Models of price dynamics and order splitting

Securities Trading: Principles and Procedures Chapters 13 and 14

Outline

- Statistical models of security prices and order impacts
- Given these statistical models, what are the best ordersplitting strategies.
- **D** The risk-return trade-off in order splitting.

Copyright 2015, Joel Hasbrouck, All rights reserved

Statistical models

- The basic models are constructed by starting with a simple model and adding on the features that we need.
- Random-walk model
- Random-walk + drift ("short-term alpha")
- Impact model: Random-walk + drift + order-price impact

Copyright 2015, Joel Hasbrouck, All rights reserved

Random-walk model Let *t* represent time (minutes, seconds, milliseconds, ticks ...) *p*_t is the price at the end of interval *t* (at the end of the minute, second, ...) Usually *p*_t is the bid-ask midpoint (BAM), but it might be the last sale price. *p*_t = *p*_{t-1} + *u*_t where *u*_t is some random disturbance or prediction error that reflects "new information" In expectation this disturbance is zero: *Eu*_t = 0. The standard deviation of *u*_t is *σ*_u.

Recall the example used to analyze implementation shortfall of limit vs. market orders.

The random-walk with drift: Limit order execution times
Suppose that the current stock price is S₀ and we want to put in a limit order to sell at some price S_{Sell} > S₀.
Example: S₀ = \$15 and S_{Sell} = \$17
How long do we think it will take for the order to execute?

A simple result

$$\square \text{ If } p_t = \alpha + p_{t-1} + u_t \text{, then } ET^* = \frac{S_{Sell} - S_0}{\alpha}$$

□ Example

• *t* measures minutes and $\alpha =$ \$0.01 *per minute*.

• Then
$$ET^* = \frac{17.00 - 15.00}{0.01} = \frac{2.00}{0.01} = 200 \text{ minutes}$$

Notes

- The expected time to execution does not depend on volatility.
- If $\alpha = 0$ then ET^* is infinite.
 - You might get an execution, but don't count on it.
- □ Embedded problem: $S_0 = 20$, $\alpha = -\$0.03$ *per minute*. We put in a limit order to buy at \$19.10. How long do we expect to wait? (Answer in online notes)

Copyright 2015, Joel Hasbrouck, All rights reserved

Embedded problem

□ $S_0 = 20, \alpha = -\$0.03$ *per minute*. We put in a limit order to buy at \$19.10. How long do we expect to wait? (Answer in online notes)

 $\Box ET^* = \frac{20.00 - 19.10}{0.03} = \frac{0.90}{0.03} = 30 \text{ minutes}$

Copyright 2015, Joel Hasbrouck, All rights reserved

What's useful in predicting short-term alpha?
Advance knowledge of news announcements.
Current/recent price changes in other stocks that are in the same industry.
Current/recent changes in the market index.

Interpretation of S_t In principle S_t is the net purchase computed over all trades in interval t. Including our own trades and trades of others. S_t = S_t^{own} + S_t^{others} For forecasting and analysis, we want to use the best available prediction of S_t^{others}. Often trading strategies are analyzed assuming that our expectation of others' trades is ES_t^{others} = 0

Interpretation of λ

- □ The model says that order-price impact is permanent.
- Order price impact arises from the market's belief that orders might be informed.
- If we are uninformed, our trades will still move the market, but eventually the effect of our trades will vanish.

Formally, to find the minimum, set
$$\frac{dC}{dS_1} = 0$$

$$\Box C = \lambda S_1^2 - S_1 \lambda S_{Total} + S_{Total} (p_0 + \lambda S_{Total})$$

$$\Box \frac{dC}{dS_1} = 2\lambda S_1 - \lambda S_{Total} = 0$$
 implies the optimal $S_1^* = \frac{S_{Total}}{2}$.

$$\Box$$
 In general, with $\alpha = 0$, and trading over *T* periods,

$$S_i^* = \frac{S_{Total}}{T}$$

What if $\alpha \neq 0$ (in the two-period problem)?

- □ Modified optimum: $S_1^* = \frac{\alpha + \lambda S_{Total}}{2\lambda}$
- □ With $\alpha > 0$, there is positive drift, so S_1^* rises.
 - Future purchases will be more expensive.
- **u** With α < 0, there is negative drift.
 - The price is dropping: buy later.

- These definitions aren't precise
 - It is almost impossible to trade *without* moving the price.
 - Many accepted strategies attempt to obscure the trader's true information, intentions and plans.
- The follow illustrates certain possible manipulations based on order price impact.
- For a given impact function can an uninformed trader execute a series of profitable buys and sells based on the price movements that his orders generate?
- Note: many of the schemes discussed here are illegal. They are presented to facilitate discussion of what features make a market prone to manipulation, so that, to the greatest extent possible, these features may be avoided in actual securities markets.

Copyright 2015, Joel Hasbrouck, All rights reserved

Attempted manipulation 1

- Starting at p_0 , buy 5 shares slowly, one at a time.
 - $p_1 = p_0 + \lambda \times 1 = p_0 + \lambda$
 - $p_2 = (p_0 + \lambda) + \lambda \times 1 = p_0 + 2\lambda$
 - ...
 - $p_5 = p_0 + 5 \lambda$
 - Average purchase price is $\frac{p_1+p_2+\cdots+p_5}{r} = p_0 + 3\lambda$
- Now sell the shares, one at a time
 - $p_6 = p_5 \lambda \times 1 = p_0 + 5 \lambda \lambda = p_0 + 4 \lambda$
 - $p_7 = p_6 \lambda \times 1 = p_0 + 4 \lambda \lambda = p_0 + 3 \lambda$
 - ...
 - $p_{10} = p_9 \lambda \times 1 = p_0 + \lambda \lambda = p_0$
 - Average sale price is $\frac{p_6 + p_7 + \dots + p_{10}}{5} = p_0 + 2\lambda$
- The average profit per share is $-(p_0 + 3\lambda) + (p_0 + 2\lambda) = -\lambda$ (a loss)
- The receipts don't cover the expenditure. The manipulation doesn't work.

Copyright 2015, Joel Hasbrouck, All rights reserved

Time variation in impact

- Suppose that initially $\lambda = 1$, and we know that it will drop to $\lambda = 0.1$.
- **D** Then we can buy two units
 - $p_1 = p_0 + \lambda \times 1 = p_0 + 1$
 - $p_2 = p_1 + \lambda \times 1 = p_0 + 2$
 - Average share price is $p_0 + 1.5$
- \Box ... and sell them when $\lambda = 0.1$
 - $p_3 = p_2 \lambda \times 1 = p_2 0.1 = p_0 + 1.9$
 - $p_4 = p_3 \lambda \times 1 = p_0 + 1.8$
 - Average share price is $p_0 + 1.85$

□ Manipulation profits are $-(p_0 + 1.5) + p_0 + 1.85 = 0.35 > 0$

Copyright 2015, Joel Hasbrouck, All rights reserved

Asymmetry in the impact function

- Suppose that λ for buys is $\lambda_{Buy} = 0.1$ and λ for sells is $\lambda_{Sell} = 1$.
- □ We (short) sell two shares
 - $p_1 = p_0 \lambda_{Sell} \times 1 = p_0 1$
 - $p_2 = p_1 \lambda_{Sell} \times 1 = p_0 2$
 - Average price is $p_0 1.5$

Now we cover our short sales

- $p_3 = p_2 + \lambda_{Buy} \times 1 = p_2 2 + .1 = p_0 1.9$
- $p_4 = p_3 + \lambda_{Buy} \times 1 = p_0 1.8$
- Average price is $p_0 1.85$
- □ Manipulation profits are $+(p_0 1.5) (p_0 1.85) = 0.35 > 0$

Copyright 2015, Joel Hasbrouck, All rights reserved

Concave example

$$\Box \text{ Suppose that } p_t = \begin{cases} p_{t-1} + \lambda \sqrt{S_t} \text{ for buy orders, } S_t > 0\\ p_{t-1} - \lambda \sqrt{-S_t} \text{ for sell orders, } S_t < 0 \end{cases}$$

Buy 8 units with eight 1-unit trades
Sell 8 units with two 4-unit trades

Copyright 2015, Joel Hasbrouck, All rights reserved

□ Purchases • $p_1 = p_0 + \lambda \times \sqrt{1} = p_0 + \lambda$ • ... • $p_8 = p_7 + \lambda \times \sqrt{1} = p_0 + 8 \lambda$ • Average purchase price is $p_0 + 4.5 \lambda$ □ Sales • $p_9 = p_8 - \lambda \times \sqrt{4} = p_0 + 6\lambda$ • $p_{10} = p_9 - \lambda \times \sqrt{4} = p_0 + 4\lambda$ • Average sale price is $p_0 + 5 \lambda$ □ Profits per share are $(p_0 + 5\lambda) - (p_0 + 4.5 \lambda) = 0.5 \lambda > 0$

- Is manipulation really possible when the price impact function is non-linear, buy-sell asymmetric, or time varying?
 - Other costs (like bid-ask spread, commissions) might reduce profits.
 - There are risks:
 - We don't know for sure what the price impact function looks like.
 - Prices change for reasons other than incoming orders.
- What is the empirical evidence?

Spoofing and layering

- Spoofing: entering a bid or offer that is not intended for execution.
- Layering: entering *large* bids/offers not intended for execution *priced away* from the market.
- Priced away: a buy limit order priced below the bid or a sell limit order priced above the offer.
- □ Why?

			Drig		u5) 011	11p111 27, 2010
B	CALLEO BRA Orders Accepte 239,828	SILEIRO	SA PETROE	PBR Market Quality S R SPONSORED Total Volume 3,755,485	C Statistics C ^a ADR	 Large quantities at the best bid and offer and away from the best bid an offer.
	SHARES	PRICE	TIME	PRICE	SHARES	\Box Conveys the sense of
† –	12,550	9.55	15:04:12	9.51	100	
Ś	14,158	9.53	15:04:12	9.51	200	a liquid market
š	13,858	9.52	15:04:12	9.51	100	a nquia market.
٩	24,808	9.51	15:04:12	9.51	400	
S	11,200	9.50	15:04:03	9.51	57	
<u> </u>	16,810	9.49	15:04:03	9.51	300	
	17,830	9.48	15:04:03	9.51	300	
1	13,130	9.47	15:04:03	9.51	200	
	10.630	9 46	1 15:04:03	9.51	600	

US v. Sarao, 2015, US District Court, Northern District of Illinois Eastern Division

- Layering case brought by the Commodities Futures Trading Commission (civil suit) and the Department of Justice (criminal prosecution).
- Read up to item 25, p. 13, ("SARAO's Responses to Queries ..."), especially items
 - 5,6 (Overview of the investigation)
 - 13-24 (Layering schemes, overview of Sarao's activity)

Copyright 2015, Joel Hasbrouck, All rights reserved