cover quoting as well.7  Executions and 

quotations are nevertheless very different events. It is therefore useful to consider their relation in 

the high-frequency context.  

 The discussion in section II associates short-term quote volatility with price uncertainty for 

those who submit marketable orders, use dark mechanisms that price by reference, or simply 

monitor their brokers. From this perspective, quote volatility is an inverse measure of market 

quality.  It is not necessarily associated with high-frequency executions. One can envision regimes 

where relatively stable quotes are hit with extreme alacrity when fundamental valuations change, 

and periods (such as Figure 1) where frenetic quoting occurs in the absence of executions. 

Nevertheless, the same technology that makes high-frequency executions possible also facilitates 

the rapid submission, cancellation and repricing of the nonmarketable orders that define the bid 

and offer.  One might expect this commonality of technology to link the two activities in practice. 

 Executions are generally emphasized over quotes when identifying agents as high-

frequency traders. For example, Kirilenko, Kyle, Samadi and Tuzun  (2010) select on high volume 

and low inventory. The low inventory criterion excludes institutional investors who might use 

algorithmic techniques to accumulate or liquidate a large position. The Nasdaq HFT dataset uses 

similar criteria (Brogaard  (2010);  Brogaard, Hendershott and Riordan  (2012)).  Once high-

                                                             
7 A CFTC draft definition reads: “High frequency trading is a form of automated trading that 
employs: (a) algorithms for decision making, order initiation, generation, routing, or execution, for 
each individual transaction without human direction; (b) low-latency technology that is designed to 
minimize response times, including proximity and co-location services; (c) high speed connections 
to markets for order entry; and (d) high message rates (orders, quotes or cancellations)” (U.S. 
Commodities Futures Trading Commission  (2011)). 
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frequency traders are identified, their executions and the attributes of these executions lead to 

direct measures of HF activity in panel samples. 

 In some situations, however, identifications based on additional, non-trade information are 

possible. Menkveld  (2012) identifies one Chi-X participant on the basis of size and prominence.  

The Automated Trading Program on the German XETRA system allows and provides incentives for 

designating an order as algorithmic (Hendershott and Riordan  (2012)).  Other studies analyze 

indirect measures of low-latency activity. Hendershott, Jones and Menkveld  (2011) use NYSE 

message traffic. Hasbrouck and Saar  (2011) suggest strategic runs (order chains) of cancel and 

replace messages linked at intervals of 100 ms or lower.  

 Most of these studies find a positive association between low-latency activity and common 

market quality measures, such as posted and effective spreads.  Most also find a zero or negative 

association between low-latency activity and volatility, although the constructed volatility 

measures usually span intervals that are long relative to those of the present paper. With respect to 

algorithmic or high-frequency activity: Hendershott and Riordan  (2012) find an insignificantly 

negative association with the absolute value of the prior 15-minute return; Hasbrouck and Saar  

(2011) find a negative association with the high-low difference of the quote midpoint over a 15-

minute interval; Brogaard  (2012) finds a negative relation with absolute price changes over 

intervals as short as ten seconds.   

 The time-scaled variance estimates used here clearly aim at a richer characterization of 

volatility than the high/low or absolute return proxies used in the studies above. The present study 

does not, on the other hand, attempt to correlate the variance measures with intraday proxies for 

high-frequency trading. Nevertheless, viewed broadly, the conclusions are consistent in that the 

period of time spanning the rise of high-frequency trading is not associated with an increasing 

trend in short term volatility. 

 One would naturally assume, of course, that the ultimate strategic purpose of high-

frequency quoting is to facilitate a trade or to affect the price of a trade. The mechanics of this are 

certainly deserving of further research.  
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VII.B. High-frequency quoting and volatility modeling 

Security prices at all horizons are a mix of integrated and stationary components. The former are 

usually identified with persistent fundamental information innovations; the latter, with transient 

microstructure effects.  The former are important to long-term hedging and investment; the latter, 

to trading and market-making. The dichotomy is sometimes reflected in different statistical tools 

and models.  

 Between the two approaches, the greatest common concerns arise in the analysis of realized 

volatility (Andersen, Bollerslev, Diebold and Ebens  (2001);  Andersen, Bollerslev, Diebold and 

Labys  (2003a);  Andersen, Bollerslev, Diebold and Labys  (2003b)).  RVs are calculated from short-

term price changes. They are useful as estimates of fundamental integrated volatility (IV), and 

typically serve as inputs to longer-term forecasting models. RVs constructed directly from trade, 

bid and offer prices are typically noisy, however, due to the presence of microstructure 

components. Local averaging moderates these effects.  The issues are surveyed in Hansen and 

Lunde  (2006) and the accompanying comments.   

 The present study draws on several themes in the RV literature. The volatility ratio plots in 

Figure 2 serve a purpose similar to the volatility signature plots introduced by Fang  (1996) and 

used in Andersen, Bollerslev, Diebold and Ebens  (2002) and Hansen and Lunde  (2006). Hansen 

and Lunde also articulate the connection between bid-offer comovement and fundamental 

volatility: since the bid and offer have economic fundamentals in common, divergent movements 

must be short-term, transient, and unconnected to fundamentals. 

 The paper also departs from the RV literature in significant respects.  The millisecond time 

scales employed in this paper are several orders of magnitude shorter than those typically 

encountered. Most RV studies also focus on relatively liquid assets (index securities, Dow-Jones 

stocks, etc.).  The low-activity securities included in the present paper’s samples are important 

because, due to their larger spreads and fewer participants, they are likely to exhibit relatively 

strong, persistent and distinctive microstructure-related components. 
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VIII. Conclusion and outstanding questions 

High-frequency volatility in the bid and offer quotes induces risk for agents who experience delay in 

communicating with the market. The risk may be quantified as the price variance over the interval 

of delay, relative to the time-weighted average price (TWAP) over the interval. This volatility 

degrades the informational value of the quotes. Furthermore, because the bid and offer are often 

used as reference prices for dealer trades against customers, the volatility increases the value of a 

dealer’s look-back option and exacerbates the customer’s monitoring problem. 

 This study is a preliminary analysis of short-term in the US equity market. Applying 

standard techniques of time-decomposition to a recent sample of millisecond-stamped data 

establishes that there is substantial volatility in the National Best Bid and Offer (NBBO) on 

millisecond-level time scales that is well in excess of what would be expected using random-walk 

volatility estimated over longer intervals. The excess volatility is more pronounced for stocks that 

have lower average activity. Furthermore, the correlations between bids and offers at these time 

scales are positive, but low. That the bid and offer are not moving together also suggests that the 

volatility is not fundamental. 

 The paper proposes a Bayesian simulation approach to measuring millisecond-level 

volatility in US equity data (like the Monthly TAQ) that possess all quote records, but are time-

stamped only to the second. The approach is validated in a set of millisecond-stamped data by 

comparing two sets of estimates: one set based on the original time-stamps; the other based on 

simulated time stamps. 

 Using the Bayesian approach, the paper turns to a longer US historical sample, 2001-2011 

Monthly TAQ data. Despite the current public scrutiny of high-frequency trading, the large growth 

in the number of quote records, and the presumption that low-latency technology is a new and 

recent phenomenon, the data suggest at best only a modest rise in short-term quote volatility.  
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Table 1. Sample Summary Statistics 

Source: CRSP and Daily TAQ data, April 2011. The sample is 100 firms randomly selected from CRSP with 
stratification based on average dollar trading volume in the first quarter of 2011, grouped in quintiles by dollar 
trading volume over the first quarter of 2011. 
 

   Cross-firm median 

  N 

Share 
price, end 

of 2010 

Avg. Dollar 
Volume ($ 
Thousand) 

Equity Market 
Capitalization 

($Million) 

Avg. no. 
daily 

trades 

Avg. no. 
daily quote 

updates 

Avg. no. 
daily NBBO 

records 

Full sample 100 $13.93 $2,140 $399 1,061 23,347 6,897 

Dollar 
volume 

quintiles 

1, low 20 $4.18 $39 $30 30 960 362 

2 20 $4.37 $501 $148 404 6,288 2,768 

3 20 $9.54 $2,140 $372 873 20,849 6,563 

4 20 $27.82 $9,691 $1,440 2,637 45,728 11,512 

5, high 20 $39.33 $85,324 $6,231 13,057 179,786 37,695 

 

 

 



 Page 32 

 

Table 2. Volatility in the National Best Bid and Offer 

The results are based on a random sample of 100 US stocks, stratified by dollar trading volume, for April, 2011. 
Wavelet variance estimates by firm and time scale are formed using Haar MODWTs applied separately to the National 
Best Bid and the National Best Offer at one-millisecond resolution. They are averaged over the bid and offer sides, and 
cumulated to obtain estimates of wavelet rough variances,        . Table entries are cross-firm sample means and 

(in parentheses) standard errors for √        in mils per share ($0.001, Panel A) and     √        ̅⁄ , where  ̅ is the 

firm’s average bid-ask midpoint over the sample, in basis points (0.01%, Panel B). 
 

Panel A. √        at time scales   , mils ($0.001) per share. 

 

Time scale Full Sample 
Dollar volume quintiles 

1 (low) 2 3 4 5 (high) 
64 ms 0.4  (<0.1) 0.3  (<0.1) 0.2  (<0.1) 0.4  (<0.1) 0.5  (<0.1) 0.6  (0.1) 

128 ms 0.6  (<0.1) 0.4  (<0.1) 0.3  (<0.1) 0.6  (<0.1) 0.7  (<0.1) 0.9  (0.2) 

256 ms 0.8  (<0.1) 0.6  (0.1) 0.5  (<0.1) 0.8  (0.1) 1.0  (0.1) 1.2  (0.3) 

512 ms 1.1  (0.1) 0.8  (0.2) 0.6  (<0.1) 1.2  (0.2) 1.4  (0.2) 1.7  (0.4) 

1,024 ms 1.6  (0.1) 1.1  (0.2) 0.9  (0.1) 1.6  (0.3) 1.9  (0.3) 2.4  (0.6) 

4.1 sec 3.0  (0.3) 2.1  (0.4) 1.6  (0.3) 3.0  (0.5) 3.6  (0.5) 4.8  (1.1) 

32.8 sec 8.0  (0.8) 5.3  (1.0) 4.1  (0.7) 7.4  (1.1) 9.9  (1.5) 13.3  (3.1) 

 

Panel B. √        ̅⁄ , basis points (0.01%) 

 

Time scale Full Sample 
Dollar volume quintiles 

1 (low) 2 3 4 5 (high) 
64 ms 0.3 (0.02) 0.6 (0.08) 0.4 (0.04) 0.3 (0.02) 0.2 (0.01) 0.1 (0.01) 

128 ms 0.4 (0.03) 0.8 (0.11) 0.6 (0.05) 0.4 (0.03) 0.2 (0.02) 0.2 (0.01) 
256 ms 0.6 (0.04) 1.1 (0.15) 0.8 (0.07) 0.6 (0.05) 0.3 (0.02) 0.2 (0.02) 
512 ms 0.8 (0.06) 1.4 (0.20) 1.1 (0.10) 0.8 (0.07) 0.5 (0.03) 0.3 (0.02) 

1,024 ms 1.2 (0.08) 2.0 (0.27) 1.5 (0.14) 1.2 (0.10) 0.6 (0.05) 0.5 (0.04) 
4.1 sec 2.2 (0.16) 3.8 (0.52) 2.8 (0.27) 2.2 (0.21) 1.2 (0.11) 0.9 (0.08) 

32.8 sec 5.6 (0.40) 9.5 (1.26) 7.1 (0.75) 5.7 (0.56) 3.3 (0.34) 2.5 (0.24) 
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Table 3. Wavelet variance ratios for the National Best Bid and Offer 

The results are based on a random sample of 100 US stocks, stratified by dollar trading volume, for April, 2011. 
Wavelet variance estimates        by firm and time scale are formed using Haar MODWTs applied separately to the 

National Best Bid and the National Best Offer at one-millisecond resolution, and (for time scales of a second or longer) 
at a one-second resolution. “ Base res” indicates the resolution in the        calculation. The estimates are averaged 

across the NBB and NBO. The wavelet variance ratio is 

       
  (  )

  (  )
 

   ̅̅ ̅̅
 (  )

   
 (  )

 

  (  ) is the wavelet variance at the longest time scale in the analysis (34.1 minutes). The normalization ratio 

   ̅̅ ̅̅
 (  )    

     ⁄  is based on the assumption that the prices follow random-walks at a one millisecond resolution. The 

“  ̅̅ ̅̅ ” subscript indicates that the variance has also been adjusted for averaging at the one-second resolution. Due to 
the normalization,                 is unity by construction. Table entries are cross-firm means and (in 

parentheses) the standard errors of these means. 
 

Time scale    Base Res Full Sample 
Dollar volume quintiles 

1 2 3 4 5 
1 ms ms 5.36 (0.93) 8.81 (2.37) 9.74 (3.71) 3.69 (0.44) 2.74 (0.36) 1.83 (0.17) 
2 ms ms 5.21 (0.92) 8.56 (2.32) 9.73 (3.71) 3.66 (0.45) 2.40 (0.24) 1.70 (0.14) 
4 ms ms 4.73 (0.82) 7.26 (1.76) 9.01 (3.46) 3.52 (0.44) 2.26 (0.23) 1.59 (0.12) 
8 ms ms 4.18 (0.71) 5.86 (1.31) 8.05 (3.15) 3.33 (0.41) 2.12 (0.21) 1.53 (0.11) 

16 ms ms 3.79 (0.65) 5.11 (1.15) 7.26 (2.91) 3.08 (0.37) 2.00 (0.20) 1.49 (0.11) 
32 ms ms 3.48 (0.59) 4.62 (1.03) 6.55 (2.63) 2.85 (0.32) 1.92 (0.19) 1.48 (0.10) 
64 ms ms 3.25 (0.52) 4.31 (0.94) 5.93 (2.33) 2.69 (0.29) 1.86 (0.18) 1.47 (0.10) 

128 ms ms 3.03 (0.46) 4.03 (0.88) 5.35 (2.04) 2.56 (0.27) 1.78 (0.17) 1.45 (0.10) 
256 ms ms 2.82 (0.41) 3.75 (0.85) 4.85 (1.79) 2.41 (0.24) 1.69 (0.16) 1.40 (0.09) 
512 ms ms 2.69 (0.38) 3.71 (0.86) 4.52 (1.63) 2.30 (0.22) 1.58 (0.14) 1.34 (0.09) 

1,000 ms sec 2.56 (0.34) 3.63 (0.85) 4.13 (1.42) 2.19 (0.20) 1.51 (0.13) 1.31 (0.09) 
1,024 ms ms 2.54 (0.35) 3.63 (0.84) 4.13 (1.44) 2.17 (0.20) 1.49 (0.13) 1.30 (0.09) 
2,000 ms sec 2.37 (0.29) 3.45 (0.79) 3.64 (1.16) 2.05 (0.18) 1.43 (0.12) 1.27 (0.08) 
2,048 ms ms 2.36 (0.29) 3.45 (0.79) 3.63 (1.16) 2.04 (0.17) 1.42 (0.12) 1.27 (0.08) 

4.0 sec sec 2.18 (0.23) 3.21 (0.68) 3.15 (0.88) 1.90 (0.15) 1.36 (0.10) 1.25 (0.08) 
4.1 sec ms 2.17 (0.23) 3.20 (0.68) 3.14 (0.87) 1.90 (0.15) 1.36 (0.10) 1.25 (0.08) 
8.0 sec sec 1.97 (0.18) 2.87 (0.53) 2.69 (0.63) 1.75 (0.13) 1.30 (0.09) 1.25 (0.08) 
8.2 sec ms 1.97 (0.17) 2.87 (0.52) 2.68 (0.62) 1.75 (0.13) 1.30 (0.09) 1.25 (0.08) 

16.0 sec sec 1.75 (0.12) 2.39 (0.34) 2.29 (0.44) 1.59 (0.11) 1.24 (0.08) 1.24 (0.08) 
16.4 sec ms 1.75 (0.12) 2.38 (0.34) 2.29 (0.43) 1.59 (0.11) 1.24 (0.08) 1.25 (0.08) 
32.0 sec sec 1.60 (0.09) 2.13 (0.27) 1.99 (0.30) 1.47 (0.10) 1.18 (0.07) 1.22 (0.08) 
32.8 sec ms 1.60 (0.09) 2.13 (0.26) 1.99 (0.30) 1.47 (0.10) 1.19 (0.07) 1.23 (0.08) 
64.0 sec sec 1.46 (0.06) 1.91 (0.20) 1.72 (0.20) 1.35 (0.09) 1.14 (0.07) 1.18 (0.06) 
2.1 min sec 1.34 (0.05) 1.71 (0.15) 1.49 (0.13) 1.26 (0.08) 1.10 (0.06) 1.13 (0.05) 
4.3 min sec 1.24 (0.03) 1.54 (0.12) 1.33 (0.08) 1.18 (0.07) 1.08 (0.05) 1.09 (0.04) 
8.5 min sec 1.16 (0.02) 1.34 (0.07) 1.21 (0.05) 1.09 (0.04) 1.07 (0.04) 1.08 (0.03) 

17.1 min sec 1.08 (0.01) 1.15 (0.03) 1.12 (0.03) 1.02 (0.02) 1.04 (0.02) 1.06 (0.02) 
34.1 min sec 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 
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Table 4. Wavelet correlations between the National Best Bid and National Best Offer. 

The results are based on a random sample of 100 US stocks, stratified by dollar trading volume, for April, 2011. 
Wavelet variance and covariance estimates by firm and time scale are formed using Haar MODWTs applied separately 
to the National Best Bid and the National Best Offer at one-millisecond resolution, and (for time scales of a second or 
longer) at a one-second resolution. “Base resolution” indicates the resolution in the calculation. Denoting these 

wavelet variances and covariances by     
 (  ),     

 (  ),         (  ), the wavelet correlated is defined as 

        (  ) √    
 (  )      

 (  )⁄ . Table entries are cross-firm medians. 

 

   Dollar volume quintile 

Time scale 
Base 

Resolution Full Sample 1 (low) 2 3 4 5 (high) 
1 ms ms 0.068 0.007 0.051 0.066 0.079 0.135 
2 ms ms 0.107 0.015 0.058 0.086 0.130 0.245 
4 ms ms 0.156 0.024 0.082 0.125 0.195 0.357 
8 ms ms 0.207 0.031 0.117 0.175 0.257 0.454 

16 ms ms 0.253 0.044 0.155 0.224 0.307 0.536 
32 ms ms 0.295 0.062 0.195 0.271 0.349 0.596 
64 ms ms 0.335 0.083 0.238 0.319 0.391 0.641 

128 ms ms 0.375 0.109 0.289 0.370 0.430 0.678 
256 ms ms 0.414 0.139 0.340 0.417 0.467 0.708 
512 ms ms 0.447 0.165 0.377 0.454 0.503 0.736 

1,024 ms ms 0.481 0.183 0.412 0.490 0.547 0.771 
2,048 ms ms 0.517 0.199 0.449 0.528 0.599 0.811 

4.1 sec ms 0.555 0.211 0.484 0.572 0.656 0.855 
8.2 sec ms 0.598 0.230 0.523 0.623 0.719 0.897 

16.4 sec ms 0.644 0.256 0.570 0.678 0.781 0.933 
32.8 sec ms 0.689 0.284 0.622 0.737 0.842 0.960 
64.0 sec sec 0.735 0.319 0.685 0.800 0.896 0.977 
2.1 min sec 0.779 0.352 0.750 0.863 0.940 0.988 
4.3 min sec 0.814 0.383 0.805 0.916 0.970 0.995 
8.5 min sec 0.842 0.424 0.849 0.953 0.987 0.998 

17.1 min sec 0.864 0.469 0.884 0.974 0.994 0.999 
34.1 min sec 0.882 0.520 0.908 0.986 0.997 1.000 
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Table 5. Agreement of wavelet variances and correlations constructed  
using original and simulated time stamps. 

The results are based on a random sample of 100 US stocks, stratified by dollar trading volume, for all trading days in 
April, 2011.  Wavelet variance and correlation estimates by firm and time scale are formed using Haar MODWTs 
applied separately to the National Best Bid and the National Best Offer over 15 minute intervals from 9:45 to 15:45. 
For each firm, time scale and interval, the wavelet variances are averaged across the NBB and NBO. These estimates 
are formed twice: using in the first instance using the actual millisecond time stamps, and in the second instance using 
simulated millisecond time stamps. For each firm I compute the correlation between corresponding actual/simulated 
estimates. The table reports the cross-firm medians for these correlations. 
 
Panel A. Wavelet variances 
 

  Dollar volume quintiles 
Time Scale All 1 (low) 2 3 4 5 (high) 

1 ms 0.991 0.997 0.985 0.991 0.995 0.989 

2 ms 0.986 0.990 0.985 0.989 0.990 0.981 

4 ms 0.978 0.979 0.976 0.978 0.980 0.980 

8 ms 0.973 0.967 0.959 0.968 0.977 0.979 

16 ms 0.967 0.947 0.959 0.965 0.975 0.979 

32 ms 0.966 0.929 0.946 0.968 0.974 0.981 

64 ms 0.968 0.920 0.952 0.963 0.978 0.985 

128 ms 0.970 0.929 0.955 0.961 0.978 0.987 

256 ms 0.975 0.960 0.962 0.973 0.984 0.990 

512 ms 0.986 0.981 0.979 0.983 0.991 0.995 

1.0 sec 0.996 0.992 0.993 0.995 0.997 0.998 

2.0 sec 0.999 0.998 0.998 0.998 0.999 1.000 

4.1 sec 1.000 1.000 0.999 0.999 1.000 1.000 

8.2 sec 1.000 1.000 1.000 1.000 1.000 1.000 

16.4 sec 1.000 1.000 1.000 1.000 1.000 1.000 

32.8 sec 1.000 1.000 1.000 1.000 1.000 1.000 

 
Panel B. Wavelet correlations 
 

  Dollar volume quintiles 
Time Scale All 1 (low) 2 3 4 5 (high) 

1 ms 0.219 0.304 0.136 0.247 0.221 0.226 
2 ms 0.247 0.198 0.168 0.276 0.243 0.352 
4 ms 0.289 0.255 0.210 0.313 0.278 0.393 
8 ms 0.330 0.218 0.342 0.329 0.316 0.436 

16 ms 0.377 0.261 0.376 0.384 0.393 0.462 
32 ms 0.424 0.282 0.404 0.401 0.482 0.486 
64 ms 0.503 0.388 0.464 0.491 0.565 0.616 

128 ms 0.594 0.488 0.545 0.612 0.671 0.737 
256 ms 0.715 0.611 0.666 0.741 0.784 0.823 
512 ms 0.862 0.803 0.816 0.865 0.887 0.906 
1.0 sec 0.949 0.946 0.934 0.943 0.957 0.965 
2.0 sec 0.984 0.982 0.980 0.982 0.987 0.989 
4.1 sec 0.995 0.994 0.994 0.994 0.996 0.995 
8.2 sec 0.998 0.998 0.998 0.998 0.999 0.998 

16.4 sec 0.999 0.999 0.999 0.999 0.999 0.999 
32.8 sec 0.999 1.000 0.999 0.999 1.000 0.999 
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Table 6. Summary statistics, historical sample, 2001-2011 

For each year, 2001-2011 I draw thirty firms randomly, stratified by equity market capitalization as of the end of 
March. Trade and quote counts are from the Monthly TAQ database (one-second time stamps). Except for the number 
of firms, table entries are cross-firm medians. 
 

 Year 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

No.  of firms 30 29 30 30 30 30 30 30 30 30 30 

Equity mkt. 
cap., $ Million 

$341 $151 $165 $287 $272 $374 $445 $329 $150 $379 $484 

Price per share $15.88 $10.14 $9.45 $15.27 $22.51 $15.26 $16.65 $9.16 $4.90 $8.84 $16.23 

Avg.  daily no. 
of trades 

97 85 65 347 276 361 889 1,172 869 1,510 1,341 

Avg. daily no. 
of quotes 

807 271 814 3,588 4,846 5,761 12,383 14,427 18,305 19,320 17,989 
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Table 7. Volatility in the National Best Bid and Offer, historical 

The sample consists of thirty firms in each year 2001-2011, randomly chosen with equity market capitalization 
stratification.  Quote data are from the Monthly TAQ. The one-second time-stamps on the Monthly TAQ are 
supplemented with randomized millisecond remainders. Then wavelet variance estimates by firm and time scale are 
formed using Haar MODWTs applied separately to the National Best Bid and the National Best Offer at one-
millisecond resolution. They are averaged over the bid and offer sides, and cumulated to obtain estimates of wavelet 
rough variances,        . Table entries are cross-firm sample means and (in parentheses) standard errors for 

√        in mils per share ($0.001, Panel A) and     √        ̅⁄ , where  ̅ is the firm’s average bid-ask midpoint 

over the sample, in basis points (0.01%, Panel B). 
 

Panel A. √        at time scales   , mils ($0.001) per share. 

 

 Year 
Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

64 ms 0.5  0.4  0.4  0.5  0.7  0.4  0.4  0.5  0.5  0.4  0.3  
 (<0.1) (<0.1) (<0.1) (<0.1) (0.1) (<0.1) (<0.1) (<0.1) (<0.1) (<0.1) (<0.1) 

128 ms 0.7  0.5  0.5  0.7  1.0  0.6  0.5  0.7  0.7  0.6  0.5  
 (0.1) (0.1) (<0.1) (<0.1) (0.1) (<0.1) (<0.1) (<0.1) (<0.1) (0.1) (<0.1) 

256 ms 0.9  0.7  0.7  1.0  1.3  0.8  0.7  0.9  0.9  0.8  0.6  
 (0.2) (0.1) (0.1) (0.1) (0.2) (0.1) (<0.1) (0.1) (0.1) (0.1) (<0.1) 

512 ms 1.3  1.0  1.0  1.4  1.9  1.2  0.9  1.2  1.2  1.1  0.9  
 (0.2) (0.2) (0.2) (0.2) (0.3) (0.1) (0.1) (0.2) (0.2) (0.2) (0.1) 

1,024 ms 1.9  1.4  1.4  1.9  2.5  1.6  1.3  1.7  1.6  1.5  1.2  
 (0.3) (0.3) (0.3) (0.2) (0.3) (0.2) (0.1) (0.2) (0.2) (0.3) (0.1) 

4.1 sec 3.6  2.7  2.8  3.5  4.6  2.9  2.3  3.2  3.0  2.7  2.2  
 (0.6) (0.6) (0.5) (0.4) (0.6) (0.4) (0.3) (0.4) (0.4) (0.5) (0.3) 

32.8 sec 10.1  7.0  7.2  8.6  11.3  7.4  6.3  8.3  7.7  6.9  5.8  
 (1.7) (1.5) (1.3) (1.0) (1.3) (0.9) (0.7) (1.2) (1.2) (1.2) (0.8) 

 

Panel B. √        ̅⁄ , basis points (0.01%) 

 

 Year 
Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

64 ms 0.3 0.5 0.3 0.5 0.4 0.3 0.2 0.5 1.1 0.4 0.3 
 (0.04) (0.13) (0.03) (0.06) (0.05) (0.04) (0.03) (0.07) (0.23) (0.05) (0.04) 

128 ms 0.4 0.7 0.4 0.7 0.6 0.5 0.3 0.7 1.5 0.6 0.4 
 (0.06) (0.18) (0.05) (0.09) (0.08) (0.06) (0.05) (0.10) (0.32) (0.07) (0.06) 

256 ms 0.6 1.0 0.6 0.9 0.8 0.6 0.4 0.9 2.0 0.8 0.5 
 (0.08) (0.26) (0.07) (0.13) (0.11) (0.09) (0.06) (0.13) (0.45) (0.10) (0.08) 

512 ms 0.8 1.3 0.8 1.3 1.2 0.9 0.6 1.3 2.7 1.1 0.7 
 (0.12) (0.37) (0.11) (0.18) (0.15) (0.12) (0.09) (0.18) (0.62) (0.14) (0.11) 

1,024 ms 1.1 1.8 1.2 1.7 1.6 1.2 0.8 1.7 3.7 1.4 1.0 
 (0.17) (0.50) (0.15) (0.25) (0.20) (0.16) (0.12) (0.23) (0.84) (0.20) (0.16) 

4.1 sec 2.2 3.7 2.2 3.2 2.9 2.1 1.5 3.1 6.6 2.6 1.9 
 (0.35) (1.03) (0.30) (0.44) (0.33) (0.27) (0.22) (0.40) (1.49) (0.38) (0.29) 

32.8 sec 6.2 9.3 5.6 7.7 6.9 5.2 3.8 7.5 14.6 6.3 4.7 
 (0.98) (2.51) (0.70) (1.06) (0.74) (0.60) (0.54) (0.83) (2.60) (0.98) (0.70) 
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Table 8. Wavelet variance ratios for the National Best Bid and Offer, historical 

The sample consists of thirty firms in each year 2001-2011, randomly chosen with equity market capitalization 
stratification.  Quote data are from the Monthly TAQ. The one-second time-stamps on the Monthly TAQ are 
supplemented with randomized millisecond remainders. Wavelet variance estimates        by firm and time scale are 

formed using Haar MODWTs applied separately to the National Best Bid and the National Best Offer at one-
millisecond resolution, and (for time scales of a second or longer) at a one-second resolution. “ Base res” indicates the 
resolution in the        calculation. The estimates are averaged across the NBB and NBO. The wavelet variance ratio is 

       
  (  )

  (  )
 

   ̅̅ ̅̅
 (  )

   
 (  )

 

  (  ) is the wavelet variance at the longest time scale in the analysis (34.1 minutes). The normalization ratio 

   ̅̅ ̅̅
 (  )    

     ⁄  is based on the assumption that the prices follow random-walks at a one millisecond resolution. The 

“  ̅̅ ̅̅ ” subscript indicates that the variance has also been adjusted for averaging at the one-second resolution. Due to 
the normalization,                 is unity by construction. Table entries are cross-firm means and (in 

parentheses) the standard errors of these means. 
 

Time scale  Base res  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 
1ms ms  2.41 2.45 4.99 7.63 6.89 4.69 4.86 5.76 7.79 9.30 5.97 

   (0.46) (0.20) (1.23) (1.80) (1.76) (0.80) (1.44) (1.49) (1.67) (2.86) (1.36) 

2 ms ms  2.41 2.45 4.99 7.62 6.88 4.66 4.84 5.72 7.76 9.17 5.90 

   (0.46) (0.20) (1.23) (1.80) (1.76) (0.78) (1.43) (1.49) (1.67) (2.84) (1.34) 

4 ms ms  2.41 2.45 4.98 7.61 6.88 4.62 4.80 5.66 7.72 8.98 5.79 

   (0.46) (0.20) (1.23) (1.80) (1.76) (0.76) (1.41) (1.48) (1.67) (2.81) (1.31) 

8 ms ms  2.41 2.44 4.98 7.60 6.86 4.53 4.72 5.56 7.61 8.70 5.62 

   (0.46) (0.20) (1.23) (1.80) (1.75) (0.72) (1.37) (1.46) (1.66) (2.76) (1.27) 

16 ms ms  2.40 2.41 4.97 7.58 6.83 4.41 4.59 5.38 7.43 8.29 5.36 

   (0.46) (0.20) (1.23) (1.80) (1.75) (0.66) (1.31) (1.42) (1.63) (2.70) (1.19) 

32 ms ms  2.39 2.38 4.96 7.53 6.78 4.28 4.37 5.11 7.17 7.78 4.96 

   (0.46) (0.19) (1.22) (1.79) (1.73) (0.62) (1.21) (1.36) (1.59) (2.63) (1.06) 

64 ms ms  2.37 2.35 4.92 7.44 6.66 4.13 4.06 4.73 6.83 7.23 4.51 

   (0.45) (0.19) (1.21) (1.77) (1.70) (0.59) (1.07) (1.27) (1.55) (2.57) (0.93) 

128 ms ms  2.34 2.31 4.83 7.26 6.45 3.94 3.67 4.26 6.39 6.69 4.03 

   (0.45) (0.18) (1.19) (1.74) (1.62) (0.54) (0.90) (1.13) (1.48) (2.53) (0.78) 

256 ms ms  2.31 2.25 4.67 6.95 6.06 3.70 3.22 3.74 5.84 6.16 3.52 

   (0.45) (0.18) (1.13) (1.69) (1.48) (0.49) (0.74) (0.95) (1.39) (2.50) (0.63) 

512 ms ms  2.27 2.18 4.42 6.46 5.46 3.39 2.76 3.23 5.22 5.62 3.03 

   (0.45) (0.17) (1.07) (1.61) (1.24) (0.44) (0.59) (0.75) (1.27) (2.47) (0.50) 

1,024 ms ms  2.20 2.11 4.13 5.83 4.66 3.06 2.40 2.83 4.60 5.13 2.65 

   (0.42) (0.16) (1.04) (1.53) (0.92) (0.37) (0.50) (0.61) (1.13) (2.42) (0.40) 

2,048 ms ms  2.18 2.05 3.87 5.29 3.92 2.76 2.18 2.56 4.13 4.75 2.39 

   (0.41) (0.16) (1.04) (1.50) (0.66) (0.32) (0.44) (0.50) (1.00) (2.40) (0.33) 

4.1 sec ms  2.22 1.99 3.67 4.92 3.48 2.50 2.07 2.35 3.68 4.46 2.18 

   (0.44) (0.15) (1.04) (1.49) (0.54) (0.26) (0.41) (0.43) (0.81) (2.39) (0.27) 

8.2 sec ms  2.23 1.91 3.50 4.56 3.13 2.27 1.98 2.16 3.10 4.26 1.99 

   (0.45) (0.14) (1.03) (1.51) (0.45) (0.22) (0.38) (0.37) (0.56) (2.40) (0.22) 

16.4 sec ms  2.17 1.78 3.27 4.21 2.82 2.07 1.75 1.96 2.59 4.10 1.80 

   (0.45) (0.12) (1.01) (1.57) (0.38) (0.18) (0.23) (0.31) (0.36) (2.40) (0.17) 

32.8 sec ms  2.03 1.64 2.80 3.99 2.53 1.90 1.58 1.77 2.20 3.96 1.65 

   (0.44) (0.11) (0.85) (1.65) (0.31) (0.15) (0.14) (0.26) (0.25) (2.37) (0.13) 

64.0 sec Sec  1.89 1.52 2.13 3.87 2.25 1.74 1.47 1.60 2.07 2.83 1.54 

   (0.45) (0.09) (0.40) (1.79) (0.25) (0.12) (0.09) (0.20) (0.26) (1.34) (0.10) 

2.1 min Sec  1.83 1.42 1.71 3.98 1.97 1.59 1.40 1.44 1.94 2.12 1.44 

   (0.47) (0.08) (0.14) (2.15) (0.19) (0.09) (0.07) (0.13) (0.25) (0.71) (0.08) 
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Time scale  Base res  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 
4.3 min Sec  1.75 1.34 1.49 3.60 1.72 1.47 1.36 1.32 1.83 2.23 1.36 

   (0.44) (0.06) (0.07) (1.97) (0.14) (0.07) (0.06) (0.07) (0.24) (0.91) (0.07) 

8.5 min Sec  1.65 1.20 1.29 1.52 1.42 1.30 1.26 1.18 1.64 1.36 1.20 

   (0.45) (0.04) (0.04) (0.13) (0.08) (0.04) (0.05) (0.04) (0.22) (0.20) (0.04) 

17.1 min Sec  1.27 1.10 1.17 1.23 1.20 1.17 1.14 1.08 1.27 1.10 1.11 

   (0.17) (0.02) (0.03) (0.04) (0.03) (0.02) (0.03) (0.02) (0.08) (0.04) (0.02) 

34.1 min Sec  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
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Table 9. Wavelet correlations, National Best Bid and National Best Offer, historical 

The sample consists of thirty firms in each year 2001-2011, randomly chosen with equity market capitalization 
stratification.  Quote data are from the Monthly TAQ. The one-second time-stamps on the Monthly TAQ are 
supplemented with randomized millisecond remainders. Wavelet variance and covariance estimates by firm and time 
scale are formed using Haar MODWTs applied separately to the National Best Bid and the National Best Offer at one-
millisecond resolution, and (for time scales of a second or longer) at a one-second resolution. “Base resolution” 
indicates the resolution in the calculation. Denoting these wavelet variances and covariances by     

 (  ), 

    
 (  ),         (  ), the wavelet correlated is defined as         (  ) √    

 (  )      
 (  )⁄ . Table entries are 

cross-firm medians. 

 

 
Year 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Time scale 
Base 

resolution 

0.068 0.038 0.024 0.004 0.052 0.053 0.018 0.018 0.013 0.007 0.005 1 ms ms 

2 ms ms 0.068 0.038 0.024 0.004 0.052 0.053 0.018 0.019 0.013 0.009 0.008 

4 ms ms 0.069 0.038 0.024 0.004 0.052 0.054 0.019 0.021 0.016 0.013 0.012 

8 ms ms 0.069 0.038 0.024 0.005 0.053 0.054 0.020 0.026 0.020 0.020 0.020 

16 ms ms 0.069 0.039 0.024 0.005 0.054 0.056 0.022 0.035 0.029 0.033 0.034 

32 ms ms 0.069 0.039 0.024 0.006 0.055 0.058 0.027 0.051 0.045 0.055 0.057 

64 ms ms 0.069 0.039 0.024 0.009 0.059 0.063 0.036 0.078 0.074 0.089 0.093 

128 ms ms 0.070 0.041 0.026 0.013 0.065 0.072 0.054 0.120 0.118 0.142 0.147 

256 ms ms 0.072 0.043 0.030 0.023 0.078 0.090 0.092 0.183 0.179 0.218 0.224 

512 ms ms 0.075 0.048 0.041 0.043 0.101 0.122 0.155 0.268 0.247 0.316 0.323 

1,024 ms ms 0.080 0.062 0.070 0.079 0.139 0.176 0.245 0.356 0.312 0.406 0.414 

2,048 ms ms 0.092 0.093 0.118 0.133 0.191 0.246 0.342 0.426 0.368 0.472 0.477 

4.1 sec ms 0.122 0.138 0.177 0.192 0.250 0.320 0.420 0.480 0.419 0.523 0.522 

8.2 sec ms 0.169 0.193 0.247 0.260 0.318 0.391 0.490 0.530 0.471 0.573 0.564 

16.4 sec ms 0.229 0.262 0.325 0.336 0.397 0.461 0.566 0.584 0.525 0.628 0.607 

32.8 sec ms 0.306 0.347 0.403 0.414 0.483 0.535 0.646 0.636 0.576 0.683 0.649 

64.0 sec sec 0.396 0.436 0.473 0.492 0.569 0.610 0.723 0.687 0.627 0.731 0.689 

2.1 min sec 0.496 0.522 0.545 0.575 0.650 0.683 0.792 0.733 0.675 0.773 0.729 

4.3 min sec 0.588 0.597 0.620 0.653 0.714 0.747 0.842 0.769 0.719 0.808 0.758 

8.5 min sec 0.663 0.660 0.686 0.729 0.770 0.803 0.877 0.797 0.755 0.847 0.781 

17.1 min sec 0.720 0.715 0.740 0.805 0.815 0.833 0.895 0.818 0.787 0.868 0.801 

34.1 min sec 0.762 0.760 0.783 0.851 0.849 0.852 0.912 0.838 0.816 0.882 0.821 

 



 Page 41 

 

Figure 1. The National Best Bid and Offer for AEPI, April 29, 2011 

Source: NYSE Daily TAQ data 
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Figure 2. Wavelet variance ratios for the National Best Bid and Offer 

The results are based on a random sample of 100 US stocks, stratified by dollar trading volume, for April, 2011. 
Wavelet variance estimates        by firm and time scale are formed using Haar MODWTs applied separately to the 

National Best Bid and the National Best Offer at one-millisecond resolution, and (for time scales of a second or longer) 
at a one-second resolution. The estimates are averaged across the NBB and NBO. The wavelet variance ratio is 

       
  (  )

  (  )
 

   ̅̅ ̅̅
 (  )

   
 (  )

 

  (  ) is the wavelet variance at the longest time scale in the analysis (34.1 minutes). The normalization ratio 

   ̅̅ ̅̅
 (  )    

     ⁄  is based on the assumption that the prices follow random-walks at a one millisecond resolution. The 

“  ̅̅ ̅̅ ” subscript indicates that the variance has also been adjusted for averaging at the one-second resolution. Due to 
the normalization,                 is unity by construction. Plotted values are cross-firm medians for each of the 

dollar volume quintiles. Circles mark values in which the base resolution of the transforms was one millisecond; 
triangles indicate values with base resolution of one second. 
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Figure 3. Wavelet correlations between the National Best Bid and National Best Offer 

The results are based on a random sample of 100 US stocks, stratified by dollar trading volume, for April, 2011. 
Wavelet variance and covariance estimates by firm and time scale are formed using Haar MODWTs applied separately 
to the National Best Bid and the National Best Offer at one-millisecond resolution, and (for time scales of a second or 

longer) at a one-second resolution. Denoting these wavelet variances and covariances by     
 (  ), 

    
 (  ),         (  ), the wavelet correlated is defined as         (  ) √    

 (  )      
 (  )⁄ . Plotted values are 

cross-firm medians for each of the dollar volume quintiles. Circles mark values in which the base resolution of the 
transforms was one millisecond; triangles indicate values with base resolution of one second. 
 

 
 
 


