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Abstract

The integration of algorithmic trading and reinforcement learning, known as AI-powered
trading, has significantly impacted capital markets. This study utilizes a model of imper-
fect competition among informed speculators with asymmetric information to explore the
implications of AI-powered trading strategies on speculators’ market power, information
rents, price informativeness, market liquidity, and mispricing. Our results demonstrate that
informed AI speculators, even though they are “unaware” of collusion, can autonomously
learn to employ collusive trading strategies. These collusive strategies allow them to achieve
supra-competitive trading profits by strategically under-reacting to information, even without
any form of agreement or communication, let alone interactions that might violate traditional
antitrust regulations. Algorithmic collusion emerges from two distinct mechanisms. The
first mechanism is through the adoption of price-trigger strategies (“artificial intelligence”),
while the second stems from homogenized learning biases (“artificial stupidity”). The former
mechanism is evident only in scenarios with limited price efficiency and noise trading risk. In
contrast, the latter persists even under conditions of high price efficiency or large noise trading
risk. As a result, in a market with prevalent AI-powered trading, both price informativeness
and market liquidity can suffer, reflecting the influence of both artificial intelligence and
stupidity.
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1 Introduction

The integration of algorithmic trading with reinforcement learning (RL) algorithms, often termed
AI-powered trading, poses new regulatory challenges and has the potential to fundamentally
reshape capital markets.1 With Nasdaq receiving SEC approval for an RL-based, AI-driven order
type, the momentum for AI integration in trading continues to build. Leading digital trading
platforms like MetaTrader are endorsing RL-based AI trading bots, and major hedge funds such
as Two Sigma, along with investment powerhouses like Blackrock and J.P. Morgan, are adopting
AI technologies. This trend has led policymakers, regulators, and financial market supervisors
worldwide to make AI a regulatory priority. Their focus is now on understanding how AI is
applied in financial markets, its potential implications, and the risks of unintended systemic
impacts.2

In particular, the U.S. Security and Exchange Commission (SEC) has recently cautioned against
the possibility of AI destabilizing the global financial market if big tech-based trading companies
monopolize AI development and applications within the financial sector. The SEC points out
that the real challenge is fostering competitive and efficient markets amidst the swift adoption of
AI technologies, as AI might be optimized to benefit sophisticated speculators at the expense of
other investors, potentially compromising competition and market efficiency. Notably, SEC Chair
Gary Gensler has emphasized this concern, noting that there is evidence of machines in high-
frequency trading starting to exhibit cooperative behavior independently of human intervention
or interaction.

Promoting competition in financial markets is a primary objective of the SEC and similar
regulatory bodies worldwide. As such, the potential for collusion among AI trading algorithms is
a significant concern for these organizations. However, the underlying scientific and economic
principles of such “cooperation” among autonomous AI algorithms remain unclear, not to mention
how it might affect competition, price formation, and overall market efficiency. In this paper, we
demonstrate that “AI collusion” – where autonomous, self-interested algorithms independently
learn to coordinate without any explicit agreement, communication, or intention – can robustly
occur via one of two distinct mechanisms. These mechanisms are collusion through price-trigger
strategies or homogenized learning biases, and their emergence is contingent on the condition
of the trading environment. We find that AI collusion impairs competition and thereby market
efficiency, leading to reduced liquidity, less informative pricing, and increased mispricing.

The economics of AI collusion in trading can be intuitively understood as follows. On one hand,
consider a trading environment where subgame perfect collusive Nash equilibria theoretically
exist for rational-expectations agents, supported by price-trigger strategies as introduced by Green
and Porter (1984). In this environment, even without direct monitoring of trading behaviors,
agents can develop collusive incentives. This is achieved by allowing non-collusive competition to

1Traditional algorithmic trading is based on rigid, human-defined trading protocols that are hardcoded.
2For example, the SEC proposed novel rules concerning the application of AI technologies (SEC, 2023). Additionally,

the European Securities and Markets Authority (ESMA) published a report on AI utilization within EU securities
markets (Bagattini, Benetti and Guagliano, 2023).
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occur when market prices diverge from the expected collusive level beyond a certain threshold.
If the trading environment is not overly disrupted by noise trading flows, AI algorithms have
the capacity to interact and learn, ultimately achieving a steady state, within which they engage
in collusive trading based on a price-trigger strategy, even though they might not achieve the
most profitable collusive equilibrium, due to a learning bias. On the other hand, in a trading
environment where subgame perfect collusive Nash equilibria do not theoretically exist, AI
algorithms cannot learn to sustain collusion through price-trigger strategies. Instead, they may
converge to a steady state characterized by a self-conforming equilibrium, as introduced by
Fudenberg and Levine (1993). This equilibrium concept, weaker than Nash equilibrium, allows
for potentially incorrect or biased off-equilibrium beliefs, tightly aligned with the learning and
trading behaviors of AI algorithms. Beliefs may be accurate along the equilibrium path, as this is
more commonly observed, but can be inaccurate off the equilibrium path, unless there is sufficient
exploration of non-optimal actions (e.g., Fudenberg and Kreps, 1988, 1995; Cho and Sargent, 2008).
Crucially, these incorrect off-equilibrium beliefs are not necessarily inconsistent with observed
outcomes along the equilibrium path.

Notably, AI algorithms are distinct from human traders in that they do not simply mimic
human behavior. Traditional theories and experimental studies about human behavior are
insufficient for understanding AI traders’ behavior and the equilibria they might form. This is
because AI possesses a fundamentally different form of intelligence. Unlike humans, AI decision-
making is not influenced by emotions or logical thinking; rather, it is driven primarily by pattern
recognition and is not affected by higher-order beliefs. Therefore, understanding the dynamics
of capital markets with the prevalence of AI-powered trading algorithms requires insights into
algorithmic behavior akin to the “psychology” of machines (Goldstein, Spatt and Ye, 2021), in
a similar vein to how decision theory and psychology literature have provided insights into
modeling human behavior in an economic context. In this paper, we conduct an experimental
study to examine the behavior of AI algorithms endowed with private information. Following the
tradition of experimental research, our study is qualitative and intended as a proof-of-concept
demonstration.

In this paper, we adopt a streamlined theoretical framework as our laboratory. Building
upon the seminal work of Kyle (1985), we extend this framework in three novel ways. First, our
model incorporates multiple informed speculators within a repeated-trading context. Second, we
introduce a continuum of atomistic long-term preferred-habitat investors, who together create a
collective downward-sloping demand curve. Third, we expand the role of the market maker to
consider both inventory costs and pricing errors, thereby extending beyond the original model’s
focus on pricing errors alone, as in Kyle (1985). Within each trading period, agents execute a single
transaction. The sequence of events for each period unfolds as follows: Initially, the fundamental
value of the asset is determined. Subsequently, a continuum of noise traders collectively places
an order flow, which is independent of the asset’s fundamental value. The variance of such an
aggregate noise trading flow encapsulates the noise trading risk (Long et al., 1990). This noise
trading risk is a crucial characteristic of the trading environment. Each oligopolistic informed
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speculator is aware of the fundamental value but remains uninformed about the noise trading flow
when determining his or her optimal trading strategy. The market maker, in turn, sets the market
price with the goal of minimizing the weighted average of inventory costs and pricing errors. In
doing so, the market maker also takes into account the price elasticity of the preferred-habitat
investors’ demand. This price elasticity represents another critical characteristic of the trading
environment.

In our experimental study, we position our subjects – AI algorithms – within the laboratory
framework we have established. Specifically, we substitute the rational-expectations informed
speculators and market maker as in Kyle (1985)’s model with Q-learning algorithms. These
algorithms are tasked with learning and guiding the real-time trading decisions. Known for
their simplicity, transparency, and economic interpretability, Q-learning algorithms provide a
foundational basis for various RL procedures that have significantly advanced the AI domain.
Our theoretical framework, coupled with simulation-based experiments that blend theoretical
rigor with practical relevance, serves as a laboratory for examining the impact of AI-powered
trading strategies. Specifically, it allows us to investigate their influence on the market power of
informed AI speculators, as well as on the price formation process, including implications for
market liquidity, price informativeness, and mispricing within financial markets.

To ascertain whether informed AI speculators’ behavior exhibits collusion sustained by price-
trigger strategies due to the intelligence of the algorithms, our analysis starts with examining the
theoretical properties of tacit collusion that can be maintained through price-trigger strategies.
This analysis is based on the assumption that both the informed speculators and the market maker
operate under rational expectations and have a thorough understanding of the preferred-habitat
demand curve. We examine how tacit collusion varies across different trading environments.
This includes variations in the price elasticity of preferred-habitat investors and noise trading
risk levels, as well as variations in the number of informed speculators and their time discount
rates. This theoretical investigation enables us to establish a baseline understanding of collusive
behavior in the presence of asymmetric information and the endogenous strategic pricing rules
of the market maker. Importantly, it lays the groundwork for our experimental study on the AI
trading behavior, wherein we assess whether the observed collusion of informed AI speculators
aligns with the theoretical predictions under the assumption of rational expectations and perfect
knowledge of the preferred-habitat demand curve.

As a noteworthy theoretical contribution, we establish a novel result on the impossibility of
collusion under information asymmetry. We demonstrate that informed speculators are unable to
achieve collusive outcomes through price-trigger strategies in certain conditions. This includes
scenarios where market prices are already efficient, accurately reflecting the asset’s fundamental
value, especially when the preferred-habitat investor has high price elasticity of demand, thereby
playing a minimal role in price formation. Another scenario precluding collusion is when the
noise trading risk is excessively high. This novel result illuminates a mechanism distinct from
existing theories on the impossibility of collusion under information asymmetry in the context of
product market competition (Abreu, Milgrom and Pearce, 1991; Sannikov and Skrzypacz, 2007).
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Intuitively, sustaining price-trigger collusion requires two conditions: first, monitoring necessitates
high price informativeness, and second, maintaining informational rents requires a low price
impact of informed trading. These two conditions cannot be simultaneously met when price
efficiency or noise trading risk is high.

Furthermore, as an additional theoretical contribution, we illustrate that in scenarios where the
preferred-habitat investor, exhibiting low price elasticity of demand, significantly influences price
formation, market prices can become inefficient. In such cases, tacit collusion among informed
speculators can be sustained through price-trigger strategies. The success of these strategies is
contingent on the number of informed speculators and the level of noise trading risk in the market.
We find that price-trigger strategies can only sustain collusion in markets with a low level of
noise trading risk and a few informed speculators. Additionally, we show that collusion capacity
increases, market liquidity decreases, price informativeness decreases, and mispricing increases,
when the number of informed speculators drops, the level of noise trading risk decreases, or the
subjective rate of time preference (i.e., “impatience”) declines.

Having established the baseline theoretical results, we now turn back to our simulation experi-
ments, which involve informed AI speculators using Q-learning algorithms. These simulations
provide compelling evidence that these AI speculators can robustly collude and secure supra-
competitive profits by strategically manipulating excessively low order flows relative to their
information about the asset’s fundamental value. This occurs without any form of agreement
or communication that would typically be seen as an antitrust infringement. The cruciality, and
even necessity, of communication in collusion among humans is well-documented in the literature
of experimental economics. To underscore the concept of AI collusion in our simulations, we
deliberately employ relatively simple Q-learning algorithms that base their decisions solely on one-
period-lagged asset prices as state variables. This approach is intentional, omitting more extensive
lagged data, such as information on lagged self-order flows or multiple-period-lagged asset prices.
Although the trading environment is excessively complex relative to the simple AI algorithms
used, our simulation results remarkably indicate that informed AI speculators can intelligently
form collusion across diverse trading environments. Specifically, in environments characterized by
low price efficiency and low noise trading risk, the behavior of algorithmic collusion aligns with
the predictions of our rational-expectations model, where informed AI speculators are capable of
learning price-trigger strategies to sustain collusion. Conversely, in environments with high price
efficiency or high noise trading risk, informed AI speculators are unable to learn price-trigger
strategies, consistent with our rational-expectations model predictions. However, strikingly, going
beyond the rational-expectations model, our simulation results demonstrate that informed AI
speculators can still collude and achieve supra-competitive profits by manipulating excessively low
order flows, even without relying on traditional price-trigger strategies, provided they use equally
naive algorithms. These findings suggest the existence of two distinct mechanisms underpinning
algorithmic collusion, depending on the trading environment.

Finally, we elaborate further on the two distinct mechanisms behind AI collusion across
various trading environments. The first mechanism, known as “algorithmic collusion through
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price-trigger strategies,” involves a form of collusion driven by “artificial intelligence.” In this
scenario, informed AI speculators have the capability to learn and implement price-trigger
strategies effectively. This price-trigger strategy enables the AI speculators to sustain collusion
and reach a steady state closely resembling a subgame perfect Nash equilibrium. Such a scenario
can only occur if both price efficiency and noise trading risk are low. Leveraging simulation
experiments, we provide direct evidence that sizable price deviations trigger aggressive trading
flows similar to those in a non-collusive Nash equilibrium, which diminishes the trading profits
of all informed AI speculators. While the underlying mechanisms through which AI speculators
learn to conduct the price-trigger trading strategy, thereby achieving algorithmic collusion, may
differ from those behind how humans would learn to coordinate using price-trigger trading
strategies, the resulting patterns exhibit notable similarities. At the heart of these mechanisms,
whether involving AI or human speculators, the threat of punishment effectively acts as a deterrent,
discouraging individual speculators from violating the collusive agreement. Closely aligned with
the theoretical predictions of a collusive Nash equilibrium sustained by price-trigger strategies
with rational-expectations agents, as the number or impatience of speculators decreases, the
extent of achievable collusion increases. This leads to reduced market liquidity, diminished price
informativeness, and increased mispricing.

Importantly, algorithmic collusion through price-trigger strategies introduces a paradoxical
situation concerning price informativeness. This paradox arises because such collusion relies on
the informativeness of prices – specifically, the ability of an informed AI speculator to infer the
order flows of other informed AI speculators from observed prices. High price informativeness
typically characterizes environments where prices are sensitive to new information about the
fundamental value of the asset and are not predominantly driven by noise trading flows. However,
in such environments, the heightened price informativeness actually facilitates informed AI
speculators in discerning each other’s order flows, thereby strengthening collusion among them.
This stronger collusion, in turn, endogenously compromises price informativeness by distorting
the information content of prices – specifically, it reduces the responsiveness of prices to new
information about the fundamental value of the asset. Consequently, in a capital market dominated
by AI-powered trading, where algorithmic collusion through price-trigger strategies is prevalent,
achieving perfect price informativeness becomes unattainable.

The second mechanism, known as “algorithmic collusion through homogenized learning
biases,” involves a form of collusion driven by “artificial stupidity.” Despite the learning biases
originating from intrinsic imperfections in the algorithms, informed AI speculators might still
achieve and sustain supra-competitive profits. This can occur when they use similar foundational
models that have homogenized learning biases, effectively forming a kind of hub-and-spoke
conspiracy.3 Johnson and Sokol (2021) emphasize the prevalence of this type of AI collusion in the
context of e-commerce platforms, observing that many retailers adopt similar or even identical AI

3In the context of product market competition, the term “hub-and-spoke conspiracy” is a metaphor used to describe
a cartel that includes a firm at one level of a supply chain, typically a supplier, acting as the “hub” of a wheel. Vertical
agreements down the supply chain represent the “spokes.” This common supplier facilitates the implicit coordination
among its customers.
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pricing algorithms. Specifically, anti-competitive effects may emerge when multiple competitors
use the same AI pricing algorithm supplied by a common service provider, who serves as the hub.
In the financial markets, informed speculators often rely on similar foundational models for their
AI-powered trading systems. This practice, whether intentional or not, can result in a significant
degree of homogenization, a phenomenon documented by Bommasani et al. (2022), among others.
In the context of RL learning, the emergence of a learning bias is directly linked to inconsistencies
in statistical learning. These inconsistencies often stem from over-exploitation and insufficient
exploration, especially when the noise trading risk is excessive. This inherently biased algorithm
leads informed speculators to under-react to their private information in their learned trading
strategies, compared to the optimal strategy in a non-collusive equilibrium setting. Consider
a scenario in which an RL-based AI speculator explores a trading strategy that aggressively
responds to private information and receives a positive signal about the asset’s fundamental value.
If a substantial and positive noise trading flow occurs, this could result in significant losses for the
AI speculator. Consequently, the RL algorithm is unlikely to revisit and update its understanding
of this state-strategy pair sufficiently, consistently deeming this strategy as suboptimal for the
given state. This means the initial adverse effect on the Q function at the state-strategy pair due
to such a shock is unlikely to be mitigated in subsequent iterations. Conversely, if a substantial
and negative noise trading flow occurs, it could lead to significant gains for the AI speculator.
In this fortunate case, the RL algorithm is more likely to revisit and thoroughly understand the
performance of this state-strategy pair, adequately exploiting it, and thus, the initial beneficial
effect on the Q function at this pair may be averaged out, which even leads to accurate estimations
of Q function at this state-strategy pair. Such severe asymmetric learning outcomes from large
positive and negative noise trading flows can lead AI speculators to generally under-react to their
private information in their learned trading strategies.

Such under-reaction can lead to the realization of supra-competitive profits, a scenario that is
more likely to occur with widespread homogenization in the algorithms adopted by AI speculators.
This homogenized learning bias steers informed AI speculators toward a steady state where
trading behaviors can be accurately characterized by a self-conforming equilibrium, as introduced
by Fudenberg and Levine (1993). In contrast to the Nash equilibrium, the self-conforming
equilibrium is weaker because it permits players to hold incorrect (or biased) off-equilibrium
beliefs. This concept of equilibrium is motivated by the idea that noncooperative equilibria should
be interpreted as outcomes of a learning process, where players form beliefs based on their past
experiences. While beliefs can generally be correct along the equilibrium path of play due to its
frequent observation, they are not necessarily correct off the equilibrium path. Correct beliefs off
the equilibrium path require players to engage in sufficient experimentation with non-optimal
actions, as suggested in works by Fudenberg and Kreps (1988), Fudenberg and Kreps (1995), and
Cho and Sargent (2008).

Although adopting superior algorithms can disrupt the collusion created by homogenized
learning biases, it is likely that no AI speculator would choose to gain an advantage by using
superior algorithms due to the nature of AI collusion. Intuitively, if one speculator adopts a
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superior algorithm, it could render the trading strategies of other AI speculators unprofitable,
thereby compelling them to adopt equally or more advanced algorithms. This could spark a race
towards algorithmic advancement, ultimately leading to an equilibrium where trading profitability
is minimal for every AI speculator. Consequently, AI speculators autonomously learn to adopt
similarly basic algorithms in equilibrium. To illustrate this point, we consider a simple extension
of the baseline Q-learning algorithms, wherein informed AI speculators are able to learn both the
key parameter that governs the sophistication of their Q-learning algorithms and their trading
strategies based on the AI-chosen Q-learning algorithm. Our simulation experiments robustly
demonstrate that informed AI speculators may collectively opt for less advanced algorithms. This
occurs despite the potential for increased self-profit that could come from unilaterally choosing a
more advanced algorithm while others’ algorithms remain fixed.

These two types of AI collusion, while both generating supra-competitive trading profits, can
exhibit opposite collusive behaviors as trading environments evolve. On one hand, akin to AI
collusion through price-trigger strategies (referred to as “artificial intelligence”), a decrease in the
number of speculators leads to increased potential for collusion. This, in turn, results in reduced
market liquidity, diminished price informativeness, and increased mispricing. On the other hand,
contrary to AI collusion through price-trigger strategies, an increase in speculator impatience, or
an elevation in noise trading risk, enlarges the potential for collusion due to a more pronounced
homogenized learning bias. (termed “AI collusion through artificial stupidity”). This also leads to
reduced market liquidity, diminished price informativeness, and increased mispricing. Notably,
unlike the scenario with price-trigger strategies, in the case of AI collusion through homogenized
learning biases, an increase in noise trading risk leads to an increase, rather than a decrease, in
trading profitability for AI speculators based on their private information.

Related Literature. The topic of autonomous cooperation among multiple Q-learning agents in
repeated games has garnered significant attention from researchers in the artificial intelligence
and computer science community over the past decades (e.g., Sandholm and Crites, 1996; Tesauro
and Kephart, 2002). Given the widespread adoption of AI technologies in pricing decisions
across various marketplaces, Waltman and Kaymak (2008) demonstrate that Q-learning firms
typically learn to attain supra-competitive profits in repeated Cournot oligopoly games with
homogeneous products, even though a perfect cartel is usually unattainable. Klein (2021) also
examines the strategies employed by algorithms in a context where firms selling homogeneous
products alternate in adjusting prices to support supra-competitive profits. Recently, in a note-
worthy contribution, Calvano et al. (2020) study collusion by AI algorithms in a logit model
of differentiated products, not only uncovering the existence of supra-competitive profits but
also pinpointing how algorithms might learn to sustain collusive outcomes through grim-trigger
strategies. Expanding upon this, our paper extensively broadens the AI experimental framework,
moving from a scenario of perfect information and a static demand curve to one imbued with
asymmetric information and a strategically-determined demand scheme. We characterize the
various types of AI algorithmic collusion, whether occurring through price-trigger strategies or
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through learning biases and homogenization, across diverse market environments.
Inspired by the simulation-based studies on AI algorithmic collusion, empirical research has

also emerged, demonstrating that the use of AI algorithms in setting product prices can lead to
collusion, resulting in heightened supra-competitive prices (e.g., Assad et al., 2023). Additionally,
recent studies have started to focus on policy interventions aiming to obstruct the ability of
algorithms to collude, thereby ensuring the maintenance of competitive prices. Specially, based on
simulation-based studies, Johnson, Rhodes and Wildenbeest (2023) show that platform design can
benefit consumers and the platform. However, achieving these gains may require policies that
condition on past behavior and treat sellers in a non-neutral fashion. Harrington (2018) delves into
critical policy issues surrounding the definition of collusion, such as whether collusion should
necessarily entail an explicit agreement among conspirators, or if it might be more aptly defined
as the maintenance of elevated prices, sustained by a reward-and-punishment scheme.

Our paper is among the first to investigate how the widespread adoption of AI-powered
trading strategies might affect capital markets. The work of Colliard, Foucault and Lovo (2022) is
closely related to our research, as it also explores the implications of interactions among Q-learning
algorithms in capital markets. However, there are notable differences in focus between their work
and ours. Specifically, Colliard, Foucault and Lovo (2022) focuses on AI-powered oligopolistic
market makers, while our study concentrates on AI-powered oligopolistic informed speculators
who face perfectly competitive market makers. Their research illuminates the strategies that AI
market makers would adopt by leveraging their market power. In contrast, our paper explores
the dynamics and implications of algorithmic collusion among AI-powered informed speculators,
particularly in the context of preferred-habitat long-term investors and perfectly competitive
market makers. We provide novel insights into the strategies of informed AI speculators on how
they leverage private information and maximize profits through autonomously forming collusion
via distinct mechanisms.

2 AI-Powered Trading Algorithms

The traditional algorithmic trading system executes orders according to protocols predefined
by human quantitative strategists. In contrast, AI-powered trading employs RL algorithms to
dynamically adjust and optimize trading strategies in real time.

The RL algorithm, a pivotal technique in AI, forms the foundation of numerous successful
AI algorithms, like “AlphaGo,” demonstrating the superiority of RL-backed AI over human
cognitive abilities in areas such as securities trading and other complex tasks. RL algorithms
are model-free machine learning techniques that learn autonomously through trial-and-error
experimentation, without relying on two common assumptions: first, that the multi-agent system
is on an equilibrium path, and second, that agents have knowledge of the true state and payoff
distributions at equilibrium. The fundamental rationale behind RL algorithms centers on the
principle that actions yielding higher rewards historically are more likely to be selected in the
future, compared to those that have led to lesser rewards. By interacting with its environment and
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experimenting with different actions, the agent incrementally learns an optimal policy. Through
continuous rounds of exploration and experimentation, it refines its strategy to prefer actions that
offer the greatest long-term benefits, even without any knowledge of the environment beforehand.
This iterative process enables the agent to progressively enhance its decision-making approach,
consistently steering towards actions that maximize the cumulative rewards based on its gathered
experiences.

While RL encompasses different variants (e.g., Watkins and Dayan, 1992; Sutton and Barto,
2018), we choose to focus on Q-learning for several reasons. First, Q-learning serves as a
foundational framework for numerous RL algorithms, upon which many recent AI breakthroughs
are built. However, it is important to note that AI trading algorithms currently in use may not
exclusively rely on Q-learning principles. Second, Q-learning holds substantial popularity among
computer scientists in practical applications. Third, Q-learning algorithms possess simplicity and
transparency, offering clear economic interpretations, in contrast to the black-box nature of many
machine learning and AI algorithms. Finally, Q-learning shares a common architecture with more
sophisticated RL algorithms.

In the remainder of this section, we will concentrate on a multi-agent system, detailing the
Bellman equation for each agent, and describe the Q-learning algorithm that an agent employs.
This discussion will cover how each agent iteratively updates its Q-function and strategy based
on the received rewards, thereby optimizing its long-term outcomes through the Q-learning
algorithm.

2.1 Bellman Equation and Q-Function

In a multi-agent Markov decision process environment, there are I agents, indexed by i = 1, · · · , I.
The state of the environment is represented by a Markov process, denoted by s. Each agent makes
decisions based on the current state, which in turn evolves partly due to the collective actions of
all agents within the system. Agent i’s intertemporal optimization is characterized by the Bellman
equation and solved recursively via dynamic programming:

Vi(s) = max
xi∈X

{
E [πi|s, xi] + ρE

[
Vi(s′)|s, xi

]}
, (2.1)

where xi ∈ X is action of agent i, with X denoting the set of available actions, πi is the payoff
received by agent i, which may be influenced by the actions of other agents, and s, s′ ∈ S represent
the states in the current and the next period, respectively, with S denoting the set of states. In
general, s and s′ can depend on agent i’s individual characteristics and private information.
However, for our purpose of illustration, it is sufficient to concentrate on the simple setting
where the same state applies uniformly to all agents in the system. The first term on the right-
hand side, E [πi|s, xi], is agent i’s expected payoff in the current period, and the second term,
ρE [Vi(s′)|s, xi], is agent i’s continuation value, with the parameter ρ capturing the subjective rate
of time preference.
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The Bellman equation (2.1) represents the recursive formulation of dynamic control problems
(e.g., Bellman, 1954; Ljungqvist and Sargent, 2012). It focuses on the equilibrium path, and thus
the optimal value function Vi(s) depends solely on the state variable s. In contrast to focusing
solely on the equilibrium path, the Q function, denoted by Qi(s, xi), extends the optimal value
function to include the values of each state-action pair. This captures scenarios (or counterfactuals)
that occur off the equilibrium path. By definition, the value of Qi(s, xi) is the same as that in the
curly brackets of the Bellman equation (2.1):

Qi(s, xi) = E [πi|s, xi] + ρE
[
Vi(s′)|s, xi

]
. (2.2)

Intuitively, the Q-function value, Qi(s, xi), can be interpreted as the quality of action xi in state s.
The optimal value of a state, Vi(s), is the maximum of all the possible Q-function values of state s.
That is, Vi(s) ≡ maxx′∈X Qi(s, x′). By substituting Vi(s′) with maxx′∈X Qi(s′, x′) in equation (2.2),
we can establish a recursive formula for the Q-function as follows:

Qi(s, xi) = E [πi|s, xi] + ρE

[
max
x′∈X

Qi(s′, x′)
∣∣∣∣s, xi

]
. (2.3)

When both |S| and |X| are finite, the Q-function can be represented as an |S| × |X| matrix,
which is often referred to as the Q-matrix.

2.2 Q-Learning Algorithm

If agent i possessed knowledge of its Q-matrix, determining the optimal actions for any given
state s would be straightforward. In essence, the Q-learning algorithm is a method to estimate
the Q-matrix in environments where the underlying distribution E [·|s, xi] is unknown and there
are limited observations for off-equilibrium pairs (s, xi) in the data. The Q-learning algorithm
addresses both challenges concurrently: it employs Monte Carlo methods to estimate the underly-
ing distribution E[·|s, xi] based on the law of large numbers, while at the same time, conducts
trial-and-error experiments to produce off-equilibrium counterfactuals.

The iterative experimentation starts from an arbitrary initial Q-matrix of agent i, denoted by
Q̂i,0, and updates the estimated Q-matrix Q̂i,t recursively. The learning equation governing this
update is as follows:

Q̂i,t+1(st, xi,t) = (1 − α) Q̂i,t(st, xi,t)︸ ︷︷ ︸
Past knowledge

+ α

[
πi,t + ρ max

x′∈X
Q̂i,t(st+1, x′)

]
,︸ ︷︷ ︸

Present learning based on a new experiment

(2.4)

where α ∈ [0, 1] captures the forgetting rate, st is the state that the iteration t concentrates on,
st+1 is randomly drawn from the Markovian transition probabilities conditional on st, Q̂i,t(s, x) is
the estimated Q-matrix of agent i in the t-th iteration, and πi,t is the payoff in the t-th iteration,
corresponding to agent i’s choice of action xi,t.

Equation (2.4) indicates that for agent i in the t-th iteration, only the value of the estimated

10



Q-matrix Q̂i,t(s, x) corresponding to the state-action pair (st, xi,t) is updated to Q̂i,t+1(st, xi,t). All
other state-action pairs remain unchanged. In other words, Q̂i,t+1(s, x) = Q̂i,t(s, x) for cases
where s ̸= st or x ̸= xi,t. The updated value Q̂i,t+1(st, xi,t) is computed as a weighted average of
accumulated knowledge based on the previous experiments, Q̂i,t(st, xi,t), and learning based on a
new experiment, πi,t + ρ maxx′∈X Q̂i,t(st+1, x′). A key distinction between the Q-learning recursive
algorithm (2.4) and the Bellman recursive equation (2.1) lies in how they handle expectations.
Q-learning algorithm (2.4) does not form expectations about the continuation value because the
Markovian transition probabilities from st to st+1 are unknown. Instead, it directly discounts the
continuation value associated with the randomly realized state st+1 in the (t + 1)-th iteration.

It is crucial to note that the forgetting rate α plays a significant role in the Q-learning algorithm,
balancing past knowledge against present learning based on a new experiment. A higher α not
only indicates a greater impact of present learning on the Q-value update but also implies that
the algorithm forgets past knowledge more quickly, potentially leading to biased learning. To
elaborate, let τ be the number of times that the Q-value of the state-action pair (s, x) has been
updated in the past. We derive in Appendix G.1 that as τ → ∞, the Q-value of (s, x) is as follows:

Q̂i,t(τ)(s, x) ≈
τ−1

∑
h=0

α(1 − α)h
[

πi,t(τ−h) + ρ max
x′∈X

Q̂i,t(τ−h)(st(τ−h)+1, x′)
]

, (2.5)

where t(h) represents the period in which the Q-value of (s, x) receives the h-th update. Clearly,
when α is not close to 0, the weights given by α(1 − α)h decay so rapidly with τ that it jeopardizes
the applicability of the law of large number. When the underlying environment has randomness,
a sufficiently small value of α is crucial for ensuring small learning biases. Otherwise, the law
of large numbers may fail, leading to biased estimation for the underlying distribution E[·|s, xi].
However, a smaller value of α requires more iterations for the algorithm to converge, and thus
greater computational costs. Moreover, if α is excessively small relative to the decaying speed of
the exploration rate εt in equation (2.6), biased learning may arise due to insufficient exploration.

2.3 Experimentation

Conditional on the state variable st, agent i chooses its action xi,t in two experimentation modes,
exploitation and exploration, as follows:

xi,t =

{
argmaxx∈X Q̂i,t(st, x), with prob. 1 − εt, (exploitation)
x̃ ∼ uniform distribution on X, with prob. εt. (exploration)

(2.6)

To determine the mode, we employ the simple ε-greedy method. As outlined in equation (2.6),
during the t-th iteration, agent i engages in the exploration and exploitation modes with exogenous
probabilities εt and 1 − εt, respectively. In the exploitation mode, agent i chooses its action to
maximize the current state’s Q-value, given by xi,t = argmaxx∈X Q̂i,t(st, x). Conversely, in the
exploration mode, agent i randomly chooses its action x̃ from the set of all possible values in X,
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each with equal probability.4 Essentially, the exploration mode guides the Q-learning algorithm
to experiment with suboptimal actions based on the current Q-matrix approximation, Q̂i,t. As t
approaches infinity, the pre-specified exploration probability εt monotonically decreases to zero.

Given that agent i lacks prior knowledge about its Q-matrix, it is evident that sufficient explo-
ration is crucial to increase the accuracy of approximating the true Q-matrix. At a minimum, all
actions must be attempted multiple times in all states, and even more so in complex environments.
However, in addition to the computational costs associated with exploration, there exists a tradeoff.
An overly comprehensive exploration scheme may have adverse effects when multiple agents
interact with one another, because the random selected actions by one agent introduce noises to
other agents, impeding their learning processes.

3 Model

This model extends the influential framework of Kyle (1985) along three novel dimensions. First,
it considers multiple informed speculators in a repeated-game context. Second, it introduces a
representative preferred-habitat investor, whose net demand flows need to be absorbed by other
agents in the market (e.g., Vayanos and Vila, 2021). Third, it introduces a market maker who takes
into account both inventory and pricing error, going beyond the limited focus on price error alone
as in the model of Kyle (1985).

By blending theoretical rigor with practical relevance, this model offers a laboratory for
exploring the implications of AI-powered trading on both algorithmic collusion and price efficiency.
Importantly, the theoretical results produced by the model act as a foundational benchmark for the
characterization and categorization of AI-powered trading in simulation experiments in Sections 4
to 6.

3.1 Economic Environment

Time is discrete, indexed by t = 1, 2, ..., and runs forever. There are I ≥ 2 risk-neutral informed
speculators, a representative noise trader, a representative preferred-habitat investor, and a market
maker. The economic environment is stationary, and all exogenous shocks are independent and
identically distributed across periods.

In each period t, an asset is available for trading, with its fundamental value, denoted as vt,
being realized at the end of the period. Each period consists of two distinct steps: the beginning
and the end. We examine the problem in period t in reverse order. At the end of the period, vt is
observed by all agents. It is drawn from a normal distribution N(v, σ2

v ), where σ2
v represents the

variance and v the mean, with v ≡ 1 for convenience. After the realization of vt, trading profits
for all agents in period t are determined.

4For simplicity, we adopt a uniform distribution. However, a more intelligent distribution choice could make
exploration more efficient and less costly.
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At the beginning of the period, the informed speculators, noise trader, and preferred-habitat
investor submit their order flows. Simultaneously, the market maker sets the asset’s price,
denoted as pt. Specifically, the noise trader submits its order flow ut to either buy ut units of the
asset if ut > 0 or take a short position of ut if ut < 0, with ut following a normal distribution
N(0, σ2

u), where zero is the mean and σ2
u is the variance. The informed speculators are indexed

by i ∈ {1, · · · , I}. Each informed speculator i perfectly knows the value vt, but is unaware of ut

when submitting his order flows; he understands that the choice of order flow xi,t will influence
pt by shifting the market-clearing condition and revealing information. The informed speculator i
chooses its order flows {xi,t}t≥0 to maximize the expected present value of the profit stream:

E

[
∞

∑
t=0

ρt(vt − pt)xi,t

]
, (3.1)

where ρ ∈ (0, 1) is the subjective discount rate.

Preferred-Habitat Investor’s Demand Curve. Contrary to the uninformed speculator in Kyle
(1989), the preferred-habitat investor does not derive information about vt from pt. Instead, this
investor has a linear downward-sloping demand curve for the net trading flow zt:

zt = −ξ(pt − v), with ξ > 0. (3.2)

The rationale behind this specification is straightforward: the preferred-habitat investor focuses
solely on the ex-ante expected fundamental value, v, and tends to buy more of the asset when
pt − v is more negative, interpreting this as a stronger indication that the asset is currently
undervalued. The demand curve is proportional to the spread between the ex-ante expected
fundamental value and the market price. Graham (1973) names this spread a safety margin.

The average asset holding of the preferred-habitat investor, denoted as z, is often substantial.
This implies a small price elasticity of demand, given by ε = E[(dzt/dpt)(pt/zt)] = −ξE[pt/zt] ≈
−ξ/z. Studies indicate that preferred-habitat investors with low price elasticity of demand play
an important role in shaping asset prices (e.g., Greenwood and Vayanos, 2014; Vayanos and Vila,
2021; Greenwood et al., 2023).

The preferred-habitat investor’s demand curve (3.2) mirrors that of the “long-term investor”
in the model by Kyle and Xiong (2001). This becomes clear, especially when we recognize that v is
the fair value of the asset to risk neutral investors as v = E[vt]. According to this demand curve,
the preferred-habitat investor always provides liquidity to the market. When the price falls further
below the ex-ante expected fundamental value, v, in the market, the preferred-habitat investor
will buy more of the asset. Analogous to Kyle and Xiong (2001), the demand curve (3.2) can be
justified by a rational choice made by the preferred-habitat investor under certain assumptions.
These assumptions are summarized in Lemma 1. The proof is in Appendix A.

Lemma 1 (Demand Curve). If the preferred-habitat investor possesses exponential utility with an absolute
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risk aversion coefficient of η, then the demand curve has the functional form of (3.2), where the slope ξ is
given by 1/(ησ2

v ).

Moreover, the concept of specifying exogenous net demand curves within the framework of a
noisy rational expectation equilibrium also shares similarities with studies conducted by Hellwig,
Mukherji and Tsyvinski (2006) and Goldstein, Ozdenoren and Yuan (2013), among others. The
fundamental idea is to capture relevant institutional frictions and preferences in a parsimonious
and tractable manner. Notably, our net demand curves can be reinterpreted as “noisy supply
curves” in these prior works by introducing a new variable z̃t ≡ −(ut + zt). Specifically, z̃t

represents the total trading supply provided by the noisy trader and the preferred-habitat investor
to absorb the trading demand of informed speculators. The total supply z̃t follows an exogenous
noisy supply curve defined as:

z̃t = −ut + ξ(pt − v), (3.3)

where −ut can be reinterpreted as the unobservable demand or supply shock in the context of the
above prior works.

Market Maker’s Pricing Rules. Trading occurs through the market maker, whose role is to absorb
the order flow while minimizing pricing errors. The market maker observes the combined order
flow of informed speculators and the noise trader, represented by yt = ∑I

i=1 xi,t + ut, as well as
the order flow zt of the preferred-habitat investor. However, the market maker cannot distinguish
between order flows from informed speculators and the noise trader. Thus, the market maker
can only make statistical inferences about the fundamental value vt based on the combined order
flow yt rather than individual order flows. The market maker sets the price pt to jointly minimize
inventory and pricing errors according to the following objective function:

min
pt

E

[
(yt + zt)

2 + θ(pt − vt)
2
∣∣∣∣yt

]
, (3.4)

where θ > 0 represents the weight that the market maker places on minimizing pricing errors.
Here, E [·|yt] denotes the market maker’s expectation over vt, conditioned on the observed
combined order flow yt and its belief about how informed speculators would behave in the
equilibrium.

The market maker’s objective function (3.4) captures both the inventory cost and asymmetric
information faced by the market maker. Because the market maker takes the position −(yt + zt)

to clear the market, the term (yt + zt)2 represents its inventory-holding costs. The quadratic
form is adopted for tractability, consistent with the literature (e.g., Mildenstein and Schleef, 1983).
The term θ(pt − vt)2 captures the market maker’s efforts to reduce pricing errors arising from
asymmetric information. The weight θ serves as a reduced-form way to capture the various
benefits of reducing pricing errors, such as increased trading flows from a growing client base or
enhanced competitive advantages over other trading platforms.5 As θ approaches zero, the price

5Similarly, in the context of e-commerce platforms, it is often assumed that the platform aims to maximize a weighted
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pt is primarily determined by the market clearing condition, yt + zt = 0, as in the model of Kyle
and Xiong (2001). Conversely, as θ increases towards infinity, the price pt is primarily determined
by the pricing-error minimization condition, pt = E [vt|yt], as in the model of Kyle (1985).

Because multiple informed speculators engage in a repeated-game of trading in our model,
multiple equilibria may emerge. We identify three types of equilibria: the non-collusive equi-
librium, the perfect cartel equilibrium, and the collusive equilibrium sustained by price-trigger
strategies. Throughout our analysis, we assume that the market maker is aware of the specific equi-
librium in which informed speculators are participating. Specifically, we consider the linear and
symmetric equilibrium in which the trading strategy of the informed speculators is characterized
by

xi,t = χ(vt − v), for all i = 1, · · · , I. (3.5)

The first-order condition of the minimization problem (3.4) leads to

pt =
ξ

ξ2 + θ
yt +

ξ2

ξ2 + θ
v +

θ

ξ2 + θ
E [vt|yt] ,

where E [vt|yt], according to Bayesian updating, is

E [vt|yt] = v + γyt, with γ =
Iχ

(Iχ)2 + σ2
u/σ2

v
.

Therefore, the market maker’s pricing rule is

pt = v + λyt, with λ =
θγ + ξ

θ + ξ2 .

3.2 Noncollusive Nash Equilibrium

We use the superscript N to denote the variables in the noncollusive Nash equilibrium. At the
beginning of each period t, each informed speculator i solves the following problem:

xN(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (3.6)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed vt and
its belief about how the market maker would set the price in the equilibrium pt = pN(yt). The
pricing function pN(·) is determined in equilibrium, as follows:

pN(yt) = v + λNyt, with λN =
θγN + ξ

θ + ξ2 and γN =
IχN

(IχN)2 + (σu/σv)2 , (3.7)

average of per-unit fee revenues and consumer surplus (see, e.g., Johnson, Rhodes and Wildenbeest, 2023). The weight
on consumer surplus in this context is a reduced-form way to capture various aspects of increasing consumer surplus.
For example, increasing consumer surplus allows the platform to dynamically expand its consumer base over time and
better compete with rival platforms.
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where yt is the combined order flow of informed speculators and the noise trader, given by

yt = xi + (I − 1)xN(vt) + ut. (3.8)

The non-collusive Nash equilibrium can be summarized in the following proposition.

Proposition 3.1. The order flow of informed speculators and price in the non-collusive Nash equilibrium
are

xN(vt) = χN(vt − v) and pN(vt) = v + λNyt, respectively,

where χN and λN satisfy

χN =
1

(I + 1)λN and λN =
θγN + ξ

θ + ξ2 with γN =
IχN

(IχN)2 + (σu/σv)2 .

The expected profit of informed speculators is

πN =
(

1 − λN IχN
)

χNσ2
v .

The price informativeness, denoted by IN , is defined as the logged signal-noise ratio of prices,

IN = log

[
var(xN

i,t)

var(ut)

]
= log

[(
IχN

)2
(σv/σu)

2
]

.

The market liquidity, denoted by LN , is defined as the inverse sensitivity of the market maker’s inventory
|zt + yt| to the noise order flow ut

LN =
1

∂|zt + yt|/∂ut
=

1
|1 − ξλN | .

The mispricing, denoted by EN , is defined by the percentage deviation of the asset’s price pt from its
conditional expected value

EN =

∣∣∣∣ pN(vt)− EN [vt|yt]

EN [vt|yt]− v

∣∣∣∣ = ∣∣∣∣λN − γN

γN

∣∣∣∣ .

Intuitively, the price informativeness measure captures the fact that relative to the noise trader,
informed speculators’ order flows contain information about the asset’s value vt. Thus, the order
flow of informed speculators can be considered as informative signals about the value of vt

whereas noise order flows contain no information. The market liquidity measure captures the fact
that when the market is less liquid, trade flows can have a larger impact on the market maker’s
inventory, leading to greater adjustments in the asset’s price.
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3.3 Perfect Cartel Equilibrium

Consider a cartel that consists all I informed speculators under perfect collusion. The cartel is a
monopolist who chooses each informed speculator’s order flow to maximize total profits. Because
informed speculators are symmetric, the cartel solves the following problem

xM(vt) = argmax
xi

E

[
(vt − pt) xi

∣∣∣∣vt

]
, (3.9)

where E [·|vt] is informed investor i’s expectation conditional on the privately observed vt and
its belief about how the market maker would set the price in the equilibrium pt = pM(yt). The
pricing function pM(·) s determined in equilibrium, as follows:

pM(yt) = v + λMyt, with λM =
θγM + ξ

θ + ξ2 and γM =
IχM

(IχM)2 + (σu/σv)2 , (3.10)

where yt is the combined order flow of informed speculators and the noise trader, given by

yt = Ixi + ut. (3.11)

The perfect cartel equilibrium can be summarized in the following proposition.

Proposition 3.2. The order flow of informed speculators and price in the perfect cartel equilibrium are

xM(vt) = χM(vt − v) and pM(vt) = v + λMyt, respectively,

where χM and λM satisfy

χM =
1

2IλM and λM =
θγM + ξ

θ + ξ2 with γM =
IχM

(IχM)2 + (σu/σv)2 .

The expected profit of informed speculators is

πM =
(

1 − λM IχM
)

χMσ2
v .

The price informativeness, denoted by IM, is defined as the logged signal-noise ratio of prices,

IM = log

[
var(xM

i,t )

var(ut)

]
= log

[(
IχM

)2
(σv/σu)

2
]

.

The market liquidity, denoted by LM, is defined as the inverse sensitivity of the market maker’s inventory
|zt + yt| to the noise order flow ut

LM =
1

∂|zt + yt|/∂ut
=

1
|1 − ξλM| .
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The mispricing, denoted by EM, is defined by the percentage deviation of the asset’s price pt from its
conditional expected value

EM =

∣∣∣∣ pM(vt)− EM[vt|yt]

EM[vt|yt]− v

∣∣∣∣ = ∣∣∣∣λM − γM

γM

∣∣∣∣ .

3.4 Collusive Nash Equilibrium

Information asymmetry is a significant characteristic of capital markets, rendering standard
grim-trigger strategies less viable to sustain tacit collusion, due to the challenges in accurately
observing and monitoring each other’s actions.6 However, tacit collusion can still be sustained
under information asymmetry through price-trigger strategies with imperfect monitoring. If an
informed speculator can reliably infer other informed speculators’ total order flows from the
market price, collusive incentives can be created.

The concept of tacit collusion sustained by price-trigger strategies was first introduced by
Green and Porter (1984). Even with imperfect monitoring, agents can establish collusive incentives
by allowing noncollusive competition to occur with positive probabilities. Abreu, Pearce and
Stacchetti (1986) further characterize optimal symmetric equilibria in this context, revealing two
extreme regimes: a collusive regime and a punishment regime featuring a noncollusive reversion.
In the collusive regime, informed speculators implicitly coordinate on submitting order flows in a
less aggressive manner than what they would do in the noncollusive Nash equilibrium. If the
price breaches a critical level, suspicion of cheating arises, leading to a noncollusion reversion. In
the punishment regime, informed speculators trade noncollusively and obtain low profits.

Price-Trigger Strategies. We now describe the collusive Nash equilibrium sustained by price-
trigger strategies under information asymmetry, as studied by Green and Porter (1984). Specifically,
we focus on the symmetric collusive Nash equilibrium in which all I informed speculators choose
the same collusive order flow, denoted by xC(vt). Such trading strategies are sustained by a
price-trigger strategy: Firms will initially submit their respective order flows xC(vt), and will
continue to do so until the market price falls below a trigger price q(vt) if vt < v or goes above a
trigger price q(vt) if vt > v, and then they will trade noncollusively for a reversionary episode
that lasts for T − 1 periods. In period t, the state of world is “normal,” denoted by st = 0, if (a)
vt−1 = v and st−1 = 0, or (b) pt−1 ≤ q(vt−1) and vt−1 > v and st−1 = 0, or (c) pt−1 ≥ q(vt−1) and
vt−1 < v and st−1 = 0, or (d) pt−T > q(vt−T) and vt−T > v and st−T = 0, or (e) pt−T ≤ q(vt−T)

and vt−T < v and st−T = 0. Otherwise, in period t, the state of world is “reversionary,” denoted
by st = 1. In other words, st = 0 if price trigger is not violated at t − 1 and st−1 = 0, or if price
trigger is violated at t − T and st−T = 0; otherwise, st = 1.

6Tacit collusion sustained by grim-trigger strategies has been extensively studied since the pioneering work of
Fudenberg and Maskin (1986) and Rotemberg and Saloner (1986), among others. Recent studies delve into the impact
of such tacit collusion sustained by grim-trigger strategies on pricing in capital markets (e.g., Opp, Parlour and Walden,
2014; Dou, Ji and Wu, 2021a,b; Dou, Wang and Wang, 2023).
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Similar to Green and Porter (1984), we assume that the state variable st is a common knowledge
to all agents. We characterize the equilibrium order flows and prices in each period t. There are
two cases: when st = 1, the state of world is reversionary, and thus the equilibrium order flows
and prices follow the noncollusive equilibrium in Section 3.2; and when st = 0, the state of world
is normal. In this case, we focus on linear policy functions and characterize the equilibrium order
flow xC(vt) and price pC

t as follows:

xC(v) ≡ χC(v − v), (3.12)

pC(y) = v + λCy, with λC =
θγC + ξ

θ + ξ2 and γC =
IχC

(IχC)2 + σ2
u/σ2

v
. (3.13)

The price-trigger function q(v) is specified based on the expected price when all informed
speculators trade coordinately according to xC(v) conditional on v, namely, pC(v) ≡ E

[
pC(y)|v

]
.

Specifically, plugging (3.12) into (3.13) and taking expectation over u, we obtain that pC(v) ≡
v + λC IχC(v − v). The price-trigger function q(v) is specified as follows:

q(v) ≡
{

pC(v) + λCσuω, if v > v
pC(v)− λCσuω, if v < v,

(3.14)

where ω > 0 is a parameter that characterizes the tightness of the price trigger.
Equation (3.14) warrants further discussions. First, when v > v, informed investors have

incentives to buy a large amount of the asset, which boosts up its price. As a result, when
v > v, a meaningful price-trigger strategy would punish the potential deviating counterparty
by reverting to the noncollusive Nash equilibrium once the market price goes above a certain
high-level threshold q(v). In contrast, when v < v, informed investors have incentives to sell a
large amount of the asset, which suppresses down its price. As a result, when v < v, a meaningful
price-trigger strategy would punish the potential deviating counterparty by reverting to the
noncollusive Nash equilibrium once the market price falls below a certain low-level threshold
q(v). Second, there is no price threshold when v = v because no informed investor would have
incentives to trade in this case. Third, although there are infinitely many alternative ways to
specify the functional form of the threshold q(v), we focus on a specification that is not only
statistically meaningful but also ensures a linear model solution as in Kyle (1985). If no one
deviates from the coordinated trading, each informed speculator can infer that the noise order is
ût = [pt − q(vt)]/λC based on the observed price pt = pC(yt). If ût is excessively positive when
vt > v, say ût > ωσu for some constant ω > 0, the informed speculator would suspect that some
other informed speculators might have deviated from the implicit agreement. Analogously, if
ût is excessively negative when vt < v, say ût < −ωσu for some constant ω > 0, the informed
speculator would suspect that some other informed speculators might have deviated from the
implicit agreement. Fourth, the multiplier σu ensures that the probability of price-trigger violation
is independent of the magnitude of noisy trading, σu, in the collusive Nash equilibrium.

Given that st = 0, let JC(χi) denote each informed speculator i’s expected present value of
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future profits, when investor i chooses xi,t = χi(vt − v) and all other I − 1 informed investors
choose xC(vt). The value of JC(χi) is determined recursively as follows:

JC(χi) =E
[(

vt − pC(yt)
)

χi(vt − v)
]

(3.15)

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

,

where the combined order flow of informed investors and the noise trader is

yt = χi(vt − v) + (I − 1)xC(vt) + ut, (3.16)

and the probability of price-trigger violation is

P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

=E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

=E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,

where Φ(·) is the CDF of the standard normal distribution.

Impossibility of Collusion When Efficient Prices Prevail. The following proposition highlights
the impossibility of achieving collusion in an environment closely resembling the standard Kyle
benchmark (Kyle, 1985), where efficient prices prevail. In this setting, the market maker focuses
on minimizing pricing errors and sets the price approximately at E[vt|yt], which is the expected
fundamental value conditional on the observed combined order flow of informed speculators and
the noise trader. In other words, the efficient price in this context is an unbiased estimate of the
asset’s fundamental value. The proof is in Appendix B.

Proposition 3.3 (Impossibility of Collusion When Efficient Prices Prevail). If θ is large or ξ is small,
there is no collusive Nash equilibrium that can be sustained by price-trigger strategies for any σu/σv > 0.

Sustaining coordination through price-trigger strategies requires two conditions: (i) price infor-
mativeness needs to be sufficiently high to ensure that there is sufficient capacity for monitoring,
which has been emphasized by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz
(2007), and (ii) the price impact of informed speculators’ order flows needs to be sufficiently low
to ensure that there is sufficient room for achieving significant informational rents.

However, the environments with large θ or small ξ closely resemble the standard Kyle
benchmark (Kyle, 1985), where efficient prices prevail. In this environment, because λC is
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approximately equal to γC, price informativeness is always low and unresponsive to σu/σv.7 As
a result, the two necessary conditions (i) and (ii) cannot hold simultaneously. In particular, in
order to achieve high price informativeness, the environment needs to have low noise trading
risks, as captured by a low σu/σv. However, knowing that noise orders are not significant, the
market maker will choose a high γC, resulting in a high price impact of informed trading because
λC ≈ γC. The high price impact of informed trading would further induce informed speculators
to trade conservatively by placing orders of small amounts. In the end, the positive effect on price
informativeness from low noise trading risks would be largely cancelled out by the negative effect
from the conservative orders of informed speculators, making the price informativeness low and
unresponsive to σu/σv.

Proposition 3.3 carries intrinsic value in terms of theoretical insights and novelty, setting
it apart from existing theories on the impossibility of collusion under information asymmetry,
as posited by Abreu, Milgrom and Pearce (1991) and Sannikov and Skrzypacz (2007). These
prior theories emphasize that, when prices are not informative, “false positive” errors, made
by triggering punishments, occur on the equilibrium path disproportionately often, erasing all
benefits from collusion. In contrast, Proposition 3.3 offers a distinctive intuitive perspective,
highlighting that informed speculators cannot exploit pricing errors to achieve collusive outcomes
because prices are already efficient, accurately reflecting the asset’s fundamental value. The
absence of substantial pricing errors essentially renders collusion infeasible, as there exists limited
scope for market manipulation based on price discrepancies. In summary, Proposition 3.3 sheds
light on the interplay between efficient pricing, information asymmetry, and collusive behavior in
financial markets. By demonstrating the impracticality of collusion in environments characterized
by efficient prices, our results provide a deeper understanding of market dynamics and the
implications of information asymmetry on collusion strategies.

Existence of Collusion with a Significant Preferred-Habitat Investor. The following proposition
shows that collusion sustained by price-trigger strategies exists when the preferred-habitat investor
plays an important role in price formation, making prices not very efficient. However, when
information asymmetry, captured by σu/σv, is too large, or when the number of informed
speculators I, no collusion can be sustained by price-trigger strategies even with inefficient prices.
The proof is in Appendix C.

Proposition 3.4 (Existence of Collusion with a Significant Preferred-Habitat Investor). If θ is
sufficiently small or ξ is sufficiently large, there exists a collusive Nash equilibrium that can be sustained by
price-trigger strategies provided that σu/σv and I are not too large.

If θ is small or ξ is large, the market maker determines prices determined primarily to minimize
inventory costs rather than pricing errors. Thus, a low price impact of informed trading can
arise even in environments with low noise trading risks. The low price impact of informed
trading would further induce informed speculators to trade aggressively by placing orders of large

7In the extreme case with θ = ∞ or ξ = 0, price informativeness is independent from σu/σv as in Kyle (1985).
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amounts, thereby leading to high price informativeness. Consequently, the necessary conditions
(i) and (ii) can hold simultaneously when the preferred-habitat investor plays an important role in
price formation.

However, when σu/σv is too large, price informativeness is low, and thus price-trigger strategies
are difficult to sustain. This is because when prices are not informative, agents make “false positive”
errors by triggering punishments on the equilibrium path disproportionately often, erasing all
benefits from collusion. This key idea exactly follows the insight of Abreu, Milgrom and Pearce
(1991) and Sannikov and Skrzypacz (2007).

Properties of Collusion Sustained by Price-Trigger Strategies. To discern whether informed
speculators trade in a tacitly collusive manner based on observable outcomes, we derive testable
properties of collusion.

Proposition 3.5 (Supra-competitive nature of collusion). In the price-trigger collusive equilibrium, it
holds that

πM ≥ πC > πN , (3.17)

where πC =
(
1 − λC IχC) χCσ2

v is the expected profit of informed speculators in the collusive equilibrium.

If we define ∆C ≡ πC − πN

πM − πN , inequalities in (3.17) can be summarized by ∆C ∈ (0, 1].

Clearly, a greater ∆C signifies a higher collusion capacity. We use ∆C as a measure for collusion
capacity, as in Calvano et al. (2020). Similar measures are also adopted in empirical studies to
identify collusion capacity (e.g., Dou, Wang and Wang, 2023). Consistent with the definitions in
the noncollusive equilibrium and the perfect cartel equilibrium, the price informativeness, denoted
by IC, is defined as the logged signal-noise ratio of prices,

IC = log

[
var(xC

i,t)

var(ut)

]
= log

[(
IχC
)2

(σv/σu)
2
]

.

The market liquidity, denoted by LC, is defined as the inverse sensitivity of the market maker’s
inventory |zt + yt| to the noise order flow ut

LC =
1

∂|zt + yt|/∂ut
=

1
|1 − ξλC| .

The mispricing, denoted by EC, is defined by the percentage deviation of the asset’s price pt from
its conditional expected value

EC =

∣∣∣∣ pC(vt)− EC[vt|yt]

EC[vt|yt]− v

∣∣∣∣ = ∣∣∣∣λC − γC

γC

∣∣∣∣ .

In the next proposition, we derive how ∆C, IC, LC, and EC vary across various market structures
and information environments. The proof is in Appendix D.

22



Proposition 3.6 (Effects of Market Structures and Information Environments). If θ is sufficiently
small or ξ is sufficiently large, the price-trigger collusive Nash equilibrium satisfies the following properties:

(i) I ↑ =⇒ ∆C ↓ & IC/IM ↑ & LC/LM ↑ & EC ↓

(ii) σu/σv ↑ =⇒ ∆C ↓ & IC/IM ↑ & LC/LM ↑ & EC ↓

(iii) ρ ↑ =⇒ ∆C ↑ & IC/IM ↓ & LC/LM ↓ & EC ↑

(iv) ξ ↑ =⇒ ∆C ↑ & IC/IM ↓ & LC/LM ↓ & EC ↑

4 Simulation Experiments with AI-Powered Trading

The theoretical results presented in Section 3 are predicated on the assumption that both the
informed speculators and the market maker possess rational expectations. Specifically, they are
capable of discerning (i) the order flows of other informed speculators, albeit with noise; (ii)
the distribution of noise trading flows; and (iii) the distribution of the fundamental value of the
asset. Furthermore, both the informed speculators and the market maker are sufficiently astute,
with the speculators being able to communicate amongst themselves. This allows the informed
speculators to collectively reach and sustain a price-trigger strategy characterized by χC(v) and
q(v), as detailed in (3.12) to (3.14). Meanwhile, this also allows the market maker to perfectly
understand the collusion scheme of these speculators.

It remains uncertain whether autonomous, model-free AI algorithms can learn to sustain
tacit collusion during trading – and thereby generate supercompetitive profits – in line with
the theoretical predictions, which are derived based on stringent, and at times, unrealistic
assumptions. As a proof-of-concept illustration, in this section, we design simulation experiments
to investigate the capability of Q-learning algorithms to attain tacit collusion under asymmetric
information, without the overt acts of communication or agreements typically seen in competition
law infringements (Harrington, 2018).

4.1 Informed AI Speculators with Q-Learning

We consider informed speculators operating Q-learning algorithms (i.e, informed AI speculators)
to learn how to trade. Importantly, informed AI speculators have no direct knowledge of order
flows from their counterparts and are oblivious to the distribution of noisy trading flows and
the fundamental value of the asset. Our experimental design and methodology are similar to the
studies of Calvano et al. (2020) and Asker, Fershtman and Pakes (2022), who explore product
market competition under which asymmetric information and endogenous pricing rules are
absent.

Specifically, each informed AI speculator i ∈ {1, · · · , I} adopts the Q-learning algorithm
described in Section 2. Observing st, informed AI speculator i chooses its order flow xi,t, following
one of the two experimentation modes described in Section 2.3. After receiving the total quantity
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of market orders, the market maker determines the price pt according to its own pricing rules
(see Subsection 4.2 below). The profit of informed AI speculator i in period t is given by
πi,t = (vt − pt)xi,t.

State Variables. State variables, st, are essential for characterizing the recursive relation presented
in equation (2.4). The choice of state variables is not unique. In principle, st can encompass any
information that informed AI speculator i has observed up to the beginning of period t. This
includes both public information and speculator i’s own private information. We utilize the
smallest possible set of state variables in st that can theoretically generate tacit collusion sustained
by price-trigger strategies. First, drawing from the insights in Section 3.4, we include the asset’s
price pt−1 in the preceding period t − 1 as part of st. Second, we incorporate vt, instead of vt−1, as
part of st because informed AI speculators engage in trading activities in period t after observing
vt at the beginning of period t. Thus, the state variable st is defined as st ≡ {pt−1, vt}. Put simply,
we equip the informed AI speculator with a one-period memory to trace the history for decision
making, similar to the approach adopted by Calvano et al. (2020).

One could also expand informed AI speculator i’s state variables in st with its own lagged
order flow xi,t−1, a piece of private information only known by informed AI speculator i, and
a longer memory for lagged asset prices and order flows. In our simulation experiments, we
observe that enlarging the state variable st augments the degree of tacit collusion among informed
AI speculators, leading to higher trading profits. Thus, our deliberate choice to solely incorporate
pt−1 and vt as state variables sets a stringent bar for the Q-learning algorithms to reach tacit
collusion within our economic environment. Furthermore, the Q-learning algorithm with state
variables st ≡ {pt−1, vt} has a convergence speed significantly faster than those incorporating a
more extensive list of state variables.8

The evolution of state variable st is given by st+1 ≡ {pt, vt+1}, where vt+1 is randomly drawn
from the distribution N(v, σ2

v ). The price pt is determined by the market maker, and it depends
on the noise trading flow and the order from the preferred-habitat investor in period t, which
remain unknown to informed AI speculators when they make decisions in period t.

Role of Exploration and Exploitation in Generating Collusive Outcomes. Exploration is not only
critical for approximating the true Q-matrix but also for informed AI speculators to learn and
sustain the collusion through price-trigger strategies discussed in Section 5.1. In each iteration,
the randomly selected order flow typically differs significantly from the exploited order flow
that generates collusive profits. Thus, such deviation, triggered by exploration, provides the only
opportunity for the algorithms to learn the price-trigger strategies to sustain the collusion through
punishment threat.

Exploitation, as a defining characteristic of RL algorithms, plays a vital role in generating
collusion through homogenized learning biases discussed in Section 5.2. Specifically, exploitation
biases the estimation of the Q-matrix away from its true values. This bias leads to excessive

8When dealing with an extensive list of state variables, deep Q-learning algorithms become indispensable.
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overestimation of Q-values for certain choices that can sustain collusive profits, while simulta-
neously underestimating Q-values for other choices in X. The collusion through homogenized
learning biases shares a foundation with the fundamental concept of the “bias-variance tradeoff”
in supervised machine learning algorithms – sacrificing unbiasedness to gain stronger identifica-
tion. Although Q-learning algorithms are inherently self-oriented, they can achieve and maintain
collusive profits through interactions by overestimating the Q-values of choices that facilitate high
collusive profits. Consequently, under the influence of the biased estimated Q-matrix, informed AI
speculators lack incentives to deviate from collusive behavior. Such behaviors constitute a unique
character of AI algorithms, which is intrinsically different from how human traders would behave.

4.2 Pricing Rule of the Adaptive Market Maker

The market maker does not know the distributions of randomness. It stores and analyzes
historical data on asset values, asset prices, the order flows from the preferred-habitat investor,
and the combined order flows from informed AI speculators and the noise trader, i.e., Dt ≡
{(vt−τ, pt−τ, zt−τ, yt−τ)}Tm

τ=1, where Tm is a large integer. The market maker estimates the demand
curve of the preferred-habitat investor and the conditional expectation of the asset value, E [vt|yt],
using the following linear regression models:

zt−τ = ξ0 − ξ1 pt−τ, (4.1)

vt−τ = γ0 + γ1yt−τ + ϵt−τ, (4.2)

where τ = 1, · · · , Tm. The estimated coefficients are ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t, respectively, based on
the dataset Dt in period t. The pricing rule adaptively adheres to the theoretical optimal policy
using a plug-in procedure:

pt(y) = γ̂0,t + λ̂ty with λ̂t =
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

, (4.3)

where θ is the market maker’s own choice. Therefore, the market maker is adaptive using simple
statistical models. To show robustness of our results, we also consider the economic environment
where the market maker determines the pricing rule with rational expectations or the market
maker adopts Q-learning algorithms to learn the pricing rule (see Appendix F). All the results are
similar to those obtained in the baseline economic environment.

4.3 Repeated Games of Machines

At t = 0, each informed AI speculator i ∈ {1, · · · , I} is assigned with an arbitrary initial Q-matrix
Q̂i,0 and state s0. Then, the economy evolves from period t to period t + 1 as follows:

(1) Informed AI speculator i draws a random value that determines whether it will be in the
exploration mode with probability εt or the exploitation mode with probability 1 − εt in
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period t. The random values drawn by different informed AI speculators are independent.
Subsequently, each informed AI speculator i submits its own order flow xi,t according to its
mode.

(2) The noise trader submits its order flow ut, which is randomly drawn from a normal
distribution N(0, σ2

u).

(3) The preferred-habitat investor submits its order flow zt according to (3.2).

(4) The market maker observes the historical data Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1 and estimates

the optimal pricing rule according to (4.1) – (4.3).

(5) Each informed AI speculator i realizes its profits (vt − pt)xi,t and updates its Q-matrix
according to equation (2.4).

(6) At the beginning of period t + 1, the state variable for each informed AI speculator evolves
to st+1 = {pt, vt+1}, where vt+1 is drawn from N(v, σ2

v ) and is independent of any other
variables.

The interactions of informed AI speculators and an adaptive market maker, together with the
randomness caused by the noise trader and stochastic asset values in the background, make the
stationary equilibrium difficult to achieve. The economic environment in our study is substantially
more complex than that of Calvano et al. (2020) whose setting does not have randomness,
information asymmetry, or endogenous pricing rules. As noted by Calvano et al. (2020), the
player’s optimization problem is inherently nonstationary when its rivals vary their actions
over time due to experimentation or learning. Theoretical analysis of the Q-learning algorithms
playing repeated games is generally not tractable. Rather than applying stochastic approximation
techniques to AI agents, we follow Calvano et al. (2020) by simulating the exact stochastic dynamic
system a large number of times to smooth out uncertainty. There is no theoretical guarantee that
Q-learning agents will settle on a stable outcome, nor that they will correctly learn an optimal
policy. However, we can always verify this in our simulations ex post to ensure that our analyses
are conducted based on the stationary equilibrium.

4.4 Discretization of State and Action Space

We choose the following grids for the state variable st ≡ {pt−1, vt} and action variable xi,t. For
computational efficiency, we approximate the normal distribution N(v, σv) using a sufficiently
larger number of nv grid points, V = {v1, · · · , vnv}. Our discretization ensures that these nv grid
points have equal probabilities but are unequally spaced. Specifically, the probability of each
grid point is Pk = 1/nv. The locations of grid points are chosen based on vk = v + σvΦ−1((2k −
1)/(2nv)) for k = 1, · · · , nv, where Φ−1 is the inverse cumulative density function of a standard
normal distribution. The mathematical property of Φ−1 implies that grid points around the
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mean v are closer to each other than those far away from the mean. The speed of convergence is
significantly increased because all nv grid points of vt have equal probabilities.9

We construct the discrete grid points for informed AI speculators’ order xi,t based on their
optimal actions in the noncollusive Nash equilibrium and perfect cartel equilibrium. According to
our model in Section 3, the order values in the two equilibria are given by xN = (v − v)/((I + 1)λ)
and xM = (v − v)/(2Iλ). We specify informed AI speculators’ action space by discretizing the
interval [xM − ι(xN − xM), xN + ι(xN − xM)] for v > v and [xN − ι(xM − xN), xM + ι(xM − xN)] for
v < v into nx equally spaced grid points, i.e., X = {x1, · · · , xnx}. The parameter ι > 0 ensures that
informed AI speculators can choose order flows beyond the theoretical levels corresponding to the
noncollusive Nash equilibrium and perfect cartel equilibrium. As the action space is discrete, the
exact order flows corresponding to the perfect cartel equilibrium may not be feasible. Despite this,
our simulations show that informed AI speculators can collude with each other to a large degree.

The grid points of price pt are similarly chosen as those of xi,t, except for considering the noise
trader’s impact on prices. Specifically, in our numerical experiments, the noise trader’s order is
drawn randomly from the normal distribution N(0, σu), without imposing any discretization or
truncation. In our theoretical framework in Section 3, the market maker sets the price according
to the total order flow yt, which is the sum of informed AI speculators’ order ∑I

i=1 xi,t and the
noise trader’s order ut. Because ut follows an unbounded normal distribution, the theoretical
range of the price pt is unbounded. To maintain tractability, in our numerical experiments,
we set the upper bound at pH = v + λ(I max(xM, xN) + 1.96σu) and the lower bound at pL =

v + λ(I min(xM, xN)− 1.96σu), corresponding to the 95% confidence interval of the noise trader’s
order distribution, N(0, σu). The grid points of pt are chosen by discretizing the interval [pL −
ι(pH − pL), pH + ι(pH − pL)] into np grids, i.e., P = {p1, · · · , pnp}.

4.5 Initial Q-Matrix and States

We initialize the Q-matrix at t = 0 using the discounted payoff that would accrue to informed
AI speculator i if the other informed AI speculators randomize their actions uniformly over
the grid points defined by X.10 Moreover, we consider a zero order flow from the noise trader,

9All the results are robust to the use of alternative methods to discretize the state variable vt. For example, one
commonly used method is to use nv equally spaced points over a sufficiently large interval, e.g., [v − 6σv, v + 6σv].
The probability of each grid point is computed based on the probability mass function of the normal mass function,
i.e., Pk = exp

(
−(k − v)2/(2σ2

v )
)

for k = 1, · · · , nv. Compared to the discretization method we use, this alternative
method yields similar quantitative results but has a much slower convergence. The reason is that it assigns very small
probabilities to the left-most and right-most grid points. As a result, the Q-matrix’s cells far away from the mean v are
updated at much lower frequencies than those closer to the mean. An infrequent update for the cells far away from the
mean in turn requires many more updates for other cells of the Q-matrix to stabilize. Thus, the global convergence
speed is reduced significantly due to the buckets effect. In fact, as nv → ∞, the two alternative methods can both
perfectly capture the theoretical distribution of vt but yield vastly different convergence speed for the Q-learning
algorithms.

10Adopting different initial values for the Q-matrix do not significantly alter the results. In RL algorithms, another
common strategy to initialize the Q-matrix is to use optimistic initial values. That is, initializing the Q-matrix with
sufficiently high values so that subsequent iterations tend to reduce the values of the Q-matrix. This approach enables
Q-learning algorithms to visit all actions multiple times at the beginning, resulting in early improvement in estimated
action values. Thus, setting optimistic initial values is in some sense equivalent to adopting a thorough exploration
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corresponding to the expected value of the distribution N(0, σ2
u). Specifically, for each informed

AI speculator i = 1, · · · , I, we set its initial Q-matrix Q̂i,0 at t = 0 as follows:

Q̂i,0(pm, vk, xn) =
∑x−i∈X [vk − (v + λ(xn + (I − 1)x−i))] xn

(1 − ρ)nx
, (4.4)

for (pm, vk, xn) ∈ P×V×X. The initial states of our simulation, s0 = {p−1, v0}, are randomized
uniformly over V×P.

4.6 Specification of Learning Modes

We adopt an exponentially time-declining state-dependent exploration rate for informed AI
speculators,

εt(vk) = e−βt(vk), (4.5)

where the parameter β > 0 governs the speed that informed AI speculators’ exploration rate
diminishes over time and the variable t(vk) captures the number of times that the exogenous state
vk ∈ V has occurred in the past.11 The specification of t(vk) implies that the exploration rate is
state dependent, which ensures that informed AI speculators can sufficiently explore their actions
for all grid points of the exogenous state variable vt.

The specification (4.5) implies that initially, Q-learning algorithms are almost always in the
exploration mode, choosing actions randomly. However, as time passes, Q-learning algorithms
gradually switch to the exploitation mode.

4.7 Parameter Choice

The parameters used in our numerical experiments can be categorized into three groups according
to their roles. The environment parameters are the parameters that characterize the underlying
economic environment in our experiments. Importantly, the values of most of these parameters
are neither known to informed AI speculators nor to the market maker.12 They instead adopt Q-
learning algorithms to learn how to make decisions in an unknown environment. The simulation
parameters are the parameters that determine our numerical experiments, such as the number of
discrete grid points, simulation sessions, etc. The hyperparameters are the parameters that control
the machine learning process. Below, we describe the choice of parameters for each category.

Environment Parameters. Across all simulation experiments, we set v = 1, σv = 1, and θ = 0.1.
The parameter v determines the expected value of vt, and thus we normalize its value to unity
without loss of generality. The parameter σv plays a similar role as σu because what matters in our

over the entire action space early in the learning phase and then exploitation later on.
11In principle, we can allow informed AI speculators to choose their exploration rate conditional on the realized

value of vt because they perfectly observe vt, which is one of their state variables st = {pt−1, vt}.
12An exception is ρ and θ. The parameter ρ is known to informed AI speculators as this parameter captures their

own discount rates. The parameter θ is known to the market maker as this is its own choice.
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model in Section 3 is the ratio σu/σv. We thus normalize the value of σv to unity. The parameter θ

determines the extent to which the market maker focuses on price discovery. We find that the
implications of different values of θ can be analyzed similarly by varying the value of ξ. Thus, for
simplicity, we fix the value of θ at 0.1 throughout our simulation experiments.

In the baseline economic environment, we set I = 2, σu = 0.1, ρ = 0.95, and ξ = 500. We
extensively study the implications of different values for these parameters. Specifically, we
consider different number of informed AI speculators ranging from I = 2 to I = 6, different levels
of background noise ranging from σu = e−5 to σu = e5, different discount rates ranging from
ρ = 0.5 to ρ = 0.95, and different values of ξ ranging from ξ = 0 to ξ = 500.

Simulation Parameters. We set ι = 0.1 so that informed AI speculators can go beyond the
theoretical bounds of order flows by 10%. We choose nx = 15 and np = 31. These grid points
are sufficiently dense to capture the economic mechanism we are interested in. Importantly,
our choice of np ≈ 2nx ensures that, all else equal, a one-grid point change in one informed AI
speculator’s order will result in a change in price pt over the grid defined by P. If the grid defined
by P is coarser, informed AI speculators will not be able to detect small deviations of peers even
in the absence of noise, which in turn lowers the possibility of algorithmic collusion through
price-trigger strategies.

We use nv = 10 grid points to approximate the normal distribution of vt. Under our discretiza-

tion, the standard deviation of vt is σ̂v =
√

∑N
k=1 P(vk)(vk − v)2 = 0.938, which is close to the

theoretical value σv = 1. In the remainder of this paper, the theoretical benchmarks of noncollusive
Nash equilibrium and perfect cartel equilibrium are computed using σ̂v, to be consistent with the
discretization of vt adopted in our simulation experiments.

All the results are robust if we choose a larger nv, nx, np, or ι, as long as the hyperparameters,
α and β, are adjusted accordingly to ensure sufficiently good learning outcomes. However, the
cost of using denser grids is that significantly longer time is needed for Q-learning algorithms to
fully converge to limit strategies.

We set Tm = 10, 000 so that the market maker stores sufficiently long time-series data to
estimate the linear regressions (4.1) and (4.2). In our simulation experiments, we verify that the
estimates of ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t can accurately recover the preferred-habitat investor’s demand
curve and the conditional expectation of the asset value, E [vt|yt]. Increasing the value of Tm will
not change any quantitative results, but it adds more computation burden.

For each experiment with a particular choice of environment parameters, we simulate the
Q-learning algorithms by N = 1, 000 times. All the random initial states and shocks (i.e., vt, ut,
and exploration status of each informed AI speculator for all t ≥ 0) are independently drawn from
identical distributions across the N simulation sessions of the experiment. In principle, the results
of different experiments can differ both because of the difference in environment parameters
and the difference in the realized values of random variables. To ensure that comparisons across
different experiments are not contaminated by the latter, we generate a large set of random
variables for all N simulation sessions offline and store in the high-powered-computing server.
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The same set of random values is used when we compare results across the experiments with
different environment parameters in Sections 5 and 6.

Hyperparameters. The hyperparameters that control the learning process of Q-learning algo-
rithms are set at α = 0.01 and β = 10−5. All results are robust to choosing different values of α

and β so long as they are in the reasonable range that ensures sufficiently good learning outcomes.
Our baseline choice of β implies that any action xk ∈ X is visited purely by random exploration
by nv/[(1− exp(−10−5))nx] = 66, 660 times on average before exploration completes.13 In Section
6.3, we study the experiments with different values of α and β as well as the experiments that
allow informed AI speculators to adopt different values of α. In Section 7.2, we develop a two-tier
Q-learning algorithms that allow informed AI speculators to learn the choice of α.

4.8 Convergence

Strategic games played by Q-learning algorithms do not have general convergence results. To
verify convergence, a practical criterion is to check whether each player’s optimal strategy does
not change for a long period of time. Note that convergence is determined by the stationarity of
players’ optimal strategies rather than the stationarity of players’ learned Q-matrices. In fact, in a
stochastic environment, the Q-matrix can never remain unchanged because randomly realized
shocks will always result in an update for some cells of the Q-matrix. However, the slight update
in the Q matrix does not necessarily result in a change in the optimal strategies. This is why
convergence in optimal strategies can be achieved in principle, even in a stochastic environment
with Q-learning algorithms playing repeated games.

In general, setting a smaller value of α or β requires longer time for the algorithm to reach
convergence. For example, with β = 10−5, informed AI speculators’ Q-learning algorithms are
still doing exploration with e−βT′/nv = 36.8% probability after T′ = 1, 000, 000 periods. It is almost
by definition that the optimal strategies are nonstationary with an exploration rate that is far away
from zero. Thus, a necessary condition for all Q-learning algorithms to reach stationary optimal
strategies is that exploration rate is virtually zero, say, after 10,000,000 periods. Moreover, with
a small α, the Q-matrix is updated slowly when new information arrives. As a result, informed
AI speculators can only slowly learn their optimal actions, which are based on their learned
Q-matrices. A sufficiently long time is needed to ensure the convergence of optimal strategies.

Per discussions above, we adopt a stringent criterion of convergence by requiring all informed
AI speculators’ optimal strategies to stay unchanged for 1,000,000 consecutive periods. All
N = 1, 000 simulation sessions are simulated until convergence. The number of periods needed
to reach convergence varies considerably across experiments depending on the particular choice
of environment parameters. Moreover, even for the same experiment, the number of periods
needed to reach convergence can vary significantly across the N simulation sessions, depending

13We do not have an explicit formula for the expected number of times a cell in the Q-matrix being visited by random
exploration because the state variable pt−1 in st = {pt−1, vt} is also affected by the noise trader’s random order and
the pricing rule adopted by the market maker.
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on the realized values of random variables. Among all the experiments we study, the number
of periods to reach convergence ranges from about 20 million to about 10 billion. To speed up
computations, our programs are written in C++, using −O2 to optimize the compiling process.
The C++ program is run with parallel computing in a high-powered-computing server cluster
with 376 CPU cores in total. It takes about 1 min to 6 hours to finish all N simulation sessions in
one experiment, depending on the total number of iterations needed to reach convergence.

4.9 Metrics Reflecting Collusive Behavior

Motivated by our theoretical results in Section 3, we calculate three simple metrics that can be
indicative of potential collusive behavior among informed AI speculators. The values of all three
metrics are computed in each simulation session over T = 100, 000 periods, after informed AI
speculators’ optimal strategies fully converge to the limit strategies according to the convergence
criterion in Section 4.8. By taking the average over a large number of periods, we smooth out
the stochastic underlying economic environment, caused by the randomness in the noise trader’s
order ut and the stochastic variation of the asset value vt over time.

Collusion Capacity. The degree of collusion can be reflected by the Delta metric defined as
follows:

∆C =
1
I

I

∑
i=1

∆C
i , with ∆C

i =
πi − πN

i

πM
i − πN

i
, (4.6)

where πi ≡ ∑Tc+T
t=Tc

πi,t(vt, ut) is the average profits of informed AI speculator i over T periods
after Q-learning algorithms reach convergence at Tc. The values of πN

i = ∑Tc+T
t=Tc

πN
i (vt, ut) and

πM
i = ∑Tc+T

t=Tc
πM

i (vt, ut) are the average profit that informed speculator i would obtain, theoretically,
in the noncollusive Nash equilibrium or perfect cartel equilibrium, respectively. Because informed
speculators are symmetric, we have πN

i (vt, ut) ≡ πN(vt, ut) and πM
i (vt, ut) ≡ πM(vt, ut) for all

i = 1, .., I. Specifically, according to the formulas in Section 3.2, conditional on the realized values
of vt and ut in period t, informed speculator i’s profit in the noncollusive Nash equilibrium is

πN(vt, ut) =
[
vt − pN(IxN(vt) + ut)

]
xN(vt), for i = 1, · · · , I, (4.7)

where xN(vt) = χN(vt − v) and pN(IxN(vt) + ut) = v + λN(IxN(vt) + ut). Similarly, according
to the formulas in Section 3.3, conditional on the realized values of vt and ut in period t, informed
speculator i’s profit in the perfect cartel equilibrium is

πM(vt, ut) =
[
vt − pM(IxM(vt) + ut)

]
xM(vt), for i = 1, · · · , I, (4.8)

where xM(vt) = χM(vt − v) and pM(IxM(vt) + ut) = v + λM(IxM(vt) + ut).
In principle, the value of ∆C should range from 0 to 1. A larger ∆C implies that informed

AI speculators attain higher profits. The value of ∆C can never be larger than 1 because πM
i is

the highest theoretically possible average profit. In fact, because informed AI speculators can
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only choose actions over discrete grids, by design, it is not possible to obtain ∆C = 1 in our
simulation experiments. However, it is possible to achieve a ∆C below 0 under the limit strategies
of informed AI speculators. This outcome implies that informed AI speculators failed to learn a
good approximation of the actual Q-matrix, and as a result, they achieve average profits lower
than those in the noncollusive Nash equilibrium.

Profit Gain Relative to Noncollusion. The Delta metric is informative about collusive behav-
ior. However, it does not tell us the relative magnitude of supra-competitive profits. We thus
also calculate the extra profit gain relative to the profits that informed AI speculators would
obtain in the noncollusive Nash equilibrium theoretically. Specifically, the relative profit gain is

∑I
i=1 πi/ ∑I

i=1 πN
i , where πi and πN

i are calculated similarly as those in equation (4.6).

Order Sensitivity to Asset Value. In our model, each informed speculator’s order flows xi,t are
linear in the asset value vt, as captured by xi,t = χC(vt − v). Our model implies that informed
speculators are more conservative in placing their orders if there is implicit collusion. That is, the
sensitivity of order flows xi,t to the asset value vt − v is lower when informed speculators collude
more, i.e., χM ≤ χC < χN .

In our simulation experiments, informed AI speculators directly learn xi,t without imposing
the linearity restriction between xi,t and vt. Despite this, we find that informed AI speculators
learn roughly linear strategies (see Figure 8). We estimate χ̂C based on the recorded asset values
and order flows {vt, xi,t}Tc+T

t=Tc
for each AI speculator i = 1, · · · , I, by running the following linear

regression:
xi,t = χC

i,0 + χC
i,1vt + ϵt. (4.9)

Consistent with our model, the estimates based on the simulated data satisfy χ̂C
i,0 ≈ −vχ̂C

i,1 in the
unrestricted regression (4.9). The estimate χ̂C

i,1 captures the sensitivity of xi,t to vt corresponding
to the optimal trading strategies after Q-learning algorithms converge. We further compute the
average sensitivity of informed AI speculators as χ̂C = 1

I ∑I
i=1 χ̂C

i,1.

4.10 Measures of Price Informativeness, Market Liquidity, and Mispricing

Price Informativeness. Consistent the our model, the degree of price informativeness in our
simulation experiments is measured by the log signal-noise ratio as follows:

IC = log

[
var(xC

i,t)

var(ut)

]
= log

[
(Iχ̂C)2(σ̂v/σu)

2
]

, (4.10)

where σ̂v is the standard deviation of vt under our discrete grid points in V.
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Market Liquidity. Consistent the our model, the market liquidity in period t is measured by
the inverse sensitivity of market maker’s inventory |zt + yt| to noise order flows ut

LC
t =

1
∂|zt + yt|/∂ut

=
1

|1 − ξλ̂t|
, (4.11)

where zt = −ξ(pt − v) = −ξλ̂tyt and λ̂t is given by equation (4.3). The average market liquidity
is computed as LC = ∑Tc+T

t=Tc
LC

t .

Mispricing. Consistent the our model, the magnitude of mispricing in period t is measured by
the percentage deviation of the asset’s price pt from its conditional expected value

EC
t =

∣∣∣∣ pt − E[vt|yt]

E[vt|yt]− v

∣∣∣∣ =
∣∣∣∣∣ λ̂t − γ̂1,t

γ̂1,t

∣∣∣∣∣ , (4.12)

where pt = γ̂0,t + λ̂tyt and E[vt|yt] = γ̂0,t + γ̂1,tyt; γ̂0,t and γ̂1,t are estimated from (4.2). The
average mispricing is computed as EC = ∑Tc+T

t=Tc
EC

t .

5 AI Collusion under Information Asymmetry

Our model suggests that informed speculators can achieve supra-competitive profits through
implicit collusion when both price efficiency and noise trading risks are low (see Proposition
3.4). In this section, we conduct simulation experiments with informed AI speculators whose
trading is powered by Q-learning algorithms. We are mainly interested in four questions. First,
can informed AI speculators learn to collude, even without communicating with each other or
possessing any information about the underlying economic environment? Second, if collusion
exists, what are the mechanisms that generate such collusive behavior among informed AI
speculators? Third, how price efficiency and noise trading risk affect the trading strategies of
informed AI speculators. Fourth, what are the implications of AI-powered trading for price
informativeness, market liquidity, and mispricing in financial markets?

In Subsection 5.1, we show that in environments with low price efficiency and low noise
trading risks, informed AI speculators are able to learn price-trigger strategies to achieve implicit
collusion, which is quite similar to the mechanism characterized in our model in Section 3.4. In
Subsection 5.2, we show that in environments with low price efficiency and high noise trading
risks, informed AI speculators are not able to learn price-trigger strategies to achieve collusion, as
predicted by our model. However, they can still achieve supra-competitive profits due to biased
learning. The equilibrium of informed AI speculators resembles a self-confirming equilibrium
(Fudenberg and Kreps, 1988; Fudenberg and Levine, 1993) with collusion rather than a Nash
equilibrium. In Subsection 5.3, we study the role of price efficiency and noise trading risks
in determining informed AI speculators’ profits and collusive behavior. In Subsection 5.4, we
illustrate informed AI speculators’ trading strategies. Finally, in Subsection 5.5, we study the
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implications of AI-powered trading for price informativeness, market liquidity, and mispricing in
financial markets.

5.1 Artificial Intelligence: Collusion through Price-Trigger Strategies

In this subsection, we study informed AI speculators’ behavior when the environment has
low price efficiency (i.e., ξ = 500) and low noise trading risks (i.e., σu/σv = 10−1). The other
parameters are set according to the baseline economic environment described in Section 4.7.
Across all N = 1, 000 simulation sessions, the average value of ∆C is about 0.73 and the average
profit of informed AI speculators is about 9% higher than the profit in the noncollusive equilibrium.
Thus, our simulation results indicate that informed AI speculators can achieve supra-competitive
profits. Below, we examine the mechanism that sustains their collusion. We show that informed AI
speculators are intelligent enough to learn price-trigger strategies, which allows them to sustain
collusion after their Q-learning algorithms converge. These simulation results with informed
AI speculators are similar to the theoretical predictions of our model with rational-expectation
informed speculators.

5.1.1 Price-Trigger Strategy

Motivated by our model, we examine whether the optimal strategies learned by informed AI
speculators are consistent with the price-trigger strategy illustrated in Section 3. To this end, in
Figure 1, we study the impulse response function (IRF) after an exogenous shock to the noise
order flow, which further affects the asset’s price given the market maker’s pricing rule.

Specifically, in each of the N = 1, 000 simulation sessions, we focus on the economic environ-
ment after informed speculators’ Q-learning algorithms converge. Throughout the IRF experiment,
for all t ≥ 0, both informed AI speculators play their learned optimal strategies and the asset’s
price pt is determined by the market maker according to its learned pricing rule. In period t = 3,
we introduce an unexpected exogenous shock ∆ut to the noise order flow ut. The direction of the
shock is made to mimic the price impact of a hypothetical profitable deviation from informed AI
speculators. That is, we choose ∆ut > 0 if vt > v and ∆ut < 0 if vt < v. Thus, all else equal, this
exogenous shock will unexpectedly increase the asset’s price pt if vt > v and decrease pt if vt < v.

We are interested in the IRF of three outcome variables. The first outcome variable is the
price’s percentage deviation from its long-run mean, defined by ( p̃t − E[ p̃t])/E[ p̃t], where p̃t =

(pt − v)sgn(vt − v) and sgn(·) is the sign function. The variable p̃t captures the difference between
the asset’s price pt and its expected value. The sign function ensures that p̃t > 0 because according
to our model and simulation results, when vt > v, we have pt > v and sgn(vt − v) = 1; when
vt < v, we have pt < v and sgn(vt − v) = −1. In addition, the definition of p̃t ensures that
the exogenous shock always increases its value, enabling us to take the average of IRF across
simulation paths for expositional purposes. Specifically, if vt > v, the exogenous shock will
increase pt, and because sgn(vt − v) = 1, p̃t also increases. If vt < v, the exogenous shock will
decrease pt, and because sgn(vt − v) = −1, p̃t also increases. The second outcome variable is
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each informed AI speculator’s profit’s percentage deviation from its long-run mean, defined
by (πi,t − E[πi,t])/E[πi,t]. The third outcome variable is each informed AI speculator’s order
flow’s percentage deviation from its long run mean, defined by (x̃i,t − E[x̃i,t])/E[x̃i,t], where
x̃i,t = xi,tsgn(vt − v). The sign function ensures that x̃i,t > 0 because according to our model and
simulation results, we have xi,t > 0 when vt > v and xi,t < 0 when vt < v.

To clearly present the IRF, we calculate the average value of the above three interested outcome
variables in two steps. First, for each of the N = 1, 000 simulation sessions, we use the learned
optimal strategies to simulate the IRF 10,000 times, with independently drawn random shocks to
vt and ut. We smooth out the randomness in the economic environment by taking the average
IRF across these 10,000 independent paths. This is referred to as the IRF for each simulation
session i = 1, ..., N. Second, we compute the average IRF across N = 1, 000 simulation sessions.
This allows us to smooth out the randomness (i.e., initial states and exploration choices) during
the learning process. However, our results hold not merely to the average IRF of N = 1, 000
simulation sessions. Figure 2 plots the distribution of the impulse responses across the N = 1, 000
simulation sessions. Although the magnitudes of the deviations in prices and trading flows differ
significantly across simulation sessions, the [25%, 75%] and [5%, 95%] confidence intervals indicate
that price-trigger strategies are consistently adopted by informed AI speculators.

Figure 1 plots the average IRF across the N = 1, 000 simulation sessions for each outcome
variable of interest. We consider exogenous shocks of different magnitudes. In the scenario with
“small deviation,” |∆ut| is roughly 0.5% of the average magnitude of informed AI speculators’
order flow |xi,t|. Thus, it generates a small impact on the asset’s price pt at t = 3. In the scenario
with “medium deviation” and “large deviation,” |∆ut| is about 2.5% and 7% of the average
magnitude of informed AI speculators’ order flow |xi,t|, respectively, resulting in much larger
changes in pt.

Panel A plots the price’s percentage deviation from its long-run mean. Due to the exogenous
shock, the asset’s price deviates from its long-run mean in period t = 3, and the size of price
deviation increases with the magnitude of the exogenous shock. Panel B plots the profit’s
percentage deviation from its long-run mean for one informed AI speculator. The other informed
AI speculator has similar profit dynamics. It is shown that in period t = 3, the price deviation
reduces the informed AI speculator’s profit, and the impact increases with the magnitude of the
price deviation. Panel C plots the order flow’s percentage deviation from its long-run mean for
one informed AI speculator. The deviation is zero in period t = 3 because informed AI speculators
submit their orders before observing the price in the same period.

In period t = 4, panel C shows that in response to medium and large price deviations occurred
in the previous period, the informed AI speculator’s order flow significantly deviates from its
long-run mean. Moreover, the magnitude of the order flow deviation is similar for the medium
and large price deviation. However, the informed AI speculator’s order flow does not respond to
small price deviation. These patterns resemble the price-triggers strategies described in Section
3. Panel A shows that for the medium and large deviation cases, the percentage deviation of
the asset’s price continues to increase as a result of increased order flows from informed AI

35



1 2 3 4 5 6 7 8 9

0

0.02

0.04

1 2 3 4 5 6 7 8 9

-0.04

-0.02

0

1 2 3 4 5 6 7 8 9

0

0.02

0.04

Note: In each simulation session, we focus on the economic environment after informed speculators’ Q-learning
algorithms converge. Throughout the IRF experiment, for all t ≥ 0, both informed AI speculators play their learned
optimal strategies and the asset’s price pt is determined by the market maker according to its learned pricing rule. In
period t = 3, we introduce an unexpected exogenous shock ∆ut to the noise order flow ut. The direction of the shock
is made to mimic the price impact of a hypothetical profitable deviation from informed AI speculators. That is, we
choose ∆ut > 0 if vt > v and ∆ut < 0 if vt < v. Thus, all else equal, this exogenous shock will unexpectedly increase
the asset’s price pt if vt > v and decrease pt if vt < v. The three curves in each panel represent different magnitudes of
the shock. Panel A plots the price’s percentage deviation from its long-run mean. Panels B and C plot the percentage
deviation of profit and order flow from its long-run mean for one informed AI speculator, respectively. All curves are
average values across N = 1, 000 simulation sessions, where each session is independently simulated 10,000 times to
smooth out the effect of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to
the baseline economic environment described in Section 4.7.

Figure 1: IRF after an exogenous shock to ut (σu/σv = 10−1).

speculators. This, in turn, results in continued profit losses for informed AI speculators (see panel
B). By contrast, for the small deviation case, both of the asset’s price and informed AI speculators’
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Note: The experiment is similar to that described for Figure 1. Panels A and B plot the two speculators’ order flow’s
percentage deviation from the long-run mean, and panels C and D plot their profit’s percentage deviation from the
long-run mean. In each panel, the dotted line represents the median value, the boxes represent the 25th and 75th
percentiles, and the dashed intervals represent the 5th and 95th percentiles across N = 1, 000 simulation sessions.
Parameters are set as in Figure 1.

Figure 2: Confidence intervals for the IRF after an exogenous shock to ut (σu/σv = 10−1).

profits revert back to the long-run mean.
In period t = 5, panel C shows that informed AI speculators’ order flows abruptly return to

the long-run mean for both the medium and large deviation cases. As a result, both the price and
profit deviation abruptly return to zero (see panels A and B).
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5.1.2 Punishment for Deviation

According to our model in Section 3, price-trigger strategies are implemented based on whether
the asset’s price in the preceding period deviates from its long-run mean, which could be caused
by either the random order flows from the noise trader or the order flows from informed AI
speculators. Informed AI speculators cannot distinguish what causes price deviation.

In this section, we complement the experiments in Section 5.1.1 by further studying the IRF
after a unilateral deviation by one of the informed AI speculators. Specifically, in each of the
N = 1, 000 simulation sessions, we focus on the economic environment after informed speculators’
Q-learning algorithms converge. Throughout the IRF experiment, for all t ≥ 0, both informed
AI speculators play their learned optimal strategies and the asset’s price pt is determined by the
market maker according to its learned pricing rule. In period t = 3, we exogenously force one
informed AI speculator i to have a one-period deviation from its learned optimal strategy. The
one-period deviation in period t = 3 is made to the direction that increases the contemporaneous
profit of the deviating speculator (i.e., we exogenously increase the deviating speculator’s order
by ∆xi,t if vt > v and reduce its order by ∆xi,t if vt < v). We choose the deviation size ∆xi,t to be
one grid point in the order space X, which ensures that the resulting price deviation is similar to
the medium deviation case in panel A of Figure 1 for comparison purposes.

Panel A of Figure 3 plots the order flow’s percentage deviation for both the deviating speculator
and the nondeviating speculator. In period t = 3, on average, the deviating speculator’s order
flow deviates from the long-run mean by 2.5% while the nondeviating speculator’s order flow
remains unchanged. In period t = 4, the deviation gets punished as the nondeviating speculator
behaves more aggressively, deviating its order flow from the long-run mean by 4.2%.

Rather than reducing its order flow, the deviating speculator further increases its order flow
to 4.1% of the long-run mean in period t = 4, slightly below that of the nondeviating speculator.
This form of overshooting exists for small deviations. As shown in panel A of Figure 5, if we
consider a larger deviation, the deviating speculator would reduce its order flow in period t = 4.
Regardless of whether its a small or a large deviation, both informed AI speculators abruptly
return to the predeviation level of order flows in period t = 5.

Panel B of Figure 5 plots the profit’s percentage deviation from its long-run mean for each
informed AI speculator. In period t = 3, the deviating speculator’s profit increases by 0.8% of
the long-run mean while the nondeviating speculator’s profit decreases by 1.6%. In period t = 4,
due to the punishment strategy implemented by the nondeviating speculator, the profit of the
deviating speculator drops substantially from 0.8% to −2.4% of the long-run mean. The expected
discounted profit of deviation is about −1.6% of the long-run mean for the deviating speculator,
indicating that deviation from the learned optimal strategies is not profitable.

Panel C of Figure 3 plots the price’s percentage deviation from its long-run mean. In period
t = 3, due to the order deviation by one of the informed AI speculators, the asset’s price deviates
from its long-run mean by 1.2%. In fact, this is the force that triggered both informed AI
speculators to change their order flows in period t = 4 because pt−1 is the only state variable that
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Note: In each simulation session, we focus on the economic environment after informed speculators’ Q-learning
algorithms converge. Throughout the IRF experiment, for all t ≥ 0, both informed AI speculators play their learned
optimal strategies and the asset’s price pt is determined by the market maker according to its learned pricing rule.
In period t = 3, we exogenously force one informed AI speculator i to have a one-period deviation from its learned
optimal strategy. The one-period deviation in period t = 3 is made to the direction that increases the contemporaneous
profit of the deviating speculator (i.e., we exogenously increase the deviating speculator’s order flow by ∆xi,t if vt > v
and reduce its order flow by ∆xi,t if vt < v). The deviation size ∆xi,t is one grid point in the order space X. Panels A
and B plot the percentage deviation of profit and order flow from its long-run mean for both informed AI speculator,
respectively. Panel C plots the price’s percentage deviation from its long-run mean. All curves are average values
across N = 1, 000 simulation sessions, where each session is independently simulated 10,000 times to smooth out the
effect of random shocks to vt and ut. We set σu/σv = 10−1. The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 3: IRF after a unilateral deviation (σu/σv = 10−1).

records the deviation status in the preceding period t = 3. The asset’s price continues to increase
to 4.2% in period t = 4 because of the overshooting in the deviating speculator’s order flow, and
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Note: The experiment is similar to that described for Figure 3. Panels A and B plot the two speculators’ order flow’s
percentage deviation from the long-run mean, and panels C and D plot their profit’s percentage deviation from the
long-run mean. In each panel, the dotted line represents the median value, the boxes represent the 25th and 75th
percentiles, and the dashed intervals represent the 5th and 95th percentiles across N = 1, 000 simulation sessions.
Parameters are set as in Figure 3.

Figure 4: Confidence intervals for the IRF after a unilateral deviation (σu/σv = 10−1).

then abruptly returns to the long-run mean in period t = 5 as the two informed AI speculators
revert to their predeviation behavior.

Figure 4 plots the distribution of the IRF across the N = 1, 000 simulation sessions and shows
that the deviating speculator gets punished through price-trigger strategies in most simulation
sessions. To further show robustness, in panels A to C of Figure 5, we present the IRF of a larger
deviation by setting ∆xi,t equal to three grid points in the order space X. The nondeviating
speculator still implements a punishment strategy by substantially increasing its order flow in
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period t = 4 to punish the deviating speculator’s defect in period t = 3. The expected discounted
profit of deviation is negative for the deviating speculator. In panels D to F of Figure 5, we present
the IRF in an economic environment with higher noise trading risks by setting σu/σv = 1. In
this environment, the two informed AI speculators achieve a small amount of supra-competitive
profits with an average value of ∆C = 0.2. Even with such a low level of supra-competitive profits,
we still see that the nondeviating speculator implements price-trigger strategies to deter deviations.
However, the magnitude of both deviations and punishments in panels D to F of Figure 5 are
smaller than those in Figure 3. This is consistent with a lower average ∆C and the theoretical
insight that collusive behavior becomes more difficult to achieve when informed AI speculators
are less able to monitor peers’ deviations due to the larger information asymmetry caused by
higher noise trading risks.

5.1.3 Discussions

Except for the duration of punishment, the impulse responses presented in Figures 1, 3 and 5 are
quite consistent with the price-trigger strategies described in our model in Section 3. The patterns
observed in our experiments coincide with our theoretical predictions that when the environment
has low price efficiency and low noise trading risks, informed AI speculators are able to collude
with each other by adopting price-trigger strategies to deter deviations. Moreover, collusion is
more difficult to attain as noise trading risks become large.

Q-learning algorithms can learn price-trigger strategies because of experimentations. When
one informed AI speculator switches to the exploration mode in the process of learning, it would
choose actions randomly. Such behavior is effectively similar to defect from an implicit collusive
agreement, if any. When this occurs, the two informed AI speculators would be trapped in
the punishment phase until further explorations by one or both informed AI speculators occur.
Informed AI speculators are able to learn coordination strategies because exploration modes will
eventually stop, a necessary condition for Q-learning algorithms to converge.

Our finding that informed AI speculators are able to learn price-trigger strategies is similar
to the finding of Calvano et al. (2020) that informed AI speculators learn grim-trigger strategies
to sustain collusion in a perfect-information environment with Bertrand competition. However,
different from Calvano et al. (2020), after punishment in period t = 4, rather than gradually
returning to predeviation behavior, the informed AI speculators in our experiments abruptly
return to their predeviation behavior. This difference is mainly due to the information asymmetry
introduced by noise trading risks (i.e., σu > 0) and the stochastic asset value (i.e., σv > 0). Both
model ingredients make informed AI speculators more difficult to sustain collusion by punishment
threat, not just in the simulation experiments with informed AI speculators, but also in the model
with rational-expectation informed speculators in Section 3.

In particular, our economic environment differs from that of Calvano et al. (2020) in two
main aspects. First, we consider a stochastic environment where the asset’s value vt in each
period is drawn from an i.i.d. distribution. In this stochastic setting, it becomes more difficult
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Figure 5: Robustness of IRF: larger deviation or higher noise trading risks (σu/σv = 1).

for the two informed AI speculators to learn punishment strategies to sustain collusion than in
the deterministic setting with a constant vt.14 Second, the noise trader’s random order flows
generate information asymmetry to informed AI speculators, which makes grim-trigger strategies
infeasible. As a result, informed AI speculators have to adopt price-trigger strategies to collude.
In both the model with rational-expectation informed speculators and the simulation experiments

14In one of the robustness checks, Calvano et al. (2020) consider stochastic demand and show that the average ∆C is
lower when aggregate demand can take two values randomly. We also find that with stochastic vt, the average ∆C

declines because it is more difficult for Q-learning algorithms to learn strong punishment strategies. The decline in
∆C would be smaller if the evolution of vt exhibits a smaller degree of randomness, either through a higher level of
persistence or a less dispersed distribution.
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with informed AI speculators, the ratio σu/σv plays a crucial role in determining the level of
collusion.

The information asymmetry in our economic environment implies that peer informed AI
speculators’ lagged actions are unobservable and thus cannot be included as state variables.
Thus, as described in Section 4.1, we use the lagged asset’s price pt−1 as the state variable in
period t, rather than the lagged actions of the two informed AI speculators. Compared to our
baseline setting with state variables st = {pt−1, vt}, we also examine the settings with alternative
specifications of state variables. First, we consider a counterfactual setting with state variables
st = {xi,t−1, x−i,t−1, vt}. This setting essentially assumes that informed AI speculators’ can
perfectly observe peers’ order flows, which is close to the perfect-information setting of Calvano
et al. (2020) except for including vt as an additional state variable. Second, we consider the
setting where state variables are st = {pt−1, xi,t−1, vt}. We find that under the perfect information
benchmark (i.e., σu/σv = 0) with two informed AI speculators, these two alternative settings
have almost the same average ∆C. This is not surprising because under the perfect information
benchmark, recording xi,t−1 and pt−1 allows each informed AI speculator to exactly back out its
peer’s order flow x−i,t−1. However, with information asymmetry (i.e., σu/σv > 0), the first setting
with st = {xi,t−1, x−i,t−1, vt} yields a considerably higher average ∆C than the other setting with
st = {pt−1, xi,t−1, vt}. In addition, we find that the average ∆C in these two alternative settings
is higher than that in our baseline setting. Thus, incorporating informed AI speculators’ lagged
actions as additional state variables indeed helps informed AI speculators to learn collusive
strategies, likely through an improved learning of punishment strategies. However, lagged actions
are not a necessary ingredient because in both our model with rational-expectation informed
speculators and simulation experiments with informed AI speculators, including lagged price
pt−1 alone can already result in a significant degree of collusion.

5.2 Artificial Stupidity: Collusion through Homogenized Learning Biases

In this subsection, we study informed AI speculators’ learned optimal strategies when the
environment has low price efficiency but large noise trading risks (i.e., σu/σv = 102). Similar to
Section 5.1, the other parameters are set according to the baseline economic environment.

According to our model in Section 3, it is impossible for informed speculators to collude with
each other in environments with large noise trading risks. However, in our simulation experiments,
informed AI speculators can still achieve supra-competitive profits. Across N = 1, 000 simulation
sessions, the average value of ∆C is about 0.6 and the average profit of informed AI speculators
is about 7.5% higher than the profit in the noncollusive equilibrium. The profit becomes even
higher as noise trading risks further increase. Below, we examine the mechanism that leads to
such supra-competitive profits. We show that in line with our model’s prediction, informed AI
speculators do not learn price-trigger strategies to sustain collusion. Instead, they are able to
collude to achieve supra-competitive profits due to homogenized learning biases.

To begin with, we study the impulse responses to a unilateral deviation in Figure 6. Clearly,
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Note: The experiment is similar to those described for Figure 3, except for setting σu/σv = 102. The left three panels
consider a unilateral small deviation with deviation size ∆xi,t equal to one grid point in the order space X. The right
three panels consider a unilateral large deviation with ∆xi,t equal to three grid points in X.

Figure 6: IRF after a unilateral deviation (σu/σv = 102).

regardless of whether it is a small deviation (panels A to C) or a large deviation (panels D to
F), we do not see any punishment from the nondeviating speculator. Instead, panels A and D
of Figure 6 show that the nondeviating speculator’s order flow is virtually unchanged and the
deviating speculator returns to its learned optimal trading strategy immediately in period t = 4,
which is just one period after the deviation. Panels B and E of Figure 6 show that the deviating
speculator obtains an extra amount of one-period profit in period t = 3, which causes a one-period
profit loss for the nondeviating speculator. Because there is no punishment for t ≥ 4, the average
percentage gains from the deviation in terms of discounted profits is strictly positive for the
deviating speculator.
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5.2.1 Self-Confirming Equilibrium

The collusive outcomes achieved by the two informed AI speculators are clearly not generated
by price-trigger strategies when σu/σv is large, which is consistent with the prediction of our
model (Proposition 3.4). In fact, the collusive outcomes are achieved through homogenized
learning biases of informed AI speculators when noise trading risks are large. Although deviation
seems to be profitable in terms of increasing the discounted profits, both informed AI speculators
choose not to do this according to their learned optimal trading strategies after their Q-learning
algorithms converge. The reason is that informed AI speculators’ actions are governed by their
learned Q-matrix, which indicates that the (no-deviation) strategies they are playing are optimal
and any deviations cannot be profitable.

The steady-state behavior of informed AI speculators represents a self-confirming equilibrium,
a notion first introduced by Fudenberg and Levine (1993). Compared with the Nash equilibrium,
the self-confirming equilibrium is weaker because it allows players to have incorrect (or biased)
off-equilibrium beliefs. This equilibrium concept is motivated by the idea that noncooperative
equilibria should be interpreted as outcomes of a learning process, in which players form beliefs
based on their past experience. While beliefs can be generally correct along the equilibrium path
of play because it is frequently observed, beliefs are not necessarily correct off the equilibrium
path unless players engage in a sufficient amount of experimentation with non-optimal actions
(e.g., Fudenberg and Kreps, 1988, 1995; Cho and Sargent, 2008). Importantly, the incorrect off-
equilibrium beliefs are not inconsistent with the evidence (i.e., outcomes along the equilibrium
path). As noted by Fudenberg and Levine (1993), any self-confirming equilibrium can be a steady
state, especially, including those equilibria with outcomes that cannot arise in Nash equilibrium.
The self-confirming equilibrium allows completely arbitrary beliefs and supposes that players do
not think strategically like what they do in a rational expectations framework. Instead, players
choose actions based on what they have learned from their past experience.

In our simulations, informed AI speculators’ beliefs are summarized by their Q-matrices.
Specifically, the value of each state-action pair (s, x) in the Q-matrix represents the “perceived”
reward that the informed AI speculator can obtain by playing the action x ∈ X in the state
s ∈ S.15 In Appendix G.1, we show that the hyperparameter α, which determines the informed
AI speculator’s forgetting rate or memory capacity, plays a crucial role in determining the
magnitude of learning biases. Unbiased learning about the Q-matrix requires two conditions to
hold simultaneously: 1) the informed AI speculators have sufficiently experimented all possible off-
equilibrium plays before Q-learning algorithms converge, and 2) informed AI speculators’ memory
capacity is infinitely large, i.e., α → 0. As long as α > 0, the Q-matrix is learned with biases
due to the failure of the law of large numbers. Moreover, learning biases are larger when noise
trading risks are higher (i.e., higher σu/σv) or the forgetting rate α is higher. Intuitively, informed
AI speculators average past data to approximate the moments of the conditional probability

15As we show in Appendix G.1, when ρ = 0, the value of each state-action pair (s, x) in the Q-matrix is equal to the
sum of the discounted value of the profits (v − p)x received by the informed AI speculator when it played x in state s
in the past, with the discount rate being 1 − α.
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distribution of interest. When the environment’s has higher noise trading risks or the forgetting
rate α is higher, informed AI speculators lack sufficient memory capacity to store and analyze past
data, and thus it becomes more difficult to approximate the moments of interest (i.e., the Q-matrix).
The magnitude of learning biases in turn will determine which self-confirming equilibrium would
emerge after Q-learning algorithms converge.

5.2.2 Biased Learning Leads to Self-Confirming Equilibrium with Supra-Competitive Profits

Having discussed that the steady state reached by informed AI speculators represents a self-
confirming equilibrium, we now further explain why informed AI speculators’ biased learning
leads to collusive rather than competitive outcomes.

The underlying logic involves the following four key steps. First, collusive outcomes are
achieved when informed AI speculators adopt more conservative, rather than more aggressive
trading strategies. Specifically, according to our model in Section 3, the sensitivities of informed
speculators’ order flow to the asset’s value vt in different equilibria satisfy χM ≤ χC < χN .
Because informed speculator i’s order xi,t is xi,t = χ(vt − v), its absolute value of order flow
satisfies |xM

i,t | ≤ |xC
i,t| < |xN

i,t| for any vt, indicating that collusion means that informed speculators
adopt more conservative (i.e., trading with smaller absolute value of order flow |xi,t|), rather than
more aggressive trading strategies.

Second, compared with more conservative trading strategies, when informed AI speculators
adopt more aggressive trading strategies, the unconditional variance of per-period profits is larger,
namely, the distribution of per-period profits is more dispersed. Specifically, in Appendix G.2,
we show that, for any state s, there exists complementarity between an informed AI speculator’s
order flow x and the noise order flow ut in determining per-period profits. This complementarity
implies that more aggressive trading strategies would amplify the impact of the noise order flow
ut, generating a more dispersed distribution of per-period profits compared to that generated by
more conservative trading strategies.

Third, if playing action x in state s generates a more dispersed distribution of per-period
profits, the resulting estimated Q value, Q̂t(s, x), for the state-action pair (s, x) also has a more
dispersed distribution over time. This is because at any point in time t, the estimated Q̂t(s, x) is
the sum of the discounted value of per-period profits that the informed AI speculator receives
when it visits the state-action pair (s, x) in the past.

Fourth, a necessary condition for all Q-learning algorithms to reach stationary optimal strate-
gies is that exploration rate is virtually zero, and informed AI speculators are purely in the
exploitation mode. However, because of exploitation, for any state s, the action x that generates
a more dispersed distribution of Q̂t(s, x) over time is less likely to be adopted by informed AI
speculators after their Q-learning algorithms converge. Specifically, relative to playing conser-
vative actions, playing an aggressive action (denoted by x∗), generates a dispersed distribution
of Q̂t(s, x∗) over time. This means that an aggressive action x∗ is likely to generate both a high
Q̂t(s, x∗) and a low Q̂t(s, x∗). In one case, suppose a sequence of unfavorable noise order flows
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were realized when the informed AI speculator was playing x∗ in state s, so that a low Q̂t(s, x∗)
is estimated for x∗. Then, x∗ will not be played when the informed AI speculator conducts
exploitation in state s in the future, because this action obviously does not maximize its Q value.
In the other case, suppose a sequence of favorable noise order flows were realized when the
informed AI speculator was playing x∗ in state s, so that a high Q̂t(s, x∗) is estimated for x∗. Then,
x∗ will be further “exploited” in future periods. Because x∗ generates a more dispersed Q̂t(s, x∗),
it is highly likely that, eventually, the estimated Q̂t(s, x∗) will be small. From this point on, like
the first case, the informed AI speculator will not play x∗ when conducting future exploitation in
state s. Thus, in the process of reaching convergence, the informed AI speculator’s exploitation
has the tendency to not adopt the trading strategies that can possibly generate large negative
Q values, which are aggressive trading strategies that generate a more dispersed distribution of
per-period profits. In some sense, informed AI speculators exhibit a certain degree of aversion to
risks in the exploitation mode.

Taking the above four steps together, informed AI speculators’ biased learning leads them to
adopt more conservative trading strategies after their Q-learning algorithms converge, resulting
in collusive outcomes.

5.2.3 Homogenized Bias and Implicit Coordination

We have explained how informed AI speculators’ learning biases and exploitation lead to a
self-confirming equilibrium that features collusive outcomes. However, it remains unclear why
informed AI speculators adopt highly similar trading strategies after their Q-learning algorithms
converge. What is the fundamental force that generates this sort of implicit coordination? We
find that the key reason is that informed AI speculators rely on the same foundational model in
their learning process. This generates homogenized learning biases, eventually leading to implicit
coordination.

To elaborate, first consider the economic environment represented by the trough point of the
blue solid line in panel A of Figure 7, i.e., log(σu/σv) = 2. This represents an environment with
high price inefficiency but relatively low noise trading risks in the sense that learning biases are
small for informed AI speculators. However, noise trading risks are large enough to rule out the
existence of a collusive equilibrium sustained by price-trigger strategies. Because learning biases
are small in this environment, informed AI speculators are able to learn to play a noncollusive
Nash equilibrium after their Q-learning algorithms converge, resulting in an average ∆C ≈ 0.
Implicit coordination in this environment is achieved because both informed AI speculators adopt
similar noncollusive trading strategies in the Nash equilibrium.

Next, suppose that noise trading risks in the economic environment become higher, all else
equal, both informed AI speculators become more biased in their learning processes. This leads
both of them to optimally choose more conservative trading strategies after their Q-learning
algorithms converge. Because both informed AI speculators adopt the same Q-learning algorithm
with the same forgetting rate α, the magnitudes of their learning biases are similar. Thus, they

47



also become more conservative at a similar pace, resulting in similar optimal trading strategies
after their Q-learning algorithms converge, as if they are implicitly coordinating with each other.
The homogenized bias in informed AI speculators’ Q-learning algorithms allows them to attain
similar levels of supra-competitive profits. The extent to which informed AI speculators are biased
homogeneously determines the implicitly coordinated level of profits. Importantly, as noted above,
the two informed AI speculators reach a self-confirming equilibrium in which no one will deviate,
because their biased beliefs, as recorded in their learned Q-matrices, suggest that any deviation
cannot be profitable.

By contrast, if the two informed AI speculators’ learning processes are not governed by the
same foundational model, the learning biases will not be homogeneized. As a result, the two
informed AI speculators may not be able to simultaneously attain supra-competitive profits. As
an illustrative example, in panel B of Figure 15, we consider an experiment in which one informed
AI speculator adopts a more advanced algorithm than the other, as captured by a lower forgetting
rate α. We find that the more advanced informed AI speculator is able to attain much higher
profits than in the experiment with two informed AI speculators adopting the same α. However,
the average profit of the less advanced informed AI speculator is much lower and similar to
the profit in the noncollusive Nash equilibrium. In about half of the 1, 000 simulation sessions,
the profits of the less advanced informed AI speculator are even lower than the profit in the
noncollusive Nash equilibrium. This experiment highlights the importance of homogenized bias
in generating implicit coordination and supra-competitive profits for all informed AI speculators.
Further, in Section 7.2, we extend the Q-learning algorithm to a two-tier Q-learning algorithm
in which informed AI speculators learn both the optimal choice of the forgetting rate α and the
optimal trading strategies corresponding to the choice of α. Interestingly, we find that informed
AI speculators will learn to coordinately adopt high values of α in the stationary equilibrium, and
such coordination allows both of them to obtain supra-competitive profits through homogenized
learning baises.

5.2.4 Determinants of the Magnitude of Learning Biases

The extent to which learning is biased determines which self-confirming equilibrium would
emerge after Q-learning algorithms converge, which consequently determines the average profits
of informed AI speculators. Specifically, the above mechanism is stronger when informed AI
speculators’ Q-matrices are estimated with larger biases. Thus, the extent to which informed AI
speculators collude to attain supra-competitive outcomes increases with the magnitude of learning
biases. We now discuss the determinants of the magnitude of learning biases.

As noted in Section 5.2.1, learning biases are larger in environments with higher noise trading
risks (i.e., higher σu/σv) or when informed AI speculators have a higher forgetting rate α. In
equation (G.6) in Appendix G.1, we formally show that the magnitude of learning biases increases
when σu/σv is higher, λ is higher, ρ is lower, or α is higher. These properties behind Q-learning
algorithms predict that informed AI speculators can attain higher supra-competitive profits due
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to biased learning when σu/σv is higher, λ is higher, ρ is lower, or α is higher. Consistent these
predictions, first, we show that the average ∆C across N = 1, 000 simulation sessions increases
with σu/σv in the region with high noise trading risks (i.e., log(σu/σv) ≥ 2) in panel A of Figure
7. Second, we show that in the environment with high noise trading risks (e.g., log(σu/σv) = 2),
reducing ξ from 500 to 1 (which results in a larger λ and higher price efficiency) leads to a higher
average ∆C in panel B of Figure 7. Third, we show that in the environment with high noise trading
risks, reducing the value of ρ leads to a higher average ∆C in Figure 13. Finally, we show that in
the environment with high noise trading risks, a higher α would result in a higher average ∆C in
panel B of Figure 14.

5.3 Role of Noise Trading Risks and Price Efficiency

In this subsection, we study the role of noise trading risk and price efficiency in generating
collusive outcomes for informed AI speculators.

5.3.1 Role of Noise Trading Risks

Consider the baseline economic environment described in Section 4.7. In panel A of Figure 7,
we plot the average ∆C as log(σu/σv) varies from −5 to 5 along the x-axis. The black dotted and
red dash-dotted lines represent the theoretical benchmarks (∆M = 1 and ∆N = 0) in the perfect
cartel and noncollusive Nash equilibrium, respectively. The blue solid line plots the average ∆C

across N = 1, 000 simulation sessions, holding all other parameters unchanged. It shows that
as log(σu/σv) increases along the x-axis, the average ∆C first decreases and then increases. This
U-shape pattern is an outcome of the interaction of the two mechanisms discussed in Sections 5.1
and 5.2. Specifically, in the region of low noise trading risks, i.e., log(σu/σv) < 2, the average ∆C

is decreasing in log(σu/σv). In this region, informed AI speculators learn price-trigger strategies
to sustain collusion and attain supra-competitive profits, as discussed in Section 5.1. The negative
relationship between the average ∆C and log(σu/σv) observed in our simulation experiments is
consistent with the prediction of our model (see Proposition 3.6.(ii)).

In the region of large noise trading risks, i.e., log(σu/σv) ≥ 2, the average ∆C is increasing
in log(σu/σv). In this region, informed AI speculators attain supra-competitive profits because
of homogenized learning biases, as discussed in Section 5.2. The positive relationship between
the average ∆C and log(σu/σv) observed in our simulation experiments is consistent with the
theoretical property that biased learning becomes more significant when log(σu/σv) increases (see
Section 5.2.4).

5.3.2 Role of Price Efficiency

According to our model in Section 3, the market maker focuses more on minimizing pricing errors
when ξ is small or θ is large. In this case, price efficiency is high and there does not exists collusive
Nash equilibrium sustained by price-trigger strategies for any σu/σv > 0 (Proposition 3.3). By
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Figure 7: ∆C and πC/πN for log(σu/σv) ∈ [−5, 5] and ξ = 500, 100, 30, 1.

contrast, when ξ is large or θ is small, the market maker focuses more on minimizing inventory
costs. In this case, price efficiency is low and there exists a collusive Nash equilibrium that can be
sustained by price-trigger strategies for small σu/σv and I (Proposition 3.4).

By varying the value of ξ in our simulation experiments, we study how price efficiency affects
informed AI speculators’ trading profits.16 Specifically, the four curves in panel B of Figure 7
represent the experiments with ξ = 500, 100, 30 and 1. The overall U-shaped relationship between
the average ∆C and log(σu/σv) is not peculiar to the choice of ξ. All four curves display U-shape
patterns. Panel C of Figure 7 plots the profit gain relative to noncollusion (πC/πN), the pattern is
similar to that in panel A.

As we compare the four curves in panel B of Figure 7, one salient feature is that the trough
of the U-shape shifts to the left as ξ decreases. This suggests that with a smaller ξ, a lower level
of noise trading risks is necessary for informed AI speculators to learn price-trigger strategies
to collude. A similar point can be made if we focus on the region with low noise trading risks,
in which price-trigger strategies are learned by informed AI speculators. For example, holding
ln(σu/σv) = −4 unchanged, it is clear that the average ∆C declines monotonically as ξ decreases
from 500 to 1. Thus, collusion becomes more difficult to achieve through price-trigger strategies
as ξ decreases, as predicted by our model (see Proposition 3.6.(iv)). By contrast, the relationship
between ξ and average ∆C is opposite if we focus on the region with large noise trading risks, in
which informed AI speculators’ trading strategies are dominantly affected by learning biases. For
example, holding ln(σu/σv) = 2 unchanged, it is clear that the average ∆C increases monotonically
as ξ decreases from 500 to 1. This is consistent with the theoretical property of biased learning
discussed in Section 5.2.4, that is, the magnitude of learning biases increases with λ (i.e., decreases
with ξ). Thus, a lower ξ leads to larger learning biases, allowing informed AI speculators to

16We do not conduct experiments with different θ because a smaller θ has similar impacts as a larger ξ on price
efficiency.
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achieve higher supra-competitive profits.

5.4 Trading Strategy of Informed AI Speculators

In this subsection, we illustrate informed AI speculators’ trading strategies in the baseline economic
environment described in Section 4.7.

In panel A of Figure 8, we plot the average sensitivity of informed AI speculators’ order to
the asset’s value, χ̂C, across N = 1, 000 simulation sessions as a function of the noise trading risk
log(σu/σv). Consistent with panel A of Figure 7, χ̂C displays an inverted U-shape as log(σu/σv)

increases along the x-axis. By contrast, the theoretical benchmarks χN and χM stay roughly
unchanged as log(σu/σv) increases.

In fact, the estimated χ̂C almost sufficiently describes informed AI speculators’ trading strategy
because their orders are almost linear in the assets’s value, a property that holds both in the model
and the simulation experiments. As an illustration, in panels B and C of Figure 8, we present
the average trading strategy of informed AI speculators across N = 1, 000 simulation sessions.
Panel B is for the environment with low noise trading risks (σu/σv = 10−1) and panel C is for the
environment with high noise trading risks (σu/σv = 102). The trading strategy in each simulation
session is calculated as x(vk) = 1

Inp
∑I

i=1 ∑
np
m=1 xi(pm, vk), which is the average order flow of I

informed AI speculators across all grid points of P, after Q-learning algorithms converge. The
dots on the blue solid lines represent the average order flow corresponding to the discrete grid
points of V. The black dotted and red dash-dotted lines represent the theoretical benchmarks,
χM(vk − v) and χN(vk − v), in the perfect cartel equilibrium and noncollusive Nash equilibrium,
respectively.

It is clear that informed AI speculators learn an optimal trading strategy that is roughly linear
in the asset’s value after their Q-learning algorithms converge, even though the linearity restriction
is not imposed during the learning process. Moreover, the slope of a linear fit for the trading
strategy of informed AI speculators, i.e., χ̂C, lies between χM and χN in both panels B and C of
Figure 8. Thus, the trading strategy learned by informed AI speculators is more conservatively
than that in the noncollusive Nash equilibrium, which explains why informed AI speculators are
able to attain supra-competitive profits.

5.5 Price Informativeness, Market Liquidity, and Mispricing

In this subsection, we study the impacts of AI collusion for price informativeness, market
liquidity, and mispricing in financial markets. We show that AI collusion leads to lower price
informativeness, lower market liquidity, and higher mispricing. The magnitude of such effects
depends on the extent to which informed AI speculators collude with each other, which is largely
determined by the noise trading risk σu/σv.

Panel A of Figure 9 plots the market’s price informativeness relative to the theoretical bench-
mark of the perfect cartel equilibrium. By definition, the black dotted line shows that the relative
price informativeness in the perfect cartel equilibrium is IM/IM ≡ 1. The red dash-dotted line
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of I informed AI speculators across all grid points of P, after Q-learning algorithms converge. The dots on the blue
solid lines represent the average order flow corresponding to the discrete grid points of V. Panels A and B focus on the
environments with low (σu/σv = 10−1) and high (σu/σv = 102) noise trading risks, respectively. The other parameters
are set according to the baseline economic environment described in Section 4.7.

Figure 8: The trading strategy of informed AI speculators.

shows that the ratio of price informativeness in the theoretical benchmark of the noncollusive
Nash equilibrium and perfect cartel equilibrium, IN/IM, is greater than 1 and increasing in
log(σu/σv).17 The blue solid line plots the average relative price informativeness, IC/IM, across
N = 1, 000 simulation sessions with informed AI speculators. Its value is close to the relative price
informativeness in the theoretical benchmark of the non-collusive equilibrium when log(σu/σv) is
around 2 due to the lack of collusion. When log(σu/σv) is very small or very large, the relative
price informativeness in our simulation experiments with informed AI speculators is significantly
lower than that in the theoretical benchmark of the noncollusive Nash equilibrium. The reason
is that informed AI speculators place orders in a more conservative manner, with χ̂C < χN , as
shown in panel A of Figure 8.

Our findings suggest that perfect price informativeness is not achievable in the presence of
informed AI speculators. In our simulation environments, when the noise trading risk σu/σv

decreases, informed AI speculators would withhold their private information about the asset’s
value and collude more through price-trigger strategies, placing orders more conservatively than
what they would do in the noncollusive Nash equilibrium. This AI collusion reduces price
informativeness. Crucially, informed AI speculators never need to communicate with each other,
whether explicitly or implicitly, the adoption of Q-learning algorithms automatically leads to such
collusive behavior.

Panel B of Figure 9 plots the market liquidity relative to the theoretical benchmark of the
perfect cartel equilibrium. The red dash-dotted line shows that the ratio of market liquidity in

17This is because χ̂N > χ̂M for all log(σu/σv). Moreover, when ξ = 500, χ̂N and χ̂M are roughly unchanged (only
slightly increase) as log(σu/σv) increases. Then, according to the equation (4.10), both IN and IM are decreasing in
log(σu/σv), but the ratio IN/IM is increasing in log(σu/σv).
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Note: This figure plots the average values of different metrics across N = 1, 000 simulation sessions as log(σu/σv)
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Figure 9: Price informativeness, market liquidity, and mispricing for log(σu/σv) ∈ [−5, 5].

the theoretical benchmark of the noncollusive Nash equilibrium and perfect cartel equilibrium,
LN/LM is greater than 1 and decreasing in log(σu/σv).18 The blue solid line shows that the
market liquidity in our simulation experiments with informed AI speculators is higher than that in
the theoretical benchmark of the perfect cartel equilibrium and lower than that of the noncollusive
equilibrium. The blue solid line displays an U shape similar to panel A of Figure 8, indicating
that the market liquidity is closer to the theoretical benchmark of the perfect cartel equilibrium if
there is more AI collusion.

Panel C of Figure 9 plots the magnitude of mispricing in financial markets. Mispricing is
higher in the theoretical benchmark of the perfect cartel equilibrium (the black dotted line) than
in the noncollusive equilibrium (the red dash-dotted line). The blue solid line shows that AI
collusion increases mispricing, and the magnitude is larger when there is a higher degree of
collusion among informed AI speculators.

6 Further Inspection of Model Ingredients

In this section, we further inspect several key parameters in our simulation experiments. In
Subsection 6.1, we study how the number of informed AI speculators affects their trading
strategies. In Subsection 6.2, we study the implication of informed AI speculators’ subjective
discount rates. Finally, in Subsection 6.3, we study the impacts of hyperparameters α and β on
informed AI speculators’ learning outcomes.

18This is because λN < λM for all log(σu/σv). Intuitively, in the perfect cartel equilibrium, the market maker knows
that informed speculators submit orders jointly like a monopoly, and thus the market maker adopts a pricing rule
that is more responsive to the combined order flow of informed speculators and the noise trader, i.e., γN < γM. As
log(σu/σv) increases, both λN and λM decline, so that market liquidity defined by equation (4.11) increases.
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Note: The blue solid line plots the average values of ∆C, IC/IM, LC/LM, and EC across N = 1, 000 simulation
sessions as the number of informed AI speculators I varies, in the environment with low noise trading risks, i.e.,
σu/σv = 10−1. The red dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive
Nash equilibrium and perfect cartel equilibrium, respectively. The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 10: Implications of the number of informed AI speculators (σu/σv = 10−1).

6.1 Number of Informed AI Speculators I

Our model in Section 3 predicts that in the environment with low price efficiency (i.e., ξ is large
or θ is small) and low noise trading risks (i.e., small σu/σv), informed speculators are less able to
collude through price-trigger strategies when the number of informed speculators increases (see
Proposition 3.6.(i)). In the simulation experiments with informed AI speculators, we find similar
patterns. Specifically, consider the baseline economic environment described in Section 4.7. In
Figure 10, we conduct simulation experiments in the environment with low noise trading risks
(σu/σv = 10−1). Panel A shows that as the number of informed AI speculators I increases from
2 to 4, the average ∆C decreases from 0.74 to 0.56, indicating a decline in the extent of collusion
among informed AI speculators. Moreover, panels B to D show that as I increases, the relative
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Figure 11: Implications of the number of informed AI speculators (σu/σv = 102).

price informativeness IC/IM and market liquidity LC/LM increase whereas the magnitude of
mispricing EC decreases.

For comparisons, in Figure 11, we conduct simulation experiments in the environment with
high noise trading risks (σu/σv = 102). In these experiments, informed AI speculators collude
through homogenized learning biases, as discussed in Subsection 5.2. The implications of I for
informed AI speculators’ strategies are similar to the experiments with low noise trading risks.
Specifically, panel A shows that as I increases from 2 to 4, the average ∆C decreases from 0.62 to
0.39. These results suggest that the coordination through homogenized learning biases becomes
more difficult to achieve when there are more informed AI speculators in the market. Intuitively,
the equilibrium degree of collusion is determined by the interaction of two counterveiling forces.
One is the magnitude of learning biases, which is the mechanism that generates collusion. The

55



other is the deviation gain from the self-confirming collusive equilibrium. A larger deviation gain
makes it more difficult for informed AI speculators to reach the collusive equilibrium because
in the process of exploration (which, in essence, generates deviation behavior), these speculators
will more likely learn to play noncollusive actions despite the existence of learning biases. As the
number of informed AI speculators I increases, the deviation gain from the equilibrium trading
strategies becomes larger, but the magnitude of learning biases remain unchanged.19 Therefore,
as I increases, collusion becomes more difficult and ∆C declines.

Panels B to D show that as I increases, the relative price informativeness IC/IM and market
liquidity LC/LM increase whereas the magnitude of mispricing EC decreases.

6.2 Subjective Discount Rate ρ

Our model in Section 3 predicts that in the environment with low price efficiency (i.e., ξ is large
or θ is small) and low noise trading risks (i.e., small σu/σv), informed speculators are able to
collude on higher profits through price-trigger strategies as the subjective discount rate ρ increases
(see Proposition 3.6.(iii)). In the simulation experiments with informed AI speculators, we find
similar patterns. Specifically, consider the baseline economic environment described in Section
4.7. In Figure 12, we conduct simulation experiments in the environment with low noise trading
risks (σu/σv = 10−1). Panel A shows that as ρ increases from 0.5 to 0.95, the average ∆C increases
from 0.29 to 0.74, indicating an increase in the extent of collusion among informed AI speculators.
Moreover, panels B to D show that as ρ increases, the relative price informativeness IC/IM and
market liquidity LC/LM decline whereas the magnitude of mispricing EC increases.

Turning to the environment with high noise trading risks, the theoretical properties discussed
in Section 5.2.4 indicate that as the subjective discount rate ρ increases, the magnitude of learning
biases declines, and as a result, informed AI speculators would find it more difficult to collude.
The patterns observed in our simulation experiments are consistent with this prediction. In
particular, in Figure 13, we conduct simulation experiments in the environment with high noise
trading risks (σu/σv = 102). Panel A shows that as ρ increases from 0.5 to 0.95, the average
∆C decreases from 0.76 to 0.62. Moreover, panels B to D show that as ρ increases, the relative
price informativeness IC/IM and market liquidity LC/LM increase whereas the magnitude of
mispricing EC declines.

6.3 Hyperparameters α and β

In this subsection, we study how the hyperparameters α and β affect informed AI speculators’
profits in equilibrium. Similar to the baseline economic environment, we consider informed AI
speculators adopting the same values of α and β. In panel A of Figure 14, we plot the average ∆C

in the environment with low noise trading risks (σu/σv = 10−1) for different values of α and β.

19When I increases, individual informed AI speculators trading flows xi decrease. However, in equation (G.6), the
trading flow xi proportionally affects every term. Thus, the decrease in xi does not affect the importance of the term
αλxi ∑T

τ=0(1 − α)τut(T−τ), which causes learning biases, relative to other terms in equation (G.6). This is why the
magnitude of learning biases does not depend on I.
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Note: The blue solid line plots the average values of ∆C, IC/IM, LC/LM, and EC across N = 1, 000 simulation sessions
as the subjective discount rate ρ varies, in the environment with low noise trading risks, i.e., σu/σv = 10−1. The red
dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive Nash equilibrium and
perfect cartel equilibrium, respectively. The other parameters are set according to the baseline economic environment
described in Section 4.7.

Figure 12: Implications of the subjective discount rate (σu/σv = 10−1).

As discussed in Subsection 5.1, informed AI speculators need to conduct sufficient explorations
to learn punishment strategies, which is achieved by setting a sufficiently low β. Indeed, when
β = 10−6, the red bars in panel A of Figure 14 show that informed AI speculators can easily
achieve a very high value of ∆C = 0.90 (corresponding to α = 0.001) whereas when β = 10−3,
the yellow bars show that informed AI speculators can only achieve a low value of ∆C = 0.40
(corresponding to α = 0.1).

Panel A of Figure 14 further shows that, to achieve the best collusive outcomes, the values of α

and β have to be jointly determined. That is, the choice of a smaller β needs to be matched with a
smaller α, and conversely, the choice of a larger β needs to be matched with a larger α. Intuitively,
setting a small β ensures that informed AI speculators will spend a long time in the exploration
mode in which they randomly choose different actions, resulting in extensive experimentation.

57



0.5 0.6 0.7 0.8 0.9

0

0.5

1

0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

1.4

0.5 0.6 0.7 0.8 0.9

1

1.5

2

0.5 0.6 0.7 0.8 0.9

25

30

35

40

Note: The blue solid line plots the average values of ∆C, IC/IM, LC/LM, and EC across N = 1, 000 simulation
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Figure 13: Implications of the subjective discount rate (σu/σv = 102).

Then, setting a small α is necessary to record the value learned in the past whereas setting a large
α will disrupt learning as the algorithm would forget what it has learned in the past too rapidly.
By contrast, setting a large β means that informed AI speculators only spend a short period
of time in the exploration mode. Then, if we still set a small α, the Q-matrices of informed AI
speculators would not be updated significantly until the algorithms complete exploration. Thus,
when β is large, setting a small α would backfire, making the initial exploration futile. Instead,
setting a large α in this case would help informed AI speculators to learn punishment strategies
to achieve more collusive outcomes.

In panel B of Figure 14, we plot the average ∆C in the environment with high noise trading
risks (σu/σv = 102) for different values of α and β. Holding β unchanged at each value of {10−6,
10−5, 10−4, 10−3}, panel B shows that the value of ∆C declines monotonically as α decreases. This
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Note: Panel A plots ∆C in the environment with low noise trading risks (σu/σv = 10−1); panel B plots ∆C in the
environment with high noise trading risks (σu/σv = 102). The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 14: Implications of hyperparameters α and β on ∆C.

is because when noise trading risks are large, the supra-competitive profits are attained because
informed AI speculators have homogenized learning biases. As discussed in Section 5.2.4, the
learning biases due to the failure of the law of large numbers are mitigated when α becomes small.

Taken together, a key feature that distinguishes collusion through price-trigger strategies
(panel A of Figure 14) and collusion through homogenized learning biases (panel B of Figure 14)
is whether improved learning through setting a sufficiently small α would significantly reduce the
supra-competitive profits of informed AI speculators.

7 Coordinated Choice of Q-Learning Algorithms

As shown in panel B of Figure 14, setting a lower forgetting rate α reduces the magnitude of
learning biases but it takes longer time and more computation power to train the algorithm. Thus,
we can think of α as capturing the “intelligence level” of the algorithm: the algorithm is more
advanced if it has a lower α.

In this section, we focus on the environment with high noise trading risks and allow informed
AI speculators to choose different values of the hyperparameter α for their Q-learning algorithms.
We evaluate the implications for trading profits. Specifically, in Subsection 7.1, we show that the
more advanced algorithm will make more profit than the less advanced algorithm. Moreover,
given the peer’s choice of α, by setting a lower α, the informed AI speculator can increase its
own profit. However, importantly, both informed AI speculators can obtain supra-competitive
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profits if they both adopt less advanced algorithms with similar learning biases. In Subsection
7.2, we extend the Q-learning algorithm to a two-tier Q-learning algorithm in which informed
AI speculators learn both the optimal choice of the forgetting rate α and the optimal trading
strategies associated with the choice of α. We show that informed AI speculators will learn to
adopt high values of α in the stationary equilibrium, and such coordination allows both of them
to obtain supra-competitive profits.

7.1 Homogenized Learning Biases

Focusing on the baseline economic environment with two informed AI speculators, as described
in Section 4.7 except for setting σu/σv = 102, representing an environment with high noise trading
risks. We allow the two informed AI speculators to adopt different values of α, but the same value
of β. Intuitively, the informed AI speculator adopting a more advanced Q-learning algorithm (i.e.,
a lower α) would have smaller learning biases than the one adopting a less advanced algorithm
(i.e., a higher α). As discussed in Subsection 5.2.4, learning biases induce informed AI speculators
to adopt more conservative trading strategies, i.e., smaller order flows. Therefore, the informed AI
speculator with a less advanced algorithm would adopt a more conservative trading strategy than
the one with a more advanced algorithm. This essentially enables the informed AI speculator with
a more advanced algorithm to take advantage of the other informed AI speculator and obtain
more profits than what it would obtain when the other speculator adopts an algorithm with the
same α. Conversely, the informed AI speculator with a less advanced algorithm would obtain less
profits than what it would obtain when the other speculator adopts an algorithm with the same α.

The results of our simulation experiments are consistent with the above intuition. In Figure
15, we allow each informed AI speculator i to adopt algorithms with different values of αi,
with αi = 0.001, 0.01, 0.05 and 0.1 for i = 1, 2. Panels A and B plot the average ∆C

1 and ∆C
2 for

informed AI speculators 1 and 2, respectively. It is shown that for any combination of (α1, α2), the
informed AI speculator with a lower αi attains a higher average ∆C

i than the other informed AI
speculator. Moreover, holding α1 unchanged at each value of {0.001, 0.01, 0.05, 0.1}, as informed
AI speculator 2’s α2 decreases, the average ∆C

1 for informed AI speculator 1 decreases and the
average ∆C

2 for informed AI speculator 2 increases. Similarly, holding α2 unchanged at each value
of {0.001, 0.01, 0.05, 0.1}, as informed AI speculator 1’s α1 decreases, the average ∆C

2 for informed
AI speculator 2 decreases and the average ∆C

1 for informed AI speculator 1 increases.
Our results indicate that both informed AI speculators can obtain supra-competitive profits if

both of them adopt less advanced algorithms with a high value of α. Holding one informed AI
speculator’s algorithm unchanged, the other speculator could increase its profit by adopting a
more advanced algorithm with a lower value of α, and at the same time, the profit of the speculator
with a less advanced algorithm would decrease. However, if both informed AI speculators adopt
advanced algorithms with a small value of α, the profit for both of them will decrease relative to
the equilibrium where both speculators adopt unadvanced algorithms. The results we observe bear
similarity to the general equilibrium effects in active management, as characterized by Stambaugh
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Note: We allow the two informed AI speculators to adopt Q-learning algorithms with different values of the forgetting
rate, denoted by α1 and α2 for informed AI speculators 1 and 2, respectively. Panels A and B plot ∆C

1 and ∆C
2 in the

environment with high noise trading risks (σu/σv = 102). The other parameters are set according to the baseline
economic environment described in Section 4.7.

Figure 15: Profit gain when informed AI speculators adopt algorithms with different values of α.

(2020). According to his model, if all managers lack the ability to select positive-alpha stocks,
they can collectively achieve high profits. When a small fraction of managers gains more skill,
it results in increased profits for the skilled ones, while the less skilled managers see a decline
in their profits. However, if a large proportion of managers becomes more skilled, the profits
for all managers start to diminish. This decline is due to a shrinking alpha magnitude, caused
by more substantial price corrections in general equilibrium. Interestingly, the total profit of the
active management industry typically decreases whenever any of the managers become more
skilled. In a recent work, Dugast and Foucault (2024) derive a similar result by showing that
improvements in the skills of active asset managers, due to lower information processing costs or
the proliferation of new datasets, can reduce their average performance as asset prices become
more informative.

7.2 Adaptive Forgetting Rates

In practice, the forgetting rate α is not necessarily fixed throughout the simulation experiments.
Instead, many Q-learning algorithms are implemented with adaptive forgetting rates, which are
adjusted dynamically in response to the performance of the model. In this subsection, we show
that informed AI speculators can learn to coordinately choose high values of α in environments
with high noise trading risks, despite the fact that choosing a low forgetting rate unilaterally may
boost self-profit. This result implies that an equilibrium with unadvanced algorithms (i.e., high α)
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may arise endogenously due to the optimal decisions of informed AI speculators.

Two-Tier Q-Learning Algorithm. Each informed AI speculator i adopts a two-tier Q-learning
algorithm. In the lower tier, the informed AI speculator adopts a Q-learning algorithm to learn
the lower-tier Q-matrix Q̂i,t(st, xi,t) for state st = {pt−1, vt} and order flow xi,t, given the choice of
αi,t in the upper tier. The lower-tier Q-learning algorithm is identical to the algorithm described
in Section 4.1, except for the use of a time-varying adaptive forgetting rate αi,t. In the upper
tier, the informed AI speculator adopts a Q-learning algorithm to learn the upper-tier Q-matrix
Q̂u

i,t(s
u
i,t, αi,t) for state su

i,t and action αi,t.
For any given choice of αi,t in the upper tier, it is necessary to ensure that the lower tier

Q-learning algorithm is run for a sufficiently long period of time, so that the profits corresponding
to the choice of αi,t fully stablize. This means that compared with the choice of xi,t in the lower tier,
the choice of αi,t in the upper tier has to be experimented at a much lower frequency. Therefore,
we specify that each informed AI speculator i adjusts its upper tier’s action αi,t only after the
lower tier finishes a training epoch that lasts for a total of T periods, with T being a large integer.

Specifically, let τ = 1, 2, ... denote all training epochs of the lower-tier Q-learning algorithm.
The training epoch τ represents the period from (τ − 1)T + 1 to τT. Within each training epoch
τ, each informed AI speculator i’s upper-tier Q-matrix Q̂u

i,t(s
u
i,t, αi,t) or action αi,t stay unchanged

from period (τ − 1)T + 1 to period τT − 1; the values of Q̂u
i,t(s

u
i,t, αi,t) and action αi,t are updated

only at the end of the training epoch, occurring at t = τT. Therefore, without loss of generality,
we only need to specify the recursive learning equation of the upper-tier Q-learning algorithm at
the end of each period, t = τT, as follows:

Q̂u
i,(τ+1)T(s

u
i,τT, αi,τT) = (1 − αu)Q̂u

i,τT(s
u
i,τT, αi,τT) + αu

[
πu

i,τT + ρu max
α′∈A

Q̂u
i,τT(s

u
i,(τ+1)T, α′)

]
, (7.1)

for τ = 1, 2, ... In equation (7.1), πu
i,τ is the reward in the training epoch τ, given by πu

i,τT =
1
T ∑τT

t=(τ−1)T+1(vt − pt)xi,t, which is the average trading profit over the last T periods, from period
(τ − 1)T + 1 to period τT. The parameters αu and ρu are the forgetting rate and the subjective
discount rate for the upper tier Q-learning algorithm. For tractability, we choose the state variable
su

i,τT = {πu
i,(τ−1)T}, which is the reward in the previous training epoch. The choice of αi,τT is

chosen as follows:

αi,τT =

{
argmaxα′∈A Q̂h

i,τT(s
u
i,τT, α′), with prob. 1 − εu

τ, (exploitation)
α̃ ∼ uniform distribution on A, with prob. εu

τ. (exploration)
(7.2)

The exploration rate is specified as ετ = e−βuτ, where βu is a parameter governing the decaying
speed of exploration rates across training epochs.

Simulation Results. The two-tier Q-learning algorithm takes a substantially longer time to
converge because there are experimentations on both αi,t and xi,t. We consider the following
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parameter values: αu = 0.1, βu = 10−4, and ρu = 0.95. Each training epoch has a total of
T = 10, 000, 000 periods. The convergence criterion requires the decisions of αi,t to stay unchanged
for 100, 000 consecutive training epochs. For tractability, we choose three grids for the choice of
αi,t, with A = {0.001, 0.01, 0.1}. The parameters and grids for the lower-tier Q-learning algorithm
are similar to those described in Section 4. In particular, there are two informed AI speculators.
We separately conduct N = 1, 000 independent simulations for the environments with high and
low noise trading risks.

Our primary focus is on the environment with high noise trading risks (i.e., σu/σv = 102). As
shown in panel B of Figure 15, the two informed AI speculators encounter a problem resembling
the prisoner’s dilemma. Specifically, given informed AI speculator i’s choice of αi, informed AI
speculator j can gain by adopting the smallest αj = 0.001. However, both informed AI speculators
would not make much profit if they reach the Nash equilibrium of (α1, α2) = (0.001, 0.001). Instead,
both of them would attain supra-competitive profits by coordinately reaching the equilibrium
with (α1, α2) = (0.01, 0.01) or (α1, α2) = (0.1, 0.1), that is, by adopting unadvanced algorithms to
trade. In theory, these two equilibria with high values of α can only be sustained in a repeated
game. Turning to our simulation experiments with informed AI speculators adopting the two-tier
Q-learning algorithms, we find that across the N = 1, 000 simulations sessions, 272 sessions
converge to the equilibrium with (α1, α2) = (0.1, 0.1), and 710 sessions converge to the equilibrium
with (α1, α2) = (0.01, 0.01). There does not exist a single simulation session that converges to the
equilibrium with (α1, α2) = (0.001, 0.001), even though this is the unique Nash equilibrium in a
one-shot game. Our results indicate that in the environment with high noise trading risks, the
two informed AI speculators are able to learn to adopt less advanced algorithms, which have high
values of α, in the stationary equilibrium. This coordination allows both AI speculators to obtain
supra-competitive profits.

For comparisons, we also conduct simulation experiments in the environment with low noise
trading risks (i.e., σu/σv = 10−1). As shown in panel A of Figure 14, the optimal outcome
is achieved if the two informed AI speculators choose to play the equilibrium with (α1, α2) =

(0.01, 0.01), given that β = 10−5. We find that across the N = 1, 000 simulations sessions, 957
sessions converge to this equilibrium. This suggests that our simple two-tier Q-learning algorithm
enables the two informed AI speculators to learn to play the optimal equilibrium. The algorithm’s
excellent performance is due to the fact that in this environment, informed AI speculators do not
face a prisoner’s dilemma problem. That is, the equilibrium with (α1, α2) = (0.01, 0.01), which
yields the highest trading profits for both informed AI speculators, is also the Nash equilibrium
of a one-shot game. In other words, choosing the forgetting rate αi = 0.01 maximizes informed AI
speculator i’s trading profits regardless of the forgetting rate that the other informed AI speculator
chooses.
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Appendix

A Proof of Lemma 1

The preferred-habitat investor solves the following portfolio optimization problem for a given pt:

max
z

E
[
−e−η(vt−pt)z/η

]
. (A.1)

Because vt − pt is distributed as N(v − pt, σ2
v ), the first-order condition with respect to z is

0 =
[
(v − pt)− ηzσ2

v
]

e−ηz(v−pt)+(ηz)2σ2
v /2. (A.2)

Thus, the optimal holding, z, is characterized as

z = − 1
ησ2

v
(pt − v). (A.3)

B Proof of Proposition 3.3

Given that st = 0, let JC(χi) denote each informed speculator i’s expected present value of future
profits, when investor i chooses xi,t = χi(vt − v) and all other I − 1 informed investors choose
xC(vt) = χC(vt − v). That is,

JC(χi) =E
[(

vt − pC(yt)
)

χi(vt − v)
]

(B.1)

+ ρJC(χi)P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

+ E

[
T−1

∑
τ=1

ρτπN(vt+τ) + ρT JC(χi)

]
P

{
Price trigger is violated in period t

∣∣∣∣χi, χC
}

,

where pC(·) is the pricing function of market makers in the collusive Nash equilibrium and

pC(yt) = v + λCyt, with λC =
θγC + ξ

θ + ξ2 and γC =
IχC

(IχC)2 + (σu/σv)2 , (B.2)

yt = χi(vt − v) + (I − 1)xC(vt) + ut. (B.3)

The probability of price trigger violation is

P

{
Price trigger is not violated in period t

∣∣∣∣χi, χC
}

=E [P (pt ≤ q(vt)|vt) 1{vt > v}] + E [P (pt ≥ q(vt)|vt) 1{vt < v}]

=E
[
Φ(σ−1

u (χC − χi)(vt − v) + ω)1{vt > v}
]
+ E

[
Φ(σ−1

u (χi − χC)(vt − v) + ω)1{vt < v}
]

,
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where Φ(·) is the CDF of the standard normal distribution.
Evaluating equality (B.1) at χi = χC leads to

JC(χC) =
(

1 − λC IχC
)

χCσ2
v

+ ρJC(χC)Φ(ω)

+
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
+ ρT JC(χC) [1 − Φ(ω)] . (B.4)

Thus, we can obtain that

JC(χC) =

(
1 − λC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]E

[
πN(v)

]
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.5)

The first-order derivative of the both sides of (B.1) with respect to χi, evaluated at χi = χC, is

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

1
σu

ϕ(ω)E [|v − v|]

+
ρ − ρT

1 − ρ

1
σu

ϕ(ω)E [|v − v|]E
[
πN(v)

]
+ ρT

[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

1
σu

ϕ(ω)E [|v − v|] , (B.6)

where ϕ(·) is the probability density function of the standard normal distribution.

Because v − v is distributed as N(0, σ2
v ), it follows that E [|v − v|] = σv

√
2
π . Plugging it into

(B.6), we obtain that

∇JC(χC) =
[
1 − λC(I + 1)χC

]
σ2

v

+ ρ
[
∇JC(χC)

]
Φ(ω)− ρJC(χC)

σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT
[
∇JC(χC)

]
[1 − Φ(ω)] + ρT JC(χC)

σv

σu
ϕ(ω)

√
2
π

. (B.7)

The policy variable χC constitutes a collusive Nash equilibrium if speculator i has no incentive
to deviate by setting χi ̸= χC. The first-order condition with respect to χi, characterized by
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∇JC(χC) = 0, leads to

0 =
[
1 − λC(I + 1)χC

]
σ2

v

− ρJC(χC)
σv

σu
ϕ(ω)

√
2
π

+
ρ − ρT

1 − ρ
E
[
πN(v)

] σv

σu
ϕ(ω)

√
2
π

+ ρT JC(χC)
σv

σu
ϕ(ω)

√
2
π

. (B.8)

According to (B.2), as θ → ∞ or as ξ → 0, λC → γC, that is, the market approaches to the
environment of Kyle (1985). In this case, the demand of the preferred-habitat investor is irrelevant.
Because the system is continuous, it is sufficient to show that there is no solution χC ∈ [χM, χN)

in the environment of Kyle (1985), where χN = 1√
I

σu
σv

and χM = 1
I

σu
σv

as a result of λC = γC. Let
χC = χ̂C σu

σv
. Then, we show that there is no solution χ̂C ∈ [χ̂M, χ̂N), with χ̂M = 1

I and χ̂N) = 1√
I
.

In the Kyle case, E
[
πN(v)

]
= σuσv

(I+1)
√

I
. Therefore, equations (B.5) and (B.8) can be rewritten,

respectively, as follows:

JC(χC) =

(
1 − γC IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

σvσu

(I + 1)
√

I
1 − ρΦ(ω)− ρT [1 − Φ(ω)]

. (B.9)

and

0 =
[
1 − γC(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

σvσu

(I + 1)
√

I
− ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

. (B.10)

Therefore, χ̂C is the root of the following quadratic equation:

0 =
[
1 − I(χ̂C)2

] 1
ρ − ρT

−
{

1 − ρ + (ρ − ρT)[1 − Φ(ω)]
}−1

{
χ̂C − 1

(I + 1)
√

I

[
1 + (Iχ̂C)2

]}
ϕ(ω)

√
2
π

,

which can be simplified as

0 = 1 − I(χ̂C)2 − ϑ

{
χ̂C − 1

(I + 1)
√

I

[
1 + (Iχ̂C)2

]}
, (B.11)

where

ϑ =
ϕ(ω)

1−ρ
ρ−ρT + 1 − Φ(ω)

√
2
π

. (B.12)
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Solving the above problem, we obtain

χ̂C =
ϑ ±

∣∣∣−2
√

I + I−1
I+1 ϑ

∣∣∣
−2I + 2ϑ I

√
I

I+1

.

There are three cases.
Case 1: if −2

√
I + I−1

I+1 ϑ ≤ 0 and −2I + 2ϑ I
√

I
I+1 < 0, the larger root is

χ̂C =
ϑ +

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=
1√

I
= χ̂N ,

and the other root, which is smaller, is given by

χ̂C =
ϑ −

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=

√
I + ϑ

I+1

−I + ϑ I
√

I
I+1

,

which is negative. Thus, there does not exist a solution χ̂C that lies in [ 1
I , 1√

I
), meaning that the

collusive equilibrium does not exist.
Case 2: if −2

√
I + I−1

I+1 ϑ ≤ 0 and −2I + 2ϑ I
√

I
I+1 > 0, the smaller root is

χ̂C =
ϑ −

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=
1√

I
= χ̂N ,

and the other root, which is larger, should be greater than χ̂N . Thus, there does not exist a solution
χ̂C that lies in [ 1

I , 1√
I
), meaning that the collusive equilibrium does not exist.

Case 3: if −2
√

I + I−1
I+1 ϑ > 0. In this case, we can prove that

−2I + 2ϑ
I
√

I
I + 1

=
√

I
[
−2

√
I + 2ϑ

I
I + 1

]
>

√
I
[
− I − 1

I + 1
ϑ + 2ϑ

I
I + 1

]
> 0.

Thus, the larger root is

χ̂C =
ϑ +

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=
1√

I
= χ̂N .

The smaller root is

χ̂C =
ϑ −

(
−2

√
I + I−1

I+1 ϑ
)

−2I + 2ϑ I
√

I
I+1

=

√
I + ϑ

I+1

−I + ϑ I
√

I
I+1

.

For χ̂C to lie in [ 1
I , 1√

I
), we need χ̂C ≥ 1/I, which implies

1
I + 1

√
I − 1√
I + 1

ϑ ≤ 1,
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Thus, if ϑ ∈
(

2
√

I I+1
I−1 , (I + 1)

√
I+1√
I−1

]
, there exists a collusive equilibrium. To rule out this, we either

need ϑ ≤ 2
√

I I+1
I−1 (to rule out case 3) or ϑ > (I + 1)

√
I+1√
I−1

(to ensure the smaller root χ̂C < 1/I in
case 3).

C Proof of Proposition 3.4

As θ → 0 or as ξ → ∞, λC → 1/ξ, that is, the market approaches to the environment where
prices are primarily determined by market clearing conditions. In this case, the demand of the
preferred-habitat investor plays an important role. In particular, when θ = 0 (or ξ → ∞), the
market maker’s pricing rule is λC = 1/ξ.

Because the system is continuous, it is sufficient to show that there is a solution χC ∈ [χM, χN)

in the environment with λC = 1/ξ, where χN = ξ
I+1 , χM = ξ

2I , and E
[
πN(v)

]
= ξσ2

v
(I+1)2 . In this

environment, equations (B.5) and (B.8) can be rewritten, respectively, as follows:

JC(χC) =

(
1 − ξ−1 IχC

)
χCσ2

v +
ρ − ρT

1 − ρ
[1 − Φ(ω)]

ξσ2
v

(I + 1)2

1 − ρΦ(ω)− ρT [1 − Φ(ω)]
(C.1)

and

0 =
[
1 − ξ−1(I + 1)χC

]
σ2

v −
[

ρJC(χC)− ρ − ρT

1 − ρ

ξσ2
v

(I + 1)2 − ρT JC(χC)

]
σv

σu
ϕ(ω)

√
2
π

. (C.2)

Therefore, χC is the root of the following quadratic equation:

0 = 1 − ξ−1(I + 1)χC − K
[(

1 − ξ−1 IχC
)

χC − ξ

(I + 1)2

]
,

where

K =
σv

σu
ϑ =

σv

σu

ϕ(ω)
1−ρ

ρ−ρT + 1 − Φ(ω)

√
2
π

. (C.3)

Solving the above problem, we obtain

χ̂C =
K + I+1

ξ ±
∣∣∣K(I−1)

I+1 − I+1
ξ

∣∣∣
2KI

ξ

.

There are two cases.
Case 1: if K(I−1)

I+1 − I+1
ξ < 0, then the smaller root is

χC =
K + I+1

ξ +
(

K(I−1)
I+1 − I+1

ξ

)
2KI

ξ

= χN .
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The larger root must be greater than χN . Thus, there does not exist a collusive equilibrium. To
rule out this case, we need Kξ > (I+1)2

I−1 , which can be achieved by choosing a sufficiently small
σu/σv according to (C.3).

Case 2: if K(I−1)
I+1 − I+1

ξ > 0, i.e., Kξ > (I+1)2

I−1 , then the larger root is

χC =
K + I+1

ξ +
(

K(I−1)
I+1 − I+1

ξ

)
2KI

ξ

= χN .

The smaller root is

χC =
K + I+1

ξ −
(

K(I−1)
I+1 − I+1

ξ

)
2KI

ξ

=
Kξ
I+1 + I + 1

KI
. (C.4)

To have a valid collusive equilibrium, we need

Kξ
I+1 + I + 1

KI
≥ ξ

2I
,

which implies

Kξ ≤ 2(I + 1)2

I − 1
,

meaning that σu/σv cannot be too small.
In summary, for given parameters T, ρ, ω, and I, we have a range of σu/σv to sustain the

collusive equilibrium. That is, σu/σv has to be sufficiently small (in order to rule out case 1) but
cannot be too small (to ensure the existence of the collusive equilibrium in case 2). That is, σu/σv

should be determined such that

Kξ ∈
(
(I + 1)2

I − 1
,

2(I + 1)2

I − 1

]
. (C.5)

D Proof of Proposition 3.6

We prove the proposition for the environment with θ = 0, so the results derived in Appendix C
can be directly used. More general environments with θ > 0 can be proved similarly with more
complex derivations.

Without loss of generality, we restrict the analysis to the parameter choices such that the
collusive equilibrium exists, meaning that condition (C.5) is satisfied. Thus, χC is given by (C.4).

Proof for the profit ratio ∆C. The expected profit associated with χC is

πC = (1 − ξ−1 IχC)χCσ2
v .
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Thus, πC − πN is as follows:

πC − πN =

(
I

I + 1
− I + 1

Kξ

)(
ξ

I(I + 1)
+

I + 1
KI

)
σ2

v −
ξσ2

v
(I + 1)2 .

The expected profit associated with χM is

πM = (1 − ξ−1 IχM)χMσ2
v .

Thus, πM − πN is as follows:

πM − πN =
ξσ2

v
4I

− ξσ2
v

(I + 1)2 = ξ
(I − 1)2

4I(I + 1)2 σ2
v .

Thus, ∆C is

∆C =
4

(I − 1)2

(
I − (I + 1)2

Kξ

)(
1 +

(I + 1)2

Kξ

)
− 4I

(I − 1)2 .

Because Kξ ≤ 2(I+1)2

I−1 , ∆C is increasing in ξ and K. Moreover, K = ϕ(ω)
1−ρ

ρ−ρT +1−Φ(ω)

σv
σu

√
2
π is increasing

in ρ and decreasing in σu/σv. Thus, ∆C is increasing in ρ and decreasing in σu/σv.
To show K is increasing in ρ, it is sufficient to prove 1−ρ

ρ−ρT is decreasing in ρ, which is equivalent
to show that f (ρ) = log(1 − ρ)− log(ρ − ρT) is decreasing in ρ. The first derivative is

f (ρ)′ = − 1
1 − ρ

− 1 − TρT−1

ρ − ρT =
ρT − 1 + TρT−1(1 − ρ)

(1 − ρ)(ρ − ρT)
.

In order to have f (ρ)′ ≤ 0, we need h(ρ, T) = ρT − 1 + TρT−1(1 − ρ) < 0. Note that h(ρ, 1) = 0.
Thus, it is sufficient to show that h(ρ, T) is decreasing in T for all ρ. The first derivative is

∂h(ρ, T)
∂T

=ρT−1 [ρ log(ρ) + 1 − ρ + T(1 − ρ) log(ρ)]

≤ρT−1 [ρ log(ρ) + 1 − ρ + (1 − ρ) log(ρ)]

=ρT−1 [1 − ρ + log(ρ)]

<0.

Next, we show that ∆C is decreasing in I. We can rewrite ∆C as follows

∆C =
4(I + 1)2

Kξ(I − 1)2

[
I − 1 − (I + 1)2

Kξ

]
.
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We have ∆C > 0 because Kξ > (I+1)2

I−1 . The first derivative is

∂∆C

∂I
=

4
Kξ

[
2
(

I + 1
I − 1

)(
− 2
(I − 1)2

)(
I − 1 − (I + 1)2

Kξ

)
+

(
I + 1
I − 1

)2 (
1 − 2(I + 1)

Kξ

)]

=
4

Kξ

(I + 1)(I − 3)
(I − 1)2

[
1 − 2(I + 1)2

Kξ(I − 1)

]
.

The term 1 − 2(I+1)2

Kξ(I−1) < 0 because Kξ ≤ 2(I+1)2

I−1 . Thus, ∂∆C

∂I ≤ 0 for I ≥ 3.

Proof for the price informativeness IC. The price informativeness IC is

IC = log
[(

IχC
)2

(σv/σu)
2
]
= 2 log

(
ξ

I + 1
+

I + 1
K

)
+ 2 log

(
σv

σu

)
.

The price informativeness IM is

IM = log
[(

IχM
)2

(σv/σu)
2
]
= 2 log

(
ξ

2
σv

σu

)
.

Thus, the relative price informativeness IC/IM is

IC

IM =
log
(

ξ
I+1

σv
σu

+ I+1
K

σv
σu

)
log
(

ξ
2

σv
σu

) . (D.1)

According to (D.1), IC/IM is increasing in I if Kξ < (I + 1)2, which is satisfied for I ≥ 3 because
of condition (C.5) for the existence of the collusive equilibrium. Moreover, IC/IM is decreasing
in K. Thus, IC/IM is decreasing in ρ because K is increasing in ρ.

To study the effect of σu/σv, substituting out K using (C.3), equation (D.1) can be rewritten as

IC

IM =

log

(
ξ

I+1
σv
σu

+ (I + 1)
1−ρ

ρ−ρT +1−Φ(ω)

ϕ(ω)

√
π
2

)
log
(

ξ
2

σv
σu

) .

Obviously, IC/IM is increasing in σu/σv and decreasing in ξ, because ξ
I+1

σv
σu

< ξ
2

σv
σu

and (I +

1)
1−ρ

ρ−ρT +1−Φ(ω)

ϕ(ω)

√
π
2 > 0.

Proof for the mispricing EC. The mispricing EC is

EC =

∣∣∣∣ pC(vt)− EC[vt|yt]

EC[vt|yt]− v

∣∣∣∣ = ∣∣∣∣λC − γC

γC

∣∣∣∣ = ∣∣∣∣ 1
γC

(
θγC + ξ

θ + ξ2 − γC
)∣∣∣∣ = ∣∣∣∣ ξ(1 − ξγC)

γC(θ + ξ2)

]
.
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Consider the case where θ = 0 and ξ is sufficiently large, i.e., ξ > 1/γC. Thus,

EC = 1 − 1
γCξ

= 1 − IχC

ξ
− σ2

u
ξσ2

v

1
IχC .

Substituting out χC using (C.4), we obtain

EC = 1 −
[

1
I + 1

+
I + 1
Kξ

+
σ2

u
ξσ2

v

K(I + 1)
Kξ + (I + 1)2

]
. (D.2)

Obviously, EC increases as ξ increases. Moreover,

∂EC

∂I
=−

[
1

Kξ
− 1

(I + 1)2 +
σ2

uK
σ2

v ξ
× Kξ − (I + 1)2

[Kξ + (I + 1)2]2

]

=−
[
(I + 1)2 − Kξ

] [ 1
Kξ(I + 1)2 − σ2

uK
σ2

v ξ

1

[Kξ + (I + 1)2]2

]
.

Because Kξ ≤ 2(I+1)2

I−1 (equation (C.5)), it is clear that (I + 1)2 − Kξ > 0 for I ≥ 3. Moreover, to

ensure that 1
Kξ(I+1)2 − σ2

uK
σ2

v ξ
1

[Kξ+(I+1)2]
2 ≥ 0, we need

Kξ + (I + 1)2 ≥ σu

σv
K(I + 1).

Because Kξ > (I + 1)2/(I − 1) (equation (C.5)), it is sufficient to have

(I + 1)2/(I − 1) + (I + 1)2 ≥ σu

σv
K(I + 1),

which implies ϑ < I(I + 1)/(I − 1), which is satisfied when ω is not too large or ρ is not very
close to 1 (see equation (B.12) for the dependence of ϑ on ω and ρ). Thus, ∂EC

∂I < 0 if I ≥ 3 and
ϑ < I(I + 1)/(I − 1).

Substituting out K using (C.3), equation (D.3) can be written as

EC = 1 −
[

1
I + 1

+
I + 1
ϑξ

σu

σv
+

σu

ξσv

ϑ(I + 1)
ϑξσv/σu + (I + 1)2

]
.

Thus, EC is decreasing in σu/σv. Moreover, we can further rewrite the above equation as follows:

EC =
I

I + 1
− I + 1

ξ

σu

σv

[
1
ϑ
+

ϑ

ϑξσv/σu + (I + 1)2

]
.

Obviously, EC is increasing in ϑ if ϑ < I + 1. We have shown that K = σv
σu

ϑ is increasing in ρ. Thus,
EC is increasing in ρ if ϑ < I + 1, which is satisfied when ω is not too large or ρ is not very close
to 1 (see equation (B.12) for the dependence of ϑ on ω and ρ).
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Proof for the market liquidity LC. The market liquidity LC is

LC =
1

∂|zt + yt|/∂ut
=

1
1 − ξλC .

In the environment with θ = 0, market liquidity is LC = 1
|1−ξ 1

ξ |
= ∞ because prices are determined

by market clearing conditions, which are not affected by the noise order flow ut in expectation.
Thus, to analyze how market liquidity depends on parameter values, we consider an environment
with θ ≈ 0 rather than θ = 0. In this environment, the market liquidity LC is

LC =
1∣∣∣1 − ξ θγC+ξ

θ+ξ2

∣∣∣ ≈ 1∣∣∣1 − ξ θγC+ξ
ξ2

∣∣∣ = ξ

θγC =
ξ

θ

(
IχC +

σ2
u

σ2
v

1
IχC

)
.

Substituting out χC using (C.4), we obtain

LC =
ξ

θ

[
ξ

I + 1
+

I + 1
K

+
σ2

u
σ2

v

K(I + 1)
Kξ + (I + 1)2

]
. (D.3)

The market liquidity in the perfect cartel equilibrium, LM, is

LM =
ξ

θ

(
IχM +

σ2
u

σ2
v

1
IχM

)
=

ξ

θ

(
I

ξ

2I
+

σ2
u

σ2
v

1

I ξ
2I

)
=

1
θ

(
ξ2

2
+

2σ2
u

σ2
v

)
.

Thus, the relative market liquidity LC/LM

LC

LM =

ξ2

I+1 +
ξ(I+1)

K + σ2
u

σ2
v

Kξ(I+1)
Kξ+(I+1)2

ξ2

2 + 2σ2
u

σ2
v

. (D.4)

Clearly, LC/LM is decreasing in ξ if σu/σv is sufficiently small; LC/LM is increasing in σu/σv if ξ

is sufficiently large.
In equation (D.4), the first derivative with respect to K is

∂LC/LM

∂K
=

ξ
ξ2

2 + 2σ2
u

σ2
v

[
− I + 1

K2 +
σ2

u
σ2

v

(I + 1)3

[Kξ + (I + 1)2]2

]

=
ξ(I + 1)

ϑ2
(

ξ2

2 + 2σ2
u

σ2
v

) σ2
u

σ2
v

[
−1 +

[
(I + 1)ϑ

Kξ + (I + 1)2

]2
]

.

Thus, ∂LC/LM

∂K < 0 if (I+1)ϑ
Kξ+(I+1)2 < 1, which is achieved if

ϑ <
Kξ

I + 1
+ I + 1 <

2(I + 1)2/(I − 1)
I + 1

+ I + 1 =
(I + 1)2

I − 1
.

where the second inequality is due to condition (C.5). We have shown that K is increasing in ρ.

75



Thus, ∂LC/LM is decreasing in ρ if ϑ < (I + 1)2/(I − 1), which is satisfied when ω is not too
large or ρ is not very close to 1 (see equation (B.12) for the dependence of ϑ on ω and ρ).

In equation (D.4), the first derivative with respect to I is

∂LC/LM

∂I
=

ξ
ξ2

2 + 2σ2
u

σ2
v

[
− ξ

(I + 1)2 +
1
K
+

σ2
u

σ2
v

K[Kξ + (I + 1)2]− 2K(I + 1)2

[Kξ + (I + 1)2]2

]

=
ξ

K(I + 1)2
(

ξ2

2 + 2σ2
u

σ2
v

) [(I + 1)2 − Kξ
] [

1 −
[

(I + 1)ϑ
Kξ + (I + 1)2

]2
]

.

Thus, similarly, we can prove that if ϑ < (I + 1)2/(I − 1), then 1 −
[

(I+1)ϑ
Kξ+(I+1)2

]2
> 0. Moreover,

condition (C.5) implies that (I + 1)2 − Kξ > 0 for I ≥ 3. Therefore, ∂LC

∂I > 0 if I ≥ 3 and
ϑ < (I + 1)2/(I − 1).

E Environments with Efficient Prices

In this appendix section, we study informed AI speculators’ behavior in the baseline economic
environment except for setting ξ = 0, which essentially means that the preferred-habitat investor
does not exist. Thus, the market maker sets prices purely for price discovery, i.e., pt = E[vt|yt].
This economic environment is similar to Kyle (1985) except for having I = 2 informed speculators.
Proposition 3.3 in Section 3 indicates that implicit collusion cannot be sustained by any price-
trigger strategies in this environment with efficient prices.

Figure A presents the average results across N = 1, 000 simulation sessions with informed
AI speculators. The blue solid lines in panels A and B show that informed AI speculators
can attain an average ∆C of 0.85 and their average profit is about 5% higher than that in the
theoretical benchmark of the noncollusive equilibrium. As discussed in Section 5.2, collusion in
this environment is achieved through homogenized learning biases. Similar to the property of
the Kyle (1985) model, the profits of informed speculators in the theoretical benchmark of the
noncollusive Nash equilibrium and the perfect cartel equilibrium are linear in the noise trading
risk log(σu/σv). Thus, the red dash-dotted and black dotted lines in panels A and B are flat.
Interestingly, the collusive equilibrium formed by informed AI speculators also has a constant
∆C and πC/πN as log(σu/σv) varies along the x-axis, exhibiting a similar scaling property with
respect to log(σu/σv). Panel C shows that the informed AI speculators’ order sensitivity to asset
value χ̂C increases exponentially with log(σu/σv) and linearly with σu/σv. This scaling property
with respect to log(σu/σv) is similar to that in the theoretical benchmarks of the noncollusive
Nash equilibrium and the perfect cartel equilibrium, a property that also holds in the Kyle (1985)
model.

Panel D shows that due to collusion, price informativeness in the environment with informed
AI speculators is lower than that in the theoretical benchmark of the noncollusive Nash equilibrium,
but higher than that in the theoretical benchmark of the perfect cartel equilibrium. Moreover, as in
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Note: We consider the economic environment with efficient prices as in Kyle (1985). That is, we set ξ = 0, implying that
the asset’s price pt is determined to minimize pricing errors, with pt = E[vt|yt]. The blue solid line plots the average
values of ∆C, πC/πN , χ̂C, IC/IM, LC/LM, and EC across N = 1, 000 simulation sessions as log(σu/σv) varies. The
red dash-dotted and black dotted lines represent the theoretical benchmarks of the noncollusive Nash equilibrium and
perfect cartel equilibrium, respectively. The other parameters are set according to the baseline economic environment
described in Section 4.7, except for ξ = 0.

Figure A: Implications of noise trading risks in the environment with ξ = 0.

the Kyle (1985) model, price informativeness remains unchanged as log(σu/σv) varies along the
x-axis. Panel E shows that market liquidity is equal to 1 in this environment with efficient prices.
This can be directly seen from equation (4.11). In the absence of the preferred-habitat investor, the
market maker is the counterparty for informed speculators and the noise trader, and its inventory
is equal to −yt ≡ −∑I

i=1 xi,t − ut. Thus, the sensitivity of the market maker’s inventory to noise
order flows is 1, which holds regardless of the level of noise trading risks or whether informed
speculators collude. Panel F shows that mispricing in this environment is 0 because, by definition,
prices are efficient, with pt = E[vt|yt].
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F Q-Learning Market Maker

In the baseline economic environment, the market maker analyzes historical data to estimate the
pricing rule (ese Section 4.2). In this appendix section, we consider the market maker adopting
Q-learning algorithms to learn the pricing rule. All the results presented in the main text are
similar; they do not depend on whether the market maker determines the pricing rule using
statistical learning or Q-learning algorithms.

Below, we describe the Q-learning algorithm of the market maker. We consider the market
maker adopting linear policies to price assets given the combined order flow yt from informed
speculators and the noise trader:

pt = vMM
t + λMM

t yt, (F.1)

where vMM
t and λMM

t are the market maker’s decisions learned from its Q-learning algo-
rithm. Specifically, the market maker’s state variable is st = ∅ and action variables are
at = {vMM

t , λMM
t } ∈ V× Λ. The market maker updates its Q-matrix according to the following

learning equation:

Q̂MM
t+1 (v

MM
t , λMM

t ) =(1 − αMM)Q̂MM
t (st, at) + α

[
(yt − ξ(vMM

t − v + λMM
t yt))

2

+θ(vMM
t + λMM

t yt − vt)
2 + ρMM min

v′∈V,λ′∈Λ
Q̂MM

t (v′, λ′)

]
, (F.2)

where the reward in period t is

(yt + zt)
2 + θ(pt − vt)

2 =(yt − ξ(pt − v))2 + θ(pt − vt)
2

=(yt − ξ(vMM
t − v + λMM

t yt))
2 + θ(vMM

t + λMM
t yt − vt)

2. (F.3)

The optimal choices of vMM
t and λMM

t are learned to minimize the Q-matrix. Similar to informed AI
speculators’ Q-learning algorithms, the market maker also conducts exploration with probability
εMM

t and exploitation with probability 1 − εMM
t . In the exploration mode, the market maker

randomly chooses actions v and λ over the set V× Λ.
To implement the Q-learning algorithm for the market maker, we construct discrete grid

for vMM
t and λMM

t . Specifically, we discretize the intervals [(1 − κ)vMM, (1 + κ)vMM] and [(1 −
κ)λMM, (1 + κ)λMM] into nv and nλ equally spaced grid points, i.e., V = {vMM

1 , · · · , vMM
nv

} and
Λ = {λMM

1 , · · · , λMM
nλ

}. The parameters vMM and λMM correspond to the optimal values in the
theoretical benchmark of the noncollusive equilibrium. The parameter κ > 0 ensures that the
values of vt and λt chosen by the market maker can be different from the theoretical values, vMM

and λMM.
For grid (vMM

k , λMM
j ) ∈ V× Λ, we initialize the market maker’s Q-matrix as follows:

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM E

[
(yt − ξ(vMM

k − v + λMM
j yt))

2 + θ(vMM
k + λMM

j yt − vt)
2
]
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Substituting out yt = IχN(vt − v) + ut, we obtain

Q̂MM
0 (vMM

k , λMM
j ) =

1
1 − ρMM

[
(1 − ξλMM

j )2((IχNσv)
2 + σ2

u) + ξ2(vMM
k − v)2

]
+

θ

1 − ρMM

[
(vMM

k − v)2 + (λMM
j IχN − 1)2σ2

v + (λMM
j σu)

2
]

The exploration rate is εMM
t = e−βMMt, similar to equation (4.5). We set the parameters at

βMM = 10−4, αMM = 0.1, ρMM = 0.95, κ = 0.5, and nv = nλ = 31. The results are similar if we
choose different parameter values.

G A Technical Appendix for Learning Biases

In this appendix, we explain why learning biases can lead informed AI speculators to exhibit
collusive behavior from a technical perspective. We proceed in three steps. First, in Subsection
G.1, we show that learning biases are significant when noise trading risks are high because in
this case, the estimation of the Q-matrix cannot properly account for the distribution of the noise
order flow ut due to the failure of the law of large numbers. Second, in Subsection G.2, we show
that due to biased learning, the estimated Q-values associated with larger order flows have a
larger unconditional variance. Third, in Subsection G.3, we show that large order flows are less
likely to be included in the optimal strategies adopted by informed AI speculators after their
Q-learning algorithms converge. In other words, biased learning would more likely lead informed
AI speculators to optimally trade with small order flows, which coincide with the order flows
adopted in the theoretical benchmark of the collusive Nash equilibrium. Taken together, we show
that in the presence of high noise trading risks, collusive outcomes emerge due to informed AI
speculators’ homogenized learning biases.

G.1 Biased Learning When Noise Trading Risks are High

First, we explain that when noise trading risks are high, there exist learning biases for the Q-matrix
due to the failure of the law of large numbers.

Learning biases are caused by a generic feature of RL algorithms. As discussed in Section
2, Q-learning algorithms cannot take expectations due to the absence of knowledge about the
underlying economic environment (e.g., the distribution of the noise order flow ut). In each period
t, the algorithm updates the value of one single state-action pair (s, xi) of the Q-matrix according
to the currently realized profit πi,t (see equation (2.4)) rather than the expected profit E[πi,t|s, xi]

as in a rational-expectations framework. Biases may exist in Q-value estimation because updating
the Q-matrix sequentially based on past realized profits may not accurately reflect the expected
profit, due to the failure of the law of large numbers.

To illustrate this point, we focus on a particular state-action pair (s, xi) that has been visited T
times in the past. Let τ = 1, 2, ..., T be the τ-th visit to the state-action pair (s, xi). Let t(τ) be the
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period for the τ-th time that the Q-learning algorithm visits the state-action pair (s, xi). According
to Equation (2.4), in each period t, the Q-learning algorithm only updates the state-action pair
of the Q-matrix that the algorithm visits. Thus, the state-action pair (s, xi) has been updated T
times in the past, and these updates occur in periods t(τ) for τ = 1, 2, ..., T. In other words, for
each τ = 1, 2, ..., T, the value of Q̂i,t(s, xi) is a constant and equal to Q̂i,t(τ)+1(s, xi) from period
t = t(τ) + 1 to period t = t(τ + 1) and gets updated with a new value, Q̂i,t(τ+1)+1(s, xi), in period
t(τ + 1) + 1.

Based on equation (2.4), for the T-th visit to the state-action pair (s, xi), we have

Q̂i,t(T)+1(s, xi) = (1 − α)Q̂i,t(T)(s, xi) + α

[
(vt(T) − pt(T))xi + ρ max

x′∈X
Q̂i,t(T)(st(T)+1, x′)

]
(G.1)

For the (T − 1)-th visit to the state-action pair (s, xi), we have

Q̂i,t(T−1)+1(s, xi) = (1− α)Q̂i,t(T−1)(s, xi)+ α

[
(vt(T−1) − pt(T−1))xi + ρ max

x′∈X
Q̂i,t(T−1)(st(T−1)+1, x′)

]
(G.2)

..., and for the 1-st visit to the state-action pair (s, xi), we have

Q̂i,t(1)+1(s, xi) = (1 − α)Q̂i,t(1)(s, xi) + α

[
(vt(1) − pt(1))xi + ρ max

x′∈X
Q̂i,t(1)(st(1)+1, x′)

]
(G.3)

Because the Q-value for the state-action pair (s, xi) does not change from t = t(τ) + 1 to
t = t(τ + 1), we have Q̂i,t(τ)+1(s, xi) = Q̂i,t(τ+1)(s, xi), for τ = 1, 2, ..., T − 1. Thus, combining above
equations, we derive

Q̂i,t(T)+1(s, xi) =
T−1

∑
τ=0

α(1 − α)τ

[
(vt(T−τ) − pt(T−τ))x + ρ max

x′∈X
Q̂i,t(T−τ)(st(T−τ)+1, x′)

]
+ (1 − α)TQ̂i,0(s, xi). (G.4)

As T → ∞, we can omit the last term and rewrite the above equation as

Q̂i,t(T)+1(s, xi) =
T

∑
τ=0

α(1 − α)τ

[
(vt(T−τ) − pt(T−τ))xi + ρ max

x′∈X
Q̂i,t(T−τ)(st(T−τ)+1, x′)

]
. (G.5)

By substituting out pt(T−τ), the above equation becomes

Q̂i,t(T)+1(s, xi) =
T

∑
τ=0

α(1 − α)τ[vt(T−τ) − v − λ(yt(T−τ) − ut(T−τ))]xi

− αλxi

T

∑
τ=0

(1 − α)τut(T−τ) + ρ
T

∑
τ=0

max
x′∈X

Q̂i,t(T−τ)(st(T−τ)+1, x′). (G.6)

The term αλxi ∑T
τ=0(1 − α)τut(T−τ) represents a stochastic term that depends on the noise order

flow ut(T−τ). With E[ut] = 0, the estimation for the limit value of Q̂i,t(T)+1(s, xi) is unbiased only
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if αλxi ∑T
τ=0(1 − α)τut(T−τ) = 0 as T → ∞20, which occurs if α → 0. Thus, for any α > 0, the term

αλxi ∑T
τ=0(1− α)τut(T−τ) would bias the estimate of Q̂i,t(T)+1(s, xi). This is due to the failure of the

law of large numbers because in general, as T → ∞, we have αλxi ∑T
τ=0(1− α)τut(T−τ) ̸= αλxiE[ut]

unless α → 0.
The magnitude of learning biases depends on the importance of the term αλxi ∑T

τ=0(1 −
α)τut(T−τ) relative to other terms in equation (G.6), as T → ∞. Specifically, learning biases are
absent when there is no noise trading risk (i.e., σu/σv = 0) or when α ≈ 0. Learning biases become
more significant when σu/σv is higher, λ is higher, ρ is lower, or α is higher.

G.2 Complementarity Between Informed AI Speculators’ Order and Noise Order

Second, we show that due to biased learning, the estimated Q-values associated with larger order
flows have larger unconditional variances.

To begin with, we decompose the per-period profit (vt − pt)xi that an informed speculator i
receives when choosing order flow xi ∈ X in period t into two parts:

(vt − pt)xi = [vt − v − λ(yt − ut)] xi − λxiut. (G.7)

The term [vt − v − λ(yt − ut)] xi captures the profit determined by the asset’s fundamental value
vt and the term λxiut captures the profit determined by the noise order flow ut. Through the
term λxiut in equation (G.7), there exists complementarity between the informed speculator’s
order flow xi and the noise order flow ut in determining per-period profits. This complementarity
implies that, choosing larger order flows (i.e., a larger absolute value |xi|) would amplify the
impact of the noise order flow ut on per-period profits.

Because the estimated Q-value is the accumulated discounted per-period profits realized in
the past, the complementarity between xi and ut in equation (G.7) would propagate to equation
(G.6), captured by the term αλxi ∑T

τ=0(1 − α)τut(T−τ). In the absence of learning biases (i.e., when
α → 0), we have αλxi ∑T

τ=0(1 − α)τut(T−τ) ≈ αλxiE[ut] = 0 as T → ∞, so that the unbiased
estimate of the Q-value is not affected by the complementarity. However, as long as α > 0, we
would have αλxi ∑T

τ=0(1 − α)τut(T−τ) ̸= 0, and thus, the estimated limit Q-value is biased, due to
the failure of the law of large numbers. The biased learning implies that the estimated Q-value of
an informed AI speculator’s particular order flow xi is path dependent, crucially depending on
the realized noise order flow ut in the past periods when the informed AI speculator chose xi.

Thus, in the presence of learning biases, there exists complementarity between xi and ut in
determining the estimated Q-value. This complementarity implies that the estimated Q-values
associated with larger order flows have larger unconditional variances.

20To see why unbiasedness requires αλxi ∑T
τ=0(1 − α)τut(T−τ) = 0 as T → ∞, note that the Q-matrix is essentially a

precursor of the value function (i.e., Vi(s) ≡ maxx′∈X Qi(s, x′), see equation (2.1)), which represents the discounted
“expected” profits. In our model, the noise order ut should have no direct effect on an informed speculator’s “expected”
profits except for affecting its order flow xi,t.
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G.3 Impacts of Biased Learning on Optimal Strategies

Third, we show that large order flows are less likely to be the optimal strategies adopted by
informed AI speculators after their Q-learning algorithms converge. In other words, learning biases
would more likely lead informed AI speculators to optimally choose small order flows, which
coincide with those order flows in the theoretical benchmark of the collusive Nash equilibrium.

Before discussing why learning biases make the choice of large order flows less likely, it is
useful to clarify that although informed AI speculators start their Q-learning algorithms with a
mix of the exploration mode and the exploitation mode, it must be the case that the exploration
rate drops to zero at some point before Q-learning algorithms to converge. In other words, in a
long period of time right before Q-learning algorithms converge, informed AI speculators must
be in pure exploitation mode, choosing the order flows that maximize their Q-values rather than
choosing order flows randomly. Therefore, without loss of generality, we focus on the exploitation
mode in our discussions below.

To fix the idea, consider a simple setting in which there is a single state s and each informed AI
speculator i’s order flow xi can take two different values, xi = xS, xL, with 0 < xS < xL, meaning
that xL is a large order flow and xS is a small order flow. As discussed above, in the presence
of learning biases caused by noise trading risks, there is complementarity between xi and ut in
determining the estimated Q-value. Thus, relative to the estimated Q-value associated with the
small order flow xS, the estimated Q-value associated with the large order flow xL has a large
unconditional variance (see equation (G.6)). Let [Q(s, xS), Q(s, xS)] and [Q(s, xL), Q(s, xL)] be the
99.9% confidence interval of the estimated Q-value for order flows xS and xL, respectively. Thus,
we have [Q(xS), Q(s, xS)] ⊂ [Q(s, xL), Q(s, xL)].

Because the informed AI speculator is purely in the exploitation mode, in any period t, its
order flow is determined according to argmaxxS,xL

{
Q̂i,t(s, xS), Q̂i,t(s, xL)

}
. There are two cases,

either Q̂i,t(s, xL) > Q̂i,t(s, xS) or Q̂i,t(s, xL) <= Q̂i,t(s, xS). In the first case, for τ > [t, t′], the
informed AI speculator would keep choosing xL to update Q̂i,τ(s, xL) while Q̂i,τ(s, xS) remains
unchanged at Q̂i,t(s, xS). The period t′ > t is the first passage time for Q̂i,t′(s, xL) <= Q̂i,t′(s, xS).
From period t′ on, the informed AI speculator switches from choosing the large order flow xL to
choosing the small order flow xS, and fall into the second case as described below.

In the second case, for τ > [t, t′], the informed AI speculator would keep choosing xS to
update Q̂i,τ(s, xS) while Q̂i,τ(s, xL) remains unchanged at Q̂i,t(s, xL). The period t′ > t is the first
passage time for Q̂i,t′(s, xL) > Q̂i,t′(s, xS). From period t′ on, the informed AI speculator switches
from choosing the small order flow xS to choosing the large order flow xL, and fall into the first
case as described above.

These two cases alternate over time. In one simulation session, given our convergence
criterion specified in Section 4.8 (i.e., stability of optimal strategy for T = 100, 000 consecutive
periods), eventually, the optimal strategy will converge to xS with probability P and xL with
probability 1 − P. We have p > 0.5 because Q(s, xL) < Q(s, xS). The probability P is higher if
the estimated Q-value associated with the order flow xL has a larger probability to be in the
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interval [Q(s, xL), Q(s, xS)], which happens when noise trading risks are higher (i.e., higher σu/σv

so the magnitude of learning biases is larger) or the difference in order flows is larger (i.e., larger
xL − xS). This explains why learning biases make the choice of large order flows less likely.

According to our model in Section 3, the sensitivity of informed speculators’ order flow to
the asset’s value vt is lower under collusion, i.e., χM ≤ χC < χN . Because informed speculator i’s
order xi,t is xi,t = χ(vt − v), the absolute value of its order flows satisfies |xM

i,t | ≤ |xC
i,t| < |xN

i,t| for
any vt, indicating that informed speculators would collude if they adopt more conservative (i.e.,
choosing order flows with smaller magnitude), rather than more aggressive, trading strategies.
Taken together, it is clear that in the presence of high noise trading risks, homogenized learning
biases lead to collusive outcomes.
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