
The normal approximation to the binomial

In order for a continuous distribution (like the normal) to be used to approximate a

discrete one (like the binomial), a continuity correction should be used. There are two

major reasons to employ such a correction.

First, recall that a discrete random variable can only take on only specified values,

whereas a continuous random variable used to approximate it can take on any values

whatsoever within an interval around those specified values. Hence, when using the normal

distribution to approximate the binomial, more accurate approximations are likely to be

obtained if a continuity correction is used.

Second, recall that with a continuous distribution (such as the normal), the probability

of obtaining a particular value of a random variable is zero. On the other hand, when

the normal approximation is used to approximate a discrete distribution, a continuity

correction can be employed so that we can approximate the probability of a specific value

of the discrete distribution.

Consider an experiment where we toss a fair coin 12 times and observe the number of

heads. Suppose we want to compute the probability of obtaining exactly 4 heads. Whereas

a discrete random variable can have only a specified value (such as 4), a continuous random

variable used to approximate it could take on any values within an interval around that

specified value, as demonstrated in this figure:
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The continuity correction requires adding or subtracting .5 from the value or values

of the discrete random variable X as needed. Hence to use the normal distribution to

approximate the probability of obtaining exactly 4 heads (i.e., X = 4), we would find the

area under the normal curve from X = 3.5 to X = 4.5, the lower and upper boundaries of

4. Moreover, to determine the approximate probability of observing at least 4 heads, we

would find the area under the normal curve from X = 3.5 and above since, on a continuum,

3.5 is the lower boundary of X . Similarly, to determine the approximate probability of

observing at most 4 heads, we would find the area under the normal curve from X = 4.5

and below since, on a continuum, 4.5 is the upper boundary of X .

When using the normal distribution to approximate discrete probability distribution

functions, we see that semantics become important. To determine the approximate proba-

bility of observing fewer than 4 heads, we would find the area under the normal curve from

3.5 and below; to determine the approximate probability of observing at most 4 heads,

we would find the area under the normal curve from 4.5 and below, since the latter event

includes the value X = 4.

Now consider the binomial distribution in particular. Let H be the number of heads

in 12 flips of a fair coin. We know that the probability of observing exactly k heads in 12
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flips is

P (H = k) =

(

12

k

)

(.5)k(.5)12−k, k = 0, 1, 2, . . . , 12.

We also know that the mean of this binomial distribution is given by

µ = np = (12)(.5) = 6,

while the standard deviation is given by

σ =
√

np(1 − p) =
√

(12)(.5)(.5) = 1.732.

Say we are interested in the probability of observing between 3 and 5 heads, inclusive; that

is, P (3 ≤ H ≤ 5). We can calculate this exactly, of course:

P (3 ≤ H ≤ 5) = P (H = 3) + P (H = 4) + P (H = 5) = .05371 + .12085 + .19336 = .36792

What about the normal approximation to this value? First, we should check whether the

normal approximation is likely to work very well in this case. A useful rule of thumb is

that the normal approximation should work well enough if both np and n(1−p) are greater

than 5. For this example, both equal 6, so we’re about at the limit of usefulness of the

approximation.

Back to the question at hand. Since H is a binomial random variable, the following

statement (based on the continuity correction) is exactly correct:

P (3 ≤ H ≤ 5) = P (2.5 < H < 5.5).

Note that this statement is not an approximation — it is exactly correct! The reason

for this is that we are adding the events 2.5 < H < 3 and 5 < H < 5.5 to get from

the left side of the equation to the right side of the equation, but for the binomial

random variable, these events have probability zero. The continuity correction

is not where the approximation comes in; that comes when we approximate H using a

normal distribution with mean µ = 6 and standard deviation σ = 1.732:

P (3 ≤ H ≤ 5) = P (2.5 < H < 5.5)

≈ P

(

2.5 − 6

1.732
< Z <

5.5 − 6

1.732

)

= P (−2.02 < Z < −.29)

= P (Z < −.29) − P (Z < −2.02)

= .3859 − .0217 = .3642
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Note that the approximation is only off by about 1%, which is pretty good for such a small

sample size.

Example. Suppose that a sample of n = 1, 600 tires of the same type are obtained at

random from an ongoing production process in which 8% of all such tires produced are

defective. What is the probability that in such a sample not more than 150 tires will be

defective?

Answer. We approximate the B(1600, .08) random variable T with a normal, with mean

(1600)(.08) = 128 and standard deviation
√

(1600)(.08)(.92) = 10.85. The probability

calculation is thus
P (T ≤ 150) = P (T < 150.5)

≈ P

(

Z <
150.5 − 128

10.85

)

= P (Z < 2.07)

= .9808

Example. Based on past experience, 7% of all luncheon vouchers are in error. If a random

sample of 400 vouchers is selected, what is the approximate probability that

(a) exactly 25 are in error?

(b) fewer than 25 are in error?

(c) between 20 and 25 (inclusive) are in error?

Answer. We approximate the B(400, .07) random variable V with a normal, with mean

(400)(.07) = 28 and standard deviation
√

(400)(.07)(.93) = 5.103. The probability calcu-

lations are thus

(a)

P (V = 25) = P (24.5 < V < 25.5)

≈ P

(

24.5 − 28

5.103
< Z <

25.5 − 28

5.103

)

= P (−.69 < Z < −.49)

= .3121 − .2451 = .0670

(b)

P (V < 25) = P (V < 24.5)

≈ P

(

Z <
24.5 − 28

5.103

)

= P (Z < −.69)

= .2451
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(c)
P (20 ≤ V ≤ 25) = P (19.5 < V < 25.5)

≈ P

(

19.5 − 28

5.103
< Z <

25.5 − 28

5.103

)

= P (−1.67 < Z < −.49)

= .3121 − .0475 = .2646

The normal approximation to the binomial is the underlying principle to an important

tool in statistical quality control, the Np chart. Say we have an assembly line that turns

out thousands of units per day. Periodically (daily, say), we sample n items from the

assembly line, and count up the number of defective items, D. What distribution does D

have? B(n, p), of course, with p being the probability that a particular item is defective.

Thus, examination of D allows us to see if the probability of a defective item is changing

over time; that is, the process is getting out of control.

Consider the following situation. Our assembly line has been running for a while, and

based on this historical data, we’ve seen that the probability of an individual item being

defective is .02 (this would come from sampling and getting the empirical frequency of

defectives). Our online quality control system samples 1000 items per day, and counts up

the number of defectives D. We know that D ∼ B(1000, .02), so E(D) = (1000)(.02) = 20

and S(D) =
√

(1000)(.02)(.98) = 4.427. Thus, D is approximately normally distributed

with mean µ = 20 and standard deviation σ = 4.427. This allows us to assess whether

future values of D are unusual, by seeing whether they get “too far” from 20.

Here is an example of an Np chart.
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The chart consists of the values for the process plotted with three lines: the expected

number of defects in the center, and two control limits at µ±3σ (the number 3 is arbitrary,

but standard). Since D is roughly normally distributed, we know that the probability of D

being outside the control limits, assuming that p is staying at .02, is P (|Z| > 3) = .0026.

So in this case, where there are 200 days worth of data, we’re not surprised to see a day

or two outside the limits. There are actually three, but this is just random fluctuation;

we know that because the process “settles down” to its correct value immediately. In fact,

these data do come from a stable process.

Now consider this chart:

c© 2010, Jeffrey S. Simonoff 6



2001000

60

50

40

30

20

10

0

Sample Number

S
am

pl
e 

C
ou

nt
NP Chart for Number o

11
1111111

11

1
11
1
1

1

111
1
1
1

1

1

1
1
1

1

1111111
1
1
111
11
1

1

111

1

11

1

1

1

NP=20.00

3.0SL=33.28

-3.0SL=6.718

This chart is very different. About 100 days into the sample, the process starts to

go “out of control.” Eventually the D values move outside the control limits, and the

process should be stopped and corrected. In fact, for these data, starting with the 101st

observation, I increased p steadily by .0003 per day.

Control charts also can be constructed based on other statistics, such as means and

standard deviations. They are an integral part of the idea of kaizen, or continuous im-

provement, that has revolutionized manufacturing around the world in recent years.
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MINITAB commands

To obtain an Np chart, click on Stat 7→ Control Charts 7→ NP. Enter the variable

with the binomial counts in it next to Variable:, and insert the number of binomial trials

each observation refers to next to Subgroup size:. If there is a value of p that is known

from historical data to correspond to the process being in control, enter that value next to

Historical p:.
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