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We study the single-item dynamic pricing problem in the large market regime where the market size grows

large and the initial inventory level is fixed. Previous results for this regime assumed item valuation distribu-

tions in the Gumbel domain of attraction of extreme value theory. In this paper, we show these results differ

for item valuation distributions in the Weibull and Frechet domains of attraction. We first study the offline

version of the single-item dynamic pricing problem and provide large market regime approximations to its

optimal value function. We next study the online version of this problem and provide large market regime

asymptotics of its optimal value function, pricing policy and purchasing probability policy. These results are

then used to derive asymptotics of the minimal regret of the optimal online value function relative to the

optimal offline value function. We show that asymptotically the optimal pricing policy of the firm is not a

classical run-out rate pricing policy, as was previously shown to be true for item valuation distributions in the

Gumbel domain of attraction. Instead, a family of generalized run-out rate pricing policies asymptotically

achieves the same regret in the large market regime as the optimal pricing policy. Such policies depend on

the domain of attraction that the item valuation distribution belongs to and they may price lower (Weibull)

or higher (Frechet) than the classical run-out rate pricing policy. Finally, we discuss our main results and

present the outcomes of numerical experiments testing their accuracy and performance.

1. Introduction

Dynamic pricing is a revenue management strategy that has been widely adopted in industries

such as airlines, hospitality, and retail. Within the revenue management literature, the single-

item dynamic pricing problem is a classical model capturing the trade-offs between market size,

inventory, and pricing decisions. Despite the intuitive appeal of this model, deriving its optimal

pricing policy is, in general, a challenging problem. As a result, regime-dependent approximations

are often used where the problem parameters are assumed to occupy different regions of their

allowable space. The fluid regime of Gallego and Van Ryzin (1994) is the most popular regime

and underlies many of the approximations currently in use. This regime is defined by scaling the

market size and initial inventory level to ∞ while also holding them in a fixed proportion to one

another.
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The proportional scaling assumption of the fluid regime is reasonable for many market conditions

but less so for others. This is particularly true when the market size greatly exceeds inventory levels.

One straightforward example of this is major concerts or sporting events where the market for

tickets far exceeds the limited venue capacities. Another example where market size is significantly

larger than inventory levels is online marketplaces, in which case small and medium-sized firms

have access to large consumer bases despite having relatively small inventory levels.

To address the limitations of the proportional scaling assumption of the fluid regime, Abdallah

and Reed (2025) studied the single-item dynamic pricing problem in a regime where the market

size is large relative to the initial inventory level. This regime is referred to as the large market

regime (see also Correa et al. (2021) and den Boer (2021)) and technically is defined by scaling the

market size to ∞ while holding the initial inventory level fixed. It turns out that extreme value

theory plays a central role in analyzing the single-item dynamic pricing problem in this regime.

Abdallah and Reed (2025) considered customer item valuation distributions lying in the Gumbel

domain of attraction of extreme value theory (see Embrechts et al. (2013) and Resnick (2013)). The

Gumbel domain of attraction is the largest of the three extreme value theory domains of attraction.

It contains many commonly used item valuation distributions, such as the exponential and normal

distributions.

One of the main results from Abdallah and Reed (2025) was that the large market regime

approximation to the optimal value function of the single-item dynamic pricing problem differs

substantially from the classical fluid regime approximation. It was also demonstrated numerically

in Abdallah and Reed (2025) that the large market regime approximation performs better than

the fluid regime approximation for medium to low inventory-to-market-size ratios. Despite these

differences, Abdallah and Reed (2025) also showed that the classical dynamic run-out rate pricing

policy obtained by continuously resolving the fluid problem remains first- and second-order optimal

in the large market regime. However, a static run-out rate pricing policy is not even first-order

optimal in the large market regime. The optimal static price in the large market regime turns out

to be an order of magnitude lower than the static run-out rate price.

Our paper builds upon and extends the work of Abdallah and Reed (2025) by analyzing the

large market regime for customer item valuation distributions in the Weibull and Frechet domains

of attraction of extreme value theory. Each of these regimes includes relevant distributions differ-

ent from those in the Gumbel domain of attraction. The Weibull domain of attraction includes

distributions such as the Uniform and Beta distributions, which are bounded from above and have

heavier tails at the upper limit of their support than the set of bounded distributions in the Gumbel

domain of attraction. The Frechet domain of attraction includes distributions such as the Pareto
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distribution, which decays polynomially and is often referred to as being a heavy-tailed distribu-

tion. Such distributions do not possess finite moments of all orders and can even have infinite

variance or mean. For a relative positioning of the three extreme value domains of attraction, see

Figure 1.
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Figure 1 Relative positioning of the three extreme value theory domains of attraction.

One of our main results in this paper shows that under the assumption of customer item valuation

distributions in the Weibull and Frechet domains of attraction, both the optimal value function

and the optimal pricing policy for the single-item dynamic pricing problem in the large market

regime behave differently than their counterparts in the fluid regime. In particular, for both of

these domains of attraction, the first-order term of the optimal pricing policy in the large market

regime is not the same as in the fluid regime. For the Weibull domain of attraction, given a specific

inventory level and remaining time in the selling horizon, the optimal policy asymptotically prices

lower than the classical dynamic run-out rate price of the fluid regime. The situation is reversed

for the Frechet domain of attraction, where given a specific inventory level and remaining time

in the selling horizon, the optimal policy asymptotically prices higher than in the fluid regime.

Moreover, we show that as time evolves these results imply that for item valuation distributions

in the Weibull domain of attraction the optimal pricing policy in expectation behaves similarly

to a markup pricing policy. On the other hand, the optimal pricing policy for item valuation

distributions in the Frechet domain of attraction behaves like a markdown pricing policy.

An outline of the remainder of the paper is as follows. In Section 3, we provide a rigorous

formulation of the single-item dynamic pricing problem and in Section 4 we recall the definition

of the large market regime. Next, in Section 5, we characterize the set of customer item valuation

distributions lying in the Weibull and Frechet extreme value domains of attraction. In Section 6, we
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study the offline version of the single-item dynamic pricing problem described in Section 3. In the

offline version of the problem, the firm is clairvoyant. It has knowledge of how many customers will

arrive throughout the selling horizon as well as each of their item valuations. Our main results for

the offline problem are large market regime approximations to the optimal offline value function.

It turns out that the form of these approximations depends on the domain of attraction that the

customer item valuation distribution lies in.

We next proceed in Section 7 to study the online single-item dynamic pricing problem described

in Section 3. In Section 7.1, we provide a system of non-linear equations that first appeared in

McAfee and te Velde (2008) where the single-item dynamic pricing problem was studied for demand

functions with constant elasticity. The solution to this system of equations is used later in our

large market regime approximations. Although the equations cannot be solved in closed form,

they can be solved numerically, and we also provide asymptotics for their solution, which include

first and second-order terms. Next, in Sections 7.2 and 7.3, we provide the large market regime

asymptotics of the optimal online value function, pricing policy, and purchasing probability policy

assuming item valuation distributions that lie in the Weibull and Fréchet domains of attraction,

respectively. In particular, we show that the first-order term of the optimal pricing policy is no

longer the classical dynamic run-out rate policy. In Section 7.4, the asymptotics of the optimal

offline and online value functions are used to derive large market regime approximations to the

minimal regret of the optimal online value function relative to the optimal offline value function.

It turns out that the first-order term of the regret can be factored as a product of two functions:

one that depends on the initial inventory level and another that depends on the market size. We

then proceed in Section 7.5 to use our minimal regret results from Section 7.4 to define the notion

of an asymptotically optimal pricing policy in the large market regime. Moreover, we construct a

family of easy to implement generalized run-out rate policies whose form depends on the domain of

attraction that the item valuation distribution lies in and are shown to be asymptotically optimal

in the large market regime.

Section 8 contains a discussion of our main results. In particular, in Section 8.1 we provide an

intuitive interpretation of the asymptotically optimal generalized run-out rate policies of Section

7.5. In Section 8.2, we study the role of the Mills ratio of the customer item valuation distribution

in determining the minimal regret. In Section 9, we report the outcomes of several numerical

experiments. Specifically, in Section 9.1 we study the the accuracy of our large market regime

optimal online value function approximations. In Section 9.2, we use our large market regime

approximations together with those of the small market and fluid regimes to numerically determine

the boundaries between the three regimes with respect to the two-parameter space of market size

and initial inventory levels. All proofs may be found in the Appendix.
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2. Related Literature

There exists a large body of research on the single-item dynamic pricing problem. The fluid regime

first proposed by Gallego and Van Ryzin (1994) is the standard framework used in the literature

to devise pricing heuristics for dynamic pricing problems (Gallego and Topaloglu 2019). Typically,

asymptotic analysis in the fluid regime uses a law of large numbers approach to derive a limiting

deterministic optimization problem. Atar and Reiman (2013) propose a refinement to the fluid

regime where both the market size and initial inventory level are scaled together but the dynamic

pricing problem is analyzed at a diffusion scale. The asymptotic analysis in Atar and Reiman (2013)

is based on a central limit theorem approach where in the limit a simple control problem involving

a Brownian bridge is obtained. Atar and Reiman (2013) then devise a policy that is asymptotically

optimal on a diffusion scale.

In most cases, closed-form solutions to the single-item dynamic pricing problem cannot be found.

One notable exception is when the demand function has constant elasticity. In this case, McAfee

and te Velde (2008) obtained an explicit solution. The results of McAfee and te Velde (2008)

involve a system of non-linear equations which also appear in our large market regime asymptotic

results for the optimal online value function, pricing policy and purchasing probability policy. The

connection between our two sets of results stems from the fact that item valuation distributions in

the Weibull and Frechet domains of attraction have regularly varying tails.

In addition to our main asymptotic results, we also derive large market regime results on the

regret of the optimal online value function relative to the optimal offline value function. There

exists several papers studying a similar regret in the fluid regime. Specifically, the regret of the

optimal online value function relative to a fluid-derived upper bound. Gallego and Van Ryzin

(1994) establish that the regret of the optimal static price policy relative to the fluid-derived upper

bound is O(
√
λt), where λt is the market size. Maglaras and Meissner (2006) were the first to

show that a fluid resolving heuristic also exhibits O(
√
λt) regret. Maglaras and Meissner (2006)

also demonstrate numerically that in practice the resolving heuristic performs better than the

optimal static price policy. Jasin (2014) was the first to prove that the resolving heuristic in fact

achieves a lower regret than the optimal static price policy. In particular, in a discrete-time setting

Jasin (2014) showed that the resolving heuristic achieves an O(logλt) regret. Noting the practical

challenges of frequent price adjustments, Chen et al. (2016) proposed a pricing policy that mimics

the resolving heuristic but requires less frequent price adjustments. Wang and Wang (2022) recently

showed that the resolving heuristic in fact achieves a constant regret relative to the performance

of the optimal pricing policy. Their proof involves showing that the fluid-derived upper bound is

actually a loose upper bound relative to the optimal pricing policy. The analysis of Wang and

Wang (2022) requires however additional assumptions of strict concavity of the revenue function
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as well as smoothness and regularity conditions. A general analysis of the regret of the resolving

heuristic in the fluid regime is involved and includes conditions that can be hard to interpret or

verify in practice. Interested readers are referred to Jiang et al. (2022) and Balseiro et al. (2023)

for a more detailed discussion.

Item valuation distributions in the Frechet domain of attraction lack finite moments of all orders

and are considered to be heavy-tailed. Such distributions play an important role in finance and

economics (see for example Embrechts et al. (2013) and Gabaix (2009)) but have received less

attention in the revenue management and broader operations literature, with queuing theory being

a notable exception (see Nair et al. (2022)). One paper closely related to ours where heavy-tailed

distributions are considered is den Boer (2021). In den Boer (2021), the single-item dynamic pricing

problem is studied in the large market regime assuming a single initial unit of inventory. Other

papers considering heavy-tailed distributions include Ibragimov andWalden (2010) on static bundle

pricing, Wierman and Zwart (2012) on scheduling, and Bimpikis and Markakis (2016) and Das

et al. (2021) on inventory management. We also mention the related work of Correa et al. (2021)

where extreme value theory is used to study static pricing policies for the k-selection problem in

the large market regime.

3. The Model

The single-item dynamic pricing problem is defined as follows. There exists a firm selling a single

item over a finite selling horizon of length t > 0. The initial inventory level of the item is q units

which may take any value in N= {0,1,2, ...}. Customers arrive to purchase the item according to

a Poisson process N = {Ns,0≤ s≤ t} with a rate λ > 0 that is known to the firm. The quantity

λt is the expected number of customers that arrive over the course of the selling horizon and is

referred to as the market size.

The arrival time of customer n (n≥ 1) is denoted by τn and we assume that customer n has a non-

negative valuation Xn for the item. The sequence {Xn, n= 1,2, ...,Nt} of customer item valuations

is independent and identically distributed (i.i.d.) with a common distribution function F , which

we assume to have a finite mean. The firm has knowledge of the item valuation distribution F and

the fact that the customer item valuations are i.i.d. The firm does not however know the specific

items valuations of each customer. We therefore refer to this setting as the online setting. We

denote by xL and xU the lower and upper limits of the support of F , respectively. For the sake of

simplicity, we also assume that F has a positive density f on the entirety of its support. We may

then uniquely define the inverse of F on [0,1), which we denote by F−1. All random variables and

quantities are assumed to be defined on a common probability space (Ω,F , P ).
At each point in time s∈ [0, t], the firm sets a price ps ∈R+ for the item. An arriving customer

is willing to purchase the item if their surplus at the time of their arrival is non-negative. That
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is, customer n is willing to purchase the item if Xn ≥ pτn−, where pτn− is the price of the item

immediately before customer n arrives. The probability that customer n purchases the item is

therefore given by 1−F (pτn−). We assume that for each customer the marginal value of more than

1 unit of the item is negligible.

The firm may dynamically adjust the price of the item in response to the previous history of

customer purchases and its current inventory position. We restrict our attention to the class of

admissible pricing policies defined as follows. An R+ ∪ p∞-valued pricing policy1 on (Ω,F , P ) is

admissible if it satisfies the following two conditions.

I. For each 0 ≤ s ≤ t, ps = p(λ;Qs, t− s), where Qs is the time s inventory level given by (2)

below.

II. The family of functions {p(λ; q, ·), q ∈N} are measurable with p(λ; 0, ·) = p∞.

Due to the Markovian nature of the system, such policies can be shown to be optimal amongst the

much larger class of predictable pricing policies (Brémaud 1981). We denote the set of admissible

pricing policies by V.

Consistent with the revenue management literature (Bitran and Caldentey 2003), we assume that

all items have zero marginal cost. Moreover, we assume that the firm is risk-neutral and interested

in maximizing its expected revenue. Applying the results of Brémaud (1981), it is straightforward

to show that for any admissible pricing policy p ∈ V the expected revenue of the firm given an

initial inventory level q ∈N is equal to

Jp(λ; q, t) = E

[
λ

∫ t

0

p(λ;Qs, t− s)(1−F (p(λ;Qs, t− s)))ds|Q0 = q

]
, (1)

where

Qs = Q0 −N

(
λ

∫ s

0

(1−F (p(λ;Qu, t−u)))du

)
for 0≤ s≤ t, (2)

with N being a standard rate 1 Poisson process. Note that Qs is the time s inventory level of

the firm. Taking the supremum of the above over all admissible pricing policies p, we obtain the

optimal value function

J⋆(λ; q, t) = sup
p∈V

Jp(λ; q, t). (3)

The following set of HJB equations characterizing the optimal solution to (3) can now be obtained

by applying C2 and T3 of VII.2 of Brémaud (1981).

1 We assume the existence of a null price p∞ such that 1−F (p∞) = 0.
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Theorem 1. The family of functions {J⋆(λ; q, ·), q ∈ N} are the unique solution to the system

of equations

∂J⋆(λ; q, t)

∂t
= λ sup

p∈R+

{(1−F (p)) (p− [J⋆(λ; q, t)−J⋆(λ; q− 1, t)])} , t≥ 0, q ∈N+, (4)

J⋆(λ; q,0) = 0, q ∈N+,

J⋆(λ; 0, t) = 0, t≥ 0.

Moreover, there exists an optimal solution p⋆ to (3) such that for q ∈N+,

p⋆(λ; q, s) = argmax
p∈R+

{(1−F (p))(p− [J⋆(λ; q, s)−J⋆(λ; q− 1, s)])} , s≥ 0. (5)

The supermum in (4) is finite since by assumption F has a finite mean. The supremum is also

achieved by at least one p⋆ ∈R+ since by assumption F is continuous. This justifies the use of the

argmax operator in (5). We also note that there may exist more than one optimal family of pricing

functions {p⋆(λ; q, ·), q ∈N}. Our asymptotic results however hold for each of them.

Next, we recall it is common in the literature (Gallego and Van Ryzin 1994, Maglaras and

Meissner 2006) to perform a change-of-variables and consider the problem of selecting purchasing

probabilities at each point in time instead of prices. It is straightforward to show that this for-

mulation of the problem is equivalent to the one described above. Specifically, given an admissible

pricing policy p ∈ V note that at each time s ∈ [0, t], πs = 1 − F (ps−) is the probability that a

customer arriving at time s will purchase the item. Conversely, a desired purchasing probability πs

at times s may be achieved by setting the corresponding price to be F−1(1− πs). Finally, for any

optimal pricing policy p⋆, we denote its optimal purchasing probability policy by π⋆ = 1−F (p⋆).

We now complete this section by noting as in Abdallah and Reed (2025) that using the HJB

equation (4), the optimal value function, optimal pricing policy and optimal purchasing probability

policy can all be shown to depend only on the initial inventory level q ∈ N+ and market size

λt > 0. We henceforth use the notation J⋆(q,λt), p⋆(q,λt) and π⋆(q,λt) to refer to each of them,

respectively.

4. The Large Market Regime

In this paper, we consider the single-item dynamic pricing problem (3) in the large market regime

(Abdallah and Reed 2025, den Boer 2021, Correa et al. 2021). In this regime, the market size

λt→∞ while all other problem parameters are held fixed. In particular, the initial inventory level

is held fixed at q ∈ N+ = {1,2,3, ...} units. This is in contrast to the small market regime where

the market size is held fixed but the initial inventory level grows large, and the fluid regime where

both the market size and initial inventory level grow large in proportion to one another. See Figure
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Figure 2 Relative positioning of the small market, fluid and large market regimes.

2 below for the relative positioning of the small market, fluid and large market regimes. It turns

out that extreme value theory (Embrechts et al. 2013, Resnick 2013) plays an important role in

the large market regime and the following central result helps to put our results in context.

For each n ≥ 1, let Mn = max(X1,X2, ...,Xn) be the maximum item valuation of customers 1

through n. The Fisher-Tippett theorem (Embrechts et al. 2013) then provides the asymptotics of

the distribution of Mn as n→∞. In the following, the notation
d−→ is used to denote convergence

in distribution.

Theorem 2 (Fisher-Tippett Theorem). If there exists norming constants bn ∈R and an > 0

for n≥ 1 and some non-degenerate distribution G such that

Mn − bn
an

d−→ G as n→∞,

then G belongs to one of the following three extreme value distributions:

Type I (Gumbel): Λ(x) = exp(− exp(−x)), x∈R,

Type II (Frechet): Φα(x) =

{
0, x≤ 0,

exp(−x−α), x > 0,

Type III (Weibull): Ψα(x) =

{
exp(−(−x)α), x < 0,

1, x≥ 0,

where α> 0 for either Type II or Type III.

Our main results provide asymptotics for the optimal value function, pricing policy and pur-

chasing probability policy in the large market regime for both the offline and online setting of
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the single-item dynamic pricing problem assuming customer item valuation distributions in the

Weibull and Frechet domains of attraction. We also provide approximations in both the Weibull

and Frechet domains of attraction to the regret of the optimal online value function relative to

the optimal offline value function. Moreover, we provide asymptotically optimal policies in both of

these domains of attraction. Similar results were recently obtained in Abdallah and Reed (2025)

for customer item valuation distributions in the Gumbel domain of attraction.

5. The Weibull and Frechet Domains of Attraction

In this section, we provide the specifics of the Weibull and Frechet domains of attraction.

5.1. The Weibull Domain of Attraction

The Weibull domain of attraction consists of item valuation distributions that have an upper bound

on their support. That is, xU <∞. Moreover, their tail behavior at xU must be regularly varying.

There also exists item valuation distributions with an upper bound on their support in the Gumbel

domain of attraction and for further details on them see Embrechts et al. (2013) and Resnick

(2013).

In order to precisely characterize item valuation distributions in the Weibull domain of attraction,

we first require the definition of a slowly varying function (Resnick 2013).

Definition 1 (Slowly Varying Function). A function L :R+ → (0,∞) is said to be slowly

varying (at ∞) if

lim
t→∞

L(xt)

L(t)
= 1 for x> 0.

Any slowly varying function has less than polynomial growth as well as decay. Some examples of

common functions that are slowly varying are functions that converge to a constant and lnβ t for

any β ∈R. The following result now characterizes the Weibull domain of attraction (Resnick 2013).

Definition 2 (Weibull Domain of Attraction). The item valuation distribution F is in

the Weibull domain of attraction if and only if xU <∞ and for some α> 0,

F (xU − 1/x) = 1−L(x)x−α for x> 0,

where L :R+ → (0,∞) is a slowly varying function.

We refer to α > 0 in the above definition as the index of F . It also turns out that if F has a

density f in a neighborhood (x0, xU) of xU , then a sufficient condition for F to lie in the Weibull

domain of attraction with index α> 0 is that

lim
x↑xU

(xU −x)
f(x)

1−F (x)
= α. (6)
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We refer to the above condition as a von-Mises condition and assume it holds for the remainder of

the paper when discussing the Weibull domain of attraction. It turns out that this assumption is

not very restrictive since every item valuation distribution in the Weibull domain of attraction is

tail equivalent to some item valuation distribution satisfying (6) (Embrechts et al. 2013).

The norming constants in the Fisher-Tippett theorem in the case of item valuation distributions

in the Weibull domain of attraction are given by

bn = xU and an = xU −F−1(1−n−1) for n≥ 1,

and can be naturally extended to t≥ 1 by setting

b(t) = xU and a(t) = xU −F−1(1− t−1). (7)

Moreover, it can be shown that there exists a slowly varying function L1 such that

a(t) = t−1/αL1(t) for t≥ 0. (8)

5.2. The Frechet Domain of Attraction

We next turn our attention to item valuation distributions in the Frechet domain of attraction.

All item valuation distributions in the Frechet domain of attraction have no upper bound on their

support. That is, xU =∞. Moreover, their right tail always exhibits polynomial decay. Such distri-

butions lack finite moments of all orders and in some cases may have infinite variance and possibly

even an infinite mean. For these reasons, distributions in the Frechet domain of attraction are

sometimes referred to as being heavy-tailed. The following result provides a precise characterization

of item valuation distributions in the Frechet domain of attraction (Resnick 2013).

Definition 3 (Frechet Domain of Attraction). The item valuation distribution F is in

the Frechet domain of attraction if and only if xU =∞ and for some α> 0,

F (x) = 1−x−αL(x) for x> 0, (9)

where L :R+ → (0,∞) is a slowly varying function.

We refer to α> 0 in the above definition as the index of F . If α< 2, then the second moment of

F is infinite and, if α< 1, the mean of F is infinite as well. For the remainder of the paper when

discussing the Frechet domain of attraction, we assume that α> 1 so that the item valuations have

a finite mean.

It turns out that if F has a density f in a neighborhood (x0,∞) of ∞, then a sufficient condition

for F to lie in the Frechet domain of attraction with index α> 0 is that

lim
x→∞

xf(x)

1−F (x)
= α. (10)
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We refer to the above as the von-Mises condition and assume it holds for the remainder of the

paper when discussing the Frechet domain of attraction. It is well known that the Frechet domain

of attraction consists of distributions that either satisfy the von-Mises condition above or are tail-

equivalent to a distribution satisfying it (Embrechts et al. 2013). Hence, this assumption is not

too restrictive. A sufficient condition for F to satisfy the von-Mises condition (10) is that F is

absolutely continuous in a neighborhood (x0,∞) of ∞ with a density f that is ultimately monotone

(Resnick 2013).

The norming constants in the Fisher-Tippett theorem in the case of item valuation distributions

in the Frechet domain of attraction are given by

bn = 0 and an = F−1(1−n−1) for n≥ 1,

and can be naturally extended to t≥ 1 by setting

b(t) = 0 and a(t) = F−1(1− t−1). (11)

Moreover, it can be shown that there exists a slowly varying function L1 such that

a(t) = t1/αL1(t) for t≥ 0. (12)

6. The Offline Problem

We now study the offline version of the single-item dynamic pricing problem described in Section

3. In the offline version of the problem, the firm is clairvoyant and has full information on the

number of customers who will arrive over the selling horizon as well as each of their item valuations.

A precise description of the offline problem may be found in Abdallah and Reed (2025). One

motivation for studying the offline problem is that its optimal value function is an upper bound on

the optimal value function of the online problem. We then in Section 7.4 use this upper bound is

characterize the regret of the optimal value function of the online problem relative to that of the

offline problem.

The optimal pricing policy of the firm in the offline setting is simple. Suppose that the firm starts

out with an initial inventory level of q ∈ N+ items. Since the firm has full information, it knows

which customers have the top min(q,Nt) item valuations. Moreover, the firm has knowledge of the

item valuations of each of the these customers. It therefore may set the price exactly to the item

valuation for each of these min(q,Nt) customers and equal to the null price p∞ otherwise.

In Abdallah and Reed (2025), an analytical expression was provided for the value function of

the optimal offline policy described above. Specifically, it turns out that the optimal offline value

function depends only on the initial inventory level q ∈N+ and market size λt > 0, and is given by

J⋆
OFF(q,λt) =

1

Γ(q)

∫ λt

0

F−1
(
1− v

λt

)
·Γ(q, v) · dv, (13)
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where Γ(·) and Γ(·, ·) denote the gamma function and incomplete gamma function (Olver et al.

2010), respectively. The equality above holds for any customer item valuation distribution with a

finite mean. In this case, F−1 denotes the left-continuous inverse of F. Note also that since Γ(q, v)

and Γ(q) are well-defined for q > 0, one may use (13) to extend J⋆
OFF(q,λt) to all q > 0.

Approximations to J⋆
OFF in the small market and fluid regimes were obtained in Abdallah and

Reed (2025) assuming customer item valuation distributions with a finite mean. Also in Abdallah

and Reed (2025), approximations to J⋆
OFF were obtained in the large market regime assuming

customer item valuation distributions in the Gumbel domain of attraction. In the present paper,

we complement the results of Abdallah and Reed (2025) by providing approximations to J⋆
OFF in

the large market regime assuming customer item valuation distribution in the Weibull and Frechet

domains of attraction.

In order to provide our approximations to J⋆
OFF, we first must set up the following notation. For

each q ∈N+, set Gq = exp(Cq/q) where

Cq = q · (Hq − γ− 1), (14)

and Hq−1 is the (q− 1)st harmonic number with H0 = 0 and γ ≈ 0.57722 is the Euler-Mascheroni

constant. Also set

Wq =

(
α

α+1
· Γ(q+1+1/α)

Γ(q+1)

)α

and Fq =

(
α

α− 1
· Γ(q+1− 1/α)

Γ(q+1)

)−α

, (15)

where Wq is defined for α> 0 and Cq is defined for α> 1. Our approximations to J⋆
OFF(q,λt) in the

large market regime are presented in Table 1. Their derivation for the Weibull and Frechet domains

of attraction are as follows (see Abdallah and Reed (2025) for the Gumbel domain of attraction).

Weibull qF−1

(
1−Wq

λt

)

Gumbel qF−1

(
1− Gq

λt

)

Frechet qF−1

(
1− Fq

λt

)

Table 1 Approximations to the optimal offline value function in the large market regime depending on the

domain of attraction that F lies in.
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• Weibull approximation: First note by Proposition A1 that if the customer item valuation

distribution F lies in the Weibull domain of attraction with index α > 0 and satisfies the

von-Mises condition (6), then for each q ∈N+,

J⋆
OFF(q,λt) =

xU

Γ(q)

∫ λt

0

Γ(q, v) · dv− α

α+1
· Γ(q+1+1/α)

Γ(q)
a(λt)+ o(a(λt)) (16)

as λt→∞. Next, integrating-by-parts it follows that∫ λt

0

Γ(q, v) · dv = Γ(q+1)+ (λt) ·Γ(q,λt)−Γ(q+1, λt). (17)

Using standard inequalities for the incomplete gamma function (Olver et al. 2010) and (8)

one then obtains that ∫ λt

0

Γ(q, v) · dv = Γ(q+1)+ o(a(λt)) as λt→∞. (18)

It then follows by (16) after some algebra that

J⋆
OFF(q,λt) = q

(
xU − α

α+1
· Γ(q+1+1/α)

Γ(q+1)
a(λt)

)
+ o(a(λt)) as λt→∞. (19)

Finally, recalling that L1 in (8) is slowly varying and using the definition of Wq in (15), one

obtains that

α

α+1
· Γ(q+1+1/α)

Γ(q+1)
a(λt) = a(λt/Wq)+ o(a(λt)) as λt→∞, (20)

and so the Weibull approximation in Table 1 is implied by (7) .

• Frechet approximation: First note by Proposition A2 that if the customer item valuation

distribution F lies in the Frechet domain of attraction with index α > 1 and satisfies the

von-Mises condition (10), then for each q ∈N+,

J⋆
OFF(q,λt) = q · α

α− 1
· Γ(q+1− 1/α)

Γ(q+1)
a(λt)+ o(a(λt)) as λt→∞. (21)

Next, recalling that L1 in (12) is slowly varying and using the definition of Fq in (15), it follows

that

α

α− 1
· Γ(q+1− 1/α)

Γ(q+1)
a(λt) = a(λt/Fq)+ o(a(λt)) as λt→∞. (22)

The Frechet approximation in Table 1 then follows by (11).

We next have the following result bounding the constants Wq,Gq and Fq appearing in Table 1.

Proposition 1. For each q ∈N+,

• in the Weibull case Wq < ((α+1/q)/(α+1))αq if α> 1,

• in the Gumbel case Gq < exp(1/2q− 1)q,
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• in the Frechet case Fq < ((α− 1)/α)αq if α> 1.

Now recall by the results of Gallego and Van Ryzin (1994) that in the online setting and for

sufficiently large λt the expected revenue of the firm is upper bounded by qF−1(1−q/λt), regardless
of the customer item valuation distribution F . On the other hand, it is straightforward to verify

by Proposition 1 that for each q ∈ N+, the constants Wq,Gq, and Fq appearing in Table 1 are

all strictly less than q. Since F−1 is non-decreasing, it follows that regardless of the domain of

attraction that the customer item valuation distribution lies in, our first-order approximations

to the optimal offline value function are always greater than the corresponding upper bound of

Gallego and Van Ryzin (1994) in the online setting. This can be attributed to the fact that in the

offline setting the firm is given additional information beyond that available in the online setting.

7. The Online Problem

We now proceed to study the online single-item revenue management problem described in Section

3. First, in Section 7.1 we provide a system of equations whose solutions appear in our approxi-

mations. Next, in Section 7.2 we assume that the customer item valuation distribution lies in the

Weibull domain of attraction, in which case we provide large market regime approximations to the

optimal online value function, pricing policy and purchasing probability policy. This is followed by

Section 7.3 where we provide corresponding large market regime approximations assuming item

valuation distributions in the Frechet domain of attraction. In Section 7.4, we recall from Abdallah

and Reed (2025) the definition of the regret of the optimal online value function relative to the

optimal offline value function. We then provide large market regime approximations to the minimal

regret for customer item valuation distributions in each of the three extreme value domains of

attraction. Finally, in Section 7.5 we define the notion of asymptotic optimality in the large market

regime for each of the three domains of attraction. We then provide a family of generalized run-out

rate pricing policies that are easy to implement and asymptotically optimal.

7.1. System of Equations for vq

For each κ> 0, consider the system of equations

vκ−1
q =

1

κ
(vκq − vκq−1) for q ∈N+, (23)

where v0 = 0. We then have the following result.

Proposition 2. For each κ > 0, there exists a unique positive solution {vq(κ), q ∈ N+} to the

system of equations (23). Moreover, for each q ∈N+,

vq(κ) = q+
κ− 1

2
ln q+ o(ln q) as q→∞. (24)

Finally, for fixed q ∈N+ it follows that vq(κ) is continuous and strictly increasing in κ> 0.
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Figure 3 The values of {vq(κ)/q, q≥ 1} for different values of κ.

If κ= 1, it is straightforward to verify that vq = q for q ∈N+ is the unique positive solution to

(23). Recalling by Proposition 2 that vq(κ) is strictly increasing in κ for each q ∈N+, it then follows

that 
vq(κ) < q if 0<κ< 1,

vq(κ) = q if κ= 1,

vq(κ) > q if κ> 1.

(25)

As is shown in our main results of Sections 7.2 and 7.3 below, the asymptotic behavior of the

optimal value function, pricing policy and purchasing probability policy in the large market regime

depends on the sequence {vq(κ), q ∈ N+}. Loosely speaking, κ > 1 corresponds to item valuation

distributions in the Weibull domain of attraction and 0 < κ < 1 corresponds to item valuation

distributions in the Frechet domain of attraction. Interestingly, the results of Abdallah and Reed

(2025) for the Gumbel domain of attraction can be viewed as corresponding to the special case of

κ= 1. In Figure 3, we provide a graph of {vq(κ), q ∈ N+} normalized by {q, q ∈ N+} for different

values of κ.

The system of equations (23) first appeared in McAfee and te Velde (2008) in which the single-

item dynamic pricing problem is studied where at each point in time the demand function has

a constant elasticity ε > 0. Specifically, suppose that with t ≥ 0 units of time left on the selling

horizon the demand as a function of price is given by λ(t, p) = a(t)p−ε for p > 0. It then turns out

that the HJB equation (4) may be explicitly solved. Specifically, letting

A(t) =

∫ t

0

a(s)ds for t≥ 0

and setting κ= (ε− 1)/ε, it follows that J⋆(q, t) = vκq (κ)(A(t))
1−κ for q ∈N+.
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It may at first seem that demand functions having constant elasticity have little to do with item

valuation distributions in the Weibull and Frechet domains of attraction. However, it turns out that

demand functions induced by item valuation distributions in these two domains of attraction are

asymptotically similar to those of McAfee and te Velde (2008). Although the results of McAfee and

te Velde (2008) cannot be directly applied, they are still helpful in putting our results in context.

7.2. Approximations for Item Valuation Distributions in the Weibull Domain of
Attraction

We now provide the large market regime asymptotics of the optimal online value function, pric-

ing policy and purchasing probability policy assuming customer item valuation distributions in

the Weibull domain of attraction. Given a fixed q ∈ N+, our asymptotics provide expressions for

J⋆(q,λt) and p⋆(q,λt) up to an o(a(λt)) remainder term, where a is the norming function defined

in (8). We also provide an expression for π⋆(q,λt) up to an o(1/λt) remainder term. The following

is our main result. Using the definitions of the norming functions a and b in (7) , it follows in a

straightforward manner by Proposition A3 in the appendix.

Theorem 3. If F is in the Weibull domain of attraction with index α > 0 and satisfies the

von-Mises condition (6), then for each q ∈N+ as λt→∞,

J⋆(q,λt) = qF−1

(
1−

(
wq(α)

q

)α
wq(α)

λt

)
+ o(a(λt)) (26)

and

p⋆(q,λt) = F−1

(
1− wq(α)

λt

)
+ o(a(λt)) (27)

and

π⋆(q,λt) =
wq(α)

λt
+ o(1/λt), (28)

where wq(α) = vq((α+1)/α).

Note by (8) that a(λt)→ 0 as λt→∞ and so the o(a(λt)) remainder terms in (26) and (27)

vanish in the limit of the large market regime. Moreover, a lower bound on the rate of decay

of the o(a(λt)) term is obtained by recalling that a(λt) = (λt)−1/αL1(λt) where L1 is a slowly

varying function. Next, by (26) it is evident that in the large market regime and for item valuation

distributions in the Weibull domain of attraction and fixed q ∈N+, J
⋆(q, t)→ qxU <∞ as λt→∞.

In other words, as λt→∞ the optimal value function converges to its upper bound of qxU . Also

recall from the statement of the theorem that wq(α) = vq((α+1)/α) where {vq((α+1)/α), q ∈N+}
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is the unique positive solution to the system of equations (23) with κ set equal to (α+1)/α. Thus,

since (α+1)/α> 1, it follows by Proposition 2 that wq(α)> q. This then implies that

F−1

(
1−

(
wq(α)

q

)α
wq(α)

λt

)
< F−1

(
1− q

λt

)
,

as expected by (26) since qF−1(1− q/λt) is an upper bound (Gallego and Van Ryzin 1994) on the

optimal expected revenue.

We next observe by (27) that p⋆(q,λt)→ xU <∞ as λt→∞ and so the optimal price in the

large market regime converges to the upper limit of the support of F . The first-order term in

the expression (27) for p⋆(q,λt) is similar to the form of the asymptotically optimal run-out rate

policies of the fluid regime of Gallego and Van Ryzin (1994). However, the usual inventory level q

has been replaced by wq(α)> q. This implies that given an inventory level q and market size λt,

the optimal pricing policy in the large market regime prices lower than the optimal pricing policy

in the fluid regime. Presumably this is because the upper bound of the item valuation distributions

in the Weibull domain of attraction makes avoiding leftover inventory at the end of the selling

horizon more important than marginal increases in price. Similar insights may also be deduced for

the optimal purchasing probability π⋆(q,λt) using the expression (28). Section 8 includes a further

discussion on these points.

We now provide two examples illustrating the application of Theorem 3 to different item valuation

distributions in the Weibull domain of attraction.

Example 1 (The Uniform Distribution). Consider first the case of items valued according

to the Uniform[a, b] distribution. It is straightforward to verify that this distribution is in the

Weibull domain of attraction with an index α equal to 1 and slowly varying function L equal to

the constant 1/(b−a). The norming functions a and b are then explicitly given for t≥ 1 by b(t) = b

and

a(t) =
b− a

t
.

It then follows from Theorem 3 and since a(t) = o(1/t) that for fixed q ∈N+, as λt→∞,

J⋆(q,λt) = qb−
w2

q(1)(b− a)

λt
+ o(1/λt) (29)

and

p⋆(q,λt) = b− wq(1)(b− a)

λt
+ o(1/λt) (30)

and

π⋆(q,λt) =
wq(1)

λt
+ o(1/λt).
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Moreover, in this case wq(1) = vq(2) and so by (23), {wq(1), q ∈ N+} satisfies the system of

equations

2wq(1) =w2
q(1)−w2

q−1(1) for q ∈N+,

where w0(1) = 0. Using the quadratic formula then yields that wq(1) = 1+
√
1+w2

q−1(1) for q ∈N+.

In Section 9, we investigate the accuracy and performance of the approximations (29)-(30).

Example 2 (The Beta Distribution). Next, consider the case of items valued according to

the beta distribution with shape parameters α,β > 0. The support of the beta distribution is the

interval [0,1] and its CDF is given by

Fα,β(x) =
1

Bα,β

∫ x

0

tα−1(1− t)β−1dt for 0≤ x≤ 1,

where Bα,β is the beta function. In this case, it can be shown that for t≥ 1, b(t) = 1 and

a(t) = L(t)t−1/β,

where the slowly varying function L converges to the constant (Bα,ββ)
1/β. As in the example of

the Uniform[a, b] distribution above, Theorem 3 can then be used to obtain the asymptotics in the

large market regime of the optimal value function, pricing policy and purchasing probability policy.

We also note that the special case of α= β = 1 corresponds to the Uniform[0,1] distribution.

7.3. Approximations for Item Valuation Distributions in The Frechet Domain of
Attraction

We next consider customer item valuation distributions in the Frechet domain of attraction. As

in Section 7.2, we provide the asymptotics of J⋆(q,λt), p⋆(q,λt) and π⋆(q,λt) in the large market

regime. The following is our main result. Using the definition of the norming functions a and b in

(11), it follows in a straightforward manner by Proposition A4 in the appendix.

Theorem 4. If F is in the Frechet domain of attraction with index α > 1 and satisfies the

von-Mises condition (10), then for each q ∈N+ as λt→∞,

J⋆(q,λt) = qF−1

(
1−

(
q

ϕq(α)

)α
ϕq(α)

λt

)
+ o(a(λt)) (31)

and

p⋆(q,λt) = F−1

(
1− ϕq(α)

λt

)
+ o(a(λt)) (32)

and

π⋆(q,λt) =
ϕq(α)

λt
+ o(1/λt),

where ϕq(α) = vq((α− 1)/α).
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Note by (31) that the optimal expected revenue grows to ∞ in the large market regime for

item valuation distributions in the Frechet domain of attraction. Specifically, using the expression

(12) for the norming function a(t), the optimal expected revenue grows at a rate proportional to

(λt)1/αL1(λt) where L1 is a slowly varying function. The o(a(λt)) remainder term in (31) grows

at a rate strictly less than L1(λt)(λt)
1/α. Next, recall that ϕq(α) = vq((α− 1)/α) where {vq((α−

1)/α), q ∈N+} is the unique positive solution to the system of equations (23) with κ set equal to

(α− 1)/α. Thus, since α > 1 and 0< (α− 1)/α < 1, it follows from Proposition 2 that ϕq(α)< q.

This then implies that

F−1

(
1−

(
q

ϕq(α)

)α
ϕq(α)

λt

)
< F−1

(
1− q

λt

)
, (33)

as expected by (31) since qF−1(1− q/λt) is an upper bound (Gallego and Van Ryzin 1994) on the

optimal expected revenue.

We next observe from (32) that p⋆(q,λt) diverges to ∞ as λt→∞. Specifically, p⋆(q,λt) grows

at a rate proportional to (λt)1/αL1(λt) where L1 is a slowly varying function. Similar to the case of

item valuation distributions in the Weibull domain of attraction, the optimal pricing policy is again

of a run-out rate form. In this case however ϕq(α)< q is substituted in place of the usual q used

in the fluid regime. This implies that given an inventory level q and market size λt, the optimal

pricing policy in the large market regime prices higher than the optimal pricing policy in the fluid

regime. Presumably this is due to the heaviness of the tails of item valuation distributions in the

Frechet domain of attraction which makes selling at a higher price worth the risk of holding leftover

inventory at the end of the selling horizon. Similar insights can be obtained from the expression

(33) for the optimal purchasing probability π⋆(q,λt). For further discussion on these points, see

Section 8.

We now provide two examples illustrating the application of Theorem 4.

Example 3 (The Pareto Distribution). Consider first the case of customer item valuations

following a Pareto distribution with scale parameter xm > 0 and shape parameter α > 0. The

support of the item valuation distribution is then given by [xm,∞) and its CDF is

F (x) = 1−
(xm

x

)α

for x≥ xm.

In this case, the slowly varying function in (9) is simply the constant xα
m and it is straightforward

to identify the norming function a(t) = xmt
1/α. Consequently, it follows from Theorem 4 that for

q ∈N+ as λt→∞,

J⋆(q,λt) = xmϕq(α)(λt/ϕq(α))
1/α + o((λt)1/α) (34)
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and

p⋆(q,λt) = xm(λt/ϕq(α))
1/α + o((λt)1/α) (35)

and

π⋆(q,λt) =
ϕq(α)

λt
+ o(1/λt).

In Section 9, we investigate the accuracy and performance of the approximations (34)-(35) assuming

α= 2.

Example 4 (The Log-Gamma Distribution). Next, consider the case of items valued

according to the log-gamma distribution with parameters α,β > 0. The support of the log gamma

distribution is (1,∞) and its pdf is given by

fα,β(x) =
αβ

Γ(β)
(lnx)β−1x−α−1.

In this case, the norming function a(t) cannot be solved for explicitly but we have the tail equiva-

lence

a(t) ∼
(
(ln t)β−1t

Γ(β)

)1/α

as t→∞,

which is sufficient to use in applying Theorem 4.

7.4. Regret Analysis

We now study the regret of the optimal online value function J⋆(q,λt) relative to its upper bound

given by the optimal offline value function J⋆
OFF(q,λt). It turns out that the large market regime

asymptotics of the regret depends on which domain of attraction that the customer item valuation

distribution lies in. We proceed as follows.

Recall from Abdallah and Reed (2025) that for each admissible pricing policy p ∈ V, we may

define its regret relative to the optimal offline policy for each customer arrival rate λ > 0, initial

inventory level q ∈N+, and selling horizon t > 0, by setting

Regretp(λ; q, t) = J⋆
OFF(q,λt)−Jp(λ; q, t) ≥ 0. (36)

It then turns out that the minimal regret is a function of only the initial inventory level q ∈ N+

and market size λt≥ 0. Specifically,

Regret⋆(q,λt) = J⋆
OFF(q,λt)−J⋆(q,λt).
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Using the results of Sections 7.2 and 7.3, one can next show that for a fixed initial inventory level

q ∈N+ and for customer item valuation distributions in either the Weibull or Frechet domains of

attraction, the minimal regret in the large market regime is of the form

Regret⋆(q,λt) = c(q)a(λt)+ o(a(λt)) as λt→∞, (37)

where a is the norming function corresponding to the extreme value domain of attraction that

the customer item valuation distribution belongs to. The function c(q) is given in Table 2 and

also depends on which domain of attraction the customer item valuation distribution lies in. The

asymptotic (37) was also shown in Abdallah and Reed (2025) to hold for customer item valuation

distributions in the Gumbel domain of attraction.

Weibull (wq(α))
(α+1)/α − q · α

α+1
· Γ(q+1+1/α)

Γ(q+1)

Gumbel ln

(
eqq!

eCq

)

Frechet q · α

α− 1
· Γ(q+1− 1/α)

Γ(q+1)
− (ϕq(α))

(α−1)/α

Table 2 The function c(q) depending on the domain of attraction that F lies in.

We now analyze the righthand side of (37) in further detail. Recall first from (7) that for item

valuation distributions in the Weibull domain of attraction, the norming function a(t) = t−1/αL1(t)

where L1 is a slowly varying function. It then follows from (37) that in the large market regime the

minimal regret decreases polynomially (up to a slowly varying function) as λt→∞. Next assume

that α> 1. Then, by the results of Merkle (1998),

Γ(q+1+1/α)

Γ(q+1)
= q1/α +O(q(1−α)/α) as q→∞. (38)

Using Proposition 2 it is then straightforward to show that

c(q) =
1

α+1
· q(α+1)/α +

1

2
· α+1

α
· q1/α ln q1/α + o(q1/α ln q) as q→∞,

from which we see that c(q) diverges as q grows large.

In the case of item valuation distributions in the Frechet domain of attraction, the norming

function a(t) = t1/αL1(t) where L1 is slowly varying. Thus, by (37) the minimal regret grows
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polynomially (up to a slowly varying function) in the large market regime as λt→∞. Moreover,

regarding c(q), in a similar manner to the Weibull case using (38) and Proposition 2 it can be

shown that for α> 1,

c(q) =
1

α− 1
· q(α−1)/α +

1

2
· α− 1

α
· q−1/α ln q1/α + o(q−1/α ln q) as q→∞,

and so c(q) again diverges as q grows large.

In summary, we find that in the large market regime the minimal regret decreases polynomially

(up to a slowly varying function) for item valuation distributions in theWeibull domain of attraction

and increases polynomially (up to a slowly varying function) for item valuation distributions in the

Frechet domain of attraction. We also recall from Abdallah and Reed (2025) that in the case of

item valuation distributions in the Gumbel domain of attraction, the minimal regret in the large

market regime is always slowly varying.

7.5. Asymptotic Optimality

We now complete Section 7 by constructing easy to implement pricing policies whose regret in

the large market regime have the same first-order asymptotics as the optimal pricing policies in

Theorems 3 and 4. Specifically, we have the following definition of an asymptotically optimal pricing

policy in the large market regime.

Definition 4. An admissible pricing policy p ∈ V is said to be asymptotically optimal in the

large market regime if for each q ∈N+,

lim
λt→∞

Regretp(λ; q, t)

a(λt)
= c(q), (39)

where c(q) is given by Table 2 and the limit above holds for any sequence of (λ, t) such that λt→∞.

Note that both the norming function a(λt) and the limiting function c(q) in Definition 4 depend

on the extreme value domain of attraction that the customer item valuation distribution lies in. In

this sense, Definition 4 generalizes the definition of asymptotic optimality in Abdallah and Reed

(2025) where customer item valuation distributions were restricted to lie in the Gumbel domain of

attraction.

The results of Section 7.4 imply that an admissible pricing policy p∈ V is asymptotically optimal

in the large market regime if on a scale of a(λt), it achieves the same regret with respect to the

optimal offline value function as does the optimal pricing policy p⋆. Using the relationship (37)

between the minimal regret and the optimal value function, another way to state this is to say that

p∈ V is asymptotically optimal if

lim
λt→∞

J⋆(q,λt)−Jp(λ; q, t)

a(λt)
= 0, (40)
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for any sequence of (λ, t) such that λt→∞.

Now consider the subset of pricing policies in V such that the family of functions {p(λ; q, ·), q ∈
N+} are of the form

p(λ; q, t) = F−1

(
1− Rq

λt

)
for t > 0, q ∈N+, (41)

and a sequence of positive constants {Rq, q ∈N+}. We refer to such policies as generalized run-out

rate policies. Note that if Rq = q for q ∈ N+, we obtain the classical run-out rate policy which is

known (Maglaras and Meissner 2006) to be asymptotically optimal in the fluid regime. It turns out

however that for item valuation distributions in the Weibull and Frechet domains of attraction,

generalized run-out rate policies different from the classical run-out rate policy are asymptotically

optimal in the large market regime. In order to prove this, we first need the following result on the

asymptotics of the expected revenue for any generalized run-out policy.

Lemma 1. If p∈ V is a generalized run-out rate policy of the the form (41), then for each q ∈N+,

lim
λt→∞

Jp(q,λt)− qb(λt)

a(λt)
=



−ξq(1/α), if F ∈Weibull domain of attraction with index α> 0 and

Rq > 1/α for q ∈N+,

− ln

(
q∏

k=1

Rk

)
−

q∑
k=1

k

Rk

, if F ∈Gumbel domain of attraction,

ξq(−1/α), if F ∈Frechet domain of attraction with index α> 1,

(42)

where for each γ ∈R, {ξq(γ), q ∈N+} is the solution to the system of equations

ξq(γ) =
Rq

Rq − γ

(
Rγ

q + ξq−1(γ)
)
for q ∈N+, (43)

with ξ0(γ) = 0.

Note that in the above result we assume that F satisfies the von-Mises condition corresponding to

its domain of attraction.

Now comparing the recursion (43) above for {ξq(γ), q ∈N+} to the system of equations (23) for

{vq(κ), q ∈N+} and then using Propositions A3 and A4 in the appendix, the result below follows

in a straightforward manner from the definition of asymptotic optimality.

Theorem 5. If p ∈ V is a generalized run-out rate policy of the the form (41) where for each

q ∈N+,

Rq =


wq(α), if F ∈Weibull domain of attraction with index α> 0,

q, if F ∈Gumbel domain of attraction,

ϕq(α), if F ∈Frechet domain of attraction with index α> 1,

then p is asymptotically optimal in the large market regime.
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By Theorems 3 and 4, it is evident that the asymptotically optimal generalized run-out rate

policies mimic the optimal pricing policies in the large market regime up to o(a(λt)). In particular,

by (25), given an inventory level q ∈ N+ and remaining selling horizon of length t ≥ 0, for item

valuation distributions in the Weibull domain of attraction the asymptotically optimal generalized

run-out rate policy prices slightly lower than the classical run-out rate policy. On the other hand, for

item valuation distributions in the Frechet domain of attraction it prices slightly higher. For item

valuation distributions in the Gumbel domain of attraction, the asymptotically optimal generalized

run-out rate policy is exactly the classical run-out rate policy.

8. Discussion

We now provide additional discussion on the optimality results of Section 7. Specifically, in Section

8.1 we provide the intuition behind the generalized run-out rate policies of Section 7.5. Then, in

Section 8.2 we analyze the role of the Mills ratio of the customer item valuation distribution in

determining the large market regime asymptotics of the minimal regret provided in Section 7.4.

8.1. Generalized Run-Out Rate Policies Interpretation

Suppose that p ∈ V is a generalized run-out rate policy of the form (41) where Rq = c for each

q ∈N+ and some constant c > 0. That is,

p(λ; q, t) = F−1
(
1− c · q

λt

)
for λt > 0, q ∈N+. (44)

In this section, we analyze in expectation the dynamics of the inventory process and price process

under the policy p above. We then make an intuitive connection between our analysis and the price

process under the asymptotically optimal pricing policies of Section 7.5.

Suppose first for convenience that the customer item valuation distribution F has a positive

density on the entirety of its support. This implies that F (F−1(π)) = π for π ∈ [0,1). Now denote by

Q(p) the inventory process corresponding to the pricing policy (44), assuming an initial inventory

level of Q0 ∈N+. Also denote by t > 0 the length of the selling horizon. It is then straightforward

to show that up until some time s close to t, Q(p) is equal in distribution to the unique solution

to the equation

Qs = Q0 −N

(∫ s

0

c · Qs

λ(t− s)
ds

)
for 0≤ s≤ t, (45)

where N is a Poisson process with rate λ> 0. Note that the integrand in the above is greater than

1 for s close to t which technically cannot occur in our model. However, since this only occurs very

close to the end of the selling horizon and its effect is minor in the large market regime, we ignore

it moving forward in order to streamline the analysis.
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Now taking expectations on both sides of (45) and then differentiating with respect to s yields

(Brémaud 1981) an ODE for E[Qs] given by

dE[Qs]

ds
= −c · E[Qs]

t− s
for 0≤ s < t,

with initial condition E[Q0] =Q0. The solution to this ODE is explicit and given by

E[Qs] = Q0

(
1− s

t

)c

for 0≤ s≤ t. (46)

The expected inventory level therefore decreases polynomially with respect to the remaining time

on the selling horizon. The precise rate of decrease is determined by the choice of the constant c

The expected purchasing probability at each point in time can also be obtained in closed form.

Specifically, note by (44) that up until some time s close to t the probability an arriving customer

purchases the item given an inventory level of Qs may be written as

π(Qs, t− s) = c · Qs

λ(t− s)
.

Taking expectations on both sides of the above and ignoring the boundary effects for s close t, it

follows from (46) and after some algebra that given an initial inventory level of Q0 the expected

purchasing probability for a customer arriving at time s is given by

E[π(Qs, t− s)] = c · Q0

λt

(
1− s

t

)c−1

for 0≤ s≤ t. (47)

Note in the above that depending on the choice of the constant c > 0, the expected purchasing

probability either decreases or increases polynomially (or remains constant) with respect to the

remaining time on the selling horizon. This fact is used in the paragraphs below to provide intuition

behind the asymptotically optimal pricing policies of Section 7.5.

First note that in the case of c= 1, the pricing policy (44) is precisely the classical continuous

run-out rate pricing policy which is known (Maglaras and Meissner 2006) to be asymptotically

optimal in the fluid regime. In particular, substituting c = 1 into (46) we recover the optimal

expected inventory process of the fluid regime where the expected inventory level decreases linearly

from Q0 at time 0 to 0 at time t. Moreover, assuming that Q0 <λt, it follows from (47) that over

the course of the selling horizon the expected purchasing probability is always equal to the static

run-out rate purchasing probability of Q0/λt. In terms of price, this suggests that the firm closely

follows a fixed price policy.

Now suppose that c > 1 in (44). In this case by (46), the expected inventory process lies entirely

below the optimal path in the fluid regime corresponding to c= 1. In particular, note that the shape

of the expected inventory process is convex. See Figure 4a. The intuition behind this is explained
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by the graph of the expected purchasing probability process. See Figure 4b. Since c > 1, it follows

from (47) that the expected purchasing probability decreases over the course of the selling horizon.

In particular, the expected purchasing probability starts out higher than the static run-out rate

purchasing probability but by the end of the selling horizon the expected purchasing probability is

lower than it. In terms of price, this suggests that when c > 1 in (44) the expected price increases

over time. In other words, in expectation the firm follows a markup pricing policy.

When 0 < c < 1 in (44), the dynamics are reversed. The expected inventory process now lies

entirely above the optimal path in the fluid regime. In particular, note that the shape of the

expected inventory process is concave. See Figure 5a. Moreover, the expected purchasing probability

increases over the course of the selling horizon. See Figure 5b. In particular, at the beginning of the

selling horizon the expected purchasing probability is lower than the static run-out rate purchasing

probability while towards the end of the horizon the expected purchasing probability is higher than

it. This suggests in terms of price that when 0< c < 1 in (44) the expected price decreases over

time. In other words, in expectation the firm closely follows a markdown pricing policy.

We now connect the observations above with the asymptotically optimal generalized run-out

rate policies of Theorem 5. First note by Theorem 5 and (25) that for item valuation distributions

in the Weibull domain of attraction, the asymptotically optimal generalized run-out rate policy has

run-out rate parameters {Rq, q ∈N+} such that Rq > q for each q ∈N+. This loosely corresponds to

c > 1 in the policy (44), which by the analysis above suggests that the firm should in expectation

follow a mark-up pricing policy. The intuition here is that early on in the selling horizon the firm

conservatively prices lower than the static run-out rate price of F−1(1−Q0/λt) in order to decrease

its odds of having leftover inventory at the end of the selling horizon. Such a policy makes sense

given that in the Weibull domain of attraction there is an upper bound on the amount of revenue

that can be collected from any one particular item. Later on, as the selling season progresses and

inventory levels significantly decrease, the firm is in a position to markup its price above the static

run-out rate price.

For item valuation distributions in the Frechet domain of attraction, the asymptotically optimal

generalized run-out rate policy has run-out rate parameters {Rq, q ∈N+} such that that Rq < q for

q ∈N+. This corresponds to 0< c< 1 in (44), which by the analysis above suggests the firm should

approximately follow a markdown pricing policy. The intuition in this case is that early on in the

selling horizon the firm aggressively prices higher than the static run-out rate price in an attempt

to sell to customers with item valuations in the right tail of the valuation distribution. This is

sensible given that item valuation distributions in the Frechet domain of attraction are heavy-

tailed. Towards the end of the selling horizon, the firm may be left with an excess of inventory and

so it lowers its price below the static run-out rate price in order to avoid leftover inventory.
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Figure 4 The expected inventory level and purchasing probability at time s∈ [0, t] in the case of c > 1.
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Figure 5 The expected inventory level and purchasing probability at time s∈ [0, t] in the case of 0< c< 1.

8.2. Role of the Mills Ratio in Interpreting the Minimal Regret

Recall from Section 5 as well as Abdallah and Reed (2025) that regardless of which of the 3 extreme

value domains of attraction the customer item valuation distribution lies in, if F is a von-Mises

function, it possesses a density f in a neighborhood of the upper limit of its support. Hence, for

sufficiently large x we may define its Mills ratio m(x) = (1−F (x))/f(x). It is then straightforward

to verify that for t sufficiently large, the relevant extreme value theory norming function a(t) may
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be written in terms of the Mills ratio as

a(t) = α(t) ·m(F−1(1− 1/t)), (48)

where α(t) is identically 1 for F in the Gumbel domain of attraction, and α(t)→ α as t→∞ for

F in the Weibull and Frechet domains of attraction with index α.

The representation (48) provides an interesting way to interpret the minimal regret asymptotic

(37) of Section 7.4. In particular, we have that in the large market regime for each q ∈N+,

Regret⋆(q, t) = c(q) ·α(λt) ·m(F−1(1− 1/λt))+ o(a(λt)) as λt→∞. (49)

The Mills ratio always vanishes as x→ xU for item valuation distributions in the Weibull domain

of attraction. Since F−1 is always monotonically increasing to xU , we then recover from (49) the

observation previously made in Section 7.4 that in the large market regime the minimal regret

vanishes for all F in the Weibull domain of attraction. On the other hand, the Mills ratio always

diverges to ∞ as x→ xU for item valuation distributions in the Frechet domain of attraction.

This implies by (49) that the minimal regret always diverges to ∞ for F in the Frechet domain of

attraction.

For item valuation distributions in the Gumbel domain of attraction, the defining feature of the

Mills ratio is that m
′
(x)→ 0 as x→ xU . This incorporates a variety of limiting behaviors such as m

converging to a constant, increasing or decreasing (albeit slowly), and possibly even oscillating. In

each of these cases, however, one may attempt to gain information about the asymptotic behavior

of the minimal regret from (49).

In the case that F does not lie in any of the 3 extreme value domains attraction, it is tempting

to still use (49) as a guide to understanding the behavior of the minimal regret. In particular, the

Mills ratio is defined anywhere that F has a positive density. The c(q) and α(λt) terms in (49)

unfortunately do not appear to be generalizable in any sort of straightforward way. Nevertheless,

it is reasonable to conjecture from (49) that if the Mills ratio of F is vanishing, then so too is the

minimal regret and, likewise that if the Mills ratio of F diverges, then the minimal regret does as

well.

9. Numerical Experiments

In this section, we present the results of several numerical experiments. In particular, in Section

9.1 we test the large market regime accuracy of our approximations to the optimal value function

from Sections 7.2 and 7.3. Then, in Section 9.2 we use our asymptotically optimal pricing policies

from Section 7.5 to assist in numercially determining the boundaries between the small market,

fluid and large market regimes.
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Throughout this section, we use two canonical distributions to represent customer item valuation

distributions in the Weibull and Frechet domains of attraction. Specifically, to represent item valu-

ation distributions in the Weibull domain of attraction, we use the Uniform[0,1] distribution, and

for item valuation distributions in the Frechet domain of attraction, we use the Pareto distribution

F (x) = 1− 1/x2 for x≥ 1. Note that the Uniform[0,1] distribution has an index of α= 1 and the

Pareto distribution we have selected has an index of α= 2.

9.1. Accuracy of Optimal Value Function Approximations

We now proceed to test the accuracy of using the first-order terms Theorems 3 and 4 to approximate

the optimal online value function in the large market regime. The fluid upper bound qF−1(1−q/λt)
of Gallego and Van Ryzin (1994) is also commonly used to approximate the optimal online value

function and so we evaluate its accuracy as well. For each approximation, we calculate its predicted

gap relative to the optimal value function as the market size increases with the initial inventory

level held fixed. The predicted gap is defined to be the difference between the optimal value

function and its value predicted by the approximation. Note that this gap may be either positive

or negative. Positive values represent an overprediction and negative values an underprediction. In

order to obtain the value of the optimal value function, we numerically ran several experiments. The

results are presented in Figure 6. For both the Uniform[0,1] and Pareto customer item valuation

distributions, we assume an initial inventory level of Q0 = 5 and vary the the market size from 25

to 250 customers.
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Figure 6 Predicted Gap from the optimal policy for valuations distributed according to Uniform[0,1] and standard

Pareto distribution.

We first discuss the case of customer item valuations having a Uniform[0,1] distribution. Recall

by (8) that for all item valuation distributions in the Weibull domain of attraction, the norming
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function a(λt) vanishes as λt→∞. The predicted gap of the large market regime approximation

using the first-order term of (26) should therefore vanish as well. This is indeed the case in the

lefthand graph of Figure 6. It also appears to be the case that for the Uniform[0,1] item valuation

distribution, the large market regime approximation using (26) serves as a lower bound for the

optimal value function. It is an interesting question as to whether this extends to all item valuation

distributions in the Weibull domain of attraction. The fluid upper bound in this case also has a

predicted gap that vanishes as the market size increases but at a significantly slower rate than the

large market regime approximation using (26).

We next consider the case of customer item valuations having a Pareto distribution. In this case,

by (12) the norming function a(λt) grows polynomially as λt→∞, which provides an upper bound

on the rate of growth of the predicted gap using the large market regime approximation (31).

Viewing the righthand graph in Figure 6 corresponding to the Pareto case, it appears that the

first-order term of (31) starts off as an upper bound to the optimal value function but eventually

becomes a lower bound when the market size is large. The rate of change of the predicted gap is

however quite low. Finally, the predicted gap of the fluid upper bound increases with the market

size and possibly diverges to ∞.

9.2. Regime Boundaries

We now numerically determine the boundaries between the small market, fluid and large market

regimes in the (λt, q) parameter space. In order to do so, we evaluate the performance of the

following 3 approximations to the optimal pricing policy in each regime.

1. A static pricing policy which uses the optimal monopoly price p⋆ = argmaxp>0 p(1−F (p−)).

2. A classical fluid run-out rate pricing policy (ReOpt Fluid) as in Maglaras and Meissner (2006),

where

p(λ; q, t) = F−1
(
1− q

λt

)
.

3. The asymptotically optimal large market regime pricing policy (LM) of Theorem 5. Specifi-

cally,

p(λ; q, t) = F−1
(
1− vq

λt

)
,

where vq =wq or ϕq depending on the domain of attraction of F .

We also test the performance of a proposed transition pricing policy between the fluid and large

market regimes. Specifically, the following.
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Figure 7 Phase diagrams for item valuations distributed according to the Uniform[0,1] and Pareto distributions.

1. A transition pricing policy (F-LM) where either wq or ϕq are approximated using the first two

terms in the asymptotic expansion (24). That is,

p(λ; q, t) = F−1

(
1− q+ [(κ− 1)/2] ln q

λt

)
,

where κ= (α+1)/α or (α− 1)/α depending on the domain of attraction of F .

Each of the pricing policies above can be improved in practice by bounding their price from

below by the optimal monopoly price p⋆. This however makes the policies indistinguishable from

one another when the inventory level is high relative to the market size. Because of this, in our

numerical experiments we implement each pricing policy without the monopoly price lower bound.

We now numerically estimate the expected revenue of each of the 4 pricing policies above over

a range of market sizes and initial inventory levels ranging from 1 to 25. We then determine for

each pair of parameters which of the 4 policies has the highest expected revenue. Our results are

presented in the phase diagrams in Figure 7. The lefthand diagram corresponds to customer item

valuations with a Uniform[0,1] distribution and the righthand side a Pareto distribution.

Note that for both the Uniform[0,1] and Pareto distributions, the general structure of the phase

diagram is the same. The parameter space is divided into 4 distinct regimes. Holding the market

size fixed, the static monopoly pricing policy starts out as the best performing policy when the

initial inventory level is high. As the initial inventory level decreases, the fluid pricing policy next

becomes the best performing policy. This occurs at the point where inventory first becomes scarce

relative to the market size and a static price is no longer optimal. Dropping the inventory level

slightly further, the transition pricing policy next becomes the best performing policy. This occurs

at the point where the fluid regime begins its transition into the large market regime. Eventually,

the transition is complete and the large market regime pricing policy is the best policy to use. At
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this point, the firm is pricing in the right tail of the item valuation distribution. We also note that

the structure of the phase diagrams in Figure 7 is the same as those in Abdallah and Reed (2025)

where customer item valuation distributions in the Gumbel domain of attractin were considered.

It also turns out that the boundaries between each of the 4 regimes can be approximated in a

simple and intuitive way. Recall from Abdallah and Reed (2025) the definition of the inventory-to-

market size ratio (IMR),

IMR =
initial inventory

market size
.

Intuitively, for values less than or equal to 100% the IMR represents the percentage of the market

to which a sale will be made, assuming there is no leftover inventory at the end of the selling

horizon. It is apparent from the phase diagrams in Figure 7 that as the initial inventory level

decreases the transitions from one regime to the next approximately occur at specific thresholds

of the IMR which do not depend on the market size. These thresholds may be computed and are

given in Table 3 below. The small market regime begins at an initital inventory level of ∞. Notice

Regime Uniform[0,1] Pareto
Fluid 44% 200%

Transition 24% 70%
Large Market 8% 44%

Table 3 Upper thresholds of the IMR for the large market, transition and fluid regimes.

that the upper threshold of the large market regime is much larger for the Pareto item valuation

distribution than when items are valued according to a Uniform[0,1] distribution. This is likely

due to the fact that the Pareto distribution has a heavy tail which the firm can take advantage of

in the large market regime. The fluid regime similarly is larger in the Pareto case too.
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Appendix. Proofs

In the appendix, we provide the proofs of our main result from the paper.

A. Proof of Expansion for vq

In this section, we provide the proof of Proposition 2.

Proof of Proposition 2. Let κ> 0 and note that (23) may be rewritten as

vκq−1 = vκq −κvκ−1
q for q ∈N+, (A1)

with v0 = 0. We first show that there exists a unique positive solution {vq(κ), q ∈N+} to (23) or, equivalently,

(A1). We proceed by induction on q ∈ N+. In the base case of q = 1, recalling that v0 = 0, it follows that

v1(κ) = κ, which is positive. Next, let q > 1 and suppose that vq−1(κ) is unique and positive. From (A1) and

the fact that vq−1(κ) is positive, it follows that any positive solution vq(κ) to (A1) must satisfy vκq −κvκ−1
q ≥ 0,

or, equivalently, vq ≥ κ. Hence, we may write vq−1(κ) = f(vq(κ), κ), where the function f(·, κ) : [κ,∞) 7→R+

is defined by

f(x,κ) :=
(
xκ −κxκ−1

)1/κ
= x

(
1− κ

x

)1/κ
.

Next, note that limx↓κ f(x,κ) = 0 and limx→∞ f(x,κ) = ∞. Moreover, f(·, κ) is continuous and strictly

increasing in x. Therefore, the equation vq−1(κ) = f(x,κ) yields a unique positive solution x= vq(κ).

Next we prove by induction that for fixed q ∈ N+, vq(κ) is strictly increasing in κ > 0. The base case of

q = 1 follows immediately by the above. Now let q > 1 and suppose that vq−1(κ) is strictly increasing in κ.

We then prove by contradiction that vq(κ) is strictly increasing in κ as well. Suppose for two positive values

κ1 <κ2 that vq(κ1)≥ vq(κ2) and recall that for any given κ> 0, f(x,κ) is increasing in x> κ. Also note that

for any given x> 0, f(x,κ) is strictly decreasing in 0<κ<x. Hence,

vq−1(κ1) = f(vq(κ1), κ1)≥ f(vq(κ2), κ1)> f(vq(κ2), κ2) = vq−1(κ2),

which is in contradiction with the induction hypothesis that vq−1(κ) is strictly increasing in κ. This shows

that vq(κ1)< vq(κ2) and establishes that vq(κ) is stricly increasing in κ.

Finally, we prove that for fixed q ∈ N+, vq(κ) is continuous in κ > 0. We again proceed by induction on

q ∈N+. The base case of q= 1 follows immediately by the above. Next, let q > 1 and suppose that vq−1(κ) is

continuous in κ. Then, fix κ̄ > 0 and note that since by the preceding vq(κ) is increasing in κ> 0, it follows

that there exists a v̄ > 0 such that vq(κ)→ v̄ as k ↑ κ̄. Moreover, since by the induction hypothesis vq−1(κ)

is continuous in κ, it follows by (A1) and the uniqueness portion of the proof above that it must be the

case that v̄= vq(κ̄). Similarly, it must be the case that vq(κ)→ vq(κ̄) as k ↓ κ̄. Since κ̄ > 0 was arbitrary, the

continuity of vq(κ) is proved.

In order to complete the proof, we now must show that the asymptotic expansion (24) holds. In the case

of κ = 1, it is clear that the unique positive solution to (23) is {q, q ∈ N+} and hence (24) holds. Thus,

suppose that 0<κ< 1 or κ> 1. For ease of notation, for the remainder of the proof we refer to the sequence

{vq(κ), q ∈N+} simply as {vq, q ∈N+}. Next, let f : (0,∞) 7→R+ be the function defined by f(q) = vκ−1
⌈q⌉ for
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q > 0, and denote by F :R+ 7→R+ the antiderivative of f with F (0) = 0. Then, letting γ(q) = fκ/(κ−1)(q)/F (q)

for q > 0, it is straightforward to verify that

(f(q))1/(κ−1) =
1

κ
(γ(q))

1
κ

∫ q

0

(γ(u))
κ−1
κ du for q > 0. (A2)

Moreover, noting that f1/(κ−1)(q) = v⌈q⌉, it follows subtracting q from both sides of (A2) that after a little

bit of algebra we obtain

v⌈q⌉ − q =

(
1

κ

)1/κ

q
(
(γ(q))

1/κ −κ1/κ
)

(A3)

+
1

κ
(γ(q))

1/κ

∫ q

0

(
(γ(u))

κ−1
κ −κ(κ−1)/κ

)
du.

Hence, in order to complete the proof it suffices to show that

lim
q→∞

q

ln q

(
(γ(q))

1/κ −κ1/κ
)
= 0 (A4)

and

lim
q→∞

(γ(q))
1/κ

ln q

∫ q

0

(
(γ(u))

κ−1
κ −κ(κ−1)/κ

)
du = κ · κ− 1

2
. (A5)

In order to show that (A4) holds, we first prove that γ(q)→ κ and v⌈q⌉/q→ 1 as q→∞. In order to see

this, first note that by the definition of F and its density function f , it follows that

F (q) =

⌈q⌉−1∑
k=1

vκ−1
k +(1− (⌈q⌉− q))vκ−1

⌈q⌉ for q ∈R+. (A6)

Next, summing over both sides of (23), we obtain that

vκq∑q

k=1 v
κ−1
k

= κ for q ∈N+. (A7)

Thus, from (A6) and (A7) it follows that

f(q)
κ/(κ−1)

F (q)
= κ for q ∈N+. (A8)

Next, noting that f(q) = f(⌈q⌉) and F (q)≤ F (⌈q⌉), it follows from (A7) that f(q)
κ/(κ−1)

/F (q)≥ κ for q > 0.

Moreover, setting Q= ⌈q⌉, it follows that

f(q)κ/(κ−1)

F (q)
−κ< vκq ·

(
1∑Q−1

k=1 v
κ−1
k

− 1∑Q

k=1 v
κ−1
k

)
= κ2 ·

vκ−1
Q

vκQ−1

. (A9)

Now, using the fact that {vq, q ∈N+} is a positive and increasing sequence, it is straightforward to show by

(23) that vκ−1
Q /vκQ−1 → 0 as Q→∞. Hence, by (A9) we obtain that

lim
q→∞

f(q)κ/(κ−1)

F (q)
−κ = 0.

The above implies that γ(q)→ κ as q→∞. Then, dividing both sides of (A3) by q, it follows that v⌈q⌉/q→ 1

as q→∞.

We now show that (A4) holds. First note that by the definition of γ(q) and (A8) above, it follows after

some algebra that

γ(q)−κ =
fκ/(κ−1)(⌈q⌉)(F (⌈q⌉)−F (q))

F (q)F (⌈q⌉)
for q > 0.
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Next, note that F (⌈q⌉)−F (q) = vκ−1
⌈q⌉ (⌈q⌉− q) and so since f(q) = vκ−1

⌈q⌉ , it follows after some further algebra

that

γ(q)−κ = Cq

⌈q⌉− q

⌈q⌉
, (A10)

where

Cq =
v
1+2(κ−1)
⌈q⌉ /(⌈q⌉)1+2(κ−1)

(F (q)/(⌈q⌉)κ)(F (⌈q⌉)/(⌈q⌉)κ)
→ κ2 as q→∞, (A11)

where the above convergence follows since γ(q)→ κ and v⌈q⌉/q→ 1 as q→∞. Hence, since (⌈q⌉− q)/⌈q⌉<

1/⌈q⌉, it follows by an application of Taylor’s theorem (Rudin 1953) that (A4) holds.

We now show that (A5) holds, which will complete the proof. Since by the preceding, γ(q)→ κ as q→∞,

it suffices to show that

lim
q→∞

1

ln q

∫ q

0

(
(γ(u))

(κ−1)/κ −κ(κ−1)/κ
)
du =

1

2
·
(
1

κ

)1/κ

·κ · (κ− 1).

First, note that we may write∫ q

0

(
(γ(u))

(κ−1)/κ −κ(κ−1)/κ
)
du =

∫ q

0

ηu
⌈u⌉−u

⌈u⌉
du for q ∈R+, (A12)

where using (A10) together with (A11) and the definition of the derivative, it follows that

ηu =
⌈u⌉

⌈u⌉−u

(
(γ(u))

(κ−1)/κ −κ(κ−1)/κ
)
→
(
1

κ

)1/κ

·κ · (κ− 1) as u→∞. (A13)

Now note by (A13) and the fact that ∫ ⌈q⌉

q

⌈u⌉−u

⌈u⌉
du <

1

⌈q⌉
,

a straightforward argument shows that in order to complete the proof it suffices to show that

lim
q→∞
q∈N+

1

ln q

∫ q

1

⌈u⌉−u

⌈u⌉
du =

1

2
.

In order to see that this is the case first note that for q= 2,3, ...,∫ q

1

⌈u⌉−u

⌈u⌉
du =

q∑
n=2

∫ n

n−1

⌈u⌉−u

⌈u⌉
du.

Moreover, for each n= 2,3, ..., q, ∫ n

n−1

⌈u⌉−u

⌈u⌉
du =

1

n

∫ 1

0

(1−u)du =
1

2n
.

Thus ∫ q

1

⌈u⌉−u

⌈u⌉
du =

1

2

q∑
n=2

1

n

and so the result follows since

1

ln q

q∑
n=2

1

n
→ 1 as q→∞.

□



Abdallah & Reed: The Large Market Regime
A4

B. The Offline Problem

In this section, we provide the proofs for Section 6.

A2.1. The Weibull Domain of Attraction

We have the following result.

Proposition A1. If F is in the Weibull domain of attraction with index α> 0 and satisfies the von-Mises

condition (6), then for each q ∈N+,

lim
λt→∞

1

a(λt)

(
xU

Γ(q)

∫ λt

0

Γ(q, v) · dv− J⋆
OFF(q,λt)

)
=

α

α+1
· Γ(q+1+1/α)

Γ(q)
. (A14)

Proof of Proposition A1. Recalling from (7) the definition of the norming function a, it follows from (8)

and (13) that for each q ∈N+ and λt > 0,

1

a(λt)

(
xU

Γ(q)

∫ λt

0

Γ(q, v) · dv− J⋆
OFF(q,λt)

)
=

1

Γ(q)

∫ λt

0

L1(λt/v)

L1(λt)
· v1/α ·Γ(q, v) · dv, (A15)

where L1 is a slowly varying function. Now let 0< ε< 1 and write∫ λt

0

L1 (λt/v)

L1(λt)
· v1/α ·Γ(q, v) · dv =

∫ (λt)ε

0

L1 (λt/v)

L1(λt)
· v1/α ·Γ(q, v) · dv (A16)

+

∫ λt

(λt)ε

L1 (λt/v)

L1(λt)
· v1/α ·Γ(q, v) · dv. (A17)

We now analyze each of the terms on the righthand side of (A16) separately.

Regarding the first term on the righthand side of (A16), first note that since L1 is slowly varying, it

follows by Definition 1 that L1(λt/v)/L1(λt)→ 1 as λt→∞ for each v > 0. Now let 0 < δ < 1/α. It then

follows by Proposition 0.8 in Resnick (2013) that λt sufficiently large, L1(λt/v)/L1(λt)< v−δ for 0< v < 1

and L1(λt/v)/L1(λt)< v−δ for 1< v < (λt)ε. Now recalling by Natalini and Palumbo (2000) the inequality

Γ(q, v)<Cvq−1e−v for v > 0 and some constant C > 0, it follows by the dominated convergence theorem that∫ (λt)ε

0

L1 (λt/v)

L1(λt)
· v1/α ·Γ(q, v) · dv →

∫ ∞

0

v1/α ·Γ(q, v) · dv as λt→∞. (A18)

Regarding the second term on the righthand side of (A16), since L1 is slowly varying, it follows by Definition

1 that L1(λt/v)/L1(λt)→ 1 as λt→∞ for each v > 0. It thus follows by the dominated convergence theorem

that ∫ λt

(λt)ε

L1 (λt/v)

L1(λt)
· v1/α ·Γ(q, v) · dv → 0 as λt→∞. (A19)

Combining (A18) and (A19), it now follows that∫ λt

0

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv →

∫ ∞

0

v−1/α ·Γ(q, v) · dv as λt→∞. (A20)

Finally, since ∂Γ(q, v)/∂v=−vq−1e−v and using the inequality Γ(q, v)<Cvq−1e−v, integrating-by-parts yields

that ∫ ∞

0

v1/α ·Γ(q, v) · dv =
α

α+1
·
∫ ∞

0

vq+1/α · e−vdv =
α

α+1
·Γ
(
q+1+

1

α

)
. (A21)

Using (A15), the result now follows. □
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A2.2. The Frechet Domain of Attraction

We next have the following result.

Proposition A2. If F is in the Frechet domain of attraction with index α> 1 and satisfies the von-Mises

condition (10), then for each q ∈N+,

lim
λt→∞

J⋆
OFF(q,λt)

a(λt)
=

α

α− 1
· Γ(q+1− 1/α)

Γ(q)
. (A22)

Proof of Proposition A2. Recalling from (11) the definition of the norming function a, it follows from

(12) and (13) that for each q ∈N+ and λt > 0,

J⋆
OFF(q,λt)

a(λt)
=

1

Γ(q)

∫ λt

0

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv, (A23)

where L1 is a slowly varying function. Letting 0< ε< 1, it follows that we may write∫ λt

0

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv =

∫ ε

0

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv (A24)

+

∫ λt

ε

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv. (A25)

We now analyze each of the terms on the righthand side of (A24) separately.

Regarding the first term on the righthand side of (A24), by Proposition 0.8 in Resnick (2013) it follows

that for λt sufficiently large, L1(λt/v)/L1(λt)< v
1/2α for 0< v < ε. Since Γ(q, ·)≤ Γ(q), we then obtain that

for λt sufficiently large,∫ ε

0

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv < Γ(q) ·

(
1− 1

2α

)−1

· ε1−1/2α → 0 as ε→ 0, (A26)

where the final convergence follows since by assumption α> 1.

Regarding the second term on the righthand side of (A24), first note that since L1 is slowly varying, it

follows by Definition 1 that L1(λt/v)/L1(λt)→ 1 as λt→∞ for each v > 0. Next, by (12) we have for each

λt > 0 and v > 0 the equality

L1 (λt/v)

L1(λt)
· v−1/α =

a(λt/v)

a(λt)
. (A27)

Moreover, since a(·) is an increasing function, it follows for each fixed λt > 0 that (L1(λt/v)/L1(λt))v
−1/α

is decreasing in v > 0. Now recalling by Natalini and Palumbo (2000) the inequality Γ(q, v)<Cvq−1e−v for

v > 0 and some constant C > 0, it follows by the dominated convergence theorem that∫ λt

ε

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv →

∫ ∞

ε

v−1/α ·Γ(q, v) · dv as λt→∞. (A28)

Combining (A26) and (A28), a straightforward argument now yields that∫ λt

0

L1 (λt/v)

L1(λt)
· v−1/α ·Γ(q, v) · dv →

∫ ∞

0

v−1/α ·Γ(q, v) · dv as λt→∞. (A29)

Then, since ∂Γ(q, v)/∂v=−vq−1e−v and using the inequality Γ(q, v)<Cvq−1e−v, integrating-by-parts yields

that ∫ ∞

0

v−1/α ·Γ(q, v) · dv =
α

α− 1
·
∫ ∞

0

vq−1/α · e−vdv =
α

α− 1
·Γ
(
q+1− 1

α

)
. (A30)

Using (A23), the result now follows. □
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A2.3. Bounds on Constants in Table 1

We have the following.

Proof of Proposition 1. First note for the Weibull case that if α> 1 and q≥ 1, then

Γ(q+1+1/α)

Γ(q+1)
≤ (q+1)1/α < q1/α

(
1+

1

αq

)
≤ q1/α · α+1

α
, (A31)

where the first inequality follows by the results of Wendel (1948) and the second inequality can be seen by a

Taylor expansion. Substituting into the expression (15) for Wq, one then obtains that Wq < ((α+1/q)/(α+

1))αq.

Next, for the Gumbel case first note that Hq =Hq−1+1/q for each q ∈N+. Now let ψ denote the digamma

function (Olver et al. 2010) in which case we have the identity ψ(q) =Hq−1−γ. Moreover, ψ(q)≤ ln q−1/2q.

It then follows from (14) that Cq/q≤ ln q+1/2q− 1 and so Gq ≤ q exp(1/2q− 1).

Finally, for the Frechet case note that if α> 1 and q≥ 1, then

Γ(q+1− 1/α)

Γ(q+1)
=

Γ(q+1− 1/α)

qΓ(q)
≤ q−1/α, (A32)

where the second inequality follows by the results of Wendel (1948). Substituting into the expression (15)

for Fq, one then obtains that Fq < ((α− 1)/α)αq. □

C. Proofs of Main Results

Let a and b be the norming functions of Section 5 for item valuation distributions in either the Weibull or

Frechet domains of attraction. Then, for each q ∈ N+ and λt > 0, define the centered and scaled optimal

value function

J̃⋆(q,λt) =
J⋆(q,λt)− qb(λt)

a(λt)
,

centered and scaled optimal selling price

p̃⋆(q,λt) =
p⋆(q,λt)− b(λt)

a(λt)
,

and scaled optimal purchasing probability

π̃⋆(q,λt) = λtπ⋆(q,λt).

In this section, we prove Propositions A3 and A4 below.

A3.1. The Weibull Domain of Attraction

In this subsection, we prove the following.

Proposition A3. If F is in the Weibull domain of attraction with index α> 0 and satisfies the von-Mises

condition (6), then for each q ∈N+,

lim
λt→∞

J̃⋆(q,λt) = −w(α+1)/α
q (A33)

and

lim
λt→∞

p̃⋆(q,λt) = −w1/α
q (A34)

and

lim
λt→∞

π̃⋆(q,λt) = wq, (A35)

where wq = vq((α+1)/α).
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Proof of Proposition A3. It suffices to prove the result for the case of λ= 1 and t→∞. Also note that

since F is assumed to lie in the Webull domain of attraction, it follows that xU <∞. Now for each q ∈N+

and t≥ 0 set

Ĵ⋆(q, t) = qxU − J⋆(q, t) and p̂⋆(q, t) = xU − p⋆(q, t). (A36)

Also set ∆Ĵ⋆(q, t) = Ĵ⋆(q, t)− Ĵ⋆(q− 1, t), where Ĵ⋆(0, ·) = 0. The HJB equation (4) then implies that

−∂Ĵ
⋆(q, t)

∂t
= sup

p̂∈[0,xU ]

{
(1−F (xU − p̂))(∆Ĵ⋆(q, t)− p̂)

}
. (A37)

Moreover, by (5) of Theorem 1, p̂⋆(q, t) in (A36) is equal to a maximizer on the righthand side of (A37).

Next, it is straightforward to show that 0 <∆Ĵ⋆(q, t) < xU for q ∈ N+ and t > 0 with ∆Ĵ⋆(q, t)→ 0 as

t→∞. Moreover, the objective function on the righthand side of (A37) equals zero when p̂= 0, is positive for

0< p̂ <∆Ĵ⋆(q, t), equals zero when p̂= Ĵ⋆(q, t), and is negative for ∆Ĵ⋆(q, t)< p̂≤ xU . Thus, 0< p̂⋆(q, t)<

∆Ĵ⋆(q, t) and so since ∆Ĵ⋆(q, t)→ 0 as t→∞, there exists a t
′
such that xU − p̂⋆(q, t)>x0 for t > t

′
. Then,

recalling by the von-Mises condition (6) that F is absolutely continuous on (x0, xU) with density f , it follows

after some algebra that for t > t
′
, p̂⋆(q, t) must satisfy the first-order condition

p̂⋆(q, t)

∆Ĵ⋆(q, t)
= C0(q, t) =

(
1+

1−F (xU − p̂⋆(q, t))

p̂⋆(q, t)f(xU − p̂⋆(q, t))

)−1

→ α

α+1
as t→∞, (A38)

where the convergence follows by the von-Mises condition (6) and since p̂⋆(q, t)→ 0 as t→∞.

Now define J̀⋆(q, t) = Ĵ⋆(q, t)/a(t) and set ∆J̀⋆(q, t) = J̀⋆(q, t)− J̀⋆(q− 1, t). Also note from the von-Mises

condition (6) that a is absolutely continuous on (t0,∞) where t0 = 1/(1−F (x0)). Thus, by (A37) it follows

after some algebra that for t > t0,

dJ̀⋆(q, t)

dt
=

1

t

(
C1(t)J̀

⋆(q, t)−C2(q, t)
(
∆J̀⋆(q, t)

)α+1
)
, (A39)

where

C1(t) = − ta
′
(t)

a(t)
→ 1

α
as t→∞ (A40)

and

C2(q, t) = (C0(q, t))
α (1−C0(q, t))L

(
1

C0(q, t)∆Ĵ⋆(q, t)

)(
L

(
1

a(t)

))−1

. (A41)

The convergence in (A40) follows from the inverse function theorem (Rudin 1953) and the von-Mises condition

(6).

We now prove that for each q ∈N+,

J̀⋆(q, t) → w(α+1)/α
q as t→∞. (A42)

Since J̀⋆(q, t) =−J̃⋆(q, t), this proves (A33). (A34) and (A35) then follow from (A33) combined with (A38)

and Proposition 2. Thus, proving (A42) is sufficient to complete the proof.

We proceed by induction on q. Let q ∈N+ and suppose that (A42) holds for q− 1 (note this is automatic

in the base case of q= 1). Moreover, suppose that (to be proven below)

0 < lim inf
t→∞

∆J̀⋆(q, t) ≤ limsup
t→∞

∆J̀⋆(q, t)<∞. (A43)
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Then, since L is slowly varying and a(t)→ 0 as t→∞, it follows by (A38), (A41) and Proposition 0.5 of

Resnick (2013) that

C2(q, t) →
1

α
·
(

α

α+1

)α+1

as t→∞. (A44)

Next, note that (A43) and the induction hypothesis imply that J̀⋆(q, t) > w
(α+1)/α
q−1 for t sufficienlty large.

Then, by (A39) for sufficiently large t we may write

dJ̀⋆(q, t)

dt
=

1

αt

(
ε(q, t)+ g(J̀⋆(q, t))

)
, (A45)

where

g(x) = x−
(

α

α+1

)α+1

(x−w
(α+1)/α
q−1 )α+1 for x∈ [w

(α+1)/α
q−1 ,∞),

and by (A40), (A43), (A44) and the induction hypothesis, ε(q, t)→ 0 as t→∞. Next, since by assumption

α > 0, it follows by Proposition 2 that the function g has a unique root on [w
(α+1)/α
q−1 ,∞) which is given

by w(α+1)/α
q . Moreover, it is straightforward to verify that g(x) is positive for x ∈ [w

(α+1)/α
q−1 ,w(α+1)/α

q ) and

negative for x∈ (w(α+1)/α
q ,∞) with g(x)→−∞ as x→∞. Hence, since ε(t)→ 0 as t→∞, it can be shown

using the comparison theorem (Arnold 1992) that J̀⋆(q, t)→w(α+1)/α
q as t→∞, and so (A42) holds.

In order to complete the proof it remains to prove (A43). We begin with the lim inf result. First recall

that ∆Ĵ⋆(q, t)→ 0 and a(t)→ 0 as t→∞. Next, let ε > 0. Then, by (A38) and since the function L is slowly

varying, it follows by Proposition 0.8 of Resnick (2013) that there exists a tε > 0 such that for t > tε,

L

(
1

C0(q, t)∆Ĵ⋆(q, t)

)(
L

(
1

a(t)

))−1

≤ (C0(q, t))
−ε(∆J̀⋆(q, t))−ε if ∆J̀⋆(q, t)< 1/C0(q, t).

Subtracting dJ̀⋆(q−1, t)/dt from both sides of (A39) and recalling that J̀⋆(q, t)> J̀⋆(q−1, t), it follows that

d∆J̀⋆(q, t)

dt
≥ 1

t

(
C1(t)J̀

⋆(q− 1, t)− t
dJ̀⋆(q− 1, t)

dt
− (C0(q, t))

α−ε (1−C0(q, t))
(
∆J̀⋆(q, t)

)α+1−ε

)
(A46)

for t sufficiently large if ∆J̀⋆(q, t)< 1/C0(q, t). Now recall the convergences of C0(q, t) and C1(t) in (A38)

and (A40), respectively. Also recall by the induction hypothesis that J̀⋆(q− 1, t)→w
(α+1)/α
q−1 > 0 as t→∞.

By (A45) and the induction hypothesis this also implies that

t
dJ̀⋆(q− 1, t)

dt
→ 0 as t→∞.

Now select ε such that α+ 1− ε > 0. It then follows by (A46) that there exists a ∆̄ > 0 such that for t

sufficiently large, d∆J̀⋆(q, t)/dt > 0 if ∆J̀⋆(q, t)< ∆̄. This then proves the lim inf result.

Next, we prove the limsup result. By the induction hypothesis it suffices to show that limsupt→∞ J̀⋆(q, t)<

∞. Now recall that ∆Ĵ⋆(q, t), a(t)→ 0 as t→∞ and let ε > 0. Then, by (A38) and since the function L is

slowly varying, it follows by Proposition 0.8 of Resnick (2013) that there exists a tε > 0 such that for t > tε,

L

(
1

C0(q, t)∆Ĵ⋆(q, t)

)(
L

(
1

a(t)

))−1

≥ (C0(q, t))
−ε(∆J̀⋆(q, t))−ε if ∆J̀⋆(q, t)> 1/C0(q, t).
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By (A39), this implies that

dJ̀⋆(q, t)

dt
≤ 1

t

(
C1(t)J̀

⋆(q, t)− (C0(q, t))
α−ε (1−C0(q, t))

(
∆J̀⋆(q, t)

)α−ε+1
)

(A47)

for t sufficiently large if ∆J̀⋆(q, t)> 1/C0(q, t). Now recall the convergences of C0(q, t) and C1(t) in (A38)

and (A40), respectively. Also recall by the induction hypothesis that J̀⋆(q− 1, t)→w
(α+1)/α
q−1 as t→∞. Now

select ε such that α− ε+1> 1. It then follows by (A47) that there exists a J̄ > 0 such that for t sufficiently

large, dJ̀⋆(q, t)/dt < 0 if J̀⋆(q, t)> J̄ . This then proves the limsup result. □

A3.2. The Frechet Domain of Attraction

In this subsection, we prove the following.

Proposition A4. If F is in the Frechet domain of attraction with index α> 1 and satisfies the von-Mises

condition (10), then for each q ∈N+,

lim
λt→∞

J̃⋆(q,λt) = ϕ(α−1)/α
q (A48)

and

lim
λt→∞

p̃⋆(q,λt) = ϕ−1/α
q (A49)

and

lim
λt→∞

π̃⋆(q,λt) = ϕq, (A50)

where ϕq = vq((α− 1)/α).

Proof of Proposition A4. It suffices to prove the result for the case of λ= 1 and t→∞. Next, note that

for each q ∈N+ the objective function on the righthand side of the HJB equation (4) equals zero when p= 0,

is positive for p > 0 and, since α > 1, tends to 0 as p→∞. Moreover, it is straightforward to show using

the monotonicity (Zhao and Zheng 2000) of p⋆(q, ·) that p⋆(q, t)→∞ as t→∞. Thus, there exists a t
′
such

that p⋆(q, t)>x0 for t > t
′
. Then, recalling by the von-Mises condition (10) that F is absolutely continuous

on (x0,∞) with density f , it follows after some algebra that for t > t
′
, p⋆(q, t) must satisfy the first-order

condition

p⋆(q, t)

∆J⋆(q, t)
= C0(q, t) =

(
1− 1−F (p⋆(q, t))

p⋆(q, t)f(p⋆(q, t))

)−1

→ α

α− 1
as t→∞, (A51)

where the convergence follows by the von-Mises condition (10) and since p⋆(q, t)→∞ as t→∞.

Now set ∆J̃⋆(q, t) = J̃⋆(q, t)− J̃⋆(q− 1, t). Also note from the von-Mises condition (10) that the norming

function a is absolutely continuous on (t0,∞) where t0 = 1/(1−F (x0)). Thus, by the HJB equation (4) it

follows after some algebra that for t > t0,

dJ̃⋆(q, t)

dt
=

1

t

(
C1(q, t)

(
∆J̃⋆(q, t)

)1−α

−C2(t)J̃
⋆(q, t)

)
, (A52)

where

C1(q, t) = (C0(q, t))
−α (C0(q, t)− 1)

L(C0(q, t)∆J
⋆(q, t))

L(a(t))
(A53)
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and

C2(t) =
ta

′
(t)

a(t)
→ 1

α
as t→∞. (A54)

The convergence in (A54) follows from the inverse function theorem (Rudin 1953) and the von-Mises condition

(10).

We now prove that (A48) holds for each q ∈N+. (A49) and (A50) then follow from (A48) combined with

(A51) and Proposition 2. Thus, proving (A48) is sufficient to complete the proof.

We proceed by induction on q. Let q ∈N+ and suppose that (A48) holds for q− 1 (note this is automatic

in the base case of q= 1). Moreover, suppose that (to be proven below)

0 < lim inf
t→∞

∆J̃⋆(q, t) ≤ limsup
t→∞

∆J̃⋆(q, t)<∞. (A55)

Then, since L is slowly varying and a(t)→∞ as t→∞, it follows by (A51), (A53) and Proposition 0.5 of

Resnick (2013) that

C1(q, t) →
1

α
·
(

α

α− 1

)1−α

as t→∞. (A56)

Next, note that (A55) and the induction hypothesis imply that J̃⋆(q, t) > ϕ
(α−1)/α
q−1 for t sufficienlty large.

Then, by (A52) for sufficiently large t we may write

dJ̃⋆(q, t)

dt
=

1

αt

(
ε(t)+ g(J̃⋆(q, t))

)
, (A57)

where

g(x) =

(
α

α− 1

)1−α

(x−ϕ
(α−1)/α
q−1 )1−α −x for x∈ (ϕ

(α−1)/α
q−1 ,∞),

and by (A54), (A55), (A56) and the induction hypothesis, ε(t)→ 0 as t→∞. Since by assumption α> 1, it

follows by Proposition 2 that the function g has a unique root on (ϕ
(α−1)/α
q−1 ,∞) which is given by ϕ(α−1)/α

q .

Moreover, it is straightforward to verify that g(x) is positive for x ∈ (ϕ
(α−1)/α
q−1 , ϕ(α−1)/α

q ) with g(x)→∞ as

x→ ϕ
(α−1)/α
q−1 , and negative for x∈ (ϕ(α−1)/α

q ,∞) with g(x)→−∞ as x→∞. Hence, since ε(t)→ 0 as t→∞,

it can be shown using the comparison theorem(Arnold 1992) that J̃⋆(q, t)→ ϕ(α−1)/α
q as t→∞, and so (A48)

holds.

In order to complete the proof it remains to prove (A55). We begin with the lim inf result. First recall

by (12) that a(t)→∞ as t→∞. Also, since p⋆(q, t)→∞ at t→∞, it is straightforward to show using (5)

that it must be the case that ∆J⋆(q, t)→∞ as t→∞ as well. Next, let ε > 0. Then, by (A51) and since the

function L is slowly varying, it follows by Proposition 0.8 of Resnick (2013) that there exists a tε > 0 such

that for t > tε,

L (C0(q, t)∆J
⋆(q, t)) (L (a(t)))

−1 ≥ (C0(q, t))
ε(∆J̃⋆(q, t))ε if ∆J̃⋆(q, t)< 1/C0(q, t).

Subtracting dJ̃⋆(q− 1, t)/dt from both sides of (A52), we then obtain that

d∆J̃⋆(q, t)

dt
≥ 1

t

(
(C0(q, t))

ε−α (C0(q, t)− 1)
(
∆J̃⋆(q, t)

)1+ε−α

− t
dJ̃⋆(q− 1, t)

dt
−C2(t)J̃

⋆(q, t)

)
(A58)
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for t sufficiently large if ∆J̃⋆(q, t)< 1/C0(q, t). Now recall the convergences of C0(q, t) and C2(t) in (A51)

and (A54), respectively. Also recall by the induction hypothesis that J̃⋆(q − 1, t)→ ϕ
(α−1)/α
q−1 as t→∞. By

(A57) and the induction hypothesis this also implies that

t
dJ̃⋆(q− 1, t)

dt
→ 0 as t→∞.

Now select ε such that 1+ε−α< 0. Such a ε exists since by assumption α> 1. It then follows by (A58) that

there exists a ∆̄> 0 such that for t sufficiently large, d∆J̃⋆(q, t)/dt > 0 if ∆J̃⋆(q, t)< ∆̄. This then proves

the lim inf result.

Next, we prove the limsup result. By the induction hypothesis, it suffices to show that limsupt→∞ J̃⋆(q, t)<

∞. Recall as above that ∆J⋆(q, t), a(t)→∞ as t→∞. Next, let ε > 0. Then, by (A51) and since the function

L is slowly varying, it follows by Proposition 0.8 of Resnick (2013) that there exists a tε > 0 such that for

t > tε,

L (C0(q, t)∆J
⋆(q, t)) (L (a(t)))

−1 ≤ (C0(q, t))
ε(∆J̃⋆(q, t))ε if ∆J̃⋆(q, t)> 1/C0(q, t).

By (A52), this implies that

dJ̃⋆(q, t)

dt
≤ 1

t

(
(C0(q, t))

ε−α (C0(q, t)− 1)
(
∆J̃⋆(q, t)

)1+ε−α

−C2(t)J̃
⋆(q, t)

)
(A59)

for t sufficiently large if ∆J̃⋆(q, t)> 1/C0(q, t). Now recall the convergences of C0(q, t) and C1(t) in (A51)

and (A54), respectively. Also recall by the induction hypothesis that J̃⋆(q− 1, t)→ ϕ
(α−1)/α
q−1 as t→∞. Now

select ε such that 1 + ε− α < 0. Such a ε exists since by assumption α > 1. It then follows by (A59) that

there exists a J̄ > 0 such that for t sufficiently large, dJ̀⋆(q, t)/dt < 0 if J̀⋆(q, t) > J̄ . This then proves the

limsup result. □

D. Asymptotic Optimality Proof

In this section, we provide the proof of Lemma 1.

Proof of Lemma 1 It suffices to prove the result for the case of λ= 1 and t→∞. The proof for the case

of F lying in the Gumbel domain of attraction follows from a straightforward modification to the results of

Abdallah and Reed (2025). Next, assume that F lies in either the Weibull or Frechet domain of attraction

and satisfies either the von-Mises condition (6) or (10), respectively. It then follows that F is absolutely

continuous on (x0, xU). This then implies that 1− F (F−1(1− r)) = r for any r < F (1− x0) = r0. Now let

p ∈ Π be a generalized run-out rate policy with run-out rate parameters {Rq, q ∈ N+}. It then follows by

standard theory that for each q ∈N+ and t > cq =Rq/r0,

∂Jp(q, t)

∂t
=
Rq

t
(F−1(1−Rq/t)− Jp(q, t)+Jp(q− 1, t)).

The above is a linear, first-order ODE and its solution for t > cq is given by

Jp(q, t)−
(cq
t

)Rq

Jp(q, cq) =
Rq

tRq

∫ t

cq

sRq−1F−1(1−Rq/s)ds+
Rq

tRq

∫ t

cq

sRq−1Jp(q− 1, s)ds. (A60)

Now suppose that F is in the Weibull domain of attraction. We proceed to prove (42) by induction on

q ∈ N+. Let q ∈ N+ and suppose that (42) holds for q − 1. Clearly, this is true in the base case of q = 1.
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Now recall from (7) that b(t) = xU and F−1(1− 1/t) = xU − a(t) where a(t) =L1(t)t
−1/α and L1 is a slowly

varying function. It then follows from (A60) after some algebra that for t > cq,

qxU − Jp(q, t) = (cq/t)
Rq (qxU − Jp(q, cq))+

R(α+1)/α
q

tRq

∫ t

cq

sRq−(α+1)/αL1(s/Rq)ds (A61)

+
Rq

tRq

∫ t

cq

sRq−1((q− 1)xU − Jp(q− 1, s))ds.

Next, if Rq > 1/α, then since a(t) = t−1/αL1(t), it follows that

lim
t→∞

1

a(t)
(cq/t)

Rq (qxU − Jp(q, cq)) = 0.

Also if Rq > 1/α, it follows by Karamata’s theorem (Resnick 2013) that

lim
t→∞

1

a(t)

R(α+1)/α
q

tRq

∫ t

cq

sRq−(α+1)/αL1(s/Rq)ds =
R(1+α)/α

q

Rq − (1/α)
.

inally, by the induction hypothesis it follows that ((q− 1)xU − Jp(q− 1, t)) = t−1/αL2(t) where L2 is a slowly

varying function and L2(t)/L1(t)→ ξq−1(1/α) as t→∞. Therefore, for Rq > 1/α it follows by Karamata’s

theorem that

lim
t→∞

1

a(t)

Rq

tRq

∫ t

cq

sRq−1((q− 1)xU − Jp(q− 1, s))ds =
Rq

Rq − (1/α)
ξq−1(1/α).

Now dividing both sides of (A61) by a(t) and taking the limit as t→∞ yields the desired result.

Finally, suppose that F is in the Frechet domain of attraction. We again prove (42) by induction on q ∈N+.

Let q ∈ N+ and suppose that (42) holds for q− 1. Clearly this is true in the base case of q = 1. Now recall

from (11) that b(t) = 0 and F−1(1− 1/t) = a(t) where a(t) = L1(t)t
1/α and L1 is a slowly varying function.

It then follows from (A60) after some algebra that for t > cq,

Jp(q, t) =
(cq
t

)Rq

Jp(q, cq)+
R(α−1)/α

q

tRq

∫ t

cq

sRq−(α−1)/αL1(s/Rq)ds (A62)

+
Rq

tRq

∫ t

cq

sRq−1Jp(q− 1, s)ds.

Next, if Rq >−1/α it follows by Karamata’s theorem that

lim
t→∞

1

a(t)

R(α−1)/α
q

tRq

∫ t

cq

sRq−(α−1)/αL1(s/Rq)ds =
R(α−1)/α

q

Rq +(1/α)
.

Finally, by the induction hypothesis it follows that Jp(q − 1, t) = t1/αL2(t) where L2 is a slowly varying

function and L2(t)/L1(t)→ ξq−1(−1/α) as t→∞. Therefore, forRq >−1/α it follows by Karamata’s theorem

that

lim
t→∞

1

a(t)

Rq

tRq

∫ t

cq

sRq−1Jp(q− 1, s)ds =
Rq

Rq +(1/α)
ξq−1(−1/α).

Now recalling by (11) that b(t) = 0 and dividing both sides of (A62) by a(t) and taking the limit as t→∞

yields the desired result. □
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