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Abstract

Sequential decision making by a large set of myopic agents has gained significant attention
over the past decade. In such settings, even a little amount of experimentation from a few agents
would benefit all others but obtaining such experimentation could be challenging for a central
planner. The academic literature has focused on mechanisms for promoting experimentation
through monetary incentives and persuasion through careful information disclosure. In this
paper, we study a simple control that the central planner can use to coordinate experimentation.
We consider a set of myopic agents that observe their own histories but not the histories of
other agents. In a continuous-time stochastic multi-armed bandit model, the agents pick arms
myopically and receive instantaneous rewards. Meanwhile, the central planner can observe the
history of all agents. We consider a class of policies where the central planner is allowed to
irrevocably remove arms. We show that an appropriately chosen policy within this class can
generate the needed experimentation and match the regret bounds for a centralized problem
thus mitigating the cost of decentralization. We also quantify the minimum number of agents
that are needed for such a policy to be asymptotically optimal and the impact of the number
of agents on the speed of learning.

1. Introduction

Centralized experimentation and learning has been widely studied in many fields including opera-

tions research, economics, computer science and statistics, with multi-armed bandits being the com-

monly used framework. Over the past decade, there has also been a growing interest in distributed

settings, where a central planner desires experimentation but the agents who make decisions are

myopic and not interested in experimenting. We study a setting where agents are long-lived and

know only the payoff from the actions they took, not the payoffs or the actions chosen by others.

The central planner, meanwhile, has access to the entire history of actions and payoffs but has only

very minimal control over the system. We provide two examples below.

An important example scenario that has large social value has emerged due to the advent of

the Right To Try Act, signed into law in the United States in 2018 [Trickett et al., 2017]. The

Right To Try Act enables patients with life-threatening conditions to bypass clinical trials and try

new investigational drugs in consultation with their physicians directly. The investigational drugs

must have passed the Phase I trials to verify the safety of the drugs on a small population but have

not yet gone through Phase II trials to evaluate their effectiveness. Physicians are oath-bound to

prescribe the drug that they expect to provide the best outcome for each patient. That is, the

physicians are required to be myopic and are unable to experiment with the patients even though
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the outcome of an experiment could provide valuable information for future patients. The drug

companies and the public health agencies such as the Food and Drug Administration (FDA), are

provided the information about the outcomes of the patients for each investigational drug but the

physicians often only observe their own actions and outcomes. The practice of trying investigational

drugs through the Right To Try Act provides an opportunity to learn their effectiveness outside the

standard framework of clinical trials, which are typically lengthy and costly, and has the potential

to bring drugs to market faster. But a key challenge for the drug companies and the FDA in doing

so is how to generate sufficient experimentation when the physicians who make treatment decisions

are myopic.

In such a scenario, the sales agents prefer selling tried-and-tested products which have performed

well in their own experiences, rather than experiment with newer, potentially better ones. The

upstream firm usually gets feedback about efforts and sales of different products from all agents

and is much more informed. The upstream firm would like experimentation to take place but has

very little control over which products their downstream agents are trying to sell.

In scenarios like the ones described above, agents are likely to do little to no experimentation

due to a lack of incentive, medical/ethical constraints, a lack of patience, or risk aversion. Yet,

experimentation in these distributed decision-making environments is critical for learning and long-

term success. This dilemma represents the problem of distributed experimentation. This problem

has received plenty of attention in the literature recently with proposed solutions involving monetary

incentives for experimentation [Frazier et al., 2014], the design of experimentation contracts [Halac

et al., 2016], and information design to persuade agents to experiment [Kremer et al., 2014, Che

and Hörner, 2018, Mansour et al., 2020].

All of these methods from the literature work in some contexts but not others. For instance, in

the right-to-try example, attempting to increase experimentation via payments or contract design

is unlikely to be an acceptable option. In this paper, we propose a minimalist control where the

central planner is only allowed to remove irrevocably available options for the agents. Removing

underperforming products or drugs from the lineup is a method almost always available to the

central planner, and we aim to understand its power to drive distributed experimentation. For

instance, under the Right To Try Act, eliminating a drug can be implemented by broadcasting that

the drug is deemed not sufficiently effective or stopping production. Our proposed policy would

achieve fast learning, thus potentially speeding up the drug experimentation and approval phase,

while also improving the aggregate outcome for the patients trying the drugs.

To study this distributed experimentation problem and to quantify the power of the proposed

method, we present a continuous-time multi-armed bandit model where each bandit arm in the

model has an unknown and unique expected reward rate. There are a finite number of agents

and at each instant each agent chooses an arm to pull and earns a reward. The cumulative reward

collected by all agents who pull a given arm evolve according to independent Brownian motions with
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the same unknown drift. The agents observe their past history and are myopic in their decision-

making, so they always select the arm which they believe has the highest drift. Thus, the agents

are only interested in the exploitation of information for immediate reward and have no interest

in experimentation. The central planner observes all of the agent histories and is interested in the

total long-term cumulative reward of all agents over a finite time-horizon.

If the central planner had full control over the agents, then the model would reduce to the single-

agent continuous-time multi-armed bandit model. For finite time horizon, in order to maximize

total reward, the central planner must balance experimentation with exploitation. The central

planner’s regret is the difference between its reward in the presence of full information about the

expected reward rates of the arms and its earned reward in the absence of this information. In

the discrete-time version, the expected amount of time an optimal policy of the central planner

spends on suboptimal arms is logarithmic in the length of the time-horizon. For completeness, we

show that the same rate applies to the continuous-time model. In a multi-armed bandit model

with J arms, the minimum expected regret over a time-horizon of T is Θ(J log T ) (see Lai and

Robbins [1985]). The expected amount of experimentation to achieve the minimum regret is also

Θ(J log T ). This can be achieved in the centralized setting through a strategy that plays each arm

at least Ω(log T ) (Lai and Robbins [1985], Auer et al. [2002]).

In the distributed setting, when the central planner has no control over the myopic agents,

the above regret serves as a lower bound on the central planner’s regret. The class of policies we

consider only makes irrevocable decisions of removing arms from all agents. The first question we

tackle is what is the cost of myopia and decentralization in this setting. We identify the exact

regret for myopic agents without a central planner and show that when there is only one agent

then the central planner cannot improve the regret. Through this exercise we also develop new

tools to study the continuous time bandit problem and use them to study the setting with multiple

agents. We then show that as the time horizon increases, the central planner needs increasingly

more agents. If the number of agents grows at a rate o(log T ), that is, at a rate slower than log T ,

then the expected regret of the central planner grows linearly in the length of the time horizon

irrespective of the central planner’s policy. We conclude from this result that the long-term cost of

decentralization can be high.

This leads us to the second question of whether there is a policy that produces sufficient ex-

perimentation if the number of agents is Θ(log T ). Dropping arms might not seem like a way to

generate experimentation, but it can serve this purpose by getting agents which are pulling subop-

timal arms to try new ones. We study whether the policy of removing arms once they are deemed

to be suboptimal with high confidence can produce sufficient experimentation. The policy we pro-

pose involves the central planner, using the historical information from all agents, maintaining a

non-decreasing anchor rate at all times which is the minimum expected reward rate it wants all

agents to generate in the future. It also maintains confidence bounds for the expected rewards rates
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of different arms. These confidence bounds shrink as the arms receive increasing effort from the

agents. Once the anchor rate rises above the upper confidence bound of an arm, the policy drops

the arm. We are able to prove that this policy generates the optimal amount of experimentation

asymptotically even in our conservative case where all agents are fully myopic.

Perhaps surprisingly, if no two arms have the same expected reward rate then a central planner

can achieve the optimal expected regret by dropping arms that are suboptimal with probability

at least 1 − c1/T if there are at least c2 log T agents, for fixed constants c1 and c2 which are

independent of the time horizon and the number of arms. It turns out that the aggregate expected

experimentation effort is no more than O(J log T ). We also observe that the required number of

agents does not depend on the number of arms. This is because, with high probability, a lot of

arms are discarded fairly quickly because there is enough evidence that they are suboptimal. In

fact, we find that after time Θ(J), thus constant in T , all agents spend all of their effort on the arm

with the highest expected reward rate with high probability. Thus, the central planner’s policy

of dropping suboptimal arms totally distributes the experimentation across the agents and speeds

up learning. Prior work on learning with multiple agents shows that with I agents, the learning

speed increases by a factor of
√
I if the agents share information once (Hillel et al. [2013]). The

central planner’s policy of dropping arms speeds up learning by a factor of I, suggesting that it is

a powerful policy.

However, if the arms are hard to separate (such as all but the best arm have the same expected

reward rate), then a logarithmic regret cannot be achieved if the number of agents is less than

J log T , where J is the number of arms. Note the contrast to the well-separated case where Θ(log T )

agents is sufficient for optimal exploration irrespective of J . This is because, in this case, there

is a very high chance that there is never enough evidence to drop any of the arms and thus

no arms are ever discarded. In the centralized version of the problem, the separation between

the top two arms is used as a constant to obtain a logarithmic regret. However, in the case

of decentralized experimentation, more differentiation among arms is required unless the central

planner has access to a lot more agents. This is a cost of decentralization. In the case of the

centralized experimentation, only the top two arms need to be different in order to obtain the

optimal regret. This condition is insufficient in the decentralized case. Instead, we require that all

arms are separated from each other (except in the case where we have at least J log T agents).

2. Related Work

Multi-armed bandits have long been the canonical framework for studying the problem of experi-

mentation (Whittle [1980]). The particular framework we build on, the finite horizon model with

the objective to minimize regret, traces back to Lai and Robbins [1985] and Auer et al. [2002], with

Bubeck et al. [2012] serving as a great survey. Classical multi-armed bandits serve as a central-
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ized benchmark for us. Several algorithms have been proposed that achieve approximately optimal

regret in the centralized setting. The seminal work of Lai and Robbins [1985] showed that any

optimal policy must sample each arm at least Θ (log T ) times to achieve the optimal regret in finite

time. Later algorithms showed that such regret is maintained at all times if all arms are pulled for

a time equal to the logarithm of the passed time (Auer et al. [2002]). This result was proven via

an upper confidence bound (UCB) argument, and this approach motivates the policy we propose.

Recent work on promoting experimentation among agents in decentralized settings has mostly

focused on the design of monetary incentive structures and contracts (Halac et al. [2016], Frazier

et al. [2014], Chen et al. [2018]) and information design (Kremer et al. [2014], Mansour et al. [2020],

Che and Hörner [2018]). For a detailed survey of this literature, please see Chapter 11 in Slivkins

et al. [2019]. In Halac et al. [2016], the authors study the design of optimal payment contracts when

a principal faces agents that are less interested in experimentation and have private information

about their ability to experiment. Frazier et al. [2014] study the tradeoffs between the time-

discounted incentive payments made by the principal to myopic agents, and the time-discounted

rewards obtained by the principal. They characterize the set of feasible payment and reward pairs

and quantify the limitations of payment incentives. In Chen et al. [2018], the authors include

heterogeneity among the agents with respect to the reward distributions when pulling arms. This

heterogeneity generates natural experimentation and reduces the incentives requires to promote

experimentation. An earlier literature in operations management studies learning and inventory

planning through sales agents, exploring compensation plans and incentives for such agents (Chen

[2000], Chen [2005]). The authors in Chen [2005] study incentives for the salesforce to reveal truthful

information about the market and work hard, while in Chen [2000] they study incentives to make

demand smoother. While monetary incentives are a powerful tool in certain applications, they are

not a practical solution in other settings such as in medical experiments or when learning from user

reviews. Our work is a bit more closely related to the policies that use either recommendation or

information design as controls for promoting experimentation. Recent work on recommendations

to persuade agents to experiment include Bayesian incentive compatible (BIC) exploration (Kremer

et al. [2014], Che and Hörner [2018], Papanastasiou et al. [2018], Mansour et al. [2020], Acemoglu

et al. [2022]), which in turn builds on the Bayesian persuasion paradigm introduced by Kamenica

and Gentzkow [2011].

The most closely related paper to ours is probably Immorlica et al. [2020], a paper that uses

selective information disclosure policies to promote experimentation by myopic short-lived users

who live for exactly one unit of time. Our proposed policy of adaptively discarding arms can also

be considered as an information disclosure policy where the central planner informs everyone that

the discarded arm is suboptimal. Immorlica et al. [2020] use sophisticated time varying partitions

of the set of agents into groups consisting of disclosure paths such that new agents observe all

history of the paths they belong to. The paper explores multiple levels of partitioning where the
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disclosure paths from lower levels are connected to paths in the higher levels such that the agents

in the higher levels observe the histories of the disclosure paths they are connected to. With a novel

and fairly complex technique of merging and interleaving of paths and groups over time, the central

planner is able to achieve rate optimal regret as the number of levels increase. In their result, which

is agnostic to the separation between arms (see Theorem 6.1 in Immorlica et al. [2020]), they are

able to achieve the rate optimal regret up to a polylogarithmic factor using 220 log2 T groups each

consisting of at least Ω(T 1/2) disclosure paths in the first level. When adding a minimum separation

between arms, the number of needed disclosure paths is smaller (Theorem 6.2 in Immorlica et al.

[2020]): they show that with 220 log2 T groups each with 240 log4 T disclosure paths in the first level,

rate optimal regret upto a polylogarithmic factor can be achieved. Our paper also obtains the rate

optimal regret in a fairly different model. Our model does not use short-lived agents (it has myopic

long-lived agents instead) and each long-lived agent can be considered to be belonging to their

own static singleton group. Thus our disclosure paths are fixed and each group consists of exactly

one disclosure path such that the long long-lived agent in the group observes all history of the

group. We are able to obtain this regret with a simple policy (dropping arms) and a simple group

structure, assuming the arms are separated. Our proposed policy of dropping arms adaptively

is sophisticated but easy to implement. The policy we propose is powerful and the number of

disclosure paths we need is much smaller, 12 log T . A critical difference between our approaches

is that unlike Immorlica et al. [2020], the central planner does not need groups to settle on arms

before making discarding decisions. The diversity in the sample paths across the groups allows for

faster information acquisition for the central planner and it can make fast discarding decisions while

retaining the information about available arms for future decisions. Thus the experimentation is

achieved by the groups who are never allowed to settle on an arm, leading to fewer groups and

faster learning. Due to the substantially different nature of our model and the distinct policy, our

analysis is both intricate and novel.

On the technical side, our results are also related to the probably approximately correct (PAC)

bounds and the sample complexity work in the multi-armed bandits literature (Even-Dar et al.

[2002], Mannor and Tsitsiklis [2004]). In finite time, Even-Dar et al. [2006] studied the policies

of dropping arms using PAC bounds for multi-armed bandit problems. The PAC bounds are in

general closely related to regret bounds because the probability of selecting the optimal arm often

determines the regret in finite horizon. However, most of this literature on multi-armed bandits

is for actions and rewards in discrete time and is focused on policies that control the sampling of

the arms. We study a multi-armed bandit model in continuous time, assuming any pulled arm

generates rewards following a Brownian motion with some drift, which is less commonly studied

that discrete time models (Mandelbaum [1987], Mandelbaum and Vanderbei [1994], Slivkins and

Upfal [2008]). Mandelbaum [1987] showed the existence of well-defined follow-the-leader policies

in continuous time and Mandelbaum and Vanderbei [1994] showed the existence of a Gittins index
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policy in continuous time and showed it to be optimal. Our work gives a novel characterization of

follow-the-leader policies in continuous time for the regret minimization setting when the agents

are myopic.

3. Model

We consider a continuous-time learning problem faced by a central planner with J ≥ 1 arms over

a time horizon of length T ≥ 0. The central planner does not pull the arms themselves but instead

offers them to a finite set of I ≥ 1 agents. The set of arms is denoted by J = {1, 2, ..., J} and the

set of agents is given by I = {1, 2, ..., I}. The continuous time framework of our model is closest

to Mandelbaum [1987] but with the additional feature of a central planner. All of our random

variables and processes are defined on a common probability space (Ω,F ,P).
The agents do not communicate and act independently of one another. Moreover, they are

assumed to be myopic by considering only immediate rewards while ignoring the future. The

central planner may however exert control over them by deciding which arms to make available at

each point in time t ∈ [0, T ]. Specifically, the set of arms that the central planner makes available

at any time t is denoted by Jt ⊆ J. Moreover, we impose the constraint that Js ⊇ Jt for each s < t.

That is, once the central planner removes an arm from the agents, it cannot be added back later.

We also require that JT ̸= ∅. That is, the central planner cannot remove all of the arms.

One valid question is why do we assume the agents are myopic given they are long-lived. For the

problem to be interesting, the agents need to be less interested in experimentation than the central

planner. We could have modeled this discrepancy by assuming different discount rates. There are

two reasons we did not make this choice. First, this would complicate the model by forcing us to

replace the agent’s static decision-making problem by a complex dynamic one. Second, and more

importantly, this would likely make learning easier. By assuming agents are myopic, we are making

the most conservative assumption possible regarding how much exploration agents deliberately

add to the system: none. Still, we are able to obtain rate-optimal learning results despite this

conservative assumption in the presence of relatively few agents. Making the agents less myopic

should, in principle, make learning easier and allow the central planner to learn with even fewer

agents.

For each agent i ∈ I, we denote their cumulative effort allocation vector to each arm at time

t ≥ 0 by the J-dimensional vector τ i(t) = (τ i1(t), τ
i
2(t), ..., τ

i
J(t)). We assume that each τ ij is non-

decreasing with τ ij(0) = 0. Moreover, we require that τ i1(t) + ... + τ iJ(t) = t. This implies that at

each point in time the agent must exert full effort across the arms. The agent can however divide

their effort arbitrarily across different arms. There is however one exception. An agent cannot

pull an arm which has already been removed by the central planner. This condition is enforced by
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requiring that for each arm j ∈ J and time t ≥ 0,

τ ij(t) =

∫ t

0
1{j ∈ Js}dτ ij(s). (1)

Now suppose that over the interval of time [t, t + ∆], agent i ∈ I pulls arm j ∈ J with effort

∆τ ij(t). We then assume that the cumulative reward received by agent i from arm j over the

interval of time [t, t +∆] is given by the normal random variable N(µj∆τ ij(t),∆τ ij(t)). Moreover,

rewards received over disjoint intervals of time are independent of one another. In this case, agent

i’s cumulative reward up until time t from pulling arm j is given by

Ri
j(τ

i
j(t)) = µjτ

i
j(t) +Bi

j(τ
i
j(t)),

where Bi
j is a standard Brownian motion. Neither the central planner nor the agents know the vector

µ = (µ1, µ2, ..., µJ). They do however know the general form of the reward function. Moreover, we

assume that the family {Bi
j(·), i ∈ I, j ∈ J} of standard Brownian motions are independent of one

another.

The quantity µj in the above is the expected instantneous reward rate of the agent at each

point in time assuming it dedicates all of its efforts into pulling arm j. We henceforth refer to µj

as the drift term of arm j. Note that by assumption the drift of arm j is the same across all of

the agents. On the other hand, each agent i has their own set {Bi
j(·), j ∈ J} of Brownian motions

for each arm. The practical interpretation is that all agents are equally skilled and thus have the

same expected reward rate and variance from a given arm, however each agent encounters their

own idiosyncratic source of randomness when pulling it.

Now note that if each agent were clairvoyant and knew the drift vector µ = (µ1, µ2, ..., µJ), then

in order to maximize their expected cumulative reward up until time T , each agent would put all

of its effort into pulling the arm with the highest drift. Instead, since each agent is not clairvoyant,

they may instead continually construct and update estimates of the drift of each arm. However,

since by assumption agents do not share information, they may only base their estimate on their

own experience with each arm. In particular, we assume that agent i’s time t drift estimate of arm

j assuming τ ij(t) = s is given by

µ̂i
j(s) =

1

1 + s
Ri

j(s) =
1

1 + s

(
µjs+Bi

j (s)
)
. (2)

Note in particular that at each point in time agents will have different drift estimates of the same

arm. This is because of their own idiosyncratic noise and the fact that agents may have allocated

different amounts of effort to the arm.

There are two ways to interpret this drift estimate. First, the above may be thought of as

a regularized frequentist estimate of the drift. The unregularized frequentist estimate is Ri
j(s)/s
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but such an estimate is ill-defined at s = 0. The addition of 1 (or any positive constant) to the

denominator ensures the estimator is well-behaved near effort zero while not affecting its asymptotic

properties. This estimator may also be thought of as a Bayesian estimate of the drift µj . To do so,

one would assume all agents’ prior beliefs on the distribution of µj are Gaussian with mean zero

and variance one. Note also that µ̂i
j(s) is not the estimate of the drift at time s, but instead the

estimate at any time t such that effort is equal to s, i.e. τ ij(t) = s.

Next, recall that the agents are myopic and at each point in time they choose an action that

optimizes their expected instantaneous reward. Such a strategy is referred to in Mandelbaum [1987]

as a follow the leader strategy. It is defined by requiring that for each t ≥ 0 and j ∈ Jt, τ ij increases

at time t only if arm j has the highest drift estimate at time t among all remaining arms. Setting

ki(t) = argmax
m∈Jt

µ̂i
m(τ im(t)), (3)

the myopic policy is technically defined by the requirement that τ ij(u) > τ ij(t) only if j ∈ k(t) for

all u > t. Note also this implies that τ ij(t) cannot increase if arm j has been removed by time t,

that is j /∈ Jt. It follows in a straightforward manner from Propositions 2 and 5 of Mandelbaum

[1987] that the myopic policy τ i = (τ i1, τ
i
2, ..., τ

i
J) thus described is unique.

The central planner observes all of the efforts and rewards obtained by the agents. Thus, the

information available to the central planner at time t > 0 is given by the σ-algebra

Ht = σ(τ ij(s), R
i
j(τ

i
j(s))) for all s ∈ [0, t) , i ∈ I, j ∈ J.

A policy π = {πt, t ∈ [0, T ]} of the central planner is an Ht-adapted process such that πt ⊂ J for

each t ∈ [0, T ] and πs ⊆ πt for s < t. The set πt represents the set of all arms that the central

planner has chosen to remove from its lineup up until time t. Thus, the set of arms available at

time t is given by Jt = J \ πt. A policy π is feasible if πt is a right-continuous function and πT ̸= J.
This ensures that the time at which an arm is removed from the lineup is well-defined and that

there is always at least one arm available for the agents to pull. The set of all feasible policies is

denoted by Π.

Given a policy π ∈ Π, the central planner’s utility Uπ is equal to the sum of the agents’

accumulated rewards up until time T . Specifically,

Uπ(T,µ) =
I∑

i=1

J∑
j=1

Ri
j(τ

i
j (T )).

Note that π and µ appear on the lefthand but not the righthand side above. They do however as

a consequence of the discussion above control the reward processes on the righthand side.

Now note that if the central planner was clairvoyant and knew the drift vector µ, it would
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at the outset discard all of the arms except the one with the highest drift. The expected utility

thus earned would be IT maxj∈J µj . Given a policy π, the central planner’s regret is defined to be

the difference between the expected utility it would obtain if it knew the drift vector µ and the

expected utility it obtains under the chosen policy π. That is, the central planner’s regret is given

by

Z̃π(T,µ) = IT max
j∈J

µj − E[Uπ(T,µ)]. (4)

The central planner’s worst-case regret with respect to the drift vector µ is denoted by

Zπ(T ) = sup
µ∈RJ

Z̃π(T,µ).

The objective of the central planner is to find a policy π that minimizes its worst-case regret with

respect to the drift vector, i.e. Z∗ = infπ∈Π Zπ(T ). We focus on finding a policy π ∈ Π for which

we can provide strong performance guarantees, in the sense of a rate-optimal regret.

4. Single Agent with No Central Planner

In this section, we consider the scenario when a central planner does not exist. The agents are

therefore free to allocate their effort to any arm in the set J all the way up to the final time T . We

do however still assume that the agents are myopic and operate according to the follow the leader

policy described in Section 3. Another way to think about this case is that the central planner does

exist but sets Jt = J for all t ∈ [0, T ].

One reason for studying this case first is that it provides us with a lower bound on the expected

reward against which to compare the improvement with a central planner. It also turns out that in

this case we are able to obtain sharp results and the methodology we develop in this section will be

used to prove the results in later sections where multiple agents and a central planner are involved.

Recall now that in the model given in Section 3 the agents do not communicate with one

another. It then follows that without a central planner, each of the agents follows a myopic policy

independent of one another. We therefore, for the sake of simplicity, assume in this section without

loss of generality that there exists a single agent. We also drop the superscript i from our notation

throughout this section.

4.1 Structural Results

In this subsection, we establish some structural properties of the myopic policy from Section 3 when

followed by a single agent in the absence of a central planner. We begin by defining for each arm
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j ∈ J and any time t with cumulative effort τj(t) = t◦ ∈ [0, T ] the quantity

µ
j
(t◦) = min

0≤s≤t◦
µ̂j(s), (5)

which is referred to as the lower envelope of µ̂j . It turns out (see the discussion in section 4.4 of

Mandelbaum [1987]) that the unique myopic policy defined in Section 2 is the same as the unique

myopic policy which at each point in time pulls the arm with the largest lower envelope. Thus, for

each arm j ∈ J and time t ∈ [0, T ], let

Lj (t) = µ
j
(τj(t)) = min

0≤s≤t
µ̂j (τj (s)) (6)

denote the agent’s minimum estimate of the drift of arm j up until time t. It is then easily shown

to be a consequence of Proposition 1 of Mandelbaum [1987] that at any given point in time the

running minimum estimates of all the available arms are almost surely identical. Specifically, we

have the following.

Lemma 1. For each t ∈ [0, T ] and j, l ∈ Jt, Lj (t) = Ll (t).

For completeness, we also provide a short proof of the Lemma in Appendix. We note that by

definition Lj (t) is non increasing for each arm j. Following the Lemma, we henceforth use the

shorthand L(t) to refer to the agent’s running minimum estimate of all of the available arms at

time t. The following is then a consequence of Proposition 5 of Mandelbaum [1987]. It implies that

at almost every point in time the myopic agent will devote all of their effort to a single arm.

Lemma 2. In the absence of a central planner, for each t ∈ [0, T ] the set of arms k(t) with the

highest drift estimates is a singleton with probability 1.

We next provide additional results on the system dynamics to better characterize the arm

with the highest drift estimate at each point in time. These results will also help to characterize

the cumulative effort on each arm up until each point in time. It turns out that the collection

{Lj(t), j ∈ J} of running minimum estimates are crucial for understanding the behavior of the

system. Furthermore, at almost all times the current estimate of each arm is equal to its running

minimum estimate, except for the estimate of a single arm corresponding to the highest current

estimate. Finally, the minimum estimate of the drift of each arm, other than the arm with the

highest current esimtate, would strictly increase (decrease) with any strictly lower (higher) effort

allocated to it. We have the following.

Theorem 1. For each t ∈ [0, T ], the following statements hold almost surely:

(i) If j ∈ k(t), then µ̂j(τj(t)) > Lj (t) and if j ∈ Jt \ k(t), then µ̂j(τj(t)) = Lj (t).

(ii) If j ∈ Jt \ k(t), then µ̂j(y) > Lj (t) for all y < τj(t) and µ
j
(y) < Lj (t) for all y > τj(t).

11
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Figure 1: Drift estimates of two available arms for one agent as a function of time. We point that
the x-axis represents the clock time and not the cumulative effort on the arms. The drift estimate
of a arm does not change if it does not receive any effort.

We now demonstrate the above Lemmas and Theorem 1 through the following example. Con-

sider two available arms with drifts of 1 and 1.2. Figure 1 depicts a sample path of the agent’s

drift estimates for the two arms. Note that the drift estimate of only one arm changes at any time.

This is because the drift estimates of the two arms are different at almost all times and the agent

applies all its effort on the arm with the higher drift estimate. This is expected from Lemma 2.

However, also note as a consequence of Lemma 1 that the running minimum estimates of the two

arms are at all times equal to one another.

Another way to demonstrate this is by observing how the estimates of arm 1 changes relative

to the drift estimate of arm 2. We show this in Figure 2. Note in the figure that the running

minimum estimates of both arms until the current time are equal and the lower of the current drift

estimates of the two arms is equal to the running minimum estimates at the current time. We also

observe that at any time the arm that the agent puts effort on has a drift estimate higher than the

running minimum estimates and the other arm’s drift estimate are equal to the running minimum

estimates as suggested by Theorem 1.

An important implication of Theorem 1, as also observed in Figure 1, is that any time t the

cumulative effort τj(t) for any arm j ̸= k(t) is the minimum effort for which the minimum drift

estimate of the arm is equal to the common minimum drift estimate of all arms. We define the

minimum effort required for the drift estimate for an arm j to achieve a given quantity x ≤ 0 as

σj(x) = inf{s > 0 : µ̂j(s) ≤ x},

12
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Figure 2: Drift estimates of the two arms plotted against each other. The first figure captures the
drift estimates until time 100, the second figure until time 500 and the third figure until time 1000.
The x-axis in all figures is the drift estimate of arm 1 and the y-axis represents the drift estimate of
arm 2. The red ‘*’ represents the current estimates. The black ’o’ represents the running minimum
estimates of both arms at the current time as well as the lower of the current estimates of the two
arms. We point out that the gaps are due to the discontinuity introduced by the simulation.

where inf ∅ = ∞. The random variable σj(x) therefore takes values in the extended real line R+∪∞.

We now state the following immediate corollary of Theorem 1 that connects the cumulative effort

on any arm j ̸= k(t) to the common minimum drift estimate of all arms through σj .

Corollary 1. For each arm j ̸= k(t), τj(t) = σj(L(t)) almost surely.

This result provides us a way to characterize the distribution of efforts on arms through the

distribution of the common minimum drift estimate of all the arms until the current time. We will

later in this section characterize this distribution and use it for analyzing the regret.

4.2 The Case of a Single Arm

We first consider the case of a single arm. We will drop the subscript j in this subsection because

it is understood that there is only one arm. The dynamics of a single agent with a single arm are

the same whether there is a central planner or not since by assumption the central planner must

always keep at least one arm. We proceed as follows.

First note that since there exists only one arm, the agent will at each point in time dedicate

their full effort to it. That is, τ(t) = t for t ∈ [0, T ]. It then follows by (2) that the agent’s time t

drift estimate of the arm is given by

µ̂(τ(t)) = µ̂(t) =
1

1 + t
(µt+B(t)), (7)

where B is a standard Brownian motion. Using the fact that B(t) is normally distributed with a

mean of 0 and a variance of t, one may easily use the above to compute distribution of the agent’s

drift estimate at each point in time.
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Now recall from Section 4.1 the definition for each t of L(t) as the minimum running drift

estimate of all of the arms by time t. This quantity in the current case is simply equal to the

agent’s minimum drift estimate of the single arm up until time t. That is,

L(t) = min
0≤s≤t

µ̂(τ(s)). (8)

The quantity on the righthand side above at first glance appears to have a difficult to compute

distribution function. It turns out however that it is easier to work with the inverse function of L

instead. We proceed as follows.

First note that the running minimum function L is continuous and non-increasing. We may

therefore define its inverse function

L−1(x) = inf{t ≥ 0|L(t) ≤ x}

for x ≤ 0, where inf ∅ = ∞. In other words, if the agent’s estimate is always above the level x, then

L−1(x) = ∞. The random variable L−1(x) therefore takes values in the extended real line R+∪∞.

We now point out that for the case of the single arm, L−1(x) = σ(x) because when there is

only one arm then inf{t ≥ 0|L(t) ≤ x} = inf{t ≥ 0|µ̂(t) ≤ x}. It then follows that for each

t ≥ 0, and x ≤ 0 we have L(t) ≤ x if and only if L−1(x) ≤ t. Consequently, taking expectations

P(L(t) ≤ x) = P(L−1(x) ≤ t). On the other hand, by (7) and (8) it follows after some algebra that

σ(x) = L−1(x) = inf{t ≥ 0|B(t) = x+ (x− µ)t}. (9)

We therefore see that L−1(x) may be characterized as the first hitting time of an affine barrier with

intercept x and slope (x − µ) by a standard Brownian motion. The distribution of this random

variable is well-known and so we obtain the following result.

Lemma 3. In the case of a single agent with a single arm, for each t ≥ 0 and x ≤ 0,

P(L(t) ≤ x) = P(σ(x) ≤ t) = e2x(µ−x)Φ

(
(µ− x) t+ x√

t

)
+ 1− Φ

(
(µ− x) t− x√

t

)
, (10)

where Φ is the c.d.f. of the standard normal distribution.

The exact expression on the right hand side above for the distribution of the time t minimum

drift estimate does not carry over to the general case of a central planner with multiple agents.

It is still however useful in proving our main results by serving as the starting point for deriving

comparative results for the hitting times of arms with different drifts. In particular, we have the

following result as a consequence of the above Lemma.

Lemma 4. In the case of a single agent with a single arm, for each t > 0, the minimum drift

estimate L(t) is stochastically increasing in a first order sense with respect to the drift µ. Similarly,
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for each x < 0, the hitting time L−1(x) or σ(x) is stochastically increasing in a first order sense

with respect to the drift µ.

The above Lemma is useful for comparing distributions of effort allocation for multiple arms

and consequently the regret when there are multiple arms. We discuss the case of multiple arms

next.

4.3 The Case of Multiple Arms

We now proceed to the case of a single agent with multiple arms (J ≥ 1) but still with no central

planner. The drifts in this case for each arm are given by the drift vector µ = (µ1, µ2, ..., µJ).

Moreover, the agent’s time t ∈ [0, T ] drift estimate for each arm j ∈ J is given by µ̂j(τj(t)), where

τj(t) is the cumulative effort that the agent has allocated to arm j up until time t, and µ̂j(·) is as
given in equation (2).

The interesting feature in this case is that the agent may spread their effort out across each of

the arms in a somewhat complicated way. We therefore do not have a simple expression for the

effort allocation vector τ (t) = (τ1(t), τ2(t), ..., τJ(t)). On the other hand, recall from Section 4.1

the definition

Lj (t) = min
0≤s≤t

µ̂j (τj (s)), (11)

for each arm j ∈ J of the minimum drift estimate up until time t. Then, by Lemma 1 it follows

that the minimum drift estimate of all arms are equal, i.e. L1(t) = L2(t) = ... = LJ(t) at each time

t. We henceforth denote the common minimum drift estimate at time t by L(t). Now for each arm

j ∈ J \ k(t) we recall from Corollary 1 that for all arms j ̸= k(t), τj(t) = σj(L(t)) and for j = k(t)

τj(t) ≥ σj(L(t)). This relationship between the minimum estimates of the drift of each arm is used

to derive the results below.

Lemma 5. In the case of a single agent with J ≥ 1 arms and no central planner, for each x, t ≥ 0,

L(t) ≤ x if and only if σ1(x) + σ2(x) + ...+ σJ(x) ≤ t almost surely.

Lemma 4 characterizes in the single arm case the impact of the arm’s drift on the effort required

to reach a given value of the running minimum drift estimate. This following is a generalization of

Lemma 4 to the case of multiple arms.

Lemma 6. In the case of a single agent with J ≥ 1 arms and no central planner, for each t > 0,

the minimum drift estimate L(t) is stochastically increasing in a first order sense with respect to the

drift µJ . Similarly, for each x < 0, the sum σ1(x) + σ2(x) + ...+ σJ(x) is stochastically increasing

in a first order sense with respect to the drift µJ .

The above lemma continues to hold if instead of varying the drift of arm J , we vary the drift of

any of the j = 1, 2, ..., J arms. This result generalizes Lemma 4 and allows a comparison between
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effort allocations for different subsets of arms given the two sets can be ordered. We also point

out that the powerset of the set of arms may not have a linear order with respect to stochastic

dominance. The exact distribution of the cumulative effort allocation for any subset of arms can be

obtained by a convolution operation and using equation 10. However, the above result is sufficient

for our analysis. Using the above result, we next quantify the asymptotic regret for a single agent

and multiple arms, in the absence of a central planner.

4.4 Regret Analysis

We now analyze the regret of the expected reward in the case of a single myopic agent in the

absence of a central planner relative to the expected reward of a clairvoyant agent in the absence of

a central planner. It is clear that the clairvoyant agent will pick the arm with the highest drift at

time 0 and then stay with it until the end of the time horizon. Denoting by µmax = maxj∈J µj the

highest drift amongst all of the arms, the expected reward of the clairvoyant agent is then given

by Tµmax.

We now analyze the reward received by the myopic agent. First note that due to the inherent

randomness of the reward processes, there is no need to force the agent to put non-zero effort

into each arm. This is in contrast to the practice in the discrete time multiarmed bandit setting.

Instead, in the continuous time setting a myopic agent will almost surely put positive effort into

each arm. Moreover, the agent will eventually settle on one arm and then never switch again.

The arm that the agent eventually settles on may be explicitly identified. For each arm j ∈ J,
let

Mj (∞) = min
s≥0

µ̂j(s) (12)

denote the all-time minimum of the agent’s drift estimate for it, assuming the agent puts infinite

effort into pulling the arm. A straightforward argument using the results of the previous section

then shows the arm that the agent eventually settles on is given by

k⋆ = argmax
j∈J

Mj(∞). (13)

We first point out two important properties of the all-time minimum drift estimates. The first

property is that it they each have a finite expectation and the second is that the expected effort

to attain the all-time minimum drift estimate is finite. We state these properties formally in the

following theorem.

Theorem 2. For any µj ∈ R, the expected value of the all-time minimum drift estimate and the

expected effort needed to attain the all-time minimum drift estimate are finite constants that depends

upon µj i.e. E[Mj(∞)] = c1(µj) > −∞ and E[σj(Mj(∞))] = E[L−1
j (Mj(∞))] = c2(µj) < ∞ for

all µj ∈ R, where c1(µj) and c2(µj) are finite constants that depend upon µj.
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The theorem follows from Lemma 3. Specifically, by Lemma 3 the distributions of the all-

time minimum drift estimate as well as the hitting time of the all-time minimum drift estimate

have exponentially decaying tails. This implies that they have finite expectations. An important

implication of the Theorem along with Theorem 1 is that it provides a constant upper bound

(independent of the time horizon) on the expected amount of effort the agent spends on all arms

other than the one it settles on. This suggests that the amount of experimentation a myopic agent

generates is very small and is upper bounded by a constant amount, irrespective of the time horizon.

We are now in a position to provide an asymptotic result on the expected regret of a single

myopic agent in the absence of a central planner. To see this, first note that on any particular

sample path the myopic agent will eventually settle on arm k⋆ and so their realized reward for that

sample path will be µk⋆T +Θ(J) as T → ∞. Following the definition of regret for a given µ,

Z̃(T,µ) = Tµmax − E

∑
j∈J

Rj(τj(T ))

 (14)

is the expected regret for the single agent. Then, since other than a finite expected effort bounded

by a constant, independent of the time horizon, T , the myopic agent spends all its time on the arm

it settles on, we arrive at the following result.

Theorem 3. For each J ≥ 1 and µ ∈ RJ , it follows that

Z̃(T,µ) = T
∑
j∈J

(µmax − µj)Pk⋆ = j|µ) + Θ(J) as T → ∞. (15)

We are able to obtain an expression for the probability P(k⋆ = j|µ) that the myopic agent settles

on an arm j. We provide it in the appendix A.1.3. For general µ, this expression is represented as

a sum. However, when all arms have positive drift, then the expression for the probability is much

simpler. We provide the expression in the following theorem.

Theorem 4. Assume there are J arms and the drifts of all arms are positive. The probability that

the winning arm is j,

P (k⋆ = j|µ) = 1

J
+

√
2π (µj − µ̄)√

J
e

Jµ̄2

2 Φ
(
−
√
Jµ̄
)
,

where µ̄ = 1
J

∑
k∈J µk and Φ is the cdf of the standard normal random variable.

The above theorem provides a simple expression for the probability. In particular the favorability

of an arm to end up as the arm the agent settles on is proportional to the difference between its drift

and the average drift of all arms. An arm with above average drift will have positive favorability

and an arm with below average drift will have negative favorability. Thus, we find that the regret

of a myopic agent grows linearly with time and we are able to obtain the linear coefficient as well.
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5. Single Agent with a Central Planner

We now study the scenario with a single agent and a central planner. This will help to quantify

the impact of the central planner on the regret of a myopic agent. Note that for any given policy

π of the central planner, many of the agent related quantities from the previous sections are still

well-defined. Specifically, given a policy π, we denote by Lπ(t) the minimum running drift estimate

of the myopic agent at time t. Moreover, for each arm j ∈ J we denote by τπ,j(t) the cumulative

effort put into arm j by time t. Also, kπ(t) is the set of arms with the highest drift estimates at

time t. Expressions for Lπ(t), τπ,j(t) and kπ(t) may be written in terms of the underlying Brownian

motions however they are rather complicated. Nevertheless, we may still prove useful results for

these quantities as we show below. We first note that Lemmas 1 and 2 as well as Theorem 1 still

apply in the presence of the central planner because those results only consider the set of available

arms at any time. Further, because the lower envelope of the drift estimate is non-increasing in

time, the following corollary of Lemma 1 holds.

Corollary 2. Under any policy π, for each t ∈ [0, T ] and each pair of arms j ∈ Jt and m /∈
Jt, Lπ,m (t) ≥ Lπ,j (t) almost surely.

To study the quantities Lπ(t), τπ,j(t) and kπ(t) further we first consider a simple policy. Let

K ⊂ J be a subset of arms and define the policy πK by setting πK(t) = J \K for t ≥ 0. That is,

the central planner at time 0 removes all of the arms in the set J \K and takes no further action

to remove additional arms. Thus, over the course of the time horizon only arms in the set K are

available to the agent. This seemingly simple policy serves as a building block for more complicated

policies of the central planner in which arms are removed at different points in time. The following

result characterizes the relationship between an arbitrary policy π and the policy πK for arms in

K ⊆ J.

Lemma 7. Let π be an arbitrary policy of the central planner and for K ⊆ J set

t◦ =
∑
l∈K

τπ,l (t). (16)

Then, for P-a.e. ω ∈ Ω, if K ⊆ Jt(ω), the following statements are true:

(i) LπK (t◦) = Lπ (t).

(ii) j ∈ kπK (t◦) if j ∈ kπ (t).

(iii) τπK ,j (t
◦) = τπ,j (t) for all j ∈ K.

The first statement of the lemma connects the minimum running drift estimate of the policy

π at time t to the minimum running drift estimate under the policy πK at time t◦. The second
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statement says that if an arm j ∈ K ⊆ Jt is a winning arm under policy π at time t, then it is also

a winning arm under πK at time t◦. The third statement says that the cumulative effort on an arm

j ∈ K ⊆ Jt under the policy π at time t is the same as the cumulative effort on an arm j under

the policy πK at time t◦. This helps us to compare the cumulative effort on two arms available at

time t under any policy π as stated in the following result.

Theorem 5. Let π be an arbitrary policy of the central planner and K ⊆ J. If j1, j2 ∈ K with

µj1 > µj2, then

1{K ⊆ Jt}P

τπ,j1 (t) > s

∣∣∣∣∣∣
∑
j∈K

τπ,j (t)

 ≥ 1{K ⊆ Jt}P

τπ,j2 (t) > s

∣∣∣∣∣∣
∑
j∈K

τπ,j (t)

 (17)

for 0 < s <
∑

j∈K τπ,j (t). Moreover, the inequality above is strict if K ⊆ Jt.

Another important result we need is if arm j ∈ K is available at time t under the policy π, then

it statistically has a higher cumulative effort than under the policy πK at time t◦ assuming (16)

holds. We note the subtlety that all arms in K need not be available at time t under policy π.

Theorem 6. Let π be an arbitrary policy of the central planner and K ⊆ J, then

1{j ∈ K ∩ Jt}P

(
τπ,j (t) > s

∣∣∣∣∣∑
l∈K

τπ,l (t) = t◦

)
≥ 1{j ∈ K ∩ Jt}P (τπK ,j (t

◦) > s)

for all 0 < s < t◦ and all t◦ > 0. The equality holds only if K ⊆ Jt.

The proofs of Theorems 5 and 6 use two additional lemmas that may be found in the appendix.

We now lower bound the minimal regret assuming one myopic agent and a central planner.

Note that even if the central planner is forward looking, it has limited control over the actions of

the myopic agent. As Theorem 2 of Section 4.4 suggests, the uncertainty in rewards results in the

agent only experimenting a finite amount of time before settling on an arm.

In order to generate more experimentation on arms that are likely to be good arms, the central

planner would have to discard arms early enough before the agent settles on an arm. However,

this risks discarding good arms. Discarding an arm that the agent eventually settles on can restart

the experimentation by forcing the agent to try among the remaining arms but this is even riskier

because the arm that the agent settles on is likely the best arm as suggested by Theorem 4. It turns

out that in the case of a single agent the best policy of the central planner is to never remove an arm

because the risk of removing the best arm exceeds the benefits of generating more experimentation.

Therefore, as in the case of a single agent without a central planner, the regret grows linearly in

time.
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Theorem 7. For each J ≥ 1 and µ ∈ RJ , it follows that under any policy π of the central planner

Z̃π(T,µ) ≥ T
∑
j∈J

(µmax − µj)P(k⋆ = j|µ) + Θ(J) as T → ∞. (18)

In (18), the probabilities P(k⋆ = j|µ) of the myopic agent settling on arm j are the same as

in the case of a single agent without a central planner as discussed in Section 4.4. Thus, we have

established that the myopic agent’s regret grows linearly with time and a central planner cannot

improve the regret if there is only one agent. In the next section, we study if the central planner

can improve the regret when there are multiple myopic agents.

6. Multiple Agents with a Central Planner

We now consider the case of a central planner with multiple agents. Note that with multiple agents

the central planner may aggregate the information from all of the agents and discard arms at a

lower risk of discarding the optimal arm than with a single agent. However, the central planner

needs to tradeoff the risk of discarding the optimal arm with the risk of agents spending too much

effort on suboptimal arms.

In this section, we study an efficient policy of the central planner with multiple agents. We first

establish a benchmark on the asymptotics of the minimal regret of the central planner assuming

it had full control of the agents. This regret grows logarithmically in time and provides a lower

bound on the regret of the central planner if it can only discard arms. We aim to achieve this regret

bound using an efficient policy.

In the previous section, we established that if there is only one agent, then any policy of

discarding arms generates at best a linear regret. The question then arises of “how many agents

are needed to achieve a logarithmic regret?” We first show that if the central planner does not have

control over the agents and if there are o(log T ) agents, then no admissible policy of the central

planner can asymptotically achieve a logarithmic regret. We then introduce an asymptotically

efficient policy for the central planner and show that it achieves the logarithmic benchmark if there

are at least 12 log T agents.

Due to the fact that we now have multiple agents, it is necessary to introduce some additional

notation. Let π be an arbitrary policy of the central planner. The cumulative effort spent on arm

j ∈ J until time t by each agent is then denoted by the vector τπ,j (t) =
(
τ1π,j (t) , . . . , τ

I
π,j (t)

)
. The

total effort spent on arm j until time t by all the agents is

τ fπ,j (t) = 1Tτπ,j (t) =
I∑

i=1

τ iπ,j (t).

The superscript f is used to denote the fact that the central planner has full information over all
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effort levels and rewards obtained by the agents. Given a cumulative arm j effort vector sj , the

total arm j reward accumulated by all the agents is Rf
j (sj) =

∑I
i=1R

i
j(s

i
j). Hence, given that the

central planner uses a policy π, the total reward received by all agents from arm j until time t is

Rf
j (τj (t)) =

I∑
i=1

Ri
j(τ

i
j (t)).

Now note that for any arm j ∈ J and any two effort vectors sj , s̃j ≥ 0 with 1Tsj = 1T s̃j , the

total arm j rewards Rf
j (sj) and Rf

j (s̃j) are statistically equivalent.

For each agent i ∈ I, we denote by τ i
π (t) =

(
τ iπ,1 (t) , τ

i
π,2 (t) , ..., τ

i
π,J (t)

)
the cumulative effort

spent by agent i on each arm until time t under the policy π.

6.1 Regret Bounds

Lai and Robbins [1985] established that for the case of discrete-time multi-armed bandits the best

possible regret over all µ ∈ RJ is of order Θ (J log T ) given a time horizon T . In this subsection,

we extend their analysis to the case of continuous-time bandit processes. The setting of Lai and

Robbins [1985] concerns a centralized experimentation problem. In our context, this is equivalent

to assuming that Jt = J for t ≥ 0 and there exists a single agent who may select any cumulative

effort vector process τ that is Ht-adapted. In the following result, we use the notation {1} and {2}
to represent the best and second-best arms, and in general {j} represents the jth best arm.

Theorem 8. Suppose that Jt = J for t ≥ 0 and there exists a single agent who may select any

cumulative effort vector process τ that is Ht-adapted. If E[τ{j} (T )] < o (T a) for all j ̸= 1 and a > 0

and µ ∈ RJ with µ{1} > µ{2}, then for all ϵ > 0,

lim
T→∞

P
(
τ{2}(T ) < 2 (1− ϵ) log T/

(
µ{1} − µ{2}

)2)
= 0.

The above theorem states that any policy of the central planner that spends in expectation a

subpolynomial amount of time (o(T a) for all a > 0) on each suboptimal arm must also almost surley

in the limit spend at least an 2 (1− ϵ) log T/
(
µ{1} − µ{2}

)2
amount of time on the second-best arm.

This implies that any centralized policy with a subpolynomial regret may at best have a logarithmic

regret. The proof of Theorem 8 follows the proof of Lai and Robbins [1985]. However, due to the

continuous time nature of our model we use a change-of-measure argument that is different from

the original Lai and Robbins [1985] proof. Theorem 8 implies if we relaxed the set of available

actions of the central planner so that it could replace dropped arms, or even if the central planner

could control the actions of the agents, it still could only achieve a regret of order Θ (J log IT ) over

all µ ∈ RJ . This provides a benchmark regret that we aim for the central planner to achieve when

it can only drop arms.
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In Section 5 we showed that the regret of the central planner grows linearly if there is a single

agent. The discussion of the preceding paragraph now suggests the important question of how

many agents are needed for the central planner to mitigate the cost of decentralization and achieve

the minimal the regret of O(JlogT )? As the time horizon increases, the central planner needs

increasingly more agents to achieve the minimal regret. There therefore exists a minimal rate at

which the number of agents must grow to achieve the minimal regret. The following negative result

states that if the number of agents grows at a rate less than o (log T ), then no policy of the central

planner can asymptotically achieve the minimal regret.

Theorem 9. If the number of agents IT = o(log T ), then for any policy π of the central planner,

Zπ(T ) = ω((ITT )
a) as T → ∞ for all a ∈ (0, 1).

In order to prove Theorem 9, it suffices to consider the case of two arms. Let π be an arbitrary

policy of the central planner and denote by t2π =
(
t2π,1, t

2
π,2

)
the cumulative efforts on arms 1 and

2 under the policy π at the point in time when the central planner discards arm 2. The following

lemma states that if the expected cumulative effort on the suboptimal arm {2} is less than o (T a),

then arm {2} must not be discarded until the cumulative effort on the optimal arm {1} is at least

Ω (log T ), that is t
{2}
π,{1} = Ω(log T ), P-almost surely.

Lemma 8. Suppose that J = 2 and let π be an arbitrary policy of the central planner. If

E[τ fπ,{2} (T )] = o ((IT )a) for all a > 0,µ ∈ R2,

then for all ϵ > 0,

lim
T→∞

P
(
t
{2}
π,{1} < 2 (1− ϵ) log IT/

(
µ{1} − µ{2}

)2
, t

{2}
π,{2} <

IT

2

)
= 0.

We next show that if there are o(log T ) agents, then there is a positive probability that the total

cumulative effort on the optimal arm {1} is o (log T ) if arm 2 is never discarded which implies that

the arm 2 must receive a polynomial expected effort asymptotically.

6.2 The Proposed Policy

We now propose a policy for the central planner that achieves the minimal regret asymptotic of

O(J log IT ) for all drift vectors µ when each arm has a unique drift. We begin by defining a

procedure for the central planner to construct confidence bounds for the drift of each arm. Our

confidence bounds depend on the amount of effort each agent puts into each arm and therefore may

be constructed at any time within the time horizon. Unlike action elimination strategies that make

decisions at pre-determined levels of effort for each arm (Even-Dar et al. [2006]), in our policy it

is possible for the central planner to use the confidence bounds in order to discard an arm at any

point in time and at any level of total effort.
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The central planner’s ability to make discarding decisions in real time is critical in our setting

since the agents cannot be directly controlled and arms may not achieve a pre-determined level

of total effort. However, this flexibility comes at the expense of requiring that our confidence

bounds guarantee the error introduced due to discarding an arm is bounded at all times. Our error

guarantees therefore need to be stronger than the guarantees provided by the confidence bounds in

Auer et al. [2002] and Even-Dar et al. [2006]. Note also that an advantage of having multiple agents

is that the central planner can use the aggregate information from all agents to make discarding

decisions without waiting for agents to settle on an arm, thus speeding up learning.

6.2.1 Confidence Bounds on the Drift

In what follows, we assume the time horizon satisfies T ≥ e
√
π/2 and the number of arms J ≥ 2.

Suppose now that the central planner has implemented a discarding policy π and that at some

point in time t arm j ∈ J has a cumulative effort vector sj . We then define the lower and upper

confidence bounds on the drift of arm j by

C−
j (sj) =

Rf
j (sj)

1Tsj
−α

(
1

1Tsj
+

1√
1Tsj

)
and C+

j (sj) =
Rf

j (sj)

1Tsj
+α

(
1

1Tsj
+

1√
1Tsj

)
, (19)

where α = 3
2

√
log JIT√

2π
, which is greater than 3/2 since by assumption T ≥ e

√
π
2 and J ≥ 2.

Note that the confidence bounds above are wider than the commonly used confidence bounds in

the bandit literature (as in the upper confidence bound or UCB algorithm) because they must be

satisfied not just at a fixed level of effort but at all levels of effort. In particular, they have an extra

buffer of α
1T sj

. This buffer prevents the width of the confidence bound from shrinking too fast for

low levels of effort (when effort is less than 1), thus preventing the risk of dropping arms without

enough evidence. This larger width does not however slow down the learning rate since for large

values of effort the extra term α√
1T sj

dominates the first term and asymptotically the confidence

bounds behave similar to the standard confidence bounds in the bandit literature.

We now characterize the behavior of the confidence bounds above. For each arm j ∈ J, define
the events

Bj =

{
max

0<1T sj≤IT
C−
j (sj) > µj

}
and Aj =

{
min

0<1T sj≤IT
C+
j (sj) < µj

}
.

Bj (Aj) are undesirable events that imply the lower (upper) confidence bound for arm j rises

above (falls below) its true drift for some amount of effort 0 < s < IT . Given IT is the maximum

effort that any arm can receive across all I agents over the horizon T , if events Bj and Aj do not

occur, then arm j’s drift always lies within its confidence bounds. The following lemma implies

that under any discarding policy π the drift of each arm lies between its confidence bounds at all
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times with very high probability.

Lemma 9. For each arm j ∈ J,

P(Bj),P(Aj) <

√
2π (log4 IT + 2)

JIT
.

We note that large deviation results such as Chernoff bounds are not sufficient to establish

Lemma 9 because the event of interest considers entire sample paths rather than the value of

confidence bounds at a specific point in time. The bounds in Lemma 9 are instead provided by

the escape probability of a Brownian motion from an appropriate non-linear boundary. In order

to precisely obtain this probability, one must solve Fokker-Planck equations that do not have a

known solution. We instead take a constructive approach of bounding the non-linear boundary by

a piecewise linear function. We choose the piecewise linear function carefully to make sure that the

bounds are sufficiently tight. We then prove the lemma using the escape probability of a Brownian

motion from a piecewise linear boundary, which provides an upper bound on the nonlinear boundary

corresponding to the confidence bounds (19).

Lemma 9 together with Bonferroni’s inequality implies that

P

(
max

0<1T sj≤IT
C−
j (sj) < µj < min

0<1T sj≤IT
C+
j (sj)

)
> 1− 2

√
2π (log4 IT + 2)

JIT
.

We have therefore established that with high probability the true drift of each arm lies between

its upper and lower confidence bounds. It turns out that the confidence bounds also converge to

the true drift of the arms sufficiently fast. In particular, we have the following result.

Lemma 10. If events Aj and Bj are false for arm j ∈ J, then

µj − 2δ < min
4α2

δ2
≤1T sj≤IT

C−
j (sj) and max

4α2

δ2
≤1T sj≤IT

C+
j (sj) < µj + 2δ

given 2α > δ, for all δ > 0.

Lemma 10 states that if the events Bj and Aj do not occur, then the confidence bounds (19)

approach the true drift quickly. In particular, for any δ > 0, after time 4α2

δ2
the confidence bounds

are at most 2δ away from the true drift. Lemmas 9 and 10 provide a concentration for the confidence

bounds establishing the high probability range for the upper and lower confidence bounds as shown

in Figure 3. This is important because if the confidence bounds approach the true drift slowly, then

the learning rate is reduced.
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Figure 3: Concentration of the confidence bounds: With probability 1 − 2
√
2π(log4 IT+2)

JIT the up-
per(lower) confidence bound lies between the blue(red) curve and true drift.

6.2.2 The Proposed Discarding Policy

We now propose a discarding policy for the central planner that asymptotically achieves the minimal

regret. We begin by defining the notion of an anchor rate.

Definition 1. Anchor rate: Given a discarding policy π, the anchor rate at time 0 ≤ t ≤ T is

defined to be

l∗π (t) = max
j∈J

sup
0<s<t

C−
j (τπ,j (s)).

The anchor rate is the highest lower confidence bound over all arms up until the current time.

It is non-decreasing by definition. Assuming each of the confidence bounds are true, the central

planner can safely discard any arm whose upper confidence bounds falls below the anchor rate. We

therefore propose the following policy for the central planner.

Definition 2. Central planner’s policy π∗: The proposed policy of the central planner is the

unique discarding policy π∗ which discards arm j ∈ J at time t > 0 if

C+
j (τπ∗,j(t)) ≤ l∗π∗ (t) .

There are two possible sources of error under the policy π∗ which could cause its regret to be

too large. The first is that the arm with the highest drift could mistkaenly be discarded. The

second is that the anchor rate could stay low for too long slowing down the time until the best arm

is found. It turns out however that the probability of either of these events is small. We start with

the first source of potential error.
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If the events Bj and Aj are both false for each j ∈ J, then under any discarding policy π it

follows that C−
j (τπ,j (s)) < µj ≤ µ{1} for each j ∈ J and s ≤ T , and C+

{1}
(
τπ,{1} (s)

)
> µ{1} for

s < T . Thus, l∗π(s) < µ{1} < C−
{1} (τπ,j (s)) for s ≤ T . This implies that if Bj and Aj are both false

for each j ∈ J, then under the proposed policy π∗ the arm with the highest drift is never discarded.

The probability that the arm with the highest drift is discarded under the policy π∗ is therefore less

than the probability that for one j ∈ J either Bj or Aj is true. Using Bonferroni’s inequality and

Lemma 9, the probability of this event is at most 2
√
2π (log4 IT + 2) /IT . We state this formally

as the following corollary.

Corollary 3. Under the proposed discarding policy π∗, the probability that the arm with the highest

drift is discarded is at most 2
√
2π (log4 IT + 2) /IT .

We now provide a bound on the error of the second type. We first state an assumption. This

assumption implies that the drifts of all arms can be differentiated.

Assumption 1. If l,m ∈ J such that l ̸= m, then µl ̸= µm.

We refer to the minimum difference in drifts between any pair of arms by 2∆, that is

∆ =
1

2
min

l,m∈J,l ̸=m
|µl − µm|.

Note that by Assumption 1 it follows that ∆ > 0. The following theorem states that under

Assumption 1, an error of the second type occurs with small probability.

Theorem 10. Under Assumption 1 and the proposed policy π∗, by time t = 112α2

∆2I
(J−1) the anchor

rate satisfies l∗(t) ≥ µ{1} −∆ with probability at least 1− 2
√
2π(log4 IT+2)

IT − log2 Je
− I

12 .

Theorem 10 provides the time by which the anchor rate rises above the true drift of the second

best arm. After this time the effort concentrates on the arms with higher drift. Thus the theorem

hints are the learning rate under this policy. Since α2 grows logarithmically in time T therefore if

I grows at least logarithmically in T then the learning occurs in constant time irrespective of the

time horizon. The anchor rate rises through successive elimination of poor arms thus concentrating

experimentation on better arms. In Figure 4, we demonstrate the lower bound on anchor rate as a

function of time. This lower bound progressively improves with time and by time 112α2

∆2I
(J − 1) it

is above the true drift of the second best arm. The proof of the theorem is delicate. We provide a

summary of the proof technique here.

The proof relies on two important properties of the high probability sample paths. The first

property is established by Theorems 5 and 6 that says at any given time for each agent the effort

spent on the top half (in terms of drift) of any subset of remaining arms stochastically dominates

the effort spent on the bottom half of the subset. This property together with the application the

Azuma-Hoeffding inequality implies that with high probability, by certain times (corresponding to
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t

𝜇{1}−∆

𝜇{𝐽/2}-∆

𝜇{𝐽/4} -∆

𝜇{𝐽/8} -∆

Lower bound on l*(t)

𝜇{2}−∆

32𝛼-𝐽/Δ-𝐼 112	𝛼-(𝐽 − 1)/Δ-𝐼

0.875 ∗ 112	𝛼-𝐽/Δ-𝐼

0.75 ∗ 112	𝛼-𝐽/Δ-𝐼

Figure 4: High probability lower bound on the anchor rate.

the jumps in the lower bound on anchor rate), at least one arm in the top half of the remaining

arms has received sufficient effort. The second property is established by Lemmas 9 and 10 that

says, with high probability, the confidence bounds of arms are well behaved get sufficiently close

to their true drift given sufficient effort. Recursive application of these two properties establishes

that at time t = 32α2J
∆2I

, the anchor rate is above the true drift of the bottom half of the arms and

for 1 ≤ n < log2 J − 1, at time t = 112α2J
∆2I

(1 − 2n−1

J ), the anchor rate is above µ2n−1 − ∆. The

recursive argument is delicate. In particular, we do not ignore the effort spent on arms every time

the anchor rate rise as it would not lead to a constant learning time. Instead we bound the worst

case jump times using a dynamic programming argument to achieve a constant bound on learning

time.

6.2.3 Regret under the Proposed Policy

We now present regret bounds on the the proposed policy π∗ using the bounds on the probability

of errors of the first and second types as stated in Corollary 3 and Theorem 10, respectively. Our

first result bounds the expected effort on all suboptimal arms under policy π∗. This bound grows

logarithmically in time suggesting it is the rate optimal effort on suboptimal arms.
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Theorem 11. If there are at least I = 12 log T agents, then under the discarding policy π∗, for

any µ ∈ RJ that satisfies Assumption 1, the expected total cumulative effort on suboptimal arms is

E

 ∑
j ̸={1}

τ fπ∗,j (T )

 <

(
576J

∆2
+

√
2π

log 2

)
log IT +

I log2 J

T
I

12 log T
−1

.

As a consequence of the above theorem, using the policy π∗ the central planner can achieve a

regret of O (J log IT ) uniformly over all µ ∈ RJ that satisfy Assumption 1, assuming the number

of agents is at least 12 log T . We formally state this in the following corollary.

Corollary 4. If there are at least 12 log T agents then under policy π∗, for any µ ∈ RJ that satisfies

Assumption 1, the regret Z̃π∗(T,µ) is less than

(µ{1} − µ{J})

((
576J

∆2
+

√
2π

log 2

)
log IT +

I log2 J

T
I

12 log T
−1

)
.

Note that as T grows large, the first term in the above dominates and therefore the expected

regret of the central planner under the policy π∗ is of order O (J log IT ). Moreover, the total

amount of effort spent across all agents up until time T is equal to IT . This may be considered

the effective horizon of the central planner. It therefore follows that the regret rate of log IT is

optimal. The above bound on the regret is conservative because it considers the worst possible

outcome, where all the effort on suboptimal arms is applied to the arm with the lowest drift. This

matches the desired performance bound, suggesting that the policy π∗ is optimal up to a constant

multiplicative factor.

There is an additional advantage of an increased number of agents for experimentation, it speeds

up learning. As Theorem 10 suggests, with very high probability the anchor rate rises above the

drift of all suboptimal arms by the time t = 112α2

∆2I
(J − 1). This time decreases sharply with I

implying that learning speeds up sharply with an increasing number of agents.

6.3 Relaxing the Drift Separation

One natural question to ask is whether Assumption 1 can be relaxed? It turns that when all but

the best arm have the same drift, then no feasible policy can achieve the optimal regret bound in

the distributed setting with J log T agents. This implies in our case that as the number of arms

increases, the central planner must add proportionally more agents to maintain the same regret

order. We state this result in the following theorem.

Theorem 12. Let π be a discarding policy that for each µ satisfying Assumption 1 has a regret

Z̃π(T,µ) = o(T a) for all a > 0 if the number of agents IT > 12 log T . If µT is such that µ1 = µ2 +
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√
1/ log T = µ3 +

√
1/ log T = · · · = µJ +

√
1/ log T and the number of agents IT < (1− β)J log T

for some β > 0, then the policy π has a regret Z̃π(T,µT ) = Ω(T b) for some b ∈ (0, 1).

The above result implies that any policy having a low regret under Assumption 1 will perform

poorly in a particular constructed instance that does not satisfy the rate separation assumption.

7. Conclusion

In this paper, we studied the problem of coordinating learning among a population of independent

agents who are not interested in experimentation. We studied this in a multi-armed bandit frame-

work with a twist that the central planner controls the available arms while independent agents

make decisions about pulling arms among the ones made available by the central planner. We

showed that even if the central planner is never allowed to reinstate removed arms, it can generate

enough enough experimentation sufficiently fast, thus mitigating the losses due to decentralization

and obtain a regret matching the benchmark under centralized decision making.

We showed that the regret benchmark under centralized decision-making is attainable if the

central planner has at least 12 log T independent agents and follows a proposed policy that maintains

a non-decreasing anchor reward rate and discards arms the moment the lower confidence bound on

their reward rates drops below the anchor rate. This forces the agents to experiment and choose

among the smaller set of available arms. The ability to distribute experimentation across agents

also speeds up learning, thus reducing the burden of experimentation on each agent. For this policy

to work well with a small number of agents, we need a slightly stronger notion of differentiation

among arms than is needed in the centralized setting.

In our study, we developed new tools and characterizations that are of independent interest

for studying other multi-armed bandit settings. In particular, we identified a relationship between

the running minimum reward rate estimates of sets of arms and the effort allocated to them. This

relationship helps characterize the distribution of efforts of sets of arms using the escape time

distribution of a Brownian motion.

Our results have implications for medical experimentation, salesforce management, and platform

design, among other applications. Our work also opens up several future directions of investigation.

We provide two possible future directions below. First, one can extend our main result to the

case when arms are not well differentiated and characterize the tradeoffs between the level of

differentiation, number of agents, and the achievable regret. These tradeoffs are important for

applications in settings with natural constraints. Second, it would be interesting to study settings

with correlated or nonstationary arms or both. Many natural settings do have correlations and

nonstationarity and the recent literature on such problems in a classical (centralized) bandit model

offers useful benchmarks.
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A. Appendix

A.1 Proofs and Additional Results for Single Agent without a Central Planner:

Section 4

A.1.1 Proof of Lemma 1

Proof. We first show that at any finite time the minimum drift estimates of all available products

is same almost surely. Assume that there are products j, l ∈ Jt, and time t such that Lj (t) < Ll (t).

This implies that there was a period of time with positive Lebesgue measure for which the inequality

was satisfied but the agent spent positive effort on product j. This contradicts the myopic policy

and by contradiction the assumption is false. Therefore, at any finite time the minimum drift

estimates of all available products is same almost surely.

A.1.2 Proof of Theorem 3

Proof. We first note that for all arms j ̸= k⋆, the cumulative effort τj(T ) = σj(L(T )) almost

surely. Since, L(T ) ≥ maxj∈JMj(∞) therefore σj(L(T )) ≤ σj(Mj(∞)) for all j and therefore the

cumulative effort τj(T ) ≤ σj(Mj(∞)) for all j ̸= k⋆. Therefore the expected total cumulative effort

on all arms other than k⋆ is
∑

j ̸=k⋆ E[τj(T )] ≤
∑

j ̸=k⋆ E[σj(Mj(∞))] =
∑

j ̸=k⋆ c2(µj). Thus this

expected effort is upper bounded by a constant independent of time. The cumulative reward of the

winning arm k⋆ determines the total reward for the myopic agent. The total expected cumulative

reward from the winning arm is
∑

j=k⋆ TµjP (k⋆ = j).

A.1.3 Distribution of the Winning Arm

We now study the expressions for probability that an agent settles on a given arm ultimately.

When all arms have positive drifts: When all arms have positive drift, then the probability

is provided by Theorem 4. We provide the proof below.

Proof of Theorem 4

Proof. Assume all arms have positive drifts. The probability

P
(
Mj(∞) > max

m∈J
Mm(∞)|µ

)
= P

(
Mj(∞) > max

m∈J
Mm(∞),Mj(∞) ≤ 0|µ

)

= P
(
Mj(∞)−max

m∈J
Mm(∞) > 0,Mj(∞) ≤ 0|µ

)
.

We remind the reader that Mj(∞) ≤ 0 always because the drifts estimates at time t = 0 is 0.

Using the convolution of the distributions to compute the distribution of the sum, the probability
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is equal to

∫ 0

−∞
e2

∑
m∈J x(µm−x)d

(
e2x(µj−x)

)
dx

dx =

∫ 0

−∞
2 (µj − 2x) e2

∑
m∈J x(µm−x)dx

By adding and subtracting 1
J−J0

∑
m∈J µm, to (µj − 2x), we obtain the following expression for the

probability ∫ 0

−∞

1

J
2

∑
m∈J

(µm − 2x)

 e2
∑

m∈J x(µm−x)dx

+2

µj −
1

J

∑
m∈J

µm

∫ 0

−∞
e2

∑
m∈J x(µm−x)dx

The first term in the sum is 1
J .

This is because

d

dx
e2

∑
m∈J x(µm−x) = 2

∑
m∈J

(µm − 2x)

 e2
∑

m∈J x(µm−x).

For the second term, we note that

e2
∑

m∈J x(µm−x) = e
−2J

(
(x− µ̄

2 )
2− µ̄2

4

)
= e

Jµ̄2

2 e−2J(x− µ̄
2 )

2

,

where µ̄ = 1
J

∑
m∈J µm. Therefore, applying the above Gaussian form, we use the Gaussian integral

to obtain the following expression for the probability.

1

J
+

√
2π (µj − µ̄)√

J
e

Jµ̄2

2 Φ
(
−
√
Jµ̄
)

When some arms have negative drifts: When some arms have negative drift then the

expression is quite complex. In the following we, provide the analysis and expression for this

probability. For what follows,we will assume that the arms are indexed in the ascending order of

their drifts, i.e. µ1 < µ2, < · · · < µJ . We assume that µm◦ < 0 and µm◦+1 > 0. The probability

that an arm j is the winning arm is

P (k⋆ = j|µ) = P (k⋆ = j, L∗ ≤ µj |µ) +
j∑

l=2

P (k⋆ = j, L∗ ∈ (µl − 1, µl]|µ), (20)

where L∗ = limt→∞ L(t). We will represent Il (j) := P (k⋆ = j, L∗ ∈ (µl − 1, µl]|µ). Therefore the
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probability can be written as

P (k⋆ = j|µ) =
j∑

l=2

Il (j) .

We will now derive the expressions for each of the terms in the sum. Since L∗ is at most 0, therefore

for any arm j with positive drift and all m◦ + 1 < l ≤ j,

Il (j) = 0 and Im◦+1 = P (k⋆ = j, L∗ ∈ (µm◦ , 0]|µ) . (21)

If j is the winning arm, then the minimum drift estimate of arm j over the whole time horizon

must be greater than the minimum drift estimate of all arms over the whole time horizon. Com-

bining this with the fact that the minimum drift estimates of all arms is at most equal to their true

drifts almost surely, we obtain the expressions for the probability that any arm j is the winning

arm as follows. We use the notation Mj(∞) = Mj(∞) = infs>0 µ̂j(s) for simplicity.

I1 (j) = P
(
Mj(∞) > max

m∈J\{j}
{Mm(∞)},Mj(∞) < µ1|µ

)
, (22)

Il (j) = P

(
Mj(∞) > max

m∈J\(Jµl−1
∪{j})

{Mm(∞)},Mj(∞) ∈ (µl − 1, µl]|µ

)
, for all 1 < l ≤ min{m◦, j}

(23)

Im◦+1 (j) = P

(
Mj(∞) > max

m∈J\(Jµm◦∪{j})
{Mm(∞)},Mj(∞) ∈ (µm◦ , 0]|µ

)
if j > 0, (24)

where Ja = {m ∈ J|µm ≤ a}. The three expressions are very similar expect for the range of L∗ and

the set of arms that are contenders for the winning arm in the range of L∗. We first evaluate the

following general probability.

I (j) = P
(
Mj(∞) > max

m∈X
{Mm(∞)},Mj(∞) ∈ (a, b]|µ

)
, (25)

where b ≤ min{0, µj} and X = J\ (Ja ∪ {j}). The three expressions in equations 22, 23 and 24 can

be evaluated by replacing a, b and X with appropriate values. The probability I (j) can be written

using convolution as

I (j) =

∫ b

a
P
(
max
m∈X

Lm ≤ x|µ
)
dP (Lj ≤ x|µ)

Using the expressions for the distribution of minimum drift estimate from Lemma 4, we obtain the

following expression for I (j).

I (j) =

∫ b

a
e2

∑
m∈X x(µm−x)d

(
e2x(µj−x)

)
dx

dx
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Using the derivative of e2x(µj−x) we get the expression

I (j) =

∫ b

a
2 (µj − 2x) e2

∑
m∈X∪{j} x(µm−x)dx

We will refer to the average drift of the arms with the drift greater than a as µ̄a = 1
|X|+1

∑
m∈X∪{j} µm.

By adding and subtracting µ̄a to (µj − 2x)we obtain the following expression

I (j) =
1

|X|+ 1

∫ b

a
2

 ∑
m∈X∪{j}

(µm − 2x)

 e2
∑

m∈X∪{j} x(µm−x)dx

+ 2 (µj − µ̄a)

∫ b

a
e2

∑
m∈X∪{j} x(µm−x)dx

We note that the expression inside the first integral in I (j) is the derivative of the exponential

factors in the expression. We note that

e2
∑

m∈X∪{j} x(µm−x) = e
−2(|X|+1)

(
(x− µ̄a

2 )
2− µ̄2a

4

)
= e

(|X|+1)µ̄2a
2 e−2(|X|+1)(x− µ̄a

2 )
2

.

Using this I (j) is evaluated as

I (j) =
1

|X|+ 1

(
e2

∑
m∈X∪{j} b(µm−b) − e2

∑
m∈X∪{j} a(µm−a)

)
(26)

+

√
2π (µj − µ̄a)√

|X|+ 1
e

(|X|+1)µ̄2a
2

(
Φ
(
2
√
|X|+ 1

(
b− µ̄a

2

))
− Φ

(
2
√
|X|+ 1

(
a− µ̄a

2

)))
(27)

Replacing a, b and X with appropriate values, we get the three joint probability expressions. For

I1 (j), we replace a with −∞, b with µ1 and X with J \ {j}. We get the following expression for

I1 (j).

I1 (j) =
1

J
e2

∑
m∈J µ1(µm−µ1) +

√
2π (µj − µ̄)√

J
e

Jµ̄2

2 Φ
(
2
√
J
(
µ1 −

µ̄

2

))
, (28)

where µ̄ = 1
J

∑
m∈J µm. Replacing a, b and X with appropriate values, we get the three joint

probability expressions. For all 1 < l ≤ min{m◦, j}, for the expression for Il (j), we replace a with

µl−1, b with µl and X with J \
(
Jµl−1

∪ {j}
)
. We get the following expression for Il (j).

Il (j) =
1

J − l + 1

(
e
2
∑

m∈J\Jµl−1
µl(µm−µl) − e

2
∑

m∈J\Jµl−1
µl−1(µm−µl−1)

)
(29)

+

√
2π (µj − µ̄l)√
J − l + 1

e
(J−l+1)µ̄2l

2

(
Φ
(
2
√
J − l + 1

(
µl −

µ̄l

2

))
− Φ

(
2
√
J − l + 1

(
µl−1 −

µ̄l

2

)))
,

where µ̄l =
1

J−l

∑
m∈J\Jµl

µm. Replacing a, b and X with appropriate values, we get the three joint
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probability expressions. For the expression for Im◦+1 (j), we replace a with µm◦ , b with 0 and X

with J \
(
Jµm◦ ∪ {j}

)
. We get the following expression for Im◦+1 (j).

Im◦+1 (j) =
1

J −m◦

(
1− e

2
∑

m∈J\Jµm◦
µm◦ (µm−µm◦ )

)
(30)

+

√
2π (µj − µ̄m◦)√

J −m◦ e
(J−m◦)µ̄2m◦

2

(
Φ
(
−2

√
J −m◦

( µ̄m◦

2

))
− Φ

(
2
√
J −m◦

(
µm◦ − µ̄m◦

2

)))
,

where µ̄m◦ = 1
J−m◦

∑
m∈J\Jµm◦

µm.

A.2 Proofs and Additional Results for the Case with the Central Planner and

a Single Agent: Section 5

A.2.1 Proof of Lemma 7

Proof. We will prove the first statement by contradiction. Assume LπK (t◦) > Lπ (t). This implies

that
∑

j∈K σj (Lπ (t)) > t◦ according to Lemma 5. Since Lπ,j (t) = Lπ (t) for all j ∈ K almost

surely, by Lemma 1, therefore τπ,j (t) ≥ σj (Lπ (t)) for all j ∈ K almost surely. This implies that∑
j∈K τπ,j (t) ≥

∑
j∈K σj (Lπ (t)) > t◦ almost surely which contradicts Equation 16.

Now assume LπK (t◦) < Lπ (t). Therefore, there exists ϵ > 0 such that LπK (t◦) = Lπ (t)−ϵ. This

implies that
∑

j∈K σj (Lπ (t)− ϵ) ≤ t◦ according to Lemma 5. Since Lπ,j (t) = Lπ (t) > Lπ (t) − ϵ

for all j ∈ K almost surely, by Lemma 1, therefore τπ,j (t) < σj (Lπ (t)− ϵ) for all j ∈ K almost

surely. This implies that
∑

j∈K τπ,j (t) <
∑

j∈K σj (LπK (t◦)) ≤ t◦ almost surely again contradicting

Equation 16. This completes the proof of the first statement.

By Lemma 2 almost surely kπ (t) is not empty. Without loss of generality assume that j ∈ kπ (t).

Then by Lemma 2 almost surely j is the only product in kπ (t). Also by Lemma 1 Lπ,l (t) = Lπ (t)

for all l ∈ K, by Corollary 1 τπ,l (t) = σl (Lπ (t)) = σl (LπK (t◦)), for all l ∈ K \{j}, and by Theorem

1, µ
l
(s) < Lπ,j (t) = LπK (t◦) for all s > τπ,l (t) and for all l ∈ K \ {j} almost surely. This implies

that for all products l ∈ K \{j}, τπK ,l (t
◦) = σl (LπK (t◦)) = σl (Lπ (t)) = τπ,l (t) almost surely. This

implies that τπK ,j (t
◦) = t◦ −

∑
l∈K\{j} τπK ,l (t

◦) = t◦ −
∑

l∈K\{j} τπ,l (t) = τπ,j (t) and j ∈ kπK (t◦)

almost surely. This completes the proof of the second and third statement.

A.2.2 Proof of Theorem 5

Proof. Assume k ⊆ Jt. We point that by lemma 7 given
∑

j∈K τπ,j (t) = t◦, τπ,j1 (t
◦) = τπK ,j1 (t

◦)

and τπ,j2 (t
◦) = τπK ,j2 (t

◦) almost surely and by lemma 12 τπK ,j1 (t
◦) first-order stochastically dom-
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inates τπK ,j2 (t
◦). Therefore, for all 0 < s < t◦,

P

τπ,j1 (t) > s|
∑
j∈K

τπ,j (t) = t◦

 = P (τπK ,j1 (t
◦) > s)

> P (τπK ,j2 (t
◦) > s) = P

τπ,j2 (t) > s|
∑
j∈K

τπ,j (t) = t◦

 .

A.2.3 Proof of Theorem 6

Proof. We will show that for any j ∈ K ∩ Jt and x ≥ 0, τπK ,j (t
◦) > x implies that given∑

l∈K τπ,l (t) = t◦, τπ,j (t) > x almost surely. This will imply that

P (τπK ,j (t
◦) > x) ≤ P

(
τπ,j (t) > x |

∑
l∈K

τπ,l (t) = t◦

)

proving the result. To prove, we assume that τπK ,j (t
◦) > x. By lemma 11, this implies that

Lπ{j} (x) > LπK\{j} (t
◦ − x) almost surely. Since Lπ{j} (x) and LπK\{j} (t

◦ − x) have continuous dis-

tributions and they are independent therefore Lπ{j} (x) ≥ LπK\{j} (t
◦ − x) almost surely. Therefore

according to Lemma 5
∑

l∈K\{j} σl

(
Lπ{j} (x)

)
≤ t◦−x almost surely. Since σl (y) has a continuous

distribution for all l, y, therefore
∑

l∈K\{j} σl

(
Lπ{j} (x)

)
< t◦ − x almost surely.

From Corollary 2, for all m /∈ K \ Jt, Lπ,m (t) ≤ Lπ,j (t) almost surely. Since, τπK ,j (t
◦) > x

therefore Lπ,j (t) = Lπ{j} (τπK ,j (t
◦)) ≤ Lπ{j} (x) almost surely. Therefore, Lπ,m (t) ≥ Lπ{j} (x)

almost surely. Therefore, τπ,m (t) ≤ σm

(
Lπ{j} (x)

)
almost surely. This implies that almost surely

∑
l∈K∩Jt\{j}

σl

(
Lπ{j} (x)

)
=

∑
l∈K\{j}

σl

(
Lπ{j} (x)

)
−

∑
l∈K\(Jt∪{j})

σl

(
Lπ{j} (x)

)
< t◦ − x−

∑
m∈K\(Jt∪{j})

σm

(
Lπ{j} (x)

)
≤ t◦ − x−

∑
m∈K\(Jt∪{j})

τπm (t).

Therefore by lemma 5,

Lπ{j} (x) > LπK∩Jt\{j}

t◦ − x−
∑

m∈K\(Jt∪{j})

τm (t)


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almost surely. Therefore by lemma 11

τπK∩Jt ,j

t◦ −
∑

m∈K\(Jt∪{j})

τπ,m (t)

 > x

almost surely. Therefore by lemma 7, τπ,j (t) > x, given
∑

l∈K∩Jt τπ,l (t) = t◦−
∑

m∈K\(Jt∪{j}) τπ,m (t)

almost surely. This implies that τπ,j (t) > x, given
∑

l∈K τπ,l (t) = t◦ almost surely. This completes

the proof.

A.2.4 Effort Allocations for a Restricted Set of Arms

We characterize the cumulative effort distributions for different arms under πK policies for any

K ⊆ J. These results are useful for proving Theorems 5 and 6.

Lemma 11. For any arm j ∈ K ⊆ J and x > 0, τπK ,j (t) > x if and only if Lπ{j} (x) >

LπK\{j} (t− x) almost surely.

Proof. To prove the lemma, we check two cases:

(i) If j ∈ kπK (t) and τπK ,j (t) > x then by Theorem 1 Lπ{l} (y) < LπK (t) for all l ∈ K \ {j} and

y > τπK ,l (t) and Lπ{j} (x) ≥ LπK (t) almost surely. This implies that LπK\{j} (t− x) < LπK (t) ≤
Lπ{j} (x) almost surely. On the other hand if j ∈ kπK (t) and τπK ,j (t) ≤ x then by Theorem 1

Lπ{l} (y) ≥ LπK (t) for all l ∈ K \ {j} and y ≤ τπK ,l (t) and Lπ{j} (x) ≤ LπK (t) almost surely. This

implies that LπK\{j} (t− x) ≥ LπK (t) ≥ Lπ{j} (x) almost surely.

(ii) If j /∈ kπK (t) and τπK ,j (t) > x then from theorem 1 Lπ{j} (x) > LπK (t) and LπK\{j} (t− x) ≤
LπK (t) almost surely. This implies that LπK\{j} (t− x) ≤ LπK (t) < Lπ{j} (x) almost surely. On

the other hand, if j /∈ kπK (t) and τπK ,j (t) ≤ x then by Theorem 1 Lπ{j} (x) ≤ LπK (t) and

LπK\{j} (t− x) ≥ LπK (t) almost surely. This implies that LπK\{j} (t− x) ≥ LπK (t) ≥ Lπ{j} (x)

almost surely.

We now apply this Lemma to compare the distribution of cumulative efforts for two different

arms.

Lemma 12. Given two arms j1, j2 ∈ K ⊆ J, with µj1 > µj2, τπK ,j1 (t) first-order stochastically

dominates τπK ,j2 (t).

Proof. By Lemma 11, for any y > 0,

P (τπK ,j1 (t) > y) = P
(
Lπ{j1}

(y)− LπK\{j1}
(t− y) > 0

)
and

P (τπK ,j2 (t) > y) = P
(
Lπ{j2}

(y)− LπK\{j2}
(t− y) > 0

)
.
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We note that by Lemma 4, LπA({j1} (y) first-order stochastically dominates Lπ{j2}
(y) and by lemma

6 LπK\{j2}
(t− x) first-order stochastically dominates LπK\{j1}

(t− x). Therefore,

P
(
Lπ{j1}

(y)− LπK\{j1}
(t− y) > 0

)
> P

(
Lπ{j2}

(y)− LπK\{j2}
(t− y) > 0

)
.

This implies that for any x > 0, P (τπK ,j1 (t) > x) > P (τπK ,j2, (t) > x) completing the proof.

A.3 Proofs for Section 6

A.3.1 Proof of Theorem 8

Proof. Consider two expected profit rate vectors µ◦ = (µ◦
1, µ2) and µ∗ = (µ∗

1, µ2) where µ◦
1 < µ2 <

µ∗
1 with (µ2 − µ◦

1) = δ (µ∗
1 − µ2) for some δ ∈ (0, 1). From the assumption, the

Eµ∗ [τπ,2 (T )] < o (T a)

for all 0 < a < δ. Consider the event

XT ≡ {τπ,1(T ) < 2 (1− δ) log T/ (µ∗
1 − µ◦

1)
2}.

Pµ∗ (XT ) (T − 2 (1− δ) log T/(µ∗
1 − µ◦

1)
2) < Eµ∗ [τπ,2 (T )].

Therefore,

Pµ∗ (XT ) = o
(
T a−1

)
.

Using the change of measure, the Radon-Nikodyn derivative

ℓ(τπ,1(T )) =
∂Pµ◦ (τπ,1(T ))

∂Pµ∗ (τπ,1(T ))
= e(µ

∗
1−µ◦

1)B1(τπ,1(T ))+
(µ∗1−µ◦1)

2
τπ,1(T )

2 ,

where B1 (τ1(T )) is the value of the Brownian motion corresponding to the reward process off

product 1 for the total cumulative effort of τπ1(T ). Therefore, the probability

Pµ◦
(
XT , ℓ(τπ,1(T )) < T 1−a

)
=

∫
XT∩ℓ(τπ,1(T ))<T 1−a

ℓ(τπ,1(T ))∂Pµ∗ (τπ,1(T ))

<

∫
XT∩ℓ(τπ,1(T ))<T 1−a

T 1−a∂Pµ∗ (τπ,1(T )) = T 1−aPµ∗
(
XT , ℓ(τπ,1(T )) < T 1−a

)
< T 1−aPµ∗ (XT ) = T 1−ao

(
T a−1

)
.

Therefore,

lim
T→∞

Pµ◦
(
XT , ℓ(τπ,1(T )) < T 1−a

)
= 0.
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We note that

lim
t′→∞

log ℓ(τπ,1(T ))

t′
= lim

t′→∞
(µ∗

1 − µ◦
1)

B1 (τπ,1(T ))

t′
+

(µ∗
1 − µ◦

1)
2 τπ,1(T )

2t′
=

(µ∗
1 − µ◦

1)
2 τπ,1(T )

2t′
,

for all t′ ≥ τπ,1(T ) a.s. Therefore replacing t′ by 2 (1− δ) log T/ (µ∗
1 − µ◦

1)
2 we obtain

limT→∞ ℓ(τπ,1(T )) ≤ T 1−δ < T 1−a for all τπ,1(T ) ≤ (2 (1− δ) log T/ (µ∗
1 − µ◦

1)
2) almost surely. This

implies that

lim
T→∞

Pµ◦ (XT ) = 0.

Therefore

lim
T→∞

P

(
τπ,{2}(T ) <

2 (1− δ) log T

(1 + δ)2
(
µ{1} − µ{2}

)2
)

= 0.

Since δ > a and a is arbitrarily chosen between 0, 1, the claim follows.

A.3.2 Proofs of Theorem 9 and Lemma 8

We first give the proof of Lemma 8.

Proof of Lemma 8. Consider two expected profit rate vectors µ◦ = (µ◦
1, µ2) and µ∗ = (µ∗

1, µ2)

where µ◦
1 < µ2 < µ∗

1 with (µ2 − µ◦
1) = δ (µ∗

1 − µ2) for some δ ∈ (0, 1). From the assumption, under

the policy π, the

Eµ◦ [τ fπ,1 (T )] < o ((IT )a)

for all 0 < a < δ. Consider the event

XT ≡ {t2π,1 < 2 (1− δ) log IT/ (µ∗
1 − µ◦

1)
2 , and t2π,2 <

IT

2
}.

Pµ◦ (XT ) ((IT )/2) < Eµ◦ [τ fπ,1 (T )].

Therefore,

Pµ◦ (XT ) = o
(
(IT )a−1

)
.

Using the change of measure, the Radon-Nikodyn derivative

ℓ(t2π) =
∂Pµ∗

(
t2π
)

∂Pµ◦ (t2π)
= e−(µ

∗
1−µ◦

1)B1(t2π,1)+
(µ∗1−µ◦1)

2
t2π,1

2 ,

where B1

(
t2π,1
)
is the value of the Brownian motion corresponding to the reward process off product
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1 for the total cumulative effort of t2π,1. Therefore, the probability

Pµ∗
(
XT , ℓ(t

2
π) < (IT )1−a

)
=

∫
XT∩ℓ(t2π)<(IT )1−a

ℓ(t2π)∂Pµ◦
(
t2π
)

<

∫
XT∩ℓ(t2π)<(IT )1−a

(IT )1−a∂Pµ◦
(
t2π
)
= (IT )1−aPµ◦

(
XT , ℓ(t

2
π) < (IT )1−a

)
< (IT )1−aPµ◦ (XT ) = (IT )1−ao

(
(IT )a−1

)
.

Therefore,

lim
T→∞

Pµ∗
(
XT , ℓ(t

2
π) < (IT )1−a

)
= 0.

We note that

lim
t′→∞

log ℓ(t2π)

t′
= lim

t′→∞
− (µ∗

1 − µ◦
1)

B1

(
t2π,1
)

t′
+

(µ∗
1 − µ◦

1)
2 t2π,1

2t′
=

(µ∗
1 − µ◦

1)
2 t2π,1

2t′
for all t′ ≥ t2π,1 a.s.

Therefore replacing t′ by 2 (1− δ) log IT/ (µ∗
1 − µ◦

1)
2 we obtain

limT→∞ ℓ(t2π) ≤ (IT )1−δ < (IT )1−a for all t2π ≤ (2 (1− δ) log IT/ (µ∗
1 − µ◦

1)
2 , IT2 ) a.s. This implies

that

lim
T→∞

Pµ∗ (XT ) = 0.

Therefore

lim
T→∞

P

(
t
{2}
π,{1} <

2 (1− δ) log IT

(1 + δ)2
(
µ{1} − µ{2}

)2 , t{2}π,{2} <
IT

2

)
= 0.

Since δ is arbitrarily chosen between 0, 1, the claim follows.

We now give the proof of Theorem 9

Proof of Theorem 9. We again consider the case of two products with µ = (µ1, µ2), µ1 > µ2

and a sequence of settings indexed by time T with IT agents. We first point out that Zπ(T ) =

O(log(ITT )) then Zπ(T ) = o(T a) for all a > 0. Therefore by lemma 8 any policy π with Zπ(T ) =

O(log(ITT )) must have

lim
T→∞

P
(
t2π,1 < 2 (1− ϵ) log (ITT )/ (µ1 − µ2)

2 , t2π,2 <
ITT

2

)
= 0.

Therefore, we can restrict the candidate policies to the set policies that satisfy this condition.

Asymptotically, such policies do not discard product 2 before T/2 unless

τ fπ,1(T/2) > 2 (1− ϵ) log (ITT )/ (µ1 − µ2)
2 almost surely. Such policies also discard product 1

before time T/2 with probability at most o((ITT )
a−1) for all 0 < a < 1 otherwise the expected
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regret for this µ would be Ω((ITT )
a). This implies that for 0 < a < 1 by setting ϵ = 1/2

lim
T→∞

P
(
τ fπ,2(T ) > Ω((ITT )

a)
)

> P
(
τ fπ,2(T/2) > Ω((ITT )

a), JT/2 = {1, 2}
)
+ lim

T→∞
P
(
1 /∈ JT/2

)
> lim

T→∞
P
(
τ fπ,1(T/2) < 2 (1− ϵ) log (ITT )/ (µ1 − µ2)

2 , JT/2 = {1, 2}
)
+ lim

T→∞
P
(
1 /∈ JT/2

)
= lim

T→∞
P
(
τ f1,A({1,2})(T/2) < log (ITT )/ (µ1 − µ2)

2 , 1 ∈ JT/2
)
+ lim

T→∞
P
(
1 /∈ JT/2

)
The last equality applies because τ fπ,1(T/2) < log (ITT )/ (µ1 − µ2)

2 almost surely implies that

2 ∈ JT/2 and

τ fπ,1(T/2) < log (ITT )/ (µ1 − µ2)
2 ⇔ τ fπ{1,2},1

(T/2) < log (ITT )/ (µ1 − µ2)
2

almost surely following lemma 7. Therefore the above probability is greater than

lim
T→∞

P
(
τ fπ{1,2},1

(T/2) < log (ITT )/ (µ1 − µ2)
2
)
− lim

T→∞
P
(
1 /∈ JT/2

)
+ lim

T→∞
P
(
1 /∈ JT/2

)
= lim

T→∞
P
(
τ fπ{1,2},1

(T/2) < log (ITT )/ (µ1 − µ2)
2
)
.

From Lemma 11 for any agent i and x < T/2,

P
(
τ iπ{1,2},1

(T/2) < x
)

= P
(
Li
π,1 (x) < Li

π,2 (T/2− x)
)

> P
(
Li
π,1 (x) < (µ2 − y), Li

π,2 (T/2− x) > (µ2 − y)
)
for all y > µ2

= P
(
Li
π,1 (x) < (µ2 − y)

)
P
(
Li
π,2 (T/2− x) > (µ2 − y)

)
.

Therefore, taking limit on T , as T approaches infinity and choosing x = log (ITT )/(IT (µ1 − µ2)
2)

lim
T→∞

P
(
τ iπ{1,2},1

(T/2) < x
)

> lim
T→∞

P
(
Li
π,1

(
log (ITT )/IT (µ1 − µ2)

2
)
< (µ2 − y)

)
P
(
Li
π,2

(
T/2− log (ITT )/IT (µ1 − µ2)

2
)
> (µ2 − y)

)
= e2(µ2−y)(µ1−µ2+y)(1− e2y(µ2−y)) = ec > 0 for some c ∈ (−∞, 0).
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The last equality is obtained from using Equation 10 and taking the limit. This implies that

lim
T→∞

P
(
τ fπ{1,2},1

(T/2) < log (ITT )/ (µ1 − µ2)
2
)

>
∏
i∈I

lim
T→∞

P
(
τ iπ{1,2},1

(T/2) < log (ITT )/(IT (µ1 − µ2)
2)
)

= ecIT = T cIT / log T .

This implies that limT→∞ P
(
τ fπ,2(T ) > Ω((ITT )

a)
)
> T cIT / log T . This implies that

Zπ(T ) > Ω((ITT )
a)T cIT / log T = Ω((IT )

aT a+cIT / log T ) = Ω((ITT )
a)

because limT→∞ IT / log T = 0. This implies that Zπ(T ) > ω((ITT )
a) for all a ∈ (0, 1) proving the

claim.

A.3.3 Proof of Lemma 9

Proof of Lemma 9. We first show that the probability that min0<1T sj≤IT C+
j (sj) < µj is at most

√
2π(log4 IT+2)

JIT . By symmetry, the probability that max0<1T sj≤IT C−
j (sj) > µj is at most

√
2π(log4 IT+2)

JIT .

From the definition,

C+
j (sj) =

Rf
j (sj)

1Tsj
+ α

(
1

1Tsj
+

1√
1Tsj

)
= µj +

∑I
i=1B

i
j

(
sij

)
1Tsj

+ α

(
1

1Tsj
+

1√
1Tsj

)
.

Therefore,

C+
j (sj) < µj ⇔

∑I
i=1B

i
j

(
sij

)
1Tsj

+ α

(
1

1Tsj
+

1√
1Tsj

)
< 0 ⇔

I∑
i=1

Bi
j

(
sij
)
+ α

(
1 +

√
1Tsj

)
< 0.

Since,
∑I

i=1B
i
j

(
sij

)
is a Wiener process over 1Tsj , the probability

P
(

min
0<1T sj≤IT

C+
j (sj) < µj

)
= P

(
min

0<1T sj≤IT

I∑
i=1

Bi
j

(
sij
)
+ α

(
1 +

√
1Tsj

)
< 0

)

= P
(

min
0<s≤IT

B (s) + α
(
1 +

√
s
)
< 0

)
,

where B (s) is a standard brownian motion over s. This is the probability of the Brownian motion

crossing a square root boundary within a finite time. To obtain this probability, one can try to solve

the Fokker-Planck equation of the Volterra type. However, the solution to the resulting differential

equation is not known. Instead, we provide an upper bound on this probability by the probability
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of a more likely event. We use a piecewise linear function of s that is a lower bound on α (1 +
√
s).

The probability of the Brownian motion crossing this piecewise linear function of s is higher than

the probability of the Brownian motion crossing the functionα (1 +
√
s). We note that

α
(
1 +

√
s
)
≥ α (1 + s) , for 0 < s ≤ 1 and

α
(
1 +

√
s
)
≥ α

(
1 +

√
4n
)
+

α

3
√
4n

(s− 4n) , for all n ≥ 0, 4n ≤ s ≤ 4n+1.

This implies that α (1 +
√
s) ≥ min {α (1 + s) ,minn≥0

(
α
(
1 +

√
4n
)
+ α

3
√
4n

(s− 4n)
)
}. Therefore,

P
(

min
0<s≤IT

B (s) + α
(
1 +

√
s
)
< 0

)
= P

(
max

0<s≤IT
B (s)− α

(
1 +

√
s
)
> 0

)
< P

(
max

0<s≤IT
B (s)−min {α (1 + s) , min

0≤n≤log4 IT+1

(
α
(
1 +

√
4n
)
+

α

3
√
4n

(s− 4n)

)
} > 0

)
We define events

A := max
0<s≤IT

B (s)− α (1 + s) > 0,

An := max
0<s≤IT

B (s)−
(
α
(
1 +

√
4n
)
+

α

3
√
4n

(s− 4n)

)
> 0, for n ≥ 0.

Therefore, the above probability,

P
(

max
0<s≤IT

B (s)−min {α (1 + s) , min
0≤n≤log4 IT+1

(
α
(
1 +

√
4n
)
+

α

3
√
4n

(s− 4n)

)
} > 0

)
= P

(
A ∪

(
∪log4 IT+1
n=0 An

))
< P (A) +

log4 IT+1∑
n=0

P (An)

We note that

A ⊂ Â := max
s>0

B (s)− α (1 + s) > 0 and

An ⊂ Ân := max
s>0

B (s)−
(
α
(
1 +

√
4n
)
+

α

3
√
4n

(s− 4n)

)
> 0.

Using the probability of Brownian motion crossing a line1, we find that P
(
Â
)

= e−2α2
and

1Probability that the Brownian motion, B (s) crosses a line a+ bs for a, b > 0 is e−2ab.
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P
(
Ân

)
= e

−
(

4
9
+ 2

3
√

4n

)
α2

for n ≥ 0. Therefore,

P (A) +

log4 IT+1∑
n=0

P (An)

< P
(
Â
)
+

log4 IT+1∑
n=0

P
(
Ân

)
= e−2α2

+

log4 IT+1∑
n=0

e
−
(

4
9
+ 2

3
√
4n

)
α2

< e−2α2
+

log4 IT+1∑
n=0

e−
4
9
α2

= e−2α2
+ (log4 IT + 1) e−

4
9
α2

< (log4 IT + 2) e−
4
9
α2
.

Therefore,

P
(

min
0<1T sj≤IT

C+
j (sj) < µj

)
< (log4 IT + 2) e−

4
9
α2

=

√
2π (log4 IT + 2)

JIT
.

By symmetry,

P
(

max
0<1T sj≤IT

C−
j (sj) > µj

)
< (log4 IT + 2) e−

4
9
α2

=

√
2π (log4 IT + 2)

JIT
.

A.3.4 Proof of Lemma 10

Proof of Lemma 10. Pick sj such that 1Tsj >
4α2

δ2
. Therefore,

C+
j (sj)− C−

j (sj) = 2α

(
1

1Tsj
+

1√
1Tsj

)
=

δ2

2α
+ δ < 2δ.

Since Aj and Bj are false therefore

C+
j (sj)− µj < C+

j (sj)− C−
j (sj) < 2δ and

µj − C−
j (sj) < C+

j (sj)− C−
j (sj) < 2δ.
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A.3.5 Proof of Theorem 10

We now provide the proof of Theorem 10. We first need to introduce some definitions and some

intermediate results. For simplicity of exposition, we assume that log2 J is an integer. Without

loss of generality, we assume arms are indexed in the decreasing order of their drifts, i.e. µ1 > µ2 >

· · · > µJ . We first define dummy policies πn for each n ∈ {0, . . . , log2 J} that follow policy π∗ but

never discard the top 2n arms, i.e.- never discard the arms in Kn = {1, . . . , 2n}.

Definition 3. Dummy policy πn: Discard arm j at time t > 0 if C+
j (τπn,j(t)) ≤ l∗πn (t) and

j /∈ Kn.

We note that the policy πn behaves as policy π∗ as long as C+
j (τπn,j(s)) > l∗πn (s) for all

j ∈ {{1}, . . . , {2n}}, for all s < t i,e,- Jπn,t| = Jπ∗,t and τ i
j|πn(t) = τ i

j|π∗(t) for all i ∈ I and j ∈ Kn

given C+
j (τπn,j(s)) > l∗πn (s) for all s < t and j ∈ Kn.

We now define two sets of events, the first set of events is characterized by the efforts on arms

at a given time and the second set of events is characterized by the anchor rate at a given time.

The first set of events is defined below.

Definition 4. We define joint events γ◦π,n(t) at any time t, under policy π as an intersection of

two different kinds of events for each n with 0 ≤ n ≤ log2 J as following:

1. γ1π,n(t): at time t, under policy π all sets of x agents, for all I
3 ≤ x ≤ I spent a combined

cumulative effort of at least 3
(
x
I − 1

3

)
2n 16α2

∆2 on the arms Kn ⊆ J i.e.-

γ1π,n(t) ≡ {ω ∈ Ω :
∑

i∈G,j∈Kn

τ iπ,j(t) ≥ 3

(
|G|
I

− 1

3

)
2n

16α2

∆2
, for all G ⊆ I with |G| ≥ I

3
}.

2. γ2π,n(t): at time t, under policy π each arm in Kn−1 has total cumulative effort less than 16α2

∆2

by time t i.e.-

γ2π,n(t) ≡ {ω ∈ Ω : τ fπ,j(t) <
16α2

∆2
for all j ∈ Kn−1}.

γ◦π,n(t) = γ1π,n(t) ∩ γ2π,n(t).

The second set of events is defined below.

Definition 5. We define γ3π,n(t) as the event that under policy π the anchor rate at time t is

lower than the lowest upper confidence bound for all arms in Kn−1 until time t, i.e.- l∗π (t) <

inf0<s≤tC
+
j (τπ,j(s)) for all j ∈ Kn−1.

For the following, we will use a notation

t◦n =

 32α2J
∆2I

, if n = log2 J

112α2J
∆2I

(
1− 2n

J

)
, if n ∈ {1, . . . , log2 J − 1}

(31)
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We note two points. First, t◦1 < 112α2

∆2I
(J − 1) for all J = 2m, where m ∈ Z+. Second, t◦n clearly

depends upon I, J , and T but we are suppressing the notation for the simplicity of notation. We

now provide two lemmas needed for the proof of Theorem 10. The proofs are provided following

the proof of Theorem 10.

Lemma 13. Under assumption 1 and under policy π∗, if none of the events Aj , Bj occur, for all

j ∈ J and none of the events γ◦π∗,n(t
◦
n) ∩ γ3π∗,n(t

◦
n) occur for all 1 ≤ n ≤ log2 J , then at time t◦n, the

anchor rate l∗π∗(t◦n) ≥ µ2n−1 −∆ for all 1 ≤ n ≤ log2 J .

Lemma 14. Under assumption 1, P
(
γ◦π∗,n(t

◦
n) ∩ γ3π∗,n(t

◦
n)
)
< e−

I
12 , for 1 ≤ n ≤ log2 J − 1.

We now give the proof of theorem 10.

Proof of Theorem 10. By Lemma 13, if none of the events Aj , Bj occur, for all j ∈ J and none

of the events γ◦π∗,n(t
◦
n) ∩ γ3π∗,n(t

◦
n) occur for 1 ≤ n ≤ log2 J respectively then under policy π∗ the

anchor rates l∗π∗(t◦1) ≥ µ1 − ∆ and therefore, l∗π∗

(
112α2

∆2I
(J − 1)

)
≥ µ1 − ∆. The probability that

none of the events in Aj , Bj for all j ∈ J and none of the events in γ◦π∗,n(t
◦
n) ∩ γ3π∗,n(t

◦
n) occur for

1 ≤ n ≤ log2 J is

1− P
(
∪j∈JAj ∪Bj ∪1≤n≤log2 J

(
γ◦π∗,n(t

◦
n) ∩ γ3π∗,n(t

◦
n)
))

≥ 1−
∑
j∈J

P(Aj)−
∑
j∈J

P(Bj)−
∑

1≤n≤log2 J

P
(
γ◦π∗,n(t

◦
n) ∩ γ3π∗,n(t

◦
n)
)

which by Lemmas 9 and 14 is at least

1− J
2
√
2π (log4 IT + 2)

JIT
− log2 Je

− I
12 = 1− 2

√
2π (log4 IT + 2)

IT
− log2 Je

− I
12 .

This completes the proof of the Theorem.

We now give the proofs of Lemmas 13 and 14.

Proof of Lemma 13. We first show that if Aj , Bj are false for all j ∈ J and γ◦π∗,log2 J
(t◦log2 J) ∩

γ3π∗,log2 J
(t◦log2 J) is false then the anchor rate l∗π∗(t◦log2 J) ≥ µJ

2
− ∆. Assume that Aj , Bj are false

for all j ∈ J and γ◦π∗,log2 J
(t◦log2 J) ∩ γ3π∗,log2 J

(t◦log2 J) is false. We note that γ1π∗,log2 J
(t◦log2 J) is true

because

∑
i∈G,j∈J

τ iπ∗,j(t
◦
log2 J

) = 2
|G|
I

× 16α2J

∆2
≥ 3

(
|G|
I

− 1

3

)
16α2J

∆2
for all G ⊆ I with

I

3
≤ |G| ≤ I.

This implies that γ2π∗,log2 J
(t◦log2 J) or γ3π∗,log2 J

(t◦log2 J) must be false. Therefore, either there exists

a product j1 ∈ Klog2 J−1 such that τ fπ∗,j1
(t◦log2 J) ≥ 16α2

∆2 or there exists a product j2 ∈ Klog2 J−1

such that l∗π∗(t◦log2 J) ≥ inf0<s≤t◦log2 J
C+
j2
(τπ∗,j2(s)). Since Aj1 , Aj2 , Bj1 , Bj2 are all false, therefore
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either l∗π∗(t◦log2 J) ≥ sup0<s≤t◦log2 J
C−
j1
(τπ∗,j1(s)) ≥ µj1 −∆ ≥ µJ

2
−∆ by lemma 10 or l∗π∗(t◦log2 J) ≥

inf0<s≤t◦log2 J
C+
j2
(τπ∗,j2(s)) ≥ µj2 > µJ

2
−∆.

We will now show that under the assumptions of the Lemma, at time t◦n, the anchor rate

l∗π∗(t◦n) ≥ µ2n−1 −∆ for all n ∈ {1 . . . log2 J−1}. We define tn as the first time l∗π∗(t) hits µ2n−1 −∆,

i.e.-

tn = inf{t|l∗π∗(t) ≥ µ2n−1 −∆}.

We point out that by definition, tn is decreasing in n. We also define xnj as the total effort by

all agents on product j between times tn+1 and tn, i.e.-

xnj = τ fπ∗,j (tn)− τ fπ∗,j (tn+1) .

Since Aj , Bj are false for all j ∈ J therefore by Lemma 10 for all j ∈ Km+1 \ Km, 0 ≤ m ≤
log2 J−1, C+

j (τπ∗,j(t)) ≤ µj +∆ ≤ l∗|π∗(t) for t ≥ tm+1 if τ fπ∗,j(t) ≥
16α2

∆2 . Pick any j ∈ Km+1 \Km.

The product j would be discarded under policy π∗ if it has the total cumulative effort of at least
16α2

∆2 at any time t ≥ tm+1. This implies that τ fπ∗,j (t) ≤ max{τ fπ∗,j (tm+1) ,
16α2

∆2 }, for all t ≥ tm.

This implies that
m∑

n=0

xnj ≤ 16α2

∆2
.

We will first show that tn − tn+1 ≤ 1
I max{3

∑
j /∈Kn

xnj ,
∑

j /∈Kn
xnj + 2n+1 16α2

∆2 }. Then using

the principle of optimality and mathematical induction, we will prove the lemma. At t = tn+1 +
1
I max{3

∑
j /∈Kn

xnj ,
∑

j /∈Kn
xnj + 2n+1 16α2

∆2 }, γ1π∗,n(t) is true because for any set of agents G ⊆ I,∑
i∈G,j∈Kn

τ iπ∗,j(t)

≥
∑

i∈G,j∈Kn

τ iπ∗,j(t)− τ iπ∗,j(tn+1)

≥ |G|(t− tn+1)−
∑
j /∈Kn

xnj

≥ |G|
I

max{3
∑
j /∈Kn

xnj ,
∑
j /∈Kn

xnj + 2n+1 16α
2

∆2
} −

∑
j /∈Kn

xnj
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If
∑

j /∈Kn
xnj > 2n 16α2

∆2 then

|G|
I

max{3
∑

j /∈Kn+1

xnj ,
∑
j /∈Kn

xnj + 2n+1 16α
2

∆2
} −

∑
j /∈Kn

xnj

= 3
|G|
I

∑
j /∈Kn

xnj −
∑
j /∈Kn

xnj

> 3(
|G|
I

− 1

3
)2n+1 16α

2

∆2

If
∑

j /∈Kn+1
xnj ≤ 2n 16α2

∆2 then

|G|
I

max{3
∑
j /∈Kn

xnj ,
∑
j /∈Kn

xnj + 2n+1 16α
2

∆2
} −

∑
j /∈Kn

xnj

=
|G|
I

(
∑
j /∈Kn

xnj + 2n+1 16α
2

∆2
)−

∑
j /∈Kn

xnj

=
|G|
I

2n+1 16α
2

∆2
− (1− |G|

I
)
∑
j /∈Kn

xnj

≥ |G|
I

2n+1 16α
2

∆2
− (1− |G|

I
)2n

16α2

∆2

= 3(
|G|
I

− 1

3
)2n

16α2

∆2

This implies that γ2π∗,n(t) or γ
3
π∗,n(t) must be false. Therefore, there exists a product j1 ∈ Kn−1

such that τ fπ∗,j1
(t) ≥ 16α2

∆2 or there exists a product j2 ∈ Kn−1 such that l∗π∗(t) ≥ inf0<s≤tC
+
j2
(τπ∗,j2(s)).

Since Aj1 , Aj2 , Bj1 , Bj2 are all false, therefore by lemma 10 either l∗π∗(t) ≥ sup0<s≤tC
−
j1
(τπ∗,j1(s)) ≥

µj1 −∆ ≥ µ2n−1 −∆ or l∗π∗(t) ≥ inf0<s<tC
+
j2
(τπ∗,j2(s)) ≥ µj2 > µ2n−1 −∆. Therefore,

tn ≤ t = tn+1 +
1

I
max{3

∑
j /∈Kn

xnj ,
∑
j /∈Kn

xnj + 2n+1 16α
2

∆2
}.

We will now complete the proof of the lemma using the principle of optimality and mathematical

induction. For each 1 < m ≤ log2 J and 1 ≤ n < m, we define ynj as the total cumulative effort by

all agents on product j ∈ Km \Km−1 between times tn and tm, i.e.-

ynj =

m−1∑
l=n

xlj = τ fπ∗,j (tn)− τ fπ∗,j (tm) ,
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yn = {ynj }j /∈Kn
is a vector whose elements are ynj for j /∈ Kn.

We define t∗n(y
n) as the maximum possible value of tn under the conditions of the Lemma

and the policy π∗ given yn. When J = 2 then clearly tn ≤ t∗(1)(0) = t◦1. Assume J > 2. For

n = log2 J − 1,

t∗n(y
n) ≤ 32α2J

∆2I
+

1

I
max{31Tyn,1Tyn + J

16α2

∆2
}

=

32α2J
∆2I

+ 1
I1

Tyn + 16α2J
∆2I

, if 1Tyn < J 8α2

∆2

56α2J
∆2I

, if 1Tyn = J 8α2

∆2

because 1Tyn ≤ J 8α2

∆2 . This implies that for n = log2 J − 1, since 1Tyn ≤ J 8α2

∆2 therefore t∗n(y
n) ≤

56α2J
∆2I

= 112α2J
∆2I

(1 − 2n

J ). We now state the assumption for induction. Assume that for some

n ≤ log2 J − 2,

t∗n+1(y
n+1) ≤

64α2J
∆2I

(1− 2n

J ) + 1
I1

Tyn+1, if 1Tyn+1 < 2n+1 16α2

∆2

64α2J
∆2I

(1− 2n+1

J ) + 3
I1

Tyn+1, if 1Tyn+1 ≥ 2n+1 16α2

∆2

Clearly, this holds for n = log2 J − 2. Therefore using the principle of optimality,

t∗n(y
n) = max

{xn
j ≤ynj }j /∈Kn+1

{t∗n+1(y
n+1) +

1

I
max{3

∑
j /∈Kn

xnj ,
∑
j /∈Kn

xnj + 2n+1 16α
2

∆2
}},

where yn+1
j = ynj − xnj for all j /∈ Kn+1. Since, 1Tyn ≥ 1Tyn+1, therefore 1Tyn+1 ≥ 2n+1 16α2

∆2

implies 1Tyn ≥ 2n 16α2

∆2 . This implies that

t∗n(y
n) = t∗n+1(0) +

1

I
max{31Tyn,1Tyn + 2n+1 16α

2

∆2
}

≤

64α2J
∆2I

(1− 2n

J ) + 1
I1

Tyn + 2n+1 16α2

∆2I
= 64α2J

∆2I
(1− 2n−1

J ) + 1Tyn, if 1Tyn < 2n 16α2

∆2

64α2J
∆2I

(1− 2n

J ) + 3
I1

Tyn, if 1Tyn ≥ 2n 16α2

∆2

By induction, the above holds for all n ∈ {1, . . . , log2 J − 2}. The maximum value is achieved

when ynj = 16α2

∆2 for all j /∈ Kn because t∗n(y
n) is increasing in each component of yn. We define

yn∗ = [16α
2

∆2 , . . . , 16α
2

∆2 ] a vector of all 16α2

∆2 . Therefore,

tn ≤ t∗n(y
n
∗ )

=
64α2J

∆2I
(1− 2n

J
) +

3J

I

16α2

∆2
(1− 2n

J
) =

112α2J

∆2I
(1− 2n

J
) = t◦n.

This completes the proof of the lemma.
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Proof of Lemma 14. We first point that the events γ◦π∗,n(t
◦
n)∩γ3π∗,n(t

◦
n) and γ◦πn−1,n(t

◦
n)∩γ3πn−1,n(t

◦
n)

for all 1 ≤ n ≤ log2 J are equivalent, i.e.- γ◦π∗,n(t
◦
n) ∩ γ3π∗,n(t

◦
n) ⇔ γ◦πn−1,n(t

◦
n) ∩ γ3πn−1,n(t

◦
n).

This is because if l∗π∗ (t) < inf0<s≤tC
+
j (τπ∗,j(s)) for all j ∈ Kn−1, then the firm never dis-

cards any of the products in Kn−1 until time t◦n under policy π∗. Therefore the firm and all

agents take the same actions until time t◦n under policy πn−1 as they would under policy π∗.

This implies that τ iπ∗,j (s) = τ iπn−1,j (s) for all 0 < s ≤ t◦n and all agents i ∈ I and therefore

γ◦π∗,n(t
◦
n) ∩ γ3π∗,n(t

◦
n) ⇔ γ◦πn−1,n(t

◦
n) ∩ γ3πn−1,n(t

◦
n). This implies that

P
(
γ◦π∗,n(t

◦
n) ∩ γ3π∗,n(t

◦
n)
)
= P

(
γ◦πn−1,n(t

◦
n) ∩ γ3πn−1,n(t

◦
n)
)
≤ P

(
γ◦πn−1,n(t

◦
n)
)
.

Further,

P
(
γ◦πn−1,n(t

◦
n)
)
= P

(
γ1πn−1,n(t

◦
n) ∩ γ2πn−1,n(t

◦
n)
)
≤ P

(
γ2πn−1,n(t

◦
n)|γ1πn−1,n(t

◦
n)
)
.

We point that

γ2πn−1,n(t
◦
n) ⇒

∑
j∈Kn−1

τ f
πn−1,j

(t◦n) < 2n−1 16α
2

∆2
.

We also define the set

Xn = {x ∈ RI :
∑
i∈G

xi ≥ 3

(
G

I
− 1

3

)
2n

16α2

∆2
, for all G ⊆ I, |G| > I

3
}

and vector yn ∈ RI where the ith element yni =
∑

j∈Kn
τ iπn−1,j (tn). Therefore

γ1πn−1,n(t
◦
n) ⇔ yn ∈ Xn.

Therefore

P
(
γ2πn−1,n(t

◦
n)|γ1πn−1,n(t

◦
n)
)
≤ P

 ∑
j∈Kn−1

τ f
πn−1,j

(t) < 2n−1 16α
2

∆2
|yn ∈ Xn

 .

We next point out that by Theorem 6 and Lemma 12,

E

 ∑
j∈Kn−1

τ iπn−1,j (t) |y
n
i = xi

 ≥ E

 ∑
j∈Kn−1

τ iπKn ,j
(xi)

 >
xi
2
.
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By Azuma-Hoeffding inequality,

P

 ∑
i∈I,j∈Kn−1

τ iπn−1,j (tn) < 2n−1 16α
2

∆2
|yn = x

 < e−2
(2n−1 16α2

∆2 −x.1
2 )2

x.x .

The maximum value of the right hand side of the inequality over all x ∈ Xn is attained at x∗,

where

x∗i =

0, if i ≤ I
3

3.2n 16α2

I∆2 , if i > I
3

and the maximum value is e
−2I

(2n−1 16α2

∆2 )2

6(2n 16α2

∆2 )2
= e−

I
12 . Therefore for each n ∈ {1, . . . , log2 J},

P
(
γ◦π∗,n(t

◦
n) ∩ γ3π∗,n(t

◦
n)
)
< e−

I
12 .

A.3.6 Proof of Theorem 11

Proof. Under assumption 1 by Theorem 10 and Lemma 9, the anchor rate l∗π∗(t) ≥ µ{1} − ∆ by

time t = 112α2

∆2I
(J−1) and Aj , Bj are false for all j ∈ J with probability at least 1− 2

√
2π(log4 IT+2)

IT −
log2 Je

− I
12 . Therefore after time t = 112α2

∆2I
(J − 1) all arms other than arm {1} that receive the

total cumulative effort of at least 16α2

∆2 are discarded with probability at least 1− 2
√
2π(log4 IT+2)

IT −
log2 Je

− I
12 . Therefore the total cumulative effort on arms other than arm {1} is at most 112α2

∆2 (J −
1) + 16α2

∆2 (J − 1) with probability at least 1 − 2
√
2π(log4 IT+2)

IT − log2 Je
− I

12 . This implies that the

expected total cumulative effort on all arms other than arm {1} is:

E[
∑
j ̸={1}

τ fπ∗,j (T )] ≤
112α2

∆2
(J − 1) +

16α2

∆2
(J − 1) +

(
2
√
2π (log4 IT + 2)

IT
+ log2 Je

− I
12

)
IT

=
36

∆2
(8J − 15)

(
log J + log IT − log

√
2π
)
+
√
2π (log2 IT + 4) +

12β log2 J log T

T β−1

<

(
576J

∆2
+

√
2π

log 2

)
log IT +

12β log2 J log T

T β−1

where β = I
12 log T > 1 and J < IT .
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A.3.7 Proof of Theorem 12

Proof of Theorem 12. Assume µ1 > µ2. By Lemma 8 any policy π with regret o(T a) for all a > 0

for all µ′ with ∆ > 0 must have

lim
T→∞

P
(
t2π,1 < 2 (1− ϵ) log (ITT )/ (µ1 − µ2)

2 , t2π,2 <
ITT

2

)
= 0

for all ϵ > 0. Therefore, we can restrict the candidate policies to the set of policies that satisfy this

condition. Asymptotically, such policies do not discard any of the products 2, 3, . . . , J before T/2

unless τ fπ,1(T/2) > 2 (1− ϵ) log (ITT )/ (µ1 − µ2)
2 almost surely. Such policies also discard product

1 before time T/2 with probability at most o((ITT )
a−1) for all 0 < a < 1 otherwise the expected

regret for µT would be Ω((ITT )
a). This implies that for 0 < a < 1 by setting ϵ = 1/2

lim
T→∞

P
(
T/2− τ fπ,1(T ) > Ω((ITT )

a)
)

> P
(
T/2− τ fπ,1(T/2) > Ω((ITT )

a), JT/2 = J
)
+ lim

T→∞
P
(
1 /∈ JT/2

)
> lim

T→∞
P
(
τ fπ,1(T/2) < log (ITT )/ (µ1 − µ2)

2 , JT/2 = J
)
+ lim

T→∞
P
(
1 /∈ JT/2

)
= lim

T→∞
P
(
τ fπJ,1

(T/2) < log (ITT )/ (µ1 − µ2)
2 , 1 ∈ JT/2

)
+ lim

T→∞
P
(
1 /∈ JT/2

)
The last equality applies because τ fπ,1(T/2) < log (ITT )/ (µ1 − µ2)

2 and 1 ∈ JT/2 almost surely

implies that JT/2|π = J and

τ fπ,1(T/2) < log (ITT )/ (µ1 − µ2)
2 ⇔ τ fπJ,1

(T/2) < log (ITT )/ (µ1 − µ2)
2

almost surely following Lemma 7. Therefore the above probability is greater than

lim
T→∞

P
(
τ fπJ,1

(T/2) < log (ITT )/ (µ1 − µ2)
2
)
− lim

T→∞
P
(
1 /∈ JT/2

)
+ lim

T→∞
P
(
1 /∈ JT/2

)
= lim

T→∞
P
(
τ fπJ,1

(T/2) < log (ITT )/ (µ1 − µ2)
2
)
.

From Lemma 11 for any agent i and x < T/2,

P
(
τ iπJ,1(T/2) < x

)
= P

(
Li
π{1}

(x) < Li
πJ\{1}

(T/2− x)
)

We point out that by equation 10 for all y ≤ 0, P
(
Li
1 (x) < y

)
is absolutely continuous in µ1.

Therefore,

P
(
Li
π{1}

(x) < Li
πJ\{1}

(T/2− x)
)
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is continuous in µ1. By taking limit as T approaches infinity and choosing

x = log (ITT )/(IT (µ1 − µ2)
2),

x approaches infinity along with T .

lim
T→∞

P
(
τ iπJ,1(T/2) < x

)
= lim

T→∞
P
(
Li
π{1}

(x) < Li
πJ\{1}

(T/2− x)
)

By symmetry, when µ1 = µ2, then the probability

lim
x,y→∞

P
(
Li
π{1}

(x) < Li
πJ\{1}

(y)
)
= 1− 1/J.

Therefore by continuity, for sufficiently large T , there exists a β > 0 such that

P
(
Li
π{1}

(x) < Li
πJ\{1}

(T/2− x)
)
> 1− 1/(

√
(1− β)J).

This implies that

lim
T→∞

P
(
τ fπ{1,2},1

(T/2) < log (ITT )/ (µ1 − µ2)
2
)

>
∏
i∈I

lim
T→∞

P
(
τ fπ{1,2},1

(T/2) < log (ITT )/(IT (µ1 − µ2)
2)
)

> (1− 1√
(1− β)J

)IT > e−IT /(
√

(1−β)J) = T−IT /(
√

(1−β)J log T ) > T−
√

(1−β).

This implies that limT→∞ P
(
τ fπ,2(T ) > Ω((ITT )

a)
)
> T−

√
(1−β) for all a ∈ (0, 1). This implies

that

Z̃π(T,µT ) > Ω((ITT )
a)T−

√
(1−β) = Ω((IT )

aT a−
√

(1−β)).

By choosing a =
√

(1− β)− (1− β), and b = 1−
√
(1− β),

Z̃π(T,µT ) = Ω((ITT )
b).
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