
Effective Analysis of Runtime Failures in Group Communication Systems

Alex Krits
IBM Haifa Research Lab

krits@il.ibm.com

Benny Mandler
IBM Haifa Research Lab

mandler@il.ibm.com

Yoel Krasny
New York University

jkrasny@stern.nyu.edu

Gabriel Kliot
Israel Institute of Technology

gabik@cs.technion.ac.il

Oren Rubin
IBM Haifa Research Lab

orubin@il.ibm.com

Roman Vitenberg
IBM Haifa Research Lab

romanv@il.ibm.com

Abstract

We describe the methodology employed to overcome
the challenges we encounter while supporting world-wide
installations of Distribution and Consistency Services
(DCS), the distributed group communication component of
WebSphere (WAS). Our solution relies on a log analyzer
that performs cross-log verification for a set of traces
collected from the appropriate processes. Trace generation
can be dynamically and selectively enabled on the client
premises. The comprehensive analysis relies on a carefully
devised set of invariants that need to be preserved at every
point in time. The analysis determines if a problem has
occurred, and helps to pin-point the root cause of real
problems. A separate mechanism is combined in order to
provide runtime monitoring, health checking, as well as
detecting and analyzing deadlocks.

The main contribution of this paper is in presenting the
fruitful combination of the automated runtime monitoring
with the post-mortem distributed log analyzer that together
detect a significant portion of problems while minimizing
manual involvement and facilitating root cause analysis.

1. Introduction

DCS is a view-oriented group communication compo-
nent [1], which lays the foundation for highly available
and fault-tolerant systems. It is a distributed, complex,
scalable, and non-deterministic system, thus challenging
to test and support while deployed in the field. Moreover,
most failures of this component are catastrophic for the
client, thus they demand fast resolution of encountered
problems. An additional complication is that customers
are often not even aware that a problem has occurred in
the system. The complexity of the system further stems
from the combination of two programming paradigms:
asynchronous message-based communication and con-
current multithreaded programming (For more detailed
information see [2]).

Our solution is composed of two components: exploiting

DCS layered architecture we seamlessly insert a new layer
which monitors the system at runtime, complemented by
a distributed log analyzer, which forms a unified global
picture of assorted distributed logs.

Enabling the system is a carefully composed set of in-
variants, some local and some distributed, that need to be
preserved at every execution point. The invariants may be
verified by the runtime monitor or by the log analyzer. In-
variants examples:
• All view members agree on the same view members,

id, and leader. Verification of this property provides an
indication whether the occurred chain of view changes
is legal or not.

• Messages were delivered according to requested guar-
antees.

2. Runtime Monitoring
In order to implement runtime monitoring, we chose to

add a layer into DCS just below the application layer. This
layer observes all messages and events through the stack
and verifies the correctness of DCS operation. This layer
can be made a part of the running DCS stack based on need.

2.1. Deadlocks detection

Deadlocks detection and elimination is not a trivial task
in the multi-component environment of DCS. We utilize
JDKs ability to detect deadlocks during core dumps, which
can be triggered by sending a signal to the JVM when DCS
suspects that a deadlock has occurred.

DCS suspects a deadlock by using a pair of timestamps
and a separate thread that runs in parallel with the standard
system threads. One timestamp is updated, under the main
DCS lock, by the DCS periodic self-checking mechanism.
A second timestamp is periodically updated by a separate
thread, without taking any lock. If the second timestamp
is not updated we suspect that DCS is suffering from CPU
starvation. If, on the other hand, the second timestamp is
updated but the first is not we suspect a deadlock involving
the main lock, and thus initiate a core dump.



The biggest advantage of this mechanism is that it elim-
inates the need to recreate deadlocks. Once a problem oc-
curs, all the information needed for the developer to solve
the problem is logged.

3. Distributed log analyzer

The log analyzer performs cross-log verification of
events that occur at different processes by utilizing both
the real and logical time in which events took place. The
analysis system verifies distributed invariants by inspecting
logs sent by the customer. This post-mortem log analysis
is done partly based on the information that the runtime
monitoring layer recorded in the log files.

The log analyzer extracts all relevant log entries, recon-
structs a global execution path of the system, builds helper
data structures, and invokes various post-mortem checkers
to verify that the distributed invariants were preserved.

By extracting only small amount of relevant informa-
tion from all log files and checking the abidance by the
invariants, the log analyzer solves the problem of large
amounts of available distributed information that is hard to
interpret. Automatic analysis of the gathered information
relieves developers from sifting through and interpreting
and manually analyzing the traces. When the post-mortem
checking system finds a violation of the invariants, it sup-
plies the developer with sufficient information to facilitate
root cause analysis.

The main challenge of reconstructing consistent global
history is to correlate multiple log events from different
logs. The log analyzer handles the correlation problem
by combining logical and real clocks [3]. The analysis
consists of two phases: in the first phase, the analyzer
correlates only events in different logs that are tagged with
both logical and real time. The analyzer makes a single
simultaneous scan over the logs of all processes in the
execution and attempts to merge them. Once a correlation
for a single global event is found, the analyzer proceeds
to search correspondence for the next global event. More
specifically, correspondence is established based on logical
timestamps as long as the real time difference does not
exceed the maximal assumed clock skew. In the rare case
that there exist several different views with the same view
identifier within the clock skew, we employ additional
sanity checks for resolving the conflict.

Based on the gathered information, the log analyzer
builds a view graph, which represents a global evolution of
views in the system. Every node in this graph corresponds
to a view whereas an edge between two views signifies
that there is a process that established these two views in
succession.

Once a correspondence for view-related events is estab-
lished, the analyzer starts the second phase and attempts
to verify the correctness of all other events. This is done
by separately considering each group of events that are en-
closed by the preceding and succeeding view-related events.

3.1. Additional Post-mortem checks

Once the view graph is built, various post-mortem
checks can be executed on it. For example:
• Each process that is reported as a view member by other

processes has a log record that corresponds to this view
• Messages delivery guarantees

When such a post-mortem check detects a problem, the
developer will be supplied with all relevant information
available in the logs: description of the problematic event,
view number and names of the members involved, exact
time of its occurrence at each participating member,
lines in the log file from which the relevant log entries
were extracted, etc. Afterwards, this information will be
efficiently used in root cause analysis.

An important attribute of the post-mortem analyzer
is that it is not tightly coupled with the specific DCS
implementation and events. In fact, it may be used by
any group communication system that logs sufficient view
membership information and provides an appropriate
log parser. The post-mortem analyzer already supports
additional types of logs, such as the standard WAS logs,
which include only a small part of DCS log events. This
allows WAS system administrators to use it as an external
tool at a client site.

4. Future Work
There are several outstanding issues which we encounter

often in customer engagements for which a solution hasn’t
yet been devised.
• A prominent experience with customers is that configur-

ing these systems is not trivial and is error prone. To this
end a configuration verification tool was written, and
will not be covered specifically here

• Customers are often not even aware that a problem has
occurred. This can lead to a state in which the system is
malfunctioning for a considerable amount of time, not
providing the high availability features for which it was
planned.

• Customers often do not realize the nature of the prob-
lems, and thus do not know on which processes to turn
on verbose tracing, and which trace files they should
submit for inspection.

References
[1] G. Chockler, I. Keidar, and R. Vitenberg. Group communica-

tion specifications: a comprehensive study. ACM Computing
Surveys, 33(4):427–469, 2001.

[2] E. Farchi, G. Kliot, Y. Krasny, A. Krits, and R. Vitenberg.
Effective testing and debugging techniques for a group com-
munication system. In Dependable Systems and Networks
(DSN), pages 80–85, 2005.

[3] L. Lamport. Time, clocks and the ordering of event in a dis-
tributed system. CACM, 21(7):558–565, 1978.

2


