

News vs. no-news

- With news visible, the median trading profits were about \$130,000 (485 player-sessions)
- With the news screen turned off, median trading profits were about \$165,000 (283 player-sessions)
- □ Trading strategies that worked.
- □ Market vs. limit order strategies.

<section-header><list-item><list-item><list-item><list-item><list-item><table-container>

The RIT H3 case: an option hedge

- □ We are short a risky security (a call option).
- We will try to hedge by going long the stock.
- The value of the call option is an exact, known function of the stock price (the Black-Scholes equation).
 - We don't need to estimate a statistical model.
- □ The Black-Scholes value of a call is nonlinear.
 - When the stock price changes, we need to adjust our hedge.
 - The hedge is *dynamic*.

Review

- □ An *American call* gives the holder the right to buy the underlying stock (*S*) at *exercise/strike price X* up to and including *maturity date T*.
 - An American put gives the holder the right to sell the underlying ...
- □ A *European option* can only be exercised at maturity.
- □ An option comes into existence when it is traded.
 - The person who sells a call has written the call, and is short the call

Copyright 2013, Joel Hasbrouck, All rights reserved

$$d_1 = \frac{\ln\left(\frac{S}{X}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma \sqrt{T}$$

- N(d) is the cumulative distribution for the standard normal density evaluated at d.
- N(d) is given by the Excel function
 NORM.S.DIST(d,TRUE)

		А	В	С
Black-Scholes.xlsx	1	Black-Scholes calculations		
DIACK SCHOICS.XISX	2			
	3	Inputs		
Values for the SAC call in	4	Stock price, S	50	
the RIT H3 case.	5	Exercise price of call, X	50	
	6	Maturity, years	0.079365079	=20/252
	7	Risk-free rate (annual)	0	
	8	Standard Deviation (annualized s)	0.15	
	9			
	10	Outputs		
	11	Present value of X	50.000	
	12	s*sqrt(t)	0.042	
	13	d1	0.021	
	14	d2	-0.021	
	15	Delta (=N(d1))	0.508	
	16	N(d2)*PV of X	24.579	
	17			
	18	Value of Call	0.843	
	19	Value of Put	0.843	

Hedging

□ The stock and the call move in the same direction.

- They are *very* highly correlated.
- Over short time intervals $\rho \approx 1$.
- A short position in the call and a long position in the stock move in opposite directions.
 - They are very negatively correlated.
 - Over short time intervals $\rho \approx -1$.
- Can we find a risk-free portfolio combination?

Copyright 2013, Joel Hasbrouck, All rights reserved

The H3 Case

- □ We're in a bank equity derivatives group.
- □ A customer wants to buy a call option on SAC.
 - The customer would prefer to buy an exchange-traded call if one were available.
 - This isn't possible, so the customer comes to us.
- Acting as dealer, we sell to the customer.
- In analyzing the trade, we concentrate on pricing and hedging.

Copyright 2014, Joel Hasbrouck, All rights reserved

Pricing of the call

- $\Box X = 50, r = 0, \sigma = 0.15$ ("15% per year"), T = 20 trading days.
- □ Annualize using trading days: $T = \frac{20}{252} = 0.079365$
- $\Box C = $0.843/share$
- We need to factor in a profit for ourselves so we quote a price of \$1.41 to the customer.
 - \$1.41: "We price the call using $\sigma = 0.25$."
 - The customer can do the calculations: they know the mark-up they're paying.

Copyright 2014, Joel Hasbrouck, All rights reserved

Size

- □ The customer wants to buy 200 calls.
- □ The standard contract size is 100 shares.
- □ All prices are quoted on a per-share basis, but when the customer buys, they pay us \$1.41 × 100 × 200 = \$28,200.

Hedging

- Immediately after the customer agrees to the trade, we are short 200 calls.
 - If the price of SAC falls, we'll be okay. The call will expire unexercised.
 - If the price of SAC rises, the call will be exercised against us, costing us money.
- We don't want to make a directional bet on SAC. We want to hedge.

Copyright 2014, Joel Hasbrouck, All rights reserved

Can we hedge by buying $200 \times 100 = 20,000$ sh SAC?

- "Worst case: SAC goes from \$50 to, say, \$100. At that point, the customer will exercise. They buy 20,000 from us at \$50."
- Shouldn't we lock in a \$50 purchase price for SAC by buying all the shares we might need right now?"

		A	В	С	Н
	1	Inputs			
The Black-	2	Stock price, S	50	49.99	50.01
	3	Exercise price of call, X	50	50	50
Scholes	4	Maturity, years	0.079	0.079	0.079
calculations	5	Risk-free rate (annual)	0	0	0
calculations	6	Standard Deviation (annu	0.15	0.15	0.15
	7				
	8	Outputs			
	9	Present value of X	50.000	50.000	50.000
	10	s*sqrt(t)	0.042	0.042	0.042
	11	d1	0.021	0.016	0.026
	12	d2	-0.021	-0.026	-0.016
	13	Delta (=N(d1))	0.508	0.507	0.510
	14	N(d2)*PV of X	24.579	24.484	24.673
Nast the seconds to	15				
□ Next: the mark-to-	16	Value of Call	0.843	0.838	0.848
market position	17	Value of Put	0.843	0.848	0.838
statements	18	ΔS		-0.0100	0.0100
	19	ΔC		-0.0051	0.0051
	20	$\Delta C/\Delta S$		0.5075	0.5094

S		Assets	Liabilities	
50.00	Cash received (20,000 × \$1.41)	28,200	16,857	Call, mark-to-mkt (~20,000 ×
	Stock (10,169 <i>sh</i> × \$50)	508,429	508,429	Loan / charge to capital
			11,343	Net worth
49.99	Cash received	28,200	16,756	Call, mark-to-mkt(~20,000 ×
	Stock (10,169 <i>sh</i> × \$49.99)	508,327	508,429	Loan / charge to capital
			11,343	Net worth
50.01	Cash received	28,200	16,959	Call, mark-to-mkt(~20,000 ×
	Stock (10,169 <i>sh</i> × \$50.01)	508,530	508,429	Loan / charge to capital
			11,343	Net worth

- To design the hedge, prepare a table that gives hedge ratios and the *number of shares you should be long* for SAC prices between \$46 and \$54 in \$0.20 increments.
 - As the stock price changes, this is the target amount you should be trying to hold.
 - But adjusting the hedge too often, or using market orders will boost the trading costs.
 - Remember: the size of the position is **20,000** shares.

Copyright 2014, Joel Hasbrouck, All rights reserved

Practical complications

- We've concentrated on hedging short term changes in the stock price S.
 - This is called delta hedging.
- **\Box** The hedge ratio also depends on *T*, *r* and σ .
 - σ depends on market conditions and new information.
 - Even if *r* and *σ* are constant, *T* will change with the passage of time.

- Adjusting the hedge requires us to trade in the direction of the market.
 - We sell when *S* falls, buy when *S* rises.
 - Do our trades push the price against us?
- □ Are there other traders who are also trying to delta-hedge?
- What if there is a significant news announcement when the market is closed?

Copyright 2014, Joel Hasbrouck, All rights reserved

Hedging and jumps

- Delta hedging works best when successive price movements are small.
 - Slow accumulations of lowintensity information
- Example SPY, April 15, 2011
- Delta hedging does not work well when prices move due to large information shocks.

- At 10AM, a customer wants a one-year ACOR call with X = \$20.
- \Box *T* = 1; assume σ = 0.5, *r* = 0.
- □ At 10AM, the stock price is $S \approx$ \$21.
- □ From Black-Scholes C = \$2.976 and $\Delta = N(d_1) = 0.623$.
- □ We sell ten 100-share call options to a customer at \$6
- □ We hedge by buying 623 shares of ACOR.
- □ At about 13:20 the stock price goes to \$27.
- □ At *S* = \$27, *C* = \$7.576 and Δ = 0.875

Time		Assets	Liabilities	
10:00	Cash received from sale of calls	6,000	2,976	Calls, mark-to-mkt (\$2.976 × 100 × 10)
	Stock (623 sh @ \$21)	13,083	13,083	Loan / charge to capital
			3,024	Net worth
14:00	Cash	6,000	7,576	Calls (\$7.576 × 100 × 10)
	Stock (623 sh @ \$27)	16,821	13,083	Charge to capital
			2,162	Net worth

Replication An alternative direction for the H3 case. The customer says, "The bank wants \$1.41 for a call that Black-Scholes says is worth only \$0.84? That's crazy. Can we 'nanufacture' the option ourselves?" How does the customer do this?