
Automatic Simulation of Network Problems in UDP-Based Java Programs

Eitan Farchi

IBM Haifa Research Lab,

farchi@il.ibm.com

Yoel Krasny

IBM Haifa Research Lab,

yoelk@il.ibm.com

Yarden Nir

IBM Haifa Research Lab,

yarden@il.ibm.com

Abstract
This paper describes a tool for black-box testing of

UDP-based distributed Java programs. UDP provides

little guarantee for correct delivery of data, and therefore

requires the application to verify the integrity of
communication according to its needs. Debugging such

application is hard, since it is hard to create at will bad

network conditions. The tool describes here creates an

intermediary layer above the Java API which simulates

network noises. It therefore enables stress-testing the

application even on a flawless network environment. We
describe a field experience of testing an application, using

the tool vs. using specially-written testing code. We show

the two approaches to be complementary.

1. Introduction

TCP and UDP are the two main networking protocols

that can be employed in distributed applications. TCP

guarantees that once a connection has been established

between two parties, data sent from one side will be

received at the other side in correct order. UDP does not

guarantee this; it is based on dividing the data to packets,

also called datagrams. While the data in each packet is

guaranteed to be delivered, there is no guarantee about the

packets themselves; packets may be lost, duplicated, or

arrive in a different order from the order of sending. Java

contains built-in support for both protocols.

Most applications need to verify at least some degree

of integrity of data received. TCP spares this burden from

the programmer, but at the price of efficiency and

flexibility. Therefore, many performance oriented

applications will prefer to use UDP. This means that the

programmer needs to implement herself some protocols to

ensure the required integrity of data, including handling of

lost or misplaced data. Designing and implementing such

a protocol would normally be very bug-prone.

Testing such protocols is hard, because usually the

network environment which the developer has when

testing the application is too friendly: it will in fact deliver

all packets, or almost all, in perfect order. Thus there will

be no effective test of the protocol's paths for handling

misplaced packets. The bugs are likely to be found only

late in the development cycle, or in the field.

The programmer may write testing code which

simulates network "noises" – packets lost or misplaced.

This approach is powerful in finding and analyzing bugs,

but requires programming overhead, and careful design.

This paper presents a tool – a component of "Contest:

Concurrent Testing Tool" [4] – which gives the developer

automatic simulation of network noises. By instrumenting

the bytecode, calls to Java UDP API are replaced by calls

to code of our tool. This code creates an intermediary

level above the Java API, which simulates network

disturbance (introduces "noise") in a controlled fashion.

The developer can then test, with no additional effort, the

behavior of the application in arbitrarily bad network

conditions.

Chapter 2 of this paper gives a brief introduction to the

UDP API in Java. Chapter 3 details what we want our

automatic noise tool to be able to do. Chapter 4 describes

the core techniques we use, special problems and their

solutions. Chapter 5 describes a field experience in testing

a UDP-based application – group communication [2] –

with the automatic noise tool as well as with specially-

written testing code. This experience sheds light on the

pros and cons of both approaches.

2. UDP in Java

Our tool works with the java.net package API,

available since version 1.1 of Java. For simplicity, we

describe only the API of this package. Java 1.4 introduced

new API as part of the java.nio package, in particular

the DatagramChannel class. The application of the

techniques described here to the new API is mostly

straightforward.

A packet is represented in Java by class

DatagramPacket. It contains a byte buffer, length and

offset (indicating which part of the buffer is relevant), and

socket address (IP address and port). The address is of the

other side: the sender in case of received packets, the

target in packets for sending.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

Class DatagramSocket handles sending and

receiving of packets. It is connected to a local port. The

method send(DatagramPacket) gets a packet, and

sends it to the address specified in it. The method

receive(DatagramPacket) reads an incoming

packet, and fills the given DatagramPacket with the

data and address received (for brevity, we'll refer to these

methods simply as send() and receive()). It blocks

until a packet arrives; however, timeout may be defined

for the socket, limiting the blocking time. If the timeout

expires, receive() throws an

InterruptedIOException (which we shall refer to

as "timeout exception").

A DatagramSocket may or may not be connected

to a remote address. If it is connected, it may only send

and receive packets to/from that remote address.

3. Features of the automatic noise

The basic requirement from our tool is that all the

problems we simulate are indeed possible without our

tool, provided the network conditions are bad enough.

That is, we must not cause any false alarm. The tool is

implemented as part of the ConTest tool [4], which

introduces noise in the multi-threading level to reveal

concurrent bugs. Virtually all distributed applications are

also multi-threaded, so the combination with ConTest

gives additional benefit for the programmer, compared to

a tool that would simulate only network problems.

ConTest, with the UDP noise feature, is activated by

instrumenting the bytecode class files – it has no effect on

the source, and can be done by testers as well as by

developers, in any environment.

The tool provides simulation of arbitrarily bad network

conditions, up to complete network breakdown. This is

useful even for applications which are not designed to

perform well in such conditions: they should at least fail

gracefully, and it is desirable to test this behavior. The

simulation of less noise than complete breakdown is

random: all packets have an equal probability of being

interfered with (although the selection can be tuned in

some aspects, as described below).

The tool works locally for each JVM. A distributed

application with several nodes can apply the tool to only a

subset of the nodes, or set different parameters of noise

creation for each node.

There are four parameters defining the behavior of the

tool. The parameters are given in a preference file, which

is read by our code in the beginning of the program's run.

In addition, they can be changed on the fly, either by calls

to our code in the test program source, or by a simple

application that we provide, which runs in an independent

JVM and communicates with the noise mechanism via a

TCP/IP socket. The four parameters are:

• Remote Nodes. Our noise can be applied only to

packets coming from, or going to, certain other nodes

(one or more, specified by their IP addresses). By

default, all remote nodes are considered – no

distinction is done. Note that this parameter, like all

others, is set independently for each node. In addition,

random nodes selection can be specified: once in a

while our tool randomly picks some IP addresses from

all those seen so far, and sets them as the selected

remote nodes. After some duration, measured in

number of send/receive calls, the selection is changed.

• Direction. The noise can be applied on incoming

packets only (we intervene in receive() calls), on

outgoing packets only (send() calls), or both. Note

that whether or not a send() operation has

succeeded has no direct effect on the sending node.

Tampering with outgoing packets actually tests how

the receiving nodes cope with the disturbances.

Looking at two interacting nodes, tampering with the

outgoing packets in one of them is equivalent to

tampering with the incoming packets in the other.

However, if there is one node A which communicates

with several others B1, B2, ..., it may be convenient to

tamper only with outgoing messages from A, and see

how B1, B2, ... are affected.

• Mode. we define five modes:

1. No noise: packets are passed through our code with

no interference.

2. Delay (simulate heavy network delay at this node):

all packets are accumulated and are not passed to

the application. If the mode is changed to 1, 4 or 5,

these packets will be sent/received ASAP, in their

original order (the meaning of ASAP will become

clear in section 4). The accumulated packets will be

dropped (and lost) if the type is changed to 3.

3. Block (simulate network failure at this node): all

packets are lost.

4. Random noise, conservative: packets are randomly

dropped, duplicated, and reordered. The probability

of these actions depends on the strength parameter –

see below.

5. Random noise, radical: same as 4, but with some

small probability, the node can start behave as if it

were in state 2 or 3. After a time interval T

(randomly chosen, measured in number of

send/receive operations), the special behavior will

cease, and the node will return to behave as if it

were in mode 4, until the next time it "decides" to

change the mode. When returning from the

temporary special mode, if it was as in mode 2, the

packets that were meant to be sent/received during

T will be sent/received ASAP. If the temporary

mode was as in mode 3, the packets will be lost.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

• Strength: Applies when one of the two random modes

is in force, and determines how much noise is made.

Specifically, it determines the probability that each

send/receive call will undergo a "bad thing" (omission,

duplication, reordering).

In the random modes, there is another type of noise for

receive calls, in addition to omission, duplication and

reordering. This is a deliberate throw of timeout

exception, provided that timeout is defined for this socket.

The idea, again, is that this is something that may happen

in the field as a result of network problems, but is not

likely to happen in the environment of the developer, and

is therefore at risk of being wrongly dealt with in the

program – unless it is forced in the test.

The motivation behind the different parameters is to

give the tester some power and flexibility to test scenarios

of the application which she finds interesting. In section

5.3 below, we give an example. In principle, other

parameters and modes could have been used (e.g., select a

remote port, or set different probabilities for different

noises). We chose those which we judge to be most useful

to cause typical interesting scenarios, while keeping the

interface reasonably simple.

A "lazy" tester, which is interested in stress-testing the

application but not with specific scenarios, would

normally set Remote Nodes to all or random, direction to

both, and mode to one of the random values. It then

remains only to play with the strength, testing different

levels of stress.

It is important to point out one limitation of the tool –

all the decisions are done locally for a given node; our

tool has no overall view of the application. Some

scenarios would involve simultaneous events in two or

more nodes, and this cannot easily be forced by the

automatic tool (an example is given in section 5.4). It can

still be done with an external intervention, by changing

the parameters on the fly simultaneously in the different

nodes. However, doing so requires an additional work of

incorporating tool calls into the test program. Giving the

tool capability to make coordinated decisions in different

nodes would require incorporating communication

protocol into the tool itself, making it extremely more

complicated, and probably less easy to use.

3.1 Example

To demonstrate the behavior, consider a simple

program composed of two nodes. One is a "getter". It

listens on a given port, using DatagramSocket. When

it receives a packet, it simply echoes the bytes in the

packet, and listens again. The received strings are printed

to the screen separated by a space. If no packet has arrived

in 10 seconds, a warning is given to the screen, but the

program just returns to listen This is implemented by

defining timeout to the socket, and by catching and

printing a possible timeout exception in each iteration of

receive(). The getter continues the loop until it gets a

packet with a pre-defined "finish" code.

 The other node is a "sender". It sends to the getter's

address 100 packets, containing the numbers 0 through 99

sequentially, represented as strings. Then it sends the

"finish" code. The finish code is sent three times, so that if

it lost once (or twice) due to communication problems, the

receiver is still likely to get it (if the first one did succeed,

the other two will be sent and just ignored by the closed

socket at the getter). If there are no network noises, the

output of the getter will just be the numbers from 0

through 99 sequentially. If there are network noises, some

of the numbers will be lost, some will be duplicated, and

some will arrive out of order.

First we run the program without our tool, using two

command-line consoles on the same machine. Here is the

output of the getter:

>listening...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 finishing

The numbers appear in perfect order. Now we

instrument the application, and use our noise-creation

tool. We set mode to random-conservative (#4 above),

strength to 10 (meaning that roughly 1 out of 10 packets

should undergo some type of disturbance), and, at this

stage, direction to outgoing only. This means that the

noise-insertion will directly affect only the sender. The

output of the getter follows, with highlighting added:

>listening...
0 1 2 3 5 6 8 9 7 10 11 12 13 11 14 15
16 17 18 17 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 59 60 61 62 64 63 65 66 67
68 69 70 72 71 73 74 75 74 76 73 77 73
78 79 80 82 83 81 84 85 86 87 89 88 90
91 92 93 94 95 96 97 98 99 finishing

We see that generally the order remained, but with

some disturbances: 4 and 58 were missing. 7 and 81

appeared "too late". 11 and 17 arrived twice, 73 arrived

three times. 63 was swapped with 64, and 88 with 89.

Since the decision is random, another run will show

similar disturbances in different places. For the

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

programmer, it means that she gets value from running the

same test many times, since different decisions will be

taken, and presumably different paths in the program will

be executed.

Now we run it again, with direction incoming only –

the noise insertion directly affect the getter.

listening...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17
exception:
java.net.SocketTimeoutException
datagram socket receive: time out
exception artificially generated by
ConTest
18 19 20 21 22 23 24 26 27 25 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 44
45 46 47 43 48 49 50 51 52 53
exception:
java.net.SocketTimeoutException
datagram socket receive: time out
exception artificially generated by
ConTest
54 55 56 57 58 59 60 61 62 63 64 65 66
67 68 69 70 71 72 73 75 76 77 74 78 80
81 82 79 83 84 85 86 88 89 90 91 93 94
95 96 97 98 99 finishing

We see the same disturbances as before (at different

places, of course), but in addition, timeout exception was

thrown twice. It didn't actually take 10 seconds with no

packet arriving; our tool just threw the exception, to

simulate condition that might have happened.

4. Underlying techniques and solutions

4.1 Where our code operates

The noise-insertion work is done at a class of ours

called Ct_DatagramSocket ('Ct' for ConTest). This

class extends java.net.DatagramSocket, and

overrides the send() and receive() methods.

The instrumentation replaces calls to

DatagramSocket constructors with calls to

Ct_DatagramSocket constructors (which in turn call

the super-class – DatagramSocket – constructors,

with the same parameters). From this moment, calls to

send() and receive() on the created objects will call

our methods. Most other methods of DatagramSocket
are not touched by our code, and so allow the object to

behave as usual – except the noises at send() and

receive().

Our send() and receive() filter the packets –

omitting and reordering some. When we want to actually

send or receive a packet, we simply call super.send or

super.receive – these do the "real" sending or

receiving. In what follows we'll denote these "real"

operations as send* and receive*.

4.2 Doing noise in send()

send() is easier to manipulate than receive(),

because whether it succeeds or not has no direct effect on

the local JVM (provided it didn't take IO Exception). In

one call of send() we can do one send*, zero, or more

than one.

send() receives a DatagramPacket to deliver. If

we decide to send the packet without disturbance, we just

send* it, of course. If we want omit this packet, we return

from send() without sending*.

We also need to be able to store packets, when in delay

mode. For this we keep a pool – a queue of

DatagramPacket objects that were given to send().

In delay mode, we store the given packet in the pool, and

return without sending*. When the mode changes to no-

noise or random (or the direction or Remote Nodes
parameters change), we just remove all packets from the

pool and send* them. There is one pool per each

Ct_DatagramSocket object.

The same pool is used for reordering and duplication in

random mode. Reordering is achieved by deferring a

packet until the next packet, or several packets, have been

sent*. The deferred packets are stored in the pool instead

of being sent* immediately. In each send(), after

sending* the new packet given to this send() (or

omitting it, or deferring it), in a fixed probability we poll

the pool: send* a packet from the pool if there is one.

Sending the pooled packet after the newer one causes the

order among these two packets to be reversed. For

duplicating a packet, we create an identical

DatagramPacket (sometimes more than one copy),

send* one copy and put the other ones in the pool.

Usually (depending on the strength parameter) the pool

would contain at most one packet, but sometimes it will

contain more. It is ordered by time of insertion. When the

pool is polled, the packet that is taken is either the first or

the last, randomly in equal probability. This gives some

more mixing of packets.

4.2 Doing noise in receive()

The types of intervention in receive() are

symmetrical to those of send, plus the timeout exception

(as explained in section 3 above). However, things are

more delicate here. As opposed to send(), receive()
has effects on this JVM: It is given a DatagramPacket
(which may or may not be empty), and this packet is

modified – filled with data – before receive() returns.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

Until it returns, the method blocks. If timeout is defined,

the method might leave by throwing timeout exception.

It is therefore illegal for us to return from receive()
without changing the given packet, or with changing it to

an arbitrary string – this is not a possible result in the real

world, regardless of the network conditions. Rather, we

need to fill the given packet, and we need to fill it with

data (including sender's address) that was actually

received*, either in this receive() or earlier.

Omitting one packet (in random mode) means to do

two receive* calls: the first is given a dummy packet

(which is then discarded). The second is given the real

packet to fill (the one given to this receive()).

For each DatagramSocket we hold a receive pool, in

addition to the send pool. Deferring one packet (for

reordering) is the same as omitting, except that the first

packet is not discarded but pooled.

Duplication is done by one receive*. The data is copied

to the given packet, and also to one or more temporary

packets, which are pooled.

In block and delay modes, if no timeout is defined, we

do receives* repeatedly, either discarding the packets or

pooling them, until the mode changes. Each receive()
call then blocks until the mode changes – which is indeed

what would happen in the real world in complete network

halt (which is what we simulate in these modes). If

timeout is defined, things get a lot more complicated – we

solved this problem, but it is beyond the scope of this

paper.

Polling the receive pool means to take a packet, and

copy its data into the DatagramPacket given to the

receive(). This means that in a receive() that

decides to poll the pool, no receive* is done. After leaving

delay mode, we need to empty the pool ASAP: this is

done by turning on a flag, meaning the socket is now in a

state of emptying the receive pool: every receive()
copies a packet from the pool, avoiding doing receive*.

When the pool has been emptied, the flag is turned off.

Copying data from a pooled packet to a given

DatagramPacket presents another delicate issue,

stemming from the double limitation imposed on the data

buffer by the API: Suppose the DatagramPacket given to

receive() (not under the noise mechanism) has a

buffer of m bytes, and the packet arriving from the

network contains n bytes. The number of bytes that will

be written in the packet is min(m,n). When copying a

pooled packet, there are three numbers to consider – the

length of the original packet from the network, the buffer

length of the pooled packet (which was originally used to

receive* from the network), and the new packet which

will be handed to the application. It is complicated to

guarantee that the final result in the handed packet is a

possible result that would have been obtained if this

packet was really used to receive* the original packet. The

exact explanation of the problem and the solution is again

beyond the scope of this paper.

5. Comparing the automatic noise tool to a

white box approach in testing of group

communication

For a given black-box test, automatic simulation of

network noise randomly creates different scenarios at

each run. We call this the black box generic approach. In

contrast, a tester might simulate some network behavior

by manipulating internal software events. We call this the

white-box non-generic approach. Each approach has its

pros and cons. For example, defining and forcing a test

scenario for a specific program under test might be easier

with the white-box approach, taking into account the

semantic of the program. On the other hand, it is easier to

create many interesting tests with the black-box approach.

In this section we compare the two approaches, based on

our experience in using the two approaches in testing a

specific group communication application.

5.1 Stack architecture group communication

Group Communication is a mean for providing multi-

point to multi-point communication for a group of

processes. Groups are usually dynamic, in the sense that

the set of group members continuously changes. A group

communication service provides means to deliver a

message from a specific member to all of the group

members. In addition, the group communication service

usually supplies a group membership service, which

tracks the set of group members and reports these changes

to the members. The output of the membership service is

called a view, consisting of the set of the currently active

members in the group. The membership service strives to

deliver the same view to all active members.

A group communication service can support various

guarantees for its messages delivery: best effort unreliable

delivery, reliable delivery (ensures that messages sent

among non-faulty processes are not lost), and Virtual

Synchrony (VS) delivery, which means that all messages

from a group member are delivered atomically to the

group. That is, either all group members or none of them

receive the message [1], [2].

The Java group communication system VRI (Versatile

Replication Infrastructure), whose design is based on the

Clue (The AS /400 Cluster engine [6]), supports the above

mentioned guarantees for its message delivery, and

supplies a membership service to track the group

members. The architecture of the VRI is based on a stack

of layers. All layers support a generic interface which

includes calls related to either message delivery or

membership change. In addition, every layer is

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

responsible for a certain task: the Membership layer is

responsible for the membership change service, the

Virtual Synchrony (VS) layer is responsible for keeping

the VS delivery guarantees, and the Transport layer is

responsible for sending the messages, using Java UDP,

guaranteeing the delivery of those messages to the group

members.

Membership

• •
Application Layer

• •
Virtual Synchrony

• •
Transport

Fig. 1: The VRI layers architecture. There is
one interface for up calls and one for down calls.
The two interfaces are used by all the layers

5.2 The manipulator layer (decorator) test

technique

The white box testing approach of the VRI is

implemented by the Manipulation layer. The

Manipulation layer is responsible to inject noise into the

VRI stack in order to test specific uncommon scenarios.

Following the Decorator design pattern [5], the

Manipulation layer implements the generic interface of a

layer in the stack, and it can be inserted at any point in the

stack without affecting other layers. The manipulation is

done by delaying stack calls, changing the parameters of

stack calls and rejecting stack calls. By doing so, the

manipulation layer simulates delays of messages delivery

and bugs in other layers in the stack. The decision

whether to manipulate a stack call can be either random or

deterministic, and depends on the member's name, the call

parameters and the state of the stack.

Membership

• •
Application Layer

• •
Virtual Synchrony

• •
Manipulation

• •
Transport

Fig. 2: The VRI layers architecture, with
manipulation layer added. The Manipulation
layer can be inserted anywhere in the stack,
because it follows the up-calls and down-calls
interface.

5.3 Example 1: testing of message completion in

virtual synchrony

Given a communication group, the virtual synchrony

layer guarantees that all messages from a group member

are delivered atomically to the group. That is, either all

group members or none of them receive a message.

Missing messages typically occur as a result of a failing

group member. When the membership layer identifies that

a group member is failing, a new group is created. As part

of the group creation process, the Virtual Synchrony layer

performs a messages completion procedure so that all

living group members will get the same set of messages.

In order to test the Virtual Synchrony's messages

completion, we would like to test the following scenario:

1. (A, B, C) are part of a certain view.

2. C sends messages to the group members.

3. C fails. Before it failed, it had succeeded to deliver

some VS messages to A but not to B.

4. During the view change, A should guarantee the

atomicity, i.e. deliver to B all the messages from C that

B missed.

It is easy to create a black-box test that potentially

leads to the above scenario. Simply create a group (A, B,

C). Let C send messages to the group and then make C

fail. However, the probability of the scenario is very low,

as the probability of losing a message in a normal

environment is low, and the probability of losing one right

before a member fails is even lower. Using the VRI

implementation, we have succeeded to create this scenario

only after 18 hours of testing, which included a group of

six members dynamically changing every two minutes

(i.e. members were leaving and joining the group), and a

messages load of 100 messages per second for each

member.

Thus, control over the timing of a member failure and

message sending is required. This type of control can be

obtained either in a white-box manner, using the

manipulation layer, or in a black-box manner, using the

automatic simulation of network noise and failures.

Here is how to obtain the scenario with the automatic

simulation of network noise:

1. Set the automatic noise mechanism on C only, on

mode random-radical, direction outgoing, and set

Remote Nodes to be the IP of C.

2. (A, B, C) are part of a certain view.

3. At first, C sends messages to A and B, with just little

disturbance with the latter.

4. Sooner or later the noise-creation mode changes to

delay or block – no packets will be sent to B. Packets

to A continue to arrive undisturbed.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

5. The Membership layer of B identifies that C has

failed, and notifies A that a group change is in order.

6. During the group change protocol, The Virtual

Synchrony Layer of A delivers the missing messages

to B.

Fig. 3: Strongly disturbing outgoing messages
from member C to B will result in the removal of C
from the view, and the activation of the VS message
completion procedure.

Instead of telling C to make noise explicitly with B, we

can set Remote Nodes to random. In high probability, B

will be chosen; alternatively, if A is chosen, a symmetric

scenario happens, with A and B changing roles. This

demonstrates how interesting scenarios happen also with

"stupid", general-purpose setup of the noise mechanism

parameters.

To obtain the above scenario with the white-box

Manipulation layer, we set the Manipulation layer

between the Virtual Synchrony layer and the transport

layer, and make the manipulation layer of B lose a range

of messages (From M to N) from C. Doing so would yield

the following sequence:

1. (A, B, C) are part of a certain view.

2. C sends messages at the range 0 to (M-1) to both A and

B.

3. B loses the incoming messages at the range M to N,

while A receives them.

4. B receives message (N+1), identifies that it is not a

consecutive message (i.e. B performed an illegal

action) and notifies A that a group change, in which C

should be thrown out of the group, is in order.

5. During the group change protocol, The Virtual

Synchrony Layer of A delivers the missing messages

to B.

The advantage of using the manipulation layer is the

complete control over the scenario. Using the

manipulation layer, the tester knows exactly which

messages were lost and should be completed. The

automatic noise cannot support this. The disadvantage is

that the requirement of the manipulation layer has to be

programmed specifically for this test, whereas with the

automatic noise it only requires setup of preferences. In

addition, the automatic noise test forces a correct and

possible environment state. Thus, the test is perfectly

black box, i.e. does not require a change in the program

under test. In addition, losing the range of messages, as

the manipulation layer does here, is only possible if the

transport layer has a bug. Finally, with automatic noise

the same test can be easily enhanced by randomly

blocking incoming or outgoing messages on any of the

group members. This will create additional interesting

scenarios with very little additional work. For example, a

partition scenario between (A, B) and C is easily obtained

when A and B are blocked.

5.4 Example 2: testing of mew view in the

transport layer

The Membership layer of the VRI stack is responsible

to track the set of group members and report these

changes to the group members. The output of the

membership service is called a view, consisting of the list

of the currently active members in the group and a unique

identifier (view id). The membership service strives to

deliver the same view to all active members. One of the

group members is selected to be the view leader – the

manager of the view change protocol. Having decided that

the group members changed and a view change is in

order, the membership layer of the view leader distributes

a New View message to the membership layers of the

group members. The membership layer of each group

member invokes a New View call down the stack, to

inform the stack layers that the group has changed. The

New View call influences the stack layers, including the

transport layer.

When the transport layer sends a message to all view

members, it adds the view id to the message. The

transport layer at the receiver side should deliver this

message only if the message's view id is equal to the

current view id of the receiver. That way, the transport

layer guarantees that messages sent to all of the view

members will arrive, indeed, only to the view members.

Because the New View calls in different members can

not be totally synchronized, it is possible that the transport

layer of a certain member C will be in a certain view V1,

and the transport layer of another member B will be in the

new, consecutive view V2. In this case, when B sends a

message to the group with a View id V2, C should not

deliver it up the stack, but rather save the message until its

New View call is invoked.

In order to test the above behavior, we need to perform

a test that causes one member of the group to be in a new

view V2 and to send a message to another member which

is still in the old view V1. Following is the scenario that

will implement the required test:

B A

C

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

1. (A,B,C,D) are the group members. The view id of the

group is V1. A is the view leader.

2. D fails.

3. The Membership layer of A, the view leader, sends a

New View message to (A,B,C)

4. Both A and B receive the New View message and

invoke a New View call down the stack. The new view

is (A,B,C) and its View id is V2.

5. B sends a message M to the group, marked with view

id V2.

6. C receives the message from B and saves it (C has not

received the New View message yet, and therefore

can't deliver message M upwards).

7. C receives the New View message from A, and

invokes a New View call down the stack.

8. C delivers the saved message M up the stack.

The probability of creating the specific scenario when

running the black box test is very low, as usually the New

View call in both stacks happens almost simultaneously

(since the New View message arrives almost

simultaneously to B and to C).

Using the automatic noise tool will not help much: it

can cause the New View message to be delayed when

coming to C, and then message M will be handled before

it and the scenario will occur. However, since the tool

chooses randomly which messages are delayed, the

probability that this specific message is chosen is very

low. Using higher strength will increase the probability,

but will cause so much noise that the test will fail long

before the desired scenario can happen.

By contrast, it is easy to create this scenario using the

manipulation layer. The manipulation layer in member C

can be set above the transport layer, and delay the new

view event for a few seconds. This period of time gives

member B enough time to send messages that will follow

the scenario's requirements.

6. Conclusion

The automatic network noise simulation tool provides

a powerful utility to test, in a normal environment, how

UDP-based programs would behave in a less friendly

environment. It can therefore help in revealing bugs early

in the process. It requires very little effort, and can be

done by testers with no effect on the code. On the other

hand, it is "blind" to the semantics of the tested

application, and is therefore not always suitable to test

well-defined scenarios. For such tests, it may be more

beneficial to write specially-tailored testing code. The two

approaches can complement each other.

7. References

1. K. P. Birman and T. A. Joseph. Exploiting Virtual

Synchrony in Distributed Systems. Proceedings of the

Eleventh Symposium on Operating Systems Principles,

pages 123-138, Austin, Texas, November 1987.

2. G. V. Chockler, I. Keidar, and R. Vitenberg. Group

Communication Specifications: A Comprehensive Study.

ACM Computing Surveys 33(4), 2001.

3. E. Dekel and G. Goft. ITRA - Inter-Tier Relationship

Architecture for End-to-end QoS. Proceedings of the

IASTED PDCS 2001.

4. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.

Multithreaded Java Program Test Generation. IBM System

Journal. Vol. 41, No. 1, 2002.

5. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design

Patterns. Addison-Wesley, 1995.

6. G. Goft and E. Yeger Lotem. The AS /400 Cluster engine: A

case study. Proceedings of the 1999 ICPP Workshop.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

