Very Long-Run Discount Rates

Yale

Stefano Giglio Matteo Maggiori Stanford

Johannes Stroebel NYU Stern

Empirical Household Finance PhD Class

Discounting the Very Long Run

- Long-run discount rates play crucial role in many economic questions
 - Climate change: trade-off immediate costs and very distant benefits
- · Little direct empirical evidence on very long-run discount rates
 - OMB recommends using wide range of discount rates (1% 7%) for "intergenerational" projects
 - While markets provide a reference for discounting within a generation, "for extremely long time periods no comparable private rates exist."
- Empirical Challenge:
 - · Would like to observe prices of claims to cash flows at all maturities
 - We generally only observe:
 - Infinite maturity assets: equities
 - Relatively short maturity assets: bonds or dividend strips

- Exploit a feature of housing markets in the UK and Singapore to provide *direct estimates of very long-run discount rates*
- Residential property ownership:
 - Freeholds: Permanent ownership (as in US)
 - Leaseholds: Temporary ownership for varying tenure (99 999 years)
 - Key: Prepaid; Liquid secondary market for leaseholds; similar properties; Few contractual restrictions on leaseholders

- Exploit a feature of housing markets in the UK and Singapore to provide *direct estimates of very long-run discount rates*
- Residential property ownership:
 - Freeholds: Permanent ownership (as in US)
 - Leaseholds: Temporary ownership for varying tenure (99 999 years)
 - Key: Prepaid; Liquid secondary market for leaseholds; similar properties; Few contractual restrictions on leaseholders

- Exploit a feature of housing markets in the UK and Singapore to provide *direct estimates of very long-run discount rates*
- Residential property ownership:
 - Freeholds: Permanent ownership (as in US)
 - Leaseholds: Temporary ownership for varying tenure (99 999 years)
 - Key: Prepaid; Liquid secondary market for leaseholds; similar properties; Few contractual restrictions on leaseholders

- Exploit a feature of housing markets in the UK and Singapore to provide *direct estimates of very long-run discount rates*
- Residential property ownership:
 - Freeholds: Permanent ownership (as in US)
 - Leaseholds: Temporary ownership for varying tenure (99 999 years)
 - Key: Prepaid; Liquid secondary market for leaseholds; similar properties; Few contractual restrictions on leaseholders

$$Discount^T \equiv rac{P^T}{P} - 1 = -e^{-(r-g)T}$$

- Exploit a feature of housing markets in the UK and Singapore to provide *direct estimates of very long-run discount rates*
- Residential property ownership:
 - Freeholds: Permanent ownership (as in US)
 - Leaseholds: Temporary ownership for varying tenure (99 999 years)
 - Key: Prepaid; Liquid secondary market for leaseholds; similar properties; Few contractual restrictions on leaseholders

$$Disc^{100} \equiv \frac{P^{100}}{P} - 1 = -e^{-(0.065 - 0.007)100} = -0.3\%$$

Contribution

- QJE paper:
 - Construct dataset of all freehold and leasehold transactions
 - Estimate long-run discount rates using hedonic regressions
- This paper:
 - Compute average returns to housing (6-8%) and rent growth (0.5%)
 - Estimate the shape of the term structure of discount rates
 - Learn about long-run discount rates (risk free and risk premia)
 - Discuss implications for public and environmental economics

Preview of Results

Results Preview - Average and Long-run Discount Rates

- Jointly, high average return and large discounts for long-term leases:
 - Average return uninformative about long-run discount rates
 - long-run discount rates
 - Downward sloping term structure of discount rates
- Long-run housing is risky:
 - Low long-run risk-free rate
 - Low long-run price of risk
- Implications for climate change
 - High willingness to invest in sure projects
 - More tolerance for risk
 - Caveat: systematic risks exposures of housing and climate change

Roadmap

- Empirical Analysis
 - Leasehold Discounts: UK
 - Leasehold Discounts: Singapore
 - Expected Returns and Risk
- Constant-discounts Benchmark
- Implications for Climate Change and Intergenerational Policies

Data for the UK

- Administrative data on all transactions and lease terms since 2004
 - 1.3 million transactions for flats
 - 8% Freeholds; Initial lease length distributed between 99 999 years
- Property characteristics, listings and rental data from Rightmove.co.uk

Data for the UK Geographic Distribution of Flats

(a) 80-100 years leaseholds

(b) 700+ years leaseholds

Hedonic Regressions: Specification

$$\log (Price)_{i,g,t} = \alpha + \sum_{j \in TenGroup_j} \beta_j \mathbf{1}_{\{RemainLeaseLength_i \in j\}} + \gamma Controls_{i,t} + \phi_g \times \psi_t + \epsilon_{i,g,t}$$

- TenGroup_j: Buckets of remaining lease length
- ϕ_g : 3-digit Postcode Fixed Effect
- ψ_t : Time Fixed Effect (Month)
- **Controls**: Age, Number of bedrooms and bathrooms, Property size, Property style, Garage, Heating type
- Standard errors are clustered at the year and postcode level

Hedonic Regressions: UK Results - Flats

Leasehold Discounts - Singapore

Leasehold Discounts

Key Take-Aways

- Sizable discounts for relatively long-run leaseholds.
- Very similar leasehold discounts observed for U.K. houses and in Singapore.
- Slope of the term structure of leasehold discounts suggests discounts related to remaining lease length.
 - **Our interpretation:** Related to different duration of cash flows (rents), and therefore informative about very long-run discount rates
 - Address other possible interpretations.

- Unobservable Differences in Property Characteristics:
 - 700+ year leaseholds priced identically to freeholds.

- Unobservable Differences in Property Characteristics:
 - 700+ year leaseholds priced identically to freeholds.
 - Test whether they rent for the same annual amount

 $\log (\textit{Rent})_{i,g,t} = \alpha + \sum_{j \in \textit{TenGroup}_j} \beta_j \mathbf{1}_{\{\textit{RemainLeaseLength}_i \in j\}} + \gamma \textit{Controls}_{i,t} + \epsilon_{i,g,t}$

No unobserved differences in hedonics that vary with lease length

- Contractual Restrictions on Leaseholders:
 - Would also show up for 700+ year leaseholds
 - Same result when estimating discounts relative to 300 year leasehold
 - Results hold after controlling for initial lease length
- Differences in Buyer Characteristics:
 - Leaseholders and freeholders look the same on observables
- Liquidity or Financing Frictions:
 - Similar "time on market" to sell freeholds and leaseholds
 - Leaseholds with > 70 years mortgage financed identically to freeholds
 - Marketing identical

Risk and Return of Housing

- Find high expected real returns (7%+), low rent growth (0.5%)
- Most of the return comes from dividend yield, not capital gain
- High returns consistent with riskiness of housing
 - House prices decline during consumption disaster, banking crises, wars
 - House prices growth and consumption growth are correlated

- Main Empirical Findings:
 - Significant discount for leaseholds vs. freeholds
 - High average expected returns (above 6.5%), low rent growth (0.7%)

- Main Empirical Findings:
 - Significant discount for leaseholds vs. freeholds
 - High average expected returns (above 6.5%), low rent growth (0.7%)
- Constant-discount-rate model with r = 6.5%, g = 0.7% won't work:

$$Disc_t^{100} = -e^{-(0.065 - 0.007)100} = -0.3\%$$

- Main Empirical Findings:
 - Significant discount for leaseholds vs. freeholds
 - High average expected returns (above 6.5%), low rent growth (0.7%)
- Constant-discount-rate model with r = 6.5%, g = 0.7% won't work:

$$Disc_t^{100} = -e^{-(0.065 - 0.007)100} = -0.3\%$$

• Constant-discount-rate model with r = 2.6%, g = 0.7% explains discounts but not average return:

$$Disc_t^{100} = -e^{-(0.026 - 0.007)100} = -15\%$$

- Main Empirical Findings:
 - Significant discount for leaseholds vs. freeholds
 - High average expected returns (above 6.5%), low rent growth (0.7%)
- Constant-discount-rate model with r = 6.5%, g = 0.7% won't work:

$$Disc_t^{100} = -e^{-(0.065 - 0.007)100} = -0.3\%$$

• Constant-discount-rate model with r = 2.6%, g = 0.7% explains discounts but not average return:

$$Disc_t^{100} = -e^{-(0.026 - 0.007)100} = -15\%$$

• Models with upward-sloping term structures of risk premia explain the average returns but not the leasehold discounts

Robustness: UK

- Bottom line: need low long-run discount rates (around 2-3%)
- Plus high short-term discount rates to explain high expected returns:
 - Hyperbolic-Exponential reduced-form model: $\frac{e^{-\rho T}}{1+kT}$

- Low long-run total discount rate:
 - Low long-run risk-free rate
 - Informative for pricing safe investments over long horizon
 - Low long-run risk premium
 - Either long-run rents are very safe (low quantity of long-run risk), or long-run price of risk is low.
- Riskiness of long-run rents?
 - Insufficient data to answer conclusively
 - Some evidence that long-run rents are not safe:
 - Long-run cointegration with consumption
 - Major declines during rare disasters
 - \rightarrow Our results also useful to price risky investments over long horizon

 The "right" value of an asset weighs payments by "marginal utility" (the SDF ξ):

$$P_{t+n}(t) = E\left[\xi_{t+n}D_{t+n}\right]$$

• Alternatively, given P we can find the corresponding discount rate s.t.:

$$P_{t+n}(t) = rac{E[D_{t+n}]}{(1+R_n)^n}$$

• Each horizon has its own ξ_{t+n} , so it will have its own R_n

• Now consider a claim to many dividends (e.g. the stock market):

$$P(t) = E \left[\xi_{t+1} D_{t+1} + \xi_{t+2} D_{t+2} + \dots + \xi_{t+n} D_{t+n} \right]$$

or (it's a bundle of period-specific claims):

$$P(t) = \frac{E[D_{t+1}]}{1+R_1} + \frac{E[D_{t+2}]}{(1+R_2)^2} + \dots + \frac{E[D_{t+n}]}{(1+R_n)^n}$$

• If we know P we can **also** find that particular R s.t.

$$P(t) = \frac{E[D_{t+1}]}{1+R} + \frac{E[D_{t+2}]}{(1+R)^2} + \dots + \frac{E[D_{t+n}]}{(1+R)^n}$$

where R is the same for **all** cash flows. This is the **average** return.

- Important observation: from P I can find R. From R I cannot find all the R_n of every period
- For example, I cannot know the correct value of a claim to $D_{t+2}, ..., D_{t+n}$
- The average discount rate for a bundle of different maturities cannot be used to discount a different combination of maturities

- Our results speak directly to this problem.
- We find the term structure of discount rates (of R_n) to be downward sloping.
- The average is high even though the long end is low
- A project whose cash flows arise in the future should be discounted using the appropriate R_n
- But the average rate of return R is uninformative about R_n

Risk

• A second crucial point is that for any two securities, fixing the maturity, we have:

$$R_A > R_B \iff Corr(\xi_{t+n}, D^A_{t+n}) > Corr(\xi_{t+n}, D^B_{t+n})$$

• The risk premium can be decomposed as:

$$R_A - R_f = \beta_{A,\xi} \lambda_{xi}$$

where β is the risk exposure and λ is the price per unit of risk

- How exposed to systematic risks are the housing claim and climate change risk?
- A third point is that if climate change is risky, then climate change reduction is a hedge, so the discount rate applied should be lower than R^f.

Discounting Climate Change

- What discount rate for long-run environmental policies?
 - Answer depends crucially on: 1) Climate change β 2) Long-run Rf 3) Long-run Risk price
 - Our study provides evidence for Rf and Risk price
 - Low Rf: people care about the future
 - If climate-change policies are hedges ($\beta < 0$), risk-adjustment (which depends on beta) can push discount rate close to 0
 - However, low long-run risk premium makes the optimal decision less sensitive to the exact choice of β
- Three main implications for climate change policy:
 - Long-run discount rates are the right rates to look at
 - High willingness to pay to reduce very long-run climate costs for sure
 - Low discount rates for wide range of climate change β

Conclusion

- Exploit unique feature of housing markets in the UK and Singapore
- Provide first direct estimate of very long-run discount rates (100+ y)
 - Long-run discount rates are low (< 2.5%), much lower than suggested by most asset pricing models.
 - To also match expected returns, need a term structure of discount rates that slopes down in the long-run.
 - Low long-run risk-free rate, and low price of long-run risk.
- Important imput for many policy questions:
 - Evaluating climate change policy (and other cost-benefit analyses)
 - Long-run implications of fiscal policy
 - Large infrastructure spending, education policy, ...

BACKUP SLIDES

Freehold Properties' Expected Returns

- Balance Sheet approach: National Accounts Data
- Price/Rent approach: Price series + Initial Baseline

	United States		Singar	oore	United Kingdom	
	Balance Sheet	Price/Rent	Balance Sheet	Price/Rent	Balance Sheet	Price/Rent
Gross Return	10.3%	10.7%	10.4%	10.3%	12.5%	10.9%
Rental Yield	8.3%	9.8%	6.1%	6.0%	9.7%	6.9%
Capital Gain	2.0%	0.8%	4.3%	4.3%	2.8%	4%
Depreciation	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Taxes	0.67%	0.67%	0.5%	0.5%	0%	0%
Real Net Return	8.1%	8.5%	8.4%	8.3%	11%	9.4%
Sample	1953-2012	1988-2012	1985-2012	1990-2012	1989-2012	1996-2012
Real Rent Gr.		0.1%		0.2%		0.7%
Sample		1988-2012		1990-2012		1996-2012

- Hold-up problem for leaseholders at extension:
 - 1993 law: right to extend at "reasonable" price \Rightarrow Mitigates hold-up
 - Leaseholder can resort to court: tribunal favorable to leaseholders
 - Court protection makes leaseholds more valuable \Rightarrow Bias against our findings
 - Additional value offset by: transaction costs, long bargaining times, legal fees, legal uncertainty

Buyer Characteristics

- Segmented Markets? Buyers for different contract types could be different.
- Survey of English Housing (SEH) Annually between 1994 and 2008.
- 200,000 observations

 $Outcome_i = \alpha + \beta Leasehold_i + \xi X_i + \phi_{PropertyType \times Region} + \varepsilon_i.$

Buyer Characteristics

Table: Characteristics of Buyers of Leaseholds and Freeholds

	Sa Mean (1)	mple St. Dev. (2)	Unconditional (3)	Leasehold ∆ Conditional I (4)	Conditional II (5)
Age Head of Household (years)	52.30	16.01	-2.68	-1.54 (0.21)	-1.30 (0.20)
Weekly Income $(\mathbf{\hat{t}})$	350.2	450.6	-48.07	-3.01 (4.56)	5.60 (4.45)
Number of people in household	2.53	1.27	-0.48	-0.03 (0.01)	0.02 (0.01)
Number of dependent children	0.55	0.94	-0.19	-0.01 (0.01)	0.02 (0.01)
Head of Household Married	0.64	0.48	-0.21	-0.01 (0.01)	0.01 (0.01)
First Time Buyer	0.40	0.48	0.11	-0.00 (0.01)	-0.01 (0.01)
Currently Has Mortgage	0.59	0.49	0.03	0.02 (0.01)	0.02 (0.01)
Very Satisfied with Neighborhood	0.47	0.50	-0.06	0.00 (0.00)	0.00 0.00

Financing Frictions

- Harder to mortgage-finance leases with short remaining duration.
- UK: No issues for leaseholds with more than 60-70 years remaining; these are treated like freeholds

Mortgage Lender	Leasehold Financing Rules
The Royal Bank of Scotland	Mortgage term plus 30+ years
Santander	Unexpired lease term 55+ years, 30+ years at mortgage end
HSBC	Mortgage term plus 25+ years
Nationwide Building Society	Unexpired lease term 55+ years, 30+ years at mortgage end
Lloyds TSB	Unexpired lease term 70+ years, 30+ years at mortgage end
Halifax	Unexpired lease term 70+ years

Financing Frictions

Some elements mitigate financing frictions:

- Right to lease extensions in UK
- If the problem is liquidity, then leaseholds are more attractive

We parametrize reduced-form model of "collateral value of housing":

$$P_t^T = \int_t^{t+T} e^{-\rho(s-t)} D_t e^{g(s-t)} (1 - \alpha \mathbf{1}_{\{s>t+T-\overline{T}\}}) ds =$$

= $\frac{D_t}{\rho - g} \left[1 - e^{-(\rho - g)T} - \alpha \left(e^{-(\rho - g)(T - \overline{T})} - e^{-(\rho - g)T} \right) \right].$

A fraction α of the rents are lost when the remaining lease length is less than $\bar{\mathcal{T}}$

Data Vs Model with Frictions

 Take Away: frictions have essentially no impact on long-maturity leases: e.g. 150-years

Rent-Price Ratio: 100 Largest MSAs

Singapore Time Series

Housing is Risky

	Real HP Growth		Real P		
	Mean	Std. Dev.	Mean	Std. Dev.	Correlation
Australia	3.20%	6.89%	1.43%	2.77%	0.093
Belgium	2.80%	5.87%	1.17%	2.27%	0.436
Canada	2.51%	7.63%	1.37%	2.10%	0.489
Switzerland	0.94%	4.73%	1.12%	1.63%	0.445
Germany	-0.29%	2.31%	1.27%	1.70%	0.288
Denmark	1.57%	8.99%	1.09%	2.29%	0.211
Spain	2.05%	8.26%	0.83%	2.46%	0.631
Finland	2.04%	8.19%	2.07%	3.21%	0.482
France	2.52%	5.23%	1.22%	1.58%	0.358
U.K.	3.53%	8.54%	2.20%	2.74%	0.355
Ireland	3.70%	9.73%	1.83%	3.59%	0.529
Italy	0.60%	8.28%	0.82%	2.44%	0.325
Japan	-0.24%	4.28%	1.55%	1.40%	0.587
S. Korea	0.59%	7.70%	3.95%	4.58%	0.235
Luxembourg	3.94%	6.68%	2.84%	3.75%	0.054
Netherlands	2.32%	9.43%	0.48%	3.25%	0.472
Norway	2.76%	7.23%	2.22%	2.52%	0.064
New Zealand	2.20%	7.73%	0.98%	3.45%	0.530
Sweden	1.50%	7.27%	1.34%	2.28%	0.431
U.S.	1.13%	3.89%	1.60%	1.56%	0.371
S. Africa	0.88%	9.65%	0.53%	3.05%	0.373

Robustness: cointegration argument

- In the model, the effective discounting for the long run depends on r g.
- What if g becomes really big? (superstar-city effect)
- If prices and rents are cointegrated, in the long run g and capital gains have to grow at the same rate
- If g explodes, CG explodes, and r g = CG + DY g = DY.
- But real, net DY is always at least 4% -> net price-rent ratio of 25 at the most.
- Still, way too large.

Infinitely-Lived Rational Bubbles

Classic infinitely-lived rational bubble models: Blanchard and Watson (1982) and Froot and Obstfeld (1991)

• Rely on failure of the no-bubble condition:

$$\lim_{T\to\infty}E_t[\xi_{t,T}P_T]\neq 0,$$

For some model-implied SDF $\xi_{t,T}$

- Long literature attempted indirect tests: afflicted by serious econometric problems
- We provide a simple direct test:

$$H_0: \quad P_t - P_t^T \approx \lim_{T \to \infty} E_t[\xi_{t,T} P_T] = 0, \qquad \text{for large T}.$$

• We find no evidence of infinitely-lived rational bubbles even at the peak of the housing-boom (2006-7) in London and Singapore

Freehold Properties' Expected Returns

- Balance Sheet approach: National Accounts Data
- Price/Rent approach: Price series + Initial Baseline

	United States		Singapore		United Kingdom	
	Balance Sheet	Price/Rent	Balance Sheet	Price/Rent	Balance Sheet	Price/Rent
Gross Return	10.3%	10.7%	10.4%	10.3%	12.5%	10.9%
Rental Yield	8.3%	9.8%	6.1%	6.0%	9.7%	6.9%
Capital Gain	2.0%	0.8%	4.3%	4.3%	2.8%	4%
Depreciation	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Taxes	0.67%	0.67%	0.5%	0.5%	0%	0%
Real Net Return	8.1%	8.5%	8.4%	8.3%	11%	9.4%
Sample	1953-2012	1988-2012	1985-2012	1990-2012	1989-2012	1996-2012
Real Rent Gr.		0.1%		0.2%		0.7%
Sample		1988-2012		1990-2012		1996-2012

Rational bubbles: Singapore

