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Abstract

In decentralized finance, the timing in which blocks are released on a blockchain is influenced

by the existence of arbitrage opportunities. We study a single agent arbitraging a risky asset

between a decentralized exchange and a centralized exchange. The decentralized exchange is

defined by a bonding function specifying the relationship between the amounts of the risky

asset and a numéraire asset in a liquidity pool and the price of the risky asset on the centralized

exchange follows an exogenous process that is assumed to be a semimartingale. Our first result

shows there exists an equivalence between the bonding function of the decentralized exchange

and its arbitrage profit function. We next rigorously define the notion of an arbitrage policy

in our framework and its corresponding cumulative profit over a finite time horizon. We then

study the problem of determining the optimal arbitrage policy to maximize the agent’s expected

cumulative profit over a finite time horizon. It turns out that the form of the optimal arbitrage

policy varies depending on whether the price process is a martingale, sub- or super- martingale.

These results provide insights into how blockchain latency depends on price dynamics. We also

extend our results to settings including a discount rate as well as competition between agents.

1 Introduction

Latency—the time between submitting and confirming a transaction—is one of the key metrics

used in analyzing the performance of a blockchain for its users. Some blockchains produce blocks

in less than a second, while others take more than a minute. This variation is influenced by

several factors including demand for transactions. Much of the existing discourse focuses on

improving latency by changing protocol characteristics such as the size of blocks, time required

to validate blocks and related factors. However, as blockchains evolve more complex factors

play a role in latency.

It turns out that in many blockchains there exists a strong connection between latency and

arbitrage frequency. This connection is the result of a multi-step process in which agents have

incentives to extract the maximum possible value (MEV) from each block. Block producers
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may choose which transactions to include in each block including their own transactions. Con-

sequently, one motivation to produce a block is to take advantage of arbitrage opportunities

between prices on decentralized and centralized exchanges. It follows there exists a negative

correlation between the frequency at which arbitrage trades are executed between these two

types of exchanges and the latency of the blockchain.

In this paper, we contribute to the study of latency and its connection to arbitrage by

considering a stylized model in which a single agent (and eventually multiple agents) arbitrage

back-and-forth between a decentralized and centralized exchange. Our work builds upon the

model of Milionis et al. (2022) where it is assumed that the decentralized exchange operates

according to a constant function market maker with a specific bonding curve and the centralized

exchange has infinite liquidity. Our first main result in Section 4 associates to each bonding

curve a corresponding arbitrage function and we prove that this correspondence is one-to-onto

and onto. The arbitrage function specifies for any pair of prices on the two exchanges, the

profit that would be obtained if an arbitrage was executed immediately. We next in Section 5

provide a rigorous definition of an arbitrage policy between the decentralized and centralized

exchange. We then define the associated profit any arbitrage policy over a finite time horizon

assuming that the price process on the centralized is a continuous semimartingale. In Section 6,

we consider an agent whose objective is to maximize their expected arbitrage profit over a finite

time horizon. It turns out that the optimal arbitrage policy depends on the dynamics of the

price process on the centralized exchange. Specifically, we derive the optimal policy assuming

the price process is a martingale, submartingale and supermartingale. Section 7 contains two

extensions to our base model. In Section 7.1, we time discount the agent’s arbitrage profits

and show how this affects the optimal policy from the undiscounted case. Then, in Section 7.2

we consider the case of multiple agents competing against one another for arbitrage profits in

a game theoretic setting. In this case, we prove there exists a unique Nash equilibrium and

characterize its solution.

Note that in most of our results we assume there exists a single agent. This is substantiated

by recent research such as that of Grandjean et al. (2023) where even in a large network,

occasionally a single entity controls multiple consecutive blocks. Such control goes even further

in Layer 2 blockchains where a single entity may control all of the block production. If we look at

production from the perspective of who builds the block, there can be even further centralization

such as that studied in Yang et al. (2024). Tables 1 and 2 provide blockchain data from Dune

Analytics.1 Table 1 shows that for ETH the top 4 validators account for almost 50% of the total

staked value. Table 2 shows that for ETH the two largest builders build 86% of the blocks.

2 Literature Review

The study of decentralized finance impacting block generation processes (Daian et al., 2020;

Qin et al., 2022) is a growing area of literature that shows how MEV (Maximal Extractable

Value) is an important factor in the creation of blocks. Not only does the importance of MEV

1Data from Table 1 was obtained from ”https://dune.com/hildobby/eth2-staking” and data for Table 2 was
obtained from ’https://dune.com/dataalways/staking”, accessed at 8/2/2025.
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Entities ETH Staked Market Share

Lido 9,414,589 27.6%
Coinbase 2,993,795 8.8%
Binance 2,159,232 6.3%
ether.fi 1,802,512 5.3%
Other entities 16,370,128 52.0%

Table 1: ETH Staked and Market Share by Entity at 02/07/20252

Builder Number of Blocks Share of Blocks Produced

Titan (titanbuilder.xyz) 22,085 44.0%
BuilderNet (Flashbots) 21,250 42.4%
Rsync-Builder.xyz 840 2.0%

Table 2: Block Production by Builder between 11/12/2024 and 12/18/2024

affect block production but also how users’ transactions are ordered (Ferreira et al., 2023). This

phenomena was originally discovered for the Ethereum blockchain and many other blockchains

are starting to exhibit it as well, making it a key point in the discussion of multiple blockchains.

One of the most well-known examples of decentralized finance are decentralized exchanges.

The majority of decentralized exchanges act as automated market makers that work according

to a constant function market maker (CFMM), with Uniswap (Adams et al., 2020) being the

most common example. There is a rich literature on the properties of CFMMs, such as in

Angeris and Chitra (2020); Lehar and Parlour (2021); Schlegel et al. (2022) and Park (2023),

showing how CFMMs affect trading in comparison to traditional exchanges as well as additional

observations on how CFMMs manage liquidity.

The study of CFMMs has also been widely studied from the perspective of liquidity provision,

see Heimbach et al. (2022); Fan et al. (2021) and Goyal et al. (2023). Liquidity provision is deeply

connected with arbitrage opportunities in decentralized exchanges. A framework that addresses

this issue was presented in Milionis et al. (2022), which provides one the main building blocks

for our model.

The main questions of our paper regarding the incentives of block producers to manipulate

latency are closely related to the work of Schwarz-Schilling et al. (2023) and Yaish et al. (2022).

For a more empirical point of view on this topic, one may also consult the work of Wahrstätter

et al. (2023) and Öz et al. (2023).

3 Automated Market Makers and the Bonding Curve

We consider a decentralized exchange with operates as an automated market maker with a

liquidity pool consisting of a reserve pair of assets (x, y). In our setup, x is the quantity of the

risky asset (such as ETH) in the pool and y is the quantity of a numeraire asset (such as USD).

The automated market maker operates in accordance with a bonding function f : R2
+ 7→ R+
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such that the set of feasible reserves is given by RL = {(x, y) ∈ R2
+ : f(x, y) = L}, where

L ∈ R+ is a measure of the amount of liquidity in the pool.

The set of allowable reserves is a level set of the bonding function f and in practice the level

L may change over time. We henceforth assume that the liquidity level of the pool is fixed.

Moreover, we assume that the set of feasible reserves is given by R = {(x, f(x)), x ∈ R+}, where
f : R+ 7→ R+ is a bonding curve defined as follows.

Definition 3.1. A function f : R+ 7→ R+ is said to be a bonding curve if the following 2

conditions are satisfied:

1. f is strictly convex and twice differentiable.

2. limx↓0 f(x) = ∞ and limx↑∞ f(x) = 0.

We denote by F the set of bonding curves satisfying Definition 3.1. The first derivative of each

f ∈ F is denoted by f
′
.

Now suppose that the reserve levels of the liquidity pool are (x, f(x)) and a trader wishes

to purchase ∆x units of the risky asset from the liquidity pool. In order that the amount of

reserves of the risky and numeraire asset remain feasible, the trader must then deposit approx-

imately ∆y = −f
′
(x)∆x units of the numeraire asset into the pool. In the limit as ∆x → 0,

this approximation becomes precise and so we interpret −f
′
(x) as the price of the risky asset

assuming reserve levels of (x, f(x)). For convenience, we set p = −f
′
to be the price of the risky

asset as a function of its reserve level. Note that since f is strictly convex and decreasing by

Definition 3.1, it follows that the price of the risky asset decreases as x increases. Also note that

−f
′′
(x)∆x is approximately the change in price of the risky asset as ∆x units of it are added to

the pool. This approximation becomes precise in the limit as ∆x → 0 and so we set p
′
= −f

′′

to be the price impact function of the risky asset.

4 The Arbitrage Profit Function

Now suppose that an agent arrives to the decentralized exchange and encounters a price pd for

the risky asset. Also suppose there exists an infinitely deep external, centralized exchange with

its own price pc for the risky asset and that the agent can trade on both exchanges without

incurring any fees. It is then easy to see that a risk free arbitrage opportunity exists for the

agent to make a profit. Suppose first that pd < pc. That is, the price of the risky asset on

the decentralized exchange is lower than on the centralized exchange. The agent should then

buy the risky asset on the decentralized exchange and sell it on the centralized exchange. The

profit of the agent is however limited by the price impact of the automated market maker at the

centralized exchange. In the opposite case where pd > pc, the arbitrager should buy the risky

asset on the centralized exchange and sell it on the decentralized exchange.

We now derive an expression for the arbitrage profit of the agent given a pair of prices

(pd, pc) on the decentralized and centralized exchanges. We first introduce some notation. Let

x = p−1 : R+ 7→ R+ be the inverse of the price function p. That is, the amount of the risky

asset in the liquidity pool at the centerliazed exchange corresponding to each price p ∈ R+ is
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given by x(p). By assumptions 1 and 2 of Definition 3.1, and using the fact that x = (−f
′
)−1,

it is straightforward to verify that x is well-defined.

Now suppose that pd < pc. In this case, the agent should buy as much of the risky asset as

possible from the decentralized exchange until its price reaches pc. Using our notation above,

this amount is given by x(pd)−x(pc). The cost to purchase this amount of the risky asset from

the decentralized exchange is the change in the amount of the numeraire asset required to keep

its reserve levels feasible. Again using our notation, this amount is given by f(x(pc))−f(x(pd)).

Finally, selling all of the risky asset on the centralized exchange at a price of pc will yield a

revenue of pc(x(pd)− x(pc)). Putting the above together, the profit from executing the optimal

arbitrage assuming a decentralized price of pd and an centralized price pc is given by

π(pd, pc) = pc(x(pd)− x(pc))− (f(x(pc))− f(x(pd))). (1)

The above formula for the profit of the agent also holds if pd > pc. This yields the following

definition.

Definition 4.1. A function π : R2
+ 7→ R+ is said to be an arbitrage function associated with

the bonding curve f ∈ F if (1) holds for all (pd, pc) ∈ R2
+.

We denote by Π the set of arbitrage functions satisfying Definition 4.1. The mapping that

takes each bonding curve f ∈ F to its corresponding arbitrage profit function π is denoted by

T . That is, T f = π. Table 3 below provides explicit expressions for the inverse of the price

function and the arbitrage function, assuming two commonly used bonding functions.

CFMM f(x, y) x(p) Profit π(pd, pc)

Constant product xy
√

L
p

√
L√
pd

(√
pc −

√
pd
)2

Constant weighted product xαy
( p
αL

) 1
−α−1 pe

[(
pd

αL

) 1
−α−1 −

(
pc

αL

) 1
−α−1

]
+L

[(
pc

αL

) α
α+1 −

(
pd

αL

) α
α+1

]
Table 3: Bonding Function Examples

The following proposition can be easily obtained using the construction of the arbitrage

function π in (1) and taking its partial derivatives with respect to pd and pc. Its proof has

therefore been omitted.

Proposition 4.2. Let f ∈ F and π = T f . Then, for each (pd, pc) ∈ R2
+,

π(pd, pc) ≥ 0 (2)

and

∂

∂pd
π(pd, pc) = x

′
(pd)(pc − pd) and

∂

∂pc
π(pd, pc) = x(pd)− x(pc), (3)
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and

∂2

∂pd∂pc
π(pd, pc) =

∂2

∂pc∂pd
π(pd, pc) = x

′
(pd), (4)

and

∂2

∂(pc)2
π(pd, pc) = −x

′
(pc). (5)

Moreover, if f possess a third derivative, then

∂2

∂(pd)2
π(pd, pc) = −x

′
(pd) + x

′′
(pd)(pc − pd). (6)

The following is an intuitive interpretation of the partial derivatives above. In (3), the first

partial with respect to pd is the change in arbitrage profit if the price of the risky asset on the

decentralized exchange changes but the price on the centralized exchange does not. In this case,

x
′
(pd) is the change in the amount of the risky asset that the agent must buy or sell from the

decentralized exchange at the price pd, and pc − pd is the profit per unit of the risky asset made

from interacting with the centralized exchange. Note that in this case the change in the price of

the risky asset at the decentralized exchange is a second order effect which only shows up in the

second partial (6). Next, the partial with respect to pc in (3) is the change in the arbitrage profit

if the price on the centralized exchange changes but the price on the decentralized exchange does

not. In this case, the agent still purchases approximately x(pd)− x(pc) units of the risky asset

from the decentralized exchange but each unit is now sold at the centralized exchange for a

slightly higher amount. In this case, the small change in the amount of the risky asset that the

agent purchases from the decentralized exchange is a second order effect which shows up in the

second partial (5).

The cross partials of the arbitrage function in (4) are the same and can be interpreted as

follows. If the price on both the decentralized and centralized exchanges changes, then the

order in which the changes occur does not affect the agent’s profit (assuming no one arbitrages

in between). Also note in (6) that the second partial with respect to pd only exists if the bonding

function is sufficiently smooth. In particular, f must be three times differentiable.

It turns out we may define an arbitrage function in a different way than (1). Specifically, we

have the following.

Proposition 4.3. A function π : R2
+ → R+ is an arbitrage function associated with the bonding

curve f ∈ F and satisfies (1) if and only if the following 2 conditions are satisfied:

1. π(p, p) = 0 for each p ∈ R+.

2. For each (pd, pc) ∈ R2
+,

∂π(pd, pc)

∂pc
= x(pd)− x(pc). (7)

Proof. The only if part follows from (1) and Proposition 4.2 above. For the if part, suppose
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that conditions 1 and 2 above hold and let (pd, pc) ∈ R2
+. Then, integrating from (pd, pd) to

(pd, pc),

π(pd, pc) =

∫ pc

pd

(x(pd)− x(u))du = pc(x(pd)− x(pc)) +

∫ pc

pd

ux
′
(u)du, (8)

where the second equality follows after integrating-by-parts. However, since px
′
(p) = −df(x(p))/dp,

it follows that ∫ pc

pd

ux
′
(u)du = f(x(pd))− f(x(pc)). (9)

Now note from Definition 3.1 that the inverse price function x(p) → 0 as p → ∞. It then

follows that for each arbitrage profit function π ∈ Π, the righthand side of (7) corresponds to

a unique inverse price function x and hence bonding function f ∈ F . We therefore see that

the mapping T : F 7→ Π is a bijection. That is, there exists a one-to-one correspondence

between bonding curves f ∈ F and arbitrage functions π ∈ Π. Moreover, given an arbitrage

function π ∈ Π, its corresponding inverse price function x can be recovered by letting either

pd or pc tend to ∞ in (7). A simple procedure then yields its corresponding bonding function

f ∈ F . This implies for instance that when setting up a decentralized exchange, one may first

create an arbitrage function with desirable properties and then work backwards to deduce its

corresponding bonding function.

We complete this section by noting that Propositions 4.2 and 4.3 may be used to suggest some

qualitative features of arbitrary arbitrage functions π : R2
+ 7→ R+ not necessarily generated by

bonding functions f ∈ F . Condition 1 of Proposition 4.3 should continue to hold for an arbitrary

arbitrage function since there is no arbitrage to be made if the prices on the decentralized and

centralized exchanges are the same. Next, we examine condition 2 of Proposition 4.3. Recall

first that the inverse price function x is decreasing in the price p, i.e. as the number of units of

the risky asset in the liquidity pool decreases, its price increases. (7) then implies that holding

the price on the decentralized exchange fixed at pd, the marginal arbitrage function π(pd, ·) is

convex as a function of the price pc on the centralized exchange and obtains a minimum of

zero at pc = pd. Conversely, one may hold the price on the centralized exchange fixed at pc

and consider the marginal arbitrage function π(·, pc). In this case, it follows from (4) that for

pd < pc, π(pd, pc) is decreasing in pd while for pd > pc, π(pd, pc) is increasing in pd. Convexity

however is not guaranteed.

5 Arbitrage Policies and Profits

Recall from Section 4 that by assumption the centralized exchange is infinitely deep. This implies

the price of the risky asset on the centralized exchange is unaffected by individual agents. We

may therefore model the price of the risky asset on the centralized exchange as an exogenous

stochastic process pc = {pct , t ≥ 0}. As is common in the literature, we assume that pc is a
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continuous semimartingale and we denote its filtration by Fc This implies that pc admits the

unique Doob-Meyer decomposition pc = M +A, where M is a continuous, local martingale and

A is a continuous process of finite variation, both of which are adapted to Fc. .

The decentralized exchange is by assumption not as deep as the centralized exchange. Its

price may therefore be affected by the actions of individual of agents. We assume that the agents

trading on the decentralized exchange are informed. Such agents know the price of the risky

asset on both the centralized and decentralized exchange. The may also arbitrage the risky asset

between the two exchanges.

For simplicity, we assume there exists a single agent arbitraging between the decentralized

and centralized exchanges. Each time the agent executes an arbitrage between the two ex-

changes, they record a profit of π(pd, pc), where π is the arbitrage function defined in Section

4. Once the arbitrage is complete, the price on the decentralized exchange is then equal to

pc and does not change again until the next arbitrage occurs. The objective of the agent is

to construct a sequence of arbitrages in order to maximize their expected cumulative arbitrage

profit over a finite time horizon. Our main results in this section provide a rigorous definition

of an arbitrage policy along with an expression for its corresponding arbitrage profit. In the

sections that follow, we explore the optimality of arbitrage policies in a variety of settings.

5.1 Arbitrage Policies

In this section, we provide our definition of an arbitrage policy. Recall by the discussion in the

preceding section that each time an arbitrage occurs the agent records a profit of π(pd, pc) and

the price on the decentralized exchange is set equal to the price on the centralized exchange. It

follows that the only remaining information needed to describe an arbitrage policy is the times

at which the arbitrages occur. This is accomplished by looking at the points of increase of a

non-decreasing function. We proceed as follows.

Let L = {L(t), t ≥ 0} be a non-decreasing process with L(0) = 0. Next, denote by L−1 the

left-continuous inverse of L. That is, L−1(a) = inf{t ≥ 0 : L(t) ≥ a} for a ≥ 0. We then have

the following.

Definition 5.1. A arbitrage policy is defined to be any non-decreasing, càdlàg Fc-adapted

process L. Moreover, the placement function associated with L is denoted τ and given by τ(t) =

L−1 ◦ L(t+) for t ≥ 0.

We refer to any arbitrage policy L satisfying the conditions of Definition 5.1 as an admissible

policy. The set of all admissible policies is denoted by A.

As mentioned above, the intuition behind Definition 5.1 is that the points of increase of the

process L correspond to the points in time at which arbitrages occurs. For a given t ≥ 0, the

set {τ(s), 0 ≤ s ≤ t} is precisely the set of points of increase of L up until time t. That is, the

set of times at which arbitrages occur until time t. It turns out that the arbitrage policy L has

a more intuitive character to it while the placement function τ is what is used in Section 5.2 to

define the profit of L.

Also note that since any non-decreasing càdlàg F-adapted process is an arbitrage policy, it

is possible that there exists a infinite number of points of increase of L over a finite amount of
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time. In other words, it is possible in our model for an infinite number of arbitrages occurs in a

finite amount of time. Such policies are not implementable in the real-world, however they are

mathematically useful in the sections that follow. Moreover, it can be shown that the profit of

any arbitrage policy may be approximated up to an arbitrary level of precision by a sequence

of discrete policies.

To shed some light on the types of arbitrage policies that are permissible under Definition

5.1, recall (Stromberg et al., 1965) that any non-decreasing function may be decomposed as the

sum of a discrete function with a countable number of jumps, an absolutely continuous function,

and a singular function (non-decreasing, non-constant with a derivative almost everywhere equal

to zero). The following examples illustrate the type of behavior corresponding to each of these

types of functions.

Example 1 (Discrete Arbitrage Policies) A discrete arbitrage policy may have either a finite

or a countably infinite number of arbitrages occurring over a finite time interval. In either case,

the set of times at which arbitrages occur is given by some sequence {τn, n ≥ 1} of Fc-stopping

times. In the case in which only a finite number of arbitrages occur up until each point in time,

the arbitrage policy L may be defined as

L(t) =

∞∑
n=1

1{τn ≤ t} for t ≥ 0. (10)

If it turns out that an infinite number of arbitrages may occur up until some point in time, then

then arbitrage policy L may be defined as

L(t) =

∞∑
n=1

∆n1{τn ≤ t} for t ≥ 0, (11)

where ∆n is Fc
τn -measurable and the sequence {∆n, n ≥ 1} of positive jumps is such that the

sum above is almost surely finite. This example illustrates the fact that more than one arbitrage

policy may correspond to the same placement function τ .

Example 2 (Absolutely Continuous Arbitrage Policies) Let h be a non-negative, locally

integrable Fc-adapted process and set

L(t) =

∫ t

0

h(s)ds for t ≥ 0. (12)

Then, L is an example of an absolutely continuous arbitrage policy. The zero set of h corresponds

to points in time where arbitrage does not occur. At all other points in time, arbitrage occurs.

Specifically, one may verify in this case that only the zero set of h is relevant in determining the

corresponding placement function τ .

Example 3 (Singular Arbitrage Policies) Recall (Royden and Fitzpatrick, 2010) that a

singular function is a continuous, non-decreasing, non-constant function whose derivative is

almost everywhere equal zero. For arbitrage policies of this type, an uncountably infinite number
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of arbitrages may occur over a finite interval time. The set of times at which arbitrage occurs

will always however have measure zero. A canonical example (Royden and Fitzpatrick, 2010) of

a singular function is the Cantor function. In the context of the present paper, Brownian local

times are examples of singular functions which play an important role.

5.2 Arbitrage Profits

Now let t ≥ 0 and suppose the agent has a finite time horizon [0, t] over which to arbitrage the

risky asset between the decentralized and centralized exchanges. Also assume that the prices of

the risky asset on the decentralized and centralized exchanges are equal to one another at the

start of the time horizon. One may interpret this as an arbitrage having just occurred before

time 0.

Our main result of this section is Definition 5.2 below which provides an expression for Πt(L),

the cumulative profit of an admissible arbitrage policy L over the time horizon [0, t].

Definition 5.2. If L ∈ A is an admissible arbitrage policy with placement function τ , then its

profit over the time horizon [0, t] is given by

Πt(L) =

∫ τ(t)

0

[x(pcτ(s))− x(pcs)]dp
c
s −

1

2

∫ τ(t)

0

x′(pcs)d⟨pc⟩s. (13)

Recall from the outset of this section that the price process pc on the centralized exchange is a

semimartingale. The first term on the righthand side of (13) is therefore will-defined as an Ito

integral. The second term on the righthand side of (13) is an ordinary integral with respect to

the non-decreasing quadratic variation process ⟨pc⟩ of pc. It is therefore well-defined too.

The intuition behind Definition 5.2 can be seen by directly calculating the cumulative profit

of discrete arbitrage policies. Consider first the simplest case in which the agent executes a

single arbitrage at the Fc-stopping time τ . In this case, for each 0 ≤ s ≤ t the arbitrage policy

may be written as L(s) = 1{s ≥ τ} and its placement function is τ(s) = τ1{s ≥ τ}, where we

note that τ(·) is used to denote the placement function and its corresponding stopping time is

denoted by τ .

Now, for each 0 ≤ s ≤ t, let pds and pcs denote the time s prices of the risky asset on the

decentralized and centralized exchanges, respectively. Also recall that by assumption pd0 = pc0.

That is, the prices of the risky asset are the same on both exchanges at time 0. It then follows

that the arbitrage profit of the agent is given by π(pc0, p
c
τ ), where π is the arbitrage function

from Section 4. Moreover, since by assumption pc is a continuous semimartingale, it follows by

Ito’s formula (Karatzas and Shreve, 1991) and Proposition 4.2 that after some algebra,

π(pc0, p
c
τ ) =

∫ τ

0

[x(pc0)− x(pcs)]dp
c
s −

1

2

∫ τ

0

x′(pcs)d⟨pc⟩s, (14)

where in the above we have used the fact that π(p, p) = 0 for each p ∈ R+. Recalling now that

τ(s) = τ1{s ≥ τ}, it follows after some algebra that Πt(L) is as given in (13) above.

The preceding derivation of the profit for a policy that executes a single arbitrage extends

easily to the case of a finite number of arbitrages over the time horizon [0, t]. Suppose that an
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arbitrage policy L conducts arbitrages according to the sequence {τn, n ≥ 1} of Fc-stopping

times, where τn−1 < τn for n ≥ 1 and τ0 = 0. Moreover, denote by Nt the number of arbitrages

performed up to and including time t and suppose that Nt is almost surely finite. Iteratively

applying the argument for the case of a single arbitrage, the profit of the agent up until time t

is given by

Πt(L) =

Nt∑
n=1

π(pcτn−1
, pcτn). (15)

Also note for each n ≥ 1, it follows by Ito’s formula and Proposition 4.2 that

π(pcτn−1
, pcτn) =

∫ τn

τn−1

[x(pcτn−1
)− x(pcs)]dp

c
s −

1

2

∫ τn

τn−1

x′(pcs)d⟨pc⟩s. (16)

It then follows by (15) that

Πt(L) =

Nt∑
n=1

∫ τn

τn−1

[x(pcτn−1
)− x(pcs)]dp

c
s −

1

2

∫ τNt

0

x′(pcs)d⟨pc⟩s. (17)

Now note that the placement function corresponding to L is given by τ(s) = supn≥0{τn : τn ≤ s}.
It is then straightforward to verify that (17) may be equivalently written as (13).

The above discussion justifies Definition 5.2 for arbitrage policies L that conduct a finite

number of arbitrages over the time horizon [0, t]. The extension of Definition 5.2 to policies

with an infinite number of arbitrages follows by a continuity argument. The argument is quite

technical and has therefore been omitted.

5.3 Connection with LVR

Now recall from Milionis et al. (2022) the definition of LVRt as the time t ≥ 0 value of the

rebalancing portfolio minus the time t value of the liquidity pool. It also turns out that LVRt

may be described as the cumulative profit at time t of an agent who arbitrages continuously at

all times. The placement function τ for such a policy is given by τ(s) = s for s ≥ 0. We may

then use (13) of Definition 5.2 to extend the result of Milionis et al. (2022) and obtain a formula

for LVRt when the price process of the risky asset on the centralized exchange is a continuous

semimartingale. In particular,

LVRt = −1

2

∫ t

0

x′(pcs)d⟨pc⟩s. (18)
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6 Optimal Arbitrage Policies

We now suppose that the objective of the agent is to maximize their expected arbitrage profit

over a finite horizon [0, t]. That is, the agent wishes to solve the optimization problem

sup
L∈A

E[Πt(L)]. (19)

Note that in the optimization problem above it always make sense for the agent to conduct one

final arbitrage at the end of the time horizon. That is, it should always be the case that τ(t) = t.

We therefore without loss of generality restriction our attention to the set At ⊂ A of all such

policies.

It turns out that the solution to (19) depends heavily on the dynamics of the price process

on the centralized exchange. In this section, we consider several different price processes and

for each one we characterize the optimal arbitrage policy L∗.

6.1 Martingale Price Processes

First consider the case in which the price process pc on the centralized exchange is a martingale.

That is, E[pcs|pcr] = pcr for 0 ≤ r ≤ s ≤ t. This corresponds to the situation in which there

is no information ahead of time on the direction of movement for the price on the centralized

exchange. Our main result is the following.

Proposition 6.1. If pc is a continuous martingale on [0, t], then the expected arbitrage profit

is independent of the choice of L ∈ At. Specifically,

E[Πt(L)] = −E
[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]

for each L ∈ At. (20)

Moreover, the minimum possible variance for Πt(L) is given by

Var

(
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
)

(21)

and is achieved by any policy L ∈ At such that τ(s) = s for all s ∈ [0, t].

Proof. Let L ∈ At and note that since τ(t) = t, it follows by (13) of Definition 5.2 that

Πt(L) =

∫ t

0

[x(pcτ(s))− x(pcs)]dp
e
s −

1

2

∫ t

0

x′(pcs)d⟨pc⟩s. (22)

Next, since pc is by assumption a martingale, it follows that

E

[∫ t

0

[x(pcτ(s))− x(pcs)]dp
c
s

]
= 0. (23)

Taking expectations on both sides of (22), we then obtain (20).

We next prove (21). First note that for each L ∈ At, we may write Var(Πt(L)) = E[(Πt(L))
2]−

E2[Πt(L)]. Moreover, by the preceding E[Πt(L)] is independent of L. Thus, in order to prove

12



(21) it suffices to find the L ∈ At minimizing E[(Πt(L))
2]. First note that for any L ∈ At, it

follows by (13) of Definition 5.2 that Πt(L) is a semimartingale with respect to t. Applying Ito’s

formula, we then obtain that

Π2
t (L) = 2

∫ t

0

Πs(L)dΠs(L) + ⟨Π(L)⟩t. (24)

Now write the unique semimartingale decomposition of Πt(L) asM+A, whereM is a continuous

martingale and A is a process of bounded variation. The exact expressions for M and A both

follow directly from (13). In particular, M0 = A0 = 0. It thus follows after some algebra and

upon taking expectations that

E

[∫ t

0

Πs(L)dΠs(L)

]
= E

[∫ t

0

AsdAs

]
=

1

2
E[A2

t ]. (25)

Moreover, since L ∈ At so that τ(t) = t, it follows from (13) that

At =
1

2

∫ t

0

x′(pcs)d⟨pc⟩s, (26)

which is independent of L. Regarding the quadratic variation term in (24), it follows by the

decomposition (13) that if L ∈ At, then

⟨Π(L)⟩t =

∫ t

0

[x(pcτ(s))− x(pcs)]
2d⟨pc⟩s. (27)

Note that the righthand side above may be reduced to zero by choosing any policy L ∈ At

such that τ(s) = s for all s ∈ [0, t]. It therefore follows by (24)-(26) that the minimum value of

E[(Πt(L))
2] is given by

1

4
E

[(∫ t

0

x′(pcs)d⟨pc⟩s
)2

]
. (28)

(21) now follows after some algebra using (20) and the above.

Proposition 6.1 states that all arbitrage policies on a finite time horizon which also trade at

the end of the horizon lead to the same expected profit. This implies that if the price process on

the centralized exchange is a martingale, then on a finite time horizon all reasonable arbitrage

policies are optimal. If we however also consider risk aversion, then by (21) any policy L ∈ At

such that τ(s) = s for all s ∈ [0, t] may be deemed mean-variance optimal.

6.2 Submartingale Price Processes

We now proceed to the case in which the price process on the centralized is a submartingale.

This implies that on average the price process is non-decreasing. Specifically, E[pcs|pcr] ≥ pcr
for 0 ≤ r ≤ s ≤ t. Our main result of this section provides a characterization of the optimal

13



arbitrage policy in this case.

Proposition 6.2. If pc is a continuous submartingale on [0, t], then any L ∈ At such that

L(s) = pc0 − min
0≤u≤s

pcu for 0 ≤ s < t (29)

is an optimal solution to (19).

Proof. First recall (Karatzas and Shreve, 1991) since pc is a submartingale, it has a unique

Doob-Meyer decomposition pc = M + A, where M is a martingale and A is a non-decreasing

process. It then follows by Definition 5.2 that for each L ∈ At,

E [Πt(L)] = E
[∫ t

0

[x(pcτ(s))− x(pcs)]dAs

]
− 1

2
E
[∫ t

0

x′(pcs)d⟨pc⟩s
]
. (30)

Now note that the second expectation on the righthand side above is independent of the

choice of arbitrage policy L ∈ At. It therefore suffices to maximize the first expectation on

the right-hand side above. In order to do so, since A is a non-decreasing process and x is

non-increasing function, it suffices to pointwise minimize pcτ(s) for 0 ≤ s ≤ t. This is clearly

accomplished by the policy (29) whose points of increase correspond to the points in time at

which pc reaches a new minimum.

The optimal arbitrage policy in Proposition 6.2 may be described as follows. Up until the

end of the time horizon, each arbitrage the agent performs occurs when the price of the risky

asset on the centralized exchange reaches a new low. Note also that the price of the risky asset

on the decentralized exchange at each point in time cannot be less than its lowest price on

the centralized exchange up until the same point in time. It follows that each arbitrage the

agent performs before the end of the time horizon is in the same direction. Specifically, buying

the risky asset on the centralized exchange and selling it on the decentralized exchange. This

guarantees that at the end of the time horizon the price of the risky asset on the decentralized

exchange is less than or equal to its price on the centralized exchange. The agent then makes

one final arbitrage in the opposite direction at the end of the time horizon. That is, buying the

risky asset on the decentralized exchange and selling it on the centralized exchange. This policy

is very different from the optimal mean-variance arbitrage policy in the martingale case where

the agent is continuously making trades in both directions.

Note also the contrast between the timing of the optimal arbitrage trades in the martingale

case versus the submartingale case. The optimal mean-variance arbitrage policy in the martin-

gale case trades continuously whereas the optimal arbitrage policy in the submartingale case is

more patient with possibly long periods of time in which no trades occur. This distinction has

important implications for latency in blockchains.

6.3 Supermartingale Price Processes

We finally consider the case in which the price process on the centralized exchange is a su-

permartingale. This implies that on average the price process is non-increasing. Specifically,

14



‘

Figure 1: The price process on the centralized exchange and its optimal L function in the super-
martingale case.

E[pcs|pcr] ≤ pcr for 0 ≤ r ≤ s ≤ t. The following result now follows in a similar manner to

Proposition 6.2 above for the submartingale case. Its proof has therefore been omitted.

Proposition 6.3. If pc is a continuous supermartingale on [0, t], then any L ∈ At such that

L(s) = max
0≤u≤s

pcu − pc0 for 0 ≤ s < t (31)

is an optimal solution to (19).

In Figure 1, we provide a realization of a supermartingale price process along its optimal L

function given by (31). Recall that the points of increase of L are the arbitrage occurrences.

7 Further Cases

We now consider two cases in which the profit function of the agent is different from Definition

5.2. First, in Section 7.1 we suppose that the profit of the agent is discounted with respect to

time. Next, in Section 7.2 we introduce the notion of competition into our model. The main

goal in these two sections is to understand how changing the profit function of the agent affects

their optimal arbitrage strategy. We therefore mainly restrict our attention to martingale price

processes on the centralized exchange.

7.1 Time Discounting

Note that in Section 4 there was no reference to time when defining the arbitrage function (1).

This is fine so long as the discount rate or reward rate (such as for staking rewards) is negligible.

However, in the presence of a non-negligible discount rate δ > 0 it is useful to modify Definition

4.1. In particular, we have the following.

15



Definition 7.1. A function π : R2
+ × R+ 7→ R+ is said to be an arbitrage function associated

with the bonding curve f ∈ F and discount rate δ ∈ R+ if

π(pd, pc, t) = e−δtπ(pd, pc) for all (pd, pc, t) ∈ R2
+ × R+, (32)

where π : R2
+ 7→ R+ is given by (1).

Making use of Proposition 4.2 , one may now obtain the following.

Proposition 7.2. For each (pd, pc, t) ∈ R2
+ × R+,

∂

∂t
π(pd, pc, t) = − δe−δt[pc(x(pd)− x(pc))− (f(x(pc))− f(x(pd)))] (33)

and

∂

∂pc
π(pd, pc, t) = e−δt[x(pd)− x(pc)] (34)

and

∂2

∂(pc)2
π(pd, pc) = −e−δtx

′
(pc). (35)

Now suppose that the price process pc on the centralized exchange is a continuous semi-

martingale. Moreover, suppose that the agent conducts a single arbitrage at the Fc-stopping

time τ , and that the prices on the decentralized and centralized exchanges are the same at

time 0. That is, pd0 = pc0. It then follows by Ito’s Lemma (Karatzas and Shreve, 1991) and

Proposition 7.2 that the discounted arbitrage profit of the agent has the decomposition

π(pc0, p
c
τ , τ) =

∫ τ

0

e−δs[x(pc0)− x(pcs)]dp
c
s −

1

2

∫ τ

0

e−δsx
′
(pcs)d⟨pc⟩s (36)

−δ

∫ τ

0

e−δs[pcs(x(p
c
0)− x(pcs))− (f(x(pcs))− f(x(pc0)))]ds. (37)

Note in particular setting the discount rate δ = 0 in the above, one recovers the decomposition

(14) for the undiscounted profit.

Proceeding in a similar manner to as in Section 5.2, we now arrive at the following definition

for the arbitrage profit of the agent assuming a discount rate of δ ≥ 0.

Definition 7.3. If L ∈ A is an admissible arbitrage policy, then its discounted profit over the

time horizon [0, t] assuming a discount rate of δ ∈ R+ is given by

Πt(L) =

∫ τ(t)

0

e−δs[x(pcτ(s))− x(pcs)]dp
c
s −

1

2

∫ τ(t)

0

e−δsx′(pcs)d⟨pc⟩s (38)

−δ

∫ τ(t)

0

e−δsπ(pcτ(s), p
c
s)ds. (39)

Note on the righthand side above, the function π(·, ·) inside the integral is precisely the undis-

counted arbitrage function of Section 4.
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The following is now our main result for the case of a discounted profit function assuming a

martingale price process pc on the decentralized exchange.

Proposition 7.4. If pc is a continuous martingale on [0, t] and the discount rate δ > 0 is

strictly positive, then any L⋆ ∈ At such that τ(s) = s for s ∈ [0, t] is an optimal solution to

(19). Moreover, the optimal expected discounted arbitrage profit is given by

E [Πt(L
⋆)] = −1

2
E
[∫ t

0

e−δsx′(pcs)d⟨pc⟩s
]
. (40)

Proof. Let L ∈ At and recall this implies that τ(t) = t. Then, since by assumption pc is a

continuous martingale, it follows taking expectations on both sides of (38) that

E [Πt(L)] = −E
[∫ t

0

δe−δsπ(pcτ(s), p
c
s)ds

]
− 1

2
E
[∫ t

0

e−δsx′(pcs)d⟨pc⟩s
]
. (41)

Now recall by condition 1 of Proposition 4.3 that π(·, ·) ≥ 0 for s ∈ [0, t]. We therefore obtain

by (41) the upper bound

E [Πt(L)] ≤ −1

2
E
[∫ t

0

e−δsx′(pcs)d⟨pc⟩s
]
. (42)

The result now follows by also recalling that π(p, p) = 0 for p ∈ R+.

Recall by Proposition 6.1 that in the undiscounted martingale case all arbitrage policies

L ∈ At obtain the same expected profit and therefore are mean optimal. The intuition behind

Proposition 7.4 is that because of the positive discount rate the agent prefers their arbitrage

profits sooner rather later. As a result, they choose to arbitrage continuously. Another inter-

esting aspect of Proposition 7.4 is that it holds for any positive discount rate. Therefore, in the

martingale case any infinitesimal discount rate is sufficient to change the set of optimal policies

significantly.

We now show that when we move away from the martingale case the optimal solution to

(19) can be quite sensitive to the value of the discount rate itself. Suppose that the price of the

risky asset on the centralized exchange is the solution to the stochastic differential equation

dpcs = µpcsds+ σpcsdBs for s ≥ 0, (43)

where µ ∈ R, σ > 0 and B is a standard Brownian motion. That is, pc is a geometric Brownian

motion. We then have the following result.

Proposition 7.5. Suppose that pc is a geometric Brownian motion on [0, t] given by (43). If

the discount rate satisfies 0 ≤ δ < µ, then any L ∈ At such that

L(s) = pc0 − min
0≤u≤s

pcu for 0 ≤ s < t (44)

is an optimal solution to (19).

Proof. Let L ∈ At and recall this implies that τ(t) = t. Next, it follows by (43) that ⟨pc⟩s =
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(σpcs)
2 for s ≥ 0. Then, taking expectations on both sides of (38), it follows that

E [Πt(L)] = E
[∫ t

0

µe−δs[x(pcτ(s))− x(pcs)]psds

]
− σ2

2
E
[∫ t

0

e−δsx′(pcs)(p
c
s)

2ds

]
(45)

−E
[∫ t

0

δe−δsπ(pcτ(s), p
c
s)ds

]
. (46)

Now using definition (1) of the arbitrage profit function π and after some algebra, the above

may be rewritten as

E [Πt(L)] = −σ2

2
E
[∫ t

0

e−δsx′(pcs)(p
c
s)

2ds

]
+ E

[∫ t

0

e−δs[δf(x(pcs))− x(pcs)]psds

]
(47)

+E
[∫ t

0

e−δs[(µ− δ)x(pcτ(s))− δf(x(pcτ(s)))]ds

]
. (48)

Note that the first two terms on the righthand side above are independent of the choice of

arbitrage policy L ∈ At. On the other hand, regarding the integrand in the third term, note

that if δ < µ, then the function (µ− δ)x(·)− δf(x(·)) is non-increasing. It therefore suffices to

minimize pτ(s) for 0 ≤ s ≤ t in order to maximize the third term above on the righthand side

above. This is accomplished by the policy (44).

The intuition behind Proposition 7.5 is as follows. Proposition 7.4 implies that in the case of

a martingale price process on the centralized exchange and a positive discount rate it is optimal

to arbitrage continuously. On the other hand, if the price process on the centralized exchange is

a submartingale and there is no discount rate, then by Proposition 6.2 it is optimal to arbitrage

more patiently. The case in Proposition 7.5 falls between Propositions 6.2 and 7.4. The price

process is a submartingale but there is also a discount rate and so there is some tension in the

model. It turns out that so long as µ > δ, the submartingale dynamics dominate and it is

optimal to arbitrage as in the undiscounted case. Thus, although time discounting can be a

sufficient mechanism to incentivize low latency in the martingale case, there also exists processes

with sufficient drift to make time discounting not have any effect.

7.2 Multiple Agents

Now suppose there exists multiple agents each of whom arbitrage the risky asset between the

centralized and decentralized exchanges. The price process on the centralized exchange is still

assumed to be exogenous and denoted by pc. The actions of the agents affect one another by

changing the price on the decentralized exchange each time an arbitrage occurs.

We may in this setting continue to represent the arbitrage policy of each agent by a non-

decreasing function whose points of increase correspond to the times at which the agent arbi-

trages. Suppose for the sake of simplicity there exist two agents which we refer to by agent A

and agent B. The case of multiple agents extends in a straightforward manner. The arbitrage

policy of agent A is denoted by LA and the arbitrage policy of agent B is denoted by LB . It

follows that the points of increase of LA correspond to the times at which agent A arbitrages

and the points of increase of LB correspond to the times at which agent B arbitrages.
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Now note that by setting L = LA+LB we obtain a new non-decreasing function whose points

of increase correspond to the times at which either agent A or agent B arbitrages. Moreover,

let τ be the placement function corresponding to L. That is, τ(s) is the last time before or

equal to time s that an arbitrage is conducted by either agent A or agent B. Since each time

an arbitrage occurs the price on the decentralized exchange is set equal to the price on the

centralized exchange, it follows that the price process on the decentralized exchanges is given

by pd = pc ◦ τ .
We are now in a position to define of an admissible arbitrage policy in the setting of more

than one agent. Let F (d,c) denote the filtration generated by the pair (pd, pc) of price processes

on the decentralized and centralized exchanges, where in particular pc is as given above. We

then have the following.

Definition 7.6. In the setting or more than one agent, an arbitrage policy is defined to be any

non-decreasing, càdlàg F (d,c)-adapted process L. Moreover, the placement function associated

with L is denoted τ(·), where τ(t) = L−1 ◦ L(t+) for t ≥ 0.

We refer to any arbitrage policy L satisfying the conditions of Definition 7.6 as an admis-

sible policy. The set of all admissible policies is denoted by Ad,c. Suppose now that agent A

implements an admissible arbitrage policy LA and agent B implements an admissible arbitrage

policy LB . We next proceed to provide the definitions of ΠA,t(LA, LB) and ΠB,t(LA, LB), the

respective arbitrage profits of agents A and B over the finite time horizon [0, t]. One question

which needs to be answered before moving forward is what occurs if both agents decide to arbi-

trage at the same time? How much profit does each of them make at that moment in time? The

answer for simplicity in our model is that agent A gets the fraction 0 ≤ αA ≤ 1 of the profit that

either one of them would have made had they arbitraged on their own at that moment in time.

Similarly, agent B gets the fraction αB = 1 − αA of the profit that either one of them would

have made had they arbitraged on their own at that moment in time. This may be interpreted

as an expectation where agent A wins the entire arbitrage with probability αA and agent B

wins with probability αB = 1− αA.

We now proceed as follows. Recall from the above interpretation of L = LA+LB as a policy

that arbitrages each time either agent A or agent B does. Now suppose there exists a single

agent who implements the policy L and denote by Πt(L) the profit of the single agent over the

time horizon [0, t]. It then follows by the above discussion that it should be the case that

Πt(L) = ΠA,t(LA, LB) + ΠB,t(LA, LB). (49)

On the other hand, it is straightforward to verify that L is adapted to the filtration generated

by pc and so Πt(L) is as given in (13) of Definition 5.2 of Section 5.2. It then follows by (49)

that we obtain the following definition of the arbitrage profits for agents A and B.

Definition 7.7. Suppose that agent A selects an arbitrage policy LA ∈ Ad,c and agent B selects

an arbitrage policy LB ∈ Ad,c. Then, the profits for agents A and B over the time horizon [0, t]

are given by

ΠA,t(LA, LB) =

∫ t

0

χA(s)dΠs(L) and ΠB,t(LA, LB) =

∫ t

0

χB(s)dΠs(L), (50)
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where L = LA + LB and χA, χB are given for s ≥ 0 by

χA(s) =


0 if τA(s) < s

αA if τA(s) = τB(s) = s,

1 if τA(s) = s and τB(s) < s,

and χA(s) =


0 if τB(s) < s

αB if τA(s) = τB(s) = s,

1 if τB(s) = s and τA(s) < s.

(51)

Note that in the definition above we are implicitly making use of the fact that for a fixed arbitrage

policy L ∈ A, the profit function Πs(L) is a non-decreasing process in s where dΠs(L) > 0 only

if τ(s) = s.

Now suppose that agents A and B compete against each other in a non-cooperative game.

Each agent must select an arbitrage strategy L ∈ Ad,c at time 0 without knowledge of the

selection of the other agent. The payoff function of each agent is their resulting expected

arbitrage profit over the time horizon [0, t]. That is, assuming agents A and B select the strategies

LA and LB , respectively, their payoff functions will be E [ΠA,t(LA, LB)] and E [ΠB,t(LA, LB)],

respectively. Moreover, mixed strategies are not allowed.

Similar to as in Section 6, it always make sense for each agent to conduct one final arbitrage

at the end of the time horizon. We therefore without loss of generality restriction our attention

to the set Ad,c
t ⊂ Ad,c of all such policies. Our first result is the following.

Lemma 7.8. If pc is a continuous martingale on [0, t], then the game defined by the set of

strategies Ad,c
t and payoff functions E [Πi,t(LA, LB)] , i ∈ {A,B} is a zero-sum game. Specifi-

cally,

E[ΠA,t(LA, LB)] + E[ΠB,t(LA, LB)] = −E
[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]

for LA, LB ∈ Ad,c
t . (52)

Proof. Let LA, LB ∈ Ad,c
t and set L = LA + LB . Then, taking expectations on both sides of

(49) we obtain

E[Πt(L)] = E[ΠA,t(LA, LB)] + E[ΠB,t(LA, LB)]. (53)

The result now follows by Proposition 6.1.

The following is now our main result on the game described above.

Proposition 7.9. If pc is a continuous martingale on [0, t], then a pair of strategies (L⋆
A, L

⋆
B)

are a Nash equilibrium if and only if their corresponding placement functions (τ⋆A, τ
⋆
B) are such

that almost surely,∫ t

0

1{τ⋆A(s) ̸= s}d⟨pc⟩s =

∫ t

0

1{τ⋆B(s) ̸= s}d⟨pc⟩s = 0. (54)

Proof. We first prove the if part of the proposition. By Lemma 7.8 and since αA + αB = 1, it
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suffices to prove that for any L⋆
A ∈ Ad,c

t with a τ⋆A(·) satisfying (54),

E[ΠA,t(L
⋆
A, LB)] ≥ −αAE

[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]

for LB ∈ Ad,c
t , (55)

and, similarly, for any L⋆
B ∈ Ad,c

t with a τ⋆B(·) satisfying (54),

E[ΠB,t(LA, L
⋆
B)] ≥ −αBE

[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]

for LA ∈ Ad,c
t . (56)

We prove (55). The proof of (56) follows similarly. Suppose that L⋆
A ∈ Ad,c

t with a τ⋆A(·)
satisfying (54) and let LB ∈ Ad,c

t be arbitrary. Then, setting L = L⋆
A +LB it is straightforward

to show that

dΠs(L) = −1

2
x′(pcs)d⟨pc⟩s for s ∈ [0, t]. (57)

Thus, by Definition 7.7 above,

E[ΠA,t(L
⋆
A, LB)] = −E

[
1

2
·
∫ t

0

χA(s)x
′(pcs)d⟨pc⟩s

]
. (58)

The inequality (55) now follows from by (54) and the definition of χA in (51) above. This

completes the proof of the if part of the proposition.

We next prove the only if part of the proposition. First note that (55)-(56) imply that for

any Nash equilibrium (L∗
A, L

∗
B) it must be the case

E[ΠA,t(L
⋆
A, L

⋆
B)] = −αAE

[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]

(59)

and

E[ΠB,t(L
⋆
A, L

⋆
B)] − −αBE

[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]
. (60)

Thus, by Lemma 7.8 and since αA + αb = 1, in order to complete the proof it suffices to show

that if L⋆
B ∈ Ad,c

t is such that τ⋆B(·) does not satisfy (54), then there exists an L⋆
A ∈ Ad,c

t such

that

E[ΠB,t(L
⋆
A, L

⋆
B)] < −αBE

[
1

2
·
∫ t

0

x′(pcs)d⟨pc⟩s
]
. (61)

We proceed as follows.

Suppose that L⋆
B ∈ Ad,c

t is such that τ∗B(·) does not satisfy (54), and that L⋆
A ∈ Ad,c

t is such

that τ⋆A(·) does satisfy (54). Then, since τ⋆A(·) does satisfy (54) it follows that Πt(L) satisfies

(57) above. Hence, by Definition 7.7 above,

ΠB,t(L
⋆
A, L

⋆
B) = −1

2
·
∫ t

0

χB(s)x
′(pcs)d⟨pc⟩s. (62)
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Moreover, since τ⋆A(·) satisfies (54) and by the definition of χB in (51) above it follows that

−αB

2
·
∫ t

0

x′(pcs)d⟨pc⟩s −
(
−1

2
·
∫ t

0

χB(s)x
′(pcs)d⟨pc⟩s

)
(63)

= −αB

2
·
∫ t

0

1{τ⋆B(s) ̸= s}x′(pcs)d⟨pc⟩s. (64)

However, since τ⋆B(·) does not satisfy (54) and x
′
(p) < 0 for p ∈ R+, it follows that

E

[
−αB

2
·
∫ t

0

1{τ⋆B(s) ̸= s}x′(pcs)d⟨pc⟩s
]

> 0. (65)

Taking expectations on both sides of (62) and (63), then using (65), we obtain (61).

Proposition 7.9 implies that in the case of competition and a martingale price process on the

centralized exchange, the unique Nash equilibrium is for both agents to arbitrage continuously.

This is directly related to the fact that the agents are playing a zero-sum game (see Lemma

7.8) in which an agent who does not arbitrage can have profit stolen away from them by their

competitor. One implication of this is that the price of the risky asset on the decentralized and

centralized exchanges will always match one another. Thus, competition between agents helps

to keep the prices on the two exchanges in line with one another. Note this is different from

the case of a single agent and a martingale price process on the centralized exchange. In such

a case, all reasonable arbitrage policies are optimal and thus the prices on the two exchanges

may differ from one another.

8 Conclusion

In this paper, we consider an agent arbitraging a risky asset between a decentralized and cen-

tralized exchange with the objective of maximizing their expected cumulative profit. Our results

demonstrate the dependence of the agent’s optimal arbitrage policy on the dynamics of the price

process of the risky asset at the centralized exchange. The structure of the optimal policy in

turn affects the latency of the corresponding blockchain. We also consider the case of discounted

arbitrage profits as well as agents competing in a game theoretic setting.
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