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Abstract
This paper describes a tool for black-box testing of 

UDP-based distributed Java programs. UDP provides 

little guarantee for correct delivery of data, and therefore 

requires the application to verify the integrity of 
communication according to its needs. Debugging such 

application is hard, since it is hard to create at will bad 

network conditions. The tool describes here creates an 

intermediary layer above the Java API which simulates 

network noises. It  therefore enables stress-testing the 

application even on a flawless network environment. We 
describe a field experience of testing an application, using 

the tool vs. using specially-written testing code. We show 

the two approaches to be complementary. 

1. Introduction 

TCP and UDP are the two main networking protocols 

that can be employed in distributed applications. TCP 

guarantees that once a connection has been established 

between two parties, data sent from one side will be 

received at the other side in correct order. UDP does not 

guarantee this; it is based on dividing the data to packets,

also called datagrams. While the data in each packet is 

guaranteed to be delivered, there is no guarantee about the 

packets themselves; packets may be lost, duplicated, or 

arrive in a different order from the order of sending. Java 

contains built-in support for both protocols. 

Most applications need to verify at least some degree 

of integrity of data received. TCP spares this burden from 

the programmer, but at the price of efficiency and 

flexibility. Therefore, many performance oriented 

applications will prefer to use UDP. This means that the 

programmer needs to implement herself some protocols to 

ensure the required integrity of data, including handling of 

lost or misplaced data. Designing and implementing such 

a protocol would normally be very bug-prone. 

Testing such protocols is hard, because usually the 

network environment which the developer has when 

testing the application is too friendly: it will in fact deliver 

all packets, or almost all, in perfect order. Thus there will 

be no effective test of the protocol's paths for handling 

misplaced packets. The bugs are likely to be found only 

late in the development cycle, or in the field. 

The programmer may write testing code which 

simulates network "noises" – packets lost or misplaced. 

This approach is powerful in finding and analyzing bugs, 

but requires programming overhead, and careful design. 

This paper presents a tool – a component of "Contest: 

Concurrent Testing Tool" [4] – which gives the developer 

automatic simulation of network noises. By instrumenting 

the bytecode, calls to Java UDP API are replaced by calls 

to code of our tool. This code creates an intermediary 

level above the Java API, which simulates network 

disturbance (introduces "noise") in a controlled fashion. 

The developer can then test, with no additional effort, the 

behavior of the application in arbitrarily bad network 

conditions. 

Chapter 2 of this paper gives a brief introduction to the 

UDP API in Java. Chapter 3 details what we want our 

automatic noise tool to be able to do. Chapter 4 describes 

the core techniques we use, special problems and their 

solutions. Chapter 5 describes a field experience in testing 

a UDP-based application – group communication [2] – 

with the automatic noise tool as well as with specially-

written testing code. This experience sheds light on the 

pros and cons of both approaches. 

2. UDP in Java 

Our tool works with the java.net package API, 

available since version 1.1 of Java. For simplicity, we 

describe only the API of this package. Java 1.4 introduced 

new API as part of the java.nio package, in particular 

the DatagramChannel class. The application of the 

techniques described here to the new API is mostly 

straightforward. 

A packet is represented in Java by class 

DatagramPacket. It contains a byte buffer, length and 

offset (indicating which part of the buffer is relevant), and 

socket address (IP address and port). The address is of the 

other side: the sender in case of received packets, the 

target in packets for sending. 
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Class DatagramSocket handles sending and 

receiving of packets. It is connected to a local port. The 

method send(DatagramPacket) gets a packet, and 

sends it to the address specified in it. The method 

receive(DatagramPacket) reads an incoming 

packet, and fills the given DatagramPacket with the 

data and address received (for brevity, we'll refer to these 

methods simply as send() and receive()). It blocks 

until a packet arrives; however, timeout may be defined 

for the socket, limiting the blocking time. If the timeout 

expires, receive() throws an 

InterruptedIOException (which we shall refer to 

as "timeout exception"). 

A DatagramSocket may or may not be connected

to a remote address. If it is connected, it may only send 

and receive packets to/from that remote address. 

3. Features of the automatic noise 

The basic requirement from our tool is that all the 

problems we simulate are indeed possible without our 

tool, provided the network conditions are bad enough. 

That is, we must not cause any false alarm. The tool is 

implemented as part of the ConTest tool [4], which 

introduces noise in the multi-threading level to reveal 

concurrent bugs. Virtually all distributed applications are 

also multi-threaded, so the combination with ConTest 

gives additional benefit for the programmer, compared to 

a tool that would simulate only network problems. 

ConTest, with the UDP noise feature, is activated by 

instrumenting the bytecode class files – it has no effect on 

the source, and can be done by testers as well as by 

developers, in any environment. 

The tool provides simulation of arbitrarily bad network 

conditions, up to complete network breakdown. This is 

useful even for applications which are not designed to 

perform well in such conditions: they should at least fail 

gracefully, and it is desirable to test this behavior. The 

simulation of less noise than complete breakdown is 

random: all packets have an equal probability of being 

interfered with (although the selection can be tuned in 

some aspects, as described below). 

The tool works locally for each JVM. A distributed 

application with several nodes can apply the tool to only a 

subset of the nodes, or set different parameters of noise 

creation for each node. 

There are four parameters defining the behavior of the 

tool. The parameters are given in a preference file, which 

is read by our code in the beginning of the program's run. 

In addition, they can be changed on the fly, either by calls 

to our code in the test program source, or by a simple 

application that we provide, which runs in an independent 

JVM and communicates with the noise mechanism via a 

TCP/IP socket. The four parameters are: 

• Remote Nodes. Our noise can be applied only to 

packets coming from, or going to, certain other nodes 

(one or more, specified by their IP addresses). By 

default, all remote nodes are considered – no 

distinction is done. Note that this parameter, like all 

others, is set independently for each node. In addition, 

random nodes selection can be specified: once in a 

while our tool randomly picks some IP addresses from 

all those seen so far, and sets them as the selected 

remote nodes. After some duration, measured in 

number of send/receive calls, the selection is changed. 

• Direction. The noise can be applied on incoming 

packets only (we intervene in receive() calls), on 

outgoing packets only (send() calls), or both. Note 

that whether or not a send() operation has 

succeeded has no direct effect on the sending node. 

Tampering with outgoing packets actually tests how 

the receiving nodes cope with the disturbances. 

Looking at two interacting nodes, tampering with the 

outgoing packets in one of them is equivalent to 

tampering with the incoming packets in the other. 

However, if there is one node A which communicates 

with several others B1, B2, ..., it may be convenient to 

tamper only with outgoing messages from A, and see 

how B1, B2, ... are affected. 

• Mode. we define five modes: 

1. No noise: packets are passed through our code with 

no interference. 

2. Delay (simulate heavy network delay at this node): 

all packets are accumulated and are not passed to 

the application. If the mode is changed to 1, 4 or 5, 

these packets will be sent/received ASAP, in their 

original order (the meaning of ASAP will become 

clear in section 4). The accumulated packets will be 

dropped (and lost) if the type is changed to 3. 

3. Block (simulate network failure at this node): all 

packets are lost. 

4. Random noise, conservative: packets are randomly 

dropped, duplicated, and reordered. The probability 

of these actions depends on the strength parameter – 

see below. 

5. Random noise, radical: same as 4, but with some 

small probability, the node can start behave as if it 

were in state 2 or 3. After a time interval T 

(randomly chosen, measured in number of 

send/receive operations), the special behavior will 

cease, and the node will return to behave as if it 

were in mode 4, until the next time it "decides" to 

change the mode. When returning from the 

temporary special mode, if it was as in mode 2, the 

packets that were meant to be sent/received during 

T will be sent/received ASAP. If the temporary 

mode was as in mode 3, the packets will be lost. 
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• Strength: Applies when one of the two random modes 

is in force, and determines how much noise is made. 

Specifically, it determines the probability that each 

send/receive call will undergo a "bad thing" (omission, 

duplication, reordering). 

In the random modes, there is another type of noise for 

receive calls, in addition to omission, duplication and 

reordering. This is a deliberate throw of timeout 

exception, provided that timeout is defined for this socket. 

The idea, again, is that this is something that may happen 

in the field as a result of network problems, but is not 

likely to happen in the environment of the developer, and 

is therefore at risk of being wrongly dealt with in the 

program – unless it is forced in the test. 

The motivation behind the different parameters is to 

give the tester some power and flexibility to test scenarios 

of the application which she finds interesting. In section 

5.3 below, we give an example. In principle, other 

parameters and modes could have been used (e.g., select a 

remote port, or set different probabilities for different 

noises). We chose those which we judge to be most useful 

to cause typical interesting scenarios, while keeping the 

interface reasonably simple. 

A "lazy" tester, which is interested in stress-testing the 

application but not with specific scenarios, would 

normally set Remote Nodes to all or random, direction to 

both, and mode to one of the random values. It then 

remains only to play with the strength, testing different 

levels of stress. 

It is important to point out one limitation of the tool – 

all the decisions are done locally for a given node; our 

tool has no overall view of the application. Some 

scenarios would involve simultaneous events in two or 

more nodes, and this cannot easily be forced by the 

automatic tool (an example is given in section 5.4). It can 

still be done with an external intervention, by changing 

the parameters on the fly simultaneously in the different 

nodes. However, doing so requires an additional work of 

incorporating tool calls into the test program. Giving the 

tool capability to make coordinated decisions in different 

nodes would require incorporating communication 

protocol into the tool itself, making it extremely more 

complicated, and probably less easy to use. 

3.1 Example 

To demonstrate the behavior, consider a simple 

program composed of two nodes. One is a "getter". It 

listens on a given port, using DatagramSocket. When 

it receives a packet, it simply echoes the bytes in the 

packet, and listens again. The received strings are printed 

to the screen separated by a space. If no packet has arrived 

in 10 seconds, a warning is given to the screen, but the 

program just returns to listen This is implemented by 

defining timeout to the socket, and by catching and 

printing a possible timeout exception in each iteration of 

receive(). The getter continues the loop until it gets a 

packet with a pre-defined "finish" code.  

 The other node is a "sender". It sends to the getter's 

address 100 packets, containing the numbers 0 through 99 

sequentially, represented as strings. Then it sends the 

"finish" code. The finish code is sent three times, so that if 

it lost once (or twice) due to communication problems, the 

receiver is still likely to get it (if the first one did succeed, 

the other two will be sent and just ignored by the closed 

socket at the getter). If there are no network noises, the 

output of the getter will just be the numbers from 0 

through 99 sequentially. If there are network noises, some 

of the numbers will be lost, some will be duplicated, and 

some will arrive out of order. 

First we run the program without our tool, using two 

command-line consoles on the same machine. Here is the 

output of the getter: 

>listening...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 28 
29 30 31 32 33 34 35 36 37 38 39 40 41 
42 43 44 45 46 47 48 49 50 51 52 53 54 
55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 
81 82 83 84 85 86 87 88 89 90 91 92 93 
94 95 96 97 98 99 finishing 

The numbers appear in perfect order. Now we 

instrument the application, and use our noise-creation 

tool. We set mode to random-conservative (#4 above), 

strength to 10 (meaning that roughly 1 out of 10 packets 

should undergo some type of disturbance), and, at this 

stage, direction to outgoing only. This means that the 

noise-insertion will directly affect only the sender. The 

output of the getter follows, with highlighting added: 

>listening...
0 1 2 3 5 6 8 9 7 10 11 12 13 11 14 15 
16 17 18 17 19 20 21 22 23 24 25 26 27 
28 29 30 31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 51 52 53 
54 55 56 57 59 60 61 62 64 63 65 66 67 
68 69 70 72 71 73 74 75 74 76 73 77 73
78 79 80 82 83 81 84 85 86 87 89 88 90 
91 92 93 94 95 96 97 98 99 finishing 

We see that generally the order remained, but with 

some disturbances: 4 and 58 were missing. 7 and 81 

appeared "too late". 11 and 17 arrived twice, 73 arrived 

three times. 63 was swapped with 64, and 88 with 89. 

Since the decision is random, another run will show 

similar disturbances in different places. For the 
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programmer, it means that she gets value from running the 

same test many times, since different decisions will be 

taken, and presumably different paths in the program will 

be executed. 

Now we run it again, with direction incoming only – 

the noise insertion directly affect the getter. 

listening...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
16 17 
exception:
java.net.SocketTimeoutException
datagram socket receive: time out 
exception artificially generated by 
ConTest
18 19 20 21 22 23 24 26 27 25 28 29 30 
31 32 33 34 35 36 37 38 39 40 41 42 44 
45 46 47 43 48 49 50 51 52 53 
exception:
java.net.SocketTimeoutException
datagram socket receive: time out 
exception artificially generated by 
ConTest
54 55 56 57 58 59 60 61 62 63 64 65 66 
67 68 69 70 71 72 73 75 76 77 74 78 80 
81 82 79 83 84 85 86 88 89 90 91 93 94 
95 96 97 98 99 finishing 

We see the same disturbances as before (at different 

places, of course), but in addition, timeout exception was 

thrown twice. It didn't actually take 10 seconds with no 

packet arriving; our tool just threw the exception, to 

simulate condition that might have happened. 

4. Underlying techniques and solutions 

4.1 Where our code operates 

The noise-insertion work is done at a class of ours 

called Ct_DatagramSocket ('Ct' for ConTest). This 

class extends java.net.DatagramSocket, and 

overrides the send() and receive() methods. 

The instrumentation replaces calls to 

DatagramSocket constructors with calls to 

Ct_DatagramSocket constructors (which in turn call 

the super-class – DatagramSocket – constructors, 

with the same parameters). From this moment, calls to 

send() and receive() on the created objects will call 

our methods. Most other methods of DatagramSocket
are not touched by our code, and so allow the object to 

behave as usual – except the noises at send() and 

receive().

Our send() and receive() filter the packets – 

omitting and reordering some. When we want to actually 

send or receive a packet, we simply call super.send or 

super.receive – these do the "real" sending or 

receiving. In what follows we'll denote these "real" 

operations as send* and receive*. 

4.2 Doing noise in send()

send() is easier to manipulate than receive(),

because whether it succeeds or not has no direct effect on 

the local JVM (provided it didn't take IO Exception). In 

one call of send() we can do one send*, zero, or more 

than one. 

send() receives a DatagramPacket to deliver. If 

we decide to send the packet without disturbance, we just 

send* it, of course. If we want omit this packet, we return 

from send() without sending*. 

We also need to be able to store packets, when in delay

mode. For this we keep a pool – a queue of 

DatagramPacket objects that were given to send().

In delay mode, we store the given packet in the pool, and 

return without sending*. When the mode changes to no-

noise or random (or the direction or Remote Nodes
parameters change), we just remove all packets from the 

pool and send* them. There is one pool per each 

Ct_DatagramSocket object. 

The same pool is used for reordering and duplication in 

random mode. Reordering is achieved by deferring a 

packet until the next packet, or several packets, have been 

sent*. The deferred packets are stored in the pool instead 

of being sent* immediately. In each send(), after 

sending* the new packet given to this send() (or 

omitting it, or deferring it), in a fixed probability we poll 

the pool: send* a packet from the pool if there is one. 

Sending the pooled packet after the newer one causes the 

order among these two packets to be reversed. For 

duplicating a packet, we create an identical 

DatagramPacket (sometimes more than one copy), 

send* one copy and put the other ones in the pool. 

Usually (depending on the strength parameter) the pool 

would contain at most one packet, but sometimes it will 

contain more. It is ordered by time of insertion. When the 

pool is polled, the packet that is taken is either the first or 

the last, randomly in equal probability. This gives some 

more mixing of packets. 

4.2 Doing noise in receive()

The types of intervention in receive() are 

symmetrical to those of send, plus the timeout exception 

(as explained in section 3 above). However, things are 

more delicate here. As opposed to send(), receive()
has effects on this JVM: It is given a DatagramPacket
(which may or may not be empty), and this packet is 

modified – filled with data – before receive() returns. 
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Until it returns, the method blocks. If timeout is defined, 

the method might leave by throwing timeout exception. 

It is therefore illegal for us to return from receive()
without changing the given packet, or with changing it to 

an arbitrary string – this is not a possible result in the real 

world, regardless of the network conditions. Rather, we 

need to fill the given packet, and we need to fill it with 

data (including sender's address) that was actually 

received*, either in this receive() or earlier. 

Omitting one packet (in random mode) means to do 

two receive* calls: the first is given a dummy packet 

(which is then discarded). The second is given the real 

packet to fill (the one given to this receive()).

For each DatagramSocket we hold a receive pool, in 

addition to the send pool. Deferring one packet (for 

reordering) is the same as omitting, except that the first 

packet is not discarded but pooled. 

Duplication is done by one receive*. The data is copied 

to the given packet, and also to one or more temporary 

packets, which are pooled. 

In block and delay modes, if no timeout is defined, we 

do receives* repeatedly, either discarding the packets or 

pooling them, until the mode changes. Each receive()
call then blocks until the mode changes – which is indeed 

what would happen in the real world in complete network 

halt (which is what we simulate in these modes). If 

timeout is defined, things get a lot more complicated – we 

solved this problem, but it is beyond the scope of this 

paper.

Polling the receive pool means to take a packet, and 

copy its data into the DatagramPacket given to the 

receive(). This means that in a receive() that 

decides to poll the pool, no receive* is done. After leaving 

delay mode, we need to empty the pool ASAP: this is 

done by turning on a flag, meaning the socket is now in a 

state of emptying the receive pool: every receive()
copies a packet from the pool, avoiding doing receive*. 

When the pool has been emptied, the flag is turned off. 

Copying data from a pooled packet to a given 

DatagramPacket presents another delicate issue, 

stemming from the double limitation imposed on the data 

buffer by the API: Suppose the DatagramPacket given to 

receive() (not under the noise mechanism) has a 

buffer of m bytes, and the packet arriving from the 

network contains n bytes. The number of bytes that will 

be written in the packet is min(m,n). When copying a 

pooled packet, there are three numbers to consider – the 

length of the original packet from the network, the buffer 

length of the pooled packet (which was originally used to 

receive* from the network), and the new packet which 

will be handed to the application. It is complicated to 

guarantee that the final result in the handed packet is a 

possible result that would have been obtained if this 

packet was really used to receive* the original packet. The 

exact explanation of the problem and the solution is again 

beyond the scope of this paper. 

5. Comparing the automatic noise tool to a 

white box approach in testing of group 

communication 

For a given black-box test, automatic simulation of 

network noise randomly creates different scenarios at 

each run. We call this the black box generic approach. In 

contrast, a tester might simulate some network behavior 

by manipulating internal software events. We call this the 

white-box non-generic approach. Each approach has its 

pros and cons. For example, defining and forcing a test 

scenario for a specific program under test might be easier 

with the white-box approach, taking into account the 

semantic of the program. On the other hand, it is easier to 

create many interesting tests with the black-box approach. 

In this section we compare the two approaches, based on 

our experience in using the two approaches in testing a 

specific group communication application.  

5.1 Stack architecture group communication 

Group Communication is a mean for providing multi-

point to multi-point communication for a group of 

processes. Groups are usually dynamic, in the sense that 

the set of group members continuously changes. A group 

communication service provides means to deliver a 

message from a specific member to all of the group 

members. In addition, the group communication service 

usually supplies a group membership service, which 

tracks the set of group members and reports these changes 

to the members. The output of the membership service is 

called a view, consisting of the set of the currently active 

members in the group. The membership service strives to 

deliver the same view to all active members.  

A group communication service can support various 

guarantees for its messages delivery: best effort unreliable 

delivery, reliable delivery (ensures that messages sent 

among non-faulty processes are not lost), and Virtual 

Synchrony (VS) delivery, which means that all messages 

from a group member are delivered atomically to the 

group. That is, either all group members or none of them 

receive the message [1], [2]. 

The Java group communication system VRI (Versatile 

Replication Infrastructure), whose design is based on the 

Clue (The AS /400 Cluster engine [6]), supports the above 

mentioned guarantees for its message delivery, and 

supplies a membership service to track the group 

members. The architecture of the VRI is based on a stack 

of layers. All layers support a generic interface which 

includes calls related to either message delivery or 

membership change. In addition, every layer is 
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responsible for a certain task: the Membership layer is 

responsible for the membership change service, the 

Virtual Synchrony (VS) layer is responsible for keeping 

the VS delivery guarantees, and the Transport layer is 

responsible for sending the messages, using Java UDP, 

guaranteeing the delivery of those messages to the group 

members. 

Membership 

• •
Application Layer 

• •
Virtual Synchrony 

• •
Transport 

Fig. 1: The VRI layers architecture. There is 
one interface for up calls and one for down calls. 
The two interfaces are used by all the layers 

5.2 The manipulator layer (decorator) test 

technique 

The white box testing approach of the VRI is 

implemented by the Manipulation layer. The 

Manipulation layer is responsible to inject noise into the 

VRI stack in order to test specific uncommon scenarios. 

Following the Decorator design pattern [5], the 

Manipulation layer implements the generic interface of a 

layer in the stack, and it can be inserted at any point in the 

stack without affecting other layers. The manipulation is 

done by delaying stack calls, changing the parameters of 

stack calls and rejecting stack calls. By doing so, the 

manipulation layer simulates delays of messages delivery 

and bugs in other layers in the stack. The decision 

whether to manipulate a stack call can be either random or 

deterministic, and depends on the member's name, the call 

parameters and the state of the stack. 

Membership 

• •
Application Layer 

• •
Virtual Synchrony 

• •
Manipulation 

• •
Transport 

Fig. 2: The VRI layers architecture, with 
manipulation layer added. The Manipulation 
layer can be inserted anywhere in the stack, 
because it follows the up-calls and down-calls 
interface. 

5.3 Example 1: testing of message completion in 

virtual synchrony 

Given a communication group, the virtual synchrony 

layer guarantees that all messages from a group member 

are delivered atomically to the group. That is, either all 

group members or none of them receive a message. 

Missing messages typically occur as a result of a failing 

group member. When the membership layer identifies that 

a group member is failing, a new group is created. As part 

of the group creation process, the Virtual Synchrony layer 

performs a messages completion procedure so that all 

living group members will get the same set of messages.  

In order to test the Virtual Synchrony's messages 

completion, we would like to test the following scenario: 

1. (A, B, C) are part of a certain view. 

2. C sends messages to the group members. 

3. C fails. Before it failed, it had succeeded to deliver 

some VS messages to A but not to B. 

4. During the view change, A should guarantee the 

atomicity, i.e. deliver to B all the messages from C that 

B missed. 

It is easy to create a black-box test that potentially 

leads to the above scenario. Simply create a group (A, B, 

C). Let C send messages to the group and then make C 

fail. However, the probability of the scenario is very low, 

as the probability of losing a message in a normal 

environment is low, and the probability of losing one right 

before a member fails is even lower. Using the VRI 

implementation, we have succeeded to create this scenario 

only after 18 hours of testing, which included a group of 

six members dynamically changing every two minutes 

(i.e. members were leaving and joining the group), and a 

messages load of 100 messages per second for each 

member.  

Thus, control over the timing of a member failure and 

message sending is required. This type of control can be 

obtained either in a white-box manner, using the 

manipulation layer, or in a black-box manner, using the 

automatic simulation of network noise and failures. 

Here is how to obtain the scenario with the automatic 

simulation of network noise: 

1. Set the automatic noise mechanism on C only, on 

mode random-radical, direction outgoing, and set 

Remote Nodes to be the IP of C. 

2. (A, B, C) are part of a certain view. 

3. At first, C sends messages to A and B, with just little 

disturbance with the latter. 

4. Sooner or later the noise-creation mode changes to 

delay or block – no packets will be sent to B. Packets 

to A continue to arrive undisturbed. 
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5.  The Membership layer of B identifies that C has 

failed, and notifies A that a group change is in order. 

6. During the group change protocol, The Virtual 

Synchrony Layer of A delivers the missing messages 

to B. 

Fig. 3: Strongly disturbing outgoing messages 
from member C to B will result in the removal of C 
from the view, and the activation of the VS message 
completion procedure.

Instead of telling C to make noise explicitly with B, we 

can set Remote Nodes to random. In high probability, B 

will be chosen; alternatively, if A is chosen, a symmetric 

scenario happens, with A and B changing roles. This 

demonstrates how interesting scenarios happen also with 

"stupid", general-purpose setup of the noise mechanism 

parameters. 

To obtain the above scenario with the white-box 

Manipulation layer, we set the Manipulation layer 

between the Virtual Synchrony layer and the transport 

layer, and make the manipulation layer of B lose a range 

of messages (From M to N) from C. Doing so would yield 

the following sequence: 

1. (A, B, C) are part of a certain view. 

2. C sends messages at the range 0 to (M-1) to both A and 

B.

3. B loses the incoming messages at the range M to N, 

while A receives them. 

4. B receives message (N+1), identifies that it is not a 

consecutive message (i.e. B performed an illegal 

action) and notifies A that a group change, in which C 

should be thrown out of the group, is in order. 

5. During the group change protocol, The Virtual 

Synchrony Layer of A delivers the missing messages 

to B. 

The advantage of using the manipulation layer is the 

complete control over the scenario. Using the 

manipulation layer, the tester knows exactly which 

messages were lost and should be completed. The 

automatic noise cannot support this. The disadvantage is 

that the requirement of the manipulation layer has to be 

programmed specifically for this test, whereas with the 

automatic noise it only requires setup of preferences. In 

addition, the automatic noise test forces a correct and 

possible environment state. Thus, the test is perfectly 

black box, i.e. does not require a change in the program 

under test. In addition, losing the range of messages, as 

the manipulation layer does here, is only possible if the 

transport layer has a bug.  Finally, with automatic noise 

the same test can be easily enhanced by randomly 

blocking incoming or outgoing messages on any of the 

group members. This will create additional interesting 

scenarios with very little additional work. For example, a 

partition scenario between (A, B) and C is easily obtained 

when A and B are blocked. 

5.4 Example 2: testing of mew view in the 

transport layer 

The Membership layer of the VRI stack is responsible 

to track the set of group members and report these 

changes to the group members. The output of the 

membership service is called a view, consisting of the list 

of the currently active members in the group and a unique 

identifier (view id). The membership service strives to 

deliver the same view to all active members. One of the 

group members is selected to be the view leader – the 

manager of the view change protocol. Having decided that 

the group members changed and a view change is in 

order, the membership layer of the view leader distributes 

a New View message to the membership layers of the 

group members. The membership layer of each group 

member invokes a New View call down the stack, to 

inform the stack layers that the group has changed. The 

New View call influences the stack layers, including the 

transport layer. 

When the transport layer sends a message to all view 

members, it adds the view id to the message. The 

transport layer at the receiver side should deliver this 

message only if the message's view id is equal to the 

current view id of the receiver. That way, the transport 

layer guarantees that messages sent to all of the view 

members will arrive, indeed, only to the view members. 

Because the New View calls in different members can 

not be totally synchronized, it is possible that the transport 

layer of a certain member C will be in a certain view V1, 

and the transport layer of another member B will be in the 

new, consecutive view V2. In this case, when B sends a 

message to the group with a View id V2, C should not 

deliver it up the stack, but rather save the message until its 

New View call is invoked.  

In order to test the above behavior, we need to perform 

a test that causes one member of the group to be in a new 

view V2 and to send a message to another member which 

is still in the old view V1. Following is the scenario that 

will implement the required test: 

B A

C
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1. (A,B,C,D) are the group members. The view id of the 

group is V1. A is the view leader. 

2. D fails. 

3. The Membership layer of A, the view leader, sends a 

New View message to (A,B,C) 

4. Both A and B receive the New View message and 

invoke a New View call down the stack. The new view 

is (A,B,C) and its View id is V2. 

5. B sends a message M to the group, marked with view 

id V2. 

6. C receives the message from B and saves it (C has not 

received the New View message yet, and therefore 

can't deliver message M upwards). 

7. C receives the New View message from A, and 

invokes a New View call down the stack.  

8. C delivers the saved message M up the stack. 

The probability of creating the specific scenario when 

running the black box test is very low, as usually the New 

View call in both stacks happens almost simultaneously 

(since the New View message arrives almost 

simultaneously to B and to C). 

Using the automatic noise tool will not help much: it 

can cause the New View message to be delayed when 

coming to C, and then message M will be handled before 

it and the scenario will occur. However, since the tool 

chooses randomly which messages are delayed, the 

probability that this specific message is chosen is very 

low. Using higher strength will increase the probability, 

but will cause so much noise that the test will fail long 

before the desired scenario can happen. 

By contrast, it is easy to create this scenario using the 

manipulation layer. The manipulation layer in member C 

can be set above the transport layer, and delay the new 

view event for a few seconds. This period of time gives 

member B enough time to send messages that will follow 

the scenario's requirements. 

6. Conclusion 

The automatic network noise simulation tool provides 

a powerful utility to test, in a normal environment, how 

UDP-based programs would behave in a less friendly 

environment. It can therefore help in revealing bugs early 

in the process. It requires very little effort, and can be 

done by testers with no effect on the code. On the other 

hand, it is "blind" to the semantics of the tested 

application, and is therefore not always suitable to test 

well-defined scenarios. For such tests, it may be more 

beneficial to write specially-tailored testing code. The two 

approaches can complement each other. 
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