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Abstract 
 

We propose a new approach to model high and low frequency components of equity 
correlations. Our framework combines a factor asset pricing structure with other 
specifications capturing dynamic properties of volatilities and covariances between a 
single common factor and idiosyncratic returns. High frequency correlations mean revert 
to slowly varying functions that characterize long-term correlation patterns. We associate 
such term behavior with low frequency economic variables, including determinants of 
market and idiosyncratic volatilities. Flexibility in the time varying level of mean 
reversion improves the empirical fit of equity correlations in the US and correlation 
forecasts at long horizons. 
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I. Introduction 
 

Understanding the dynamics of correlations in financial markets is crucial to many 

important issues in finance. Optimal portfolio decisions, assessments of risks, hedging 

and pricing derivatives are examples of questions in financial decision making and 

financial regulation that require accurate measures and competent forecasts of 

comovements between asset returns. This paper introduces a new approach to 

characterize high and low frequency variation in equity correlations and describe short- 

and long-term correlation behavior. By separating short-term from long-term 

components, our method not only facilitates the economic interpretation of changes in the 

correlation structure but achieves improvements over leading methods in terms of fitting 

and forecasting equity correlations. 

 

A number of multivariate time series models have been proposed in the last two decades 

to capture the dynamic properties in the comovements of financial returns. As natural 

generalizations, multivariate versions of the well known univariate GARCH and 

Stochastic Volatility (SV) models guided the initial specifications (e.g., Bollerslev, Engle 

and Wooldridge (1988) and Harvey, Ruiz and Shephard (1994)). These initial 

generalizations showed limitations because they were heavily parameterized and/or 

difficult to estimate. Simplified versions, such as constant conditional correlation models 

(e.g., Bollerslev (1990), Alexander (1998), Harvey et al. (1994)), were also unattractive 

because they had problems in describing empirical features of the data.1 Only recently, 

Engle (2002) introduced the Dynamic Conditional Correlation (DCC) model as an 

alternative approach to achieve parsimony in the dynamics of conditional correlations 

maintaining simplicity in the estimation process. However, none of the aforementioned 

models associate correlation dynamics with features of fundamental economic variables. 

Moreover, since they return to a constant mean in the long run, their forecasting 

                                                 
1 Recent surveys of multivariate GARCH and SV models are provided in Bauwens, Laurent, and Rombouts 
(2003), Shephard (2004) and McAleer (2005). Multivariate SV models are scant; recent developments 
include Chib, Nardari, and Shephard (2006) and Asai and McAleer (2005). 
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implications for long horizons do not take into account changing economic conditions. 

Thus, they produce the same long-term forecast at any point in time. 

 

Financial correlation models, on the other hand, have only recently introduced time 

variation in the correlation structure (e.g., Ang and Bekaert, 2002, Ang and Chen, 2002, 

Bekaert, Hodrick, and Zhang, 2008). Although these models are linked to asset pricing 

frameworks, which facilitate the association of correlation behavior with financial and 

economic variables, a substantial part of the variation in the correlation structure remains 

unexplained and the implementation of these models for forecasting correlations appears 

difficult. 

 

This paper presents a new model that captures complex features of the comovements of 

financial returns and allows us to empirically associate economic fundamentals with the 

dynamic behavior of variances and covariances. Thus, by exploiting recent developments 

in time series methods, this model incorporates within a single framework the attractive 

features of the two approaches mentioned above. Specifically, based on the correlation 

structure suggested by a simple one-factor CAPM model, and short- and long-term 

dynamic features of market and idiosyncratic volatilities, we derive a correlation model 

that allows conditional (high frequency) correlations to mean revert toward smooth time 

varying functions, which proxy the low frequency component of correlations.2 This 

property not only represents a generalization of multivariate GARCH models that show 

mean reversion to a constant covariance matrix, but also gives flexibility to the long-term 

level of correlations to adapt to the changing economic environment. Therefore, within 

this framework we can associate low frequency correlation behavior with changes in 

economic variables that are only observed at low frequencies such as macroeconomic 

aggregates. 

 

                                                 
2 Factors models have been used in multivariate settings to characterize dynamics in second moments. See 
for example Engle, Ng, and Rothschild (1990) and King, Sentana, and Wadhwani (1994) in the GARCH 
context, Diebold and Nerlove (1989), Harvey et al. (1994), and Chib, Nardari, and Shephard (2006) in the 
SV framework, and Andersen et al. (2001) in the realized variance context. 
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To achieve this goal and characterize term variation in equity correlations, we take a 

semi-parametric approach to specify the dynamics of our correlation components. The 

factor asset pricing structure provides a framework to separate systematic and 

idiosyncratic terms, and to characterize the covariance structure of excess returns. The 

semi-parametric Spline-GARCH approach of Engle and Rangel (2008) is used to model 

high and low frequency dynamic components of both systematic and idiosyncratic 

volatilities. We include these volatility components in the specification of correlations. 

As a result, a slow-moving low frequency correlation part is separated from the high 

frequency part. Moreover, the effects of time varying betas and unobserved latent factors 

are incorporated into the high frequency correlation component by adding dynamic 

patterns to the correlations between the market factor and each idiosyncratic component, 

as well as between each pair of idiosyncratic risks.3 These high frequency patterns are 

modeled using a dynamic conditional correlation (DCC) process. Therefore, the resulting 

“Factor-Spline-Garch” (FSG-DCC) model blends Spline-GARCH volatility dynamics 

with DCC correlation dynamics within a factor asset pricing framework.  

 

From the empirical perspective, this study analyzes high and low frequency correlation 

patterns in the US market by considering daily returns of stocks in the DJIA over a period 

of seventeen years. We find that, in addition to the recently documented economic 

variation in market volatility at low frequencies (e.g., Engle and Rangel (2008) and 

Engle, Ghysels, and Sohn (2008)), average idiosyncratic volatility shows also substantial 

variation in its long-term component. We find that this variation is highly correlated with 

low frequency economic variables including an inter-sectoral employment dispersion 

index based on Lilien (1982). Since this variable measures the intensity of shifts in 

product demand across sectors, we use it to proxy changes in the intensity of 

idiosyncratic news. For instance, a technological change (or any other driver of demand 

shifts) can induce large movements of production factors from declining to growing 

sectors and lead to increases in the intensity of firm-specific news. Consistent with this 

intuition, we find that this variable is positively related to idiosyncratic volatility. 

                                                 
3 Factor models with time varying betas have been studied in Bos and Newbold (1984), Ferson and Harvey 
(1991, 1993, 1999), and Ghysels (1998), among others.  
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Moreover, since the intensity of sectoral reallocation is associated with the same sources 

that lead to variation in productivity (or profitability) across firms and sectors, our 

empirical findings are also consistent with the positive relationship between idiosyncratic 

volatility and the volatility of firm profitability suggested by Pastor and Veronesi (2003).  

 

To explore whether these findings hold for sectoral idiosyncratic volatility, we have also 

analyzed sectoral portfolios that incorporate a broader set of companies and found the 

same results. This evidence highlights the contribution of our framework, which lies in 

incorporating low frequency economic effects into the dynamic behavior of the 

correlation structure.  Moreover, in terms of empirical fit, we find evidence that among 

the class of one-factor CAPM models, specifications with more flexible dynamics in the 

second moments of idiosyncratic components provide a better fit of the data. 

 

We also investigate the forecast performance of the FSG-DCC model focusing on long 

horizons (within four and six months). Based on an economic loss function and following 

the approach of Engle and Colacito (2006), we perform in-sample and out-of-sample 

comparisons between the FSG-DCC model and a number of competitors. The in-sample 

exercise compares this model with the standard DCC (that mean reverts toward the 

sample correlation) and a restricted version of the FSG-DCC model that shares its high 

frequency features, but mean reverts to a constant level determined by a static one-factor 

model. The results favor the unrestricted FSG-DCC model. We next perform a sequential 

out-of-sample exercise that enhances the set of competing models by adding to it a 

single-index covariance estimator, the sample covariance, and an optimal shrinkage 

covariance estimator. Again, we find significant evidence that the FSG-DCC outperforms 

its competitors at long horizons. Therefore, given the scope of competing models and 

their long-term forecasting properties, our results indicate that the strong performance of 

the FSG-DCC is associated with the flexibility in its level of mean reversion to capture 

variations in the economic environment. Although we take a time series approach here, 

our model introduces a framework that permits us to directly incorporate economic 

variables into the construction of correlation forecasts. This suggests promising 

extensions to achieve further forecast improvements. 
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The paper is organized as follows: Section two provides a description of a number of 

correlation specifications associated with different assumptions in the factor setup. 

Section three introduces the FSG-DCC model and discusses estimation issues. Section 

four presents an empirical analysis of correlations in the US market. It also presents 

empirical evidence of economic variation in aggregated idiosyncratic volatility and 

includes an empirical evaluation of correlation specifications derived from different 

factor models. Section five examines the forecast performance of the FSG-DCC model, 

and Section six concludes. 

 

II. A Single Factor Model and Return Correlations 
 

In this section, we use a simple one-factor version of the APT asset pricing model of 

Ross (1976) and we describe how modifying its underlying assumptions changes the 

specification of the correlation structure of equity returns. Suppose that there is a single 

market factor that enters linearly in the pricing equation such as in the Sharpe’s (1964) 

CAPM model. Under this specification and measuring returns in excess of the risk free 

rate, the excess return of asset i is generated by: 

 ,it i i mt itr r uα β= + +  (1) 

where mtr  denotes the market excess return. The first term characterizes asset i's 

systematic risk and the second describes its idiosyncratic component. Absence of any 

arbitrage assures 0iα =  should hold and ( )it iE r λβ= , where λ  denotes the risk premium 

per unit of systematic risk.4 The standard APT structure assumes constant betas, 

idiosyncrasies uncorrelated with the factor(s), and idiosyncrasies uncorrelated with each 

other: 

 ( ) 0, ,mt itE r u i= ∀  (2) 

                                                 
4 In our empirical exercise, we allow αi≠0 and, for simplicity, we assume a constant risk premium. 
However, the econometric specification in Equation (11) can be modified to account for time variation 
inλ . For instance, under a conditional one-factor CAPM structure, a GARCH-in-mean term can be added 
into Equation (11) to capture the effect of time variation in the risk premium. In results not reported, we 
find that such effect is small and its inclusion does not affect the conclusions of this paper. 
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 ( ) 0,it jtE u u i j= ∀ ≠  (3) 

Thus, the assumptions in the factor structure impose a restriction in the covariance matrix 

of returns. Under these standard assumptions a typical element of the unconditional 

covariance and correlation matrices can be respectively characterized as: 

 
2

2cov( , )
0

i
it jt i j m

i j
r r

i j
σ

β β σ
⎧ =

= + ⎨ ≠⎩
 (4) 

 
2

2 2 2 2 2 2

cov( , )
( , ) ,

( ) ( ) )
it jt i j m

it jt
it jt i m i j m j

r r
corr r r

V r V r
β β σ

β σ σ β σ σ
= =

+ +
 (5) 

where V denotes the variance operator, 2
mσ  and the 2

iσ ’s are the variances of the factor 

and the idiosyncratic terms, respectively. Now, from the definition of conditional 

correlation, 

 
( )

( ) ( )
1

, ,

1 1

cov ( )( )
( , ) ,t i mt it j mt jt

i j t t it jt

t i mt it t j mt jt

r u r u
corr r r

V r u V r u

β β
ρ

β β

−

− −

+ +
≡ =

+ +
 (6) 

 

and assuming that the moment restrictions in (2) and (3) hold conditionally, we obtain: 

 

 
( )

( ) ( ) ( ) ( )
1

, , 2 2
1 1 1 1

i j t mt
i j t

i t mt t it j t mt t jt

V r

V r V u V r V u

β β
ρ

β β

−

− − − −

=
+ +

 (7) 

 

This expression suggests that the dynamic behavior of conditional correlations is 

determined exclusively by dynamic patterns in the conditional variances of market and 

idiosyncratic risks.5 The betas determine sign and location. 

 

In this single factor model, if the restriction in (2) holds conditionally, then the betas are 

constant and correctly estimated from simple time series regressions of excess returns on 

the market portfolio. Restriction (3) rules out correlation between idiosyncratic 

innovations, which precludes the possibility of missing pricing factors in the model. As 
                                                 
5 This specification is the basis of dynamic versions of one-factor CAPM correlation models that 
incorporate time varying variances (e.g., the Factor ARCH model of Engle, Ng, and Rothschild (1990) and 
the Factor Double ARCH of Engle (2007)). 
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suggested by Engle (2007), these restrictions are empirically unappealing and limit 

importantly the dynamic structure of correlations. Allowing for temporal deviations from 

such conditions increases substantially the ability of the resulting correlation models to 

capture empirical features of the data without affecting the economic essence of the 

factor model. Based on the approach of Engle (2007), the following proposition 

characterizes changes in the specification of correlations when such restrictions are 

relaxed. 

 

Proposition 1: Consider the model specification in Equation (1) and let tℑ  denote the set 

of current and past information available in the market. a) Suppose that the assumption 

in (3) holds, but ( )1 0, ,t it jtE u u i j− ≠ ∀ ≠  then the correlation structure corresponds to a 

model with latent unobserved factors and the conditional correlation takes the following 

form: 

 
( ) ( )

, ,

1 1

2 2
1 1 1 1

.
( ) ( ) ( ) ( )

i j t

i j t mt t it jt

i t mt t it j t mt t jt

V r E u u

V r V u V r V u
ρ

β β

β β
− −

− − − −

=
+

+ +
 (8) 

 
Moreover, b) suppose that the assumption in (2) is satisfied, but 1( ) 0t mt itE r u− ≠ , then the 

correlation structure is consistent with that of a single factor model with latent 

unobserved factors and time varying betas, 

 ,it i it mt itr r uα β= + +% %  (9) 
where each of these betas mean reverts toward a constant and the following conditions 

are satisfied: 6 

i) ( ) ( ) 0, , ( ) 0, .it mt it it jtE u r E u i and E u u i j= = ∀ = ∀ ≠% % % %  

ii) , .it i itw iβ β= + ∀  

iii) 1 2{ , ,..., }t t t Ntw w w w=  is a zero mean covariance-stationary process. 

iv) cov( , ) 0, .it mt mtw r r i= ∀  

Such a correlation structure is described as follows: 

                                                 
6 To simplify notation (and without loss of generality), we omit the alphas from the excess returns 
equations. However, note that the constant terms in (9) differ in general from those in (1). 
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( ) ( ) ( ) ( )

, ,

1 1 1 1

2 2
1 1 1 1 1 1( ) ( ) 2 ( ) ( ) ( ) 2 ( )

i j t

i j t mt j t mt it i t mt jt t it jt

i t mt t it i t mt it j t mt t jt j t mt jt

V r E r u E r u E u u

V r V u E r u V r V u E r u
ρ

β β β β

β β β β
− − − −

− − − − − −

=
+ + +

+ + + +
(10) 

 
 

The proof is given in Appendix A1. Equation (8) describes a case where the factor 

loadings are constant, but latent factors can have temporal effects on conditional 

correlations. The second part of Proposition 1 considers the case of time varying betas. 

Under assumption i), this new specification satisfies standard constraints equivalent to (2) 

and (3). In such a case, assumptions iii) and iv) guarantee that any factor loading is 

covariance-stationary and mean reverts toward a constant level given by 

cov( , )( ) .
( )

it mt
it i

mt

r rE
V r

β β= =  Equation (10) provides a more general specification for 

conditional correlations that simultaneously incorporates the effects of time variation in 

the betas and latent unobserved factors. For this reason, we take this form as the basis of 

our econometric approach that we describe in the following section. In addition, as 

illustrated in Section IV, Proposition 1 can be used as a guidance to evaluate the 

empirical importance of each assumption in the simple one-factor model specified in (1).  

 

III. An Econometric Model for a Factor Correlation Structure 
 

Different assumptions on the factor framework imply different correlation structures and 

modeling approaches. This section begins by motivating our econometric specification. 

We then present a new model for high and low frequency correlations and discuss the 

estimation strategy. 

 

The Factor-Spline-GARCH Model 

 

The evolution of equity volatilities over time shows different patterns at different 

frequencies. Short-term volatilities are mainly determined by fundamental news arrivals, 

which induce price changes at very high frequencies. Longer term volatilities show 

patterns governed by slow-moving structural economic variables. Engle and Rangel 
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(2008) analyze such determinants and characterize the dynamic behavior of equity 

volatilities at low frequencies.7 They find economically and statistically significant 

variation in the US low frequency market volatility as well as in most cases in developed 

and emerging countries. We introduce this effect in our factor correlation model by 

including an equation that describes the dynamic behavior of this low frequency market 

factor volatility. 

 

In regard to idiosyncratic volatilities, incorporating their low frequency variation in the 

correlation structure is also appealing from the empirical and theoretical perspective since 

these low frequency components describe long-term patterns of idiosyncratic volatilities. 

The importance of such term behavior was highlighted by the influential study of 

Campbell, Lettau, Malkiel and Xu (2001) who find evidence of a positive trend in 

idiosyncratic firm-level volatility over the period from 1962 to 1997. Moreover, they find 

that the market volatility does not observe such increasing trend, which suggests a 

declining long-term effect in the correlations among individual stocks. Theoretical 

explanations for the upward trend in idiosyncratic volatilities have been associated with 

different firm features such as the variance of total firm profitability, uncertainty about 

average profitability, age, institutional ownership, and the level and variance of growth 

options available to managers (see Pastor and Veronesi (2003), Wei and Zhang (2006), 

and Cao, Simin and Zhao (2008)). At an aggregated level and using low frequency 

returns, Guo and Savickas (2006) find high correlation between idiosyncratic volatility 

and the consumption-wealth ratio proposed by Lettau and Ludvigson (2001). They also 

find a strong correlation between these variables and popular market liquidity measures, 

and suggest that idiosyncratic volatility could measure an omitted risk factor or 

dispersion of opinion. Overall, these empirical and theoretical results motivate our 

approach of incorporating long-term patterns of both systematic and idiosyncratic 

volatilities into a model for correlation dynamics, and emphasize the relevance of relating 

such dynamics with low frequency economic variables. 

 

                                                 
7 For different approaches on low frequency economic determinants of stock market volatility see, for 
example, Officer(1973), Schwert(1989), and Engle, Ghysels and Sohn (2006). 
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From the econometric point of view, the Spline-GARCH model of Engle and Rangel 

(2008) provides a semi-parametric framework to separate high and low frequency 

components of volatilities. Following this approach, we model the market factor in 

Equation (1) as: 

 1,  where | ~ (0,1)m m
mt m mt mt t t tr gα τ ε ε −= + Φ  

 
1

2 2
1 1

0 1
1 1

( ) ( )1
2 mt

m mt m mt m
mt m m m m r m mt

mt mt

r rg I gγ α αθ φ θ γ φ
τ τ −

− −
< −

− −

− −⎛ ⎞= − − − + + +⎜ ⎟
⎝ ⎠

 

 ( )2
0 1

1
exp ( ) ,

mk

mt m m mi i
i

c w t w t tτ − +
=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑  (11) 

where mtg  and mtτ  characterize the high and low frequency market volatility components, 

respectively. The term 0mtrI <  is an indicator function of negative market returns. The high 

frequency volatility component is normalized to have an unconditional mean of unity 

leaving the low frequency term to describe unconditional volatilities. Different from 

Engle and Rangel (2008), the high frequency component is modeled as an asymmetric 

unit GARCH process following Glosten, Jagannathan, and Runkle (1993).8 In this 

fashion, we capture the well documented leverage effect where bad news (negative 

returns) raises the future high frequency volatility more than good news (positive 

returns).9  

 

The market variance in (11) describes multiplicatively the interaction between a dynamic 

term associated with high frequency news events and a slowly varying component that 

can capture the effect of changes in the economic environment. Intuitively, this 

specification allows systematic news events to have different impacts on the stock market 

when economic conditions change. It also captures variations in the news intensity that 

may arise in response to such changes in the economy. The term mtτ  approximates non-

parametrically the unobserved low frequency market volatility that responds to low 

                                                 
8 The parameters of gmt satisfy the standard stationarity conditions. 
9 This feature was first analyzed by Black (1976) and Christie (1982). They hypothesized that a firm’s 
stock price decline causes an increase in the firm’s debt to equity ratio (financial leverage), which results in 
an increase in future volatility. Campbell and Hentschel (1992) suggest the direction of causality runs 
opposite and explain this phenomenon by changes in risk premium and volatility feedback effects.    
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frequency fundamental variables, such as macroeconomic aggregates, which characterize 

the variation in the economic environment. This component is modeled using an 

exponential quadratic spline with equally spaced knots.10 The number of knots, km, can be 

selected optimally using an information criterion. As in Engle and Rangel (2008), we will 

use the Schwarz Criterion (BIC) to control the degree of smoothness in the low frequency 

component.11 The term gmt describes transitory volatility behavior that, despite its 

persistency, does not have long term impacts on the levels of market volatility. 

 

Similarly, we model the idiosyncratic part of returns in (1) as: 

1,  where | ~ (0,1)it it it it it tu gτ ε ε −= Φ  

 
1

2 2
1 1 1 1

0 1
1 1

( ) ( )1
2 it

i it i i mt it i i mt
it i i i i r i it

it it

r r r rg I gγ α β α βθ φ θ γ φ
τ τ −

− − − −
< −

− −

− − − −⎛ ⎞= − − − + + +⎜ ⎟
⎝ ⎠

 

 ( )2
0 1

1
exp ( ) ,   .

ik

it i i ir r
r

c w t w t t iτ − +
=

⎛ ⎞
= + − ∀⎜ ⎟

⎝ ⎠
∑  (12) 

The 'itg s  characterize the high frequency component of idiosyncratic volatilities 

associated with transitory effects, whereas the 'it sτ  describe long-term variation in 

idiosyncratic volatilities. The Ir<0’s are indicator functions of negative returns that allow 

for firm-specific leverage effects. As before, we take a multiplicative error model to 

describe interactions between firm-specific news arrivals and low frequency state 

variables measuring firm- and industry-specific conditions. The intuition here is that a 

firm-specific news event will have a bigger effect, for example, when the firm is close to 

bankruptcy or when a major technological change is affecting the firm’s industry. In such 

a context, bad news about the firm’s fundamentals (e.g., lower than expected earnings) 

may increase the uncertainty about its future profits and, from the results of Pastor and 

Veronesi (2003), we may expect an increase in idiosyncratic volatility. The 'it sτ  

approximate non-parametrically the unobserved long-term idiosyncratic volatilities that 
                                                 
10 We follow the same notation as in Engle and Rangel (2008), where ( ) ( )t x t x+− = − if t x> , and it is 
zero otherwise. We refer to the original paper for further details on the spline specification. 
11 Improvements to this framework might be obtained by exploring theoretically and empirically the 
performance of alternative spline basis, different penalties, and specifications with non-equally-spaced 
knots. These are interesting extensions that require further statistical analyses outside the scope of this 
paper. 
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are functions of low frequency economic variables, which affect the magnitude and 

intensity of high frequency idiosyncratic shocks. They are modeled as exponential 

quadratic splines following the approach described above. 

 

In addition, following the discussion in the previous section and Proposition 1, we 

incorporate time varying correlations between the market factor and idiosyncratic returns, 

as well as among the idiosyncratic terms themselves. Specifically, we assume that the 

vector of innovations in Equations (11) and (12), ( )1 2, , ,...., 'm
t t t Ntε ε ε ε , follows the DCC 

model of Engle (2002). Note that all the elements in this vector have unit conditional 

variance. Thus from the second stage in the standard DCC model, these correlations can 

be written as:12 

 , ,
, ,

, , , ,

,i j t
i j t

i i t j j t

q
q q

ερ =  

 { }, , , , 1 , 1 , , , 1 ,( ) ( ),   , 1,..., ,i j t i j DCC i t j t i j DCC i j t i jq a b q i j Nε ε ερ ε ε ρ ρ− − −= + − + − ∀ ∈   

 { }, , , 1 , 1 , , , 1 ,( ) ( ),   ,1,..., ,m
m i t m i DCC t i t m i DCC m i t m iq a b q i m Nε ε ερ ε ε ρ ρ− − −= + − + − ∀ ∈  (13) 

 
where , ,( ) and 1i j it jt i iEε ερ ε ε ρ= = , for all i=m,1,2,…,N.13 Moreover, given the time 

variation in betas described in Proposition 1, we assume that , 0,m i
ερ =  for all 

i=1,2,…,N.14  

 

The specifications above, along with the factor structure presented in Section II, 

constitute the full Factor-Spline-GARCH (FSG-DCC) model and its correlation structure 

is described in the following proposition. 

 

                                                 
12 We consider a mean reverting DCC model. The parameters satisfy conditions to guarantee positive 
definiteness (they are positive, their sum is less than one, and the intercept matrix is positive definite). See 
Engle and Sheppard (2005a) for details. 
13 This DCC specification has 2+N(N+1)/2 parameters. To reduce the dimensionality problem, Engle 
(2002) and Engle and Sheppard (2005a) suggest estimating the N(N+1)/2 constant terms ( , 'i j sερ ) using the 
sample correlations. This follows the “variance targeting” approach of Engle and Mezrich (1996). 
14 Idiosyncratic innovations can be seen as residuals from regressions of returns on the market factor. Under 
the unconditional CAPM, they will be unconditionally uncorrelated with the market factor. 
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Proposition 2: Given a vector of returns ( )1 2, ,...., 't t Ntr r r  satisfying the factor structure in 

Equation (1), suppose that the common market factor rmt is described by (11), the 

idiosyncratic term uit follows the process in (12), for all i=1,2,…N, and the vector of 

innovations ( )1 2, , ,...., 'm
t t t Ntε ε ε ε  follows the DCC process in (13) and its assumptions, 

then the high frequency (conditional) correlation between rit and rjt is given by:  

(14)

1 1
2 2

, , , , , ,
, ,

2 2
, , , ,

,
2 ( ) 2 ( )

i j mt mt i mt mt jt jt m j t j mt mt it it m i t it it jt jt i j t
i j t

i mt mt it it i mt mt it it m i t j mt mt jt jt i mt mt jt jt m j t

g g g g g g g

g g g g g g g g

ε ε ε

ε ε

β β τ β τ τ ρ β τ τ ρ τ τ ρ
ρ

β τ τ β τ τ ρ β τ τ β τ τ ρ

+ + +
=

+ + + +

 

and, the low frequency component of this correlation is time varying and takes the 

following form: 

 ,
, , 2 2

.i j mt it jt i j
i j t

i mt it j mt jt

εβ β τ τ τ ρ
ρ

β τ τ β τ τ

+
=

+ +
 (15) 

 
Moreover, assuming that , ,( ) , 0, 1,2,..., ,t k t h k tE h k Nτ τ+ = ∀ > =  then Equation (15) is the 
long horizon forecast of , ,i j tρ : 
 , , | , ,lim i j t h t i j th

ρ ρ+→∞
=  (16) 

 
 
The proof is given in Appendix A2. Note that Equation (14) is a parametrized version of 

Equation (10) in Proposition 1. Equation (15) approximates the slow-moving component 

of correlation, which can be associated with long-term correlation dynamics. Indeed, the 

high frequency correlation parsimoniously mean reverts toward this time varying low 

frequency term. This approximation may be improved by either adding more factors or 

allowing for time variation in the ,i j
ερ ’s (the unconditional correlations across 

idiosyncratic innovations in the DCC equations), or both. The first alternative can be 

easily implemented once we have selected the new factors. Indeed, we can use the 

Spline-GARCH framework to estimate jointly the low frequency dynamics of the new 

factors and the corresponding loadings, as in Equations (11) and (12), and then we can 

add their innovations into the vector that follows the DCC process in (13).  Therefore, the 

main issue reduces to the economics of a factor selection problem. The second extension 
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would capture long-term effects of excluded factors, but it is methodologically 

challenging because it requires the exploration of alternative functional forms and/or 

restrictions to guarantee positive-definiteness of the covariance matrix, which 

complicates the estimation process. Both extensions increase the number of parameters 

and the question of their relevance is mainly an empirical issue. We focus on the simplest 

case in (15) and leave the analysis of such extensions for future research. 

 

Equation (15) also provides a simple approach to forecast long-term correlations using 

economic variables. Specifically, we can use forecasts of low frequency market and 

idiosyncratic volatilities, which can be obtained from univariate models that incorporate 

economic variables. For instance, the results of Engle and Rangel (2008) permit us to 

construct forecasts of the market volatility using macroeconomic and market information; 

indeed, we can use such economic market volatility forecasts to obtain long run 

correlation forecasts based on macroeconomic information. The last part of Section V 

presents an example that illustrates this application. 

 

Moreover, from a time series perspective, Equation (16) presents a useful forecasting 

relation in which, due to the mean reversion properties of the model, the time varying low 

frequency correlation can be interpreted as the long run correlation forecast under the 

assumption that the low frequency market and idiosyncratic volatilities stay constant 

during the forecasting period. This provides a time series approach where long-term 

forecasts are constructed using Equation (15).  

 

Another interesting case imbedded in Proposition 2 occurs when the low frequency 

components of volatility are constant over both the estimation and forecasting periods. 

This restricted version corresponds to the Factor DCC (FG-DCC) model of Engle (2007) 

and it is derived by assuming 2
,m t mτ σ=  and 2

, ,i t i iτ σ= ∀ , in (11) and (12). The 

corresponding variance specifications for the factor and the idiosyncrasies become 

standard mean reverting asymmetric GARCH(1,1) processes, which can be respectively 

written as: 
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and 
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Hence, the conditional correlation in Equation (14) becomes: 
 

 
1 1
2 2

, , , , , ,
, ,

2 2
, , , ,

,
2 ( ) 2 ( )

i j mt j mt it m i t i mt jt m j t it jt i j t
i j t

i mt it i mt it m i t j mt jt i mt jt m j t

h h h h h h h

h h h h h h h h

ε ε ε

ε ε

β β β ρ β ρ ρ
ρ

β β ρ β β ρ

+ + +
=

+ + + +
 (19) 

and the low frequency correlation is the following constant: 

 
2

,
, 2 2 2 2 2 2

.i j m i j i j
i j

i m i j m j

εβ β σ σ σ ρ
ρ

β σ σ β σ σ

+
=

+ +
 (20) 

 

This equation also represents the long run correlation forecast associated with the FG-

DCC model. In section V, we will evaluate the forecast performance at long horizons of 

the FSG-DCC relative to the restricted FG-DCC model and other popular competitors. 

 

Estimation 

 

To facilitate the exposition of our estimation approach, it is useful to rewrite the FSG-

DCC model using matrix notation. Suppose we have a vector of returns in excess of the 

risk free rate, including the market factor, at time t: 1( , ,..., ) 't mt t Ntr r r r= .  The system of 

equations in the factor setup can be written as: 

 ,t tr Buα= +  (21) 

where ut contains the market factor and the idiosyncrasies, 1 2( , , ,..., ) 't mt t t Ntu r u u u= , 

( )1
1 2

1 0
,  = , ,..., 'N

N
N N

B
I

β β β β
β

×

×

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 01xN is an N-dimensional row vector of zeros, INxN is 

the N-dimensional identity matrix, and α is a vector of intercepts. The market factor is 

assumed to be weakly exogenous based on the definition of Engle, Hendry and Richard 
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(1983). Therefore, the parameters in (11) are considered variation free and they do not 

affect the inference in the conditional model given in (12).   

 

In addition, the covariance matrix of ut can be written as follows:  

 ,u
t t t tH D R D=  (22) 

where { },t kt ktD diag hτ=  for k=m,1,…,N, 1/ 2 1/ 2( ) ( )t t t tR diag Q Q diag Q=  is a correlation 

matrix, and the typical element of Qt is defined by Equation (13). The standardized 

innovations in Proposition 2 are the elements of ( )1
1 2, , ,...., 'm

t t t t t NtD u ε ε ε ε− = . Moreover, 

going back to the original vector of returns, we have that 1| ~ ( , )t t tr Hα−ℑ , where the full 

covariance matrix takes the following form15: 

 ( ) 't t t t tVar r H BD R D B= =  (23) 

As in the standard DCC model, the estimation problem can be formulated following 

Newey and McFadden (1994) as a two-stage GMM problem. Under this framework, we 

can write the vector of moment conditions in the form ( )1 2( , , ) ( , ), ( , , ) 't t tg r m r mψ η η ε ψ η= , 

where 1
t t tD uε −≡  is a vector of devolatized returns, η is a vector of parameters containing 

the alphas, the betas, and the volatility parameters in Equations (11) and (12), and ψ  is a 

vector containing the DCC parameters in (13). The first vector of moment conditions, m1, 

has the scores of individual asymmetric Spline-GARCH models as its components.  The 

second set of moment conditions, m2, contains the functions that involve the correlation 

parameters, which come from the assumed likelihood and the moment conditions used 

for correlation targeting in the DCC model.16 If the first optimization problem involving 

the moment conditions in m1 gives consistent estimates of the volatility and mean 

parameters, then the optimization of m2 in the second step will give consistent estimates.  

 

                                                 
15 The correlation matrix of rt is { } { }1 1' ' 't t t t t t t t t tR diag BD R D B BD R D B diag BD R D B− −= , and its 
typical element, ignoring the first row and first column that contains correlations between the factor and the 
idiosyncrasies, is the expression in Equation (14). 
16 Following the discussion in footnote 12, the constant terms in (13) are estimated using the correlation 
targeting constraint of Engle and Mezrich (1996). Thus, our moment conditions for correlation targeting 
equalize each unconditional covariance term ( ( ), )it jtE i jε ε ≠  to its sample analog. 
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In a Gaussian quasi-likelihood (QML) framework, assuming multivariate normality leads 

to consistent estimates under mild regularity conditions as long as the mean and the 

covariance equations are correctly specified.17 This distributional assumption gives a 

useful decomposition of the log-likelihood into the sum of two components that take the 

familiar Gaussian form: one involves the “mean and volatility” part and the other the 

“correlation” part, just as in the DCC model of Engle (2002).18 In this case, the 

components of m2 are the scores of the following likelihood: 

 ( )1

1

1( , ) log | | ,
2

T

t t t t
t

L R Rη ψ ε ε−

=

′= − +∑  (24) 

 
whereas the components of m1 are the scores of log-likelihoods associated with univariate 

Spline-GARCH models with Gaussian innovations that can be estimated separately: 

 

2

1

2

1

( )1( ) log( ) ,
2

( )1( ) log( ) , 1, 2,..., .
2

T
mt m

m mt mt
t mt mt

T
it i i mt

i it it
t it it

rL g
g

r rL g i N
g

αη τ
τ

α βη τ
τ

=

=

−
= − +

− −
= − + =

∑

∑
 (25) 

 
Despite the convenience of the Gaussian QML approach, choosing the number of knots 

for the spline functions introduces an additional procedure in the estimation process that 

does not necessarily provide QML estimates of such quantities. Inaccurate choices for the 

number of knots might introduce some biases in the procedure due to misspecification of 

volatilities. Since distributional assumptions might have an effect on this part of the 

estimation, we depart from normality and use distributional assumptions that more 

realistically describe empirical features of excess returns. This can improve the accuracy 

of the knot selection criterion and reduce the misspecification problem. Therefore, for the 

first-stage of the estimation process, we consider likelihoods from the Student-t 

distribution because this distribution is better to capture the fat-tails typically observed in 

financial time series and it diminishes the effect of influential outliers. Thus, the 

following log-likelihoods correspond to the Asymmetric Spline-GARCH model with 

                                                 
17 See Bollerslev and Wooldridge (1992) and Newey and Steigerwald (1997) for details on consistency of 
QML estimators. 
18 Consistency and asymptotic normality are satisfied under standard regularity conditions. See Engle 
(2002) and Engle and Sheppard (2005a) for details. 
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Student-t innovations and determine moment conditions associated with the first stage of 

the GMM estimation process:19 

 

( )
( )( )

( )
( )( )

2

1/ 2

2

1/ 2

( 1) / 2 1 ( )( , ) log log 1
2 ( 2)/ 2 ( 2)

( 1) / 2 1 ( )( , ) log log 1 , 1,..., ,
2 ( 2)/ 2 ( 2)

m m mt m
m m
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i i it i i mt
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it it ii i it it

v v rL v
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v v r rL v i N
g vv v g

αη
ττ

α βη
ττ

⎛ ⎞Γ + ⎛ ⎞+ −⎜ ⎟= − +⎜ ⎟⎜ ⎟ −Γ − ⎝ ⎠⎝ ⎠
⎛ ⎞Γ + ⎛ ⎞+ − −⎜ ⎟= − + =⎜ ⎟⎜ ⎟ −Γ − ⎝ ⎠⎝ ⎠

(26) 

where Γ denotes the gamma function and the v’s refer to the corresponding degrees of 

freedom.20 

 

Regarding the second stage, the estimation can be performed in the usual way, which 

jointly estimates the whole correlation matrix. However, although DCC is very 

parsimonious in its parameterization, it is biased and slow for large covariance matrices. 

Alpha is biased downward and may approach zero.  Thus, estimated correlations are less 

variable in big systems than when estimated for subsets even for simulated data (see 

Engle and Sheppard (2005b)). Since our empirical analysis includes a moderately large 

number of assets, we are interested in a simpler strategy to estimating large covariance 

matrices. 

 

In this regard, two approaches have recently been suggested in the literature. Engle 

(2007) introduces the MacGyver method to reduce the bias problems and simplify the 

estimation process for large systems. This method is easily implemented by fitting all 

bivariate models and deriving a single estimator from all the estimated pairs. Montecarlo 

experiments favor the median of these estimators as a good candidate. However, an 

important limitation of this approach is the difficulty to conduct inference. In the same 

spirit, Engle, Shephard, and Sheppard (2008) introduce the composite likelihood (CL) 

method as another alternative to overcome the computational problems of estimating 

large systems and correct the mentioned biases. This approach constructs a CL function 

                                                 
19 This specification extends the Student-t GARCH model of Bollerslev (1987).  
20 An earlier version of this paper showed results using the Gaussian QML approach. Although all our 
empirical results in Sections IV and V are maintained, the Student-t distributional assumption leads to a 
superior forecast performance in all the DCC-type models compared in Section V. Results of the Gaussian 
case are available upon request. 
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as the sum of quasi-likelihoods of pairs of assets (i.e., the sum of all the unique bivariate 

log-likelihoods).21 Under this strategy, only a single optimization of the CL function is 

needed and inference can be easily conducted. In the following section, we present results 

using the standard multivariate method and these two novel strategies. In Section V, we 

perform a sequential out-of-sample forecasting exercise using the CL method in the 

second step of the estimation process. 

 

IV High and Low Frequency Correlations in the US Market. 
 

Data 

We use daily returns on the DJIA stocks from December 1988 to December 2006. The 

data is obtained from CRSP. During this period, there have been a number of changes in 

the index, including additions, deletions, and mergers. We include all the stocks in the 

2006 index and those in the 1988 index that could be followed over the sample period.22 

As a result, we obtain a sample of 33 stocks. Regarding the market factor, we use daily 

returns on the S&P500. We use the one-month T-bill rate as the time varying risk free 

rate. 

 

Individual stocks are described in Table 1, which include company names, market 

tickers, average excess returns and average annualized excess return volatility over the 

whole sample period. The most volatile stocks in the sample are INTC and HPQ, whereas 

the least volatile are XOM, CVX, and 3M.23 The stocks with largest average daily return 

are MSFT and INTC and those with the smallest values are GM and IP.  

 

Description of Estimation Results 

We estimate the FSG-DCC model following the two stage GMM approach described in 

Section III and present the results in Table 2. The parameters estimated in the first step 

                                                 
21 If all the pairs are independent, the CL becomes the exact QML. Engle, Shephard, and Sheppard (2008) 
do not require independence. Moreover, they suggest little efficiency loss if the CL is constructed from a 
subset of bivariate systems that involve only contiguous pairs. 
22 Those include Chevron (CVX), Goodyear (GT), and International Paper (IP). 
23 We use the ticker name to identify individual stocks. The full company names are presented in the first 
column of Table 1. 
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are those in Equations (11), (12), and (26). The second step involves the DCC parameters 

in Equation (13). For reasons of space, we do not report the estimated coefficients of the 

spline functions. We only present the optimal number of knots selected by the BIC.  

 

The first column shows the alphas, which are in general not significantly different from 

zero, as suggested by the CAPM framework. The only exceptions are MO, with a 

positive value, and GM and GT, with negative values. The second column reports the 

estimated unconditional market betas associated with each stock. All of them are highly 

significant and their values go from 0.66 to 1.52 (see Figure 1). CVX, PG, and XOM 

show the lowest factor loadings and also low levels of realized volatility over the sample 

period (see Table 1), whereas INTC, JPM, and HPQ show the largest betas as well as 

high levels of realized volatilities. The third column presents the estimates of the ARCH 

volatility coefficients. They take values between 0.004 and 0.13. They are in general 

significant, except for the market factor and IBM, and their median is 0.05. Column four 

presents the estimates of the GARCH volatility effects. They are all significant and their 

median is 0.84. In addition, they take values between 0.18 and 0.99, with only three cases 

lying below 0.50. For the market factor, a GARCH effect of 0.90 was estimated. Column 

five shows estimates of the leverage effects, which exhibit a median of 0.03. They are 

statistically significant for about half of the stocks and, in such a case, they are positive, 

which is consistent with the leverage theory of Black (1976) and Christie (1982). 

However, this effect is substantially higher and significant for the market factor, which 

provides stronger support for the volatility feedback hypothesis.24 The cross-sectional 

variation in the GARCH and ARCH effects indicates variation in persistence across the 

high frequency idiosyncratic volatilities. For example, the first panel of Figure 2 

illustrates the familiar highly persistent case associated with a small ARCH coefficient 

and a GARCH effect close to 1, whereas the last panel in this figure shows a noisier case 

where the ARCH affect is 0.08 and the GARCH effect is only 0.63.  

 

                                                 
24 Bekaert and Wu (2000) also find stronger support for the volatility feedback hypothesis using portfolios 
from Nikkei 225 stocks. 
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The sixth column of Table 2 shows the degrees of freedom of the univariate Student-t 

distributions. They fluctuate between 4 and 10, and the median value is 6. These values 

are in line with the traditional evidence of non-normality and excess of kurtosis in equity 

returns. The last column of Table 2 presents the optimal number of knots in the spline 

functions according to the BIC. These numbers reflect changes in the curvature of the 

long-term trend of idiosyncratic volatilities. Examples of such patterns are illustrated in 

Figure 2. For instance, the first graph has a smoother low frequency component 

associated with a single knot. As we move to the bottom of the figure, the number of 

knots increases and more cyclical effects are observed. Four knots characterize the low 

frequency component of the market volatility. Its dynamic behavior is illustrated in 

Figure 3. 

 

The bottom part of Table 2 presents the estimation results of the second stage. The first 

column reports the standard DCC estimates from the multivariate traditional approach 

along with their standard errors. The second column presents the MacGyver DCC 

coefficients, which are the median values of all DCC estimates from all the unique 

bivariate systems, as described in Section III, and the third column presents the CL 

estimates obtained from the optimization of the sum of all the unique bivariate quasi-log-

likelihoods. The estimator of DCCa  increases from 0.0027, using the standard multivariate 

method, up to 0.004 (or 0.005) when using the CL (or the MacGyver) method. This 

suggests that both methods deliver a correction in the downward bias of the traditional 

DCC estimator. 

 

Figures 4 and 5 illustrate the time series properties of the FSG-DCC with a number of 

examples that show the high and low frequency correlation components along with 

model-free rolling correlations. The high frequency component mean reverts toward the 

slow-moving low frequency component. It is visually clear by looking at the model-free 

rolling correlations that the model characterizes fairly well trend behavior in correlations. 

These examples also show the interaction between the factor pricing structure and the 

low frequency variation of market and idiosyncratic volatilities. For instance, focusing on 

the last two years of the sample, where the market volatility shows a declining trend, the 
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model suggests that stocks with increasing low frequency idiosyncratic volatilities will 

have pronounced declining correlations. Figure 4 illustrates this pattern using the stocks 

in Figure 2 that show increasing idiosyncratic volatilities. In contrast, Figure 5 presents 

examples where market and idiosyncratic volatilities have opposite effects on low 

frequency correlations and mixed patterns during the last years of the sample are 

observed. While these figures only exhibit a description of a few particular cases, the 

dimensionality of our results renders it difficult to analyze them at a disaggregated level. 

Instead, we present an aggregated analysis of volatilities and correlations linking their 

patterns to economic variables.  

 

Aggregated Volatility Components and Average Correlations 

The most distinguishing feature of the FSG-DCC model is its ability to characterize 

dynamic long-term correlation behavior exploiting the structure of a factor asset pricing 

model, and the low frequency variation in systematic and idiosyncratic volatilities. The 

empirical results of Engle and Rangel (2008) and Engle, Ghysels, and Sohn (2008) 

provide evidence that the low frequency market volatility responds to changes in the 

slow-moving macroeconomic environment. In addition, the estimation results presented 

earlier show evidence of substantial low frequency variation in idiosyncratic volatilities. 

A natural question is whether such idiosyncratic behavior is reflecting changes in 

fundamentals. This subsection presents evidence that the aggregated low frequency 

component of idiosyncratic volatility systematically varies with low frequency economic 

variables. This emphasizes the importance of incorporating such a feature into the 

dynamic behavior of the correlation structure, which in this model is flexible enough to 

adapt its long-term level to economic conditions that typically change slowly. Besides 

this interpretational advantage, Section V shows that this flexibility pays out when we 

forecast correlations at long horizons. 

 

As mentioned earlier, cross-sectional aggregation facilitates the exposition to illustrate 

the effect of our volatility components on correlations. We construct aggregates by taking 
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the cross sectional average of our dynamic components at each point in time.25 Figure 6 

shows averages over biannual sub-periods (from the whole sample) of low frequency 

market and idiosyncratic volatilities. Before 1997-1998, while the average low frequency 

idiosyncratic volatility shows an increasing pattern, the low frequency market volatility is 

declining. This is consistent with the findings of Campbell et al. (2001) and suggests a 

decline in correlations, which is confirmed by both the aggregated model-free rolling 

correlations and the aggregated FSG-DCC correlations in Figure 7. After 1997, market 

and idiosyncratic volatilities seem to move in a similar fashion having opposite effects on 

correlations, which at the aggregated level show a non-monotonic pattern. An interesting 

effect is observed in the last period where, although the market volatility reached 

historical lows, correlations decreased only moderately due to the low levels of 

idiosyncratic volatility. Indeed, the average low frequency market volatility during 2005-

2006 was as low as during the period 1993-1996, but the average correlation was almost 

doubled relative to that of the earlier period, whereas the average idiosyncratic volatility 

in 2005-2006 was almost half of the corresponding 1993-1996 value.  

 

We have illustrated that low frequency variation in idiosyncratic volatilities is not 

negligible and can have big effects on the level of correlations. We now focus on the 

economic sources of such variation, keeping the analysis at the aggregated level. As 

mentioned in Section III, the trend behavior in idiosyncratic volatility has received 

important attention in the literature following the results of Campbell et al. (2001).26 At a 

micro level, the theoretical framework of Pastor and Veronesi (2003) suggests a positive 

relationship between idiosyncratic volatility and both the variance of firm profitability 

and uncertainty about the average level of firm profitability. In this regard, changes in the 
                                                 
25 The aggregated average correlation associated with model m over a specific period p is defined as: 
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26 Moreover, its relationship with returns recently analyzed by Ang, Hodrick, Xing, and Zhang (2006) and 
Spiegel and Wang (2006) have opened a debate on whether idiosyncratic risk is priced. 
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profits of a firm are associated with two main causes. The first is changes in the firm’s 

productivity, which can be explained by supply-side aspects such as technological change 

(e.g., Jovanovic (1982)) and/or by demand-side features such as product substitutability 

(e.g., Syverson (2004)). The other is price variations (of products and factors), which are 

also related to interactions between idiosyncratic demand shocks and the level of 

competition within the relevant industries. Therefore, fluctuations in demand (which 

could be related to changes in taste, technological changes, new trade liberalization 

policies, and new regulations, among other factors) can have an impact on these two 

fundamentals that affect the firm’s future cash-flows, as well as on their volatility. 

Moreover, we may expect these effects to be accompanied by changes in the intensity of 

both firm- and industry-specific news because such intensities vary in response to the 

same factors. 

 

At a more aggregated level, the theory of sectoral reallocation that followed the work of 

Lilien (1982) offers an explanation to link random fluctuations in sectoral demand with 

sectoral shifts in the labor market. The employment dispersion index (EDI) suggested by 

Lilien (1982) proxies the intensity of such sectoral shifts and it can therefore be used as 

an indicator of idiosyncratic news intensity. For example, sources triggering demand 

shifts, such as a technological change, can induce important movements of labor and 

other production factors from declining to growing sectors. Such sectoral reallocation of 

resources can be accompanied by a higher intensity of idiosyncratic shocks and therefore 

by increases in firm-specific volatility. Following this intuition, we associate the measure 

of Lilien with low frequency variation of aggregated idiosyncratic volatility.27 In 

addition, we control for the economic variables that Guo and Savickas (2006) associate 

with the aggregated behavior of idiosyncratic volatility, such as the consumption-wealth 

                                                 
27 Following Lilien (1982), the Employment Dispersion Index (EDI) is defined as:  
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∑ where xik is employment in industry i (among 11 industry 

sectors) at quarter k, and Xk denotes aggregate employment. To construct the index, we use sectoral 
employment data from the Bureau of Labor Statistics. 
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ratio (CAY), the market volatility, and the market liquidity.28 As in this study, all the 

variables are aggregated at a quarterly-frequency. 

 

We use two model-based measures of aggregated low frequency idiosyncratic volatility: 

1) the cross sectional average of low frequency idiosyncratic volatilities, aggregated at a 

quarterly level, and 2) the cross-sectional average of rolling moving averages (based on a 

100-day window) of squared idiosyncratic returns from Equation (12), aggregated at a 

quarterly level. Figure 8 shows a graph of these two measures of aggregated idiosyncratic 

volatility and Lilien’s EDI from 1990 to 2006. The visual high-correlation is confirmed in 

Table 3 that reports the sample Pearson’s correlation across our idiosyncratic volatility 

measures and the economic explanatory variables mentioned above. As expected, 

idiosyncratic volatility is positively correlated with the EDI and the market volatility. The 

rolling measure shows correlation coefficients of 0.48 and 0.72 respectively, whereas the 

spline measure shows correlations of 0.34 and 0.64 respectively. Moreover, idiosyncratic 

volatility is negatively correlated with both CAY and the market liquidity. Overall, the 

signs of these correlations are consistent with the results of Guo and Savickas (2006) and 

with the expected effects of sectoral reallocation on the volatility of firms’ fundamentals. 

To explore further these relationships, we project separately our two measures of 

idiosyncratic volatility on the explanatory variables over our sample period using a linear 

regression framework. Due to the nature of the idiosyncratic volatility aggregates, 

especially the spline measure, the regressions will be affected by a severe serial 

correlation problem in the residuals. To lessen this problem and address endogeneity 

issues associated with simultaneous causality, we use the Generalized Method of 

Moments (GMM) with robust Newey and West (1987) standard errors, and four lags of 

the explanatory variables as instruments. Table 4 reports the estimated coefficients 

associated with the two linear projections. The two regressions suggest the same effects 

                                                 
28 The CAY variable is based on the measure of Lettau and Ludvigson (2001). The S&P 500 excess-returns 
volatility is used to proxy the market volatility. Regarding market liquidity, we use the quarterly average of 
the quoted spread (QSPR) as defined in Chordia, Roll, and Subrahmanyam (2001).  
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and, as in the sample correlation analysis, the estimated coefficients show the expected 

sign. Nevertheless, only the EDI and the market volatility are statistically significant.29 

 

Sectoral Idiosyncrasies 

 

The previous results are based on measures of low frequency idiosyncratic volatility at a 

firm level incorporating only large cap stocks. To explore whether these results can be 

generalized to industry sectors including a broader group of companies, we construct two 

model-based measures of sectoral idiosyncratic volatility using excess returns on 48 

equally-weighted versions of the industry portfolios defined in Fama and French 

(1997).30 We estimate rolling and spline idiosyncratic volatilities using the one-factor 

CAPM specification in (1) and the Spline-GARCH model in (12).31 As before, we take 

cross-sectional averages of rolling means of squared returns and spline functions, 

respectively, and we construct quarterly aggregates. Figure 9 illustrates such idiosyncratic 

volatility aggregates along with the EDI over the period 1990-2006. The graph shows 

again a visual high correlation between these sectoral measures of idiosyncratic volatility 

and the EDI. Moreover, Table 5 confirms these positive correlations, which are within the 

same order of magnitude than those for large cap stocks. Moreover, the other explanatory 

variables are also correlated in the expected direction. As before, we project separately 

the idiosyncratic volatility variables on the explanatory variables. Table 6 reports the new 

GMM estimation results, which are fully consistent with our previous findings. 

Moreover, CAY becomes significant with the expected negative sign. Overall, these 

results show evidence that aggregated idiosyncratic volatility shows low frequency 

variation driven by economic variables. The FSG-DCC model non-parametrically 

accounts for such variation, as well as for the low frequency movements of the market 

factor volatility, to characterize changes in the long-term level of equity correlations. The 

                                                 
29 It is important to point out that these results are sensitive to the sample period. The EDI series are highly 
noisy before mid 80’s. Thus structural breaks should be taken into account for analyses incorporating 
longer sample periods. 
30 The Fama-French portfolio data are available from Kenneth French’s web page.  The 48 portfolios are 
based on a four-digit SIC classification (see Fama and French (1997) for details). 
31 This specification allows for different loadings across sectors. However, it restricts the loadings to be the 
same within each sector. 
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analyses that follow in this paper illustrate the importance of such features to fit and 

forecast equity correlations. 

 

Empirical Fit of Factor Correlation Models 

This subsection evaluates a range of one-factor models with varying dynamic 

components in terms of their empirical fit using our sample of 33 Dow stocks. The 

process follows a simple-to-general strategy. We start from the simplest case, labeled FC-

C, where factor and idiosyncratic volatilities are constant over the sample period (at high 

and low frequencies), and restrictions in (2) and (3) apply. We estimate the correlations 

across Dow stocks from this model and use a Gaussian metric to compute the quasi-

likelihood. We then consider subsequent models that relax one or more assumptions of 

the initial factor model, and compute their quasi-likelihoods. The last step consists in 

comparing the empirical fit of this range of factor correlation models based on such 

Gaussian metric. This allows us to assess which restrictions in the factor structure are the 

most important to describe correlation behavior. The assumptions to be weakened are the 

following: 

 

1. Constant volatility of the market factor. 

2. Constant volatility of the idiosyncratic components of returns. 

3. One single common factor. 

4. Constant betas. 

 

For example, adding high frequency variation into the volatility of the factor through a 

standard GARCH process, and keeping the idiosyncratic volatilities constant, we obtain a 

specification called FG-C. Similarly, when high and low frequency spline-GARCH 

dynamics is added to the market factor volatility holding the idiosyncratic volatilities 

constant, we obtain the FSG-C model. These models and their correlations, along with a 

range of specifications derived from adding dynamics to the previous assumptions, are 

described in Table 7. Their quasi-likelihoods are constructed from the general factor 

structure in Equation (21) assuming that 1| ~ (0, )t t tr N H−ℑ . A mapping of each 

correlation specification in Table 7 with a specific covariance matrix provides the inputs 
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to compute the quasi-likelihood of each model. We estimate the models in the first panel 

of Table 7 using QMLE. For the other models, we follow the two-stage GMM approach 

with Gaussian moment conditions described in Section III.  

 

Table 8 presents the log quasi-likelihoods of the factor models in Table 7, along with 

likelihood ratio tests that compare each model with the biggest FSG-DCC model. The 

results indicate that the FSG-DCC model dominates the other specifications. Close to this 

model is the FSG-IDCC model, which is a model with constant betas that accounts for 

the effect of latent unobserved factors and both, high and low frequency dynamics in 

market and idiosyncratic volatilities. The FG-DCC model follows in the list. In addition, 

the three biggest models show the best empirical fit even when they are penalized by the 

BIC (see the last column of Table 8). In contrast, the model with poorest empirical fit is 

the constant correlation model (FC-C). Overall, we find that specifications with low 

frequency dynamics dominate those with only high frequency dynamics.   

 

In addition, the results indicate large improvements in the quasi-likelihoods when we 

relax the assumptions of “constant idiosyncratic volatilities” and “only one common 

factor”. This confirms that, besides the importance of modeling market behavior, adding 

dynamic features to the second moments of idiosyncratic components improves 

substantially the empirical performance of this class of one-factor CAPM models.  

 

V Forecast Performance of the Factor-Spline-GARCH Model 
 

This section investigates the forecasts performance at long horizons of the FSG-DCC 

model using in-sample and out-of-sample exercises. We consider our sample of 33 Dow 

stocks. We first review some forecasting properties of the model and then we evaluate its 

performance with respect to other competitive specifications using an economic loss 

function. 

 

Forecasting Features 
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In terms of forecasting properties, we mentioned earlier that the conditional correlation in 

the FSG-DCC model mean reverts toward the smooth low frequency correlation 

component rather than toward a constant level. Hence, given the empirical patterns in low 

frequency correlations discussed in the previous section, long horizon forecasts from the 

FSG-DCC model might differ considerably from those based on models that mean revert 

to constant levels. This characteristic is illustrated in the examples of Figure 10, which 

show multiple-step ahead forecasts associated with different correlation specifications. 

Here, we compare forecasting features of the FSG-DCC correlations described in 

Equations (14) and (15) with those of two competitors: 1) the standard DCC model and 

2) the restricted FG-DCC model in Equation (19). The first case is interesting because it 

provides a non-factor reference to evaluate the importance of imposing a factor structure. 

The second case is relevant to evaluate the implications of allowing time varying low 

frequency components. The forecasts are constructed out-of-sample at horizons that go 

from 1 to 130 steps ahead. The low frequency volatility forecasts in the FSG-DCC model 

are constructed under the assumption that , | ,i t k t i tτ τ+ = , for all i=m,1,2,…,N, and 

k=1,2,…120.  

 

The examples in Figure 10 correspond to the dynamic correlations between AIG and DIS, 

and between CVV and INTC, respectively. The vertical line separates the sample 

estimation period from the out of sample forecasting period. The DCC model’s long-term 

forecasts approximate the sample covariance. In contrast, the FSG-DCC forecasts 

approach the low frequency correlation forecast. The long-term forecasts of the FG-DCC 

model tend to the constant in Equation (20). The first graph shows a case in which the 

long horizon forecasts from the three models are similar since the low frequency 

correlation at the end of the estimation period is approximately flat and close to the 

sample correlation. In contrast, the second graph presents an example in which long-term 

forecasts from the FSG-DCC considerably differ from those of the other two models due 

to a large discrepancy between the sample correlation and the trend in the low frequency 

correlation at the end of the estimation period. The top graph also illustrates that, contrary 

to the DCC model, the two factor correlation models might show non-monotonic mean 
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reversion since their individual components might be associated with different long 

memory features. 

 

Evaluation Criterion and Economic Loss Function 

Our forecast comparison follows the approach of Engle and Colacito (2006) by using an 

economic loss function to assess the performance of each model. Different from them, 

however, we use forward portfolios based on forecasts of the covariance matrix 

associated with each of the models to be compared. Specifically, we focus on a portfolio 

problem where an investor wants to optimize today her forward asset allocation given a 

forward conditional covariance matrix. In the classical mean variance setup, this problem 

can be formulated as: 

 |
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where µ is the vector of expected excess returns, |t k tw + denotes a portfolio at time t+k that 

was formed using the information at time t, and |t k tH +  is a k steps ahead forecast (made at 

time t) of the conditional covariance matrix of excess returns. So, the solution to (27) is: 
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and it represents optimal forward portfolio weights given the information at time t. 

 

Each covariance forecast |t k tH +  implies a particular forward portfolio |t k tw + given a vector 

of expected returns. However, an important issue arises if we do not know the true vector 

of expected returns. Engle and Colacito (2006) point out that a direct comparison of 

optimal portfolio volatilities can be misleading when we use a particular estimate of 

expected excess returns, such as their realized mean, to compute such volatilities. Their 

framework isolates the effect of covariance information by using a wide range of 

alternatives for the vector of expected excess returns and the asymptotic properties of 

sample standard deviations of optimized portfolio returns. We follow their approach and 

consider different vectors of expected excess returns associated with a variety of 
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multivariate hedges.32 We then compare the standard deviations of returns on long-term 

forward hedge portfolios formed with each model’s covariance matrix forecast. 

 

In-Sample Evaluation 

We now proceed to evaluate in-sample the forecast performance of the FSG-DCC in 

comparison with the FG-DCC and the standard DCC models.33 This exercise focuses on 

their long run forecast performance; specifically, we consider a period of 100-days as our 

fixed long horizon.34 We acknowledge the potential in-sample biases in favor of the FSG-

DCC model that may arise since the spline volatilities will know ex-ante their future 

paths. To account for this problem, the in-sample exercise rules out such foresight 

advantage by constructing long horizon correlation forecasts at each point in the sample 

keeping the spline functions fixed during the forecasting period. This implies mean 

reversion of the long run forecasts according to Equation (16).  

 

At each point in the sample and for each model, we construct the corresponding long 

horizon (100-days ahead) covariance forecast; then we use it to form optimized forward 

hedge portfolios according to Equation (28) using a variety of vectors of expected returns 

associated with different hedges and a required return normalized to one (µ0=1). Thus, 

given a sample of size T, the in-sample standard deviations of returns on long-term 

optimized forward hedge portfolios are given by:  
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where r denotes the sample mean of daily excess returns, 100tr +  is the vector of one-day 

excess returns at day t+100, and ( )
, 100|
j

p t tw +  corresponds to a 100-days forward hedge 

                                                 
32 A hedge is constructed by holding one asset for return and using the other assets for hedge. Thus, we 
have vectors of expected returns with one positive entry (normalized to one) and everything else set to zero. 
33 All the models are estimated using the two stage-GMM approach described in Section III, including 
asymmetric Student-t GARCH volatilities and the composite likelihood (CL) method. 
34 Given that all the estimations are based on daily data, a horizon of 100 days can be seen as a reasonable 
“long-term” period. However, horizons from four to six months are also considered in the out-of-sample 
exercise presented in the following subsection.  
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portfolio constructed from covariance model j where asset p is hedged against the other 

assets.35  

 

Table 9 presents the results for this in-sample exercise. It is found that the FSG-DCC 

model outperforms the other models for the considered horizon. The FSG-DCC model 

obtains smaller volatilities for twenty seven cases whereas the FG-DCC model is superior 

only for six cases. The standard DCC model is always inferior. Moreover, our results 

indicate that, on average, using long horizon FSG-DCC correlation forecasts to hedge 

reduces the standard deviation of the corresponding optimized portfolios by 

approximately 6 basis points, when it is compared with that of FG-DCC portfolios, and 

by approximately 125 basis points, when it is compared with that of DCC portfolios.  

 

Out-of-Sample Evaluation: A Sequential Forecasting Exercise 

In this subsection, we examine the out-of-sample forecast performance of the FSG-DCC 

model. Our analysis implements a sequential forecasting exercise that is described in 

Figure 11 and can be characterized by iterations of the following simple steps: 1) a set of 

models is estimated based on an initial estimation period with T0 daily observations, and 

multi-horizon covariance forecasts from 1 to 126-days (six months) ahead are computed 

out-of-sample, 2) The mentioned 126-days forecasting period is incorporated into a new 

estimation period with T1=T0+126 daily observations, the models are re-estimated, and a 

new set of out-of-sample forecasts is constructed for the following six months. We iterate 

these two steps several times starting with a sample period from December 1988 to June 

1995. As illustrated in Figure 11, the process is repeated 22 times (up to December 2006) 

and none of the out-of-sample forecast blocks overlap. In this exercise, we also enhance 

the scope of models to be compared. Specifically, we include three new covariance 

estimators: 1) the sample covariance (SCOV), 2) the static one-factor beta covariance 

(BCOV), and 3) the optimal shrinkage covariance of Ledoit and Wolf (2003) (LCOV).36 

All the models are re-estimated at each iteration. 

 

                                                 
35 Each of the 33 assets in our sample is associated with one hedge. 
36 Jagannathan and Ma (2003) use these covariance matrix estimators to examine the effect of portfolio 
weight constraints on the out-of-sample performance of minimum variance portfolios. 
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For the FSG-DCC model, we extrapolate the spline functions by keeping them constant at 

their last values during the forecasting periods and restricting them to have a zero-slope at 

the last observation of the sample. The zero-slope condition in the boundary is imposed 

in the estimation process and provides a conservative approach that underestimates the 

behavior of the time series near the end of the sample.37 This differs from the approach 

taken in the previous in-sample exercise since in such a case the spline functions were 

fitted using data at both sides of the “last” data point (thus no boundary-bias problems 

were present), whereas in the out-of-sample case the bandwidth covers only data on the 

left side of the last observation in the estimation period. The zero-slope condition helps to 

reduce potential anomalies caused by outliers near the right boundary.38  

 

As in the in-sample exercise, we focus on long horizons. Thus, among the multi-horizon 

forecasts generated at each iteration, we only consider the last 40 days (i.e., out-of-

sample forecast from 87 to 126 days ahead). As before, the standard deviations of returns 

on out-of-sample optimized forward hedge portfolio are computed according to: 
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where Ti is the last day of the estimation period associated with iteration i.  

 

For each model and hedge portfolio, Table 10 reports these standard deviations. The 

FSG-DCC specification produces smallest volatilities for fifteen hedges; the sample 

covariance is preferred for five hedges; the shrinkage covariance and the FG-DCC 

models dominate in four cases each; the DCC model is preferred in three cases; and the 

static beta covariance model dominates in only one case. The average across all the 

hedges is shown in the last row of the table. According to this number, the best performer 

is the FSG-DCC specification followed by the FG-DCC model. The sample and the 

                                                 
37 An unrestricted approach would impose less smoothness. Silverman (1984) and Nychka (1995) illustrate 
the boundary issues associated with smoothing splines. 
38 More elaborated boundary correction methods for smoothing splines are examined in Rice and 
Rosenblatt (1981) and Eubank and Speckman (1991). 
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shrinkage covariance models come next followed by the DCC model. The worst 

performer is the static beta covariance model.  

 

To explore further the significance of these results, we perform joint Diebold and 

Mariano-style tests following Engle and Colacito (2006). The objective is to test the 

equality of the FSG-DCC model with respect to each of its competitors.39 This approach 

is based on statistical inference about the mean of the difference between square returns 

on optimized portfolios generated by the FSG-DCC specification and a competitor model 

m. For every iteration i (with last observation = Ti ), a vector of difference series 

associated with the hedge p is defined as:  

 ( ) ( ){ }, | , |

2 2, ( ) ( ) , 86,...,126 ,
i i i i i i i

FSG DCC m
p T k T fh T k T

p m
T T k T ku w r r w r r k−
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where m=FG-DCC, DCC, SCOV, LCOV, BCOV, and p=1,2,…,33. Using these hedge 

difference vectors, we construct a joint difference vector that stacks all of them as 

follows: 

 ( ), 1, 2, 33,, ,..., , 1, 2,..., 22.
i i i i

FSG DCC m m m m
T T T TU u u u i− = =  (32) 

The null of equality of covariance models tests the mean of ,FSG DCC m
tU − equals zero. 

Therefore, for each comparison, the test is performed by running a regression of 
,FSG DCC m

tU −  on a constant. The regressions are estimated by GMM using robust HAC 

covariance matrices. Table 11 reports the t-statistics for the Diebold-Mariano tests. The 

competitor models are named in each column. A negative value suggests that the FSG-

DCC model dominates the column-model since the former is associated with smaller 

average volatility of optimal portfolios than the latter. At a 5% confidence level, the 

results indicate again that the FSG-DCC dominates its competitors at long horizons. 

 

An Example of Forecasting Correlations Using Macroeconomic Variables 

In the previous forecasting exercises, we have not used any economic variables to 

construct the correlation forecasts. Following the discussion is Section III, this subsection 

illustrates with a simple example that low frequency macroeconomic information can be 

                                                 
39 See Diebold and Mariano (1995) for details on the general test. 
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incorporated to forecast correlations within the FSG-DCC framework. The idea is to 

change the approach used to extrapolate the spline associated with the low frequency 

market volatility. A simple strategy to incorporate macroeconomic information into this 

extrapolation consists in forecasting the average low frequency market volatility using 

macroeconomic information and then taking such a value as an out-of-sample target for 

the spline function.40 We apply this strategy to forecast correlations during the first half 

of 2007 conditional on the information in our sample period (up to 2006). To keep this 

example as simple as possible, we use the same macro variables and estimation results 

reported in Engle and Rangel (2008).41 

 

Table 12 shows such estimates along with updated values of the macroeconomic 

variables for the years 2006 and 2007. Under perfect foresight, these estimates predict an 

increase of six basis points in the annual low frequency market volatility. Therefore, after 

calibrating the levels according to the observed volatility in 2006, the predicted annual 

low frequency market volatility increases from 9.3% in 2006 to 10% in 2007.42 Although 

this increase is small compared to the big jump observed in the annual level of realized 

volatility in 2007, due mostly to the August events, the predicted value changed in the 

right direction.43 

 

As before, we can compute out-of-sample forecast of the covariance matrix restricting, 

for example, the spline of the market factor to be flat at 10% in the mid point of 2007 (or 

to cross such target at this point). This is only an example to illustrate the application of 

simple forecasting strategies that use macroeconomic information and can be 

implemented within the FSG-DCC framework. A formal evaluation about the gains of 

                                                 
40 Here the spline function is forced to cross the economic target in a pre-specified point out-of-sample. If 
we are forecasting the annual low frequency level of the market volatility, a natural choice for such point is 
the middle of the forecasting year. A zero slope condition in the target point can also be imposed. 
41 Updated values of the explanatory variables are obtained from the same sources used in Engle and 
Rangel (2008). Note that the estimation period in this study is from 1990 to 2003. Therefore, the estimates 
are suboptimal for the period of our example. 
42 Comparing the estimated low frequency market volatility from the macro variables in 2006 (7.3%) with 
the realized value in this year (9.4%), we obtain an estimate of the time fixed effect. We use this estimate to 
calibrate the prediction in 2007. 
43 The annual realized volatility of the S&P 500 (excess returns) was 16% in 2007. 
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using macroeconomic variables and idiosyncratic volatility predictors to forecast 

correlations is a promising extension that we leave for future work.  

 

VI Concluding Remarks 
 

This paper develops a new model for asset correlations that characterizes dynamic 

patterns at high and low frequencies in the correlation structure of equity returns. 

Exploiting a factor asset pricing structure and dynamic properties of low frequency 

volatilities associated with systematic and idiosyncratic terms, we introduce a slow-

moving correlation component that proxies low frequency changes in correlations. Our 

semi-parametric approach generalizes dynamic conditional correlation (DCC) and other 

multivariate GARCH models by allowing the high frequency correlation component to 

mean revert toward a time varying low frequency component. This framework permits 

the level to which conditional correlations mean revert to adapt to varying economic 

conditions. 

 

At high frequencies, our model incorporates dynamic effects that arise from relaxing 

assumptions in the standard one-factor CAPM model. Such effects account for time 

varying betas and missing pricing factors. At low frequencies, the long-term trends of the 

market and idiosyncratic volatilities govern the dynamics of low frequency correlations. 

We provide evidence that, in addition to the recently documented economic variation of 

market volatility at low frequencies, average idiosyncratic volatility shows substantial 

variation in its long-term trend. We find that this variation is highly correlated with low 

frequency economic variables including an inter-sectoral employment dispersion index 

that proxies the intensity of sectoral reallocation of resources in the economy and, since 

such movements are mainly driven by shocks that are specific to either individual firms 

or sectors, it serves as an indicator of idiosyncratic news intensity. Moreover, we find the 

same results for sectoral idiosyncratic volatility.   

 

The ability of our correlation model to incorporate non-parametrically such low 

frequency features not only produces improvements in terms of the empirical fit of equity 
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correlations and their association with economic conditions, but also leads to an 

improvement for forecasting applications. Indeed, in-sample and out-of-sample 

forecasting experiments indicate that, at long horizons, this new model with time varying 

long-term trends outperforms standard models that mean revert to fixed levels. This result 

is explained by the model’s flexibility in adjusting the level of mean reversion to varying 

economic conditions. Although this comes at a cost of estimating more parameters, we 

can apply the methods that have been recently developed to estimate high-dimensional 

dynamic covariance models and keep the estimation process tractable even for a large 

number of assets. 

 

The results in this paper motivate interesting extensions in terms of economic modeling 

and forecasting: a detailed analysis of the cross-sectional determinants of idiosyncratic 

volatilities would provide a richer firm-specific context to analyze the long-term behavior 

of such volatilities; analyzing the nature of common components in idiosyncratic 

volatility can shed more light on the continuing debate about pricing idiosyncratic risk; 

an analysis of implications for international markets are important for international asset 

allocation and the evaluation of global financial risk. Also, the favorable forecasting 

results shown in the paper could be improved further by incorporating economic 

variables and finding more efficient strategies to forecast the long-term volatility 

components.  
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Appendix A1 

 

Proof of Proposition 1: Consider the specification in (1) and assumptions (2) and (3). 

Allowing 1( ) 0t it jtE u u− ≠ , we have 1 1 1cov ( ) ( ) ( ),t i j i j t mt t it jtr r V r E u uβ β− − −= +  and Equation 

(8) follows. For the second part, Lets consider a single factor model with time varying 

betas satisfying assumptions i)-iv). The equation for excess returns can be written as: 

 ,it i it mt itr r uα β= + +% %  (33) 

where it i itwβ β= + . If we define ( ), 1,..., ,it it mt it it mtu w r u E w r i N≡ + − ∀ =%  then we can 

rewrite (33) as: 

 .it i i mt itr r uα β= + +  (34) 

where ( ) 0,itE u i= ∀  and, by assumptions i) and iv), ( ) 0it mtE u r = . Moreover, from iii) 

and iv), cov( , )( )
( )

mt it
it i

mt

r rE
V r

β β= = , itβ  is covariance stationary and mean reverts toward 

iβ . However, the new errors will be conditionally correlated with the market factor since 

1cov ( , )t it mt mtw r r−  is in general different from zero. Thus, 

 1 1 1 1 1cov ( ) ( ) ( ) ( ) ( ),t i j i j t mt i t mt jt j t mt it t it jtr r V r E r u E r u E u uβ β β β− − − − −= + + +  (35) 

and  

 2
1 1 1 1( ) ( ) ( ) 2 ( ), , .t kt k t mt t kt k t mt ktE r V r V u E r u k i jβ β− − − −= + + =  (36) 

Also, note that 1( )t it jtE u u− is in general different from zero for i j≠  since it includes 

covariance terms such as 1cov ( , ),t it mt jt mtw r w r− 1cov ( , ),t it mt jtw r u−  and 1( ), ,t it jtE u u i j− ≠% %  

which may deviate from zero (for example, due to temporal comovements across the time 

varying beta components as well as to the effect of latent unobserved factors). Thus, we 

obtain Equation (10) by combining (35) and (36).■ 
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Appendix A2 

 

Proof of Proposition 2: Consider the following vectors of returns, factor loadings, and 

innovations: ( )1 2, ,...., ',t t t Ntr r r r= ( )1 2, ,...., ',t t Ntβ β β β=  and ( )1 2, ,...., 't t t Ntu u u u= . Given 

a vector Ft of common factor(s) and omitting the constant terms, without loss of 

generality, we can rewrite the model in Equation (1) as: 

 .t t tr F uβ= +  (37) 

Thus, given the t-1 information set 1t−ℑ , the conditional covariance matrix is: 

 1 1 1 1 1( ) ( ) ( ) ( ) ( ).t t t t t t t t t t t t t t tE r r E F F E Fu E u F E u uβ β β β− − − − −′ ′ ′ ′ ′ ′ ′= + + +  (38) 

 In particular, for the one-factor CAPM case, t mtF r=  and (38) takes the following form: 

 1 1 1 1 1( ) ( ) ( ) ( ) ( ).t t t t mt t mt t t t mt t t tE r r E r E r u E u r E u uββ β β− − − − −′ ′ ′ ′ ′= + + +  (39) 

From Equations (10) and (11), the typical (i,j) element of the first term on the RHS of 

(39) is: 

 2
1( ) .i j t mt i j mt mtE r gβ β β β τ− =  (40) 

Similarly, from Equations (11), (12), and (13), the typical  (i,j) element of the second 

term is: 

 1 , ,( ) ,i t mt jt i mt mt jt jt m j tE r u g g εβ β τ τ ρ− =  (41) 

the typical  (i,j) element of the third term is: 

 1 , ,( ) ,j t mt it j mt mt it it m i tE r u g g εβ β τ τ ρ− =  (42) 

and the typical  (i,j) element of the last term is: 

 1 , ,( ) .t it jt it it jt jt i j tE u u g g ετ τ ρ− =  (43) 

Equation (14) follows from substituting these conditional expectations in (10). 

The unconditional version of (10) is then used to derive the low frequency correlation.  

( ) ( ) ( )2

, 2 2 2 2 2 2

( )
.

( ) ( ) 2 ( ) ( ) ( ) 2 ( )
i j mt j mt it i mt jt it jt

i j

i mt it i mt it j mt jt j mt jt

E r E r u E r u E u u

E r E u E r u E r E u E r u

β β β β
ρ

β β β β

+ + +
=

+ + + +
 

Under the assumption that the factor(s) and the idiosyncrasies are unconditionally 

uncorrelated, we have: 
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( )2

, 2 2 2 2 2 2

( )
.

( ) ( ) ( ) ( )
i j mt it jt

i j

i mt it j mt jt

E r E u u

E r E u E r E u

β β
ρ

β β

+
=

+ +
 (44) 

Now, from (11), (12), and the LIE:  

( ) ( ) ,mt mt mt mtE r E gτ τ= =  

and  
2( ) ( ) , 1, 2,..., .it it it itE u E g i Nτ τ= = ∀ =  

Also,  

 
,

1/ 2 1/ 2
1/ 2 1/ 2( ) ( )

( , ) .
( ) ( ) i j

it jt it it jt jt
it it jt jt

it jt it jt

E u u E g g
corr g g

E g E g
εε ε

ε ε ρ
τ τ

= = ≡ %  

 

Note that , , , , ,i j t i j t tε ερ ρ= ∀% , thus we approximate ,i j
ερ %  with the sample correlation, ,i j

ερ , 

from Equation (12). Plugging in the previous expressions into (44), we obtain the time 

varying low frequency correlation in Equation (15). 

 

Moreover, if we assume , ,( ) , 0, 1, 2,..., ,t k t h k tE h k Nτ τ+ = ∀ > =  then the long horizon 

forecast of (14) can be constructed using the mean reversion properties of the GARCH 

and DCC equations. Indeed, the GARCH dynamics implies , |lim 1,k t h hh
g +→∞

=  

,1, 2,...,k m N∀ = . Also, the long horizon correlation forecasts associated with the vector 

of innovations are given by the terms targeting correlations (see Equation (13)): 

 , , | ,
, , ,

, , | , , | , ,

lim lim ,i j t h t i j
i j t h i jh h

i i t h t j j t h t i i j j

q
q q

ε
ε ε

ε ε

ρ
ρ ρ

ρ ρ
+

+→∞ →∞
+ +

= = =  (45) 

, {1,2,..., }.i j N∀ ∈  In addition, from our assumption that the idiosyncrasies are 

unconditionally uncorrelated with the factor, , 0m i
ερ =  and , , |lim 0, 1,...,m i t h th

i Nρ +→∞
= ∀ = . 

Hence, substituting the long run forecasts of each term into (14), we obtain: 

 ,
, , | 2 2

lim ,i j mt it jt i j
i j t h th

i mt it j mt jt

εβ β τ τ τ ρ
ρ

β τ τ β τ τ
+→∞

+
=

+ +
 (46) 

  
which coincides with the low frequency correlation.■ 
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Table 1 

Description of Individual Stock Returns (Dec 1988-Dec 2006) 

Company Name Ticker
Average Daily 

Return 
Annualized 

Sample Volatility 

Alcoa AA 0.05% 0.52 
American Intl. Gp. AIG 0.07% 0.36 
American Express AXP 0.07% 0.54 
Boeing BA 0.06% 0.48 
Citigroup C 0.10% 0.57 
Caterpillar CAT 0.06% 0.49 
Chevron-Texaco CVX 0.05% 0.27 
Du Pont E I De Nemours DD 0.04% 0.38 
Walt Disney DIS 0.06% 0.49 
General Electric GE 0.06% 0.34 
General Motors GM 0.02% 0.56 
Goodyear GT 0.03% 0.75 
Home Depot HD 0.10% 0.60 
Honeywell Intl. HON 0.06% 0.55 
Hewlett-Packard HPQ 0.08% 0.85 
International Bus. Mach. IBM 0.04% 0.47 
Intel INTC 0.11% 0.94 
International Paper IP 0.02% 0.42 
Johnson & Johnson JNJ 0.07% 0.30 
JP Morgan Chase & Co. JPM 0.06% 0.63 
Coca Cola KO 0.06% 0.32 
McDonalds MCD 0.06% 0.38 
3M MMM 0.05% 0.27 
Altria Group Inco. MO 0.07% 0.45 
Merck & Co. MRK 0.05% 0.40 
Microsoft MSFT 0.12% 0.64 
Pfizer PFE 0.07% 0.44 
Procter & Gamble PG 0.07% 0.32 
AT&T T 0.04% 0.39 
United Technologies UTX 0.07% 0.39 
Verizon Comms. VZ 0.03% 0.37 
Wal Mart Stores WMT 0.07% 0.45 
Exxon Mobil XOM 0.05% 0.25 
Source: Daily returns from CRSP.  The annualized sample volatility is the square root of 
the sample average of annualized daily squared returns. 
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Table 2 
Estimation Results US Market 

,it i i mt itr r uα β= + + ,m
mt m mt mt tr gα τ ε= +  

1,  where | ~ ( ), ,1, 2,...,it it it it it t iu g Student t v i m Nτ ε ε −= Φ − ∀ =  

1

2 2
1 1

0 1
1 1

( ) ( )1
2 mt

m mt m mt m
mt m m m m r m mt

mt mt

r rg I gγ α αθ φ θ γ φ
τ τ −

− −
< −

− −

− −⎛ ⎞= − − − + + +⎜ ⎟
⎝ ⎠

 

1

2 2
1 1 1 1

0 1
1 1

( ) ( )1
2 it

i it i i mt it i i mt
it i i i i r i it

it it

r r r rg I gγ α β α βθ φ θ γ φ
τ τ −

− − − −
< −

− −

− − − −⎛ ⎞= − − − + + +⎜ ⎟
⎝ ⎠

 

( )2
0 1

1
exp ( ) ,   ,1,...,

ik

it i i ir i
r

c w t w t t i m Nτ − +
=

⎛ ⎞
= + − ∀ =⎜ ⎟

⎝ ⎠
∑ a 

 1  2  3  4 5   6  7
First Stage 

 iα   iβ  iθ  iφ  iγ   iv  ik
 Coeff T-Stat  Coeff T-Stat Coeff T-Stat Coeff T-Stat Coeff T-Stat  Coeff T-Stat  

Market(m) 0.028% 2.48    -0.00 -0.83 0.90 67.6 0.122 8.33  8.4 10.2 4
AA -0.025% -1.20  0.99 44.9 0.02 4.2 0.96 144.1 0.008 1.00  6.3 11.9 1
AIG -0.004% -0.30  1.01 58.5 0.07 5.0 0.82 30.8 0.034 1.62  7.1 11.7 4
AXP -0.018% -1.05  1.17 61.4 0.05 4.0 0.84 32.8 0.063 2.96  6.5 11.0 4
BA -0.005% -0.26  0.93 41.6 0.11 4.1 0.41 4.3 0.056 1.41  6.3 13.0 4
C 0.002% 0.12  1.25 70.4 0.07 4.7 0.83 32.2 0.019 0.98  6.8 12.5 4

CAT 0.020% 1.03  1.01 49.6 0.01 2.8 0.99 322.2 0.003 0.94  4.9 16.0 1
CVX 0.022% 1.28  0.66 37.5 0.05 5.9 0.94 110.8 -0.015 -1.46  7.9 9.2 1
DD -0.019% -1.19  0.98 53.5 0.05 3.6 0.85 20.0 -0.019 -1.17  5.9 12.1 4
DIS -0.004% -0.23  1.04 50.3 0.12 4.4 0.52 6.6 0.033 0.90  5.0 14.9 4
GE -0.006% -0.49  1.13 77.9 0.03 3.2 0.84 27.8 0.065 3.48  9.0 8.3 5
GM -0.063% -3.01  1.03 48.8 0.02 3.8 0.96 174.1 0.028 3.80  5.5 13.2 1
GT -0.071% -3.08  0.93 37.4 0.01 2.7 0.98 278.8 0.017 3.91  4.4 15.4 3
HD 0.030% 1.56  1.23 54.8 0.01 1.6 0.91 65.1 0.059 4.37  6.1 12.9 5

HON -0.031% -1.73  1.06 51.8 0.11 4.6 0.65 14.8 0.091 2.63  5.1 15.4 4
HPQ 0.000% -0.02  1.30 50.9 0.01 4.0 0.99 347.6 0.004 1.11  4.3 18.6 1
IBM -0.028% -1.87  0.95 55.3 0.00 1.4 0.97 216.3 0.028 5.20  4.5 17.2 2

INTC 0.038% 1.55  1.53 55.4 0.02 2.7 0.95 112.2 0.022 2.69  5.4 15.7 2
IP -0.036% -1.92  0.91 46.8 0.08 4.2 0.63 8.1 0.029 1.08  10.4 7.0 7

JNJ -0.009% -0.61  0.78 45.7 0.05 4.1 0.83 32.6 0.088 3.79  5.9 12.1 4
JPM -0.016% -0.98  1.26 64.1 0.03 3.4 0.90 52.2 0.054 3.76  6.2 12.6 5
KO -0.006% -0.41  0.81 49.0 0.07 3.8 0.63 10.9 0.113 3.46  6.2 12.1 4

MCD 0.003% 0.17  0.80 38.7 0.02 4.3 0.97 182.7 0.009 1.12  5.6 12.4 1
MMM -0.002% -0.11  0.78 55.3 0.13 4.4 0.18 1.7 0.001 0.02  5.2 16.4 7
MO 0.039% 2.43  0.76 39.9 0.13 4.9 0.58 13.2 0.127 3.01  4.0 18.7 4

MRK 0.016% 0.95  0.93 51.0 0.11 4.1 0.46 6.0 0.043 1.13  5.0 17.6 6
MSFT 0.010% 0.53  1.16 55.4 0.08 4.3 0.76 20.1 0.039 1.54  4.9 16.3 5
PFE 0.005% 0.29  0.94 45.9 0.09 4.7 0.78 21.1 -0.001 -0.07  5.8 13.4 4
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PG 0.019% 1.36  0.73 44.5 0.04 3.8 0.91 56.8 0.028 1.95  6.1 13.7 4
T -0.003% -0.17  0.86 44.6 0.07 4.5 0.83 26.4 0.017 0.92  7.6 9.6 6

UTX -0.001% -0.08  0.93 51.3 0.09 3.5 0.53 7.0 0.093 2.48  5.9 14.1 7
VZ -0.016% -1.00  0.84 45.4 0.07 5.1 0.83 28.9 0.016 0.88  6.8 11.2 5

WMT 0.002% 0.11  1.07 56.2 0.04 4.9 0.95 133.8 0.003 0.38  6.8 10.3 2
XOM 0.018% 1.22   0.74 44.2  0.08 5.2  0.84 30.8 -0.019 -1.07   9.1 9.0  4

( )1 2, , ,...., ' ,m
t t t Nt DCCε ε ε ε �        

, ,
, ,

, , , ,

,i j t
i j t

i i t j j t

q
q q

ερ =  

{ }, , , , 1 , 1 , , , 1 ,( ) ( ),   , 1,..., ,i j t i j DCC i t j t i j DCC i j t i jq a b q i j Nε ε ερ ε ε ρ ρ− − −= + − + − ∀ ∈  

{ }, , , 1 , 1 , , , 1 ,( ) ( ),   ,1,...,m
m i t m i DCC t i t m i DCC m i t m iq a b q i m Nε ε ερ ε ε ρ ρ− − −= + − + − ∀ ∈  

Second Stage (DCC) 

Param  Std. DCC  Median Bivariate
 DCC Systems Composite Likelihood   

  Coeff  T-Stat   Median   Coeff T-Stat     

DCCa   0.0024  4.8   0.0047   0.0043 50.8     

DCCb    0.9919   142.7      0.9856      0.9906 4531.2          

a) The returns are in excess of the risk free rate. The sample is the 33 DJIA stocks described in Table 1. 
The one-month T-bill rate is used as the time varying risk free rate 
b) The optimal number of knots was selected based on the BIC. 
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Table 3 
Sample Correlations: Idiosyncratic Volatilities and Economic Variables 

 
Average Idiosyncratic Volatilities  

(Quarterly Frequency)a 

Economic Variablesd Average Rolling Idiosyncratic 
Volatilityb 

Average Low Frequency 
Idiosyncratic Volatilityc 

Employment Dispersion Index 0.48 0.34 
CAY -0.40 -0.39 

Market Factor Volatility 0.72 0.64 
Illiquidity (QSPR) -0.30 -0.23 

a) Average idiosyncratic volatilities are based on daily DJIA stock returns. These measures are aggregated 
at a quarterly frequency over the period 1990-2006. 

b) The Average Rolling Idiosyncratic Volatility is defined as 
100

2
( )

1 1

1
21 1
,

100

N

t i t k
i k

ARIV u
N −

= =

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  where uit is 

the daily idiosyncratic return from Equation (1). 

c) The Average Low Frequency Idiosyncratic Volatility is defined as 1/ 2

1

1
,

N

t it
i

Ivol
N

τ
=

= ∑ where the τ’s are 

the daily low frequency volatilities estimated from Equation (12) 
d) The Employment Dispersion Index follows the definition in Lilien (1982): 

( )
1

11 2
2

1

log log ,ik
k ik k

i k

x
EDI x X

X=

= ∆ − ∆
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ where xik is employment in industry i (among 11 industry 

sectors) at quarter k, and Xk is aggregate employment; the consumption-wealth ratio (CAY) is defined in 
Lettau and Ludvigson (2001); the market factor volatility is estimated according to Equation (11); and the 
average quoted spread (QSPR) follows the definition in Chordia, Roll, and Subrahmanyam (2001). 
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Table 4 

Idiosyncratic Volatility GMM Regressions 

 
Average Rolling Idiosyncratic 

Volatility 
Average Low Frequency 

Idiosyncratic Volatility 
   

Constant 0.082 0.080 
 (0.037) (0.076) 

EDI 104.581 117.298 
 (53.314) (67.166) 

CAY -0.154 -0.031 
 (0.562) (0.699) 

Market Volatility 0.615 0.643 
 (0.233) (0.218) 

QSPR -0.083 -0.002 
  (0.073) (0.087) 

R-squared 0.533 0.365 
J-statistic 0.051 0.049 

Notes: The Average Rolling Idiosyncratic Volatility is defined as 
1/ 2100

2
( )

1 1

1 1
,

100

N

t i t k
i k

ARIV u
N −

= =

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  

where uit is the daily idiosyncratic return from Equation (1). The Average Low Frequency Idiosyncratic 

Volatility is defined as 1/ 2

1

1
,

N

t it
i

Ivol
N

τ
=

= ∑ where the τ’s are the daily low frequency volatilities estimated 

from Equation (12). These averages are based on daily DJIA stock returns. Aggregating the variables at a 
quarterly frequency from 1989 to 2006, the two measures of idiosyncratic volatility are regressed on the 
following set of variables: the employment dispersion index (EDI) of Lilien (1982), the consumption-wealth 
ratio (CAY) of Lettau and Ludvigson (2001), the market factor volatility estimated in Equation (11), and the 
average quoted spread (QSPR) of NYSE stocks (as defined in Chordia, Roll, and Subrahmanyam (2001)). 
The regressions are estimated using the Generalized Method of Moments (GMM) with Newey-West 
standard errors and four lags of the regressors as instruments.  
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Table 5 

Sample Correlations: Idiosyncratic Volatilities based on 48 Industry Portfolios and 
Economic Variables 

 
Average Idiosyncratic Volatilities  

(Quarterly Frequency)a 

Economic Variablesd Average Rolling Idiosyncratic 
Volatilityb 

Average Low Frequency 
Idiosyncratic Volatilityc 

Employment Dispersion Index 0.51 0.27 
CAY -0.26 -0.66 

Market Factor Volatility 0.61 0.69 
Illiquidity (QSPR) -0.32 -0.29 

a) Average idiosyncratic volatilities are based on daily returns from the 48 equally-weighted industry 
portfolios of Fama and French (1997). These measures are aggregated at a quarterly frequency over the 
period 1990-2006. 

b) The Average Rolling Idiosyncratic Volatility is defined as 
100

2
( )

1 1

1
21 1
,

100

N

t i t k
i k

ARIV u
N −

= =

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  where uit is 

the daily idiosyncratic return from Equation (1). 

c) The Average Low Frequency Idiosyncratic Volatility is defined as 1/ 2
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the daily low frequency volatilities estimated from Equation (12). 
d) The Employment Dispersion Index follows the definition in Lilien (1982): 
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∑ where xik is employment in industry i (among 11 industry 

sectors) at quarter k, and Xk is aggregate employment; the consumption-wealth ratio (CAY) is defined in 
Lettau and Ludvigson (2001); the market factor volatility is estimated according to Equation (11); and the 
average quoted spread (QSPR) follows the definition in Chordia, Roll, and Subrahmanyam (2001). 
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Table 6 

Regressions of Idiosyncratic Volatility Based on 48 Industry Portfolios 

 
Average Rolling Idiosyncratic 

Volatility 
Average Low Frequency 

Idiosyncratic Volatility 
   

Constant 0.095 0.125 
 (0.008) (0.003) 

EDI 33.820 28.924 
 (19.132) (5.786) 

CAY -0.108 -0.305 
 (0.192) (0.039) 

Market Volatility 0.200 0.056 
 (0.091) (0.028) 

QSPR -0.011 -0.007 
  (0.020) (0.009) 

R-squared 0.376 0.264 
J-statistic 0.097 0.127 

Notes: The Average Rolling Idiosyncratic Volatility is defined as 
1/ 2100
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⎜ ⎟
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where uit is the daily idiosyncratic return from Equation (1). The Average Low Frequency Idiosyncratic 

Volatility is defined as 1/ 2

1

1
,

N

t it
i

Ivol
N

τ
=

= ∑ where the τ’s are the daily low frequency volatilities estimated 

from Equation (12). These averages are based on daily returns from the 48 equally-weighted industry 
portfolios of Fama and French (1997). Aggregating the variables at a quarterly frequency from 1989 to 2006, 
the two measures of idiosyncratic volatility are regressed on the following set of variables: the employment 
dispersion index (EDI) of Lilien (1982), the consumption-wealth ratio (CAY) of Lettau and Ludvigson (2001), 
the market factor volatility estimated in Equation (11), and the average quoted spread (QSPR) of NYSE 
stocks (as defined in Chordia, Roll, and Subrahmanyam (2001)). The regressions are estimated using the 
Generalized Method of Moments (GMM) with Newey-West standard errors and four lags of the regressors 
as instruments.  
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Table 7 
Correlation Models from Factor Assumptions 

PANEL 1: DYNAMIC VOLATILITY COMPONENTSa 
Components with High and Low Frequency Dynamics  Constant Volatilities  Factor Component   Factor and Idiosyncratic Components 

FC-C: Constant factor and idiosyncratic volatilities FG-C: GARCH factor volatility FG-G: GARCH factor and Idiosyncratic volatilities 

, , 2 2 2 2

FG C i j mt
i j t

i mt i j mt j

h

h h

β β
ρ

β σ β σ
− =

+ +
 , , 2 2

FG G i j mt
i j t

i mt it j mt jt

h

h h h h

β β
ρ

β β
− =

+ +
 

FSG-C: Spline-GARCH factor volatility FSG-SG: Spline-GARCH factor and Idiosyncratic 
volatilities 

2

, 2 2 2 2 2 2

FC C i j m
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i mt mt it it j mt mt jt jt
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g g g g

β β τ
ρ
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+ +
 

PANEL 2: OTHER DYNAMIC COMPONENTSb 

Idiosyncratic Correlations (Latent Factors)  All Components 
FG-IDCC: FG-G with latent factors    FG-DCC 

 

, ,
, , 2 2

u
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h h h
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+
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 See Equation (19) 

FSG-IDCC: FSG-SG with latent factors    FSG-DCC 

, ,
, , 2 2

u
i j mt mt it it jt jt i j tFSG IDCC

i j t

i mt mt it it j mt mt jt jt

g g g

g g g g

β β τ τ τ ρ
ρ

β τ τ β τ τ
−

+
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+ +
 See Equation (14) 

a) σ denotes constant (C) volatilities, h and g refer to GARCH (G) and Spline-GARCH (SG) variances, respectively. b) These models are parametrizations of (8) 
and (10) in Proposition 1. 



 

Table 8 
Evaluation of Factor Correlation Models 

Assumptiona Model Quasi-log- 
likelihood Parameters 

Quasi-
Likelihood  

Ratioc 
 BIC 

 FC-C -426550 67 45980*  -186.96
FG-C -427110 69 44860*  -187.201 

FSG-C -427160 75 44760*  -187.21
FG-G -440670 135 17740*  -193.032 

FSG-SG -442820 383 13440*  -193.51
FG-IDCC -446930 663 5220*  -194.803 

FSG-IDCC -449100 911 880*  -195.29
FG-DCC -447330 696 4420*  -194.91

4b 

FSG-DCC -449540  944      -195.42
a) This column corresponds to the assumptions that are weakened in the factor specifications: 
1. Constant volatility of the market factor. 
2. Constant volatility of the idiosyncratic components. 
3. One single common factor. 
4. Constant betas. 
The models are described in Table 7 and the sample is the 33 DJIA stocks described in Table 1.  
b) The last step is associated with the full FG-DCC and FSG-DCC models. 
c) The quasi-likelihood-ratios compare the models on each row with the FSG-DCC model (see the last row). 
*) Indicates that the quasi-likelihood-ratios are above the 1% critical value of a chi-square distribution with 
degrees of freedom given by the difference between 944 and the number of parameters associated with 
each model. 
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Table 9 
In-Sample Evaluation: Standard Deviations of Optimized Forward Hedge Portfolios 

for a 100-Days Horizon 
Forward Hedge Portfolios FSG-DCC FG-DCC DCC 

µAA 0.2563 0.2560 0.2646 
µAIG 0.2010 0.2018 0.2312 
µAXP 0.2385 0.2392 0.2443 
µBA 0.2607 0.2605 0.2749 
µC 0.2364 0.2376 0.2516 

µCAT 0.2525 0.2541 0.2634 
µCVX 0.1675 0.1658 0.1770 
µDD 0.2087 0.2088 0.2127 
µDIS 0.2640 0.2654 0.2728 
µGE 0.1756 0.1771 0.1812 
µGM 0.2805 0.2803 0.3162 
µGT 0.3365 0.3368 0.3419 
µHD 0.2586 0.2603 0.2765 
µHON 0.2672 0.2680 0.3098 
µHPQ 0.3376 0.3381 0.3488 
µIBM 0.2528 0.2534 0.2570 
µINTC 0.3279 0.3295 0.3357 
µIP 0.2250 0.2260 0.2307 
µJNJ 0.1873 0.1880 0.1952 
µJPM 0.2574 0.2594 0.2654 
µKO 0.2029 0.2045 0.2108 
µMCD 0.2402 0.2399 0.2521 
µMMM 0.1857 0.1858 0.1925 
µMO 0.2760 0.2769 0.3129 
µMRK 0.2160 0.2167 0.2323 
µMSFT 0.2724 0.2728 0.2864 
µPFE 0.2273 0.2278 0.2358 
µPG 0.2081 0.2093 0.2147 
µT 0.2087 0.2090 0.2166 

µUTX 0.2157 0.2165 0.2321 
µVZ 0.2022 0.2030 0.2075 

µWMT 0.2313 0.2304 0.2393 
µXOM 0.1547 0.1553 0.1645 

All Portfolios 0.2374 0.2380 0.2499 
Notes: Sample standard deviations of returns on optimized forward hedge portfolios constructed at each 
point in the sample using 100-days-ahead covariance forecasts from FSG-DCC, FG-DCC, and DCC 
models, respectively, and subject to a required return of 1. The sample is described in Table 1. The stock in 
the corresponding row is hedged against all other stocks.  
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Table 10 
Out-of-Sample Evaluation: Standard Deviations of Optimized Forward Hedge 

Portfolios at Multiple Long Horizons 
Forward Hedge  

Portfolios FSG-DCC FG-DCC DCC BCOV SCOV LCOV 

µAA 0.2573 0.2569 0.2569 0.2787 0.2549 0.2550 
µAIG 0.1914 0.1947 0.1917 0.1949 0.1925 0.1923 
µAXP 0.2130 0.2138 0.2137 0.2293 0.2151 0.2152 
µBA 0.2690 0.2702 0.2697 0.2744 0.2715 0.2714 
µC 0.1979 0.1992 0.1985 0.2182 0.1979 0.1983 

µCAT 0.2445 0.2461 0.2452 0.2532 0.2455 0.2451 
µCVX 0.1593 0.1586 0.1575 0.2065 0.1584 0.1592 
µDD 0.1997 0.2009 0.2013 0.2119 0.1981 0.1980 
µDIS 0.2718 0.2695 0.2708 0.2708 0.2726 0.2723 
µGE 0.1921 0.1947 0.1918 0.1874 0.1913 0.1909 
µGM 0.3035 0.3061 0.3055 0.3069 0.3043 0.3040 
µGT 0.3509 0.3504 0.3508 0.3645 0.3547 0.3546 
µHD 0.2704 0.2707 0.2705 0.2837 0.2703 0.2704 
µHON 0.2714 0.2756 0.2719 0.2812 0.2718 0.2718 
µHPQ 0.3688 0.3735 0.3677 0.3925 0.3665 0.3668 
µIBM 0.2363 0.2428 0.2367 0.2506 0.2388 0.2386 
µINTC 0.3325 0.3394 0.3347 0.3794 0.3351 0.3357 
µIP 0.2292 0.2296 0.2287 0.2531 0.2279 0.2283 
µJNJ 0.1792 0.1808 0.1797 0.1972 0.1803 0.1797 
µJPM 0.2169 0.2183 0.2190 0.2427 0.2187 0.2189 
µKO 0.2161 0.2163 0.2149 0.2232 0.2150 0.2150 
µMCD 0.2522 0.2541 0.2525 0.2531 0.2525 0.2523 
µMMM 0.1937 0.1965 0.1938 0.1977 0.1925 0.1924 
µMO 0.3172 0.3204 0.3174 0.3210 0.3176 0.3176 
µMRK 0.2156 0.2162 0.2156 0.2417 0.2142 0.2141 
µMSFT 0.2474 0.2510 0.2485 0.2711 0.2485 0.2481 
µPFE 0.2439 0.2482 0.2438 0.2710 0.2440 0.2439 
µPG 0.1827 0.1826 0.1824 0.1991 0.1820 0.1820 
µT 0.2139 0.2161 0.2145 0.2522 0.2158 0.2168 

µUTX 0.2158 0.2204 0.2166 0.2195 0.2157 0.2154 
µVZ 0.1924 0.1953 0.1913 0.2237 0.1901 0.1904 

µWMT 0.2351 0.2370 0.2349 0.2500 0.2364 0.2366 
µXOM 0.1517 0.1506 0.1513 0.1966 0.1518 0.1528 

All Portfolios 0.2374 0.23757 0.2393 0.2545 0.23764 0.2377 
Notes: Sample standard deviations of returns on optimized forward hedge portfolios subject to a required 
return of 1, and based on 22 iterations of out-of-sample covariance forecasts at horizons from 87 to 126 
days ahead. The forecasts are constructed from FSG-DCC, FG-DCC, DCC, BCOV (static one-factor beta 
covariance), SCOV (sample covariance), and LCOV (optimal shrinkage covariance of Ledoit and Wolf 
(2003)) models, respectively. The 22 sequential sample periods are described in Figure 11 and include the 
33 DJIA stocks described in Table 1. The stock in the corresponding row is hedged against all other stocks.  
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Table 11 
Joint Diebold-Mariano Tests to Compare the Long-Term Forecast Performance of 

the FSG-DCC Model Relative to Competing Models 
 Competing Models 

FSG-DCC vs. Column Model DCC FG-DCC LCOV SCOV BCOV
T-Statistics -3.66 -2.96 -2.14 -2.07 -5.72 

Notes: This table reports t-statistics for joint Diebold-Mariano tests that evaluate the forecast performance 
of the FSG-DCC model relative to the following competitors: DCC, FG-DCC, BCOV (static one-factor 
beta covariance), SCOV (sample covariance), and LCOV (optimal shrinkage covariance of Ledoit and 
Wolf (2003)). Each t-statistic is derived from estimating a regression of a vector of differences of squared 
realized returns of two models on a constant. The vector of differences is constructed using squared 
realized forward hedge portfolio returns associated with the FSG-DCC model and the competing column 
model. The forward hedge portfolios are constructed using the sample periods described in Figure 11 and 
the 33 DJIA stocks in Table 1. We include only long-term forward hedge portfolios (from 87 to 126 days 
forward). The vector regressions are estimated using the Generalized Method of Moments (GMM) with 
heteroskedasticity and autocorrelation consistent (HAC) covariance matrix. A negative value is evidence of 
better performance of the FSG-DCC model.  
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Table 12 
Economic Variables Associated with Low Frequency Variation in the Market 

Volatility 
Explanatory Variables Regression  

Coefficients  Realizations of Explanatory
 Variables 

    2006  2007 
log(mc/gdpus) -0.0092 6.8717  6.8413 

log(gdpus) 0.0181 9.4876  9.5287 
nlc -1.77E-05 2280  2297 

grgdp -0.1603 0.0256  0.0220 
gcpi 0.3976 0.0192  0.0290 

vol_irate 0.0020 0.2807  0.3910 
vol_gforex 0.0222 0.0147  0.0129 
vol_grgdp 0.8635 0.0034  0.0042 
vol_gcpi  0.1532  0.0079   0.0091 

     
 Notes: The definition of the explanatory variables and the estimated regression coefficients are taken from 
Engle and Rangel (2008). The explanatory variables are defined as follows: MC=Market capitalization of 
the NYSE, GDPUS=Nominal GDP in US dollars, NLC=Number of listings in the NYSE, GRGDP=Real 
GDP growth rate, GCPI=Inflation rate (based on the consumer price index), VOL_IRATE=Volatility of the 
short-term interest rate, VOL_GFOREX=Volatility of the US exchange rate relative to the EURO, 
VOL_GRGDP=Volatility of real growth, VOL_GCPI=Volatility of the short-term interest rate. The 
estimated coefficients are taken from the first column of Table 9 in Engle and Rangel (2008). The same 
sources of this paper are used to update the values of the explanatory variables.  
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Figure 1 
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Notes: The estimation uses daily returns on the DJIA stocks from December 1988 to December 2006. 
The data is obtained from CRSP. The beta estimates correspond to the one-factor CAPM specification 
in Equation (1): it i i mt itr r uα β= + + . They are estimated based on the moment conditions in Equation 
(26) and a two-stage GMM estimation approach. 
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Figure 2 

Idiosyncratic Volatilities: High and Low Frequency 
Components
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Notes: The estimation uses daily returns on the DJIA stocks from December 1988 to December 2006. The data 
is obtained from CRSP. Company names are referred by their tickers (AA=Alcoa, INTC=Intel, XOM=Exxon 
Mobil, JPM=JP Morgan Chase, T=AT&T, and IP=International Paper). HFV stands for “High frequency 
idiosyncratic volatility” (see second equation in (12)) and LFV refers to “Low frequency idiosyncratic 
volatility” (see third equation in (12)). The last number in the series labels denotes the optimal number of knots. 
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Figure 3 
High and Low Frequency Market Volatility 
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Notes: The estimation uses daily returns on the S&P500 from December 1988 to December 2006. 
HFVOL=High frequency market volatility (see second equation in (11)). LFVOL=Low frequency market 
volatility (see third equation in (11)). 
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Figure 4 
Correlations for Stocks with Increasing Low Frequency Idiosyncratic Volatility at 

the End of the Sample 
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Notes: The estimation uses daily returns on the DJIA stocks from December 1988 to December 2006. The data 
is obtained from CRSP. Company names are referred by their tickers (see Table 1).   
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Figure 5 
Correlations for Stocks with Decreasing Low Frequency Idiosyncratic Volatility at 

the End of the Sample 
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Notes: The estimation uses daily returns on the DJIA stocks from December 1988 to December 2006. The data 
is obtained from CRSP. Company names are referred by their tickers (see Table 1). 
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Figure 6 

Average Low Frequency Market and Idiosyncratic Volatilities Over Two-
Year Periods
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Notes: The average low frequency volatility over the period p is defined as follows: 

Average Annualized Idiosyncratic Volatility of Asset i = 1/ 2

1

1 pT

it
tpT
τ

=
∑ , where 1/ 2

itτ is the annualized 

low frequency volatility for asset i at time t, ,1, 2,...,i m N∀ = , and Tp is the number of daily 
observations in period p . 
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Figure 7 

Average Correlations
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Notes: The average rolling correlation over the period p is defined as follows: 

, ,
1 1

1 1 1 ,
( 1)

p

Tp

TN
Rolling Rolling

i j t
i j i tpN T N

ρ ρ
= ≠ =

⎧ ⎫⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩ ⎭
∑ ∑∑  where Tp denotes the number of daily 

observations in period p, and , ,
Rolling
i j tρ is the rolling correlation between assets i and j at 

time t. Similarly, the average FSG-DCC correlations are constructed by using , ,i j tρ in 
Proposition 2. 
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Figure 8 
Employment Dispersion Index and Aggregated Idiosyncratic Volatilities 
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Notes: The graph shows quarterly aggregates of the following variables: Average Rolling Idiosyncratic 

Volatility, defined as
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industry i (among 11 industry sectors) at quarter k and Xk is aggregate employment.  
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Figure 9 
Employment Dispersion Index and Aggregated Idiosyncratic Volatilities from 48 

Industry Portfolios 
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Notes: The graph shows quarterly aggregates of the following variables: Average Rolling Idiosyncratic 

Volatility, defined as
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Figure 10 

Mutiple-Step Ahead Forecasts
AIG and DIS
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Notes: Multi-step forecasts of the correlations between DIS and AIG. The estimation period goes from 
December 1988 to December 2006. The forecasting period goes from January to July 2007. HFC=High 
frequency correlation, LFC=Low frequency correlation. Forecast horizon: 130 days.
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Figure 11 

Sequential Forecasting Exercise 
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Notes: This figure describes the iterations of an out-of-sample sequential forecasting exercise. In the first iteration a 
number of covariance models are estimated using data from 12/01/1988 to 12/31/1995. Then multi-step out-of-sample 
forecasts are constructed for each model over a period of six months (from 01/01/1996 to 06/30/1996). In iteration 2 the 
estimation period is extended six months (from 12/01/1988 to 06/30/1996) and a new set of multi-step out-of-sample 
forecasts are generated for the following six months. At each iteration, the estimation period incorporates the previous 
iteration’s forecasting period and new out-of-sample forecasts are generated. Proceeding in this manner, 22 iterations 
are completed ending at 12/31/2006. The forecasting periods do not overlap. 

   
 

 

 


