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We study the impact of inventory constraints on bundling in a dynamic pricing setting, challenging the clas-
sical view that bundling consistently enhances revenue. Traditional bundling theory, which usually assumes
abundant inventory and static pricing settings, typically asserts that bundling generates higher revenue than
selling products individually. However, we show that limited inventory, in fact, distorts the revenue extrac-
tion capability of bundling in favor of selling the products or services separately. We study the optimal
dynamic mixed bundling strategy in a large market regime where the market size grows relative to limited
inventory. Leveraging this framework, we derive optimal dynamic pricing policies and value functions for
commonly used bundling strategies, including mixed bundling, pure bundling, bundle-size pricing, and com-
ponent pricing. Our analysis reveals that as inventory becomes more constrained relative to market size, the
most general dynamic mixed bundling strategy converges to a dynamic component pricing strategy, out-
performing both dynamic bundle-size pricing and dynamic pure bundling. Moreover, the performance gap
between these strategies increases with the number of items, a factor typically viewed as favoring bundling
when inventory is abundant. Notably, our numerical experiments suggest that these insights also extend to
the fluid-regime policies, revealing that as the market size increases relative to inventory, the dynamic mixed
bundling strategy derived from the fluid regime mimics a dynamic component pricing strategy.

1. Introduction
Bundling, the practice of offering multiple products together as a single package, is employed across
industries by firms seeking to extract more value from heterogeneous consumer preferences. Whether
in the form of subscription services, promotional packages, or mixed bundling offers, the practice
allows firms to price discriminate, reduce transaction complexity, and enhance perceived consumer
value. The conceptual foundation for bundling is rooted in the seminal works of Stigler (1963) and
Adams and Yellen (1976), who demonstrated its effectiveness as a price discrimination tool and, hence,
the ability to extract larger consumer surplus rather than selling the items or services separately.
Subsequent research has explored bundling in various contexts, highlighting the aggregation benefits
of bundling. However, most of these studies focus on static environments with non-perishable and
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unlimited inventory or capacity, which may be more representative of digital goods than physical
ones. There is a consensus in the literature about the benefits of bundling in terms of extracting
consumer surplus, best summarized by the following quote from Tjan (2010):

“There is a simple and pretty consistent rule of thumb on the question [of bundling]. Here it

is: unbundling or a la carte pricing benefits the buyer and packaged or bundled deals give the

advantage to the seller.”
There are mainly three types of bundling strategies in addition to selling the products separately

that a firm may use:
(i) Component Pricing (Additive Bundle Pricing) (CP): The firm sets individual prices for each

product separately. If a customer purchases multiple products (a bundle), they pay the sum of
these individual prices—hence the term “additive bundling."

(ii) Pure Bundling (PB): The firm offers only a comprehensive bundle that includes all its products
or services. Customers either choose to buy the entire bundle or nothing since purchasing items
separately is not an option.

(iii) Bundle Size Pricing (BSP): The firm sets the bundles’ prices based solely on the number of
products they contain, regardless of which specific products or services are included.

(iv) Mixed Bundling (MB): The firm sets prices for each product or service, along with every possible
combination of these as distinct bundles.

Mixed bundling represents the most general strategy, subsuming the other strategies as specific
instances. Meanwhile, bundle size pricing subsumes pure bundling and certain instances of component
pricing, such as a uniform price for all products. We illustrate the relationship among the four
strategies in Figure 1. Considering this hierarchy, the literature primarily studies the value of bundles

Mixed Bundling

Bundle Size Pricing

Pure 
Bundling

Component 
Pricing

Figure 1 Relationship between the different bundling strategies
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in static environments with unlimited inventory. In other words, the inventory significantly exceeds

the market size, which refers to the potential demand. This situation typically involves a finite number

of items, denoted as N (usually N=2), along with specific assumptions regarding the distribution of

valuations, often for items that have zero marginal costs. Within this setting, the prevailing consensus

on the surplus extraction capability of different bundling schemes can be summarized by the following

ordering:

MB ≿ BSP ≻ PB ≻ CP [Inv.>>Market Size | N <∞]

where Mixed Bundling (MB) is generally the most effective at extracting consumer surplus, whereas

Component Pricing (CP) is the least. While mixed bundling is the most general strategy, it is also the

most complicated. In particular, letting N represent the number of items, mixed bundling requires

setting up to 2N − 1 prices, compared to N prices for BSP and CP, and a single price for PB. It is

worth noting that despite BSP requiring only N prices, Chu et al. (2011) demonstrated that BSP

closely approximates the revenue extraction of MB. Nevertheless, finding the optimal BSP and MB

is generally intractable. For this reason, much of the bundling literature focuses on comparing CP

versus PB as simpler strategies to characterize.

Another relevant line of research is the large-scale bundling literature, which analyzes the asymp-

totic performance of pricing policies as the number of items becomes large (N → ∞) (Bakos and

Brynjolfsson 1999, Abdallah et al. 2021). This literature provides valuable insights into the relative

effectiveness of different pricing schemes in extracting surplus under general valuation distributions.

In particular, it highlights the effectiveness of simple bundling strategies, demonstrating that even

these simple pricing strategy can very well approximate the performance of the more general MB

streategies. In particular, under assumptions of zero marginal costs and unlimited inventory for large

N , the literature identifies the following ordering in terms of surplus extraction ability:

MB ∼ BSP ∼ PB ≻≻ CP [Inv.>>Market Size | N → ∞]

In this asymptotic regime, simpler strategies, such as Bundle-Size Pricing (BSP) and Pure Bundling

(PB), significantly outperform Component Pricing (CP) and achieve performance nearly comparable

to that of mixed bundling (MB). These robust theoretical findings may help explain the success

of digital platforms such as Netflix, Spotify, and Amazon Prime, which effectively employ pure

bundling strategies by aggregating various goods and services into single comprehensive packages.

These platforms notably benefit from near-zero marginal costs and virtually unlimited inventory,

enabling them to leverage bundling as an effective mechanism for revenue optimization.
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Inspired by these successes in digital products and services, bundling strategies have been increas-
ingly adopted in industries that deal with physical goods, such as retail, hospitality, and trans-
portation. Companies like Dollar Shave Club, Stitch Fix, and Sephora Play! utilize bundling as a
key aspect of their business models, often incorporating it into subscription services or promotional
campaigns. However, bundling in industries involving physical goods, where finite inventory and
operational constraints prevail, introduces complexities that traditional models typically overlook.
For example, retailers, airlines, and hotels frequently operate under conditions of scarce inventory,
uncertain demand, and time-sensitive selling opportunities. The existing literature on bundling often
abstracts away these operational realities, focusing instead on stylized scenarios without inventory or
time constraints. Conversely, classical literature on multi-product dynamic pricing explicitly models
inventory and time constraints but typically overlooks bundling effects by treating each bundle as an
independent product with distinct demand (Gallego and Van Ryzin 1997).

In this paper, we bridge this gap by examining how operational factors, such as limited inventory
levels and finite time horizons, influence the dynamics of bundling and its effectiveness in enhancing
surplus extraction and price discrimination benefits. Furthermore, we address the effective design
and implementation of dynamic bundling strategies when inventory is scarce relative to the potential
market size. Specifically, we study the dynamic mixed bundling and pricing problem under the large
market regime recently proposed by Abdallah and Reed (2025b,a), for the single-item setting where
the market size (expected arrivals over the time horizon) is scaled while the inventory is held fixed.
The large market regime contrasts with the fluid regime, in which both market size and inventory
are both scaled proportionally (Gallego and Van Ryzin 1997). The large market regime provides
clearer analytical insights compared to the fluid regime, where both market size and inventory scale
together, resulting in a deterministic limiting problem that is complicated by non-convex inventory
constraints, which are challenging to analyze.

Leveraging this large market regime framework, we characterize the convergence of optimal policies
for dynamic mixed bundling, bundle-size pricing, pure bundling, and component pricing, along with
their respective expected revenues under general valuation distributions and any number of items
N < ∞. Importantly, our analysis reveals that in settings where inventory is scarce relative to the
market size, the ordering of policies by their effectiveness in extracting consumer surplus reverses,

MB ∼ CP ≻ BSP ≻≻ PB [Inv.<<Market Size | N <∞]

where component pricing (CP) now significantly outperforms bundle size pricing (BSP) and pure
bundling, achieving performance comparable to mixed bundling (MB).

This reversal highlights that the advantages of bundling diminish significantly under conditions
of scarce inventory, causing optimal dynamic mixed bundling strategies to closely resemble dynamic
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component pricing (additive bundling). Furthermore, we demonstrate that the relative performance

of pure bundling (PB) and bundle size pricing (BSP) decreases as the number of items N increases,

reversing the insights from existing literature on large-scale bundling with abundant inventory, which

suggest that increased number of items generally enhances the effectiveness of PB and BSP. Our

contributions are summarized next.

1.1. Contribution

• We extend the large market regime introduced by Abdallah and Reed (2025b,a) from a single-

item setting to a multi-item setting where firms must dynamically optimize their prices for individual

products and bundles with limited inventory. Unlike prior work on bundling that ignores inventory

effects, this paper develops a multi-dimensional framework that captures the complex interactions

between dynamic bundling decisions and inventory constraints.

• We characterize the value functions and optimal dynamic pricing policies for the four pricing

strategies, MB, BSP, PB, and CP, in the large market regime. Unlike prior work that often relies on

specific distributional assumptions or asymptotic approximations, our results hold for any number

of items N <∞ and fairly general distributional assumptions.

• Our characterization of the value functions and optimal pricing policies for the four strategies

allows for a systematic comparison of their performance under general valuation distributions and

finite N . First, we show that as the market size increases relative to inventory, the revenue difference

between mixed bundling (MB) and component pricing (CP) vanishes. That is, firms cannot lever-

age bundling strategies to increase revenue beyond what optimal component pricing achieves. This

result fundamentally revises prior assumptions about the superiority of bundling, showing that in

an inventory-scarce environment, the advantage of bundling diminishes. Second, we find that in the

large market regime, pure bundling (PB) and bundle size pricing (BSP) become less effective as N

increases, contrary to classical bundling theory, which suggests that bundling improves with more

items.

• We demonstrate numerically that our theoretical insights hold beyond the large market regime

assumptions, particularly for moderate inventory-to-market-size ratios (IMR). We observe that the

revenue advantage of pure bundling (PB) over component pricing (CP) holds only for a large

inventory-to-market-size ratio, but as the market size increases, CP catches up and eventually sur-

passes PB. The impact of the number of items N is also reversed as the market size grows, where

larger N favors PB over CP for small IMR. However, as the market size increases, particularly beyond

IMR thresholds between 22% and 42%, CP begins to dominate PB, with the gap widening for larger

N.
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• Our numerical results demonstrate that our insights regarding the diminishing value of bundling
also apply to the policies of the fluid regime, where inventory and market size grow proportionally.
In particular, we demonstrate that the optimal dynamic mixed bundling (MB) solution derived from
the limiting fluid problem closely resembles dynamic component pricing (CP).

2. Related Literature
Our results are closely related to the literature on monopolistic bundling and network revenue man-
agement. Certain forms of opaque pricing strategies are also closely related to our work (see, for
example, Briest and Röglin (2010) and Elmachtoub and Hamilton (2021)). We focus now on recent
advances in these fields.

Bundling. There is extant literature on the static monopolistic bundling problem with unlimited
inventory using a stylized two-item model that dates back to the work of Stigler (1963) and Adams
and Yellen (1976). This literature emphasizes the benefits of bundling as a price discrimination tool.
Interested readers are referred to the review by Venkatesh and Mahajan (2009).

An active research area (mainly in computer science) focuses on providing conditions under which
simple selling mechanisms are optimal or nearly optimal in a setting with no inventory constraints and
an arbitrary number of items. Hart and Nisan (2017) show that component pricing and pure bundling
guarantee a fraction of the optimal mechanism revenue in this setting. This fraction, however, shrinks
to zero as the number of items grows large. Babaioff et al. (2014) show that the maximum revenue of
component pricing and pure bundling is a constant-factor approximation to the optimal revenue. Fang
and Norman (2006) also compares component pricing and pure bundling and provides distribution-
dependent conditions for when one strategy is better. Ma and Simchi-Levi (2015) study a new
bundling strategy, called bundling with disposal, under a general cost structure and show that it can
well approximate the optimal revenue mechanism. They also show that this strategy is asymptotically
optimal as the number of items grows large.

Bakos and Brynjolfsson (1999) elegantly highlight the power of pure bundling for a large number
of items with zero marginal costs and unlimited inventory. They show that as the number of items
increases, a simple pure bundling strategy essentially extracts all of the consumer surplus. This is
mainly due to the heterogeneity-reduction property of bundles, where for a large number of items, the
valuation of a bundle becomes concentrated around its mean. Abdallah (2019) shows the limitations
of pure bundling in the presence of positive marginal cost by providing distribution-free bounds on
its asymptotic profit in this setting. Abdallah et al. (2021) consider a simple bundling policy called
bundle size pricing. They show that bundle size pricing is more effective at extracting consumer
surplus than pure bundling in the presence of marginal costs. They also provide a closed-form solution
for the asymptotically optimal bundle size pricing policy.
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An emerging research area (mainly in operations management) focuses on the optimization problem
arising from the static pricing problem for a given bundling strategy without inventory constraints.
Honhon and Pan (2017) examine bundling strategies in the context of vertically differentiated prod-
ucts, demonstrating that offering bundles can increase profits even in the absence of consumption
complementarity. Their analysis explicitly considers positive variable costs, a departure from the
typical assumption of negligible costs in bundling literature. Chen et al. (2017) study distribution-
free pricing problems and show that they can be used efficiently for pure bundling for any number
of products. Wu et al. (2008) study the bundle size pricing problem with deterministic valuations
and propose a Lagrangian-based heuristic to solve it. Using clever reformulations Wu et al. (2018)
show that bundle size pricing problems with deterministic valuations that satisfy the single-crossing
property can be solved exactly using linear or dynamic programming approaches. Li et al. (2022)
have shown that bundle size pricing problems with random valuations can be approximated by a
convex optimization problem using a family of semi-parametric choice models. Recently, Sun et al.
(2025) study the design and pricing of a single optimal bundle alongside individual sales of remaining
products, demonstrating that this strategy can yield higher profitability and social welfare relative
to pure bundling or separate component pricing.

There is limited research on the effects of inventory constraints in bundling problems, even in a
static setting. Ernst and Kouvelis (1999) show that in a newsvendor problem with two items ignoring
substitution effects in the presence of bundles and stockouts is suboptimal. Cao et al. (2015) study
the bundling problem of two items in a newsvendor setting when the supply of the attractive product
is limited. They show that, in this case, bundling extracts a larger surplus. Song and Xue (2021)
study a multi-period joint replenishment and pricing problem for product assemblies where a product
can be viewed as a bundle of sub-assemblies. They provide exact and heuristic methods for different
assembly systems.

Multi-product Dynamic Pricing. Gallego and Van Ryzin (1997) is the canonical paper in the
multi-product dynamic pricing literature. They study this problem in a fluid regime that scales both
the inventory levels and the arrival rate. They propose asymptotically optimal heuristics based on
the resultant limiting deterministic problem. Jasin (2014) and Chen et al. (2015) propose improved
heuristics for the same problem requiring minimal real-time price adjustments. There have been sev-
eral extensions to this canonical model to include dynamic pricing joinlty with other considerations
such as learning (see Araman and Caldentey (2009), Besbes and Zeevi (2012), Keskin and Zeevi
(2014), den Boer and Zwart (2015)), consumer behavior (Chen and Farias (2018), Liu and Cooper
(2015), Najafi et al. (2024)), and competition (Martínez-de Albéniz and Talluri (2011), Adida and
Perakis (2010), Gallego and Hu (2014)). Closely related to the multi-product dynamic pricing litera-
ture is the multi-product capacity control literature (see, for example, Talluri and Van Ryzin (1998),
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van Ryzin and Vulcano (2008), Topaloglu (2009)), Kunnumkal and Talluri (2015)). Interested readers
are also referred to the books by Talluri and Van Ryzin (2006) and Gallego et al. (2018).

The paper most closely related to our work from a modeling perspective is Bulut et al. (2009).
They numerically solve a single-period static bundling problem using heuristics with two items and
limited inventory. They also extend their numerical results to a multi-period dynamic bundling
problem, noting that the performance of bundling is highly sensitive to model parameters in terms
of demand and inventory levels. Liao et al. (2017) study the capacity control version of two-item
dynamic bundling in a multi-period discrete time setting. The components’ and bundle prices are
fixed, but the firm must decide which bids to accept or reject. They provide a comparative statics
analysis and propose heuristics for cases involving more than two items.

Our model follows the canonical framework of Gallego and Van Ryzin (1997), where bundles are
composed of multiple items assembled as products. We note, however, that Gallego and Van Ryzin
(1997) assume that the demand for each product/bundle is exogenous and satisfies some concavity
property and that demand for each product/bundle is independent. In our case, the demand for
products/bundles is determined endogenously, as it depends on item valuations and set prices.

3. The Model
We consider a firm selling N ≥ 1 different item types over a finite time horizon of length t > 0.
The initial inventory of item n is Q0,n units for n = 1, ...,N . We set Q0 = (Q0,1,Q0,2, . . . ,Q0,N) to
be the initial inventory position of the firm. We assume that all random variables are defined on a
common probability space (Ω,F , P ). Customers arrive according to a Poisson process M with a rate
λ> 0 known to the firm. Customer m (m≥ 1) arrives at time τm and has idiosyncratic nonnegative
valuation Xm,n for item n. We set Xm = (Xm,1, . . . ,Xm,N) to be the item valuation vector for customer
m. We also assume that the Xm,n are independent and identically distributed (i.i.d.) across customers
and item types, and we denote their common distribution function by F , which we assume to be
absolutely continuous.

Given N item types, the firm may offer B = 2N − 1 unique bundles to price accordingly. We index
these bundles by b= 1, ...,B. Let H be an N ×B matrix where the (n, b)th entry of H equals 1 if
bundle b contains item n = 1, . . . ,N and 0 otherwise. We refer to H as the bundle design matrix.
Consistent with the bundling literature, we assume that a customer’s valuation for a bundle is additive
in nature. Specifically, the bundle valuations for a customer with items valuation vector X ∈RN+ are
given by V =H ′X ∈RB+, where H ′ denotes the transpose of the bundle design matrix. We note that
the non-negative valuation can be relaxed if we allow for the free disposal of items with negative
values.

At each point in time 0 ≤ s≤ t, the firm sets a price ps ∈ RB+ for the bundles. Given the additive
valuation, we make two assumptions on ps without loss of optimality. Our first assumption is the
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monotonicity of p with respect to the items in a bundle. Specifically, for each bundle type b ∈

{1,2, ...,B}, denote by ψb ⊆ {1,2, ..,N} the set of items contained in bundle b. We assume that if
b, b

′ ∈ {1,2, ...,B} are such that ψb ⊆ ψb′ , then pb ≤ pb′ . In other words, this assumption states that
adding an item to a bundle will not decrease its price. Our second assumption on ps is that it is
subadditive as a function on the set of items {1,2, ...,N}. Technically speaking, this assumption may
be written as pb ≤ pb′ +pb′′ for b, b′

, b
′′ ∈ {1,2, ...,B} such that ψb = ψb′ ∪ψb′′ . The primary implication

of subadditivity is that purchasing a set of items as a single bundle is never more expensive than
purchasing them as two or more smaller bundles. Moreover, if some item n= 1, . . . ,N is stocked out,
we force the price of any bundle b that contains item n to ∞. Therefore, given q ∈ RN+ , we denote
the feasible pricing vectors by P(q).

An arriving customer will determine which bundles to purchase by maximizing the surplus of their
bundle valuation vector V relative to the firm’s current pricing vector. We assume that customers
have a unit demand for each item type. Therefore, using the monotonicity assumption of the pricing
policy, it is straightforward to show that a customer will never purchase bundles with overlapping
items. Also, note that the firm’s inventory position constrains the bundles available for customers
to purchase, which is reflected in the pricing vector p ∈ P(q). Given the unit demand assumption,
let y ∈ {0,1}B denote the bundle purchasing decision of a customer where yb = 1 if the customer
purchases bundle b= 1, . . . ,B and is zero otherwise.

Given a pricing vector p and inventory position q, the optimal bundle purchasing decision of a
customer with bundle valuation vector V is then given by a solution to the optimization problem

max
y∈B(q)

(V − p)′y (1)

s.t. H · y ≤ e,

where e is the all-ones vector of length N and B(q) is the set of feasible binary bundle purchase vectors
for bundles that are not stocked out. More specifically, B(q) ⊆ {0,1}B is the set of all binary vectors
such that yb = 0 for b= 1 . . . ,B if there exists n∈ ψb such that qn = 0. That is, B(q) is the feasible set
of decisions that take into account the firm’s inventory position and restricts the customers’ choices
only to bundles that do not include a stocked-out item. Note that there may exist more than one
optimal solution to (1); however, from a technical perspective, this can be ignored since we assume
that the valuation distribution F is absolutely continuous. We now denote by y⋆(X,q, p) the unique
choice P -a.s.

The firm may dynamically adjust the price of each bundle in response to the previous history
of customer purchases and its current inventory position. We denote the set of admissible pricing
policies by U . To be admissible, a pricing policy p = {ps,0 ≤ s ≤ t} in an RB+-dimensional space,
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where ps = p(Qs, t− s) ∈ P(Qs), must fulfill two conditions. The first is that p must P -a.s. be right-
continuous with left limits. Second, for each b∈ {1, ...,B}, we require that the 1-dimensional bundle
b pricing process p(b) = {ps(b),0 ≤ s≤ t} be measurable and adapted to the filtration {FD

s , s≥ 0},
where

Ds(p) =
Mt∑
m=1

y⋆(Qτm−,Xm, pτm−) (2)

is a B-dimensional vector representing the cumulative amount of each type of bundle purchased by
time s, and

Qs(p) =Q0 −HDs(p) (3)

is the time s inventory position of the firm. For any admissible pricing policy p, it can be shown
that there exists a unique solution to (2) and (3). Also, since by (1) customers take into account the
inventory position of the firm when making their purchasing decision, it follows that for any p ∈ U ,
Qs(p) ≥ 0 for 0 ≤ s≤ t.

Consistent with the revenue management literature, we assume all items have zero marginal cost.
The firm is, therefore, interested in maximizing its expected revenue. Now note that for any admissible
pricing policy p∈ U , the realized revenue of the firm over the selling horizon [0, t] may be expressed
as

Ms∑
m=1

pτm− · y⋆(Qτm−,Xm, pτm−) =
∫ t

0
p′
s−dDs(p).

Given an admissible policy p ∈ U and initial inventory position q ∈ NN , we denote the expected
revenue of the firm by

Jp(λ; q, t) = E

[∫ t

0
p(Qs, t− s)′dDs(p)

]
. (4)

Thus, the optimization problem of the firm may be written as

J⋆(λ; q, t) = sup
p∈U

Jp(λ; q, t). (5)

Next, we show that the firm’s optimization problem may be written as a stochastic intensity control
problem and provide some results on its corresponding HJB equations and optimality conditions.

3.1. Optimality Conditions

First note that by assumption on the tie-breaking rule at most 1 bundle will be purchased by a
customer. Hence, for any pricing policy p∈ U , it follows by the results in II.1 of Brémaud (1981) that
D(p) is a B-dimensional point process. Moreover, it can be shown that for each b∈ {1,2, ...,B}, the
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process Db is a 1-dimensional point process with stochastic intensity function λb(s) = λb(Qs−, ps−)

for 0 ≤ s≤ t, where λb :NN+ ×RB+ 7→R+ is given by

λb(q, p) = λE[y⋆b (q,X, p)] for (q, p) ∈NN+ ×RB+. (6)

It then follows by D7 of II.3 of Brémaud (1981) that

E
[∫ t

0
p′(Qs, t− s)dDs(p)

]
= E

[∫ t

0
p′(Qs, t− s)λ(Qs, p(Qs, t− s))ds

]
,

where λ(q, p) = (λ1(q, p), λ2(q, p), ..., λB(q, p)) ∈RB+, and so we may write

J⋆(λ; q, t) = sup
p∈U

E
[∫ t

0
p′(Qs, t− s)λ(Qs, p(Qs, t− s))ds

]
.

We now arrive at the following result by applying C2 and T3 of VII.2 of Brémaud (1981).

Theorem 1. The family of functions {J⋆(λ; q, ·), q ∈NN} are a solution to the system of equations

∂J⋆(λ; q, t)
∂t

= sup
p∈P(q)

{
B∑
b=1

λb(q, p) [pb − ∆J⋆(λ; q, b, t)]
}
, ∀t≥ 0, q ∈NN , (7)

J⋆(q,0) = 0, q ∈NN , (8)

J⋆(0, λt) = 0, t≥ 0, (9)

where ∆J⋆(λ; q, b, t) = J⋆(λ; q, t) − J⋆(λ; q − Hb, t) and Hb denotes the bth column of H for b =

1,2, ...,B. Moreover, there exists an optimal solution p⋆ to (5) such that p⋆t (ω) = p⋆(Qt, t), where the

family of functions {p⋆(λ; q, ·), q ∈NN} are measurable and such that

p⋆(λ; q, t) = arg sup
p∈RB

+

{
B∑
b=1

λb(q, p) [pb − ∆J⋆(λ; q, b, t)]
}
, t≥ 0. (10)

Closed-form solutions for the above system of nonlinear differential equations are not known except

in a few instances for the single-item setting (see Gallego et al. (2018)). Note, however, that the

HJB equations (7)-(9) are similar in structure to those of the classical network revenue management

problem studied by Gallego and Van Ryzin (1997), who examine their multi-item problem under an

asymptotic fluid regime that scales both the market size λt and initial inventory levels Q0 to ∞.

In the following subsection, we present a simple example illustrating why the fluid regime may be

ill-suited for analyzing dynamic mixed-bundle pricing problems. We then study the problem using

the large-market regime recently introduced by Abdallah et al. Abdallah and Reed (2025b,a) in the

single-item setting, where the initial inventory remains fixed while the market size λt approaches

infinity..
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3.2. Challenges of the Fluid Regime: A Simple Example
The fluid regime is defined by the following scaling, given k > 0 q = kλt and λt→ ∞. That is, both
the inventory and market size are scaled proportionally to infinity. One of the main advantages of the
fluid regime is that it leverages the law of large numbers to show that the “stochastic” value function
J⋆(q, t) can be well approximated with a “deterministic” value function, which is the solution to
a simpler optimization problem. Furthermore, one can leverage the solutions to the deterministic
problem to obtain policies that perform well for the original stochastic problem. In our setting, the
fluid deterministic problem can be written as

Jd(λ; q, t) = (λt) sup
p∈P(q)

B∑
b=1

E[y⋆b (q,X, p)]pb (11)

subject to
∑

b:n∈ψb

E[y⋆b (q,X, p)] ≤ qn
λt

for n= 1, . . . ,N

It is worth noting that one of the key assumptions for the convergence in the fluid regime to hold
is that the revenue function

∑B
b=1 E[y⋆b (q,X, p)]pb needs to be concave and the inventory-related

constraints should be convex, which is not the case even for the simplest mixed bundling problem.
Nonetheless, even if we assume that the convergence holds for the dynamic bundling problem, the
purchase probabilities under mixed bundling E[y⋆b (q,X, p)] do not admit closed-form expressions in
general. To the best of our knowledge, the one exception is the uniform distribution with only two
items. In particular, letting N = 2 and denoting by b = 1,2,3 the bundles containing item 1 only,
item 2 only, and the bundle, respectively, the deterministic problem under i.i.d. standard uniform
valuations is given by

Jd(λ; q, t) = (λt) sup
p

p1(1 − p1)(p3 − p1) + p2(1 − p2)(p3 − p2)

+ p3

(
(1 − p3 + p1)(1 − p3 + p2) − 1

2 (p1 + p2 − p3)2
)

(12)

subject to (1 − p1)(p3 − p1) + (1 − p3 + p1) (1 − p3 + p2) − 1
2 (p1 + p2 − p3)2 ≤ q1

λt
(13)

(1 − p2)(p3 − p2) + (1 − p3 + p1)(1 − p3 + p2) − 1
2 (p1 + p2 − p3)2 ≤ q2

λt
(14)

0 ≤ p1 ≤ 1,0 ≤ p2 ≤ 1,0 ≤ p3 ≤ p1 + p2

If we ignore the non-convex inventory constraints (13)-(14), a closed-form solution exists for this
simple case without inventory constraints (see, for example, Eckalbar (2010)). When the non-convex
inventory constraints are present, the problem becomes more challenging, even for this simple exam-
ple. Additionally, as the number of items N increases modestly, the problem becomes even more
challenging due to the combinatorial number of decisions and constraints involved and the fact that it
becomes very difficult to explicitly capture the interdependencies between the bundles. This renders
the fluid regime not suited for solving the dynamic bundle pricing problem. Instead, we next study
the dynamic bundle pricing problem in the recently introduced large market regime.
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4. The Large Market Regime
In the large market regime, we consider the stochastic control problem (5) of the firm when the
market size λt→ ∞ while the inventory is kept fixed. Observe that straightforward change of variables
in the Hamilton–Jacobi–Bellman equation (7) yields J⋆(λ; q, t) = J⋆ (1; q, λt) = J⋆ (λt; q,1) implying
that the optimal value function depends only on the initial inventory q and the composite quantity
λt, rather than on λ, q, and t separately. We therefore adopt the simplified two-parameter notation
J⋆ (q, λt), from which the full three-parameter form may be recovered via the change of variables.

In this regime, the pressure to liquidate inventory quickly to avoid unsold inventory at the end
of the selling horizon is significantly reduced. However, as shown by Abdallah and Reed (2025b,a),
this pressure still exists because the uncertainty is not resolved as λt becomes very large due to the
structure of the problem, which is fundamentally governed by extreme value behavior.

Indeed, extreme value theory provides the appropriate lens through which the large market regime
should be analyzed. Without this perspective, one might incorrectly conclude that the problem
becomes trivial in the limit and that a static pricing policy, where the firm simply sets a high price
and waits, is the optimal policy. As demonstrated by Abdallah and Reed (2025b), such static “price-
high-and-wait” policies perform poorly in this regime. A key insight arises from the Fisher–Tippett
theorem, the central result in extreme value theory, which characterizes the limiting distribution of
the maximum of a sequence of random variables. Notably, under this limiting behavior, the maxi-
mum customer valuation remains stochastic even as λt becomes large. Consequently, demand uncer-
tainty persists, and the firm can continue to benefit from intertemporal price discrimination, whether
through dynamic pricing or, in our multidimensional setting, dynamic bundling strategies.

In particular, let MN = max{X1, . . . ,XN} be the maximum valuation out N random valuations.
The Fisher-Tippett theorem, stated next, characterizes the convergence in distribution of an appro-
priately scaled MN .

Theorem 2 (Fisher-Tippett Theorem). If there exists norming constants bN ∈R and aN > 0
for N ≥ 1 and some non-degenerate distribution G such that

MN − bN
aN

d−→ G as N → ∞,

then G belongs to one of the following three extreme value distributions:

Type I (Gumbel): Λ(x) = exp(− exp(−x)), x∈R,

Type II (Frechet): Φα(x) =
{

0, x≤ 0,
exp(−x−α), x > 0,

Type III (Weibull): Ψα(x) =
{

exp(−(−x)α), x < 0,
1, x≥ 0,

where α> 0 for either Type II or Type III.
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In addition, the tail characteristics of the distribution F of X determine the resulting distribution
as N approaches infinity. We note that aN and bN can be adapted to constants with continuous
indexes a(t) and b(t). In addition, the Fisher-Tippett theorem continues to hold if the index N is
replaced by a Poisson random variable N(t) with rate t (see Chapter 4 in (Embrechts et al. 2013)).

We say that the distribution F belongs to the domain of attraction of G if there exist sequences
aN > 0 and bN ∈ R such that P (MN ≤ bN + aNx) → G(x) as N → ∞. In this paper, we focus on
distributions in the Weibull and Fréchet domains of attraction. However, we show numerically in
Section 8 that the key insights derived under these domains extend to the Gumbel domain as well.

Even though the Fisher-Tippett theorem is not used directly in our proofs, we present an equivalent
statement to the Fisher-Tippett in terms of the purchasing probability 1 −F , which plays a central
role in our proofs (see Proposition 3.1.1 in Embrechts et al. (2013)).

Proposition 1. Given aN ≥ 0 and bN ∈R, the following are equivalent

MN − bN
aN

d−→ G as N → ∞

N (1 −F (bN + aNx)) → − logG(x) as N → ∞.

for each x such that G(x)> 0.

5. A Generalized System of Equations
Before presenting our main results on the optimal dynamic bundling policies in the large market
regime, we first recall a system of equations introduced by Abdallah and Reed (2025a) in the single-
item setting. We also present its multidimensional generalization, which enables us to characterize
various optimal dynamic bundle pricing policies in the large market regime.

In the single-item setting and for κ > 0, Abdallah and Reed (2025a) introduced the following
system of equations

vκ−1
q = 1

κ
(vκq − vκq−1) for q ∈N+, (15)

where v0 = 0. The value of κ depends on the tail properties of the distribution and corresponds to
its domain of attraction. In particular, κ > 1, κ= 1, and κ < 1 correspond to the Weibull, Gumbel,
and Frechet domains of attraction, respectively. The system of equations (15) has a unique positive
solution that increases with κ, satisfying vq(κ) = q when κ = 1. Therefore, vq(κ) > q for κ < 1 and
vq(κ)< q for κ> 1. Figure 2 illustrates the relationship between vq(κ) and q for different values of κ.

Furthermore, vq(κ) admits the following asymptotic expansion (Abdallah and Reed 2025a)

vq(κ) = q+ κ− 1
2 ln q+ o(ln q) as q → ∞. (16)
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Figure 2 The values of {vq(κ)/q, q ≥ 1} for different values of κ.

The same system of equations (15) helps characterize the optimal dynamic mixed and pure bundling
policies in the large market regime. However, this system of equations is not suited to characterize
the optimal dynamic bundle-size pricing policies. Next, we introduce a new system of equations that
allows us to characterize the optimal dynamic bundle-size pricing in large markets.

Given q ∈ NN , let N (q) = {n∈ {1, ..,N} : qn ≥ 1} be the set of items that are not stocked out and
denote by |N (q)| its cardinality. Now for any κ> 0 and q such that |N (q)| ≥ 1, consider the system
of equations

ṽκ−1
q = |N (q)|(κ−1)/κ

κ

(
ṽκq −

∑
n∈N(q) ṽ

κ
q−en

|N (q)|

)
(17)

where ṽ : NN 7→ R+, ṽ0 = 0, and en is a single-entry vector with 1 in the nth entry. Note that for
κ > 0 and |N (q)| = 1, then ṽq(κ) = vqn(κ) for n∈ N (q). Therefore, the system of equations (17) can
be viewed as a multi-dimension generalization of (15). We summarize the properties of the solution
to (17) in the following proposition.

Proposition 2. The solution to the system of equations (17), ṽq(κ), satisfies the following prop-

erties

i. For every κ> 0, there is a unique positive solution {ṽq(κ), q ∈NN : |N (q)| ≥ 1}.

ii. For each q ∈NN with |N (q)| ≥ 1, ṽq(κ) is continuous and strictly increasing in κ> 0,

iii. For each q ∈ NN and κ > 0, ṽq(κ) is strictly increasing in q, where ṽq+en(κ) > ṽq(κ) for every

n= 1, . . . ,N .

iv. For each q ∈NN and κ> 0, ṽq(κ) is permutation invariant with respect to q. That is, letting σ(q)
be a permutation of q, then ṽσ(q)(κ) = ṽq(κ).
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v. For each q ∈ N such that |N (q)| ≥ 1, the relationship between the multidimensional ṽq and vqn

satisfies

ṽκq (κ) −
∑
n=1

vκqn
(κ)


≥ 0 for κ> 1,
= 0 for κ= 1,
≤ 0 for 0<κ< 1.

(18)

vi. For each q ∈N with N (q) ≥ 1 and for every κ> 0 where κ ̸= 1, the relation ṽκq (κ) −
∑
n=1 v

κ
qn

= 0
holds if and only if |N (q)| = 1 or |N (q)|> 1 with qn = 1 for each n∈ N (q).

6. Weibull Domain of Attraction
We begin our analysis of the optimal dynamic bundling problem in the large-market regime by focus-
ing on distributions that belong to the Weibull domain of attraction. This class includes distributions
with a finite right endpoint xU <∞, where xU = sup{x : F (x)< 1}, and whose upper tail, roughly
speaking, exhibits polynomial decay near xU . Examples include the uniform and beta distributions.
The following result, due to Resnick (2013), characterizes all distributions that belong to the Weibull
domain of attraction.

Definition 1 (Weibull Domain of Attraction). The item valuation distribution F is in
the Weibull domain of attraction if and only if xU <∞ and for some index α> 0,

F (xU − 1/x) = 1 −x−αL(x) for x> 0,

where L :R+ → (0,∞) is a slowly varying function. That is, for any x> 0, L(xt)/L(t) → 0 as t→ ∞.
We focus on a fundamental class of distributions belonging to the Weibull domain of attraction that
satisfies the so-called von Mises condition. (Resnick 2013).

Definition 2. A distribution function F with a finite right endpoint xU < ∞ is said to satisfy
the von Mises condition of the Weibull domain of attraction if F is absolutely continuous in a left
neighborhood of xU with positive density f and satisfies

lim
x↑xU

(xU −x) f(x)
1 −F (x) = α> 0. (19)

The von Mises conditions are classical sufficiency conditions in extreme value theory, with each
domain of attraction having its own set of these conditions. The Weibull domain of attraction includes
distributions that satisfy the von Mises condition or are tail equivalent to a distribution that satisfies
the von Mises condition. Almost all continuous distributions satisfy their respective von Mises condi-
tions (see, for example, Chapter 8 of Arnold et al. (2008)). It can be verified that both the Uniform
and Beta distributions satisfy the von Mises condition (19). Moreover, if F is in the Weibull domain
of attraction with a non-increasing probability density function f , then (19) hold (Resnick 2013).
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The norming and centering functions in the Fisher-Tippett Theorem 2 for distributions that belong
to the Weibull domain of attraction are given by

b(t) = xU and a(t) = xU −F−1(1 − t−1). (20)

where

a(t) = t−1/αL1(t), (21)

for some L1 slowly varying function.
We are now ready to state our main result for the optimal dynamic mixed bundling in the large

market regime for valuation distributions that belong to the Weibull attraction domain.

Theorem 3. If F is in the Weibull domain of attraction with index α > 0 and satisfies the von-

Mises condition (19), then for each q ∈NN , the optimal value function is given by

J⋆(q, λt) =
∑

n∈N (q)

qnF
−1

(
1 −

(
wqn(α)
qn

)α
wqn(α)
λt

)
+ o(a(λt)). (22)

Moreover, an optimal dynamic pricing policy for bundles b∈ {1,2, ...,B}, satisfies

p⋆b(q, λt) =
∑
n∈ψb

F−1
(

1 − wqn(α)
λt

)
+ o(a(λt)). (23)

and the purchasing probabilities under the optimal pricing policy are given by

π⋆b (q, λt) =
{
wqn (α)
λt

+ o(1/(λt)) if ψb = {n}
o(1/(λt)) if |ψb| ≥ 2,

(24)

where wqn(α) = vqn((α+ 1)/α) .

In the single-item setting, N = 1, Abdallah and Reed (2025a) show that the optimal pricing policy
for distributions in the Weibull domain of attraction is given by p⋆(q, λt) = F−1

(
1 − wq(α)

λt

)
+o(a(λt)).

Building on this, Theorem 3 implies that the optimal mixed-bundle pricing policy asymptotically
resembles additive (dynamic) pricing, i.e., dynamic component pricing. Moreover, the additional
value gained from selling any bundle beyond its individual components is asymptotically negligible
and of order o(a(λt)). In the large market regime, equation (24) further implies that the probability
of purchasing a bundle involving more than one item (i.e., |ψb| ≥ 2) is negligible compared to the
probability of purchasing single-item bundles.

Leveraging the results of Abdallah and Reed (2025a) for the single-item case, it is straightfor-
ward to establish that an additive dynamic bundle pricing policy (dynamic component pricing) is
asymptotically optimal in the large market regime, which we state as a corollary.
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Corollary 1. If F is in the Weibull domain of attraction with index α > 0 and satisfies the
von-Mises condition (19), then for each q ∈ NN , an additive dynamic bundle pricing policy (i.e.,
component pricing) p∈ U where for each bundle b∈ {1,2, ...,B},

pb(q, λt) =
∑
n∈ψb

F−1
(

1 − wqn(α)
λt

)
(25)

is asymptotically optimal such that
J⋆(q, λt) − Jp(q, λt)

a(λt) → 1 as λt→ ∞. (26)

Theorem 3 and Corollary 1 show that the optimal and asymptotical dynamic mixed bundling
policies mimic a dynamic component pricing policy in which the value of selling any bundle diminishes
in the large market regime. Next, we characterize the performance two important bundling strategies
in the large market regime: 1) pure bundling, where all items are sold together only as one grand
bundle, and 2) bundle size pricing, where the price is set based on the number of items in the bundle,
regardless of which items are included in the bundle (Chu et al. (2011), Abdallah et al. (2021)).

6.1. Optimal Dynamic Pure Bundling
In this section, we restrict the space of policies to pure bundling. Under a pure bundling policy,
customers cannot buy the items separately and can either buy all of the offered items or none. A pure
bundling strategy is mathematically equivalent to a special mixed bundling strategy where all bundles
are priced equally. In this case, given the non-negative (or with free disposal) additive valuation
assumption for the bundles, customers will only consider the grand bundle or nothing. In particular,
letting B denote the largest bundle that includes all the items, under a pure bundling pricing policy,
the set of admissible pricing policies should satisfy pb(q, λt) = pB(q, λt) for every b= 1, . . . ,B. In this
case,

VB − pB(q, λt) = max
b=1,...,B

{Vb − pb(q, λt)}

Denoting by F ∗,N the N-fold convolution distribution of the sum of N random valuations, the
valuation of the grand bundle VB =

∑N
i=1Xi follows the distribution F ∗,N . To keep the characteri-

zation simple, when considering pure bundling policies, we only consider settings when the starting
inventories of all items are equal, that is, q1 = . . .= qN ≥ 1. The result can be naturally extended to
settings where the initial inventories are imbalanced.

Letting J⋆,PB represent the optimal value function under pure bundling and assuming equal initial
inventories, the HJB conditions (7)-(9) now reduce to

∂J⋆,PB(q, λt)
∂t

= λ sup
pB≥0

{
1 −F ∗,N(pB)

(
pB − ∆J⋆,PB(q,B,λt)

)}
, ∀t≥ 0, q1 = . . .= qN ≥ 1, (27)

J⋆(q,0) = 0, for q1 = . . .= qN ≥ 0, (28)

J⋆(0, λt) = 0, for t≥ 0, (29)



Abdallah and Reed: The Diminishing Value of Bundles
19

Observe that the structure of the dynamic pure bundling problem is identical to that of the single-
item problem studied by Abdallah and Reed (2025a) but with the convolution distribution F ∗,N

instead of F . Therefore, to be able to leverage the results of Abdallah and Reed (2025a), we state an
important property related to the closure of convolutions of distributions within the Weibull domain
of attraction.

Lemma 1 (Maddipatla et al. (2011)). Consider independent random variables, Xn ∼ FXn ,
n= 1, . . . ,N , such that FXn belongs to the Weibull domain of attraction with index αn > 0, then F ∗,N

belongs to the Weibull domain of attraction with index
∑N
n=1αn.

Since F ∗,N is in the Weibull domain of attraction, then given the i.i.d. valuation assumption, we
can choose the centering and norming constants for the dynamic pure bundling problem as

b∗,N(t) =NxU and a∗,N(t) =
(
NxU −F

−1
∗,N (1 − 1/t)

)
= t−1/(Nα)L∗,N

1 (t). (30)

where F
−1
∗,N is the generalized inverse of F ∗,N and L∗,N

1 (t) is a slowly varying function.
We can now use the results of Abdallah and Reed (2025a) for the single-item setting to characterize

the optimal dynamic pure bundling in the large market regime which is stated next as a Corollary.

Corollary 2. If F is in the Weibull domain of attraction with index α> 0 and F ∗,N satisfies the
von-Mises condition (19), then for each q ∈ NN such that q1 = . . .= qN ≥ 1 as λt→ ∞, the optimal
value function under dynamic pure bundling is given by

J⋆,PB(q, λt) = qNF
−1
∗,N

(
1 −

(
wqN

(Nα)
qN

)Nα
wqN

(Nα)
λt

)
+ o(a∗,N(λt)) (31)

and the optimal dynamic pure bundle price is given by

p⋆B(q, λt) = F
−1
∗,N

(
1 − wqN

(Nα)
λt

)
+ o(a∗,N(λt)), (32)

where wq(Nα) = vq((Nα+ 1)/Nα).

The characterizations in Corollary 2 and Theorem 3 allow us to compare the performance of
dynamic component pricing relative to pure bundling in the large market regime for distributions
that belong to the Weibull domain of attraction. First, notice that since α > 0 then a(λt) → 0 and
a∗,N(λt) → 0 as λt→ ∞. Therefore, Corollary 2 and Theorem 3 imply, that for q1 = . . .= qN ,

lim
λt→∞

J⋆(q, λt) = lim
λt→∞

J⋆,PB(q, λt) =NqNxU .

Upon initial inspection, it may appear that dynamic component pricing and pure bundling yield
similar results in the large market regime. However, this conclusion would be misleading, as it does not
account for the appropriate extreme value scaling in the large market regime. In fact, it is possible to
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construct static component and pure bundle pricing policies that can achieve the same limit NqNxU .

However, static policies tend to perform poorly in the large market regime, as shown by Abdallah

and Reed (2025b).

To understand the difference in the behavior of these selling strategies, it is important to note

that the optimal dynamic component pricing policy achieves the bound NqNxU at a rate a(λt) =

(λt)−1/αL1(λt), while the optimal dynamic component pricing policy achieves the bound at a rate

a∗,N(λt) = (λt)−1/NαL∗,N
1 (λt). Therefore, for N ≥ 2, the dynamic component pricing policy achieves

the bound faster. Our subsequent corollary makes this comparison precise at the appropriate extreme

value scale.

Corollary 3. If F is in the Weibull domain of attraction with index α > 0 and both F and

F ∗,N satisfy the von-Mises condition (19), respectively, then for any N ≥ 2 and q ∈ NN+ such that

q1 = . . .= qN ≥ 1,

J⋆(q, λt) − J⋆,PB(q, λt)
a∗,N(λt) → (wqN

(Nα))(Nα+1)/Nα as λt→ ∞, (33)

and,

J⋆(q, λt) − J⋆,PB(q, λt)
a(λt) → +∞ as λt→ ∞. (34)

More generally, we have

J⋆(q, λt) − J⋆,PB(q, λt) =
(
wqN

(Nα)(Nα+1)/Nα
)
a∗,N(λt) −

(
NwqN

(α)(α+1)/α
)
a(λt) + o(a∗,N(λt)).

(35)

Corollary 3 highlights the limitations of pure bundling in the large market regime for valuation

distributions in the Weibull domain of attraction. To better visualize the difference in performance,

we plot in Figure 3 the right-hand side of (35) (ignoring o(a∗,N(λt) term) valuations that follow a

standard uniform distribution and for different values of equal initial inventory per item q1 = . . .= qN .

Figure 3 shows that as the number of items N increases, the revenue loss from pure bundling

becomes larger. However, the loss per unit sold eventually decreases as the initial inventory increases.

This suggests that as the inventory becomes more abundant, the price discrimination advantage of

bundles starts to counterbalance the limitations of the large market regime.

Next, we consider the performance of dynamic bundle size pricing, which is more general than

pure bundling but simpler than mixed bundling.
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Figure 3 Revenue loss from optimal dynamic pure bundling compared to optimal dynamic component pricing for
market size λt = 100 for valuations from a standard uniform distribution (α = 1)

6.2. Optimal Dynamic Bundle Size Pricing

We now restrict the space of policies to bundle size pricing (BSP), where the firm prices the bundles

based on the number of items included in the selected bundle, i.e., the bundle size, regardless of the

specific items included in the bundle. Therefore, given N items, the firm only sets the price of bundle

sizes k= 1, . . . ,N compared to the 2N − 1 prices of mixed bundling.

We denote by Bk = {b : |ψb| = k} the set of all bundles of size k= 1, . . . ,N . For q ∈NN , let Bk(q) ⊆

Bk be the set of all the bundles of size k that are not stocked out and recall that |N (q)| corresponds

to the largest possible bundle size that can be purchased from items that are not stocked out. Now,

given q ∈ NN and remaining time t > 0, we denote a bundle size pricing policy by ρ ∈ UBSP where

UBSP is the set of all admissible bundle size pricing policies. Note that UBSP ⊂ U since any ρ ∈ UBSP

is mathematically equivalent to special mixed bundling policies that set equal prices for the bundles

of the same size k= 1, . . . ,N , i.e.,

pb(q, λt) = ρk(q, λt) for b∈ Bk.

It is worth noting that the size k=N represents the grand bundle where all the items are included.

Therefore, setting the prices of all bundle sizes k= 1, . . . ,N − 1 greater than or equal to the price of

the grand bundle with k=N , BSP reduces to pure bundling.

Letting πk(q, λt) = λk(q, ρ)/λ be the probability that an arriving customer picks a bundle of size k=

1, . . . ,K, then conditional on the size of the chosen bundle and given the i.i.d. valuation assumption,
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the probability that a bundle b ∈ Bk(q) is chosen is 1/|Bk(q)|. It now follows that for q ∈ NN , the
HJB equations for the optimal dynamic BSP policy can written as

∂J⋆,BSP(q, λt)
∂t

= λ sup
ρ∈[0,∞)N


N∑
k=1

πk(q, λt)

ρk − 1
|Bk(q)|

∑
b∈Bk(q)

∆J⋆,BSP(q, b, λt)

 , ∀t≥ 0, |N (q)| ≥ 1,

(36)

J⋆,BSP(q,0) = 0, q ∈NN , (37)

J⋆,BSP(0, λt) = 0, t≥ 0. (38)

Next, we characterize the optimal dynamic BSP policy and its value function in the large market
regime for valuations that belong to the Weibull domain of attraction.

Theorem 4. If F is in the Weibull domain of attraction with index α > 0 and satisfies the von-

Mises condition (19), then for each q ∈ NN with |N (q)| ≥ 1 and under the optimal dynamic bundle

size pricing policy the optimal value function is given by

J⋆,BSP(q, λt) =
∑

n∈N (q)

qnF
−1

(
1 −

(
w̃q(α)

|N (q)|qn

)α
w̃q(α)
λt

)
+ o(a(λt)). (39)

Moreover, only the price of size one bundles contributes meaningfully, and is given by

ρ⋆1(q, λt) = F−1
(

1 −
( 1

|N (q)|α/(α+1)

)
w̃q(α)
λt

)
+ o(a(λt)) (40)

while the prices of bundles of size k≥ 2 are inconsequential. In particular, the purchasing probabilities

for bundle sizes k= 1, . . . ,N are given by

πk(q, λt) =


1

|N (q)|α/(α+1)
w̃q(α)
λt

+ o(1/(λt)) for k= 1,

o(1/(λt)) for k= 2, . . . ,N,
(41)

where w̃q(α) = ṽq((α+ 1)/α).

First, comparing the remainder terms (39) with (31) and (22), we observe that the remainder term
from the optimal dynamic BSP policy matches that for the mixed bundling and is (asymptotically)
smaller than pure bundling. Hence, roughly speaking, dynamic bundle size pricing strictly improves
on dynamic pure bundling and may be comparable to component pricing on the same extreme value
scale. However, this improvement stems from the fact that the optimal bundle size pricing policy
addresses the diminishing value of bundles, and its optimal pricing policy mimics a BSP of size 1,
which restricts customers to picking only one item. In fact, we next show that a dynamic BSP that
allows only purchases of bundles of size 1 achieves the same value function of the optimal dynamic
BSP (up to o(a(λt))) in the large market regime.



Abdallah and Reed: The Diminishing Value of Bundles
23

Proposition 3. If F is in the Weibull domain of attraction with index α > 0 and satisfies the
von-Mises condition (19), then for each q ∈NN such that |N (q)| ≥ 1, a single size bundle size pricing
policy ρ∈ UBSP where

ρk(q, λt) =

F
−1
(
1 −

(
1

Nα/(α+1)

)
w̃q(α)
λt

)
for k= 1,

kxU for k= 2, . . . ,N,
(42)

is asymptotically optimal among BSP policies such that
J⋆,BSP(q, λt) − Jρ,BSP(q, λt)

a(λt) → 1 as λt→ ∞. (43)

Next, we compare the optimal dynamic BSP to the optimal dynamic mixed bundling.

Corollary 4. If F is in the Weibull domain of attraction with index α > 0 and F satisfies the
von-Mises condition (19), then for q ∈NN , we have

J⋆(q, λt) − J⋆,BSP(q, λt)
a(λt) → w̃(α+1)/α

q (α) −
N∑
n=1

w(α+1)/α
qn

(α) ≥ 0 as λt→ ∞. (44)

Focusing on (44) and invoking property (vi) from Proposition 2, it turns out that, except in the
special cases N = 1 or qn = 1 for every n ∈ N (q), the optimal dynamic BSP is strictly dominated
by the optimal dynamic component pricing policy. This is perhaps surprising, especially since in the
large market regime, the value of a bundle of two or more items is negligible (see Theorem 4), and
hence it may not be immediately clear why BSP is inefficient.

In fact, the inefficiency of dynamic BSP in our setting is related to the inefficiencies of (static) BSP
policies under heterogeneous costs highlighted by Abdallah et al. (2021). Note that, even though
the items have zero marginal cost in our setting, the dynamics of the pricing problem effectively
give rise to virtual marginal costs, which are determined by the marginal value of depleting an item.
This can be observed in the optimization problem (36), where the virtual marginal cost is given
by
∑
b∈Bk(q) ∆J⋆,BSP(q, b, λt)/|Bk(q)|. A seller who adopts a BSP policy cannot control which items

customers choose, so they must set prices based on the average marginal value of those items. This can
lead to inefficiencies, as items with lower available inventory have a higher marginal value compared
to items that are more abundant.

To better visualize the right-hand side of (44), we plot in Figure 4 the difference between J⋆ and
J⋆,BSP for valuations that follow a standard uniform distribution and for different numbers of items
with equal initial inventory per item q1 = . . . = qN . First, compared to the optimal dynamic pure
bundling in Figure 3, we observe that the revenue loss is smaller yet can still be significant, especially
for larger values of N . In contrast to Figure 3, the revenue loss per unit sold appears to increase with
the initial inventory. This is likely because, with a larger initial inventory, the possible imbalances
in the inventory along the sample paths are more pronounced, which, as argued earlier, is the major
source of the inefficiency of BSP.
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Figure 4 Revenue loss from optimal dynamic bundle size pricing compared to optimal dynamic component pricing
for market size λt = 100 for valuations from a standard uniform distribution (α = 1)

.

7. Frechet Domain of Attraction
Next, we consider valuation distributions that belong to the Frechet domain of attraction. This
domain of attraction corresponds to item valuation distributions with a “heavy” power-law tail and
infinite support. The Pareto and Cauchy distributions are some examples of distributions in the
Frechet domain of attraction. More generally, the following definition characterizes all distributions
that belong to the Frechet domain of attraction (Resnick 2013).

Definition 3 (Frechet Domain of Attraction). The item valuation distribution F is in
the Frechet domain of attraction if and only if xU = ∞ and for some index α> 0,

F (x) = 1 −L(x)x−α for x> 0,

where L :R+ → (0,∞) is a slowly varying function, that is, for any x> 0, L(xt)/L(t) → 0 as t→ ∞.
We refer to α as the tail-index of the distribution. Note that the distribution has an infinite mean

when α≤ 1, which can cause our problem to be ill-defined in the limit. For this reason, we consider
only α> 1 in the Frechet domain of attraction.

Similar to the Weibull domain of attraction, the von-Mises condition of the Frechet domain of
attraction provides sufficient conditions for distributions to belong to it, which we state next.

Definition 4. A distribution function F with an infinite right endpoint xU = ∞ is said to satisfy
the von-Mises condition of the Frechet domain of attraction if F is absolutely continuous with positive
density f on (x0,∞) for some x0 > 0 and satisfies

lim
x→∞

xf(x)
1 −F (x) = α> 0. (45)
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For the rest of this section, we assume that the item valuation distributions satisfy the von Mises
condition of the Frechet domain of attraction with α > 1. In this case, the centering and norming
functions of the Fisher-Tippett Theorem 2 are given by

a(t) = F−1(1 − t−1) and b(t) = 0, (46)

for t > 0. Moreover, it may be shown that a(t) = t1/αL1(t), where L1 is a slowly varying function.
Next, we characterize the optimal value function and the optimal dynamic mixed bundle pricing

policy in the large market regime.

Theorem 5. If F is in the Frechet domain of attraction with index α > 1 and satisfies the von

Mises condition (45), then for each q ∈NN as λt→ ∞,

J⋆(q, λt) =
N∑
n=1

qnF
−1
(

1 −
(

qn
ϕqn(α)

)α ϕqn(α)
λt

)
+ o(a(λt)) (47)

Moreover, an optimal dynamic pricing policy for bundles b∈ {1,2, ...,B}, satisfies

p⋆b(q, λt) =
∑
n∈ψb

F−1
(

1 − ϕqn(α)
λt

)
+ o(a(λt)) (48)

and the purchasing probabilities under the optimal pricing policy are given by

π⋆b (q, λt) =
{
ϕqn (α)
λt

+ o(1/(λt)) if ψb = {n}
o(1/(λt)) if |ψb| ≥ 2,

(49)

where ϕqn(α) = vqn((α− 1)/α) for n= 1, . . . ,N .

In the Frechet domain of attraction, similar to the Weibull domain, it turns out that in the large
market regime, the optimal dynamic mixed bundle pricing policy also mimics a dynamic additive
bundle pricing policy or, in other words, a dynamic component pricing policy. We can leverage the
results of Abdallah and Reed (2025a) to show that an additive dynamic bundle pricing policy is
asymptotically optimal for the Frechet domain of attraction.

Corollary 5. If F is in the Frechet domain of attraction with index α > 1 and satisfies the

von Mises condition (45), then for each q ∈ NN , an additive dynamic bundle pricing policy (i.e.,

component pricing) p∈ U where for each bundle b∈ {1,2, ...,B},

pb(q, λt) =
∑
n∈ψb

F−1
(

1 − ϕqn(α)
λt

)
(50)

is asymptotically optimal where

J⋆(q, λt) − Jp(q, λt)
a(λt) → 1 as λt→ ∞. (51)
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7.1. Optimal Dynamic Pure Bundling

We now restrict the policies to dynamic pure bundling in order to characterize the performance of
the optimal dynamic pure bundling policy. For the Fréchet domain of attraction, we next provide
a stronger characterization for the optimal dynamic pure bundling than in the Weibull domain of
attraction (Corollary 2) that does not depend on the convolution distribution F ∗,N—the distribution
of the bundle’s valuation.

Proposition 4. If F is in the Frechet domain of attraction with index α > 1 and satisfies the

von-Mises condition (19), then for each q ∈NN+ such that q1 = . . .= qN ≥ 1 as λt→ ∞,

J⋆,PB(q, λt) = qNN
1/αF−1

(
1 −

(
qN

ϕqN
(α)

)α
ϕqN

(α)
λt

)
+ o(a(λt)) (52)

and

p⋆B(q, λt) = N1/αF−1
(

1 − ϕqN
(α)
λt

)
+ o(a(λt)), (53)

where ϕqN
(α) = vqN

((α− 1)/α).

First observe that in contrast to the Weibull domain of attraction, the remainder terms in (52) and
(53) are, loosely speaking, on the same order (o(a(λt))), of those for the optimal mixed bundling
policy (component pricing) (47) and (48), respectively. On the other hand, for N ≥ 2, and since
α > 1, we observe that when the inventory is balanced the first order term in the optimal dynamic
pure bundling price (53) is strictly lower than the sum of the component prices in the optimal mixed
bundling policy. This lower price also reflects in lower revenues as captured in the first order term in
(52). We make the value function comparison precise in the following corollary.

Corollary 6. If F is in the Frechet domain of attraction with index α > 1 and satisfies the

von-Mises condition (45), then for any N ≥ 1 and q ∈NN+ such that q1 = . . .= qN ≥ 1, we have

J⋆(q, λt)
J⋆,PB(q, λt) → N (α−1)/α as λt→ ∞, (54)

and

J⋆(q, λt) − J⋆,PB(q, λt)
NqNa(λt) →

(
ϕ(α−1)/α
qN

(α)
qN

)
(1 −N (1−α)/α) as λt→ ∞, (55)

To better visualize the impact of the α,N, and initial inventory QN , we plot the right-hand sides
of (54) and (55) in Figure 5.

We observe that in the Frechet domain of attraction and similar to the Weibull domain of attrac-
tion, the optimal dynamic pure bundling is strictly dominated by the optimal dynamic additive
bundle pricing (component pricing) for N ≥ 2. Furthermore, the right-hand sides in (54) and (55) are
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Figure 5 Limiting performance of the optimal dynamic pure bundling policy versus the optimal dynamic compo-
nent pricing policy

both strictly decreasing in N . This implies that as the number of items N grows large the performance
of pure bundling deteriorates. This is in contrast to the celebrated result of Bakos and Brynjolfs-
son (1999) that states that when items have zero marginal costs and there is sufficient (unlimited)
inventory, pure bundling can extract all the consumer surplus. Next, notice that the right-hand sides
in (54) and (55) are both strictly increasing in α > 1. This implies that the performance of pure
bundling deteriorates as the tail gets lighter.

Finally, regarding the impact of inventory levels qN , note that the right-hand side of the normalized
revenue loss per unit sold (55) depends on ϕ(α−1)/α

qN
(α)/qN . However, from Abdallah and Reed (2025a)

we have ϕqN
(α) = q− (1/2α) ln q+ o(ln q) and hence

ϕ(α−1)/α
qN

(α)
qN

= q−1/α
(

1 − 1
2α

ln qN
qN

)(α−1)/α

+ o
(
(ln qN)(α−1)/α/qN

)
Observe that up to the o(·) term, ϕ(α−1)/α

qN
(α)/qN is strictly decreasing in qN and approaches zero

as qN → ∞. This again highlights that bundling performs poorly in the large market regime mainly
due to the scarce inventory. As the inventory levels increase, the relative performance of the bundles
improves.

7.2. Optimal Dynamic Bundle Size Pricing
Next, we restrict the space of policies to bundle size pricing and characterize the optimal dynamic
BSP policy and its value function in the large market regime for valuations that belong to the Frechet
domain of attraction. Recall that under a BSP, the firm sets the prices based on the number of items
in the bundle, regardless of which items are included.
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Theorem 6. If F is in the Frechet domain of attraction with index α > 1 and satisfies the von-

Mises condition (45), then under the optimal dynamic bundle size pricing policy for each q ∈NN with

|N (q)| ≥ 1, we have

J⋆,BSP(q, λt) =
∑

n∈N (q)

qnF
−1

(
1 −

(
|N (q)|qn
ϕ̃q(α)

)α
ϕ̃q(α)
λt

)
+ o(a(λt)) (56)

Moreover, only the price of size one bundles contributes meaningfully, and is given by

ρ⋆1(q, λt) = |N (q)|1/(α−1)F−1

(
1 − ϕ̃q(α)

λt

)
+ o(a(λt)) (57)

while the prices of bundles of size k≥ 2 are inconsequential. In particular, the purchasing probabilities

for bundle sizes k= 1, . . . ,N are given by

π⋆k(q, λt) =


1

|N (q)|α/(α−1)
ϕ̃q(α)
λt

+ o(1/(λt)) for k= 1,

o(1/(λt)) for k= 2, . . . ,N,
(58)

where ϕ̃q(α) = ṽq((α− 1)/α) .

We next show that similar to the Weibull domain of attraction, a dynamic BSP that allows only

purchases of bundles of size 1, achieves the same value function of the optimal dynamic BSP (up to

o(a(λt))) in the large market regime.

Proposition 5. If FX is in the Frechet domain of attraction with index α > 1 and satisfies the

von-Mises condition (45), then for each q ∈NN with N (q) ≥ 1, a single-size bundle size pricing policy

ρ∈ UBSP where

ρk(q, λt) =

|N (q)|1/(α−1)F−1
(
1 − ϕ̃q(α)

λt

)
for k= 1,

∞ for k= 2, . . . ,N,
(59)

is asymptotically optimal among BSP policies where

J⋆,BSP(q, λt) − Jρ,BSP(q, λt)
a(λt) → 1 as λt→ ∞. (60)

Next, we compare the optimal dynamic BSP to the optimal dynamic mixed bundling.

Corollary 7. If F is in the Frechet domain of attraction with index α > 1 and F satisfies the

von-Mises condition (45), then for q ∈NN+ , we have

J⋆(q, λt) − J⋆,BSP(q, λt)
a(λt) →

N∑
n=1

ϕ(α−1)/α
qn

(α) − ϕ̃(α−1)/α
q (α) ≥ 0 as λt→ ∞. (61)
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Note that by Property (vi) in Proposition 2, it turns out that, similar to the Weibull domain of

attraction and in most of the cases, the optimal dynamic BSP is strictly dominated by the optimal

dynamic component pricing policy. The only cases in which they are asymptotically equivalent are

N = 1 or qn = 1 for all n∈ N (q). Again, the inefficiency of BSP policies stems from the fact that the

problem dynamics yield (virtual) heterogeneous marginal costs represented by the marginal value of

losing one unit of inventory, where items with lower available inventory have a larger marginal value

than items with abundant inventories.

To better visualize the right-hand side of (61), we plot in Figure 6 the difference between J⋆

and J⋆,BSP and its normalized version per unit sold for valuations that follow a standard Pareto

distribution (α= 2) and for different numbers of items and assuming equal initial inventory per item

q1 = . . .= qN .
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Figure 6 Revenue loss from optimal dynamic bundle size pricing compared to optimal dynamic component pricing
for market size λt = 100 for valuations from a standard Pareto distribution (α = 2)

.

First, compared to the optimal dynamic pure bundling in Figure 5, the revenue loss is significantly

smaller under the optimal BSP, yet can be large, especially for larger N . Moreover, the revenue loss

per unit sold appears to be increasing in the initial inventory and number of items, which is consistent

with what was observed in the Weibull domain of attraction, Figure 4. Similarly, this is likely because,

with larger initial inventories, the possible imbalances in the inventory along the sample paths are

more pronounced, which, as argued earlier, is the major source of the inefficiency of BSP.
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8. Numerics
In this section, we perform several numerical simulations to examine how inventory levels and market
size influence the effectiveness of various bundle pricing strategies. The results are organized into
three subsections, corresponding to the three domains of attraction of extreme value theory.

8.1. Uniform Distribution: Weibull Domain of Attraction

We revisit the example from Section 3.2, where we analyze a setting with two items, N = 2, and valu-
ations that follow a standard uniform distribution that belongs to the Weibull domain of attraction.
We focus on this setting since it allows us to derive closed-form expressions for the purchase proba-
bilities associated with mixed bundling (MB). As a result, we can numerically determine the optimal
dynamic mixed bundling policy and the dynamic fluid-optimal mixed bundling prices obtained using
the fluid-resolving heuristic.

Figure 7 presents two plots that compare the effectiveness of the optimal dynamic component
pricing (CP) and pure bundling (PB) strategies against the optimal dynamic mixed bundling policy.
Figure 7a, we fix the initial inventory Q1 =Q2 and vary the market size, while in Figure 7b we fix
the market size λt= 10 and vary the initial inventory of both items while keeping them equal.
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Figure 7 Expected revenue loss from the optimal dynamic component pricing and optimal dynamic pure bundle
pricing relative to the optimal dynamic mixed bundling for N = 2 and valuations that follow a standard
uniform distribution (Weibull domain of attraction)

.
We observe from Figure 7a that when the market size is small (λt ≤ 20), the insights from the

classical bundling literature hold, where the optimal dynamic pure bundling outperforms optimal
dynamic component pricing. However, as the market size increases, we observe that component pricing
dominates pure bundling and eventually approximates optimal dynamic mixed bundling closely.
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Figure 7b provides a complementary view of the initial inventory’s impact on the performance of

pricing strategies while keeping the market size fixed, λt= 10. When inventory is scarce (q1 = q2 ≤ 6),

dynamic component pricing dominates dynamic pure bundle pricing. Yet, dynamic pure bundling

dominates component pricing as inventory increases and becomes abundant (q1 = q2 > 6).

Next, we compare the performance of the asymptotically optimal (in their respective regimes) LM

and fluid policies to the optimal dynamic mixed bundling policy and the component pricing policy

in Figure 8. In particular, the asymptotically optimal Fluid policy in the fluid regime dynamically

re-optimizes the deterministic problem (12)-(14).
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Figure 8 Expected revenue loss of the LM dynamic component pricing policy and the Fluid dynamic mixed
bundling relative to the optimal dynamic mixed bundling and dynamic component for N = 2 and
valuations that follow a standard uniform distribution (Weibull domain of attraction with α = 1)

We observe from Figure 8 that the fluid dynamic mixed bundling policy dominates the optimal

dynamic component pricing policy and the LM dynamic component pricing policy for small market

sizes, while the reverse is true for large market sizes. It is worth noting that the mixed bundling

policy is more complicated than component pricing as a selling strategy. Apart from the uniform

distribution case with N = 2, it is not possible to write the deterministic problem explicitly; hence,

one may need to resort to simulation optimization. On the other hand, even if there is no closed

form for the optimal component pricing policy, it is easier to compute numerically. Meanwhile, the



Abdallah and Reed: The Diminishing Value of Bundles
32

most straightforward policy to compute is the LM policy, whose performance is competitive with the

optimal mixed bundling policy for moderate to large market sizes, λt≥ 75.

The insights from Figures 7 and 8 align with the findings of Abdallah and Reed (2025a), which

indicate that the inventory-to-market-size ratio (IMR) is the primary driver of policy performance

in large market regimes. To explore this further, we conduct a numerical investigation of the IMR

boundary to identify when one policy begins to outperform another. These boundaries are illustrated

in Figure 9. Specifically, we focus on the boundary between optimal dynamic pure bundling and opti-

mal dynamic component pricing in addition to the boundaries separating the fluid-optimal dynamic

mixed bundling policy from the optimal dynamic component pricing policy and the LM-optimal

dynamic component pricing policies.
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Figure 9 Inventory-to-market-size ratio boundary under which dynamic component pricing policy starts domi-
nating dynamic pure bundle pricing (Weibull domain of attraction)

.

We observe from Figure 9 that the optimal dynamic component pricing policy outperforms the

optimal dynamic pure bundling policy (both determined numerically) when the IMR falls below 54%.

Additionally, the optimal dynamic component pricing outperforms the fluid-optimal dynamic mixed

bundling policy when the IMR is under 18%. Furthermore, when the IMR drops below 10%, even

the LM-optimal dynamic component pricing policy surpasses the more complicated fluid-optimal

dynamic mixed bundling policy.
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Finally, we examine numerically how the IMR impacts the fluid-optimal dynamic component pric-

ing, pure bundling, and mixed bundling relative to the optimal mixed bundling policy. For the fluid

policies, we continuously reoptimize their corresponding deterministic problems, which are analogous

to (12)-(14) depending on the policy type.
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Figure 10 Expected revenue loss of the Fluid-Optimal component, pure bundling, mixed bundling pricing relative
to the optimal dynamic mixed bundling and dynamic component for N = 2 and valuations that follow
a standard uniform distribution (Weibull domain of attraction with α = 1)

.

Interestingly, we observe in Figure 10 that the IMR effects on fluid-optimal policies align with

those for large market regime policies. When inventory is below 50% of the market size, fluid-optimal

dynamic component pricing starts dominating the fluid-optimal dynamic pure bundling policy. Fur-

thermore, inventory becomes scarce; the fluid-optimal dynamic component pricing closely matches

the fluid-optimal mixed bundling policy.

8.2. Pareto Distribution: Frechet Domain of Attraction

Next, we consider valuations distributed according to a standard Pareto distribution with α = 2

that belongs to the Fréchet attraction domain. We note that for a Pareto distribution, the purchase

probabilities under a mixed bundling policy do not have closed-form expressions. For this reason, we

focus on comparing component pricing with pure bundling.
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In Figure 11, we show two plots that compare the relative value function difference between the
optimal dynamic component pricing (CP) and the optimal dynamic pure bundle pricing (PB) for
different market sizes (λt), initial inventory levels, and the number of items N . We assume equal
initial inventories for all item types in both plots, i.e., Q1 = ...=QN .

Similar to the case of uniform distribution, we observe that the relative performance depends
mainly on the IMR, where a lower IMR favors dynamic component pricing. In particular, Figure 11a
illustrates that the principles of classical bundling theory regarding the profitability of pure bundling
apply to small market sizes (λt < 25). However, we observe an interesting effect of the number of
items N on the relative performances of the policy. For small market sizes, we observe that larger N
increases the dominance of pure bundling relative to component pricing. However, as the market size
increases, component pricing catches up and surpasses pure bundling; however, the impact of N is
reversed, where now a larger N favors component pricing more. Figure 11a shows a comparable trend
when we keep the market size constant and adjust the initial inventory, where abundant inventory
favors pure bundling, especially for larger N .
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Figure 11 Relative expected revenue from the optimal dynamic component pricing compared to the optimal
dynamic pure bundle pricing for valuations that follow a standard Pareto distribution (Frechet domain
of attraction)

In Figure 12, we analyze the inventory-to-market-size ratio boundary (IMR) boundary to determine
when optimal dynamic component pricing becomes more effective than pure bundling while varying
the number of items, N . The transition point where component pricing surpasses pure bundling
appears to occur when the IMR is between 22% and 42%, depending on N . Notably, for smaller
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values of N , this transition occurs at a higher IMR threshold. As N increases, the boundary becomes
more stable and less sensitive to changes in N .

Figure 12 Inventory-to-market-size ratio boundary under which dynamic component pricing policy starts domi-
nating dynamic pure bundle pricing (Frechet domain of attraction)

8.3. Exponential Distribution: Gumble Domain of Attraction
Our final set of numerics examines valuations that follow a standard exponential distribution belong-
ing to the Gumbel attraction domain. This domain more broadly encompasses distributions with
bounded support, light tails, and moderately heavy tails. Readers can refer to Abdallah and Reed
(2025b) for more detailed information about this domain. Although our theoretical findings were
established for the Weibull and Frechet domains of attraction, we numerically demonstrate that
the insights regarding the diminishing value of bundles in the large market regime continue to hold
for valuations that belong to the Gumbel domain of attraction. Similar to Section 8.2, we compare
optimal dynamic component pricing (CP) effectiveness against optimal dynamic pure bundling (PB)
since the purchase probabilities for mixed bundling policy do not admit a closed-form expression. We
note that the optimal dynamic component pricing problem admits a closed-form solution (Gallego
and Van Ryzin 1994), while the pure bundling problem does not. Therefore, we numerically solve the
HJB equations to obtain the optimal value function for the optimal dynamic pure bundling policy.

We present two plots in Figure 13 that illustrate the differences in the relative value function
between optimal dynamic component pricing (CP) and pure bundle pricing (PB) for different market
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sizes and initial inventory levels. We consider equal initial inventories for all item types for both

plots, i.e., Q1 = ...=QN . The findings from both plots align with theoretical and numerical insights

regarding the Weibull and Frechet domains of attraction, revealing how the advantage of the com-

ponent pricing strategy over pure bundling changes as market size increases or inventory becomes

scarce.
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Figure 13 Relative expected revenue from the optimal dynamic component pricing compared to the optimal
dynamic pure bundle pricing for valuations that follow a standard exponential distribution (Gumbel
domain of attraction)

Notably, the patterns shown in Figure 13 are strikingly similar to those in Figure 12 concerning

the Pareto distribution. With high IMR, whether due to large inventory or small market size, pure

bundling significantly outperforms component pricing, and this advantage grows as N increases.

Conversely, component pricing dominates for lower IMR, characterized by either small inventory or

large market size, especially as N becomes larger.

It appears that the switching point when component pricing begins to dominate pure bundling

is more robust across different numbers of items than in the case of Pareto distribution. This is

highlighted in Figure 14, where we numerically investigate the switching point when optimal dynamic

component pricing dominates that of pure bundling. We observe that the inventory-to-market size

boundary appears robust regardless of the number of item types. The transition to component pricing

seems to occur when the IMR is around 30−36%. However, in contrast to Figure 12, a larger number

of item types N leads to a transition at a slightly higher IMR boundary.
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Figure 14 Inventory-to-market-size ratio boundary under which dynamic component pricing policy starts domi-
nating dynamic pure bundle pricing (Gumbel domain of attraction)

.

9. Conclusion
This paper examines the revenue implications of bundling and component pricing in inventory-
constrained settings, focusing on how the inventory-to-market-size ratio (IMR) influences the optimal
pricing strategy. Our results reveal that bundling, while traditionally viewed as a revenue-enhancing
strategy, is, in fact, revenue-distorting in the large market regime. Specifically, we show that when
inventory is sufficiently scarce relative to market size, dynamic component pricing outperforms com-
monly used bundling strategies such as bundle size pricing and pure bundling. In fact, we show that
the optimal dynamic mixed bundling strategy mimics a simple dynamic component pricing policy
in the large market regime. We also identify numerically the switching points that depend on IMR
where firms should transition from bundling to component pricing as market conditions change. This
insight challenges classical bundling theory and highlights the importance of considering inventory
constraints when deploying bundling strategies.

While this study provides a structured framework for understanding bundling in inventory-
constrained environments, there are several avenues for future research. First, our analysis assumes
a monopolist setting; extending the model to competitive markets could provide deeper insights
into how firms strategically adopt bundling when facing rivals. In particular, understanding how
price competition interacts with inventory limitations could refine our conclusions on bundling’s
effectiveness. Second, our analysis is based on known demand distributions; future research could
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investigate learning-based pricing models that adjust prices in real time based on the observed data.
Exploring how such methods interact with bundling decisions under uncertainty—where firms learn
about demand distributions dynamically—could enhance the practical applicability of our frame-
work. Finally, another future research direction is investigating how scaling different operational
considerations, such as different scaling of inventory levels, market size, and number of items, impacts
the optimal dynamic bundling strategy. This is important for firms whose market conditions are not
properly approximated by the large market regime.
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Appendix.
In this Appendix, we present the proofs for the results stated in the main body of the paper. The appendix

is organized as follows: In Section A, we present the proofs related to the properties of the multi-dimensional
system of equations ṽ(q). In Section B and C, we establish the results for distribution that belong to the
Weibull and Frechet domains of attractions, respectively.

A. Proof of Section 5: Properties of ṽ(q)

In this section, we prove the properties of ṽq(κ), the solution to the multi-dimensional system of equations
(17).

Proof of Proposition 2. The proof of properties (i) and (ii) is similar to the properties for vqn for qn ≥ 0
in the single item setting as established by Abdallah and Reed (2025a) and are omitted. We next show
properties (iii)-(vi).

(iii) Let κ > 0 and recall that by definition ṽ0(κ) = 0. The statement is true for ∥q∥1 =0. Suppose it
is true for all ∥q∥1 ≤ l for some l ≥ 0 and fix q such that ∥q∥1 = l and q + en for some n = 1, . . . ,N , i.e,
∥q+ en∥1 = l+ 1. We consider two cases depending on qn.

Case I (qn = 0): the sytem of equations (17) can be written

ṽκ−1
q+en = |N (q+ en)|−1/κ

κ

|N (q+ en)|ṽκq+en − ṽκq −
∑

m∈N (q)

ṽκq+en−em

 (A1)

Consider the function

g(x) = xk−1 − |N (q+ en)|−1/κ

κ

|N (q+ en)|xκ − ṽκq −
∑

m∈N (q)

ṽκq+en−em

 ,

where x∈ [xo,∞) and xo =
∑

m∈N (q+en) ṽ
κ
q+en−em/|N (q+en)|. We have from Property (i) that g has a unique

root at x = ṽq+en . Moreover, it is straightforward to verify that g(xo) > 0 and g(x) → −∞ as x → ∞. It
follows from the continuity of g that for x≥ ṽq+en , then g(x)< 0.

Now suppose for a contradiction that ṽq ≥ ṽq+en . This implies that g(ṽq) ≤ 0 and hence

ṽκ−1
q ≤ |N (q+ en)|−1/κ

κ

|N (q)|ṽκq −
∑

m∈N (q)

ṽκq+en−em

 . (A2)

However, by the induction hypothesis we have
∑

m∈N (q) ṽ
κ
q+en−em >

∑
m∈N (q) ṽ

κ
q−em , hence

ṽκ−1
q <

|N (q+ en)|−1/κ

κ

|N (q)|ṽκq −
∑

m∈N(q)

ṽκq−em

 =
(

|N (q+ en)|
|N (q)|

)−1/κ

ṽκ−1
q , (A3)

which is a contradiction.
Case II (qn ≥ 1): we have N (q) = N (q+ en). Now notice that from (17), then ṽq and ṽq+en satisfy∑

m∈N (q)

ṽκq−em = ṽκq

(
1 − κ

N (q)(κ−1)/κ ṽ
−1
q

)
for q ∈NN , (A4)

∑
m∈N (q)

ṽκq+en−em = ṽκq+en

(
1 − κ

N (q)(κ−1)/κ ṽ
−1
q+en

)
for q ∈NN . (A5)



Abdallah and Reed: The Diminishing Value of Bundles
A2

Since, by the induction hypothesis
∑

m∈N (q) ṽ
κ
q+en−em >

∑
m∈N (q) ṽ

κ
q−em , it follows that ṽq+en > ṽq.

(iv) We again prove the statement by induction. Fix N > 1, the statement is true when ∥q∥1 = 0. Now

fix some l ≥ 1 and suppose that ṽq is permutation invariant for all q such that ∥q∥1 ≤ l− 1. Next, consider

q such that ∥q∥1 = l and denote one of its permutations by σ(q). Noting that |N (q)| = |N (σ(q))|, it follows

from (17) that

ṽκ−1
q = |N (q)|(κ−1)/κ

κ

(
ṽκq −

∑
n∈N (q) ṽ

κ
q−en

|N (q)|

)
, (A6)

ṽκ−1
σ(q) = |N (σ(q))|(κ−1)/κ

κ

(
ṽκσ(q) −

∑
n∈N (q) ṽ

κ
σ(q)−en

|N (q)|

)
. (A7)

By the induction hypothesis, we have
∑

n∈N (q) ṽ
κ
σ(q)−en =

∑
n∈N (q) ṽ

κ
q−en . Therefore by the uniqueness of the

solution to the system of equations (17), we have ṽq = ṽσ(q).

(v) For k = 1, we have vqn = qn for n = 1, . . . ,N and it is straightforward to verify that ṽ(q) =
∑N

n=1 qn

satisfies (17).

Now let k > 1 and fix N ≥ 1. The statement is true for ∥q∥1 = 0. Now fix some l ≥ 2 and suppose the

statement is true for all ∥q∥1 ≤ l − 1. Consider q such that ∥q∥1 = l and suppose for a contradiction that

ṽκq <
∑N

n=1 v
κ
qn

=
∑

n∈N (q) v
κ
qn

, then similar to the proof of property (iii) and by the uniqueness of the solution

of (17), we have (∑
n∈N (q) v

κ
qn

|N (q)|

)(κ−1)/κ

<
1
κ

 ∑
n∈N (q)

vκqn −
∑

n∈N(q) ṽ
κ
q−en

|N (q)|

 . (A8)

Note that 0< (κ− 1)/κ< 1 and hense applying Jensen’s inequality, we obtain(∑
n∈N (q) v

κ
qn

|N (q)|

)(κ−1)/κ

≥ 1
|N (q)|

∑
n∈N (q)

vκ−1
qn

, (A9)

Turning to the right-hand side of (A8), note that by the induction hypothesis, for n∈ N (q), we have

ṽκq−en ≥
∑

k∈N (q)

vκqk −
(
vκqn − vκqn−1

)
.

which implies

1
κ

 ∑
n∈N (q)

vκqn −
∑

n∈N(q) ṽ
κ
q−en

|N (q)|

 ≤ 1
κ

(∑
n∈N (q) v

κ
qn

− vκqn−1

|N (q)|

)
= 1

|N (q)|
∑

n∈N (q)

vκ−1
qn

(A10)

and hence is a contradiction.

The case for κ < 1 follows analogously where the inequalities are flipped, and instead of the concavity

property, we have convexity.

(vi) The if part is straightforward, so we show the only if part. The statement is true for |N (q)| = 1. First

consider k > 1 and Fix q ∈NN such that |N (q)| ≥ 2 and suppose ṽκq =
∑

n∈N (q) v
κ
qn

. It follows from (17), that(∑
n∈N (q) v

κ
qn

|N (q)|

)(κ−1)/κ

= 1
κ

 ∑
n∈N (q)

vκqn −
∑

n∈N(q) ṽ
κ
q−en

|N (q)|

 ≤ 1
N (q)

∑
n∈N (q)

vκ−1
qn

(A11)
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where the inequality is due to property (v) and (A10). However, similar to the proof of property (v), by
Jensen’s inequality for strictly concave functions, we obtain(∑

n∈N (q) v
κ
qn

|N (q)|

)(κ−1)/κ

≥ 1
N (q)

∑
n∈N (q)

vκ−1
qn

(A12)

with equality if and only if vqn = vqm for all n,m ∈ N (q). Therefore, ṽκq =
∑

n∈N (q) v
κ
qn

implies vqn = vqm for
all n,m∈ N (q). But since v is strictly increasing in q, then qn = qm for all n,m∈ N (q).

Now pick any item m∈ N (q), we have ṽκq = |N (q)|vκqm . In this case, (17) yields

vκ−1
qm

= 1
κ

(
|N (q)|vκqm −

∑
n∈N(q) ṽ

κ
q−en

|N (q)|

)
(A13)

However, by the permutation invariance property (iv), we have
∑

n∈N(q) ṽ
κ
q−en = |N (q)| · ṽq−em , and therefore

vκ−1
qm

= 1
κ

(
|N (q)|vκqm − ṽκq−em

)
(A14)

which implies that ṽκq−em = |N (q)|vκqm −(vκqm −vκqm−1) =
(∑

n̸=m∈N(q) v
κ
n

)
+vκqm−1. Applying Jensen’s inequal-

ity again implies that qn = qk for all n,k ∈ N (q− em), which is impossible unless m /∈ N (q− em) or in other
words qm = 1. Therefore, qn = 1 for all n∈ N (q).

The case k < 1 follows analogously and is skipped. □

Before starting the proofs of the Weibull and Frechet domain of attractions, we first establish Lemma A1,
which allows us to limit our attention to optimal bundle prices that are greater than or equal to the marginal
value of the components included in the bundle.

Lemma A1. For each t≥ 0 and q ∈ NN+ , there exists an optimal pricing policy p⋆ ∈ U such that p⋆b(q, t) ≥
∆J⋆(q, b, t) for each b∈ {1,2, ...,BN}.

Proof of Lemma A1. Let p⋆ be an optimal policy and fix t ≥ 0, q ∈ NN+ . Now suppose that there exists
some set B ⊂ {1,2, ...,B} such that p⋆b(q, t)<∆J(q, b, t) for b ∈ B, and p⋆b(q, t) ≥ ∆J(q, b, t) for b ∈ BC . Now
consider an alternative policy p∈ U such that pb(q, t) = ∆J(q, b, t) for b∈ B and pb(q, t) = p⋆b(q, t) for b∈ BC .
It follows from the HJB equation (7) that it is sufficient to show that

B∑
b=1

λb(q, p) (pb(q, t) − ∆J⋆(q, b, t)) ≥
B∑
b=1

λb(q, p⋆) (p⋆b(q, t) − ∆J(q, b, t)) . (A15)

Since pb(q, t) = p⋆b(q, t) for b ∈ BC and λb(q, p)(pb(q, t) − ∆J(q, b, t)) = 0 for b ∈ B, then in order to show
(A15) it suffices to prove that∑

b∈BC
(λb(q, p) −λb(q, p⋆))(p⋆b(q, t) − ∆J(q, b, t)) ≥

∑
b∈B

λb(q, p⋆)(p⋆b(q, t) − ∆J(q, b, t)).

However, since p⋆b(q, t)<∆J(q, b, t) for b∈ B, it next suffices to prove that∑
b∈BC

(λb(q, p) −λb(q, p⋆))(p⋆b(q, t) − ∆J(q, b, t)) ≥ 0.

Moreover, since pb(q, t)> p⋆b(q, t) for b∈ B and pb(q, t) = p⋆b(q, t) for b∈ BC , it is straightforward to show that
λb(q, p) ≥ λb(q, p⋆) for b∈ BC . □

As a consequence of Lemma A1 and throughout the proofs, we can limit ourselves to admissible pricing
policies p∈ U such that for each t≥ 0 and q ∈NN+ ,

pb(q, t) ≥ ∆J⋆(q, b, t). (A16)
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B. Proofs of Section 6: Weibull Domain of Attraction

In this section, we present and prove an equivalent version of Theorem 3 in addition to Corollary 1.

We start by introducing some new notation. Note that since F is in the Weibull domain of attraction,

then it has a bounded support with xU <∞. Now for each q ∈NN and t≥ 0 set

Ĵ⋆(q, t) =
(

N∑
n=1

qn

)
xU − J⋆(q, t) and p̂⋆b(q, t) = |ψb|xU − p⋆b(q, t). (B1)

where ψb ⊆ {1,2, ..,N} the set of items contained in bundle b. Furthermore, denote by ψ̄ = {|ψb|, b =

1, . . . ,B} ⊆ {1, . . . ,N}B the vector corresponding to the number of items in each bundle.

Now for b ∈ B(q), let ∆Ĵ⋆(q, b, t) = Ĵ⋆(q, t) − Ĵ⋆(q−Hb, t) = |ψb|xU − ∆J⋆(q, b, t), where Ĵ⋆(0, ·) = 0. The

HJB equations (7)-(9) may be written as

−∂Ĵ⋆(q, t)
∂t

= sup
p̂∈P̂(q)

{
B∑
b=1

λb(q, ψ̄xU − p̂)(∆Ĵ⋆(q, b, t) − p̂b)
}
, ∀t≥ 0, q ∈NN : |N (q)| ≥ 1, (B2)

Ĵ⋆(q,0) =
(

N∑
n=1

qn

)
xU , q ∈NN , (B3)

Ĵ⋆(0, t) = 0, t≥ 0. (B4)

Next note that from Lemma 1 that 1 −F ∗,|ψb|(|ψb|xU − 1/x) = x−|ψb|αLb(x) and the extreme value theory

centering and norming functions are given by b∗,|ψb|(t) = |ψb|xU and a∗,|ψb|(t) =
(

|ψb|xU −F
−1
∗,ψb (1 − 1/t)

)
=

t−1/(|ψb|α)Lb1(t). Therefore, by standard properties of slowly varying functions and for any b such that |ψb| ≥ 2,

we have

a(t)
a∗,|ψb|(t) → 0, as t→ ∞. (B5)

Now, we can establish some important properties regarding the optimal policies in the Weibull domain of

attraction. Denote by B(q) the set of bundles that are not stocked out given q ∈ NN , we have the following

lemma.

Lemma B1. Given any q ∈NN , the following properties hold:

1. For every b∈ B(q), we have

lim sup
λt>0

p̂⋆b(q, t)
a(λt) ≤ lim sup

λt>0

∆Ĵ⋆(q, b, t)
a(λt) <∞. (B6)

2. For every b∈ B(q) such that |ψb| ≥ 2,

lim sup
λt>0

p̂⋆b(q, t)
a∗,|ψb|(λt) = lim sup

t>0

∆Ĵ⋆(q, b, t)
a∗,|ψb|(λt) = 0. (B7)

3. Letting βn denote the singleton bundle containing only item n, then for every n = 1, . . . ,N such that

qn ≥ 1, we have

lim inf
λt>0

∆Ĵ⋆(q,βn, t)
a(λt) > 0. (B8)
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Proof of Lemma B1. First, notice that (B6) together with (B5) imply (B7), so we establish (B6). From
Lemma A1 and for every b∈ B(q), we have

p̂⋆b(q, t)
a(λt) ≤ ∆Ĵ⋆(q, b, t)

a(λt) ≤ Ĵ⋆(q, t)
a(λt) . (B9)

However, since component pricing (additive bundle pricing) is a feasible policy, it follows from Abdallah and
Reed (2025a) that lim supλt>0 Ĵ

⋆(q, t)/a(λt)<∞, which establishes (B6).
To establish (B8), denote by Zn,M(λt) = max{Xm,n :m= 1, . . . ,M(λt)} the largest valuation of item n out

of the M(λt) random customer arrivals. We have that ∆J⋆(q,βn, t) ≤E[Zn,M(λt)] and therefore

∆Ĵ(q,βn, t)
a(λt) ≥

xU −E[Zn,M(λt)]
a(λt) ≥ P

(
xU −Zn,M(λt)

a(λt) > 1
)

(B10)

where the second inequality is due to Markov’s inequality. However, by the Fisher-Tippet theorem for random
indexed extremes (see, for example, Theorem 4.3.2 in (Embrechts et al. 2013)), we have that

P

(
xU −Zn,M(λt)

a(λt) > 1
)

→ 1/e > 0, as t→ 0,

which implies (B8). □

Now, letting (̀·) := (̂·)/a(λt), we are now ready to state and prove an equivalent statement to Theorem 3.

Theorem B1. If FX is in the Weibull domain of attraction with index α> 0 and satisfies the von-Mises
condition (19), then for each q ∈NN ,

lim
λt→∞

J̀⋆(q, t) =
(

N∑
n=1

w(α+1)/α
qn

(α)
)
, (B11)

and, for each bundle b∈ {1,2, ...,B}, an optimal bundle pricing policy satisfies

lim
λt→∞

p̀⋆b(q, t) =
∑
n∈ψb

w1/α
qn

(α). (B12)

and,

lim
λt→∞

λt
(
1 −F ∗,|ψb| (|ψb|xU − a(λt)p̀⋆b(q, t))

)
) =
{
wqn(α) if ψb = {n}
0 if |ψb| ≥ 2,

(B13)

where wqn(α) = vqn((α+ 1)/α) .

Proof of Theorem B1. Before proceeding with the proof we establish the equivalence of (B11) and (22).
Noting that a(λt/x) = xU − F−1(1 − x/(λt)) and letting ζ(qn) = (wqn(α)/qn)αwqn(α), then (22) can be
equivalently written as

J⋆(q, t) =
N∑
n=1

qn (Xu − a(λt/ζ(qn))) + o(a(λt))

However, in the Weibull domain of attraction and by Corollary 1.2.10 in (Haan and Ferreira 2006), we have
a(λt/ζ(qn)) = a(λt)ζ(qn)1/α + o(a(λt)). Therefore, (22) is now equivalent to

N∑
n=1

qnxU − J⋆(q, t) =
N∑
n=1

qnζ(qn)1/αa(λt) + o(a(λt))

=
N∑
n=1

w(α+1)/α
qn

a(λt) + o(a(λt))
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which is also equivalent to (B11). The rest of the equivalency follows analogously.

We now proceed with the proof. Note that it is sufficient to establish the result for λ= 1, so fix q ∈NN and

assume without loss of generality that qn > 0 for every n= 1, . . . ,N ; otherwise, those items can be ignored.

It follows from the equivalent HJB equations (B2)- (B4) that for a sufficiently large t > 0, p̀⋆(q, t) attains the

supremum of

Π̀⋆(q,N, t) = sup
p̀∈[0,xU ]B

{
B∑
b=1

λb
(
q, ψ̄xU − a(t)p̀

)[
∆J̀⋆(q, b, t) − p̀b

]}

=
B∑
b=1

λb
(
q, ψ̄xU − a(t)p̀⋆(q, t)

)[
∆J̀⋆(q, b, t) − p̀⋆b(q, t)

]
. (B14)

First, we establish the following convergence result

lim
t→∞

t

(
Π̀⋆(q,N, t) −

N∑
n=1

(1 −F (xU − a(t)p̀⋆βn(q, t)))
(

∆J̀⋆(q,βn, t) − p̀⋆βn(q, t)
))

= 0. (B15)

which, by the principle of optimality, implies

lim
t→∞

t

(
Π̀⋆(q,N, t) −

N∑
n=1

sup
ρ̀n∈[0,xU ]

(1 −F (xU − a(t)ρ̀n))
(

∆J̀⋆(q,βn, t) − ρ̀n

))
= 0. (B16)

To this end, note that for b= 1, . . . ,B, we have that

t ·λb
(
q, ψ̄xU − a(t)p̀⋆(q, t)

)
≤ t

(
1 −F ∗,ψb(|ψb|xU − a(t)p̀⋆b(q, t))

)
= t

(
1 −F ∗,ψb

(
|ψb|xU − a∗,|ψb|(t) a(t)

a∗,|ψb|(t) p̀
⋆
b(q, t)

))
(B17)

Moreover, since by Lemma 1, F ∗,ψb is in the Weibull domain of attraction, then by Proposition 1, then for

c > 0, we obtain

t
(
1 −F ∗,ψb(|ψb|xU − a∗,|ψb|(t) · c

)
→ cα. (B18)

However, by Lemma B1 and for any bundle b such that |ψb| ≥ 2, we have
(
a(t)/a∗,|ψb|(t)

)
p̀⋆b(q, t) → 0 as

t→ ∞. Therefore, for any b such that |ψb| ≥ 2 we have

t ·λb (q, |ψb|xU − a(t)p̀⋆b(q, t)) → 0 as t→ ∞, (B19)

which establishes (B15) and therefore (B16). Also note that this establishes (B13) for |ψb| ≥ 2.

Next, similar to the single-item case (Abdallah and Reed 2025a), it follows from the FOC of the optimiza-

tion problem in (B16) and invoking the von-mises condition (19), that

ρ̀⋆n(q, t)
∆J̀⋆(q,βn, t)

→ α

α+ 1 as t→ ∞. (B20)

Moreover, since from Lemma B1 we have lim supt>0 ∆J̀⋆(q,βn, t)<∞, then after some algebra and similar

to the single-item case, we obtain

lim
t→∞

(
t(1 −F (xU − a(t)ρ̀⋆(q, t)))

(
∆J̀⋆(q,βn, t) − ρ̀⋆n(q, t)

)
− 1
α

(
α

α+ 1

)α+1 (
∆J̀⋆(q,βn, t)

)α+1
)

= 0,

(B21)
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which together with (B16) yields

lim
t→∞

(
tΠ̀⋆(q,N, t) −

N∑
n=1

1
α

(
α

α+ 1

)α+1 (
∆J̀⋆(q,βn, t)

)α+1
)

= 0. (B22)

On the other hand, note that differentiating J̀⋆(q, t) directly with respect to t, we obtain

∂J̀⋆(q, t)
∂t

= 1
a(t)

∂Ĵ⋆(q, t)
∂t

− a′(t)
a(t) J̀

⋆(q, t)

= 1
t

(
−tΠ̀⋆(q,N, t) − ta′(t)

a(t) J̀
⋆(q, t)

)
. (B23)

We are now ready to show by induction that J̀⋆(q, t) →
∑N

n=1w
(α+1)/α
qn

(α) as t→ ∞. The statement is true
for ∥q∥1 = 0, now fix l ≥ 1 and suppose the satement is true for all ∥q∥1 <= l− 1 and consider q such that
∥q∥1 = l .

Note that after some algebra, we can rewrite (B23) as

∂J̀⋆(q, t)
∂t

= 1
αt

(
ϵ̀(t) + g

(
J̀⋆(q, t)

))
. (B24)

where

ϵ̀(t) =

( α

α+ 1

)α+1 N∑
n=1

(
J̀⋆(q, t) −

N∑
k=1

w(α+1)/α
qk

(α) +
(
w(α+1)/α
qn

(α) −w
(α+1)/α
qn−1 (α)

))1+α

−αtΠ̀⋆(q,N, t)


+ J̀⋆(q, t)

(
−αta

′(t)
a(t) − 1

)
(B25)

g(x) = x−
(

α

α+ 1

)α+1 N∑
n=1

(
x−

N∑
k=1

w(α+1)/α
qk

(α) +
(
w(α+1)/α
qn

−w
(α+1)/α
qn−1 (α)

))1+α

. (B26)

Regarding ϵ̀(t), note that by the inverse value theorem and von-Mises condition (19)

−t∂a(t)/∂t
a(t) → 1

α
as t→ ∞.

One the other hand, by the induction hypothesis, then for n= 1, . . . ,N , we have

J̀(q− en) →
N∑
k=1

w(α+1)/α
qk

(α) −
(
w(α+1)/α
qn

(α) −w
(α+1)/α
qn−1 (α)

)
as t→ ∞,

which together with (B22), yields

ϵ̀(t) → 0 as t→ ∞.

Turning our attention to g
(
J̀⋆(q, t)

)
, note that since component pricing (additive bundle pricing) is a feasible

policy, it follows from Abdallah and Reed (2025a) that lim supt>0 J̀
⋆(q, t) ≤

∑N

n=1w
(α+1)/α
qn

(α). Moreover, by
the induction hypothesis and (B8), for a sufficiently large t, we have J̀⋆(q, t)>γ(q, t) where

γ(q, t) = max
n=1,...,N

{
N∑
k=1

w(α+1)/α
qk

(α) −
(
w(α+1)/α
qn

(α) −w
(α−1)/α
qn−1 (α)

)}
≤

N∑
k=1

w(α+1)/α
qk

(α)

.
However, note that for x∈ [γ(q, t),

∑N

k=1w
(α+1)/α
qk

(α)] and for any n= 1, . . . ,N , we have

w
(α+1)/α
qn−1 (α) ≤ x−

N∑
k=1

w(α+1)/α
qk

(α) +w(α+1)/α
qn

(α) ≤w(α+1)/α
qn

(α).
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It now follows from the properties of the recursion defining wqn and the uniqueness of the solution of vqn
(see (Abdallah and Reed 2025a)) that(

α

α+ 1

)α+1
(
x−

N∑
k=1

w(α+1)/α
qk

(α) +
(
w(α+1)/α
qn

(α) −w
(α+1)/α
qn−1 (α)

))1+α

≤ x−
N∑
k=1

w(α+1)/α
qk

(α) +w(α+1)/α
qn

(α),

and summing over n, we obtain(
α

α+ 1

)α+1 N∑
n=1

(
x−

N∑
k=1

w(α+1)/α
qk

(α) +
(
w(α+1)/α
qn

(α) −w
(α+1)/α
qn−1 (α)

))1+α

≤ x+ (N − 1)
(
x−

N∑
k=1

w(α+1)/α
qn

(α)
)
,

and therefore for x ∈ (γ(q, t),
∑N

k=1w
(α+1)/α
qk

(α)), we have g(x) > 0. Similarly, we can show that for x ∈(∑N

k=1w
(α+1)/α
qk

(α),∞
)

, we have g(x)< 0. Moreover, it can be verify that for x=
∑N

k=1w
(α+1)/α
qk

(α) we have

g(x) = 0 and hence x=
∑N

k=1w
(α+1)/α
qk

(α) is a unique root of g(x) on (γ(q, t),∞). Therefore, since ϵ̀(t) → 0

as t→ ∞, it can be shown using the comparison theorem (Arnold 1992) that J̀⋆(q, t) →
∑N

k=1w
(α+1)/α
qk

(α) as

t→ ∞.

To establish (B12), note that from (B20) together with (B11), we have that as t→ ∞

p̀⋆βn(q, t) → α

α+ 1

(
w(α+1)/α
qn

(α) −w
(α+1)/α
qn−1 (α)

)
=w1/α

qn
(α) (B27)

where the last equality is due to (15) and the fact that wqn(α) = vqn((α+ 1)/α).

Finally, (B13) for |ψb| = 1, follows from (B12) together with Propoistion 1 for the Weibull domain of

attraction. □

Proof of Corollary 3. From Theorem B1 and its analogous version for the pure bundling policy, we obtain

J⋆(q, t) − J⋆,PB(q, t) =
(
wqN (Nα)(Nα+1)/Nα)a∗,N (λt) −

(
NwqN (α)(α+1)/α)a(λt)

+ o(a∗,N (λt)) + o(a(λt)).

and the remaining results follow properties of slowly varying functions, which for N ≥ 2

a(λt)
a∗,N (λt) → 0 as λt→ ∞.

□

B.1. Proofs for Bundle Size Pricing: Weibull Domain of Attraction

We first state a similar result to Lemma A1 whose proof is similar and so is skipped.

Lemma B2. For each t ≥ 0 and q ∈ NN such that |N (q)| ≥ 1, there exists a ρ⋆(q, t) such that ρ⋆k(q, t) ≥∑
b∈B|N (q)| ∆J⋆,BSP(q, b, t)/|Bk(q)| for each k≤ |N (q)|.
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Now for each q ∈NN and t≥ 0 set

Ĵ⋆,BSP(q, t) =
(

N∑
n=1

qn

)
xU − J⋆,BSP(q, t) and ρ̂⋆k(q, t) = kxU − ρ⋆k(q, t). (B28)

Also set ∆Ĵ⋆,BSP(q, b, t) = Ĵ⋆,BSP(q, t) − Ĵ⋆,BSP(q−Hb, t) = kxU − ∆J⋆,BSP(q, b, t), where Ĵ⋆(0, ·) = 0.

The HJB equations (36)-(38) may be written as

−∂Ĵ⋆,BSP(q, t)
∂t

= sup
ρ̂∈[0,xU ]N


|N (q)|∑
k=1

λk(q, kxU − ρ̂)

 1
|Bk(q)|

∑
b∈Bk(q)

∆Ĵ⋆,BSP(q, b, t) − ρ̂k

 , ∀t≥ 0, |N (q)| ≥ 1,

(B29)

Ĵ⋆,BSP(q,0) =
(

N∑
n=1

qn

)
xU , q ∈NN , (B30)

Ĵ⋆,BSP(0, t) = 0, t≥ 0. (B31)

Next, we state a Lemma that is similar to Lemma B1, and so its proof is skipped.

Lemma B3. For any q ∈NN we have

1. for |N (q)| ≥ 1, then for every k= 1, . . . , |N (q)|, we have

lim sup
t>0

ρ̂⋆k(q, t)
a(λt) ≤ lim sup

t>0

1
|Bk(q)|

∑
b∈B(q) ∆Ĵ⋆(q, b, t)

a(λt) <∞. (B32)

2. for |N (q)| ≥ 2, then for every k= 2, . . . , |N (q)|,

lim sup
t>0

ρ̂⋆k(q, t)
a∗,|ψb|(λt) = lim sup

t>0

1
|Bk(q)|

∑
b∈B(q) ∆Ĵ⋆,BSP(q, b, t)

a∗,|ψb|(λt) = 0. (B33)

3. Letting βn denote singleton bundle containing item n, then for |N (q)| ≥ 1, we have

lim inf
t>0

1
|B1(q)|

∑
n:βn∈B1(q) ∆Ĵ⋆(q,βn, t)

a(λt) > 0. (B34)

We now state and prove an equivalent statement to Theorem 4.

Theorem B2. If F is in the Weibull domain of attraction with index α > 0 and satisfies the von-Mises

condition (19), then for each q ∈NN with N (q) ≥ 1 the optimal BSP value function is given by

lim
λt→∞

J̀⋆,BSP(q, t) = w̃(α+1)/α
q (α). (B35)

Moreover, the only relevant price is the price of the bundles of size 1 where,

lim
λt→∞

ρ̀⋆1(q, t) = 1
N1/(α+1) w̃

1/α
q (α) (B36)

and the purchasing probabilities for bundle sizes k= 1, . . . ,N are given by

lim
λt→∞

tλk(q, ρ⋆) =
{ w̃q(α)
Nα/(α+1) for k= 1,

0 for k= 2, . . . ,N,
(B37)

where w̃q(α) = ṽq((α+ 1)/α) .



Abdallah and Reed: The Diminishing Value of Bundles
A10

Proof of Theorem B2. It is sufficient to establish the result for λ= 1. Now fix q ∈NN and assume without

loss of generality that qn > 0 for every n= 1, . . . ,N ; otherwise, those items can be ignored. It follows from

the (modified) HJB equation (B29) that for a sufficiently large t > 0, ρ̀⋆(q, t) attains the supremum of

Π̀⋆,BSP(q,N, t) = sup
ρ̀∈[0,∞)N


K∑
k=1

λk(q, kxU − ρ̀)

 1
|Bk(q)|

∑
b∈Bk(q)

∆J̀⋆,BSP(q, b, t) − ρ̀k


=

K∑
k=1

λk(q, kxU − ρ̀⋆(q, t))

 1
|Bk(q)|

∑
b∈Bk(q)

∆J̀⋆,BSP(q, b, t) − ρ̀⋆k(q, t)

 . (B38)

Now similar to the proof of Theorem B1, we can establish that for k≥ 2

tλk (q, kxU − ρ̀⋆(q, t)) → 0 as t→ ∞,

which implies (B37) for k≥ 2. It now follows that for k= 1,

t (λ1(q, kxU − ρ̀⋆(q, t)) −P (max{X1, . . . ,XN}>xu − a(t)ρ̀⋆1(q, t))) → 0 as t→ ∞,

On the other hand, given the i.i.d. assumption, then

P (max{X1, . . . ,XN}>xU − a(t)ρ̀⋆1(q, t)) = (1 −F (xU − a(t)ρ̀⋆1(q, t)))
N−1∑
n=0

(F (xU − a(t)ρ̀⋆1(q, t)))n .

and since a(t)ρ̀⋆1(q, t) → 0 as t→ ∞, we have

P (max{X1, . . . ,XN}>xU − a(t)ρ̀⋆1(q, t))
N (1 −F (xU − a(t)ρ̀⋆1(q, t)) → 1 as t→ ∞,

Therefore, together with (B38) and Lemma B3 property 1), we obtain

lim
t→∞

t

(
Π̀⋆,BSP(q,N, t) − sup

ρ̀1≥0

{
(1 −F (xU − a(t)ρ̀1))

(
N∑
n=1

∆J̀⋆,BSP(q,βn, t) −Nρ̀1

)})
= 0. (B39)

Next note that for a sufficiently large t, we have that the supremum inside the lefthand side of (B39) is

attained by ρ̀⋆1(q, t) that satisfies the FOC. After some algebra and invoking the von Mises condition (19), it

follows that

Nρ̀⋆1(q, t)∑N

n=1 ∆J̀⋆,BSP(q,βn, t)
→ α

α+ 1 as t→ ∞. (B40)

However, since by Lemma B3, lim supt>0
∑N

n=1 ∆J̀⋆,BSP <∞, then after some algebra and similar to (B21),

we obtain

lim
t→∞

tΠ̀⋆,BSP(q,N, t) − N

α

(
α

α+ 1

)α+1
(∑N

n=1 ∆J̀⋆,BSP(q,βn, t)
N

)α+1
 = 0. (B41)

.

Now note that, differentiating J̀⋆,BSP(q, t) directly with respect to t yields

∂J̀⋆,BSP(q, t)
∂t

= 1
a(t)

∂Ĵ⋆,BSP(q, t)
∂t

− a′(t)
a(t) J̀

⋆,BSP(q, t)

= 1
t

(
−tΠ̀⋆,BSP(q,N, t) − ta′(t)

a(t) J̀
⋆,BSP(q,t)(q, t)

)
. (B42)
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We are now ready to show by induction that J̀⋆(q, t) → w̃(α+1)/α
q as t→ ∞. The statement is true for ||q||1 = 0.

Fix l≥ 2 and suppose the statement is true for all ||q||1 ≤ l− 1 and consider an arbitrary q ∈ NN such that

||q||1 = l.

Observe that after some algebra, we can rewrite (B42) as

∂J̀⋆,BSP(q, t)
∂t

= 1
αt

(
ϵ̀(t) + g

(
J̀⋆,BSP(q, t)

))
. (B43)

where

ϵ̀(t) =

N ( α

α+ 1

)α+1
(
J̀⋆,BSP(q, t) −

∑N

n=1 w̃
(α+1)/α
q−en

N

)1+α

−αtΠ̀⋆,BSP(q,N, t)


+ J̀⋆,BSP(q, t)

(
−αta

′(t)
a(t) − 1

)
(B44)

g(x) = x−N

(
α

α+ 1

)α+1
(
x−

∑N

n=1 w̃
(α+1)/α
q−en

N

)1+α

. (B45)

Regarding ϵ̀(t), note that by the inverse value theorem and the von-Mises condition (19)

−ta
′(t)
a(t) → 1

α
as t→ ∞, (B46)

Furthermore, by the induction hypothesis and (B41), have that for n= 1, . . . ,N , then

J̀⋆,BSP(q− en, t) → w̃
(α+1)/α
q−en as t→ ∞. (B47)

It now follows from (B41), (B46) and (B47) that

ϵ̀(t) → 0 as t→ ∞.

Turning our attention to g
(
J̀⋆,BSP(q, t)

)
, note that by the induction hypothesis and (B34). for a sufficiently

large t, we have J̀⋆(q, t)>maxn{w̃(α+1)/α
q−en } and hence

J̀⋆(q, t)>
∑N

n=1 w̃
(α+1)/α
q−en

N
.

On the other hand, from the properties of the recursion defining w̃q, it follows that for x ∈

[
∑N

k=1 w̃
(α+1)/α
q−en /N,∞ ), g(x) has a unique root given by x= w̃(α+1)/α

q . Moreover, by the uniqueness of the

root, it is straightforward to verify that g(x)> 0 for x ∈ [
∑N

k=1 w̃
(α+1)/α
q−en /N, w̃(α+1)/α

q ) and g(x)< 0 for x ∈

(w̃(α+1)/α
q ,∞). Therefore, since ϵ̀(t) → 0 as t→ ∞, then again using the comparison theorem (Arnold 1992)

it can be shown that J̀⋆,BSP(q, t) → w̃(α+1)/α
q as t→ ∞.

To establish (B36), note that from (B40) together with (B35), we have that as t→ ∞

ρ̀⋆1(q, t) → α

α+ 1

(
w̃(α+1)/α
q (α) −

∑N

n=1w
(α+1)/α
q−en (α)
N

)
= 1
N1/(α+1)w

1/α
qn

(α) (B48)

where the last equality is due to (17) and the fact that w̃qn(α) = ṽq((α+ 1)/α).

Finally, (B37) for k= 1, follows from (B36) together with (1) for the Weibull domain of attraction. □



Abdallah and Reed: The Diminishing Value of Bundles
A12

Proof of Proposition 3. It suffices to establish the case for λ= 1. Assume that F satisfies the von Mises
condition (19) then F is absolutely continuous on (x0, xU ). This then implies that 1 −F (F−1(1 − r)) = r for
any r < 1−F (x0) = r0. Now, let ρ∈ UBSP where ρ1(q, t) = F−1(1−1/(Nα/(α+1)) (w̃q(α)/t) and ρk(q, t) = kxU

for k ≥ 1. Without loss of generality, we assume q ∈ NN+ with qN ≥ 1, i.e., |N (q)| = N since otherwise the
stocked-out products can be ignored. It then follows by standard theory that for each q ∈ NN+ and t >

w̃q(α)/(r0N
α/(α+1)), we have

− 1
a(t)

∂ĴBSP
ρ (q, t)
∂t

= P (max{X1, . . . ,XN}>xU − a(t)ρ̀1(q, t))
(∑N

n=1 ∆J̀BSP
ρ (q,βn, t)
N

− ρ̀1(q, t)
)
.

Denote by Π̀BSP(q,N, t) = −1/a(t)
(
∂ĴBSP

ρ (q, t)/∂t
)

, then similar to (B39) and after some algebra, we have

lim
t→∞

t

(
Π̀BSP(q,N, t) − (1 −F (xU − a(t)ρ̀1(q, t)))

(
N∑
n=1

∆J̀BSP
ρ (q,βn, t) −Nρ̀1(q, t)

))
= 0, (B49)

which similar to (B41) yields

lim
t→∞

(
tΠ̀BSP(q,N, t) −Nρ̀1(q, t)α+1

(∑N

n=1 ∆J̀BSP
ρ (q,βn, t)

Nρ̀1(q, t) − 1
))

= 0 (B50)

However, since ρ̀1(q, t) = ρ̀⋆1(q, t) − o(a(t)) with a(t) → 0 as t→ ∞, it follows that

lim
t→∞

ρ̀1(q, t) = lim
t→∞

ρ̀⋆1(q, t) =
w̃1/α
q

N1/(α+1) ,

which, after some algebra, implies

lim
t→∞

(
tΠ̀BSP(q,N, t) − w̃α+1/α

q

(
N1/(α+1)

(
J̀BSP
ρ (q, t) −

N∑
n=1

J̀BSP
ρ (q− en, t)/N

)
1

w̃
1/α
q

− 1
))

= 0

(B51)

We are now ready to show by induction that J̀BSP
ρ (q, t) → w̃(α+1)/α

q as t→ ∞. The statement is true for
||q||1 = 0, now suppose it is true for all ||q||1 ≤ l− 1 for some l ≥ 2 and consider an arbitrary q ∈ NN such
that ||q||1 = l.

Note that similar to (B42), we have
∂J̀BSP

ρ (q, t)
∂t

= 1
αt

(
−αtΠ̀BSP(q,N, t) −α

ta′(t)
a(t) J̀

BSP(q,t)
ρ (q, t)

)
, (B52)

which can be written as
∂J̀⋆,BSP(q, t)

∂t
= 1
αt

(
ϵ̀(t) + g

(
J̀BSP
ρ (q, t)

))
. (B53)

where

ϵ̀(t) = αw̃α+1/α
q

(
N1/(α+1)

(
J̀BSP
ρ (q, t) −

N∑
n=1

w̃
(α+1)/α
q−en /N

)
1

w̃
1/α
q

− 1
)

−αtΠ̀⋆,BSP(q,N, t)

+ J̀BSP
ρ (q, t)

(
−αta

′(t)
a(t) − 1

)
(B54)

g(x) = x− w̃α+1/α
q

(
N1/(α+1)

(
x−

N∑
n=1

w̃
(α+1)/α
q−en /N

)
1

w̃
1/α
q

− 1
)
. (B55)

Note that by (B46), (B51), and the induction hypothesis we have ϵ̀(t) → 0 as t → ∞. As for g(x), and
from the properties of w̃q(α), it is straightforward to verify that g(x) has a unique root x= w̃(α+1)/α

q , where
g(w̃(α+1)/α

q ) = 0. Meanwhile, for x> w̃(α+1)/α
q , then g(x)< 0 and for x∈ [

∑N

n=1 w̃
(α+1)/α
q−en /N, w̃(α+1)/α

q ), we have
g(x)> 0. Therefore, again by the comparison theorem we have that J̀BSP

ρ (q, t) → w̃(α+1)/α
q as t→ ∞. □
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C. Proofs of Section 7: Frechet Domain of Attraction

Let βn ∈ {1,2, . . . ,B} denote the singleton bundle that only contains item n, that is ψβn = {n}. Given

q ∈ NN , denote by B(q) = {b ∈ B : qn ≥ 1 for all n ∈ ψb} be the set of bundles that are not out of stock and

let (̄·) := (·)/a(λt). We establish the following intermediate Lemma and then state and prove an equivalent

statement to Theorem 5.

Lemma C1. Given an optimal policy p⋆ ∈ U , then for every q ∈NN and bundle b∈ B(q),

lim sup
λt>0

p̄⋆b(q, t) < ∞ (C1)

Proof of Lemma C1. It is sufficient to establish the case for λ= 1. Let p⋆ ∈ U be an optimal policy and

fix q ∈NN such that |N (q)| ≥ 1. Suppose for a contradiction that there exists a bundle b∈ B(q)

lim sup
t>0

p̄⋆b(q, t) = ∞,

and denote by σn(q) ⊆ B(q) the set of bundles that contain an item n ∈ N (q). Then, by the subadditivity

and monotonicity of the pricing policies over bundles, there exists at least one item n such that for every

b∈ σn(q)

lim sup
t>0

p̄⋆b(q, t) = ∞. (C2)

Fix this item n and let B⋆(q) = {b∈ B(q) : lim supt>0 p̄
⋆
b(q, t)<∞}. Note that B⋆(q) ∩σn(q) = ϕ.

We now show that (C2) yields

lim inft>0

B∑
b=1

tλb(q, a(t)p̄⋆(q, t))
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
= lim inft>0

∑
b∈B⋆(q)

tλb(q, a(t)p̄⋆(q, t))
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
. (C3)

To see this, note that∑
b∈B(q)\B⋆(q)

tλb(q, a(t)p̄⋆b(q, t))
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
≤

∑
b∈B(q)\B⋆(q)

t
(
1 −F ∗,|ψb|(a(t)p̄⋆b(q, t))

)
p̄⋆b(q, t)

≤
∑

b∈B(q)\B⋆(q)

Nt (1 −F (a(t)p̄⋆b(q, t)/N)) p̄⋆b(q, t).

(C4)

However, from Proposition 1 for the Frechet domain of attraction then for any 0< c<∞, we have

t (1 −F (a(t)c)) c= c(1−α) as t→ ∞, (C5)

and since α> 1 then for each b∈ B(q)\B⋆(q)

lim inf
t>0

t (1 −F (a(t)p̄⋆(q, t)/N)) p̄⋆b(q, t) = 0, (C6)

which implies (C3).
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Next, consider, without loss of generality, an alternative pricing vector p̆ such that p̆b(q, t) = p̄⋆b(q, t) for
b∈ B⋆(q) and p̆b(q, t) = ∞ otherwise. We have that

lim inf
t>0

B∑
b=1

tλb(a(t)p̆(q, t))
(
p̆b(q, t) − ∆J̄⋆(q, b, t)

)
= lim inf

t>0

∑
b∈B⋆(q)

tλb(a(t)p̄⋆(q, t))
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
(C7)

Denote by σ⋆n(q) = {b ∈ σn(q) : there exits b′ ∈ B⋆(q) ∪ {0} such that ψb\{n} = ψb′} where 0 is the empty
bundle that represents a no-purchase. In words, each bundle in σ⋆n(q) has an adjacent bundle that is either
empty or in B⋆(q) that consists of the same items except for item n. Also denote by ζ(b) ∈ B⋆(q) ∪ {0} this
adjacent bundle where ψζ(b) =ψb\{n}.

Now consider the another alternative pricing vector p such that

p̄b(q, t) =
{

2J̄⋆(q, t) + p̆ζ(b)(q, t) if b∈ σ⋆n(q)
p̆b(q, t) if b∈ B\σ⋆n(q)

(C8)

where p0(q, t) = 0.
It is straightforward to verify that p is consistent with the subadditivity and monotonicity rules and, hence,

admissible.
Note that for b∈ B(q)\ (B⋆(q) ∪σ⋆n(q)), we have p̄(q, t) = p̆(q, t) = ∞ and hence the pruchasing probabilities

are given by E[y⋆b (q, t, a(t)p̄)] = E[y⋆b (q, t, a(t)p̆)] = 0. Therefore, it is sufficient to compare the purchasing
probabilities for b∈ σ⋆n(q) and b∈ B⋆(q).

Case I – E = {Xn < 2J⋆(q, t)}: Consider the event E, then for any b∈ σ⋆n(q) we have∑
k∈ψb

Xk − 2J⋆(q, t) − a(t)p̆ζ(b)(q, t) <
∑

k∈ψζ(b)

Xk − a(t)p̆ζ(b)(q, t).

Therefore y⋆b (q,X,a(t)p̄) = y⋆b (q,X,a(t)p̆) = 0, for every b ∈ σ⋆n(q). Similarly, for every b ∈ B⋆(q),
y⋆b (q,X,a(t)p̄) = y⋆b (q,X,a(t)p̆) given E.

Noting that λb(q, a(t)p̄(q, t)) = λE [y⋆b (q,X,a(t)p̄(q, t))], then by conditioning on E, we obtain∑
b∈B

tλb(q, a(t)p̄(q, t)|E)
(
p̄b(q, t) − ∆J̄⋆(q, b, t)

)
=

∑
b∈B⋆(q)

tλb(q, a(t)p̆(q, t)|E)
(
p̆b(q, t) − ∆J̄⋆(q, b, t)

)
=

∑
b∈B⋆(q)

tλb(q, a(t)p̆(q, t))
(
p̆b(q, t) − ∆J̄⋆(q, b, t)

)
, (C9)

where the last inequality holds since the purchasing decisions under p̆ is independent of Xn. In particular,
since by construction p̆b(q, t) = ∞ for all b∈ σn(q).

Case II–Ec = {Xn ≥ 2J⋆(q, t)}: Similar to the arguments in Case I, when {Xn ≥ 2J⋆(q, t)}, we have
y⋆b (q,X,a(t)p̄) = 0 given Ec for every b ∈ B⋆. However, y⋆b (q,X,a(t)p̄) = y⋆ζ(b)(q,X,a(t)p̆) almost surely for
every b ∈ σ⋆n(q) since adding item n increases the utility. Note that when if {Xn = 2J⋆(q, t)}, the customer
is indifferent between b∈ σn(q)⋆ and ζ(b). However, by the tie-breaking rule, the customer prefers the larger
bundle and hence prefers b∈ σ⋆n(q).

Next by conditioning on Ec and recalling that that the purchasing decisions under p̆∈ P are independent
of Xn, we obtain
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B∑
b=1

tλb(q, a(t)p̄(q, t)|Ec)
(
p̄b(q, t) − ∆J̄⋆(q, b, t)

)
=

∑
b∈σ⋆n(q)

tλζ(b)(q, a(t)p̆(q, t))
(
2J̄(q, t) + p̆ζ(b)(q, t) − ∆J̄⋆(q, b, t)

)
=

∑
b∈B⋆(q)∪{0}

tλb(q, a(t)p̆(q, t))
(
2J̄(q, t) + p̆b(q, t) − ∆J̄⋆(q, ζ−1(b), t)

)
(C10)

where ζ−1(b) ∈ σ⋆n(q) is such that ψζ−1(b) = ψb ∪ {n} and the last inequality is due to the fact that J̄(q, t) ≥

∆J̄(q, b, t) for all b∈ B, q ∈N+ and t > 0.

Putting (C9) and (C10) together, we have
B∑
b=1

tλb(q, a(t)p̄(q, t))
(
p̄b(q, t) − ∆J̄⋆(q, b, t)

)
−

B∑
b=1

tλb(a(t)p̆(q, t))
(
p̆b(q, t) − ∆J̄⋆(q, b, t)

)
= (1 −F (2J⋆(q, t))

 ∑
b∈B(q)⋆∪{0}

tλb(a(t)p̆(q, t))
(
2J̄⋆(q, t) + ∆J̄⋆(q, b, t) − ∆J̄⋆(q, ζ−1(b), t)

)
> (1 −F (2J⋆(q, t))

(
tJ̄⋆(q, t)

)
(C11)

where the last inequality is due to the fact that
∑

b∈B(q)⋆∪{0} λb(a(t)p̆(q, t)) = 1 and J̄⋆(q, t) ≥ ∆J̄⋆(q, b, t) for

all b∈ B.

Next note that

lim inf
t>0

J̄⋆(q, t) = κ(q) > 0 and lim sup
t>0

J̄⋆(q, t) = η(q)<∞,

where the inequalities follow from Abdallah and Reed (2025a). Hence, since 1/t= 1 −F (a(t)) and for each

c > 0, (1 −F (cx))/(1 −F (x)) → c−α as x→ ∞ uniformly for all c in a compact interval, it follows that

lim inf
t>0

(1 −F (2J⋆(q, t))
(
tJ̄⋆(q, t)

)
≥ lim inf

t>0
J̄⋆(q, t) lim inf

t>0
t
(
1 −F (2a(t)J̄⋆(q, t))

)
= γ(q) > 0, (C12)

where γ(q) = κ(q)(2η(q))−α.

Putting (C7), (C11), and (C12) together, yields

lim inf
t>0

B∑
b=1

tλb(a(t)p̄(q, t))
(
p̄b(q, t) − ∆J̄⋆(q, b, t)

)
> lim inf

B∑
b=1

tλb(a(t)p̄⋆(q, t))
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
which is a contradiction to the optimality of p⋆(q, t) in the HJB equations. □

We now prove the following equivalent theorem to Theorem 5.

Theorem C1. If FX is in the Frechet domain of attraction with index α> 1 and satisfies the von Mises

condition (45), then for each q ∈NN ,

lim
λt→∞

J⋆(q, t)/a(λt) =
(

N∑
n=1

ϕ(α−1)/α
qn

)
, (C13)
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and, for each bundle b∈ {1,2, ...,B}, an optimal bundle pricing policy satisfies

lim
λt→∞

p⋆b(q, t)/a(λt) =
∑
n∈ψb

ϕ−1/α
qn

(C14)

and,

lim
λt→∞

λt
(
1 −F ∗,|ψb| (a(λt)p̄⋆b(q, t))

)
) =
{
ϕqn(α) if ψb = {n}
0 if |ψb| ≥ 2,

(C15)

where ϕqn = vqn((α− 1)/α) .

Proof of Theorem C1. It is sufficient to establish the result for λ = 1. We proceed by induction. The
statement is true for ||q||1 = 0; now, suppose it is true for all ||q||1 ≤ l − 1 and consider q ∈ NN such that
||q||1 = l. Assume without loss of generality that qn ≥ 1 for each n= 1, . . . ,N , since otherwise, we can ignore
such items as they cannot be sold. Note that according to the HJB optimality conditions and the von Mises
condition (45), for any t > 0, p̄⋆(q, t) attains the supremum of

Π̄⋆(q,N, t) = sup
p̄∈P̄(q)

{
B∑
b=1

λb(a(t) · p̄)
[
p̄− ∆J̄⋆(q, b, t)

]}

=
B∑
b=1

λb (a(t)p̄⋆(q, t))
[
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

]
(C16)

where (̄·) := (·)/a(λt).
First note that since additive bundle pricing (component pricing) is a feasible policy, it follows from

Abdallah and Reed (2025a) we have lim inft>0 J̄
⋆(q, t) ≥

∑N

n=1 ϕ
(α−1)/α
qn

. Therefore, it follows by the induction
hypothesis that for every b= 1, . . . ,B, we have lim inft>0 ∆J̄⋆(q, b, t)> 0. Moreover, by Lemmas A1 and C1,
we obtain that

0 < lim inf
t>0

∆J̄⋆(q, b, t) ≤ lim sup
t>0

∆J̄⋆(q, b, t)<∞ (C17)

and

0 < lim inf
t>0

p̄⋆b(q, t) ≤ lim sup
t>0

p̄⋆b(q, t)<∞ (C18)

We start by establishing the following asymptotic upper-bound

lim sup
t>0

t ·

(
Π̄⋆(q,N, t) −

N∑
n=1

(1 −F (a(t)p̄⋆βn(q, t)))
(
p̄⋆βn(q, t) − ∆J̄⋆(q,βn, t)

))
≤ 0, (C19)

where βn ∈ {1, ...,B} is the singleton bundle that contains only item n.
Now for each b= 1,2, ...,B, and p∈R, let

1
{∑
n∈ψb

Xn > p

}
=
∑
n∈ψb

1{Xn > p} + ε(b,X,p). (C20)

Taking expectations, we have

E[ε(b,X,p)] = (1 −F ∗,|ψb|(p)) − |ψb|(1 −F (p)). (C21)

where F ∗,|ψb| is the convolution distribution of bundle b’s valuation, i,e,
∑

n∈ψbXn. Next, note that for p∈RB+
and b= 1,2, ...,B,
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y⋆b (q,X,p) = 1
{∑
n∈ψb

Xn > pb

}
y⋆b (q,X,p),

and so we may write

y⋆b (q,X,p) =
(∑
n∈ψb

1{Xn > pb}

)
y⋆b (q,X,p) + ε(b,X,pb)y⋆b (q,X,p).

This then implies that

λb(q, p) =
∑
n∈ψb

E [1{Xn > pb}y⋆b (q,X,p)] +E[ε(b,X,pb)y⋆b (q,X,p)].

Substituting the previous expression into Π̄⋆(q,N, t) and interchanging the order of summation, we obtain
after some algebra that

t · Π̄⋆(q,N, t) =
N∑
n=1

(∑
b∈σn

tE [1{Xn > p
⋆
b(q, t)}y⋆b (q,X,p⋆)]

(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

))

+
B∑
b=1

tE[εb(q,X,p⋆)y⋆b (q,X,p⋆)]
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
, (C22)

where σn ⊆ {1,2, ...,B} denotes the set of bundles that contain item n.
Regarding the second term on the right-hand side of (C22), note that

tE[εb(q,X,p⋆)y⋆b (q,X,p⋆)] ≤ t(1 −F (a(t)p̄⋆b(q, t))
(

1 −F ∗,|ψb| (a(t)p̄⋆b(q, t))
1 −F (a(t)p̄⋆b(q, t))

− |ψb|
)

However, since by (C18) we have a(t)p̄⋆b(q, t) → ∞ as t→ ∞, it then follows by a standard result by Feller
(1991) regarding convolutions of regularly varying functions, that

1 −F ∗,|ψb| (a(t)p̄⋆b(q, t))
1 −F (a(t)p̄⋆b(q, t))

→ |ψb| as t→ ∞. (C23)

and by Proposition 1 for the Frechet domain of attraction together with (C18), we have

lim sup
t>0

t (1 −F (a(t)p̄⋆b(q, t)))<∞,

and therefore
B∑
b=1

tE[εb(q,X,p⋆)y⋆b (q,X,p⋆)]
(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
→ 0 as t→ ∞. (C24)

Now setting

gn(q, t, p⋆) =
∑

b∈σn(q)

E [1{Xn > p
⋆
b(q, t)}y⋆b (X,p⋆)]

(
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
, (C25)

for n= 1, . . . ,N , it follows from (C22) and (C24) that

t

(
Π̄⋆(q,N, t) −

N∑
n=1

gn(q, t, p⋆)
)

→ 0 as t→ ∞. (C26)

Hence, to establish (C19) it is sufficient to establish following asymptotic upper bound on gn,

lim sup
t>0

t ·
(
gn(q, t, p⋆) − (1 −F (a(t)p̄⋆βn(q, t)))

(
p̄⋆βn(q, t) − ∆J̄⋆(q,βn, t)

))
≤ 0. (C27)
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Fix n ∈ {1,2, ...,N} and note that if qn = 0 the statement is trivially true. Assume qn > 0, then by the
monotonicity property of the bundle pricing policies, we have that for each b∈ σn(q) we may write p̄⋆b(q, t) =
p̄⋆βn(q, t) + ϵ̄⋆b(q, t) with ϵ̄⋆b(q, t) ≥ 0, and

tE
[
1{X̄n > p̄

⋆
b(q, t)}y⋆b (X̄, p̄⋆)

] (
p̄⋆b(q, t) − ∆J̄⋆(q, b, t)

)
= tE

[
1{X̄n > p̄

⋆
b(q, t)}y⋆b (X̄, p̄)

] (
p̄⋆βn(q, t) − ∆J̄⋆(q, b, t)

)
+tE

[
1{X̄n > p̄

⋆
b(q, t)}y⋆b (X̄, p̄)

]
ϵ̄⋆b(q, t). (C28)

Regarding the second term on the right-hand side, note that since p̄⋆b(q, t) = p̄⋆βn(q, t)+ ϵ̄⋆b(q, t) with ϵ̄⋆b(q, t) ≥ 0
it follows that

1{X̄n > p̄
⋆
b(q, t)}y⋆b (X̄, p̄) ≤ 1{X̄n > p̄

⋆
βn

(q, t)}1


∑
k∈ψb
k ̸=n

X̄k ≥ ϵ̄⋆b(q, t)

 . (C29)

By the independence of the components of X̄, we have that

tE

[
1{X̄n > p̄

⋆
βn

(q, t)}1
{ ∑
k∈ψb,k ̸=n

X̄k ≥ ϵ̄⋆b(q, t)
}]

ϵ̄⋆b(q, t)

= t(1 −F (a(λ)p̄⋆βn(q, t)))P
( ∑
k∈ψb,k ̸=n

Xk ≥ a(t)ϵ̄⋆b(q, t)
)
ϵ̄⋆b(q, t). (C30)

However, since 0 < lim inft>0 p̄
⋆
βn

(q, t) < lim supt>0 p̄
⋆
βn

(q, t) < ∞, we have that lim supt>0 t(1 −

F (a(t)p̄⋆βn(q, t)))<∞. Moreover, since by Lemma C1 we have lim supt>0 ϵ̄
⋆
b(q, t)<∞, it follows from (C30)

that

tE

[
1{X̄n > p̄

⋆
βn

(q, t)}1
{ ∑
k∈ψb,k ̸=n

X̄k > ϵ̄
⋆
b(q, t)

}]
ϵ̄⋆b(q, t) → 0 as t→ ∞. (C31)

From (C25) through (C31) it now follows that

lim
t→∞

t ·

gn(q, t, p⋆) −
∑

b∈σn(q)

E
[
1{X̄n > p̄

⋆
b(q, t)}y⋆b (X̄, p̄)

] (
p̄⋆βn(q, t) − ∆J̄⋆(q, b, t)

) = 0. (C32)

Now note that since p̄⋆b(q, t) = p̄⋆βn(q, t) + ϵ̄⋆b(q, t) with ϵ̄⋆b(q, t) ≥ 0 for each b∈ σn(q) it follows that

1{X̄n > p̄
⋆
b(q, t)}y⋆b (X̄, p̄) ≤ 1{X̄n > p̄

⋆
βn

(q, t)}y⋆b (X̄, p̄), (C33)

and so (C32) implies

lim sup
t>0

tgn(q, t, p⋆) −
∑

b∈σn(q)

tE
[
1{X̄n > p̄

⋆
βn

(q, t)}y⋆b (X̄, p̄)
] (
p̄⋆βn(q, t) − ∆J̄⋆(q, b, t)

) ≤ 0. (C34)

Interchanging summation and expectation we now have that∑
b∈σn(q)

tE
[
1{X̄n > p̄

⋆
βn

(q, t)}y⋆b (X̄, p̄)
] (
p̄⋆βn(q, t) − ∆J̄⋆(q, b, t)

)
= tE

1{X̄n > p̄
⋆
βn

(q, t)}
∑

b∈σn(q)

y⋆b (X̄, p̄)
(
p̄⋆βn(q, t) − ∆J̄(q, b, t)

) , (C35)
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and so since ∑
b∈σn(q)

y⋆b (X̄, p̄) ≤ 1,

with y⋆b (X̄, p̄) ≥ 0 for b∈ σn(q) and ∆J̄⋆(q,βn, t) ≥ ∆J̄⋆(q, b, t) for b∈ σn, it follows that

tE

1{X̄n > p̄
⋆
βn

(q, t)}
∑

b∈σn(q)

y⋆b (X̄, p̄)
(
p̄⋆βn(q, t) − ∆J̄⋆(q, b, t)

)
≤ t(1 −F (a(t)p̄⋆βn(q, t)))

(
p̄⋆βn(q, t) − ∆J̄⋆(q,βn, t)

)
. (C36)

Putting (C36), (C35), and (C34) together yields the asymptotic upper bound in (C27). Therefore, we now
have that

lim sup
t>0

t ·

(
Π̄⋆(q,N, t) −

N∑
n=1

(1 −F (a(t)p̄⋆βn(q, t)))
(
p̄⋆βn(q, t) − ∆J̄⋆(q,βn, t)

))
≤ 0. (C37)

Next, we show that component pricing (additive bundle pricing) asymptotically achieves this upper bound.
To this end, consider an additive bundle pricing policy ρ(q, t) ∈RB+ such that

ρb(q, t) = a(t)
∑
n∈ψb

p̄⋆βn(q, t) for b= 1, . . . ,B. (C38)

By the optimality principle, we have

Π̄⋆(q,N, t) ≥
b∑
b=1

λb(q, a(t)ρ̄(q, t)
[
ρ̄b(q, t) − ∆J̄⋆(q, b, t),

]
. (C39)

where λb(q, a(t)ρ̄(q, t)) =E[y⋆b (X̄, ρ̄)].
However, it follows from the additive pricing assumption that

1{y⋆b (X̄, ρ̄) = 1} ≤ Πn∈ψb1{Xn ≥ a(t)p̄βn}, (C40)

since 1{Xn <a(t)p̄βn} implies the customer strictly prefers the smaller bundle without item n.
Next, recall by the von-Mises condition that for a sufficiently large t (and hence large a(t)p̄βn), the distribu-

tion FX admits a density. Therefore, by taking expectations on both sides and considering the independence
of the components of X, it follows that for a sufficiently large t

E[y⋆b (X̄, p̄)] ≤ Πn∈ψb (1 −F (a(t)p̄βn(q, t)))}. (C41)

It now follows from Proposition 1 that for any bundle b that includes more than one item, |ψb| ≥ 2, we have

t ·E[y⋆b (X̄, p̄)] → 0 as t→ ∞. (C42)

Therefore, the following convergence result holds

lim
t→∞

t

(
B∑
b=1

λb(a(t)p̄(q, t)
[
p̄b(q, t) − ∆J̄⋆(q, b, t)

]
−

N∑
n=1

(1 −F (a(t)p̄⋆βn(q, t)))
(
p̄⋆βn(q, t) − ∆J̄⋆(q,βn, t)

))
= 0,

which together with (C37) and (C39) implies

lim
t→∞

t

(
Π̄⋆(q,N, t) −

N∑
n=1

(1 −F (a(t)p̄⋆βn(q, t)))
(
p̄⋆βn(q, t) − ∆J̄⋆(q,βn, t)

))
= 0.
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and in particular, by the optimality of Π̄⋆(q,N, t) we have

lim
t→∞

t

(
Π̄⋆(q,N, t) −

N∑
n=1

sup
ρ̄n≥0

(1 −F (a(t)ρ̄n))
(
ρ̄n − ∆J̄⋆(q,βn, t)

))
= 0. (C43)

Note that while the pricing policies converge to an additive bundle pricing policy (i.e., component pricing),
this may not guarantee the convergence of the value function. So, we proceed to show that the optimal value
function indeed converges to optimal dynamic component pricing.

We next show that

lim
t→∞

(
t sup
ρ̄n≥0

(1 −F (a(t)ρ̄n))
(
ρ̄n − ∆J̄⋆(q,βn, t)

)
− 1
α

(
α− 1
α

)α−1 (
∆J̄⋆(q,βn, t)

)1−α
)

= 0. (C44)

For t sufficiently large, the supremum is attained, and it is straightforward to show that the maximizer
ρ̄⋆n(q, t) satisfies the FOC. Invoking the von Mises condition (45) to the FOC and after some algebra, we
obtain

ρ̄⋆n(q, t)
∆J̄⋆(q,βn, t)

= C0(q,n, t) =
(

1 − (1 −F (a(t)ρ̄⋆n(q, t)))
a(t)ρ̄⋆n(q, t)f(a(t)ρ̄⋆n(q, t))

)−1

→ α

α− 1 as t→ ∞, (C45)

where the convergence holds by the von-Mises condition.
Noting that 1/t= 1 −F (a(t)) = a(t)1/αL(a(t), then after some algebra, we have

t sup
ρ̄n≥0

(1 −F (a(t)ρ̄n))
(
ρ̄n − ∆J̄⋆(q,βn, t)

)
= C0(q,n, t)−α (C0(q,n, t) − 1) L(a(t)ρ̄⋆n(q, t))

L(a(t)
(
∆J̄⋆(q,βn, t)

)1−α
. (C46)

Since by the definition of slowly varying functions, we have L(a(t)ρ̄⋆n(q, t))/L(a(t) → 1 as t→ ∞, then (C45)
and (C46) imply (C44) which together with (C43) yields

lim
t·→∞

(
tΠ̄⋆(q,N, t) − 1

α

(
α− 1
α

)α−1 N∑
n=1

(
∆J̄⋆(q,βn, t)

)1−α
)

= 0. (C47)

On the other hand, differentiating J̄⋆(q, t) directly with respect to t, yields

∂J̄⋆(q, t)
∂t

= 1
a(t)

∂J⋆(q, t)
∂t

− a′(t)
a(t) J̄

⋆(q, t) (C48)

= 1
t

(
tΠ̄⋆(q, t) − ta′(t)

a(t) J̄
⋆(q, t)

)
, (C49)

which, after some algebra, we may write

∂J̄⋆(q, t)
∂t

= 1
t

(
ϵ̄(t) − g

(
J̄⋆(q, t)

))
, (C50)

where

ϵ̄(t) =
(
αtΠ̄⋆(q,N, t) −

(
α− 1
α

)α−1 N∑
n=1

(
J̄⋆(q, t) −

N∑
k=1

ϕ(α−1)/α
qk

+
(
ϕ(α−1)/α
qn

−ϕ
(α−1)/α
qn−1

)1−α
))

+ J̄⋆(q, t)
(

1 −α
ta′(t)
a(t)

)
(C51)

g(x) =
(
α− 1
α

)α−1 N∑
n=1

(
x−

N∑
k=1

ϕ(α−1)/α
qk

+
(
ϕ(α−1)/α
qn

−ϕ
(α−1)/α
qn−1

))1−α

−x. (C52)
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for x∈ (γ(q, t),∞) where γ(q, t) = max{
∑N

k=1 ϕ
(α−1)/α
qk

−
(
ϕ(α−1)/α
qn

−ϕ
(α−1)/α
qn−1

)
} ≤

∑N

k=1 ϕ
(α−1)/α
qk

.
However, for x ∈ (γ(q, t),∞), g(x) is strictly decreasing in x, and by definition of the recursion for

ϕq, then g(x) has a unique root at x =
∑N

k=1 ϕ
(α−1)/α
qk

. Moreover, Noting that ta′(t)/a(t) → 1/α and
lim supt>0 J̄

⋆(q, t) < ∞, it follows from (C47) and the induction hypothesis that ϵ̄(t) → 0 as t → ∞ and
therefore it can be shown using the comparison theorem Arnold (1992) that J̄⋆(q, t) →

∑N

k=1 ϕ
(α−1)/α
qk

as
t→ ∞.

To establish (C14), note that from (C45) together with (C13), we have that as t→ ∞

p̄⋆βn(q, t) → α

α− 1

(
ϕ(α−1)/α
qn

(α) −ϕ
(α+1)/α
qn−1 (α)

)
= ϕ−1/α

qn
(α) (C53)

where the last equality is due to (15) and the fact that ϕqn(α) = vqn((α− 1)/α). Finally, (C15) for ψb = {n}
follows from (C14) together with Proposition 1. □

C.1. Proofs for Pure Bundling: Frechet Domain of Attraction

First, we show that if F satisfies von Mises condition (45), then so does F ∗,N .

Lemma C2. If F satisfies von Mises condition for the Frechet domain of attraction (45), then so does
F ∗,N . In particular,

lim
x→∞

xf∗,N (x)
1 −F ∗,N (x) = α.

where f∗,N is the density function of F ∗,N .

Proof of Lemma C2. Since FX satisfies the von-Mises condition, it follows from Proposition A3.8(b) in
Embrechts et al. (2013) that fX ∈RV−1−α. Moreover, by the convolution closure of regularly varying densities
by Bingham et al. (2006). we get that also fN⋆X ∈RV−1−α. Finally, from Proposition A3.8(c) in Embrechts
et al. (2013), we get that FN⋆

X also satisfies von Mises condition (45). □

Proof of Proposition 4. It suffices to prove the result for λ= 1. First, from Lemma C2, F ∗,N belongs to
the Frechet domain of attraction with the same index α of F . It now follows from Proposition 1 that for
x> 0

t(1 −F ∗,N (a∗,N (t)x) → x−α as t→ ∞, (C54)

where a∗,N (t) = F
−1
∗,N (1 − 1/t). Moreover, it now follows from Abdallah and Reed (2025a) that

J⋆,PB(q, t) = qNa
∗,N (tϕα−1

qN
/qαN

)
+ o(a∗,N (t)),and (C55)

p⋆(q, t) = a∗,N (t/ϕqN ) (C56)

However, from a standard result for convolutions of functions with regularly varying tails (Feller 1991) that
1 −F ∗,N (x)
N(1 −F (x)) → 1 as x→ ∞

which together with (C54) yields
1

t (1 −F (a∗,N (t)x)) →Nxα as t→ ∞.

Inverting both sides and applying the convergence of inverses of monotone functions, we obtain,
F−1(1 − 1

tx
)

a∗,N (t) →
( x
N

)1/α
as t→ ∞.

Noting that a(t) = F−1(1 − 1/t), we obtain that
a(t)

a∗,N (t) →N−1/α as t→ ∞,

and together with (C55) and (C56) establishes the desired result. □
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C.2. Proofs for Bundle Size Pricing: Frechet Domain of Attraction

First, recall that the HJB equations for the optimal dynamic BSP policy are given by

∂J⋆,BSP(q, t)
∂t

= sup
ρ∈[0,∞)N


K∑
k=1

|Bk(q)|>1

λk(q, p)

ρk(q, t) − 1
|Bk(q)|

∑
b∈Bk(q)

∆J⋆,BSP(q, b, t)


 , ∀t≥ 0, q ∈NN ,

(C57)

J⋆,BSP(q,0) = 0, q ∈NN , (C58)

J⋆,BSP(0, t) = 0, t≥ 0, (C59)

We first state a similar Lemma to Lemma C1 whose proof is similar and hence is skipped.

Lemma C3. Given an policy ρ⋆ ∈ PBSP, then every q ∈NN+ and bundle k≤ |N (q)|,

lim sup
t>0

ρ̄⋆k(q, t) < ∞ (C60)

We now state and prove an equivalent version of Theorem 6.

Theorem C2. If F is in the Frechet domain of attraction with index α > 1 and satisfies the von-Mises

condition (45), then under the optimal dynamic bundle size pricing policy for each q ∈ NN with N (q) ≥ 1

and, we have

lim
λt→∞

J̄⋆,BSP(q, t) = ϕ̃(α−1)/α
q (α) (C61)

Moreover, the only relevant price is the price of the bundles of size 1 where,

lim
λt→∞

ρ̄⋆1(q, t) =N1/(α−1)ϕ̃−1/α
q (α) (C62)

and the purchasing probabilities for bundle sizes k= 1, . . . ,N are given by

lim
λt→∞

tλk(q, ρ⋆) =
{ 1
Nα/(α−1) ϕ̃q(α) for k= 1,

0 for k= 2, . . . ,N,
(C63)

where ϕ̃q(α) = ṽq((α− 1)/α) .

Proof of Theorem 6. it is sufficient to establish the result for λ= 1. Fix q ∈NN and assume without loss

of generality that qn > 0 for every n= 1, . . . ,N ; otherwise, those items can be ignored. It follows from the

(normalized) HJB equation (C57) that for a sufficiently large t > 0, ρ̄⋆(q, t) attains the supremum of

Π̄⋆,BSP(q,N, t) = sup
ρ̄∈[0,∞)N


K∑
k=1

λ̂k(q, a(t)ρ̂)

ρ̄k − 1
|Bk(q)|

∑
b∈Bk(q)

∆J̄⋆,BSP(q, b, t)


=

K∑
k=1

λ̂k(q, a(t)ρ̂⋆(q, t))

ρ̄⋆k(q, t) − 1
|Bk(q)|

∑
b∈Bk(q)

∆J̄⋆,BSP(q, b, t)−

 . (C64)

Similar to the proof of Theorem C1, we can show that for k≥ 2

tλ̂k (q, a(t)ρ̄⋆(q, t)) → 0 as t→ 0
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and for k= 1,

t
(
λ̂1(q, a(t)ρ̄⋆(q, t)) −P (max{X1, . . . ,XN}>a(t)ρ̄⋆1(q, t))

)
→ 1 as t→ 0

whereby the i.i.d. assumption implies

P (max{X1, . . . ,XN}>a(t)ρ̄⋆1(q, t)) = (1 −F (a(t)ρ̄⋆1(q, t)))
N−1∑
n=0

(F (a(t)ρ̄⋆1(q, t)))n

and since a(t)ρ̄⋆1(q, t) → ∞ as t→ ∞, we have

P (max{X1, . . . ,XN}>a(t)ρ̄⋆1(q, t))
N (1 −F (a(t)ρ̄⋆1(q, t)) → 1 as t→ ∞

which together with (C64) yields the following convergence result

lim
t→∞

t

(
Π̄⋆,BSP(q,N, t) − sup

ρ̄1≥0

{
(1 −F (a(t)ρ̄1))

(
N∑
n=1

∆J̄⋆,BSP(q,βn, t) −Nρ̄1

)})
= 0. (C65)

Now note that for a sufficiently large t, we have that the supremum is attained by ρ̄⋆1(q, t) that satisfies the

FOC. Invoking the von Mises condition (45) to the FOC, then after some algebra we obtain

Nρ̄⋆1(q, t)∑N

n=1 ∆J̄⋆,BSP(q,βn, t)
→ α

α− 1 as t→ ∞, (C66)

and since lim supt>0
∑N

n=1 ∆J̄⋆,BSP <∞, then after some algebra, we obtain

lim
t→∞

tΠ̄⋆,BSP(q,N, t) − N

α

(
α

α− 1

)1−α
(∑N

n=1 ∆J̄⋆,BSP(q,βn, t)
N

)1−α
 = 0. (C67)

.

On the other hand, differentiating J̄⋆,BSP(q, t) directly with respect to t yields

∂J̄⋆,BSP(q, t)
∂t

= 1
a(t)

∂J⋆,BSP(q, t)
∂t

− a′(t)
a(t) J̄

⋆,BSP(q, t)

= 1
t

(
tΠ̄⋆,BSP(q,N, t) − ta′(t)

a(t) J̄
⋆,BSP(q,t)(q, t)

)
. (C68)

We are now ready to show by induction that J̄⋆(q, t) → ϕ̃(α−1)/α
q (α) as t → ∞. The statement is true for

||q||1 = 0, now suppose it is true for all ||q||1 <= l− 1 and consider ||q||1 = l.

Note that we can rewrite (C68) as

∂J̄⋆,BSP(q, t)
∂t

= 1
αt

(
ϵ̄(t) + g

(
J̄⋆,BSP(q, t)

))
. (C69)

where

ϵ̄(t) =

αtΠ̄⋆,BSP(q,N, t) −N

(
α

α− 1

)1−α
(
J̄⋆,BSP(q, t) −

∑N

n=1 ϕ̃
(α−1)/α
q−en (α)
N

)1−α


+ J̀⋆,BSP(q, t)
(

1 −α
ta′(t)
a(t)

)
(C70)

g(x) = N

(
α

α− 1

)1−α
(
x−

∑N

n=1 ϕ̃
(α−1)/α
q−en (α)
N

)1−α

−x. (C71)
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Regarding ϵ̄(t), note that by the inverse value theorem and von Mises condition (45)

t
a′(t)
a(t) → 1

α
as t→ ∞, (C72)

Furthermore, by the induction hypothesis and (C67), then after some algebra, we obtain

ϵ̄(t) → 0 as t→ ∞.

Moreover, by the induction hypothesis and uniqueness of the system of equations defining ṽq, it follows

that g (x) has a unique root x= ϕ̃(α−1)/α
q (α) on the interval

[∑N

k=1 ϕ̃
(α−1)/α
q−en (α)/N,∞

)
. Furthermore, g(x)< 0

for x∈
[∑N

k=1 ϕ̃
(α−1)/α
q−en (α)/N, ϕ̃(α−1)/α

q (α)
)

and g(x)> 0 for x∈ (ϕ̃(α−1)/α
q (α),∞). Therefore, since ϵ̄(t) → 0 as

t→ ∞, and again using the comparison theorem (Arnold 1992) it can be shown that J̄⋆,BSP(q, t) → ϕ̃(α−1)/α
q

as t→ ∞.

Regarding the convergence of ρ̄⋆1(q, t), note that given the convergence of J̄⋆,BSP(q, t), then (C66) now yields

lim
λt→∞

ρ̄⋆1(q, t) = α

α− 1

(
ϕ̃(α−1)/α
q (α) −

∑N

n=1 ϕ̃
(α−1)/α
q−en (α)
N

)
= N1/(α−1)ϕ̃−1/α

q (α) (C73)

where the last equality follows from the fact that ϕq(α) = ṽ((α− 1)/α). Finally, (C63) for k= 1 follows from

(C62) together with Proposition 1. □

Proof of Proposition 5. It suffices to establish the case for λ= 1. Since F satisfies the von Mises condition

(45), then F is absolutely continuous on (x0,∞). Let ρ ∈ PBSP where ρ̄1(q, t) = F−1 (1 −Nα/(1−α)ϕ̃q(α)/t
)
.

Without loss of generality we assume q ∈ NN+ with |N (q)| =N since otherwise the stocked out items can be

ignored. It then follows by standard theory that for each q ∈NN+ and t > ϕ̃q(α)/Nα/(α+1),

1
a(t)

∂JBSP
ρ (q, t)
∂t

= P (max{X1, . . . ,XN}>a(t)ρ̄1(q, t))
(
ρ̄1(q, t) −

∑N

n=1 ∆J̄BSP
ρ (q,βn, t)
N

)
.

Denote by Π̄BSP(q,N, t) = 1/a(t)
(
∂JBSP

ρ (q, t)/∂t
)
, then similar to (C65) and after some algebra, we have

lim
t→∞

t

(
Π̄BSP(q,N, t) −

{
(1 −F (a(t)ρ̄1(q, t)))

(
Nρ̀1(q, t) −

N∑
n=1

∆J̄BSP
ρ (q,βn, t)

)})
= 0 (C74)

which yields

lim
t→∞

(
tΠ̄BSP(q,N, t) −Nρ̄1(q, t)1−α

(
1 −

∑N

n=1 ∆J̄BSP
ρ (q,βn, t)

Nρ̄1(q, t)

))
= 0 (C75)

However, since ρ1(q, t) = ρ⋆1(q, t) − o(a(λt)), it follows that

lim
t→∞

ρ̄1(q, t) = lim
t→∞

ρ̄⋆1(q, t) =N1/(α−1)ϕ̃−1/α
q (α).

which, after some algebra, implies

lim
t→∞

(
tΠ̄BSP(q,N, t) − ϕ̃α−1/α

q (α)
(

1 −N1/(1−α)ϕ̃1/α
q (α)

(
J̄BSP
ρ (q, t) −

N∑
n=1

J̄BSP
ρ (q− en, t)/N

)))
= 0

(C76)
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We are now ready to show by induction that J̄BSP
ρ (q, t) → ϕ̃(α−1)/α

q (α) as t→ ∞. The statement is true for

||q|| = 0, now suppose it is true for all ||q||<= l− 1.

Note that similar to (C68), we have

∂J̄BSP
ρ (q, t)
∂t

= 1
αt

(
αtΠ̄BSP(q,N, t) −α

ta′(t)
a(t) J̄

BSP(q,t)
ρ (q, t)

)
, (C77)

which can be written as

∂J̄⋆,BSP(q, t)
∂t

= 1
αt

(
ϵ̄(t) + g

(
J̄BSP
ρ (q, t)

))
. (C78)

where

ϵ̄(t) = αtΠ̄⋆,BSP(q,N, t) −αϕ̃α−1/α
q (α)

(
1 −N1/(1−α)ϕ̃1/α

q (α)
(
J̄BSP
ρ (q, t) −

N∑
n=1

ϕ̃
(α−1)/α
q−en (α)/N

))

+ J̀BSP
ρ (q, t)

(
1 −α

ta′(t)
a(t)

)
(C79)

g(x) = αϕ̃α−1/α
q (α)

(
1 −N1/(1−α)ϕ̃1/α

q (α)
(
x−

N∑
n=1

ϕ̃
(α−1)/α
q−en (α)/N

))
−x. (C80)

Note that by (C76), (C72), and the induction hypothesis we have ϵ̄(t) → 0 as t → ∞. As for g(x), and

the from the properties of w̃q(α), it is straightforward to verify that g(x) has a unique root x = ϕ̃(α−1)/α
q .

Meanwhile, for x> ϕ̃(α−1)/α
q (α), then g(x)> 0 and for x∈

[∑N

n=1 ϕ̃
(α−1)/α
q−en (α)/N, ϕ̃(α−1)/α

q (α)
)

, we have g(x)<

0. Therefore, again by the comparison Theorem we have that J̄BSP
ρ (q, t) → ϕ̃(α−1)/α

q (α) as t→ ∞. □
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