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Abstract

We study a limit order book which is modeled as a pair of coupled measure-valued

stochastic processes representing the bid and ask sides of the order book. Limit and

market orders arrive to both sides of the book according to independent Poisson pro-

cesses and the distribution of the prices at which limit buy and sell orders are placed

depends on the best bid and ask at the time of their arrival. We study the asymptotic

behavior of this model in a high frequency regime where the arrival rate of incoming

orders is large and limit buy and ask orders are placed in close vicinity to the current

best prices. Our first main result provides a pair of coupled measure-valued stochastic

differential equations as the formal limit of the bid and ask sides of the properly scaled

order book in the high frequency regime. We then proceed to study the solution to

this SDE for varying parameter regimes of the pre-limit model.

1 Introduction

Equity exchanges have experienced a fundamental change over the past couple of decades.

Instead of historical quote-driven markets, trading is now commonly organized around order-

driven markets making use of limit order books. In more recent developments, many cryp-

tocurrency exchanges have also made use of limit order books to facilitate their trades, see

below for a snapshot of the Coinbase Dogecoin-US Dollar limit order book from April 2022.

In a limit order book driven market, any agent who wants to buy or sell can post their
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Figure 1: A snapshot of the Coinbase Dogecoin-US Dollar limit order book on April 16th,

2022 at 12:57:23 EDT.

order at whatever prices and quantities they choose. One of the main challenges in tractably

modeling the microstructure of such markets is the high-dimensional state-space of the order

book and its complex evolution.

Limit order book (LOB) modeling has been substantially studied in the literature, and

at least two different modeling approaches are taken. Economists model the order flow as

a static process where fully rational agents submit limit orders based on the history of the

order book and their objective is to maximize their personal utility. On the other hand,

econophysicists treat the evolution of the order book as a stochastic process, where traders

are assumed to have zero-intelligence and the arrivals and cancellations of orders are random.

Parlour [1998] presented a one-tick dynamic model where agents can only submit orders

at some specified price. All traders know that their orders will affect other participants’

order strategies. Parlour [1998] provided the optimal order submitting strategy and derived

the order flows in equilibrium. Parlour’s model fails to incorporate cancellations of active

orders and the pricing grid is restricted to a single value. Hollifield et al. [2004] showed

that empirically the above model fails to describe the behavior of traders trading Ericsson

stock on the Stockholm Stock Exchange and suggested that modeling cancellations in equity

markets might be important. Goettler et al. [2006] considered a model where an agent

randomly enters a market with a single asset and leaves the market forever after the order

is executed. They studied traders’ willingness to purchase information on the fundamental

value (or true value) of an asset and discovered that the value of such information to a trader

decreases as the trader’s desire to trade increases. One drawback of Goettler et al.’s model

is that it relies solely on numerical analysis and fails in analytical tractability. Roşu [2009]

studied an order book model without the effect of asymmetric information where traders can
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freely place, modify or cancel their orders. Their model is the first perfect-rationality LOB

model to reflect the full range of actions that are available in real LOBs. They showed that

their model admits a unique Markov equilibrium and provided an optimal strategy for new

traders. In Cohen and Szpruch [2012], the authors discuss a LOB model with two investors

with different speeds of trade execution. They showed that the faster trader may construct

a strategy to gain a risk-free profit. They derived the faster trader’s optimal behavior when

he has only distributional knowledge of the slower trader’s actions, with few restrictions on

the possible prior distributions. They showed that the introduction of a “Tobin tax” can

eliminate such arbitrage and increase market efficiency.

The zero-intelligence model takes a different approach to modeling, regarding order ar-

rivals and cancellations as pure stochastic processes in nature. Bak et al. [1997] first intro-

duced a diffusion model which models the state of the LOB by the movement of particles.

Several authors studied this diffusion model by simulation and used it to explain regularities

observed in real data [Bak et al., 1997, Eliezer and Kogan, 1998, Tang and Tian, 1999].

However, the diffusion of active orders predicted by the model is not observed in real data.

Several discrete-time zero-intelligence models were proposed in [Maslov, 2000, Slanina, 2001,

Challet and Stinchcombe, 2001] before the first continuous-time model was given in Daniels

et al. [2003]. Daniels et al. proposed a master equation L(t) by assuming that order arrivals

and cancellations are governed by Poisson processes. They assumed that orders arrive in

fixed amounts of shares, and that limit orders are placed at a constant rate uniformly over

a semi-infinite interval. By assuming i.i.d. random order flow, Smith et al. [2003] solved the

master equation and developed a microscopic dynamical, statistical model for the continuous

double auction. Smith et al. [2003]’s model makes testable predictions based on properties

of the LOB that can be directly estimated. In this model, it is discovered that the order

size is a more significant determinant of the market than tick size. It is also shown that like

perfect rationality models, zero-intelligence models can be used to make strong predictions.

Farmer et al. [2005] showed that this model performs well against empirical data.

Mike and Farmer [2008] developed a behavioral model for liquidity and volatility and

revealed several empirical regularities in trading order flow. They assumed that the rela-

tive price of incoming limit orders follows students’ t-distribution and they constructed a
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complex model to describe order cancellations. Their model predicts the distribution of mid-

price returns quite well for small tick size and low volatility stocks, but is less effective for

other stocks. Gu and Zhou [2009] carefully studied the Mike and Farmer [2008] model and

found that the volatility simulated from the model doesn’t exhibit long memory which is in-

consistent with the observed stylized fact of volatility clustering. They proposed a modified

version of the Mike and Farmer [2008] model where volatility shows long memory properties.

Cont et al. [2010] introduced a continuous-time stochastic model of LOBs as a variant of

Daniels et al. [2003] and Smith et al. [2003]’s model which can be estimated easily from the

data, captures key empirical properties and is analytically and computationally tractable.

They assumed that the relative price of limit orders follows a power-law distribution and

the parameter is estimated from data. Simulation of the model displays a hump-shaped

depth profile which agrees with the empirical data. Cont et al. [2010] followed a queueing

theory approach and used Laplace transforms to calculate several probabilities related to the

limit order book. Their main assumption was that the interarrival times of orders and time

until cancellations are independent exponential random variables. Zhao [2010] and Toke

[2011] pointed out that this assumption might not hold based on an empirical study of crude

oil futures traded at the International Petroleum Exchange. Zhao [2010] and Toke [2011]

proposed using a Hawkes process instead of a Poisson process to model the arrival rates of

orders and cancellations. Cont and De Larrard [2013] proposed tracking only the best bid

and ask prices rather than the entire limit order book. They assume that when the number

of orders at the best bid or ask reaches zero, the depth of the second best price is a random

variable with a certain distribution. This assumption reduces the dimension of the state

space of their model and allows one to obtain analytical expressions of certain quantities of

interest. Cont and Bouchaud [2000] studied a model in a financial market where a random

communication structure exists between N agents, and agents who communicate will imitate

each other. Cont and Bouchaud [2000] found that such a model results in heavy tails in the

distribution of stock price variations in the form of an exponentially truncated power law.

In this paper, our focus is on the dynamics of a limit order book where each side of the

book is modeled as a measure-valued process. We consider a high frequency regime similar to

the one proposed by Lakner et al. [2016], such that the arrival rate of limit and market orders
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is high, and limit orders are placed relatively close to the best price. In the high frequency

regime, the asymptotic dynamics of the limit order book can be approximated by a pair of

coupled measure-valued stochastic differential equations. The structure of the solution to

this SDE is dependent on the average placement of limit buy and limit sell orders. If on

average limit buy orders are placed below the best bid, and on average limit ask orders are

placed above the best ask, then the solution to the pair of coupled SDEs can be represented

by a pair of measures where the best bid and best ask are themselves the solution to a pair

of coupled ODEs. On the other hand, if on average both limit buy and limit sell orders

are placed inside the spread, then the best bid and best ask are the solution to a pair of

coupled integral equations where the integrands are functions of the measure-valued state

of the book. For mixtures of the above two cases, the solution to the limiting SDE is a

combination of the above two solutions.

The remainder of the paper is organized as follows. Section 2 provides the details of our

model. In Section 3, we state the definition of the high frequency regime and in Section

4, we formally derive its limiting measure-valued SDE. In Section 5, we provide our main

results in the case that on average limit buy and sell orders are placed outside the spread,

and in Section 6 we provide our main results in the case that on average limit buy and sell

orders are placed inside the spread. Section 7 provides a result on the mixture of the above

two cases. The proofs of our main results may be found in the appendix.

1.1 Notation

The following notation will be used throughout the paper. We assume that all random

variables are defined on the common probability space (Ω,F , P ). Let MF (R) be the set of

all finite, non-negative measures on R, and let Cb(R) be the set of all bounded continuous

functions on R. For any µ ∈MF (R) and φ ∈ Cb(R) we adopt the inner product notation

〈µ, φ〉 =

∫
R
φ(u)dµ(u).

We endow MF (R) with the weak topology. Specifically, a sequence of elements {µn, n ≥ 1}

in MF (R) weakly converges to an element µ ∈ MF (R) if and only if 〈µn, φ〉 → 〈µ, φ〉 as

n→∞ for every φ ∈ Cb(R). Moreover, let B(MF (R)) be the Borel sigma field on MF (R)
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generated by the weak topology. We shall say that an MF (R) valued random variable is

measurable if it is F/B(MF (R)) measurable. Similarly, a mapping f :MF (R) 7→ R will be

called measurable if it is B(MF (R))/B(R) measurable. Let S be a separable and complete

metric space, and define D([0,∞),S) to be the Skorokhod space of all functions on [0,∞)

that are right-continuous with left limits, and taking values in S. We equip D([0,∞),S)

with the standard Skorokhod topology (see, for instance, Ethier and Kurtz [2009]) and its

associated Borel σ-algebra. We also assume that the product of a finite number of metric

spaces is equipped with the product topology.

2 The LOB Model

In this paper, we consider a two-sided limit order book which could be used to trade equities,

cryptocurrencies or any other relevant security. The specific dynamics of the order book are

given below, but at a high level the bid side of the book is modeled by the measure-valued

process µB ∈ D([0,∞),MF (R)), and the ask side of the book is modeled by the interrelated

measure-valued process µA = D([0,∞),MF (R)). The pair (µB, µA) therefore provides the

evolution of the entire book and is viewed as a process with sample functions in the space

D([0,∞),M2
F (R)).

For each t ≥ 0 and A ∈ B(R), the number of bid orders on the book at time t with prices

in the set A is given by µB(t)(A), and, similarly, the number of ask orders on the book at

time t with prices in the set A is given by µA(t)(A). We assume for simplicity that all orders

are of unit size of the security being traded. This assumption can also be relaxed without

too much difficulty. As will become evident in the discussion below, both µB and µA turn

out to be càdlàg processes taking values in the subspace of MF (R) consisting of all finite

counting measures on R.

The best bid and best ask prices at time t ≥ 0 are given respectively by

pB(t) = sup{x ∈ R : µB(t)([x,∞)) > 0}

and

pA(t) = inf{x ∈ R : µA(t)((−∞, x]) > 0}.
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These definitions naturally correspond to the best bid being the highest price that someone

is willing to buy the security for and the best ask being the lowest price that someone is

willing to sell it for. We will also be interested in the best bid and best ask processes.

These processes have sample functions included in the space D([0,∞),R) and are denoted

respectively by pB and pA.

The dynamics of the order book process are as follows. Market sell orders arrive to the

bid side of the book according to the Poisson process NBM = {NBM(t), t ≥ 0} with a rate of

λBM > 0, and market buy orders arrive to the ask side of the book according to the Poisson

process NAM = {NAM(t), t ≥ 0} with a rate of λAM > 0. We make no assumptions at the

moment on the relationship between NBM and NAM . For each i ≥ 1, we denote by τ iBM the

time at which the ith market sell order arrives, and by τ iAM the time at which the ith market

buy order arrives. We assume that each time a market sell order arrives, it is matched with

a single limit buy order at the current best bid on the bid side of book. Similarly, each time

a market buy order arrives, it is matched with a single limit sell order at the current best

ask on the ask side of the book. Each of these transactions decreases the total number of

orders on the book by 1 and, depending on the state of book, may or may not change the

best bid or best ask price as well. See Figures 2 and 3 below for illustrations of 2 consecutive

market sell orders arriving.

Figure 2: A market sell order arrives and is matched with one out of two limit buy orders

at the best bid. The best bid price does not change.

We next discuss the role played by limit orders in our model. Limit buy orders arrive

to the bid side of the book according to the Poisson process NBL = {NBL(t), t ≥ 0} with
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Figure 3: A market sell order arrives and is matched with the only limit buy order at the

best bid. The best bid price decreases.

a rate of λBL > 0. Similarly, limit sell orders arrive to the ask side of the book according

to the Poisson process NAL = {NAL(t), t ≥ 0} with a rate of λAL > 0. For each i ≥ 1, we

denote by τ iBL the time at which the ith limit buy order arrives and we denote by τ iAL the

time at which the ith limit sell order arrives. Each time a limit order arrives, it places a

corresponding order of unit size. The price at which the order is placed is random but has

some dependency on the prevailing state of the book as we next describe.

Next we shall discuss the placement of the limit orders. Recall the definition of τ iBL as

the time at which the ith limit buy order arrives. The prevailing best bid at the time at

which limit buy order i arrives is given by pB(τ iBL−), which is the left limit of pB at time

τ iBL. Similarly, the prevailing best ask at the time at which limit buy order i arrives is given

by pA(τ iBL−). The actual price at which limit buy order i is placed is given by

price of limit buy order i = pA(τ iBL−)

(
pB(τ iBL−)

pA(τ iBL−)

)XB
i

, (1)

whereXB
i is a positive random variable with CDF FB. Moreover, we assume that {XB

i , i ≥ 1}

is i.i.d.

Assumption (1) implies that so long as pB(0) < pA(0), then in our model the spread

(pB, pA) will always be non-empty. In order to see this, we proceed by induction and suppose

that pB(τ iLB−) < pA(τ iLB−). Then, since by assumption XB
i is positive, it is straightforward

to verify by (1) that limit buy order i will be placed at a price less than the best ask. In

other words, limit buy order i will not cross the spread. More precisely, the following may

be verified as well. If 0 < XB
i < 1, then limit buy order i will be placed inside the spread.
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This will result in an increase of the best bid to the new price set by limit buy order i. On

the other hand, if XB
i = 1, then limit buy order i will be placed exactly at the prevailing

best bid price. Finally, if XB
i > 1, then limit buy order i will be placed at a price less than

the best bid price and therefore deeper into the bid side of the book. See Figures 4 and 5

below for illustrations of 2 consecutive limit buy orders arriving.

Figure 4: A limit buy order is placed at a price less than the best bid. The best bid price

does not change.

Figure 5: A limit buy order is placed at a price higher than the best bid. The best bid price

increases.

The placement of limit sell orders proceeds in a symmetrical fashion to the placement of

limit buy orders. Specifically, the price at which limit sell order i is placed is given by

price of limit sell order i = pB(τ iAL−)

(
pA(τ iAL−)

pB(τ iAL−)

)XA
i

, (2)

where XA
i is a positive random variable with CDF FA. Moreover, we assume that {XA

i , i ≥ 1}

is i.i.d. Similar to the case of limit buy orders, one may show that (2) preserves the fact that
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the spread remains non-empty. Moreover, if 0 < XA
i < 1, then limit sell order i is placed

inside the spread and the best ask price decreases to the price of limit sell order i. If XA
i = 1,

then limit sell order i is placed at the best ask price. Finally, XA
i > 1, then limit sell order i

is placed at a price higher than the best ask price and deeper into the ask side of the book.

We also assume the existence of a market maker who ensures that the number of orders

on either side of the book never drops below a designated threshold. Specifically, let

SB(t) = µB(t)(R) and SA(t) = µA(t)(R) (3)

denote the number of orders on the bid and ask sides of the book, respectively, at each

point in time t ≥ 0. We also define the respective processes SB = {SB(t), t ≥ 0} and

SA = {SA(t), t ≥ 0}. The market maker then keeps track of the sizes of both sides of the

book. Whenever a market sell order arrives and decreases the number of limit buy orders on

the bid side of the book below the threshold aB > 0, the market maker immediately places

a new limit buy order on the bid side of the book at the same price at which the previous

order was removed. In an identical fashion, the market maker ensures that the number of

limit sell orders on the ask side of the book does not drop below the threshold aA > 0.

Now for each point in time t ≥ 0, denote by LB(t) and LA(t) the number of limit buy and

limit sell orders, respectively, that the market maker has placed on the order book by time

t. Also let LB and LA represent their respective counting processes. It is straightforward to

show that

LB(t) = − inf
0≤s≤t

min(SB(0) +NBL(s)−NBM(s)− aB, 0) (4)

and

LA(t) = − inf
0≤s≤t

min(SA(0) +NAL(s)−NAM(s)− aA, 0). (5)

Moreover, by the preceding discussion the total number of orders on the bid and ask sides

of the book at time t given by

SB(t) =SB(0) +NBL(t)−NBM(t) + LB(t) (6)

and

SA(t) =SA(0) +NAL(t)−NAM(t) + LA(t). (7)
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We are now in a position to write the equations governing the evolution of the order

book process (µB, µA). Let µB(0), µA(0) ∈ MF (R) denote the initial bid and ask sides of

the order book. We always assume that µB(0) and µA(0) are finite counting measures whose

supports are a subset of (0,∞). Moreover, we make the assumption that pB(0) < pA(0) so

that the initial spread is positive. Next, for each x ∈ R, let δ(x) denote the Dirac measure

concentrated at x. Then, the order book processes µB and µA described above may be

characterized as the unique solution to the pair of equations

µB(t) = µB(0) +

NBL(t)∑
i=1

δ

(
pA(τ iBL−)

(
pB(τ iBL−)

pA(τ iBL−)

)XB
i

)
−
∫ t

0

δ(pB(s−))dNBM(s) (8)

+

∫ t

0

δ(pB(s−))dLB(s)

and

µA(t) = µA(0) +

NAL(t)∑
i=1

δ

(
pB(τ iAL−)

(
pA(τ iAL−)

pB(τ iAL−)

)XA
i

)
−
∫ t

0

δ(pA(s−))dNAM(s) (9)

+

∫ t

0

δ(pA(s−))dLA(s)

for t ≥ 0.

For convenience of analysis and in order to state some of our main results, it will be

helpful to rewrite the equations above by taking their inner product with the set of test

functions φ ∈ Cb(R). In this way, µB and µA may be characterized as the unique solution to

the pair of equations

〈µB(t), φ〉 = 〈µB(0), φ〉+

NBL(t)∑
i=1

φ

(
pA(τ iBL−)

(
pB(τ iBL−)

pA(τ iBL−)

)XB
i

)
(10)

−
∫ t

0

φ(pB(s−))dNBM(s) +

∫ t

0

φ(pB(s−))dLB(s)

and

〈µA(t), φ〉 = 〈µA(0), φ〉+

NAL(t)∑
i=1

φ

(
pB(τ iAL−)

(
pA(τ iAL−)

pB(τ iAL−)

)XA
i

)
(11)

−
∫ t

0

φ(pA(s−))dNAM(s) +

∫ t

0

φ(pA(s−))dLA(s)

for t ≥ 0 and φ ∈ Cb(R).
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3 The High Frequency Regime

The order book equations (8)-(9) are difficult to solve and so in this paper, we consider them

in the high frequency regime introduced in Lakner et al. [2016]. Loosely speaking, in this

regime the arrival rates of both limit and market orders are high, and limit buy orders are

placed close to the best bid while limit sell orders are placed close to the best ask. The

mathematical details of the high frequency regime is as follows.

Consider a sequence of order book models described above and indexed by n ≥ 1. All

quantities associated with the nth model are denoted by a superscript n. The definition of

the high frequency regime then consists of several assumptions on how the model parameters

scale with n.

Assumption 1 of the high frequency regime is that the arrival rates of limit and market

orders scale roughly proportional to n. Moreover, it is assumed that the arrival rates of limit

and market orders on each side of the book are closely matched. Technically speaking, this

is accomplished by assuming that both

λnBL
n
,
λnBM
n
→ λB > 0 and

λnAL
n
,
λnAB
n
→ λA > 0 as n→∞, (12)

and

√
n

(
λnBL
n
− λnBM

n

)
→ θB ∈ R and

√
n

(
λnAL
n
− λnAM

n

)
→ θA ∈ R as n→∞. (13)

Assumption 2 of the high frequency regime is that loosely speaking limit buy orders are

placed close to the best bid, and limit sell orders are placed close to the best ask. Technically

speaking, this is accomplished by assuming that for each n ≥ 1,

XB,n
i = (XB

i )1/
√
n and XA,n

i = (XA
i )1/

√
n for i = 1, 2, ... (14)

By Taylor’s theorem it follows from (14) that

XB,n
i = 1 +

lnXB
i√
n

+ o(1/
√
n), (15)

and so using (1) and applying Taylor’s theorem again the price of limit buy order i is given

by

pnB(τ i,nBL−) +
lnXB

i√
n
pnB(τ i,nBL−) ln

(
pnB(τ i,nBL−)

pnA(τ i,nBL−)

)
+ o(1/

√
n). (16)
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Similarly, using (14) and (2) it may be shown that the price of limit sell order i is given by

pnA(τ i,nAL−) +
lnXA

i√
n
pnA(τ i,nAL−) ln

(
pnA(τ i,nAL−)

pnB(τ i,nAL−)

)
+ o(1/

√
n). (17)

Finally, assumption 3 of the high frequency regime is that the market maker keeps the

number of orders on each side of the book above a level that is roughly proportional to the

imbalance between the arrival rate of limit and market orders. Technically speaking, this

assumption is given by

anB/
√
n→ ãB > 0 and anA/

√
n→ ãA > 0 as n→∞. (18)

3.1 Derivation of the Limiting SDE

In Lakner et al. [2016], it was rigorously shown that for the case of a one-sided limit order

book, the order book process after proper normalization converges in the high frequency

regime to the solution of a measure-valued stochastic differential equation (SDE). It appears

to be the case that the techniques of Lakner et al. [2016] can be applied to rigorsouly prove

a similar result in the present situation of a two-sided order book. The proof of the result

in Lakner et al. [2016] is however somewhat long and tedious. Thus, rather than proceeding

with a detailed proof, we have chosen to outline the key steps in formally deriving a limiting

SDE for the properly normalized two-sided order book process in the high frequency regime..

First note that using the identities (6)-(7) for the total number of orders on each side of

the book, the system equations (10)-(11) may be simplified by writing

〈µB(t), φ〉 = 〈µB(0), φ〉+

NBL(t)∑
i=1

[
φ

(
pA(τ iBL−)

(
pB(τ iBL−)

pA(τ iBL−)

)XB
i

)
− φ(pB(τ iBL−))

]
(19)

+

∫ t

0

φ(pB(s−))dSB(s)

and

〈µA(t), φ〉 = 〈µA(0), φ〉+

NAL(t)∑
i=1

[
φ

(
pB(τ iAL−)

(
pA(τ iAL−)

pB(τ iAL−)

)XA
i

)
− φ(pA(τ iAL−))

]
(20)

+

∫ t

0

φ(pA(s−))dSA(s)
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for t ≥ 0 and φ ∈ Cb(R).

Next, we scale the mass of the order book process by 1/
√
n. Thus, for each n ≥ 1 define

the normalized order book processes µ̃nB = {µ̃nB(t), t ≥ 0} and µ̃nA = {µ̃nA(t), t ≥ 0} by setting

µ̃nB(t)(A) =
1√
n
µnB(t)(A) and µ̃nA(t)(A) =

1√
n
µnA(t)(A)

for A ∈ B(R) and t ≥ 0. The choice of this normalization is in anticipation of Proposition

1 below. Similarly, we define the normalized versions of the processes tracking the number

of orders on each side of the book by setting

S̃nB(t) =
1√
n
SnB(t) and S̃nA(t) =

1√
n
SnA(t)

for t ≥ 0, and we let S̃nB = {S̃nB(t), t ≥ 0} and S̃nA = {S̃nA(t), t ≥ 0} denote their corresponding

processes.

It then follows after some algebra that from (19)-(20) we obtain the normalized equations

〈µ̃nB(t), φ〉 = 〈µ̃nB(0), φ〉+
1√
n

Nn
BL(t)∑
i=1

φ
pnA(τ i,nBL−)

(
pnB(τ i,nBL−)

pnA(τ i,nBL−)

)XB,n
i

− φ(pnB(τ i,nBL−))


+

∫ t

0

φ(pnB(s−))dS̃nB(s) (21)

and

〈µ̃nA(t), φ〉 = 〈µ̃nA(0), φ〉+
1√
n

Nn
AL(t)∑
i=1

φ
pnB(τ i,nAL−)

(
pnA(τ i,nAL−)

pnB(τ i,nAL−)

)XA,n
i

− φ(pnA(τ i,nAL−))


+

∫ t

0

φ(pnA(s−))dS̃nA(s) (22)

for t ≥ 0 and φ ∈ Cb(R).

Now recall by Taylor’s theorem and (16) that for each φ ∈ C2
b (R), we have

φ

pnA(τ i,nBL−)

(
pnB(τ i,nBL−)

pnA(τ i,nBL−)

)XB,n
i

− φ(pnB(τ i,nBL−)) = φ′(pnB(τ i,nBL−))∆n + o(1/
√
n), (23)

where

∆n =
lnXB

i√
n
pnB(τ i,nBL−) ln

(
pnB(τ i,nBL−)

pnA(τ i,nBL−)

)
.
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A similar expression for the ask side of the book may be obtained using Taylor’s theorem

and (17). Substituting (23) into (21), and its counterpart for the ask side of the book into

(22), it follows that

〈µ̃nB(t), φ〉 = 〈µ̃nB(0), φ〉 (24)

+
1

n

Nn
BL(t)∑
i=1

ln(XB
i )

[
φ′(pnB(τ i,nBL−))pnB(τ i,nBL−) ln

(
pnB(τ i,nBL−)

pnA(τ i,nBL−)

)
+ o(1)

]

+

∫ t

0

φ(pnB(s−))dS̃nB(s),

and

〈µ̃nA(t), φ〉 = 〈µ̃nA(0), φ〉 (25)

+
1

n

Nn
AL(t)∑
i=1

[
φ′(pnA(τ i,nAL−))pnA(τ i,nAL−)

(
ln

(
pnA(τ i,nAL−)

pnB(τ i,nAL−)

)
ln(XA

i )

)
+ o(1)

]

+

∫ t

0

φ(pnA(s−))dS̃nA(s)

for t ≥ 0 and φ ∈ C2
b (R). Equations (24)-(25) are now already fairly close to the limiting

SDE we obtain below.

4 Limiting SDE

We now proceed to informally take weak limits in (24)-(25) in order to a obtain a limiting

measure-valued SDE for the properly normalized order book process in the high frequency

regime. In order for this limit to exist, we first must require that after proper normalization

the initial state of the order book weakly converges as n→∞. That is, we assume that

(µ̃nB(0), µ̃nA(0)) ⇒ (µ̃B(0), µ̃A(0)) as n→∞. (26)

Recall that by assumption µ̃B(0) and µ̃A(0) are discrete measures. This need not however

be the case for the limiting measures µ̃B(0) and µ̃A(0)). In fact, some of our results below

require us to make continuity assumptions on (µ̃B(0), µ̃A(0)).

Next, note that by (3), assumption (26) also implies weak convergence of the properly

normalized initial sizes of the two sides of the order book. That is, (26) implies the weak

15



convergence

(S̃nB(0), S̃nA(0)) ⇒ (S̃B(0), S̃A(0)) as n→∞. (27)

Now assume that the order arrival processes NAM , NAL, NBM and NBL are independent of

one another. It then follows from standard results that aside from their initial conditions, the

normalized order book size processes S̃nB and S̃nA weakly converge as n→∞ to independent

reflected Brownian motions. Specifically, we have the following result.

Proposition 1. If (27) holds, then

(S̃nB, S̃
n
A) ⇒ (S̃B, S̃A) as n→∞, (28)

where S̃B is a Brownian motion reflected at ãB > 0 with constant drift θB and infinitesimal

variance 2λB, and S̃A is a Brownian motion reflected at ãA > 0 with constant drift θA and

infinitesimal variance 2λA. Moreover, conditional on (S̃B(0), S̃A(0)), the processes S̃B and

S̃A are independent of one another.

Recall by standard results that if S̃ is a Brownian motion reflected at some level ã, and

with a drift θ and infinitesimal variance σ2, then we have the standard construction

S̃(t) = S̃(0) + θt+ σB̃(t) + L̃(t), (29)

where B̃ = {B̃(t), t ≥ 0} is a standard Brownian motion, and

L̃(t) = − inf
0≤s≤t

min(S̃(0) + θt+ σB̃(t)− ã, 0). (30)

Further references on such processes may be found in Harrison [2002] .

Now taking the limit as n → ∞ in (24)-(25), we formally obtain the limiting measure-

valued stochastic differential equation

〈µ̃B(t), φ〉 = 〈µ̃B(0), φ〉+ λBE[ln(XB)]

∫ t

0

[
φ′(pB(s))pB(s) ln

(
pB(s)

pA(s)

)]
ds (31)

+

∫ t

0

φ(pB(s))dS̃B(s)

and

〈µ̃A(t), φ〉 = 〈µ̃A(0), φ〉+ λAE[ln(XA)]

∫ t

0

[
φ′(pA(s))pA(s) ln

(
pA(s)

pB(s)

)]
ds (32)

+

∫ t

0

φ(pA(s))dS̃A(s)
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for t ≥ 0 and φ ∈ C2
b (R), where

pB(t) = sup{x ∈ R : µ̃B(t)([x,∞)) > 0}

and

pA(t) = inf{x ∈ R : µ̃A(t)((−∞, x]) > 0}.

The structure of the solution to (31)-(32) depends on the signs of E[lnXB] and E[lnXA].

There are four possible combinations corresponding to each of E[lnXB] and E[lnXA] being

either positive or negative. Each of these combinations are discussed in the sections below

and have a natural interpretation with respect to the placement of limit buy and sell orders

relative to the best bid and best ask. The cases of either E[lnXB] or E[lnXA] being equal

to zero are degenerate as can be seen from above. In particular, if E[lnXB] = 0, then

µ̃B ≡ µ̃B(0). Similarly, if E[lnXA] = 0, then µ̃A ≡ µ̃A(0).

5 The case of E(lnXB) and E(lnXA) being positive

In this section, we provide the solution to (31)-(32) when both E(lnXB) and E(lnXA) are

positive. Using (16)-(17), it is straightforward to see that this case loosely corresponds to

limit buy and sell orders being placed on average outside the spread. Our main result is the

following. Its proof may be found in the appendix.

Theorem 1. If E(lnXB),E(lnXA) ≥ 0 and the functions x 7→ µ̃B(0)((0, x)) and x 7→

µ̃A(0)((0, x)) are Lipschitz continuous on (0, pB(0)) and (pA(0),∞), resp., and µ̃B(0)({pB(0)}) >

0 and µ̃A(0)({pA(0)}) > 0, then a solution (µ̃B, µ̃A) to the SDE (31)-(32) is given by

µ̃B(t)([0, x]) =

µ̃B(0)([0, x]) if 0 ≤ x < pB(t),

S̃B(t) if x ≥ pB(t),

(33)

and

µ̃A(t)([x,∞)) =

S̃A(t) if 0 ≤ x ≤ pA(t),

µ̃A(0)([x,∞)) if x > pA(t),

(34)

for t ≥ 0, where (pB, pA) is the unique solution to the pair of coupled equations

ln pB(t) = ln pB(0)− λBE(lnXB)

∫ t

0

ln

(
pA(s)

pB(s)

)
ds

αB(s)
(35)
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and

ln pA(t) = ln pA(0) + λAE(lnXA)

∫ t

0

ln

(
pA(s)

pB(s)

)
ds

αA(s)
, (36)

where

αB(t) = S̃B(t)− µ̃B(0)((0, pB(t))) and αA(t) = S̃A(t)− µ̃A(0)((pA(t),∞)). (37)

Since by assumption both E(lnXB),E(lnXA) > 0 and pB(0) < pA(0), it is straightfor-

ward to show by (35)-(36) that the best bid price in Theorem 1 is monotonically decreasing

and the best ask price is monotonically increasing. Thus, the spread is continually widening.

The order book itself is given by (33)-(34) and is comprised at each point in time of an atom

of size αB(t) and αA(t) at the best bid and best ask, respectively, with the rest of the book

consisting of any remaining limit orders leftover from the initial conditions.

Note also that the rates of change of the best bid and best ask are faster when the spread

is larger and slower when there is a high number of orders at either the best bid or best ask,

respectively. This is natural since in order for the spread to increase, orders at either the

best bid or best ask need to first be removed. This type of behavior matches an empirical

study by Cont et al. [2014], which finds that changes in price are inversely proportional to

market depth over short periods of time.

5.1 An Example

The equations (35)-(36) for the limiting price processes (pB, pA) cannot in general be solved

in closed form. There exists however a special case in which an exact solution may be found.

Suppose that both µ̃B(0) = S̃B(0)δpB(0) and µ̃A(0) = S̃A(0)δpA(0). In order words, the initial

state of the order book is such that its mass is concentrated solely at the best bid and best

ask. Then, since pB is decreasing and pA is increasing, it is straightforward to verify that

αB(t) = S̃B(t) and αA(t) = S̃A(t) for t ≥ 0. In other words, the mass of the book remains

concentrated at the best bid and best ask for all t ≥ 0. The equations (35)-(36) for (pB, pA)

then simplify considerably.

Specifically, note that subtracting (35) from (36) we obtain that

ln

(
pA(t)

pB(t)

)
= ln

(
pA(0)

pB(0)

)
+

∫ t

0

ln

(
pA(s)

pB(s)

)(
λAE(lnXA)

S̃A(s)
+
λBE(lnXB)

S̃B(s)

)
ds (38)
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for t ≥ 0. The solution to this equation is given by

ln

(
pA(t)

pB(t)

)
= ln

(
pA(0)

pB(0)

)
exp

(∫ t

0

(
λAE(lnXA)

S̃A(s)
+
λBE(lnXB)

S̃B(s)

)
ds

)
. (39)

Substituting (39) back into (35)-(36), one then obtains closed form expressions for (pB, pA).

6 The case of E(lnXB) and E(lnXA) being negative

In this section, we provide the solution to the SDE (31)-(32) when E(lnXB) and E(lnXA)

are negative. Using (16)-(17), it is straightforward to see that this case loosely corresponds

to limit buy and sell orders being placed on average inside the spread. We begin by providing

the dynamics of the price processes in Section 6.1 and then move on to the order book itself

in Section. 6.2.

6.1 The Price Process

For each t ≥ 0, let

mB(t) = inf
0≤s≤t

S̃B(s) and mA(t) = inf
0≤s≤t

S̃A(s) (40)

denote the minimum bid and ask order book sizes, respectively, up until time t. Next, for

each mB(t) ≤ x ≤ S̃B(t) set

τ tB,x = sup{0 ≤ s ≤ t : S̃B(s) = x} (41)

to be the last visit time of S̃B at the level x before time t. Similarly, for each mA(t) ≤ x ≤

S̃A(t) set

τ tA,x = sup{0 ≤ s ≤ t : S̃A(s) = x} (42)

to be the last visit time of S̃A at the level x before time t. By the continuity of S̃B and

S̃A, one can see that (41)-(42) are well-defined and strictly increasing in x. Finally, let

GB : R+ 7→ [0, S̃B(0)] and GA : R+ 7→ [0, S̃A(0)] be the functions defined by

GB(x) = µ̃B(0)(x,∞) and GA(x) = µ̃A(0)(x,∞). (43)

Also denote by G−1
B and G−1

A the respective right-continuous inverses of GB and GA.
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Now consider the system of equations

ln pB(t) = lnG−1
B (mB(t))− E(lnXB)

∫ S̃B(t)

mB(t)

ln

(
pA(τ tB,u)

pB(τ tB,u)

)
du, (44)

and

ln pA(t) = lnG−1
A (mA(t)) + E(lnXA)

∫ S̃A(t)

mA(t)

ln

(
pA(τ tA,u)

pB(τ tA,u)

)
du, (45)

for t ≥ 0.

In Theorem 2 of the subsection that follows, it is stated that (44)-(45) represents the

system equations for the price processes of a solution to the SDE (31)-(32). In the present

subsection, we simply present the following result.

Proposition 2. If pB(0) < pA(0), then P -a.s. there exists a unique solution (pB, pA) to

(44)-(45). Moreover, pB(t) < pA(t) for t ≥ 0.

We now point out that the price processes pB and pA defined by (44)-(45) have the

following property. For any two points in time 0 ≤ t1 < t2, let [t1, t2] be an up excursion

interval of the process S̃A if and only if S̃A(t1) = S̃A(t2) and S̃A(t) ≥ S̃A(t1) for all t1 <

t < t2. We remark that our definition of an excursion interval is slightly different than

the terminology of “excursion” commonly used in the literature. In our definition, we only

require that S̃A(t) ≥ S̃A(t1) for all t1 < t < t2 instead of the commonly used assumption

that requires S̃A to be strictly greater than S̃A(t1) in the interval (t1, t2). It is clear that if

[t1, t2] is an up excursion interval of S̃A, then mA(t1) = mA(t2). Also, from the definition of

τ tA,x, one can easily show that τ t1A,x = τ t2A,x for any x < S̃A(t1). Hence, it follows from (45)

that

ln pA(t2) = lnG−1
A (mA(t2)) + E(lnXA)

∫ S̃A(t2)

mA(t2)

ln

(
pA(τ t2A,u)

pB(τ t2A,u)

)
du

= lnG−1
A (mA(t1)) + E(lnXA)

∫ S̃A(t1)

mA(t1)

ln

(
pA(τ t1A,u)

pB(τ t1A,u)

)
du

= ln pA(t1).

(46)

Equation (46) implies that the price pA is the same at the two endpoints for every up

excursion interval [t1, t2]. This is an important property of the price process defined in (44)-

(45) which we refer to as the “excursion property”. In a similar manner, one can derive the

excursion property for pB.
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6.2 The Order Book Process

Before presenting our main result of this section, the following notation is needed. Given

the unique pair of price processes (pB, pA) solving (44)-(45), for each t ≥ 0 let

p
B

(t) = inf
0≤u≤t

pB(u) and p̄A(t) = sup
0≤u≤t

pA(u)

be the minimum bid price and maximum ask price, respectively, up until time t. Next, for

each p
B

(t) ≤ x < pB(t) set

τ tpB,x = sup{0 ≤ u ≤ t : pB(u) = x} (47)

to be the last visit time of pB to the price x before time t. Similarly, for each pA(t) < x ≤ pA(t)

set

τ tpA,x = sup{0 ≤ u ≤ t : pA(u) = x} (48)

to be the last visit time of pA to the price x before time t.

The following is our main result of this section.

Theorem 2. Suppose that E(lnXB),E(lnXA) < 0. If µ̃B(0) and µ̃A(0) are P -a.s. absolutely

continuous, then a solution (µ̃B, µ̃A) to the SDE (31)-(32) is such that for each t ≥ 0, µ̃B(t)

is absolutely continuous with density

dµ̃B(t)

dx
=


dµ̃B(0)/dx if x < p

B
(t),[

E(lnXB)x ln
(

x
pA(τ tpB,x)

)]−1

if p
B

(t) ≤ x < pB(t),

0 if x ≥ pB(t),

(49)

and µ̃A(t) is absolutely continuous with density

dµ̃A(t)

dx
=


0 if x ≤ pA(t),[
E(lnXA)x ln

(
pB(τ tpA,x)

x

)]−1

if pA(t) < x ≤ pA(t),

dµ̃A(0)/dx if x > pA(t),

(50)

where (pB, pA) is the unique solution to (44)-(45).
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We now provide some interpretation of Theorem 2. Let t ≥ 0 and consider the density

dµ̃A(t)/dx of the ask side of the book as given by (50). There are 3 cases to discuss. The

first case of x ≤ pA(t) is straightforward since by definition the best ask is the lowest price

on the ask side of the book.

Next, consider the case of pA(t) < x ≤ pA(t). This is the most interesting one. First note

that by the continuity of pA, it follows that pA(τ tpA,x) = x. The expression for the density on

the righthand side of (50) can then be written as[
E(lnXA)pA(τ tpA,x) ln

(
pB(τ tpA,x)

pA(τ tpA,x)

)]−1

. (51)

Notice now the similarity between this expression and (17) of Section 3. One may then loosely

interpret the expression inside the parenthesis above as being proportional to the average

distance from the best ask price that limit sell orders were placed at the last time that the

best ask price was at the level x. The reciprocal of this quantity naturally corresponds to

the density of orders. We therefore see that the density of the order book provides a history

of its previous states.

The final case in (50) of x > pA(t) corresponds to price levels that the best ask has not

yet reached. It is not surprising that for such x the density of the order book remains as it

was at time 0. The analysis of the bid side of the book using (49) follows similarly.

We also note there exists a direct relationship between the pair of equations (44)-(45)

for the limiting price processes (pB, pA) and the formulas (49)-(50) for the limiting measures

(µ̃B, µ̃A). Specifically, it turns out that at each point time t ≥ 0 the integrands in (44)-(45)

may be written in terms of the densities (49)-(50) of the current state of the book. In order

to see that this is the case, first note from Proposition 6 in the appendix that for each t ≥ 0

and u ∈ [mA(t), S̃A(t)],

τ tA,u = τ tpA,pA(τ tA,u). (52)

On the other hand, it can also be shown that given µ̃A(t) one has

pA(τ tA,u) = inf{x ∈ R : µ̃A(t)(x,∞) < u}. (53)

We henceforth for convenience set pA(τ tA,x) = pA(t, x). It then follows from (50) and after
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some algebra that

ln

(
pA(τ tA,u)

pB(τ tA,u)

)
=

(
E(lnXA)pA(t, u)

dµ̃A(t)

dx
(pA(t, u))

)−1

. (54)

Note moreover that the lefthand side above is exactly the integrand in equation (45) for pA.

In a similar manner, for each t ≥ 0 and u ∈ [mB(t), S̃B(t)] letting

pB(t, u) = sup{x ∈ R : µ̃B(t)(−∞, x) < u}, (55)

it may be shown that

ln

(
pA(τ tB,u)

pB(τ tB,u)

)
=

(
E(lnXB)pB(t, u)

dµ̃B(t)

dx
(pB(t, u))

)−1

. (56)

Note moreover that the lefthand side above is exactly the integrand in equation (44) for pB.

We therefore see that at each point in time t ≥ 0 the integrands in (44)-(45) for the limiting

price processes (pB, pA) are functions of the current state (µ̃B(t), µ̃A(t)) of the order book.

The additional quantities (S̃B(t), S̃A(t)) and (mB(t),mA(t)) appearing on the righthand sides

of (44)-(45) are easily seen to be functions of (µ̃B(t), µ̃A(t)) too.

6.3 Price process approximation

In the proof of Proposition 4 of the appendix, it is shown that the pair (ln pB, ln pA) of log

price processes solving (44)-(45) is the unique fixed point of a contraction mapping. This

fact may be used to construct a sequence of approximations to the solution to (44)-(45). We

proceed as follows.

For the sake of simplicity, assume that S̃A(0) = ãA and S̃B(0) = ãB. The more general

case can be handled too, the only difference being the expressions below become more in-

volved. Next, fix a T ≥ 0 and define the linear operators AB and AA by setting for each

x ∈ C([0, T ],R) and 0 ≤ t ≤ T ,

AB(x)(t) = E(lnXB)

∫ S̃B(t)

ãB

x(τ tB,u)du (57)

and

AA(x)(t) = E(lnXA)

∫ S̃A(t)

ãA

x(τ tA,u)du. (58)
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In the proof of Proposition 4, it is shown that AB, AA : C([0, T ],R) 7→ C([0, T ],R). Moreover,

selecting T sufficiently small AB and AA become contraction mappings with respect to the

uniform norm. The choice of T does however depend on ω ∈ Ω.

Equations (44)-(45) may now be written for 0 ≤ t ≤ T as

ln pB(t) = ln pB(0) + AB(ln pB − ln pA)(t) (59)

and

ln pA(t) = ln pA(0) + AA(ln pA − ln pB)(t). (60)

Moreover, denote by AA + AB the summation of the operators AA and AB. That is,

(AA + AB)(x) = AA(x) + AB(x) for x ∈ C([0, T ],R). (61)

Then, subtracting (59) from (60) and iteratively applying AA + AB to both sides of the

resulting equation, we obtain using the contraction mapping property of AA and AB that

ln pA − ln pB =
∞∑
n=0

(AA + AB)n(ln pA(0)− ln pB(0)), (62)

where (AA + AB)n denotes the composition of AA + AB with itself n times.

Now substituting (62) into (59)-(60), it follows that for 0 ≤ t ≤ T the solution to (44)-(45)

can be represented as the infinite series

ln pB = ln pB(0) + AB

(
∞∑
n=0

(AA + AB)n(ln pB(0)− ln pA(0))

)
(63)

and

ln pA = ln pA(0) + AA

(
∞∑
n=0

(AA + AB)n(ln pA(0)− ln pB(0))

)
. (64)

We may therefore approximate (ln pB, ln pA) by truncating the infinite series (63)-(64). For

instance, truncating at n = 1 yields the first-order approximation for (ln pB, ln pA) given by

ln p
(1)
B (t) = ln pB(0) + E(lnXB)(ln pB(0)− ln pA(0))(S̃B(t)− ãB),

ln p
(1)
A (t) = ln pA(0) + E(lnXA)(ln pA(0)− ln pB(0))(S̃A(t)− ãA),
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for 0 ≤ t ≤ T . Truncating at n = 2 leads to the second-order approximation given by

ln p
(2)
B (t) = ln pB(0) + E(lnXB)(ln pB(0)− ln pA(0))

[
E(lnXA)

∫ S̃B(t)

ãB

(
S̃A(τ tB,u)− ãA

)
du

+

(
(S̃B(t)− ãB) +

1

2
E(lnXB)(S̃B(t)− ãB)2

)]
,

ln p
(2)
A (t) = ln pA(0) + E(lnXA)(ln pA(0)− ln pB(0))

[
E(lnXB)

∫ S̃A(t)

ãA

(
S̃B(τ tA,u)− ãB

)
du

+

(
(S̃A(t)− ãA) +

1

2
E(lnXA)(S̃A(t)− ãA)2

)]
,

for 0 ≤ t ≤ T .

In Figure 6 below, we plot a simulated sample path of (ln pB, ln pA) and compare it to the

first and second order sample paths given by the approximations above. In Figure 7 below,

we plot a Monte Carlo estimation of the marginal distribution of ln pA(1) and compare it to

the first and second order Monte Carlo estimations using the approximations above.

Figure 6: Sample paths of ln pA and ln pB together with their first and second order approx-

imations.

6.4 Examples

The equations (44)-(45) for (ln pB, ln pA) cannot in general be solved in closed form. There

are however a couple of special cases where an exact solution may be found. We next discuss

these two special cases.
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Figure 7: The marginal distribution of ln pA(1) based on Monte Carlo simulation and its

first and second order approximations.

6.4.1 The case where either E(lnXB) or E(lnXA) is zero

Theorem 2 also holds when either E(lnXB) or E(lnXA) is zero with the other expectation

still being negative. Consider for instance the case where E(lnXB) = 0 and E(lnXA) < 0.

This loosely corresponds to the average price of incoming limit buy orders being equal to

the best bid, and the average price of incoming limit sell orders being less than the best

ask. It turns out that in this case the integral term in (44) vanishes and so we obtain a

explicit expression for the best bid. The dynamics of the best ask given by (45) are more

complicated. However, assuming that S̃B(0) = ãB and S̃A(0) = ãA, we can explicitly solve

for pA as well. We proceed as follows.

First note that if both E(lnXB) = 0 and S̃B(0) = ãB, then by (44) it follows that

pB(t) = pB(0) for t ≥ 0. Next, if S̃A(0) = ãA, then G−1
A (mA(t)) = pA(0) for t ≥ 0. Now let

x(t) = ln pA(t)− ln pB(0). It then follows subtracting (44) from (45) that

x(t) = x(0) + E(lnXA)

∫ S̃A(t)

ãA

x(τ tA,u))du (65)

for t ≥ 0. Next, applying the change-of-variables s = τ tA,u to the integral in (65), we obtain

x(t) = x(0) + E(lnXA)

∫ t

0

x(s)dT tA(s), (66)

where T tA is given by (115) in the appendix. It then follows by Lemma 2 in the appendix
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that ∫ t

0

x(s)dS̃A(s)−
∫ t

0

x(s)dT tA(s) = −λAE(lnXA)

∫ t

0

x(s)ds. (67)

On the other hand, recall by (66) that∫ t

0

x(s)dT tA(s) =
x(t)− x(0)

E(lnXA)
. (68)

Substituting (68) into (67), we then obtain that

x(t) = x(0) + E(lnXA)

∫ t

0

x(s)dS̃A(s) + λAE2(lnXA)

∫ t

0

x(s)ds. (69)

The above is the SDE for geometric Brownian motion where the Brownian motion has been

replaced by a reflected Brownian motion. Nevertheless, after some algebra its solution is

given by

x(t) =x(0) exp
(
E(lnXA)(S̃A(t)− ãA)

)
.

Recalling now that x(t) = ln pA(t)− ln pB(0), we arrive at

ln pA(t) = ln pB(0) + (ln pA(0)− ln pB(0)) exp
(
E(lnXA)(S̃A(t)− ãA)

)
.

Moreover, by (50) the density function of µ̃A(t) is given by

fA(x) = −
[
E(lnXA)x(lnx− ln pB(0))

]−1
for pA(t) ≤ x ≤ pA(0). (70)

Note that fA as given above is continuous and differentiable in the interval [pA(t), pA(0)].

Moreover, the support of µ̃A(t) depends on the time t but its actual density fA(x) does not

as long as x is within the support [pA(t), pA(0)].

Now recall that S̃A(t)− ãA is a Brownian motion reflected at 0 with constant drift θA and

infinitesimal variance 2λA. Therefore, using the transient distribution of reflected Brownian

motion, the distribution of pA(t) is given by

P
(

ln pA(t) ≤ ln pA(0) + (ln pA(0)− ln pB(0))z
)

(71)

=1− Φ

(
ln z/E(lnXA)− θAt√

2λAt

)
+ exp

(
θA
λA

ln z

E(lnXA)

)
Φ

(
− ln z/E(lnXA)− θAt√

2λAt

)
,
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where Φ is the c.d.f. of a standard normal distribution. In Figure 8 below, we use Monte

Carlo simulation to generate a histogram of the best ask price at time t = 1, and compare it

with the theoretical density function in (71). We consider three cases where the drift of the

reflected Brownian motion S̃A is negative, zero and positive. From Figure 8 we can clearly

see that the density function (71) closely matches the histogram generated from the Monte

Carlo simulation.

(a) θs = −1 (b) θs = 0 (c) θs = 1

Figure 8: Histogram based on Monte Carlo simulation and the theoretical density function

of pA(1) in the case that E(lnXB) = 0.

6.4.2 The case where S̃B(t) = S̃A(t)

We next consider the case in which S̃B(t) = S̃A(t) for t ≥ 0. For convenience, let S̃ = S̃B =

S̃A and set

T t(u) = T tB(u) = T tA(u) for 0 ≤ u ≤ t, (72)

and x(t) = ln pA(t) − ln pB(t). Recall that the definitions of T tA and T tB are given in (115)

and (116) of the appendix. Subtracting (44) from (45) and using the definitions of T tB and

T tA together with a change-of-variables, yields after a little bit of algebra that

x(t) = x(0) + (E(lnXA) + E(lnXB))

∫ t

0

x(u)dT t(u)

for t ≥ 0. Applying Lemma 2 in the appendix and setting λ = λA = λB, we then arrive at

x(t) = x(0) +
(
E(lnXA) + E(lnXB)

)(∫ t

0

x(u)dS̃(u) + λ(E(lnXA) + E(lnXB))

∫ t

0

x(u)du

)
,
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which is equivalent to

dx(t)

x(t)
= (E(lnXA) + E(lnXB))dS̃(t) + λ(E(lnXA) + E(lnXB))2dt.

The above is the SDE for a geometric Brownian motion where the Brownian motion has

been replaced by a reflecing Brownian motion. Its solution is given by

x(t) =x(0) exp
(

(E(lnXA) + E(lnXB))(S̃(t)− ã)
)

(73)

for t ≥ 0, where ã = ãS = ãB.

Now note that multiplying (44) by E(lnXA), and (45) by E(lnXB), and then adding

the resulting two expressions together, we obtain that

E(lnXB) ln pA(t) + E(lnXA) ln pB(t) = E(lnXB) ln pA(0) + E(lnXA) ln pB(0). (74)

(74) implies that the appropriately weighted average of the log of the two price processes

remains constant. In particular, the mid-log price does not change if E(lnXB) = E(lnXA).

Combining (73) with (74) now yields explicit expressions for pA(t) and pB(t) given by

ln pA(t) =
E(lnXB) ln pA(0) + E(lnXA) ln pB(0) + E(lnXA)x(t)

E(lnXA) + E(lnXB)
(75)

and

ln pB(t) =
E(lnXB) ln pA(0) + E(lnXA) ln pB(0)− E(lnXB)x(t)

E(lnXA) + E(lnXB)
(76)

for t ≥ 0.

It also follows that substituting (76) into (50) we obtain the density function of µ̃A(t) for

x ∈ [pA(t), pA(0)] given by

fA(x) = −
[
x
(

(E(lnXA)+E(lnXB)) lnx−E(lnXB) ln pA(0)−E(lnXA) ln pB(0)
)]−1

. (77)

Note in particular that the density function of µ̃A(t) is continuous and differentiable in the

interval [pA(t), pA(0)]. Moreover, the time t only affects the support of µ̃A(t), while the

density fA(x) does not depend on t as long as x is in the support [pA(t), pA(0)]. In a similar

manner, it may be shown that the density function of µ̃B(t) for x ∈ [pB(0), pB(t)] is given by

fB(x) =
[
x
(

(E(lnXA) +E(lnXB)) lnx−E(lnXB) ln pA(0)−E(lnXA) ln pB(0)
)]−1

. (78)
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Now recall that S̃A(t) − ãA is a Brownian motion reflected at 0 with a constant drift

θA and infinitesimal variance 2λA. Using (75) and the transient distribution of reflected

Brownian motion, the distribution of pA(t) is then given by

P

(
ln pA(t) ≤ E(lnXB) ln pA(0) + E(lnXA) ln pB(0) + E(lnXA)(ln pA(0)− ln pB(0))z

E(lnXA) + E(lnXB)

)
=Φ

(
ln z

E(lnXA)+E(lnXB)
− θAt

√
2λAt

)
− exp

(
θA ln z

λA(E(lnXA) + E(lnXB))

)
Φ

(
− ln z

E(lnXA)+E(lnXB)
− θAt

√
2λAt

)
(79)

for z ∈ R, where Φ denotes the c.d.f. of a standard normal distribution. In Figure 9 below,

we use Monte Carlo simulation to generate a histogram of the best ask price at time t = 1,

and compare it with the theoretical density function in (79) in the case where the drift of the

reflected Brownian motion S̃A is negative, zero and positive. The results in Figure 9 show a

clear match between the density function (79) and the histogram generated from the Monte

Carlo simulation.

(a) θA = −1 (b) θA = 0 (c) θA = 1

Figure 9: Histogram based on Monte Carlo simulation and the theoretical density function

of pA(1) in the case that S̃B(t) = S̃A(t).

Finally, we remark that although the results in this section are based on the assumption

that S̃B(t) = S̃A(t), their derivation can also be extended to cover the case where S̃B(t)−ãB =

c(S̃A(t)− ãA) for arbitrary c > 0.

7 The case of E[lnXB] and E[lnXA] having differing signs

In this section, we discuss the case where E[lnXB] and E[lnXA] have differing signs. The

solution to the SDE (31)-(32) can then be characterized as a mixture of the two cases
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discussed previously. Specifically, in the case where E(lnXB) ≥ 0 and E(lnXA) < 0, consider

the system of equations

ln pB(t) = ln pB(0)− λBE(lnXB)

∫ t

0

ln

(
pA(s)

pB(s)

)
ds

αB(s)
, (80)

ln pA(t) = lnG−1
A (mA(t)) + E(lnXA)

∫ S̃A(t)

mA(t)

ln

(
pA(τ tA,u)

pB(τ tA,u)

)
du, (81)

for t ≥ 0. We then have the following result.

Theorem 3. If E(lnXB) ≥ 0 and E(lnXA) < 0, then a solution (µ̃B, µ̃A) to the SDE

(31)-(32) is such that for each t ≥ 0, µ̃B(t) is given by

µ̃B(t)([0, x]) =

µ̃B(0)([0, x]) if 0 ≤ x < pB(t),

S̃B(t) if x ≥ pB(t),

(82)

and µ̃A(t) is absolutely continuous with density

fAt,x =


0 if x ≤ pA(t),[
E(lnXA)x ln

(
pB(τpAt,x )

x

)]−1

if pA(t) < x ≤ pA(t),

fA0,x if x > pA(t),

(83)

where (pB, pA) is the unique solution to the system of equations (80)-(81).

Proof. By Proposition 7 in the appendix, it follows that pB(t) < pA(t) for t ≥ 0. The result

then follows as in the proofs of Theorems 1 and 2.

A Proofs of Main Results

In the appendix, we provide the proofs of our main results.

A.1 Proof of Theorem 1

Before providing the proof of Theorem 1, we first have the following result.

Proposition 3. If pB(0) < pA(0), then P -a.s. there exists a unique solution to (35)-(36).
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Proof. First let x̄ = (x1, x2) and consider the solution to the system of equations

x̄(t) = x̄(0) +

∫ t

0

g(s, x̄(s))ds for t ≥ 0, (84)

where g : (R+,R2) 7→ R2 is given by

g(t, x̄) =

(
−c1

x2(t)− x1(t)

h1(t, x1(t))
, c2

x2(t)− x1(t)

h2(t, x2(t))

)
, (85)

with c1, c2 > 0, and where

h1(t, x) = S̃B(t)− µ̃B(0)(0, exp(x)) (86)

and

h2(t, x) = S̃A(t)− µ̃A(0)(exp(x),∞). (87)

The result of the proposition then follows if there exists a unique solution to (84). It therefore

suffices to show that for each t ≥ 0, there exists a constant κt such that for each 0 ≤ s ≤ t,

g(s, ·) is Lipschitz continuous with constant κt. We proceed as follows.

First note by the assumptions of the theorem there exists a constant c > 0 such that

h1(t, x), h2(t, x) > c. It then follows by the fundamental theorem of calculus that for i = 1, 2,∣∣∣∣ 1

hi(t, x)
− 1

hi(t, x)

∣∣∣∣ ≤ 1

c2
· |hi(t, x)− hi(t, y)| for x, y ∈ R. (88)

Moreover, by Gronwall’s inequality, for each t ≥ 0 there exists a constant c̄t such that if x̄

is a solution to (84), then ‖x̄s‖ ≤ ‖x0‖c̄t for 0 ≤ s ≤ t. Thus, let x̄, ȳ ∈ R2 be such that

‖x̄‖, ‖ȳ‖ ≤ ‖x0‖c̄t. It then follows after some simple algebra that for 0 ≤ s ≤ t,

‖g(s, x̄)− g(s, ȳ)‖ ≤ c1 + c2

c
‖x̄− ȳ‖ (89)

+
c̄t
c2

(c1|h1(s, x̄1)− h1(s, ȳ1)|+ c2|h2(s, x̄2)− h2(s, ȳ2)|) . (90)

However, by the assumptions that µ̃B(0)(0, x) and µ̃A(0)(x,∞) are Lipschitz continuous,

together with the fact that exp(x) is Lipsschitz continuous on compact sets, it follows there

exists a constant ν̄t such that for 0 ≤ s ≤ t,

|h1(s, x̄1)− h1(s, ȳ1)| ≤ κt‖x̄− ȳ‖. (91)

(89) and (91) now complete the proof.
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The proof of Theorem 1 is now as follows.

Proof of Theorem 1. By Proposition 3, P -a.s. there exists a unique solution to (35)-(36).

Thus, it suffices to prove that (µ̃B, µ̃A) given by (33)-(37) is a solution to (31)-(32). We

prove that (31) is satisfied. The proof that (32) is satisfied follows similarly and hence it not

shown.

First note that by (33) and (37), it follows that

〈µ̃B(t), φ〉 =

∫
(0,pB(t))

φ(u)dµ̃B(0)(u) + αB(t)φ(pB(t)), (92)

for each t ≥ 0 and φ ∈ C2
b (R). Hence, in order to verify that (µ̃B, µ̃A) satisfies (31), it is

sufficient to show that

αB(t)φ(pB(t)) = 〈µ̃B(0), φ〉 −
∫

(0,pB(t))

φ(u)dµ̃B(0)(u) (93)

+

∫ t

0

φ(pB(s))dS̃B(s)

−λBE(lnXB)

∫ t

0

φ′(pB(s))pB(s) ln

(
pA(s)

pB(s)

)
ds.

First note by (35) that pB is monotonically decreasing and so also using the fact that

αB(t) = S̃B(t)− µ̃B(0)((0, pB(t))) for t ≥ 0, we may integrate-by-parts to obtain that

αB(t)φ(pB(t)) = αB(0)φ(pB(0)) +

∫ t

0

αB(s)dφ(pB(s)) +

∫ t

0

φ(pB(s))dαB(s). (94)

Regarding the middle term on the righthand side above, note by (35) it follows that∫ t

0

αB(s)dφ(pB(s)) =

∫ t

0

αB(s)φ′(pB(s))dpB(s) (95)

= −λBE(lnXB)

∫ t

0

φ′(pB(s))pB(s) ln

(
pA(s)

pB(s)

)
ds,

and so substituting (95) into (94) we obtain that

αB(t)φ(pB(t)) = αB(0)φ(pB(0)) +

∫ t

0

φ(pB(s))dαB(s) (96)

−λBE(lnXB)

∫ t

0

φ′(pB(s))pB(s) ln

(
pA(s)

pB(s)

)
ds.
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Next, note that since αB(t) = S̃B(t)− µ̃B(0)((0, pB(t))), it follows after some algebra that

αB(0)φ(pB(0)) +

∫ t

0

φ(pB(s))dαB(s) (97)

= αB(0)φ(pB(0))−
∫ t

0

φ(pB(s))dµ̃B(0)((0, pB(s))) +

∫ t

0

φ(pB(s))dS̃B(s).

Substituting (97) into (96), in order to complete the proof it now suffices after some algebra

to show that∫
(0,pB(t))

φ(u)dµ̃B(0)(u)−
∫ t

0

φ(pB(s))dµ̃B(0)((0, pB(s))) + αB(0)φ(pB(0)) (98)

= 〈µ̃B(0), φ〉.

However, since E(lnXB) ≥ 0, it follows by (35) that pB is non-increasing, and so by a

change-of-variables we obtain that∫ t

0

φ(pB(s))dµ̃B(0)((0, pB(s))) = −
∫

[pB(t),pB(0))

φ(u)dµ̃B(0)(u).

The equality (98) now follows by (92).

A.2 Proof of Theorem 2

In this section, we provide the proof of Theorem 2. We begin by proving Proposition 2.

Then, we proceed to the proof of Theorem 2.

A.2.1 Proof of Proposition 2

Let bB = ln pB(0), bA = ln pA(0), and for each T ≥ 0 denote by CT (bB, bA) = {f ∈

C([0, T ],R2) : f(0) = (bB, bA)} the metric space with the L∞ norm induced metric. Next,

define the mapping T as follows. For each x = (x1, x2) ∈ CT (bB, bA), let

T (x)(t) =

(
ln F̄−1

B,0(mB(t)) + c2

∫ S̃B(t)

mB(t)

(
x2(τ tB,u)− x1(τ tB,u)

)
du,

ln F̄−1
A,0(mA(t)) + c1

∫ S̃A(t)

mA(t)

(
x1(τ tA,u)− x2(τ tA,u)

)
du

)
(99)

for 0 ≤ t ≤ T , where bB, bA, c1, c2 ∈ R and bB < bA. The following lemma implies that P -a.s.

T : CT (bB, bA) 7→ CT (bB, bA).
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Lemma 1. Let f : [0,∞) → R be a measurable function that is bounded on compact sets.

Then, the mappings FB : [0,∞)→ R and FA : [0,∞)→ R defined for t ≥ 0 by

FB(t) =

∫ S̃B(t)

mB(t)

f(τ tB,u)du and FA(t) =

∫ S̃A(t)

mA(t)

f(τ tA,u)du

are P -a.s. continuous.

Proof. We prove the result for FB, the proof for FA follows similarly. Let 0 ≤ x ≤ y ≤ t.

Then, by the triangle inequality∣∣∣∣∣
∫ S̃B(x)

mB(x)

f(τxB,u)du−
∫ S̃B(y)

mB(y)

f(τ yB,u)du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ S̃B(x)

mB(x)

f(τxB,u)du−
∫ S̃B(x)

mB(x)

f(τ yB,u)du

∣∣∣∣∣+

∣∣∣∣∣
∫ S̃B(x)

mB(x)

f(τ yB,u)du−
∫ S̃B(x)

mB(y)

f(τ yB,u)du

∣∣∣∣∣
+

∣∣∣∣∣
∫ S̃B(x)

mB(y)

f(τ yB,u)du−
∫ S̃B(y)

mB(y)

f(τ yB,u)du

∣∣∣∣∣
≤
∫ sup

x≤v≤y
S̃B(v)

inf
x≤v≤y

S̃B(v)

∣∣f(τxB,u)− f(τ yB,u)
∣∣ du+ |mB(x)−mB(y)| sup

0≤s≤y
|f(s)|

+
∣∣∣S̃B(x)− S̃B(y)

∣∣∣ sup
0≤s≤y

|f(s)|

≤2

∣∣∣∣ sup
x≤v≤y

S̃B(v)− inf
x≤v≤y

S̃B(v)

∣∣∣∣ sup
0≤s≤y

|f(s)|+ |mB(x)−mB(y)| sup
0≤s≤y

|f(s)| (100)

+
∣∣∣S̃B(x)− S̃B(y)

∣∣∣ sup
0≤s≤y

|f(s)|.

In the above, we use the fact that

τxB,u = τ yB,u for u /∈
[

inf
x≤v≤y

S̃B(v), sup
x≤v≤y

S̃B(v)

]
.

Now since S̃B is P -a.s. continuous, it is clear that P -a.s. (100) goes to zero as |x−y| → 0.

We are now ready to prove the existence and uniqueness portion of Proposition 2.

Proposition 4. If pB(0) < pA(0), then P -a.s. there exists a unique solution (pB, pA) to

(44)-(45).

Proof of Proposition 4. For each i = 1, 2, ..., let

λi = min

(
inf

{
s > λi−1 : |S̃B(s)− inf{S̃B(x) : λi−1 ≤ x ≤ s}| ≥ 1

4|c2|

}
, (101)

inf

{
s > λi−1 : |S̃A(s)− inf{S̃A(x) : λi−1 ≤ x ≤ s}| ≥ 1

4|c1|

})
,
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where c1, c2 are as in (99) and λ0 = 0. Note that P -a.s. λi → ∞ as i → ∞ since otherwise

the increasing sequence {λi, i = 0, 1, 2, ...} converges to a finite value, which violates the

P -a.s. continuity of S̃B and S̃A. Hence, the set of ω ∈ Ω such that S̃B(ω) and S̃A(ω) are

continuous and λi(ω) → ∞ has probability 1. We now complete the proof by showing that

for all such ω, there exists a unique solution (pB(ω), pA(ω)) to (44)-(45) on [0, λi(ω)] for

i ≥ 0. We proceed by induction on i.

Let ω ∈ Ω be as described above and note that in the base case of i = 0, we have that

λ0(ω) = 0 and so the unique solution (pB(ω), pA(ω)) to (44)-(45) on [0, λ0] is trivially given

by (pB(ω, 0), pA(ω, 0)). Next, suppose that there exists a unique solution (pB, pA) to (44)-

(45) on [0, λi−1]. In order to complete the proof, it suffices to show that there exists a unique

solution to (44)-(45) on [0, λi]. We proceed as follows.

Consider the metric space Ci(pB, pA) = {x ∈ C([0, λi],R2) : x(s) = (pB(s), pA(s)), 0 ≤

s ≤ λi−1} with the L∞ norm induced metric, and for x = (x1, x2) ∈ Ci(pB, pA) define the

mapping Ti by setting Ti(x)(s) equal to(
ln F̄−1

B,0(mB(t)) + c2

∫ S̃B(s)

mB(t)

(
x2(τ sB,u)− x1(τ sB,u)

)
du, (102)

ln F̄−1
A,0(mA(t)) + c1

∫ S̃A(s)

mA(t)

(
x1(τ sA,u)− x2(τ sA,u)

)
du

)
,

for 0 ≤ s ≤ λi. By Lemma 1 above and the induction hypothesis, it follows that Ti :

Ci(pB, pA) 7→ Ci(pB, pA). Moreover, by the induction hypothesis and (102), any solution

to (44)-(45) on [0, λi] must lie in Ci(pB, pA) and be a fixed point of Ti. Hence, in order to

complete the proof it suffices to show that there exists a unique fixed point to Ti.

By the Banach fixed-point theorem [Granas et al., 2003], it suffices to show that Ti :

Ci(pB, pA) 7→ Ci(pB, pA) is a contraction mapping. Let x, y ∈ Ci(pB, pA). Then, since

x(s) = y(s) = (pB(s), pA(s)) for 0 ≤ s ≤ λi−1, it follows that Ti(x)(s) = Ti(y)(s) for

0 ≤ s ≤ λi−1. Next, let

mi
B = inf

λi−1≤s≤λi
S̃B(s) and mi

A = inf
λi−1≤s≤λi

S̃A(s) (103)

and note that 0 ≤ τ sB,u ≤ λi−1 for λi−1 ≤ s ≤ λi and 0 ≤ u ≤ mi
B. Similarly, 0 ≤ τ sA,u ≤ λi−1

for 0 ≤ u ≤ mi
A and λi−1 ≤ s ≤ λi. Thus, for each x, y ∈ Ci(pB, pA) we have that
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Ti(x)(s)− Ti(y)(s) = 0 for 0 ≤ s ≤ λi−1 and

Ti(x)(s)− Ti(y)(s) =

(
c2

∫ S̃B(s)

mi
B

(
x2(τ sB,u)− y2(τ sB,u) + y1(τ sB,u)− x1(τ sB,u)

)
du, (104)

c1

∫ S̃A(s)

mi
A

(
x1(τ sA,u)− y1(τ sA,u) + y2(τ sA,u)− x2(τ sA,u)

)
du

)
(105)

for λi−1 ≤ s ≤ λi. It now follows from (101) that

‖Ti(x)− Ti(y)‖∞

≤ 2‖x− y‖∞max

{
|c2| sup

λi−1≤s≤λi
|S̃B(s)−mi

B|, |c1| sup
λi−1≤s≤λi

|S̃A(s)−mi
A|

}
=

1

2
‖x− y‖∞.

This implies that Ti is a contraction mapping, which completes the proof.

Finally, we prove the positive spread part of Proposition 2.

Proposition 5. If pB(0) < pA(0), then the unique solution to (44)-(45) is such that pB(t) <

pA(t) for t ≥ 0.

Proof. Let x(t) = ln pA(t)− ln pB(t) and note that subtracting (44) from (45) we obtain that

x(t) = d(t) + E(lnXA)

∫ S̃A(t)

mA(t)

x(τ tA,u)du+ E(lnXB)

∫ S̃B(t)

mB(t)

x(τ tB,u)du (106)

for t ≥ 0, where d(t) = ln F̄−1
A,0(mA(t))−ln F̄−1

B,0(mB(t)). Now suppose that the result does not

hold and let t∗ = inf{t ≥ 0 : pB(t) = pA(t)}. Then, by the continuity of pB, pA together with

the continuity of S̃B, S̃A, and the fact that x(t) > 0 for t ∈ [0, t∗), there exists a t̄ ∈ [0, t∗)

such that x(t) ≤ x(t̄) for t ∈ [t̄, t∗] and

−3E(lnXA)

(
S̃A(t∗)− inf

t̄≤t≤t∗
S̃A(t)

)
≤ 1 and −3E(lnXB)

(
S̃B(t∗)− inf

t̄≤t≤t∗
S̃B(t)

)
≤ 1.

Next note that d is a non-decreasing function, and so it follows that

x(t̄) = x(t̄)− x(t∗) ≤ E(lnXA)

(∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

mA(t∗)

x(τ t
∗

A,u)du

)
(107)

+ E(lnXB)

(∫ S̃B(t̄)

mB(t̄)

x(τ t̄B,u)du−
∫ S̃B(t∗)

mB(t∗)

x(τ t
∗

B,u)du

)
.

37



Regarding the first term on the righthand side above, if

inf
t̄≤t≤t∗

S̃A(t) < mA(t̄), then inf
t̄≤t≤t∗

S̃A(t) = mA(t∗) (108)

and so it follows that∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

mA(t∗)

x(τ t
∗

A,u)du ≥ −
∫ S̃A(t∗)

mA(t∗)

x(τ t
∗

A,u)du (109)

= −
∫ S̃A(t∗)

inf
t̄≤t≤t∗

S̃A(t)

x(τ t
∗

A,u)du. (110)

On the other hand, if

inf
t̄≤t≤t∗

S̃A(t) ≥ mA(t̄), then mA(t̄) = mA(t∗) (111)

and so using the fact that τ t
∗
A,u = τ t̄A,u for u ∈

[
mA(t̄), inf

t̄≤t≤t∗
S̃A(t)

)
, it follows that

∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

mA(t∗)

x(τ t
∗

A,u)du =

∫ S̃A(t̄)

inf
t̄≤t≤t∗

S̃A(t)

x(τ t̄A,u)du−
∫ S̃A(t∗)

inf
t̄≤t≤t∗

S̃A(t)

x(τ t
∗

A,u)du

≥ −
∫ S̃A(t∗)

inf
t̄≤t≤t∗

S̃A(t)

x(τ t
∗

A,u)du. (112)

Note that in both cases above, we obtain the same inequality. Moreover, since τ t
∗
A,u ∈ [t̄, t∗]

for u ∈
[

inf
t̄≤t≤t∗

S̃A(t), S̃A(t∗)

]
and using the fact that x(t) ≤ x(t̄) for t ∈ [t̄, t∗], it follows from

the above and since E(lnXA) < 0 that

E(lnXA)

(∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

mA(t∗)

x(τ t
∗

A,u)du

)
(113)

≤ −E(lnXA)x(t̄)

(
S̃A(t∗)− inf

t̄≤t≤t∗
S̃A(t)

)
.

≤ x(t̄)

3
.

Similarly, it may be shown that

E(lnXB)

(∫ S̃B(t̄)

mB(t̄)

x(τ t̄B,u)du−
∫ S̃B(t∗)

mB(t∗)

x(τ t
∗

B,u)du

)
≤ x(t̄)

3
. (114)

Combining (112) with (113)-(114) yields that

x(t̄) ≤ 2

3
x(t̄),

which leads to a contradiction since x(t̄) > 0.
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A.2.2 Proof of Theorem 2

In this section, we provide the proof of Theorem 2. In preparation for our first result, we

must setup some notation. For each t ≥ 0, let T tA be defined by setting

T tA(s) = inf
s≤u≤t

S̃A(u) for 0 ≤ s ≤ t. (115)

Note that since S̃A is continuous, by definition T tA is a continuous, non-decreasing function

with T tA(0) = S̃A(0) and T tA(t) = S̃A(t). Similarly, we define the function T tB by setting

T tB(s) = inf
s≤u≤t

S̃B(u) for 0 ≤ s ≤ t. (116)

We then have the following lemma. An analogous result holds replacing T tA by T tB and S̃A

by S̃B.

Lemma 2. If q = {q(t), t ∈ [0,∞)} is an adapted, continuous process, and

h(t) = h(0) +

∫ t

0

q(s)dT tA(s) (117)

for t ≥ 0, then ∫ t

0

h(s)dS̃A(s)−
∫ t

0

h(s)dT tA(s) = −λA
∫ t

0

q(s)ds. (118)

Proof. First we shall prove (118) for the case of “single jump processes”

q(s) = Q1[u,∞)(s), h(0) = 0,

where 0 ≤ u < ∞ is a constant, and Q is an Fu-measurable random variable. The identity

in Lemma 1 is obviously true if 0 ≤ t ≤ u, because then both sides are zero. Next we prove

the identity for t ≥ u. We have

h(s) = Q(S̃A(s)− T sA(u))

for all s ≥ u, hence∫ t

0

h(s)d(S̃A(s)−T tA(s)) = Q

∫ t

u

(S̃A(s)−T sA(u))dS̃A(s)−Q
∫ t

u

(S̃A(s)−T sA(u))dT tA(s). (119)

We calculate the two integrals on the right-hand side separately. The first will be∫ t

u

(S̃A(s)− T sA(u))dS̃A(s) =

∫ t

u

S̃A(s)dS̃A(s)−
∫ t

u

T sA(u)dS̃A(s) =
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1

2
((S̃A(t))2 − (S̃A(u))2)− 1

2
(2λA)(t− u)−

∫ t

u

T sA(u)dS̃A(s). (120)

Using Ito’s rule, the stochastic integral on the right-hand side can be written in the following

way: ∫ t

u

T sA(u)dS̃A(s) = T tA(u)S̃A(t)− (S̃A(u))2 −
∫ t

u

S̃A(s)dT sA(u). (121)

The function p 7→ T pA(u) with domain [u,∞) is decreasing at a point s ≥ u only if S̃A(·)

achieves its minimum on [u, s] at the point s. Hence p 7→ T pA(u) decreases at the point s only

if T sA(u) = S̃A(s). Thus we can cast the right-hand side (121) in the form

T tA(u)S̃A(t)− (S̃A(u))2 −
∫ t

u

T sA(u)dT sA(u) =

T tA(u)S̃A(t)− (S̃A(u))2 − 1

2
((T tA(u))2 − (S̃A(u))2) = T tA(u)S̃A(t)− 1

2
(S̃A(u))2 − 1

2
(T tA(u))2.

We substitute the stochastic integral on the right-hand side of (120) with the last expression

in the above identity, then after some algebra we get that the first integral on the right-hand

side of (119) can be written as∫ t

u

(S̃A(s)− T sA(u))dS̃A(s) =
1

2

(
(S̃A(t))2 + (T tA(u))2

)
− T tA(u)S̃A(t)− λA(t− u). (122)

Next we deal with the second integral on the right-hand side of (119). Notice that the

function T tA(·) with domain [0, t] is increasing at a point s ∈ [0, t] only if S̃A(·) reaches its

minimum on [s, t] at the point s. It follows that we we have S̃A(s) = T tA(s) whenever s ∈ [0, t]

is a point of increase of T tA(·). Therefore the second integral on the right-hand side of (119)

can be written as ∫ t

u

(S̃A(s)− T sA(u))dT tA(s) =

∫ t

u

(T tA(s)− T sA(u))dT tA(s). (123)

Similarly as before, one can see that if s ∈ [0, t] is a point of increase of T tA(·), then T sA(u) =

T tA(u) for u ≤ s ≤ t. This follows again from the fact that the function T tA(·) is increasing at

a point s only if S̃A(·) reaches its minimum on [s, t] at the point s. Thus we can cast (123)

in the form ∫ t

u

(S̃A(s)− T sA(u))dT tA(s) =

∫ t

u

(T tA(s)− T tA(u))dT tA(s)

=

∫ t

u

T tA(s)dT tA(s)− T tA(u)(S̃A(t)− T tA(u)) =
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1

2

(
(S̃A(t))2 − (T tA(u))2

)
− T tA(u)

(
S̃A(t)− T tA(u)

)
=

1

2

(
(T tA(u))2 + (S̃A(t))2

)
− T tA(u)S̃A(t). (124)

Equations (119), (122) and (124) imply∫ t

0

h(s)d(S̃A(s)− T tA(s)) = −λAQ(t− u),

exactly what we wanted to prove.

In the next step we shall extend the previous result to the case in which q is an adapted,

bounded, continuous process, and h(0) = 0. Fix a time t ≥ 0. From the previous part follows

that (118) is true if it is a process of the form

q(t) =
n−1∑
j=0

Qj1[t(j),t(j+1))(t), (125)

where 0 = t(0) < t(1) < · · · < t(n) = t is a partition of the interval [0, t], and Qj is an

Ft(j)-measurable random variable for j = 0, 1, , . . . , n−1. Indeed, this kind of process can be

written as a linear combination of single jump processes, and we already know that equation

(118) is true when q is a single jump process. We shall call processes that have the form

given in (125) elementary processes. By Oksendal, Section 3.1 there exists a sequence of

adapted elementary processes {qn, n ≥ 1} such that each |qn| < C for some constant C, and

lim
n→∞

qn(s) = q(s), a.s. s ≤ t. (126)

Let

hn(s) =

∫ s

0

qn(u)dT sA(u), s ≤ t, (127)

and h be as in (117). By the Bounded Convergence Theorem we have

lim
n→∞

∫ t

0

qn(s)ds =

∫ t

0

q(s)ds, a.s. (128)

and

lim
n→∞

hn(s) = h(s), a.s. s ≤ t.

In addition, by the Dominated Convergence Theorem we also have

lim
n→∞

∫ t

0

(hn(s)− h(s))2ds = 0, a.s., (129)
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and

lim
n→∞

∫ t

0

hn(s)dT tA(s) =

∫ t

0

h(s)dT tA(s), a.s., (130)

since we have the bound

|hn(s)| ≤ C(S(s)− ãS). (131)

From (129) follows that

lim
n→∞

∫ t

0

hn(s)dS̃A(s) =

∫ t

0

h(s)dS̃A(s), (132)

in probability. We know that (118) holds if we replace q and h by qn and hn, respectively,

so by taking limits and using (128), (130), and (132), we conclude that (118) indeed holds.

Next we shall assume that q is an adapted, continuous process, and h(0) = 0. Let

Tn = inf{t ≥ 0 : |q(t)| ≥ n},

qn(t) = q(t ∧ Tn),

and

hn(t) =

∫ t

0

qn(s)dT tA(s).

From the previous step we know that∫ t

0

hn(s)dS̃A(s) =

∫ t

0

hn(s)dT tA(s)− λA
∫ t

0

q(s)ds, (133)

thus substituting t by t ∧ Tn and using the fact that for s ≤ Tn we have qn(s) = q(s) and

hn(s) = h(s), we get∫ t∧Tn

0

h(s)dS̃A(s) =

∫ t∧Tn

0

h(s)dT t∧TnA (s)− λA
∫ t∧Tn

0

q(s)ds. (134)

Taking limits as n→∞ gives the desired result. Extending the result to cases when h(0) is

an arbitrary constant is obvious.

Next, we have the following.

Proposition 6. For each t > 0 and x ∈ [mA(t), S̃A(t)],

τ tA,x = τ tpA,pA(τ tA,x), (135)

and for each t > 0 and x ∈ [mB(t), S̃B(t)],

τ tB,x = τ tpB ,pB(τ tB,x). (136)
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Proof of Proposition 6. We prove (135), the proof of (136) follows similarly. Let t > 0 and

x ∈ [mA(t), S̃A(t)]. Clearly

τ tA,x ≤ τ tpA,pA(τ tA,x).

Hence, in order to complete the proof it suffices to show that pA(u) < pA(τ tA,x) for u ∈ (τ tA,x, t].

First note by the continuity of S̃A that S̃A(u) > x for u ∈ (τ tA,x, t]. This implies that

if u ∈ (τ tA,x, t], then mA(u) = mA(t) and τuA,y = τ tA,y for y ∈ [mA(t), x]. Hence, for each

u ∈ (τ tA,x, t],

ln pA(u) = ln F̄−1
A,0(mA(u)) + E(lnXA)

∫ S̃A(u)

mA(u)

ln

(
pA(τuA,v)

pB(τuA,v)

)
dv

= ln F̄−1
A,0(mA(t)) + E(lnXA)

∫ x

mA(t)

ln

(
pA(τ tA,v)

pB(τ tA,v)

)
dv

+E(lnXA)

∫ S̃A(u)

x

ln

(
pA(τuA,v)

pB(τuA,v)

)
dv

= ln p(τ tA,x) + E(lnXA)

∫ S̃A(u)

x

ln

(
pA(τuA,v)

pB(τuA,v)

)
dv

< ln p(τ tA,x).

We now are in a position to prove Theorem 2.

Proof of Theorem 2. Recall by Proposition 2 that if pB(0) < pA(0), then P -a.s. there exists

a unique solution (pB, pA) to (44)-(45). It remains to show that (µ̃B, µ̃A) given by (49)-(50)

is a solution to the SDE (31)-(32). We prove that µ̃A satisfies (32), the proof that µ̃B satisfies

(31) follows similarly.

First note that if µ̃A is given by (50), then for each φ ∈ Cb(R),

〈µ̃A(t), φ〉 (137)

=

∫ pA(t)

pA(t)

φ(u)

[
E(lnXA)u ln

(
pB(τ tpA,u)

u

)]−1

du+

∫ ∞
p̄A(t)

φ(u)dµ̃A(0, u) (138)
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for t ≥ 0. Substituting (137) into the SDE (32), we then obtain that∫ pA(t)

pA(t)

φ(u)

[
E(lnXA)u ln

(
pB(τ tpA,u)

u

)]−1

du (139)

=

∫ p̄A(t)

0

φ(u)dµ̃A(0, u) + λAE[ln(XA)]

∫ t

0

[
φ′(pA(s))pA(s) ln

(
pA(s)

pB(s)

)]
ds (140)

+

∫ t

0

φ(pA(s))dS̃A(s)

for t ≥ 0. In order to complete the proof, it suffices to show that the above equality holds.

First note for a fixed t ≥ 0, it follows by the continuity of S̃A that S̃A(τ tA,x) = x for

x ∈ [mA(t), S̃A(t)]. It then follows by a change-of-variables v = τ tA,u in (45) that

ln pA(t) = lnG−1
A (mA(t)) + E(lnXA)

∫ t

0

ln

(
pA(v)

pB(v)

)
dT tA(v). (141)

Next, for a fixed t > 0 let

l(s) = lnG−1
A (mA(s)) + E(lnXA)

∫ s

0

ln

(
pA(v)

pB(v)

)
dT tA(v) (142)

for 0 ≤ s ≤ t and note that l(t) = ln pA(t) and l(0) = ln pA(0). Moreover,

dl(s) = d lnG−1
A (mA(s)) + E(lnXA) ln

(
pA(s)

pB(s)

)
dT tA(s). (143)

Hence, for φ ∈ Cb(R) that are differentiable

φ(pA(t)) = φ(pA(0)) +

∫ t

0

φ
′
(pA(s))pA(s)d lnG−1

A (mA(s)) (144)

+E(lnXA)

∫ t

0

φ
′
(pA(s))pA(s) ln

(
pA(s)

pB(s)

)
dT tA(s). (145)

Now note since G−1
A (mA(s)) = p̄A(s) for s ≥ 0, it follows after some algebra that∫ t

0

φ
′
(pA(s))pA(s)d lnG−1

A (mA(s)) = φ(p̄A(t))− φ(pA(0)) (146)

for t ≥ 0. Substituting the above into (144), we then obtain that

φ(pA(t))− φ(p̄A(t)) = E(lnXA)

∫ t

0

φ
′
(pA(s))pA(s) ln

(
pA(s)

pB(s)

)
dT tA(s). (147)

Now applying Lemma 2 to the above, it follows after some algebra that

λAE(lnXA)

∫ t

0

φ
′
(pA(s))pA(s) ln

(
pA(s)

pB(s)

)
ds+

∫ t

0

φ(pA(s))dS̃A(s) (148)

=

∫ t

0

φ(p̄A(s))d(S̃A(s)− T tA(s)) +

∫ t

0

φ(pA(s))dT tA(s). (149)
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Now substituting the above into (139), it follows that in order to complete the proof it

suffices to show that for each φ ∈ Cb(R),∫ pA(t)

pA(t)

φ(u)

[
E(lnXA)u ln

(
pB(τ tpA,u)

u

)]−1

du−
∫ t

0

φ(pA(s))dT tA(s) (150)

=

∫ p̄A(t)

0

φ(u)dµ̃A(0, u) +

∫ t

0

φ(p̄A(s))d(S̃A(s)− T tA(s)) (151)

for t ≥ 0. We proceed by showing both sides of the above are equal to 0.

Consider first the lefthand side of (150). Similar to the reasoning of (141), it follows that∫ t

0

φ(pA(s))dT tA(s) =

∫ S̃A(t)

mA(t)

φ(pA(τ tA,v))dv (152)

for t ≥ 0. To show that the lefthand side of (150) vanishes, it then suffices to show that∫ S̃A(t)

mA(t)

φ(pA(τ tA,v))dv =

∫ pA(t)

pA(t)

φ(u)

[
E(lnXA)u ln

(
pB(τ tpA,u)

u

)]−1

du. (153)

Now fix t ≥ 0 and note by (45) that for each x ∈ [mA(t), S̃A(t)],

ln pA(τ tA,x) = lnG−1
A (mA(t)) + E(lnXA)

∫ x

mA(t)

ln

(
pA(τ tA,u)

pB(τ tA,u)

)
du. (154)

Next, (154) together with Proposition 5 implies that pA(τ tA,x) is continuous and strictly

decreasing for x ∈ [mA(t), S̃A(t)]. Differentiating (154) with respect to x then yields

dpA(τ tA,x)

dx
= E(lnXA)pA(τ tA,x) ln

(
pA(τ tA,x)

pB(τ tA,x)

)
. (155)

Now let p−1
A (τ tA,x) : [pA(t), p̄A(t)] 7→ [mA(t), S̃A(t)] denote the inverse function of pA(τ tA,x).

By the inverse function theorem, it follows that

dp−1
A (τ tA,x)(z)

dz
=

1

E(lnXA)

1

pA(τ t
A,p−1

A (τ tA,x)(z)
)

ln

pA(τ t
A,p−1

A (τ tA,x)(z)
)

pB(τ t
A,p−1

A (τ tA,x)(z)
)

−1

(156)

for each z ∈ [pA(t), p̄A(t)]. Moreover, recall by Proposition 6 that for each z ∈ [pA(t), p̄A(t)],

τ t
A,p−1

A (τ tA,x)(z)
= τ tpA,z.

It therefore follows that

dp−1
A (τ tA,x)(z)

dz
=

1

E(lnXA)
· 1

z
·

[
ln

(
z

pB(τ tpA,z)

)]−1

. (157)
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Hence, using the change-of-variable z = pA(τ tA,v) in the lefthand side of (153) we obtain the

desired result.

Finally, we show that for each t ≥ 0,

−
∫ p̄A(t)

0

φ(u)dµ̃A(0, u) =

∫ t

0

φ(p̄A(s))d(S̃A(s)− T tA(s)), (158)

which implies that the righthand side of (150) is zero and completes the proof. First note

for fixed t ≥ 0 that by definition (115) we have the equality T tA(s) = mA(t) for 0 ≤ s ≤ smax,

where smax = sup{s ≥ 0 : S̃A(s) = mA(t)}. Moreover, note that p̄A(s) = p̄A(t) for s ≥ smax.

We then for each φ ∈ Cb(R) obtain the identity∫ t

0

φ(p̄A(s))dT tA(s) = φ(p̄A(t))(S̃A(t)−mA(t)). (159)

Next, since p̄A is non-decreasing it follows integrating-by-parts that for each φ ∈ Cb(R),∫ t

0

φ(p̄A(s))dS̃A(s) = S̃A(t)φ(p̄A(t))− S̃A(0)φ(p̄A(0))−
∫ t

0

S̃A(s)dφ(p̄A(s)) (160)

for t ≥ 0. Moreover, since p̄A only increases at times when S̃A achieves a new minimum

and S̃A(s) = GA(s) at each such point in time s, it follows using the change-of-variables

u = p̄A(s) that ∫ t

0

S̃A(s)dφ(p̄A(s)) =

∫ p̄A(t)

pA(0)

GA(u)dφ(u). (161)

Finally, note that integrating-by-parts and using the identity GA(p̄A(t)) = mA(t) for t ≥ 0,

it follows that

−
∫ p̄A(t)

p̄A(0)

φ(u)dµ̃A(0, u) = φ(p̄A(t))mA(t)− φ(p̄A(0)S̃A(0)−
∫ p̄A(t)

p̄A(0

GA(u)dφ(u).(162)

Combining (159)-(162) now yields the desired identity (158).

A.3 Proof of Theorem 3

In order to prove Theorem 3, it is sufficient to prove the following.

Proposition 7. If (pB, pA) is a solution to (80)-(81) with pB(0) < pA(0), then pB(t) < pA(t)

for t ≥ 0.
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Proof. Set x(t) = ln pA(t) − ln pB(t) for t ≥ 0. Then, subtracting (80) from (81) it follows

that

x(t) = d(t) + E(lnXA)

∫ S̃A(t)

mA(t)

x(τ tA,u)du+ λBE(lnXB)

∫ t

0

x(s)

αB(s)
ds, (163)

where d(t) = lnG−1
A (mA(t)) − ln pB(0). Suppose now that the result does not hold and

denote by t∗ = inf{t ≥ 0 : pB(t) = pA(t)} the first time at which the best prices on both

sides of the book are equal. By the continuity of S̃A and the fact that x(t) > 0 for t ∈ [0, t∗),

there then exists a t̄ ∈ [0, t∗) such that for t ∈ [t̄, t∗],

x(t) ≤ x(t̄) and − 2E(lnXA)

(
S̃A(t∗)− inf

t̄≤t≤t∗
S̃A(t)

)
≤ 1. (164)

Now note that d is non-decreasing and so it follows by (163) that

x(t̄) = x(t̄)− x(t∗) = d(t)− d(t∗) (165)

+E(lnXA)

(∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

m(t∗)

x(τ t
∗

A,u)du

)
(166)

−λBE(lnXB)

∫ t∗

t̄

x(s)

αB(s)
ds (167)

≤ E(lnXA)

(∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

m(t∗)

x(τ t
∗

A,u)du

)
. (168)

Then proceeding in the same manner as in the proof of Proposition 5, we arrive at

E(lnXA)

(∫ S̃A(t̄)

mA(t̄)

x(τ t̄A,u)du−
∫ S̃A(t∗)

m(t∗)

x(τ t
∗

A,u)du

)
≤ x(t̄)

2
. (169)

By (164), this implies that x(t̄) < x(t̄)/2, which is a contradiction since x(t̄) > 0.
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Ioanid Roşu. A dynamic model of the limit order book. The Review of Financial Studies,

22(11):4601–4641, 2009.
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