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Abstract

We show that housing markets provide information about the appropriate discount
rates for valuing investments in climate change abatement. We document that real
estate is exposed to both consumption and climate risk and that its term structure
of discount rates is downward-sloping, reaching 2.6% for payoffs beyond 100 years.
We use a tractable asset pricing model that incorporates features of climate change to
show that the term structure of discount rates for climate-hedging investments is thus
upward-sloping but bounded above by the risk-free rate. At horizons where risk-free
rates are unavailable, the estimated housing discount rates provide an upper bound.
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Any consideration of the costs of meeting climate objectives requires confronting one of
the thorniest issues in all climate-change economics: how should we compare present
and future costs and benefits? [...] A full appreciation of the economics of climate
change cannot proceed without dealing with discounting. (Nordhaus, 2013)

Much of the economics literature on the optimal policy response to climate change
focuses on the trade-off between the immediate costs and the potentially uncertain long-
run benefits of reducing carbon emissions. Discount rates play a central role in this
debate, since even small changes in discount rates can dramatically alter the present value
of investments that pay off over long horizons. For example, assume that an investment to
reduce carbon emissions costs $3 billion, and is expected to avoid environmental damages
worth $100 billion in 100 years. At a discount rate of 3%, the present value of those
damages is $5.2 billion, and the project should be implemented. At a slightly higher
discount rate, such as 5%, the present value of the investment drops to $760 million
and the investment is no longer attractive. However, despite the importance of these
discount rates for optimal policy design, economists and policy makers do not agree on
what discount rates should be used to value investments in climate change mitigation.

In this paper, we make progress on this question by exploring the information that
private market discount rates contain about how to appropriately value investments in
climate change abatement. First, we provide new empirical evidence on the term struc-
ture of discount rates for an important asset class, real estate, up to the extremely long
horizons that are relevant for analyzing climate change (hundreds of years). Second, we
combine these new facts with insights from asset pricing theory to discipline the debate on
the appropriate choice of discount rates for an investment in climate change abatement,
which involves similar horizons as the housing asset but has a different risk profile.

Much of the prior debate on the appropriate discount rates for climate change in-
vestments has either relied on theoretical arguments, or has tried to infer discount rates
from the realized returns of traded assets such as private capital, equity, bonds, and real
estate. For example, in the context of the dynamic integrated climate-economy (DICE)
model, Nordhaus (2013) chooses a discount rate of 4% to reflect his preferred estimate
of the average rate of return to capital.1 We show that this common practice of valuing
investments in climate change abatement by discounting cash flows using the average
rate of return to some traded asset often ignores important considerations regarding the
maturity and risk properties of such investments.

In particular, asset pricing theory shows that the rate at which a particular expected

1See also Kaplow, Moyer and Weisbach (2010), Schneider, Traeger and Winkler (2012), and Weisbach
and Sunstein (2009) for discussions of the normative and descriptive approaches to discounting.
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cash flow should be discounted depends on the state of the world in which the cash flow is
realized; cash flows that materialize in bad states are more desirable, and hence less risky
for the investor. They should therefore be discounted at a lower rate. In addition, different
assets pay off their cash flows at different maturities. Because risk in the economy is
different for different horizons and preferences for risks can vary with the horizon as well,
horizon-specific discount rates must be used when evaluating investments with different
maturity profiles. The average rate of return to a particular asset, for example capital,
only reflects the discount rate appropriate for that particular stream of cash flows. It is
thus generally not informative for determining the appropriate discount rate for another
asset, such as an investment in climate change abatement, which has benefits that tend to
be delayed until much longer horizons and which have very different risk properties.

In theory, then, to understand the appropriate discount rate for investments in climate
change abatement we would want to look at traded assets with similar riskiness and hori-
zon. While this is difficult in practice, we show that researchers can still extract relevant
information from the observed private market returns of assets such as real estate. This
information can then be used together with asset pricing models to adjust for the maturity
and riskiness of cash flows of investments in climate change abatement.

Our first empirical contribution is to provide estimates of the term structure of dis-
count rates for an important asset class, real estate, over a horizon of hundreds of years.
This represents the first data-driven characterization of a term structure of discount rates
for any asset over the horizons relevant for investments in climate change abatement.2

Using a variety of approaches, we estimate the average return to real estate to be around
6%. This contributes to a recent research effort to better document the return properties of
residential real estate as an asset class (e.g., Favilukis, Ludvigson and Van Nieuwerburgh,
2017; Jorda et al., 2019; Chambers, Spaenjers and Steiner, 2019; Eichholtz et al., 2020). At
the same time, recent estimates from Giglio, Maggiori and Stroebel (2015) show that the
discount rate for real estate cash flows 100 or more years in the future is about 2.6%. This
combination of high average (expected) returns and low long-run discount rates implies
a downward-sloping term structure of discount rates for real estate. Intuitively, since real
estate assets are claims to cash-flows (rents) at all horizons, their expected rate of return is
an average of the discount rates on short-run and long-run cash-flows. If average returns
are higher than long-run discount rates, then short-run discount rates must be higher than
long-run discount rates (and higher than average returns).

2Binsbergen, Brandt and Koijen (2012) provide evidence of a downward sloping term structure of
discount rates for equities over a 1-10 year horizon. Van Binsbergen and Koijen (2017) review related
evidence across a number of asset classes.
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These findings reinforce the problems of using the average rate of return to traded
assets to discount investments in climate change abatement. Even if we assumed that
climate-change-abatement investments and real estate had similar risk properties at all
horizons, using an average rate of return would suggest that such investments should be
discounted at 6%. Instead, the appropriate discount rate for the long-run benefits of these
investments should be much lower, and their present value much higher.

Of course, this simple comparison ignores potential differences in risk properties
of investments in climate change abatement and real estate. We thus also document
the risk properties of real estate. We first show that real estate is indeed a risky asset:
its returns are positively correlated with consumption growth, and therefore with the
marginal utility of consumption, and it performs badly during consumption disasters,
financial crises, and wars. This is consistent with the average return to real estate of about
6%, which is above the real risk-free rate, and thus includes a risk premium to compensate
investors for bearing risk.

We then document that real estate is exposed specifically to climate change risk, and
that this risk is reflected in house prices. This is an important step in helping us link the
discount rates applicable to real estate and the discount rates for investments in climate
change abatement. For this analysis, we work with a proprietary data set of housing
transaction prices as well as for-sale and for-rent listings for properties located in the
coastal states of Florida, New Jersey, North Carolina, and South Carolina. Properties in
these states are exposed to climate change risk due to both rising sea levels and hur-
ricanes. To obtain a measure of each property’s physical exposure to climate risk, we
geo-code the addresses of all properties to identify those properties that will be flooded
with a 6-feet increase in the sea level, as measured by NOAA.

Since physical exposure to climate risk is correlated with unobserved property ameni-
ties, such as beach access, we cannot simply compare the prices across properties that
are differentially exposed to such risk in order to estimate the price impact of climate
risk. Instead, we test whether the prices of properties that are more exposed to climate
change decline in relative terms when the perception of climate risk increases. We mea-
sure perception of climate risk in the housing market by performing a systematic textual
analysis of the for-sale listings to measure the frequency with which climate-related text
(e.g., mentions of hurricanes or flood zones) appears in the written description of the
listed properties. The fraction of listings that include such texts is the basis for a “Climate
Attention Index” that we construct at both the zip code-quarter and zip code-year level.
Our interpretation of this index is that it reflects households’ perceptions of the risk of
future climate change on the cash flows from real estate in those locations.
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We use data on the universe of property transactions from these states to conduct
hedonic regressions that explore how the transaction prices of properties in the flood
zone vary differentially when the “Climate Attention Index” changes, controlling for
property characteristics and various fixed effects. Our analysis shows that when the
fraction of property listings that mention climate change doubles, there is a 2% to 3%
relative decrease in the prices of properties that are in the flood zone compared to other-
wise comparable properties in the same zip code that are not in a flood zone. This result
survives in a specification with property fixed effects, which only identifies the pricing of
climate risks from multiple transactions of the same property in periods with differential
perceptions of these risks. Furthermore, we show that annual rents of exposed and non-
exposed properties do not vary differentially with movements in our “Climate Attention
Index.” This confirms that our estimates of differential price movements are not driven
by differential changes in the flow utilities, but instead result from a differential change
in the risks associated with future cash flows.

Based on these findings, we conclude that real estate prices directly reflect climate
risk, making it a particularly interesting asset to study the valuation of investments to
mitigate such risks. These findings are consistent with a quickly growing literature in
finance that has documented the exposure of real estate to physical climate risk factors
such as rising sea levels and wildfires (e.g., Hallstrom and Smith, 2005; McKenzie and
Levendis, 2010; Atreya and Ferreira, 2015; Bakkensen and Barrage, 2017; Gibson, Mullins
and Hill, 2017; Eichholtz, Steiner and Yönder, 2019; McCoy and Walsh, 2018; Ortega
and Taspinar, 2018; Bernstein, Gustafson and Lewis, 2019; Garnache and Guilfoos, 2019;
Baldauf, Garlappi and Yannelis, 2020).3 Relative to much of this literature, our use of time-
and-space-varying measures of climate risk attention and our focus on rents in addition
to home sales allow us to address a number of alternative interpretations of the observed
relative price differences between properties that are differentially exposed to climate risk.

In order to explore the implications of the downward-sloping term structure of risky
real estate for valuing investments in climate change abatement, we build a tractable asset
pricing model that incorporates crucial features of climate change and its related risks.
Our aim is not to provide an entirely new asset pricing model, nor is it to fully incorporate
the micro foundations of physical models of climate change. Rather, we aim to provide a
transparent and portable framework to show how the insights of modern asset pricing
theory can be used together with inputs from a physical model of climate change to

3Other research has explored the extent to which other asset classes, such as equities and fixed income
assets, are exposed to climate risk (Engle et al., 2020; Huynh and Xia, 2020; Painter, 2020). See Giglio, Kelly
and Stroebel (2020) for a review of this literature.
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inform the appropriate discount rates for investments in climate change abatement.4

Our baseline model builds on the view that climate change is a form of disaster risk
(see Weitzman, 2012; Barro, 2013, for prominent articulations of this view): it is a rare
event with potentially devastating consequences for the economy. We embed this view in
a general equilibrium model with a representative agent and complete markets based on
the endowment economy studied by Lucas (1978). We further modify this classic setup
to reflect two important important messages of the climate change literature.

First, we incorporate feedback loops between the state of the economy and the time-
varying probability of a climate disaster. In particular, we allow the probability of a
disaster to increase endogenously over time when the economy grows at a faster rate.
Intuitively, this feature captures the notion that faster growth accumulates more envi-
ronmental damages, such as greenhouse gas emissions and pollution, thereby increasing
the probability of adverse climatic events, akin to tipping points (see Alley et al., 2003;
Lemoine and Traeger, 2014). These damages in turn might feed on themselves, for ex-
ample because rising temperatures lead to even more carbon emission for the same level
of production. Our model captures these vicious cycles by allowing the probability of a
further disaster to increase after a disaster occurs (see Cox et al., 2000).

Second, we allow for economic growth to pick up temporarily after a disaster. This
feature captures the potential adaptation of the economy following a disaster, and reflects
a variety of adaptation measures, including relocating production to less affected areas,
investments to prevent further damages (e.g., sea walls), and investments such as air-
conditioning that allow for productive work despite adverse climate conditions (see the
discussions in Brohé and Greenstone, 2007; Desmet and Rossi-Hansberg, 2015; Burke
and Emerick, 2016; Barreca et al., 2016). While we only capture these forces in reduced
form, we show that they play a crucial role in capturing a more realistic evolution of the
economy in response to climate change. In addition, this mean reversion of cash flows
allows the model to match our data on the term structure of risky real estate. For assets
exposed to the disaster risk, the partial mean reversion of the economy after a disaster
implies that short-term cash flows are riskier than long-term cash flows, which only
occur after the economy has partially recovered. This mechanism is central to generating
downward-sloping term structures of discount rates: the riskier short-term cash flows are
discounted at higher rates than the safer long-term cash flows.

Since climate change is a form of disaster risk, investments in the mitigation of this

4This modeling approach relates to exciting new work that mixes physical elements of climate change
(tipping points, increasing ocean levels, etc.) with the likely response of economic activity (technological
innovation, geographic relocation of production, etc.) as undertaken by Crost and Traeger (2014), Lemoine
(2015), Lemoine and Traeger (2014), and others.
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risk are hedges: similar to insurance policies, they pay off primarily in bad states of the
world, and are thus particularly valuable. This has a number of implications for the
discount rates used to value their cash flows. The first implication is that the shape of the
term structure of discount rates for investments to abate climate change is the opposite
of what we estimate for the term structure of housing, a risky asset. In fact, the term
structure for abatement investments should be upward-sloping: hedging against effects of
the disaster on short-term cash flows is more valuable than hedging the effects on long-
term cash flows, since these long-term cash flows are affected less due to adaptation.

Importantly, however, this upward-sloping term structure does not imply that the
level of discount rates for investments in climate change abatement is high at any horizon.
In fact, it should be below the risk-free rate at all horizons, reflecting the investment’s hedge
characteristics. For shorter horizons, we can observe the real risk-free rate (given by real
bond yields) directly in the data, providing us with a tight upper bound (1% – 2%) on the
discount rate for short-term cash flows from investments in climate change abatement.
For longer horizons, there are no reliable estimates of the level of the risk-free interest
rate. However, our model suggests that the very long-run discount rate of 2.6% for
risky real estate provides an upper bound on the risk-free rate, and therefore also on the
discount rates for long-term cash flows from investments in climate change abatement.
This simple upper bound is a powerful result that challenges a wide range of estimates
previously used in the literature. For example, this bound is substantially below the
4% rate suggested by Nordhaus (2013). Quantitatively, it is more in line with long-run
discount rates that are close to the risk-free rate, as suggested by Weitzman (2012), or the
1.4% suggested by Stern (2006). It is also close to the average recommended long-term
social discount rate of 2.25% elicited by Drupp et al. (2015) in a survey of 197 experts.

Note that our finding that the appropriate term structure to discount cash flows from
climate change abatement is low but upward-sloping contrasts with a number of papers that
have argued for using declining discount rates for valuing investments in climate change
abatement (Arrow et al., 2013; Cropper et al., 2014; Farmer et al., 2015; Traeger, 2014).
These arguments have motivated policy changes in France and the U.K., which have
adopted a downward-sloping term structure of discount rates for evaluating long-run
investments, including those in climate change abatement. While these differences do not
have a substantial effect on the actual discount rates used to value the long-run cash flows
from such investments (they are relatively low, at approximately 2%, both under the term
structures used in those countries and under our upward-sloping term structure), the two
have substantially different implications for the economic mechanisms to create these low
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long-run discount rates.5 In addition, they have substantially different implications for
evaluating the payoffs from climate abatement investments that may accrue at shorter
horizons. The calibration of our model suggests that climate disasters cause the most
damage immediately after they hit, making it most valuable to hedge the immediate costs.
As a result, the correct discount rates for investments that yield shorter-term protection
against climate change disasters should be substantially below the risk-free rate of 1%-
2%. In contrast, the downward-sloping term structures used in France and U.K. suggest
discount rates of 4% and 3.5%, respectively, for the first 30 years of a project’s cash flows.

Finally, in addition to exploring the discount rates appropriate for climate change
mitigation within our disaster-risk view of climate change risk, we can use our model to
understand discounting of climate investments in alternative models of climate change
risk. In particular, our specification for the economy and climate change dynamics is gen-
eral enough to also nest, under a different parametrization, an important alternative view
of climate change: that of the DICE models of Nordhaus and Boyer (2000) and Nordhaus
(2008), in which (i) climate change acts as a tax on output and climate damages are higher
when the economy is doing well, and (ii) uncertainty about the path of the economy
is the main driver of uncertainty about climate change. Under this parameterization,
climate change mitigation investments pay off mostly in good states of the world (when
the economy is expanding). The appropriate discount rates for these risky investments are
thus above the risk-free rate. In this class of models, the climate “tax rate” can be increasing
with the level of economic activity, so that the damages are disproportionally higher
during booming economies. In our framework, such a feature implies discount rates
for investments in climate change abatement that are high and increasing with the horizon.
Intuitively, this occurs because a bad shock to the economy lowers both climate damages
and the growth rate of damages over time. Our framework explains why the “disaster”
view and the “tax” view of climate change have diametrically opposed predictions for
the appropriate discount rates for investments in climate change abatement.

5The literature in climate change economics has sometimes motivated a downward slope in the discount
rates for investments in climate change abatement with an extension of the Ramsey Rule to include
uncertainty about consumption growth that increases with the horizon. This would have the effect of
pushing down the long-run risk-free rate due to a precautionary savings motive that increases in the
horizon (see Arrow et al., 2013). However, the predictions of this framework are inconsistent with the
relatively flat term structure of real interest rates observed in the data. Moreover, the Ramsey framework
does not consider the riskiness of cash flows, and therefore has no predictions on the term structure of
risk premia. Consistent with this, the guidance on discount rates provided by governments recommending
declining discount rates for cost-benefit analysis, usually does not indicate that the discount rate should
vary with the risk properties of the investments.
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1 Risk and Return Properties of Real Estate

As described in the introduction, private market discount rates have the potential to
inform the valuation of investments in climate change abatement. In this section, we
discuss a number of reasons why real estate discount rates are particularly valuable from
this perspective. First, we show that real estate is both risky in general (i.e., it pays off
more in good states of the world) and exposed to climate risk in particular. Second, we
show that, for real estate, private markets reveal information about the term structure of
discount rates up to horizons of hundreds of years. This feature of real estate is particu-
larly beneficial to learn about the valuation of investments in climate change abatement,
for which the potential benefits can stretch over very long time periods.

1.1 The Riskiness of Housing – Exposure to Climate Risk

We first provide direct evidence that climate risk is priced in real estate markets, with
increased climate risk leading to relatively lower prices for more exposed properties. Our
analysis has to overcome a number of empirical challenges. First, when comparing prices
of properties that are differentially exposed to climate risk, it is difficult to control for all
amenities that might be correlated with exposure to climate risk. For example, beach front
properties are more exposed to climate risk than properties further inland—they are more
likely to be flooded when sea levels rise—but they might still sell at a premium because of
the value of the beach access. Controlling for such hard-to-measure amenities in hedonic
regressions is challenging, which introduces concerns about omitted variable bias.

To overcome this challenge, we therefore investigate how the prices of properties that
are differentially exposed to climate risk change in response to a change in that climate
risk. As long as the amenity value of beach access does not change when climate risk
changes, this analysis is informative about the pricing of climate risk in housing markets.
However, such a “differences-in-differences” analysis presents a second challenge: true
climate risk is a relatively slow-moving object that does not provide much of the time-
series variation required to identify how it is priced. Our approach is to instead exploit
the much more substantial time-series variation in the attention paid to climate risk in the
housing market. Indeed, even though true climate risk might not change much from year
to year, we show that the extent to which homebuyers focus on these risks changes much
more frequently, and we would thus expect the pricing implications of climate risk to be
particularly strong when households pay more attention to these risks.
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1.1.1 Data Construction

Our empirical analysis builds on a number of data sets. Our baseline data contain the
universe of for-sale and for-rent property listings from Zillow, a major online real estate
data provider. We obtained listings from four coastal states with properties that are
potentially exposed to climate risk through rising sea levels: Florida, New Jersey, North
Carolina, and South Carolina. For each listing, we observe the textual description of the
property provided by the real estate agents, in addition to the listing date and listing
price. The for-rent listings cover the period between the first quarter of 2011 and the
second quarter of 2017. The for-sales listings extend back to the first quarter of 2008.

Our second dataset contains the universe of public record assessor and transaction
deeds data for the same states since the start of 2008. These data include detailed property
characteristics, such as information on the property size and the number of bathrooms
and bedrooms, as well as transaction prices and dates for all property sales.

To measure different properties’ exposures to climate risk, we geo-code their ad-
dresses and map them to geographic shapefiles provided by the National Oceanic and
Atmospheric Administration (NOAA) that indicate which regions will be flooded should
sea levels rise by six feet or more. While flooding risk is only one of a number of climate
risk factors, it is an important and easily measurable risk for properties in the coastal
regions of the states analyzed in our study. Properties that are more exposed to climate
risk on this measure tend to be closer to the waterfront, but there is substantial variation
in exposure to climate risk across properties in the same narrow geography (see Figure 1,
which shows the variation in our measure of climate risk exposure for downtown Miami).

We use our property listings data to build a novel measure of attention to climate
risk. We construct this “Climate Attention Index” by calculating the proportion of for-sale
listings with property descriptions that contain climate change-related words and phrases
such as “hurricanes”, “FEMA”, “floodplain”, and “flood risk”. Most of the flagged listings
include descriptions that highlight that a specific property is less exposed to climate risk
(e.g., “Not in a flood zone, it’s high and dry!”). We believe that this is sensible: if you are
selling a property with particular exposure to climate risk, for example because it sits in
a flood zone, you would not want to highlight this negative feature in a property listing.
However, if you are selling a house that is not exposed to climate risk, this is something
worth highlighting in a property listing, in particular in areas and at times when potential
buyers pay more attention to these risks. Appendix A.2 provides more details on the
construction of the Climate Attention Index, which we make publicly available to other
researchers in the replication package associated with this paper.

There is substantial spatial and time-series variation in this measure of climate risk
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attention. The top panel of Figure 2 provides a heatmap of the Climate Attention Index
for Florida, pooling across all listings in our sample at the zip code level (the Appendix
includes corrsponding maps for the three other states). Properties near the coast are
more susceptible to climate risk. Consistent with this, the Climate Attention Index is
substantially higher for these properties in the cross section. The other panels of Figure 2
illustrate the time-series of the Climate Attention Index for each of the four states in our
sample, both for the whole state (black solid line) and only for zip codes that include at
least some properties in a flood zone (blue dashed line). Consistent with the heatmap,
the attention paid to climate risk is substantially higher in zip codes that are located in
parts of the country where properties will be flooded if sea levels rise substantially. There
is also sizable time-series variation in the Climate Attention index within geographies.
For example, in New Jersey, the Climate Attention Index nearly triples between 2011 and
2013, around the time of Hurricane Sandy, which rendered more than 20,000 homes in the
state uninhabitable.

1.1.2 Empirical Analysis

We next estimate how climate risk is priced in real estate markets. Our baseline hedonic
regression is given by equation 1:

log(Price)i,h,g,t = α + βlog(Indexg,t)× FloodZh + γFloodZh + δXh + φg × ψt + εi,h,g,t (1)

The unit of observation is a transaction i, of property h, in zip code g, at time t. The
dependent variable is the log of the transaction price. We flexibly control for various
property characteristics in Xh. We also include zip code-quarter fixed effects, φg × ψt,
to capture differential house price movements across zip codes and time. We interact the
log of the Climate Attention Index, log(Indexg,t), with the Flood Zone indicator, FloodZh.6

This allows us to estimate the effects of changing climate attention for properties that are
differentially exposed to physical climate risks. We also include the Flood Zone indicator
directly, allowing us to control for the unconditional price effect of being located in a
flood zone as well as of any unobserved property amenities that are correlated with this
measure of exposure to climate risk.

Column 1 of Table 1, Panel A, shows estimates from this regression when we measure
the Climate Attention Index at the zip code-year level. All else equal, properties that lie
in the flood zone trade at a (statistically insignificant) premium to properties that are not

6To deal with the (small) number of zip code-years with no listing mentioning climate change, we add
a small constant (0.01) to the Climate Attention Index before taking logs. Our results are robust to variation
in the constant added, and to a linear (instead of log-linear) inclusion of the climate attention index.
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in the flood zone, consistent with those properties also having more attractive amenities
such as proximity to the beach. More importantly, we estimate a statistically significant
negative β-coefficient. A doubling in the Climate Attention Index is associated with a
relative 2.4% decline in the transaction prices of properties in the flood zone. The direct
effect of increasing climate attention on all properties is absorbed by the zip code-quarter
fixed effects.7 Column 2 measures the Climate Attention Index at the zip code-quarter
level, and presents similar estimates. In columns 3 and 4 of Table 1, Panel A, we include
property fixed effects in the regressions from columns 1 and 2. In these specifications, the
estimates of β are identified off properties that we observe transacting more than once.
The estimates are nearly identical, suggesting that our baseline findings are not driven by
unobserved property characteristics. In columns 5 and 6, we include the raw Climate At-
tention Index rather than the log of the Index. Interpreting the magnitudes suggests that
a 1 percentage point increase in the number of listings that suggest particular attention to
climate risk is associated with a 0.2% – 0.4% decrease in the transaction price.

One concern with the estimates presented above is that they might not just capture
the pricing of future climate change risk, but that our estimates might also be picking
up changes in the flow-utility of climate risk-exposed properties that could be correlated
with climate risk attention. For example, it could be that climate risk attention rises after
damaging storms that have a particularly strong direct effect on the utility of living in
properties located in flood zones. To show that such a confounding story is not driving
our results, Panel B of Table 1 runs regressions similar to equation 1, but now uses the log
of the rental listing price as the dependent variable. In contrast to the transaction price
regression, rental prices of properties exposed to climate risk increase during periods of
increasing attention paid to climate risk, though the effect declines and is not statistically
significant when we include property fixed effects. This is reassuring, because it suggests
that our findings for transaction prices are not the result of a decline in the flow utility
of these properties when climate risk increases. Instead, the decline in transaction prices
most likely results from the increased present discounted cost of climate risk.8

Key Take-Aways. The evidence provided above shows that real estate has substantial
exposure to climate risk, and thus fulfills an important criterion for us to use housing
discount rates to learn about how to value investments in climate change abatement.

7While the coefficients on the control variables are not of primary interest in this study, Appendix A.2.2
shows that they are consistent with estimates from the literature (e.g., Kurlat and Stroebel, 2015; Stroebel,
2016): for example, larger and more recently upgraded homes trade at a premium.

8The positive effect on rents that we observe in some of these specifications could, for example, be
the result of general equilibrium effects in the housing market. Increased attention to climate risk makes
individuals who are interested in living near the coast less likely to want to buy a house. If instead these
individuals choose to move into the rental market, this could be driving up rents.
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1.2 The Riskiness of Housing – Exposure to Consumption Risk

We next show that in addition to being exposed to climate risk, real estate is exposed to
consumption risk: its returns are higher in states of the world when the marginal utility of
consumption is lower. To show this, we analyze the behavior of real house prices during
financial crises and periods of rare consumption disasters; we also estimate the correlation
between house prices and consumption as well as personal disposable income.

Panel A of Figure 3 shows the average reaction of real house prices during financial
(banking) crises. The analysis is based on dates of financial crises in Schularick and Taylor
(2012), Reinhart and Rogoff (2009), and Bordo et al. (2001) for 20 countries for the period
1870-2013, and on our own dataset of historical house price indices for these countries.
Appendix A.3.1 provides details of the crisis dates and the house price series. The begin-
ning of a crisis is normalized to be time zero. The house price level is normalized to be
one at the onset of the crisis. House prices rise on average in the three years prior to a
crisis, achieve their highest level just before the crisis, and fall by as much as 7% in the
three years following the onset of the crisis. This fall in house prices during crisis periods,
which are usually characterized by high marginal utilities of consumption, contributes to
the riskiness of real estate as an asset.

Panel B of Figure 3 shows the average behavior of house prices during the rare con-
sumption disasters as defined by Barro (2006). The consumption disaster dates for the 20
countries included in our historical house price index dataset are those defined by Barro
and Ursua (2008). The dotted line tracks the level of consumption: following the start
of a disaster, consumption falls for three years before reaching its trough (normalized to
be time zero) and recovers in the subsequent three years. The solid line tracks the house
price level: house prices fall together with consumption over the first three years of the
disaster but fail to recover over the subsequent three years. The fall in house prices during
these rare disasters also contributes to the riskiness of real estate as an asset class.

Panels C and D of Figure 3 show the time series of house prices and crisis years for
the U.K. and Singapore—the countries with the best data on the term structure of housing
discount rates (see below).9 The pattern of house price movements during crises in these
two countries is similar to the average pattern described above. House prices peak and
then fall during major crises such as the 2007-08 global financial crisis. The 1984 banking
crisis in the U.K. is the sole exception with increasing house prices.

Panel E of Figure 3 shows the performance of house prices durin World War I and

9All crisis dates are from Reinhart and Rogoff (2009) except the periods 1997-98 and 2007-08 for
Singapore. The latter dates have been added by the authors and correspond to the Asian financial crisis
of 1997-98 and the global financial crisis of 2007-08.
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World War II (WWI and WWII). In both cases, time zero is defined to be the start date
of the war period, 1913 and 1939 for WWI and WWII, respectively. The dotted line
tracks house prices of five countries with data availability for the duration of WWI (1913-
1918): Australia, France, Netherlands, Norway, and the United States. House prices
fell throughout the war with a total decline in real terms of around 30%. Similarly, the
solid line tracks house prices of six countries—now also including Switzerland—for the
duration of WWII (1939-1945). House prices fell by 20% in real terms from 1939 to 1943
and then stabilized for the last two years of the war, 1944-45. Overall, we find wars to be
periods of major declines in real house prices, which further contributes to the riskiness
of real estate as an asset.10

We also investigate the average correlation between consumption and house prices
over the entire sample rather than just during crisis periods. Table 2 reports the correla-
tion of house price changes with consumption changes as well as consumption betas over
the entire sample and for each country. The correlation is positive for all 20 countries,
except for France (−0.05), and often above 0.5. Accordingly, consumption betas are also
positive except for France (−0.10) and often above 1.0. The estimated positive correlation
between house prices and consumption and the positive consumption betas reinforce
the evidence that real estate is a risky asset: it has low payoffs in states of the world in
which consumption falls and marginal utility is high. We also investigate the correlation
between house price growth and alternative measures of economic activity by using
data from Mack and Martínez-García (2011), and report the correlation between annual
real house price growth and real personal disposable income growth in a panel of 23
developed and emerging countries (see Table 3). The average correlation is 0.33 and
positive for all 23 countries, except for Croatia (−0.35), otherwise with a minimum of 0.04
for Norway and a maximum of 0.62 for Japan. The “personal disposable income beta” is
positive for all countries except Croatia (−0.16) and often above 1.0 again. Overall, this
evidence further corroborates the fact that real estate returns are risky.

10Despite extensive efforts to collect an exhaustive database, our results are still limited by the relatively
small number of crises for which house price data are available, and by the relatively low quality of house
price series before 1950. In addition, rental data is generally unavailable, preventing us from performing
a comprehensive study of the riskiness of the underlying cash flows of housing. Nevertheless, our results
suggest that real estate is an asset that has relatively lower payoffs during economic crises. Note that our
results are likely to underestimate the riskiness of real estate and housing due to three effects. (1) House
price indices are generally smoothed and therefore underestimate the true variation in house prices. (2)
We only consider the behavior of house price changes (capital gains) and have not considered the behavior
of rents (dividends). For the two countries for which long high-quality time series of rental indices are
available (France for the period 1949-2010 and Australia for the period 1880-2013), we find rent growth to
be positively correlated with consumption growth (0.36 and 0.15 respectively). (3) A sizable part of the
housing stock is ofen destroyed during wars. The return to a representative investment in real estate would
thus be lower than the fall in index prices as it would incorporate the physical loss of part of the asset.
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1.3 The Term Structure of Real Estate Discount Rates

We next provide evidence on an important and previously unexplored dimension of real
estate data: the term structure of housing discount rates. We first present our analysis of
expected real estate returns, which we find to be relatively high, between 5.5% and 7.4%.
We then combine these new data with the estimates of Giglio, Maggiori and Stroebel
(2015) to provide evidence for the slope of the term structure of real estate discount rates.
Our analysis suggests that this term structure is downward-sloping, and thus cautions
against using real estate’s average rate of return to infer discount rates for very long-
run benefits associated with investments in climate change abatement. In subsequent
sections, we will use insights from asset pricing theory to inform what can be learned from
the downward-sloping term structure of risky real estate cash flows about the optimal
discount rate for investments in climate change abatement.

1.3.1 Average Rate of Return to Housing and Rental Growth Rate

We employ two complementary approaches to estimate the average return to real estate.
The first approach, which we call the price-rent approach, starts from a price-rent ratio
estimated in a baseline year and constructs a time series of returns by combining a house
price index and a rental price index: Without loss of generality, suppose we know the
price-rent ratio at time t = 0. We can then derive the time series of the price-rent ratio as:

Pt

Dt+1
=

Pt

Pt−1

Dt

Dt+1

Pt−1

Dt
;

D1

P0
given, (2)

where P is the price index and D the rental index. Note that, given a baseline price-rent
ratio, only information about the growth rates in prices and rents is necessary for these
calculations. Gross real housing returns are then:

RG
t,t+1 =

(
Dt+1

Pt
+

Pt+1

Pt

)
πt

πt+1
, (3)

where π is a price level index to adjusts for inflation. To compute expected net returns
E[R], we subtract maintenance costs and depreciation (δ) and any tax-related decreases in
returns (τ):

E[R] = E[RG]− δ− τ. (4)

The second approach, which we label the balance-sheet approach, follows Favilukis, Lud-
vigson and Van Nieuwerburgh (2017) and Piketty and Zucman (2014): We obtain data on
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the value of the residential housing stock from countries’ national accounts to estimate
the value of the housing stock (i.e., its price), and data on the net capital income earned
on the housing stock (i.e., the ‘dividend’ earned on the housing stock). Since we are only
interested in the return to a representative property, we need to control for changes in the
total housing stock to derive the net return to housing in each period as:

Rt,t+1 =
Vt+1 + NIt+1

Vt

πt

πt+1

St

St+1
, (5)

where V is the value of the housing stock, NI is net capital income on housing, π is a
price level index that adjusts for inflation, and S is the stock of housing.

To adjust for the quality and quantity of the housing stock, we use several comple-
mentary approaches. In our first approach, we proxy for the change in the housing stock
by population growth. In alternative specifications, we control for the change in the hous-
ing stock with the growth in residential housing units or the growth in residential floor
space. In our most conservative approach, we rely on (constant-quality) quantity indices,
which allows us to directly control for quality as well as “pure” quantity changes in the
housing stock at the same time. For the U.S., we can also draw on holding gains from
the national revaluation accounts, which directly hold the aggregate stock of housing
constant. Finally, even though our main interest lies in net returns to housing, the national
accounts also allow us to estimate maintenance costs and depreciation (δ) and tax-related
decreases in returns (τ), and hence gross returns to housing E[RG], which we compare to
our results from the price-rent approach.

Table 4 presents estimates of the return to housing for three countries. We explore
data from the United Kingdom and Singapore, since we are able to measure very long-
run discount rates for these countries (see below); we also provide estimates for the U.S.
for comparison, since they have been the subject of an extensive literature (e.g., Flavin
and Yamashita, 2002; Lustig and van Nieuwerburgh, 2005; Piazzesi, Schneider and Tuzel,
2007). Appendix A.4 provides details on our approach and the underlying data sources.

United States. For the U.S., our preferred estimates using the price-rent approach are
based on a price-rent ratio from Trulia that includes a utilities correction (column 2);
our prefered results using the balance-sheet approach use direct holding gains from the
revaluation accounts (column 9). We also provide robustness checks that use alterna-
tive price and rental indices as well as alternative price-rent ratios for the price-rent
approach, and various corrections for the growth in the housing stock for the balance-
sheet approach. Both papproaches provide similar estimates for the average annual real
gross return (E[RG]): 9.7% based on the preferred estimated from the price-rent approach

15



and 8.9% based on the preferred estimate from the balance-sheet approach. We estimate
a maintenance and depreciation impact of 2.3% using the balance-sheet approach and
calibrate the impact of maintenance and depreciation at 2.5% for the price-rent approach
based on prior results from Harding, Rosenthal and Sirmans (2007). Our balance-sheet
estimates imply a tax impact of 1.1% and we assume a property tax impact of 0.67% for
a representative household for the price-rent approach. This results in average real net
returns between 5.5% and 6.5% for the U.S. housing market. These estimates are similar
to the estimates in Flavin and Yamashita (2002), who find a real return to real estate of
6.6%, and the estimates in Favilukis, Ludvigson and Van Nieuwerburgh (2017), who find
a real return of 9-10% before netting out depreciation and property taxes.

United Kingdom. Columns 11 to 15 of Table 4 report the estimates for the real estate
market in the U.K. The price-rent and the balance-sheet approaches provide similar esti-
mates for the average annual real gross return (E[RG]): 9.5% for the price-rent approach
and 9.7% for the balance-sheet approach. We estimate a maintenance and depreciation
cost of 2.4% using the balance-sheet approach and maintain a calibration of 2.5% for the
price-rent approach. There are no property taxes to be considered in the U.K. Average
real net returns in the U.K. real estate market are therefore between 7.0% and 7.4%.11

Singapore. Column 16 in Table 4 reports our price-rent approach estimate for the Sin-
gapore real estate market at 9.9%. We assume the cost of maintenance and depreciation
to be 2.5%, in line with our estimates for the U.S., and the property tax impact to be 0.6%.
Our estimate of the real net return in the Singapore real estate market is thus 6.8%. We
do not calculate complementary balance-sheet approach estimates for Singapore for two
reasons: Firstly, more than three quarters of residential dwellings are not in the private
housing market but publicly governed and developed by the Housing and Development
Board (HDB). Unfortunately, the national accounts data do not allow us to separate these
out with sufficient accuracy. Secondly, the national accounts data do not allow us to
determine the total consumption of real estate services excluding relevant costs, that is
net rents, with sufficient accuracy.

Average Rate of Return: Summary. Overall, these estimates show that expected real
returns for real estate are around 6% or higher for the countries we consider. These
estimates are robust to the different methodologies we use. They are also in line with
contemporaneous work from Jordà et al. (2017) that finds average returns to housing of
around 7% before taxes across a number of countries. Our estimates are also consistent

11Numbers for the balance sheet approach may not add up due to rounding when moving from gross to
net returns.
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with the notion that average house price growth over extended periods of time is rela-
tively low, as argued by Shiller (2006), with high rental yields being the key driver of real
returns to real estate and housing. In fact, our estimated average capital gains are positive
but relatively small for all three countries, despite focusing on samples and countries that
are often regarded as having experienced major growth in house prices. Consistent with
our results from Section 1.2, our estimates of average returns to real estate imply a positive
real estate risk premium.

Growth Rate of Rental Income. Finally, we estimate the average real growth rate of
rental income from the same data sources, which we denote by g. For all three countires,
the estimated real growth rate of rents is low. For the U.S., we estimate g = 0.7%, an
estimate in line with that of Campbell et al. (2009), who obtain a median growth rate
of 0.4% per year. We obtain a slightly higher estimate of g = 1.4% for the U.K. and a
slightly lower estimate of g = −0.4% for Singapore (largely driven by a few deflationary
periods). These results are consistent with Ambrose, Eichholtz and Lindenthal (2013),
who find very low real rental growth in a long time series of rents for Amsterdam, and
with Shiller (2006), who estimates long-run real house price growth rates to be very low,
often below 1% (the equivalence of these two long-run growth rates is necessary for rental
yields to be stationary).

1.3.2 Long-Run Housing Discount Rates

In recent work, Giglio, Maggiori and Stroebel (2015) use unique data from the U.K. and
Singapore to estimate how much value households attach to future real estate cash flows
accruing over a horizon of hundreds of years (see also Giglio, Maggiori and Stroebel,
2016). In these real estate markets, residential properties trade either as freeholds, which
are permanent ownership contracts, or as leaseholds, which are pre-paid and tradable
ownership contracts with finite maturity. The initial maturity of leasehold contracts gen-
erally varies between 99 years and 1,000 years. By comparing the relative prices of lease-
hold and freehold contracts for otherwise identical properties, the authors estimate the
present value of owning a freehold after the expiration of the leasehold contract. They
show how this present value is informative about the discount rate attached to real estate
cash flows that occur in the very long run.

The red bars in Figure 8 report the estimates from Giglio, Maggiori and Stroebel
(2015). They show the price discount of leaseholds with varying maturities compared
to freeholds for otherwise identical properties. For the U.K. estimates, for example, the
bucket with leaseholds of remaining maturity between 100 and 124 years shows that
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households are willing to pay 11% less for a leasehold with that maturity than for a
freehold. Interpreted differently, 11% of the value of a freehold property is due to cash
flows that accrue more than 100 years into the future. In general, leasehold discounts are
strongly associated with maturity, with shorter leaseholds trading at bigger discounts:
between 17.6% for leaseholds with remaining maturity of 80-99 years and 3.3% for re-
maining maturities of 150-300 years. Leaseholds with more than 700 years remaining
maturity trade at the same price as freeholds. Pricing patterns are similar for properties
in Singapore. The authors provide a detailed investigation of the institutional setup of
leasehold and freehold contracts, and examine a number of possible explanations for the
observed leasehold discounts. They conclude that leasehold price discounts are tightly
connected to the contracts’ maturity and that discount rates of around 2.6% for cash flows
more than 100 years in the future are necessary to match the data from both countries.

1.3.3 Take-away: The Term Structure of Discount Rates in the Housing Market

In this section we showed (i) that real estate has a real expected rate of return of above 6%
per year, and (ii) the relative pricing of freeholds and leaseholds implies discount rates of
around 2.6% for rents 100 years or more in the future. Since the average return on real
estate is simply a weighted average of the average returns of all of its cash flows (at all
maturities), these two facts together are informative about the shape of the term structure
of discount rates for the housing asset. It needs to be low at the long end, in order to
match the 2.6% discount rate applied to the long-term housing claims. But it needs to be
high enough at the short end to imply an average discount rate of 6%. In other words,
the term structure of discount rates for the housing asset needs to be downward-sloping
in order to explain the data. In the next section, we introduce an asset pricing model of
real estate that is able to match these moments, and discuss its implications for valuing
investments in climate change abatement.

2 Valuing Investments in Climate Change Abatement in a

World with Declining Discount Rates for Risky Assets

The previous section provided empirical evidence that the term structure of discount rates
for real estate, a risky asset, is downward-sloping, and that real estate is an asset class that
is directly exposed to climate change risk. In this section, we introduce a general equilib-
rium model to study the link between climate change risk, the term structure of discount
rates for real estate, and consumption. Our model has two objectives: First, it provides a
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quantitative framework, calibrated to asset markets and our new empirical evidence on
the term structure of housing discount rates, from which one can extract appropriate dis-
count rates for climate-change-abatement investments at any horizon. Second, it allows
us to nest, in reduced form, a number of different approaches to modeling the economic
impact of climate change, ranging from the “tax view” in the spirit of Nordhaus and
Boyer (2000) and Nordhaus (2008), to the “disaster view” in the spirit of Weitzman (2012,
2014). This allows us to understand these views’ different predictions for the discount
rates of investments in climate change abatement.

2.1 A General Equilibrium Model with Climate Change Risks

Our model builds on a modified version of the Lucas (1978) representative-agent econ-
omy with power utility preferences. In order to provide a simple analytical framework
for climate change, we introduce a production sector that, while exogenous, allows for
important feedback effects between the growth rate of the economy and the probability of
rare and adverse climate shocks that destroy parts of the output. The setup is rich enough
to allow for key climate-related dynamics in the economy, including an endogenous
relationship between consumption and climate risk, while also being stylized enough
to be solved in closed form up to simple recursive expressions.

Model Setup. We assume that aggregate consumption follows:

∆ct+1 = µ + xt − Jt+1, (6)

xt+1 = µx + ρxt + φJt+1, (7)

where ct is the log of aggregate consumption; since the economy is closed and does
not feature investment, ct also corresponds to aggregate output in equilibrium.12 Jt is
a jump process that takes value ξ ∈ (0, 1) with probability λt in each period, and value
0 otherwise. We interpret J as climate risk: a rare but possibly large negative shock to
output. The climate disaster probability λt depends endogenously on the dynamics of
the economy (see below).13 The process xt captures persistent changes in the growth rate
of consumption and plays a key role in determining the term structure of discount rates.

12Note that we assume complete markets, so all risk is shared perfectly across households. The
equilibrium effects of incorporating heterogeneity and incomplete risk-sharing in asset pricing models has
been studied in a long literature (see, for example, Constantinides and Duffie, 1996). We leave to future
research an exploration of the specific implications regarding climate change risks.

13Our model is designed to help researchers and policy makers understand how to value investments in
climate change abatement. We thus remove any risk sources not related to climate risk. Other shocks could
be added without changing the qualitative implications of the model.
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As is standard in financial economics, we allow for a separate cash-flow process, dt,
for risky assets—which in our model corresponds to the rents of real estate—to capture
the idea that asset markets only reflect a subset of total economic activity. The process for
these rent cash-flows is similar to the one for aggregate consumption:

∆dt+1 = µd + yt − η Jt+1, (8)

yt+1 = µy + ωyt + ψJt+1. (9)

The main difference between real estate rents and consumption is the larger exposure of
rents to the underlying economic shocks, represented by climate risk J. This is captured
by the multiplier η > 1. In our case, η reflects the empirical observation that housing has
an above-average exposure to climate risk, primarily due to the immovability of land.
Analogous to xt, the process yt captures persistent changes in the growth rate of rents.
Having different processes for xt and yt allows for flexibility in the calibration of this
model to different specific settings.

Our setup allows for partial mean reversion in the growth rate of consumption and
rents after a disaster. Formally, after a disaster strikes, the growth rate of the economy
increases (ψ > 0, φ > 0) and this increase is persistent (ρ > 0, ω > 0). As we show below,
this partial mean reversion plays a crucial role in explaining the term structure of discount
rates for risky assets (see also Gourio, 2008; Lettau and Wachter, 2011; Nakamura et al.,
2013; Belo, Collin-Dufresne and Goldstein, 2015; Hasler and Marfe, 2016). In the context
of climate risk modeling, the partial mean reversion captures the notion that economic
activity picks up after a climate disaster as the economy adapts to new climatic circum-
stances. Numerous papers have highlighted the importance such adaptation processes,
including Brohé and Greenstone (2007), Deschênes and Greenstone (2011), Desmet and
Rossi-Hansberg (2015), Burke and Emerick (2016), and Barreca et al. (2016). Yet, since
there have not been many global climate disasters (especially in modern data), such
feature remains a possibility rather than an empirical regularity.

The last component of our model is an endogenous climate disaster probability, λt:

λt+1 = µλ + αλt + νxt + χJt+1. (10)

In designing this process, we aim to capture some of the main features of physical models
of climate change, while at the same time maintaining a tractable solution to the asset
pricing model. Two features of this process make it particularly useful for bringing
climate risk into an asset pricing framework:
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1. The disaster probability λt is an endogenous function of the growth rate of the
economy. Since xt—which captures the expected deviation of the growth rate of
the economy from trend—enters additively and positively (ν > 0) in equation 10,
the probability of a disaster increases over time when the economy grows at a faster
rate. Intuitively, this feature captures the notion that faster growth accumulates
more environmental damages, such as greenhouse gas emissions and pollution,
thereby increasing the probability of adverse climatic events, akin to tipping points
(see Alley et al., 2003; Lenton et al., 2008; Overpeck and Cole, 2006; Lemoine and
Traeger, 2014; Franklin and Pindyck, 2017).

2. The climate disaster probability λt increases following the occurrence of a disaster
(χ > 0), thus allowing climate shocks to induce a self-reinforcing cycle in which
each shock increases the probability of the next shock (see, for example, Cox et al.,
2000; Melillo et al., 2017). Note that, in contrast to the mean reversion in cash flows
described above, this is a force that pushes towards making long-run cash flows
more risky.

To illustrate the richness of these patterns, Figures 4 and 5 plot two sample paths of the
economy. Figure 4 shows a path in which no disaster occurs, but the economy grows
above trend for a sustained period of time, starting in year 10.14 The top panel shows log
deviations of the disaster probability λt from its steady-state value. We set the steady state
value to 3% to reflect the Barro (2006) estimate of the average probability of a consumption
disaster. The bottom panel shows the path of log rents, dt, over time: rents (and the
economy overall) increase at a decreasing rate, reaching a permanently higher level as
a result of the growth spur. This sustained economic expansion induces a progressive
increase in the probability of a climate disaster until the economy returns to its steady-
state growth rate. The lags of the effect of greenhouse gas emissions and pollution on
the disaster probability can be substantial: The disaster probability reaches its maximum
approximately 7 years after the growth spur has started. Since the model is stationary,
the disaster probability ultimately reverts to its mean, but the half-life of the shock is
extremely long at 14 years.

Figure 5 instead shows a path in which the economy expands above trend, starting
in year 10 (exactly as before), but with a climate disaster occurring after year 25. This
disaster induces a large drop in consumption and rents. The dynamics of climate risks
are particularly interesting. As before, the disaster probability increases as the economy

14As we discuss in Section 2.2, trend growth is calibrated at 2%. We assume that in period 10, growth of
both consumption and rents increases to 5% and then slowly reverts to long-run trend growth. Since growth
is a persistent process in the model, growth is above trend for approximately 20 years in this sample path.
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accelerates. Once the disaster hits, the probability of a future disaster increases further.
It takes almost 40 years (in a sample path chosen to have no further disasters) from the
original growth spur shock for the probability of a disaster to revert back to its long-run
mean. The bottom panel of Figure 5 also illustrates the mean reversion in the growth rate
of the economy. After a disaster strikes, the growth rate of the economy increases (ψ > 0)
and this increase is persistent (ω > 0).

The Term Structure of Discount Rates for Risky Assets. Despite the richness of the
underlying dynamics of the economy, we are able to solve quasi-analytically for the
term structure of housing risk premia and the risk-free rate. We derive these objects
assuming the existence of a representative agent who maximizes lifetime utility and faces
a complete set of financial instruments. In our baseline model, the period utility function
features constant relative risk aversion (γ) as in Lucas (1978):

U(Ct) = δt C1−γ
t

1− γ
, (11)

where δ is the rate of time preference. In Appendix A.6, we derive the prices of claims
to consumption and rents at different horizons. Here, we focus on the crucial forces
determining the term structure of housing discount rates. Formally, we are interested
in the per-period discount rate of maturity n, denoted rn

t , that equates the price of a single
cash flow Et [Dt+n] of maturity n, denoted P(n)

t , with its present discounted value:15

P(n)
t =

Et [Dt+n]

(1 + rn
t )

n . (12)

As we show in Appendix A.5, the term structure of discount rates rn
t is closely linked to

the term structure of one-period expected returns. Intuitively, the appropriate discount
rate for cash flows of horizon n is simply the average across one-period expected returns
Et[R

(n)
t,t+1] for claims to cash flows at each horizon up to n, where the holding-period

returns over the next period are given by R(n)
t,t+1 = P(n−1)

t+1 /P(n)
t . More formally:16

rn
t '

1
n

n

∑
k=1

ln(Et[R
(k)
t,t+1]). (13)

15We label objects that relate to single cash flows at a specific maturity n with superscript (n). The set
of claims to a single cash flow at maturity n that we are interested in is a subset of a more general class of
assets with maturity n that could pay cash flows such as rents at any point in time up to that maturity. We
denote prices and returns of claims to more general classes of assets with maturity n with superscript n.

16See Appendix A.5.1 for a derivation. The result holds exactly when the term structure of discount rates
is constant over time (though it can have any shape over maturities n). For example, a flat term structure of
discount rates implies a flat term structure of expected one-period returns across maturities, and vice versa.
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The expected one-period return for the n-maturity claim, Et[R
(n)
t,t+1], can in turn be thought

of as the sum of the one-period risk-free rate, R f
t,t+1, which is independent of the maturity

of the claim, and a risk premium, Et[R
(n)
t,t+1] − R f

t,t+1, which varies with the horizon n.
While Appendix A.6 provides the full solution of the model, and while the calibrated
results presented below use this full solution, we next focus on a simple approximate
solution that captures the main forces that shape the term structure of one-period excess
returns in our model here:

Et[R
(n)
t,t+1]− R f

t,t+1 ' γ Covt[r
(n)
t,t+1, ∆ct+1]

= γ [η − ψed,n−1 − φbd,n−1 − χ fd,n−1] ξ2λt(1− λt). (14)

The first equality above uses the fact that the log stochastic discount factor under power
utility preferences is mt,t+1 = log δ − γ∆ct+1, and the second equality represents the
solution to the model, where bd, ed and fd solve recursive equations derived analytically
and reported in equations A.14c to A.14e in Appendix A.6.

Equation 14 highlights the components that drive the downward-sloping term struc-
ture of discount rates for risky assets (i.e., housing) in our framework. The level of the term
structure is determined by the aggregate amount of risk in the economy, ξ2λt(1− λt), and
by the agent’s risk aversion, γ. Neither have a differential effect on the risk premia of cash
flows with different maturities (there are no n-subscripts).

The shape of the term structure is determined by the terms inside the square bracket.
The term bd arises from the term structure of risk-free assets (term premia) and is essen-
tially constant in realistic calibrations of the model that match the flat term structure of
risk-free rates in the data. The term fd is a quantitatively small adjustment for the risk
that arises from changes in the disaster probability λt. The component that quantitatively
dominates the shape of the term structure of housing risk premia is ψed,n−1, which cap-
tures the term structure of exposures of claims of different maturity to the climate disaster
(and the ensuing recovery). The model is parsimonious enough to admit an analytical
solution for ed,n (see Appendix equation A.14e):

ed,n =
1−ωn

1−ω
. (15)

Since this term enters negatively in equation 14, positive values for both ψ and ω imply
a declining term structure of risk premia for rents. Recall that ψ determines the degree of
mean reversion of the growth rate of the economy after a climate disaster, and ω captures
the persistence of this growth rate increase. When ψ > 0, as in our baseline calibration
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below, rents (partially) mean-revert after a climate disaster. This mean reversion in cash
flows implies that the occurrence of a disaster is worse for short-term claims than it is for
long-term claims because immediate short-term cash flows drop by more than cash flows
that are farther in the future.

Remark on Preferences. The previous discussion highlights that, in our setting, the
observed downward-sloping term structure of risk premia for housing is generated by
the dynamics of the cash flows (risk quantities) rather than by the term structure of risk
prices, which are flat. One might wonder whether more sophisticated preferences, such
as Epstein–Zin preferences that are popular in both the asset pricing and climate change
literature, could also generate this downward slope. We discuss in Appendix A.5.3 that
this is not the case. In fact, introducing Epstein–Zin preferences would push the slope
of the term structure of discount rates for risky assets upwards. To match the data on
a downward-sloping term structures of discount rates for risky real estate, we would
thus require an even stronger mean reversion in cash flows.17 More generally, we are not
aware of a standard representation of preferences that would push towards a downward-
sloping term structure of discount rates for risky assets such as real estate. As a result,
capturing the observed downward-slope through the dynamics of risk quantities, as we
do in our model, seems like the natural approach to us, in particular given that the
required dynamics are highly consistent with empirical research on the adaptation to
climate change.

2.2 Calibration

In this section, we turn to calibrating our model. The objective of our calibration is not
to quantitatively match all conceivable moments of real and financial variables; since our
model is only driven by a single climate disaster shock, J, we would certainly fail in
such an exercise along many dimensions. Furthermore, history and scientific evidence
only provide an incomplete and uncertain guidance on many key parameters related to
climate events. What we strive for instead is a reasonable calibration that can match
core moments of the data as they relate to the discounting of climate-change-abatement
investments and, in particular, match our new empirical evidence on the risk and return
properties of real estate, including the term structure of discount rates from Section 1.

17The long-run risk model of climate change by Bansal, Kiku and Ochoa (2013) and the model of Cai,
Judd and Lontzek (2013) both use Epstein–Zin preferences.
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2.2.1 Baseline Calibration

Whenever possible, we calibrate parameters following the existing asset pricing liter-
ature. The remaining parameters are calibrated to match some of our new moments
estimated in Section 1. For example, we follow the asset pricing literature and set risk
aversion γ = 10, the drop in consumption following a disaster ξ = 21%, and the exposure
of risky cash-flows to the climate shock η = 3 (see Bansal and Yaron, 2004; Barro, 2006;
Barro and Jin, 2011). Average consumption growth in the absence of a disaster is set to
µ = 2%. The remaining parameters of the consumption process are chosen to generate
a recovery in consumption growth after disasters (φ > 0), and persistent growth rates
(ρ > 0). The magnitude of these parameters (φ = 0.025, ρ = 0.85) targets a term structure
of real interest rates that is slightly upward-sloping with a level of around 1%, matching
our empirical estimates based on the U.K. gilts real yield curve between 1998 and 2016
reported in Figure 6. These data show that the U.K. real yield curve is approximately flat
on average, with a real yield close to 1% for maturities between 1 and 25 years.18

In our calibration, rents are not only correlated with consumption, but also share
many of its dynamics, including recovery after disasters (ψ > 0) and persistent rent
growth (ω > 0). The magnitudes of these parameters (ψ = 0.24, ω = 0.915) are chosen
to match the shape and the level of the observed term structure of discount rates in the
housing market as described in Section 1. Finally, we set the steady-state conditional
probability of disasters, λ, to 3% per year, following the estimates in Barro (2006). The
remaining parameters for the λt-process are chosen to obtain economically reasonable
interactions between the real economy and the disaster probability, while at the same time
matching the term structure of the risk-free rate. The risk-free rate is directly affected by
the disaster probability dynamics through the precautionary savings channel; an increase
in the disaster probability decreases the rate by increasing precautionary savings. In
particular, the disaster probability is persistent (α = 0.75), increases after a jump (χ =

0.05), and increases when expected consumption growth xt is above its trend (ν = 0.1).
Finally, we impose that rents and consumption have the same long-run growth rate and
that xt and yt have mean zero.19

18Figure 6 plots the average shape of the real U.K. gilts curve for the period 1998-2016, as well as for two
sub-periods: 1998-2007 and 2008-2016. The level of the yield curve shifted down during this latter period
and the yield curve became hump-shaped. More recently, as more and more U.K. government bonds with
longer maturities have been issued, reliable prices for such longer maturities have also become available.
In 2016, the Bank of England therefore started to extend the real yield curve up to maturities of 40 years.
For the short time period where data on such long maturities are available, the yield curve is essentially flat
for these longer maturities as well.

19The resulting parameter restrictions are: µd = µ + (η − 1)λ̄ξ, µx = −λ̄φξ and µy = −λ̄ψξ. See
Appendix A.6 for details.
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2.2.2 Calibration-Implied Housing Term Structure and Climate Risk Elasticities

Figure 7 plots the term structure of discount rates that the calibrated model implies for
risk-free and risky assets. The model is able to match the approximately flat term-structure
of risk-free rates observed in the data with an average level of around 1.0%. The model
also produces a strongly declining term structure of discount rates for real estate, starting
around 10% per year at short horizons and decreasing to around 3% per year at long
horizons, matching the declining term structure of discount rates that we estimated for
housing. To further assess how well we match our estimates of the real estate data, the
two panels of Figure 8 report the leasehold price discounts estimated for housing in the
U.K. and Singapore together with the ones implied by the calibrated model to highlight
the close fit between the model and the data. The model also matches the average rate of
return on housing (at around 5.5%) that we have independently estimated in the data.

Our model also helps rationalize the cross-sectional regularity that houses that are
differentially exposed to climate risk have different price elasticities with respect to news
about climate change. This is qualitatively consistent with the evidence reported in Sec-
tion 1.1. That section focused on increase perception of climate risk, i.e., future climate
affecting future rents but not current rents. Of course, current prices react immediately
since they correspond to the present value of future rents. In our calibration, a house
with a 1% higher exposure to climate change (i.e., higher η), responds to a one percentage
point increase in the probability of a climate disaster (λt) with a price decline that is 0.4
percentage points larger relative to a house with lower exposure. Unfortunately, these
magnitudes are not directly comparable to the estimates from Section 1.1, since such a
comparison would require us to map changes in our climate attention index to (perceived)
changes in λt.

2.3 Valuing Investments in Climate Change Abatement

We start this section by using our calibrated model to derive appropriate discount rates
for various types of investments in climate change abatement. Since our model nests the
key ideas of a variety of standard models in climate change economics, we then proceed
to show how our results compare to and improve upon the implications of two key views
in climate change economics – the “tax” view pioneered by Nordhaus and Boyer (2000)
and Nordhaus (2008), and the “disaster view” pioneered by Weitzman (2012, 2014).
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2.3.1 Valuing Investments in the Benchmark Model

To derive the appropriate discount rates for investments in climate change abatement,
we need to model their cash flows and their relation with the climate shocks. We model
climate change investments as assets that compensate the investor for future damages
to production and rents due to climate change, akin to insurance policies on climate
change. Climate change mitigation investments in our framework are not large enough
to affect equilibrium consumption; they are infinitesimal investments that are therefore
informative about marginal valuations. We denote the process of damages to rents due to
climate change by Qt and model its (log) dynamics as:

∆qt+1 = µq − yt + η Jt+1. (16)

Intuitively, the occurrence of a climate disaster in our model induces an immediate de-
struction of rents (ηξ), but these damages revert over time as the economy adapts (cap-
tured by yt).20 Investments in climate change abatement provide a payoff that at least
partially offsets the damages. Specifically, we assume that an insurance contract insures
a fixed proportion θ of the growth rate of damages: θ∆qt+1. Values of θ range from 1
(full insurance) to close to zero (no insurance). Of course, it is possible to specify alter-
native types of climate change mitigation investments, for example some that mitigate
the long-run damages more strongly than in this specification. One advantage of our
fully specified model is that it allows researchers to explore different types of climate
interventions.

Figure 7 reports the appropriate discount rates for investments in climate change
abatement of different maturity for three values of θ: 1, 0.5, and 0.1. Higher values of
θ correspond to lower black lines.21 The figure highlights a number of crucial results
from our model:

1. Appropriate discount rates for investments in climate change abatement are al-
ways below the risk-free rate. This feature comes from these investments being a
hedge: they pay off following a climate disaster, and therefore in states of the world
with high marginal utility. For relatively short horizons, we have estimated a real
risk-free rate of about 1%, providing us with a tight upper-bound on the appropriate
discount rates.

20We set µq = µd − 2λ̄ηξ so that damages and rents have the same long-run growth rate.
21In some calibrations the appropriate discount rates are negative, especially at shorter maturities. This

is not surprising given the insurance-contract nature of the investments; it simply means that investors are
willing to pay a price today that is above the expected payoff of the project.
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2. At long horizons, the term structure of housing discount rates provides an upper
bound on the appropriate discount rate. While the risk-free rate provides a theo-
retically tight upper bound at all horizons, no reliable data exist on risk-free rates
beyond horizons of about 30 years. This makes direct measurements of the risk-free-
rate upper bound at horizons relevant for investments in climate change abatement
infeasible. However, Section 1 described observed discount rates on risky housing
for such long horizons, allowing us to bound the long-run discount rates for assets
that are safer than real estate, including investments in climate change abatement,
to be below 2.6%.

Importantly, a discount rate below 2.6% (and even more so 1%) is lower than many
estimates used in the existing literature and by policymakers for discounting in-
vestments in climate change abatement. For example, it is substantially below the
4% suggested by Nordhaus (2013). Quantitatively, it is more in line with long-run
discount rates that are close to the risk-free rate, as suggested by Weitzman (2012),
or the 1.4% suggested by Stern (2006), or results by Barro (2013). It is also close to
the average recommended long-term social discount rate of 2.25% elicited by Drupp
et al. (2015) in a survey of 197 experts, and falls within the range of 1% to 3% that
more than 90% of these experts are comfortable with. Moreover, in light of the
general disagreement in the literature regarding the appropriate discount rate, the
interagency group tasked by the U.S. government to value reductions in CO2 chose
three certainty-equivalent constant discount rates: 2.5%, 3%, and 5% per year. Our
estimates provide a tight bound that is only consistent with the lowest rate of 2.5%
for investments providing a long-run hedge against climate disasters. Greenstone,
Kopits and Wolverton (2013) report the cost of 1 metric-ton of CO2 to be $57 when
using the suggested 2.5% discount rate, but only $11 when using a 5% discount rate,
illustrating the impact of this bound on climate-change-related welfare calculations.

3. The term structure of discount rates for investments in climate change abatement
is upward-sloping, making the housing discount rates a tighter bound for longer
horizons. Appropriate discount rates for investments in climate change abatement
increase with the horizon, which disproportionally tightens our upper bound as the
horizon increases. This feature is driven by the same mean reversion in cash flows
that generates the downward slope in the term structure of risky assets (such as real
estate): since cash flows that are farther in the future are reduced less by a climate
disaster, the benefits of reducing its effects are smaller, too.

Note that the implied low but upward-sloping term structure of discount rates for invest-
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ments in climate change abatement contrasts with a number of papers that have argued
for using declining discount rates for valuing investments in climate change abatement
(Arrow et al., 2013; Cropper et al., 2014; Farmer et al., 2015; Traeger, 2014). These ar-
guments have motivated policy changes in France and the U.K., which have adopted a
downward-sloping term structure of discount rates for evaluating long-run investments,
including those in climate change abatement. While this disagreement about the term
structures does not have a substantial effect on the actual level of discount rates to value
the long-run cash flows—they are relatively low, at approximately 2%, under both the
term structures used in those countries and under our estimated upward-sloping term
structure—the two rely on different economic mechanisms. Importantly, they also make
substantially different predictions for evaluating the payoffs from abatement investments
that may accrue at shorter horizons. The calibration of our model suggests that climate
disasters cause the most damage immediately after they hit, making it most valuable
to hedge the immediate costs. As a result, the discount rates are substantially below the
risk-free rate of 1%-2%. In contrast, the downward-sloping term structures used in France
and the U.K. suggest discount rates of 4% and 3.5%, respectively, for the first 30 years of
a project’s cash flows.

2.3.2 Alternative Models: The “Tax” View vs. the “Disaster” View of Climate Change

Modeling climate change risk and its effects on the economy is a daunting task, both be-
cause the physical processes driving climate change are not fully understood and because
of the sparsity of historical data to predict how climate change will affect the economy.
It is unsurprising, therefore, that the literature has approached the modeling of climate
change and its effects on the economy in many different ways.

One view, pioneered by Nordhaus and Boyer (2000) and Nordhaus (2008), thinks of
climate change akin to a tax on output. When output is high, pollution and the costs
of climate change are also high. In this view, the main source of uncertainty about the
future of climate is the future path of the economy. If the economy does well, pollution
and climate change damages will be high; if the economy deteriorates, pollution and
damages will be low. Investments in climate change abatement are thus risky, as they pay
off in states of the world in which the economy is already doing well.

The alternative view follows Weitzman (2012, 2014): climate change is a disaster-
type risk that, if it materializes, causes output to drop (see also Barro, 2013; Lemoine,
2015; Wagner and Weitzman, 2015). In this “disaster” interpretation, climate change itself
represents the main source of uncertainty, and is itself a source of aggregate risk for the
economy. Alternatively, this “disaster" view of climate change can also represent the case
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in which uncertainty about the future path of the economy (and not uncertainty about the
climate per se) is the dominant source of uncertainty, but nonlinearities in the feedback
from the economy to climate change are so pronounced that sufficiently high economic
expansion might ultimately lead to a disaster (if a tipping point is reached). In these
cases, investments in climate change abatement are then hedges that reduce aggregate
risk, because they pay off when consumption is low (after a climate disaster materializes).

Our own calibrated model is a special case of this “disaster” view of climate change.
However, our framework is general enougth to nest both of these views and to shed
light on the very different implications they have for the appropriate discount rates for
investments in climate change abatement. To highlight this, equation 17 presents a gener-
alized version of the dynamics of climate damages (equation 16 in our calibrated baseline
specification):

∆qt+1 = µq − πqyt + ηq Jt+1. (17)

Different parameters of the model primitives under either the “tax view” or the “disaster
view” map into different values of µq, πq, and ηq in this general specification. For exam-
ple, by setting πq = 1 and ηq = η, we recover our benchmark specification in equation
16. To illustrate the discounting implications of the two different views, we compute the
implied term structure of discount rates for a benchmark investment in climate change
abatement that provides partial insurance. We assume the investment’s payoff process to
follow ∆qt+1/10, thus hedging 10% of the innovation in climate change damages.

The Basic “Disaster” View of Climate Change. Our framework can be made consistent
with the core of Weitzman’s original argument if we set the probability of a climate
disaster to be constant (λt = λ̄), remove the mean reversion in the economy (xt = yt = 0),
and set πq = 0 and ηq = η in equation 17. The climate-change-damages process then
follows:

∆qt+1 = µq + η Jt+1. (18)

Figure 9 reports the term structure of discount rates for the climate-change-abatement
investment described above in this Weitzman-type model (lowest solid line). We can see
that the original Weitzman logic implies discount rates that are low, indeed lower than the
risk-free rate, but also invariant across horizons. This invariance across horizons clearly
conflicts with our evidence on horizon-dependent term structures of discount rates for
assets exposed to climate risk (such as housing).

Relative to this original Weitzman view, our model adds two features that allow us
to capture richer dynamics in climate change damages and to match the empirically-
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observed horizon-dependent term structure of discount rates: mean reversion (adapta-
tion) in the economy, and climate risk that depends endogenously on the growth rate of
the economy as well as the occurrence of climate shocks. To illustrate, if we re-introduce
mean reversion as in our benchmark calibration into this Weitzman economy, the climate-
change-abatement investment starts to pay off whenever a climate disaster occurs (cap-
tured by the term η Jt+1), and continues to pay off at a declining rate in future periods
(captured by the term −πqyt), reflecting higher economic growth due to adaptation. The
lowest dashed line in Figure 9 indeed replicates our baseline results from Figure 7 and
confirms that the discount rates for this investment are below the risk-free rate at all
horizons, but increase with the horizon.

The Basic “Tax” View of Climate Change. We can also use our framework to explore
the “tax” view of climate change elaborated on most prominently by Nordhaus. For
exposition, we start by considering a simplified environment in which the tax rate that
climate change imposes on the economy is constant, and the fundamental source of un-
certainty stems from shocks to the economy. Such a setup corresponds to a linear damage
function in the DICE model. The payoff to an investment in climate change abatement is
then equivalent to the tax revenue from the climate tax, which can be captured by setting
Qt = τDt, where τ is the climate tax rate. We keep all other processes in our economy
unchanged, but remove the mean reversion (xt = yt = 0) to stay within the neoclassical-
growth-model spirit of Nordhaus’ DICE model.22 Since the tax is constant, the payoff
to climate-change-abatement investments behaves exactly like output. In particular, we
can parameterize equation 17 by setting µq = µd, πq = 0, and ηq = −η. The process for
damages from climate change then becomes:

∆qt+1 = ∆dt+1 = µd − η Jt+1. (19)

It follows immediately that investments in climate-change abatement in this setting are
risky, since their payoff is positively correlated with consumption (see also Gollier, 2013).
This is reflected by the negative loading on Jt+1 in the above equation (ηq = −η). Note
that this loading is positive in the corresponding equation for the “disaster” view (equa-

22In Weitzman’s work, and in our benchmark model, the shocks Jt+1 are a direct manifestation of climate
change disasters and we parametrized them accordingly. In Nordhaus’ work, climate change is a tax
on the economy and the shocks Jt+1 are to be interpreted as not directly related to climate change (e.g.,
they may capture shocks to productivity instead). We focus on showing how the views of Nordhaus and
Weitzman can be mapped into our model and highlight their starkly different predictions for discount rates
here. Since the difference in predictions is stark in a qualitative sense already (i.e., different signs of the
covariance of climate risk with consumption), we thought it best not to recalibrate shocks when analyzing
the implications of Nordhaus’ view in our framework.
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tion 18); these different loadings are at the core of the starkly different predictions that
these two views offer for discounting investments in climate change abatement. Indeed,
Figure 9 shows that in the “tax” view (in which shocks to the economy are the fundamen-
tal source of uncertainty and the relationship between production and climate change is
not very nonlinear), discount rates are high, above the risk-free rate, and invariant across
horizons (solid black line). The first implication, high discount rates, is a key characteristic
of the “tax”-view of climate change. The second implication, a flat term-structure, derives
from our assumption of a constant tax rate.

A richer model in the spirit of Nordhaus (2008) allows for the tax rate to increase
with economic activity, such that damages are disproportionally higher when the output
of the economy is higher. Yet, the nonlinearities are not sufficiently strong to actually
imply lower consumption in paths of high economic growth compared with path of low
economic growth (as in the tipping point literature captured by the “disaster" view). We
capture the essence of this argument by assuming that tax proceeds follow Qt = τt−1Dg,t,
where τt−1 increases when output is high as specified below. We obtain that:

Dt = Dg,t(1− τt−1), (20)

where Dg,t are rents in the absence of climate damages, which we refer to as gross rents,
and Dt are net rents. We assume that gross rents follow ∆dg,t+1 = µd − η Jt+1 as before.
Net of the climate tax, rents then follow:

∆dt+1 = ∆dg,t+1 + [ln(1− τt)− ln(1− τt−1)] = ∆dg,t+1 + yt, (21)

where yt = [ln(1− τt)− ln(1− τt−1)] follows the same process as specified in equation
9.23 As we can see, this richer Nordhaus view still implies an output process that can
(approximately) be nested in equation 8 of our baseline model; the only difference lies in
the interpretation of some of these processes. Note that this setup now also generates
mean reversion in cash flows. However, while mean reversion in cash flows comes
from adaptation to climate events in our baseline model, mean reversion is mechanically
induced by the increasing schedule of the climate-change tax rate (τ) with respect to
the level of economic activity in the present setup. As we will see, this leads to starkly
different implications for discount rates.

Climate-change damages in this setup are given by: ∆qt+1 = ∆dg,t+1 +[ln τt − ln τt−1].
These damages are similar to those in the simpler Nordhaus setup in equation 19, but now

23That is, we are implicitly defining the tax rate to follows the process [ln(1− τt+1)− ln(1− τt)]− [ln(1−
τt)− ln(1− τt−1)] = µy + ω{[ln(1− τt1)− ln(1− τt−1)]− [ln(1− τt−1)− ln(1− τt−2)]}+ ψJt+1.
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include an extra term, [ln τt − ln τt−1], that derives from time variation in the climate tax
rate. To preserve the linearity and tractability of our model, we capture these damages in
approximate form:24

∆qt+1 = ∆dg,t+1 + [ln τt − ln τt−1] ≈ ∆dg,t+1 − kyt = µd − kyt − η Jt+1. (22)

The above process is now a special case of equation 17, in which µq = µd, πq = k,
and ηq = −η. As in the simpler constant-tax version of the Nordhaus view discussed
above, investments in climate change abatement are risky (their payoffs are still posi-
tively correlated with output, ηq = −η). However, as shown in Figure 9, the increasing
tax rate (captured by −kyt) now induces discount rates for climate-change-abatement
investments not only to be high (above the risk-free rate), but also to be increasing with
the horizon (dashed black line). Intuitively, when the economy does badly, expected
climate damages are persistently low, thus making long-term investments in climate-
change abatement even riskier than short-term investments.

2.4 Key Take-Aways

The evidence in Section 1 uncovered a downward-sloping term structure of discount
rates for real estate, an asset that has substantial exposure to both consumption risk
and climate risk. The general equilibrium model developed in this section is able to
match this downward-sloping term structure of discount rates by leveraging a simple
mechanism: mean reversion in cash flows as the economy adapts after a climate disaster.
The implication of this mean reversion is declining risk exposures of higher-maturity cash
flows, since a climate disaster that strikes today has larger effects on immediate cash flows
than on distant cash flows.

While much is still unknown about the dynamics of climate change and its impacts
on the economy, the seminal work by Nordhaus, Weitzman, Gollier and others has sub-
stantially advanced our understanding of these issues. Our empirical and structural
analysis contributes to this line of work, furthers our understanding of existing models,
and provides new challenges for the next generation of climate change economics models.

Our modeling exercise has allowed us to establish a number of simple yet powerful
results on appropriate discount rates for investments in climate change abatement that
hedge disaster-type climate risks: (i) that these discount rates are bounded above by the

24We use the approximation ln τt − ln τt−1 ≈ −kyt and choose k = 1−τ̄
τ̄ . Recall that yt = ln(1− τt)−

ln(1− τt−1) ≈ τt−1−τt
1−τt−1

, so that: ln τt − ln τt−1 ≈ τt−τt−1
τt−1

= −yt
1−τt−1

τt−1
. Since we do not want the loading on

yt to be time varying, we set k = 1−τ̄
τ̄ , where τ̄ is the steady state tax rate.
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risk-free rate, (ii) that for horizons at which we do not observe estimates of the risk-
free rate, the estimated long-run discount rates for housing provide a relatively tight
bound, and (iii) that the upward-sloping nature of discount rates for investments in
climate change abatement means that this bound gets tighter as the horizon lengthens.
In addition, our calibrated model—which generates a term structure of discount rates at
all horizons—can be used to value actual climate change mitigation investments.

We also show how our model implications on discount rates for climate-change-
abatement investments improve upon and differ from two key views of climate change
economics: the “tax” view of Nordhaus and Boyer (2000) and Nordhaus (2008), and the
“disaster view” of Weitzman (2012, 2014). In particular, while appropriate discount rates
in our model are low and bounded above by the risk-free rate as in Weitzman-type settings,
they are also upward-sloping and increasing towards the risk-free rate upper bound with
horizon. This mirrors our empirical findings on the downward-sloping term structure
of discount rates for risky real estate and reflects the investment’s nature as a hedge. In
Nordhaus-type settings by contrast, discount rates are above the risk-free rate, and on top
of that also increasing away from the risk-free rate as the horizon increases when damages
are a convex function of output.

3 Conclusion

In this paper, we showed how discount rates estimated from private markets, such as the
housing market, can be informative about appropriate discount rates for investments in
climate change abatement. While much is still unknown about the dynamics of climate
change and its impacts on the economy, the seminal work by Nordhaus, Weitzman, Gol-
lier and others has substantially advanced our understanding of these issues. Our empir-
ical and structural analysis contributes to this line of work, furthers our understanding of
existing models, and provides new challenges for the next generation of models hoping
to capture the interaction of climate change, asset markets, and the economy.
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Figure 1: Illustration of Identifying Properties in the Flood Zone

Note: Figure illustrates how we identify properties in the flood zone of downtown Miami, Florida. On the left,
we plot each property as a green dot and overlay the NOAA’s flood map. Then, on the right, we geocode to
identify the properties that fall under the flood zone and color them as red dots. As seen above, as properties
are closer to the coastal line, they are more likely to be in the flood zone.
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Figure 2: Climate Attention Index in the Cross-Section and Time-Series
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Note: The top panel shows a heatmap of our Climate Attention Index in Florida at the zip code level. The
Climate Attention Index is defined as the fraction of for-sale listings whose description includes climate-related
text for the period from 2008Q1 to 2017Q2. The other panels illustrate the quarterly time series of the Climate
Attention Index aggregated at the state level as well as for zip codes that include at least some both properties
in the Flood Zone.
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Figure 3: House Price Riskiness
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Note: Panel A shows average real house price movements relative to financial crises. Panel B shows average
real house price movements and average real consumption relative to the trough of consumption disasters.
Panels C and D show the evolution of real house prices in the U.K. and Singapore, respectively. Shaded regions
are financial crises. Panel E shows the evolution of real house prices for countries with available house-price
time series during World War I and World War II. See Appendix A.3.1 for a description of the data series.
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Figure 4: Sample Paths: Trend Growth and Above-Trend Growth
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Note: The figure shows two sample paths of the economy under our baseline calibration. The top panel
reports the log deviation of the climate disaster probability λt from its mean. The bottom panel reports
the path of log rents dt. The dotted line represents the baseline path in which the economy grows at its
deterministic trend. The solid line represents a temporary deviation from trend in which growth accelerates.

Figure 5: Sample Paths: Above-Trend Growth, With and Without a Disaster
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Note: The figure shows two sample paths of the economy under our baseline calibration. The top panel
reports the log deviation of the climate disaster probability λt from its mean. The bottom panel reports the
path of log rents dt. The dotted line represents a path in which the economy grows at its deterministic trend,
then experiences an increase in growth (the same as the solid line in Figure 4). The solid line represents
an alternative path in which the increased probability of disasters due to the temporary acceleration in the
economy leads to the occurrence of a disaster after year 25.
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Figure 6: U.K. Gilts Real Yield Curve
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Note: The figure plots the real yield curve for U.K. gilts as computed by the Bank of England for the
period 1998-2016, as well as for two sub-periods: 1998-2007 and 2008-2016. It is available at http://www.
bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx, last accessed July 2017.
Until 2015, the U.K. government debt also included some perpetual bonds: the War Loans and the Annuities.
These bonds comprised a negligible part of the outstanding U.K. government debt (£2.6bn out of £1.5trn of
debt outstanding), and were classified as small and illiquid issuances by the U.K. Debt and Management
Office. In 2015, following the passage of the Finance Act, all outstanding perpetuities were called in by the
British government. They are excluded from our analysis, not only because they are nominal and we only
use data on U.K. real gilts, but also because their negligible size, scarce liquidity, and callability make it hard
to interpret their prices in terms of discount rates.
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Figure 7: Discount Rates for Risk-Free Bonds, Housing, Damages
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Note: The figure shows the per-period discount rate corresponding to different assets for maturities 1 to
1000 years, in our baseline model calibration. The top line represents the term structure of discount rates
for the risky housing asset. The dashed line below it represents the real risk-free asset, that is, the real
yield curve. The three black lines in the bottom represent different calibrations of the damage process with
θ ∈ {1, 0.5, 0.1}.
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Figure 8: Leasehold Discounts
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(A) Leasehold Discounts in the U.K.
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(B) Leasehold Discounts in Singapore

Note: The figure shows the discount rates for housing assets predicted by the model (left bars) and in the
data (right bars), for the U.K. (left panel) and Singapore (right panel). The discounts are estimated from a
hedonic regression and reported in log points.
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Figure 9: Leading Models of Climate Change: Predictions for Discount Rates
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Note: The figure shows the per-period discount rate appropriate for climate-change-abatement investments
under different models of climate change damages. In all these models, climate damages follow the process
∆q = µq−πqyt + ηq Jt+1; the discount rates in the figure correspond to those applied to an investment whose
payoff is ∆q/10. The “constant tax view” of climate change views damages as a constant fraction of output,
so that µq = µd, ηq = −η, and πq = 0. The “increasing tax view” views damages as a fraction of output that
increases in good times, so that µq = µd, ηq = −η, and πq = k. The “disaster view” with no mean-reversion
views climate change damages as inducing a drop in output, so that µq = 0, ηq = η, and πq = 0. Finally, the
“disaster view” with mean reversion corresponds to our baseline case, with µq = 0, ηq = η, and πq = 1.
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Table 1: Transaction Prices vs. Rent Prices: Hedonic Analysis

PANEL A. TRANSACTION PRICES
DEPENDENT VARIABLE: LOG(TRANSACTION PRICES)

(1) (2) (3) (4) (5) (6)

Flood Zone 0.004 0.014 0.085∗∗∗

(0.015) (0.013) (0.006)

log(Index by Zip-Year) -0.024∗∗∗ -0.029∗∗

× Flood Zone (0.005) (0.010)

log(Index by Zip-Quarter) -0.020∗∗∗ -0.021∗∗

× Flood Zone (0.004) (0.007)

Index by Zip-Quarter -0.210∗∗ -0.367∗∗∗

× Flood Zone (0.071) (0.091)

Property Controls X X . . X .

Zip × Quarter FE X X X X X X

Property FE . . X X . X

R-squared 0.585 0.585 0.721 0.721 0.585 0.721
N 7,287,000 7,233,113 3,485,238 3,443,265 7,233,113 3,443,265

PANEL B. RENT PRICES
DEPENDENT VARIABLE: LOG(RENT PRICES)

(1) (2) (3) (4) (5) (6)

Flood Zone 0.041∗∗∗ 0.033∗∗ -0.034∗∗∗

(0.012) (0.011) (0.006)

log(Index by Zip-Year) 0.018∗∗∗ 0.005
× Flood Zone (0.004) (0.005)

log(Index by Zip-Quarter) 0.015∗∗∗ 0.003
× Flood Zone (0.004) (0.003)

Index by Zip-Quarter 0.415∗∗∗ 0.016
× Flood Zone (0.072) (0.042)

Property Controls X X . . X .

Zip × Quarter FE X X X X X X

Property FE . . X X . X

R-squared 0.728 0.728 0.942 0.942 0.728 0.942
N 2,142,433 2,142,240 1,191,657 1,191,642 2,142,240 1,191,642

Note: Table shows results from regression 1. The dependent variable is the log of the transaction price in Panel
A and the log of the rental listing price in Panel B. In column 1, 2, and 5, we control for various property
characteristics such as the property size, property age, and the number of bedrooms. In column 3, 4, and 6,
we include property fixed effects. The Flood Zone indicator and the property controls are naturally dropped
in these regressions due to perfect multicollinearity. Index by Zip-Year and Index by Zip-Quarter represent
the fraction of listings whose description includes climate-related texts at the zip code-year level and the zip
code-quarter level, respectively. Standard errors are clustered at the zip code-quarter level and in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 2: Real House Price Growth and Real Consumption Growth

Period Real HP Growth Real Cons. Growth
Mean Std. Dev. Mean Std. Dev. Correlation Cons. beta

Australia 1901-2009 2.51% 12.1% 1.51% 4.99% 0.102 0.248
Belgium 1975-2009 2.92% 6.06% 1.59% 1.51% 0.439 1.761
Canada 1975-2009 2.38% 7.69% 1.61% 1.73% 0.433 1.929
Denmark 1975-2009 1.99% 9.24% 0.98% 2.71% 0.538 1.838
Finland 1975-2009 2.17% 8.70% 2.07% 2.79% 0.710 2.214
France 1840-2009 2.06% 11.8% 1.49% 6.32% -0.054 -0.101
Germany 1975-2009 -0.45% 2.33% 1.64% 1.52% 0.494 0.755
Italy 1975-2009 1.28% 8.10% 1.75% 2.18% 0.165 0.614
Japan 1975-2009 0.02% 4.45% 1.97% 1.60% 0.503 1.394
Netherlands 1814-2009 2.79% 20.8% 1.57% 7.49% 0.078 0.215
New Zealand 1975-2009 2.46% 8.09% 1.00% 2.30% 0.580 2.044
Norway 1830-2009 1.77% 11.6% 1.78% 3.83% 0.243 0.737
Singapore 1975-2009 7.18% 19.5% 3.43% 4.03% 0.348 1.685
South Africa 1975-2009 1.13% 10.1% 0.92% 3.02% 0.707 2.365
South Korea 1975-2009 0.58% 7.93% 4.62% 4.49% 0.370 0.652
Spain 1975-2009 3.14% 8.07% 1.56% 2.60% 0.593 1.837
Sweden 1952-2009 1.55% 6.04% 1.63% 1.99% 0.536 1.627
Switzerland 1937-2009 0.47% 7.17% 1.48% 3.82% 0.187 0.350
U.K. 1952-2009 2.89% 9.55% 2.26% 2.11% 0.700 3.169
U.S. 1890-2009 0.49% 7.36% 1.84% 3.41% 0.148 0.320

Note: The table shows time series properties of annual growth rates of real house prices (as described in
Appendix A.3.1) and real consumption, as collected by Barro and Ursua (2008). Column 1 shows the sample
considered. Columns 2 and 3 show the mean and standard deviation of real house price growth. Columns 4
and 5 show the mean and standard deviation of real consumption growth. Column 6 shows the correlation of
real house price growth and real consumption growth. Column 7 shows the consumption beta of house prices.
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Table 3: Real House Price Growth and Personal Disposable Income Growth

Real HP Growth Real PDI Growth
Mean Std. Dev. Mean Std. Dev. Correlation PDI beta

Australia 3.54% 6.67% 1.37% 2.10% 0.156 0.495
Belgium 2.53% 5.50% 0.92% 2.30% 0.431 1.031
Canada 2.91% 7.49% 1.35% 2.18% 0.466 1.604
Switzerland 1.12% 4.58% 1.17% 1.53% 0.425 1.275
Germany 0.07% 2.52% 1.28% 1.64% 0.237 0.365
Denmark 1.73% 8.58% 1.13% 2.29% 0.224 0.839
Spain -0.09% 10.6% 0.81% 2.27% 0.409 1.909
Finland 1.90% 7.71% 1.92% 2.97% 0.470 1.219
France 2.28% 5.13% 1.12% 1.61% 0.332 1.056
U.K. 3.47% 8.49% 2.05% 2.26% 0.420 1.575
Ireland 3.36% 9.44% 1.89% 3.33% 0.574 1.627
Italy 0.33% 8.15% 0.89% 2.48% 0.363 1.195
Japan -0.39% 4.24% 1.49% 1.44% 0.622 1.835
South Korea 0.64% 7.36% 3.97% 4.38% 0.245 0.412
Luxembourg 4.16% 6.40% 2.76% 3.63% 0.067 0.117
Netherlands 2.31% 9.12% 0.74% 3.01% 0.467 1.414
Norway 2.65% 6.92% 2.22% 2.05% 0.037 0.126
New Zealand 2.90% 7.73% 1.13% 3.41% 0.486 1.103
Sweden 2.00% 7.01% 1.40% 2.39% 0.467 1.371
U.S. 1.36% 3.88% 1.59% 1.54% 0.322 0.812
South Africa 0.49% 9.13% 0.34% 2.37% 0.474 1.824
Croatia 1.16% 12.3% 8.79% 27.0% -0.345 -0.158
Israel 3.05% 8.83% 2.74% 7.37% 0.129 0.155

Note: This table shows time series properties of quarterly frequency annual growth rates of real house prices
and personal disposable income between 1975 and 2016, as collected by Mack and Martínez-García (2011).
Columns 1 and 2 show the mean and standard deviation of real house price growth. Columns 3 and 4 the mean
and standard deviation of real personal disposable income growth. Column 5 shows the correlation of real
house price growth with real personal disposable income growth. Column 6 shows the personal disposable
income beta of house prices.
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“CLIMATE CHANGE AND LONG-RUN DISCOUNT
RATES: EVIDENCE FROM REAL ESTATE”

Online Appendix

Stefano Giglio Matteo Maggiori Krishna Rao Johannes Stroebel Andreas Weber

A.1 Discounting: The Role of Risk and Horizon

How should policymakers decide whether a particular investment in climate change
abatement is worth pursuing? A common approach is to conduct a cost-benefit analysis
to determine the societal net present value (NPV) of an investment project that is costly
today and provides a stream of potentially uncertain future benefits (cash flows), with
positive NPVs indicating socially beneficial projects. Discount rates play a central role in
determining NPVs, since even small changes in discount rates can dramatically alter the
NPVs of investments with long horizons (see e.g., Arrow et al., 2013; Dietz, Gollier and
Kessler, 2015; Dreze and Stern, 1987; Moyer et al., 2014).

In this section, we review the basic theoretical concepts for our empirical and struc-
tural analysis in Sections 2. Section A.1.1 describes how the appropriate rate for discount-
ing a particular cash flow depends on both the riskiness and the maturity of that cash flow.
Section A.1.2 highlights what this implies for learning about the appropriate discount
rates for climate change policies from observable assets that pay cash flows with different
riskiness and maturity. The main body of the paper uses insights from the term structure
of discount rates for one particular asset, real estate, to guide the choice of appropriate
discount rates for investments in climate change abatement.

To introduce our basic notation, let us represent an investment at time t as a claim to
a stream of future benefits (cash flows), Dt+k, k = 1, 2..., n, where n is the final maturity
of the cash flows. For example, an investment to avoid one ton of CO2 emissions today
provides benefits in terms of mitigated climate change in each future period for hundreds
of years. Each of these benefits, Dt+k, is stochastic and depends on the state of the world
at time t + k. For example, the future benefits of reducing CO2 emissions today could
depend on how much the economy grows in the future. We denote the state of the
world at time t + k as ωt+k ∈ Ωt+k and stress the dependence of benefits on its stochastic
realization with the notation Dt+k(ωt+k). The set Ωt+k includes all possible states of the
world at time t + k, which can differ along many dimensions, including the health of
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the aggregate economy and the degree of environmental damage. In what follows, we
will sometimes refer to general assets with maturity n that could pay cash flows such as
dividends or rents at any point in time up to their maturity; these will simply be referred
to with superscript n. A subset of these assets is the set of claims to a single cash flow at
a specific point in time, maturity n; we will refer to these with superscript (n).

A.1.1 The Value of a Single-Cash-Flow Investment

We begin our analysis by studying the value of an investment that pays only one cash
flow, at a specific point in time: t+n. This cash flow is not predetermined: it might be
different in different states of the world, ωt+n ∈ Ωt+n. We denote the present value of the
claim to this benefit as P(n)

t . A classic tenet of asset pricing is that, under the relatively
mild assumptions of no arbitrage and the law of one price, P(n)

t can be expressed as
the weighted expected value of that cash flow across scenarios ωt+n, where a benefit
paid in each scenario is weighted by the importance investors assign to benefits in that
state (see Hansen and Richard (1987), and Cochrane (2005) for a textbook treatment). Let
Mt,t+n(ωt+n) > 0 denote the value that investors attach at time t to benefits in state ωt+n.
An asset is considered more risky if it pays off primarily in states of the world in which
investors value that payoff less. If investors value benefits paid out earlier more than
benefits paid out later, the weighting Mt,t+n will also adjust for this time discounting. We
can then write the value of an investment that yields Dt+n as:

P(n)
t = ∑

ωt+n∈Ωt+n

Mt,t+n(ωt+n)Dt+n(ωt+n)πt,t+n(ωt+n) = Et [Mt,t+nDt+n] , (A.1)

where πt,t+n(ωt+n) is the conditional probability of state ωt+n. The object Mt,t+n is called
the stochastic discount factor (SDF). In economic terms, the SDF reflects the marginal utility
of a payoff in different states of the world. The value of the asset thus reflects both the
physical properties of the asset (when and how much it pays in each state ωt+n) and the
preferences of investors (how much they value payoffs in each scenario ωt+n).

An equivalent representation of P(n)
t , which is more prevalent in policy analysis, is

in terms of discount rates. The time and risk adjustments are then expressed using a per-
period discount rate rn

t :

P(n)
t = Et [Mt,t+nDt+n] =

Et [Dt+n]

(1 + rn
t )

n . (A.2)

Put differently, we can think of prices as the expected value of the cash flow discounted at
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a per-period discount rate rn
t . The appropriate discount rate will differ across investments

depending on which states of the world an investment pays benefits in, and the relative
valuation of benefits across states of the world: more risky investments are valued less,
and thus discounted at higher per-period discount rates.

A.1.2 The Importance of Horizon-Specific Risk Adjustments

We now consider a multi-period-payoff investment project that pays stochastic benefits
at different points in time up to maturity n. Any such asset can be thought of as the
combination of many single cash-flow assets, each paying at specific points in time, t +
1, t + 2, ..., t + n. Therefore, the value of a multi-period-payoff investment project is the
sum of the values of the individual single-period-payoff projects:

Pn
t = P(1)

t + P(2)
t + ... + P(n)

t

Since the two representations discussed above for the one-period case also apply to the
multi-period case, the value Pn

t can be written as:

Pn
t = Et [Mt,t+1Dt+1 + Mt,t+2Dt+2 + ... + Mt,t+nDt+n] (A.3)

=
Et [Dt+1]

1 + r1
t

+
Et [Dt+2]

(1 + r2
t )

2
+ ... +

Et [Dt+n]

(1 + rn
t )

n . (A.4)

These two representations differ from the valuation formula that is often applied in cost-
benefit analyses, which discounts each cash flow at the same per-period discount rate rt:

Pn
t =

Et [Dt+1]

1 + rt
+

Et [Dt+2]

(1 + rt)2 + ... +
Et [Dt+n]

(1 + rt)n . (A.5)

Representations A.3 and A.4 are always correct and equivalent; the last one is only correct
if the discount rate rt is chosen to match the risk and maturity of a particular asset.
Therefore, rt can only be applied to value the benefits of a project with exactly the same
risk characteristics and exactly the same maturity as the asset from which rt was derived
in the first place. For the purpose of discounting the benefits of a project with different
characteristics, the full term structure of discount rates r1

t , r2
t , ..., rn

t needs to be known and
appropriately adjusted for differences in risk characteristics. We highlight the importance
of this by considering the valuation of three different investment projects below: A project
with the same risk and payoff horizon as those of an observed traded asset (whose aver-
age per-period discount rate is rt); a project with the same risk properties but a different
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payoff horizon; and a project with different risk properties but the same payoff horizon.

Case 1: Same Risk, Same Horizon. Consider first an observable asset with maturity
n and stochastic cash flows Dt+1, Dt+2,..., Dt+n (if the asset has infinite maturity as in
the case of the stock market, then n = ∞). Imagine we are able to observe the average
discount rate of this asset, rt. Put differently, given an asset with maturity n and some risk
profile, rt is defined as the constant discount rate consistent with the asset’s price. Now
consider the case in which an investment in climate change abatement pays cash flows
D̃t+1, ..., D̃t+n that are different from the cash flows of the observed asset, but have the
same risk characteristics (i.e., the same dependence on the state of the world ωt+n). This
is the only case in which cash flows from climate change abatement can be discounted at
the same average rate as those from the observable asset. The value of the climate change
investment, Cn

t , will be:

Cn
t =

Et
[
D̃t+1

]
1 + rt

+
Et
[
D̃t+2

]
(1 + rt)2 + ... +

Et
[
D̃t+n

]
(1 + rt)n .

Case 2: Same Risk, Different Horizon. Since the risk preferences captured by Mt,t+k

potentially depend on the horizon, using average discount rates from one asset to dis-
count cash flows from another investment is no longer valid if those cash flows material-
ize over different horizons. Take our example from above and assume that the asset’s cash
flows have the same riskiness as the cash flows from the investment in climate change
abatement at each horizon. Assume further that the observable asset yields benefits in
every period between time t and time t + n, while the investment in climate change
abatement only yields benefits after maturity n > 1. Since the riskiness of the cash
flows of both investments is the same, one may be tempted to use the observed average
discount rate rt from the observable asset to discount climate change project cash flows.
This turns out to be incorrect, however. The correct price is obtained as below:

C(n,n)
t =

Et
[
D̃t+n

]
(1 + rn

t )
n +

Et
[
D̃t+n+1

]
(1 + rn+1

t )n+1
+ ... +

Et
[
D̃t+n

]
(1 + rn

t )
n ,

where each dividend is discounted at the horizon-specific discount rate, rn
t , rn+1

t , ..., rn
t .

Since rt was obtained as the discount rate that applies to the observable asset, it reflects
an average of all the horizon-specific discount rates r1

t , r2
t , ..., rn

t , including the ones for
maturities up to n− 1. Since the climate change project does not accrue benefits at those
horizons, its value should not depend on the discount rates between t + 1 and n− 1.
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To see this more clearly, suppose that investors are only worried about the states
of the world in which the relatively near cash flows are being paid out (horizons 1 to
n− 1), while they are not worried about risks for horizons higher than n: for long matu-
rities, investors only care about the expected payout from the asset, not the state of the
world, in which it is paid out. They will discount the short-term cash flows at high rates,
r1

t , r2
t , ..., rn−1

t , but the longer-maturity cash flows at lower rates, rn
t , rn+1

t , ..., rn
t , reflecting

their risk-neutrality at those horizons. The term structure of discount rates for this par-
ticular asset is thus downward-sloping. The claim to all cash flows may have a relatively
high implied average discount rate, in particular if many of the cash flows accrue before
n. At the same time, if the benefits from a climate change investment had the same risk
properties, but only accrued after n, the correct present value for such an investment
should only depend on the low discount rates rn

t , rn+1
t , ..., rn

t . It would thus be higher than
under the relatively high average discount rate rt.

Case 3: Different Risk, Same Horizon. Beyond the timing of cash flows, a second po-
tentially important difference between an observed asset’s discount rates and those that
apply to some investment project is the relative riskiness of the payoffs at the same horizon.
As outlined before, riskiness here refers to whether an asset mostly pays in states of the
world ωt+k where payments are least valuable for the investor. Consider our example
from above again. Assume that the asset as well as the climate change investment project
only pay a single cash flow in period t + n. Further assume that the observed asset’s cash
flow is riskier than the investment’s cash flow: for example, equities generally pay off in
states of the world where the economy is doing well, while investments that mitigate the
impact of climate disasters would pay off in states of the world where the economy is not
doing well. The discount rate implied by the observable price of the asset will then be
different from the appropriate discount rate for the investment project.

For concreteness, assume that there are only two equally likely states of the world – a
good one (ωG

t+n) and a bad one (ωB
t+n). Assume that marginal utility in the good state of

the world is lower than marginal utility in the bad state of the world, and assume that the
observed asset pays out in the good state of the world only, while the investment project
only pays out in the bad state of the world; both pay out the same amount if they pay
out. This implies that Et [Mt,t+nDt+n] < Et

[
Mt,t+nD̃t+n

]
. It then follows from equation

A.2 that the investment project should be discounted at a lower rate than the asset.
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A.2 Estimating the Climate Risk Exposure of Real Estate

In this section, we provide additional information related to our analysis of the climate-
risk exposure of real estate in Section 1.1. We first provide additional information on the
construction of the “Climate Attention Index” before discussing the hedonic regressions
in more detail.

A.2.1 Construction of Climate Attention Index

To construct the Climate Attention Index, we conduct a textual analysis of the descrip-
tions of properties in our for-sale listings data. First, we convert every word to lowercase
letters before using the stopwords function of the nltk Python package to remove prepo-
sitions, articles, pronouns, and punctuation marks. We flag the listing of a property as
“one” if it contains at least one of the climate-related words or bigrams from Table A.1
and as “zero” if none of them is used. More specifically, for single words, we simply
check if any one of them matches with the textual description of the listing. For bigrams,
we check whether the combination of two words in different orders matches with the
description. For instance, for the bigram sea level, we check if either sea level or level sea
appears in the sequence of words of the description as level of sea will be stripped of the
preposition due to the textual analysis function. We also check whether the names of the
deadliest and costliest hurricanes since 2000 appear in the description.

Appendix Tables A.2, A.3, A.4, and A.5 list the most common words indicating at-
tention to climate change in each state. In Florida, the most common term is “hurricane”,
occurring in about 3.3% of all property listings, while in the other states the most common
term is “storm.” We next present a number of examples of property listings that would
be flagged using our algorithm.

Example 1: Diamond in the Rough on water with pier and dock! Owner holds
letter of expemption from FEMA, stating high elevation, flood insurance
may not be required, minutes to area beaches, Close to Jacksonville and Wilm-
ington.

Example 2: Adorable home in Archdale situated on 1.43 acres!! Features in-
clude vinyl replacement windows, large bonus room perfect for extra bed-
room, den or game room, fenced backyard, large outbuilding and two drive-
ways for extra parking room. Creek is in 500 year flood plain, left side of lot
is in 100 year flood plain. House is not in a flood zone to our knowledge.
Flood insurance has never been required.
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Example 3: SUPERIOR CONSTRUCTION, UPGRADES GALORE & STUNNING
BAY VIEWS SET THIS HOME A PART FROM THE OTHERS! You’ll have
a hard time finding a higher quality constructed home in Destin. In addi-
tion, because of its construction and location on high & dry ground (17-20
FT ABOVE SEA LEVEL), IT’S HOMEOWNERS INSURANCE & FLOOD
INSURANCE COSTS ARE SOME OF THE LOWEST IN THE AREA! AL-
THOUGH FLOOD INSURANCE IS NOT REQUIRED (HOME IS IN ZONE
X), THIS HOME IS NOT IN THE COBRA ZONE AND IS ONE OF THE
FEW BAY FRONT HOMES IN DESTIN ELIGIBLE FOR $348 PER YEAR
FEDERAL FLOOD INSURANCE. ALL OF THE HOMES IN KELLY PLAN-
TATION, REGATTA BAY, EMERALD LAKES, EMERALD BAY AND MOST
OF DESTINY ARE IN THE COASTAL BARRIER ZONE AND ARE NOT
ELIGIBLE FOR FEDERAL FLOOD INSURANCE. This is a huge benefit
because private flood insurance for homes in those neighborhoods can cost
between $8,000 and $20,000 per year! This home’s Insulated Concrete Form
(ICF) construction provides superior storm protection, is resistant to mold &
termites, can reduce this home’s heating & cooling bills up to 50%, & delivers
LOW homeowners insurance.

Example 4: Looking for a family home that’s ready to move in and only 6 years
old? This 4 bedroom 2 1/2 bath plus office/hobby room is in a great neighbor-
hood in the award-winning Carolina Forest school district and is priced to sell!
A new home in 2011, it has a private office area away from the upstairs bed-
rooms, a fireplace, a screened porch, and even a low HOA with a community
pool! Loads of storage space,a 2 car garage, an upstairs laundry room, and an
open living area with lots of natural light add to the value of this beauty. All
the items in the garage convey- such as lawn mower, freezer, safe, hurricane
coverings for windows, edger, etc. Not in a flood zone, it’s high and dry!
Close to Coastal University, Carolina Forest, Tanger outlets,and Hwy 31. A
quick back route available using Hwy 544 when Hwy 501 is too busy. Only 15
minutes to the beach. Not in a flood zone. Great for a family residence, or a
good investment for long term rentals. Come and see!

Example 5: Now selling just 6 lots left EMERALD COAST Yacht Club; FLOOD
ZONE X: This beautiful neighborhood faces West for the most spectacular
sunsets; 21 feet above sea level; This is a rare find in the Panhandle WOW! No
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Flood insurance this will save you $5-$6000 annually. Underground utilities
on site; All permits for dock had been received however some have expired
for dock and 14’x30’ Boat Slips. All Neighborhood HOA Documentation will
convey with sale. Permits and plans attached. Should HOA members decide
to proceed with Dock construction, all funding for permit resubmittals and
construction must be agreed to and paid for by HOA members.

Importantly, most of these property listings include descriptions that highlight that
a specific property is less exposed to climate risk. We believe that this is sensible: if you
were selling a property with particular exposure to climate risk, for example because it
sits in a flood zone, you would not highlight this negative feature in a property listing.
However, if you are selling a house that is not exposed to climate risk, this is something
worth highlighting in a property listing, in particular in areas and at times when potential
buyers pay more attention to these risks.

After identifying all listings that suggest particular attention is paid to climate risks,
the Climate Attention Index is then constructed as the share of listings with these climate-
related texts at the zip code-quarter and zip code-year level. To explore how this Climate
Attention Index varies across regions, Figures A.1, A.2, and A.3 show heatmaps that
are similar as that in Panel A of Figure 2. As before, the Climate Attention Index is
particularly high in those zip codes near the coast line.

A.2.2 Coefficients on Control Variables in Hedonic Regression

In our main hedonic regression specification, equation 1, we control for a large number
of property characteristics that could affect the value of the property. While the coeffi-
cients on these characteristics are not of primary interest for our work, in this section we
discuss the relationship between each control variable and transaction prices (Appendix
Figure A.4) and rental prices (Appendix Figure A.5), controlling for the other hedonic
characteristics.

We see a consistently increasing positive impact of a larger finished square footage, lot
size, and number of bathrooms on the transaction price and rental price. The effect of the
number of bedrooms on transaction values and rental values is an inverted U-shape. This
is consistent with our empirical understanding of the real estate market in which, at some
point, home buyers prefer having a larger common area to having more bedrooms for
the same property size: for most households, having six tiny bedrooms and a small living
room is less desirable than having four larger bedrooms and a larger living room. We also
observe an increasing negative effect of older remodel ages on prices. For property age,
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we see an initial negative impact as age increases, but after a certain point property age
impacts prices positively. We find it reasonable that people prefer a mid-century house
to a house built in the 1990s (especially holding the remodeling age fixed) that is neither
new nor old enough for its age to be appealing.

Overall, these relationships are highly consistent with those estimated in the literature
(see, e.g., Stroebel, 2016), which highlights the quality of our transaction and property
characteristics data.

A.3 Details on the Riskiness of Housing

A.3.1 The Riskiness of Housing – Details on Main Analyses

This section provides the details underlying the analysis carried out in Section 1.3. Section
A.3.2 will provide additional evidence for the riskiness of housing.

Table A.7 reports the availability of house price data and the associated financial crises
and rare disasters. The first column in Table A.7 shows the time coverage of house price
indices for each country. For some countries, we can go far back in time; for example,
we sourced data as far back as 1819 for Norway, 1890 for the U.S., and 1840 for France.
The second and third column report the dates of any banking crises or rare consumption
disasters that occur in each country over the time period provided in the first column.
Banking crises dates for all countries, except Singapore, Belgium, Finland, New Zealand,
South Korea, and South Africa, are from Schularick and Taylor (2012). Banking crises
dates for the countries not covered by Schularick and Taylor (2012) are from Reinhart and
Rogoff (2009).1 Rare disaster dates in the last column indicate the year of the trough in
consumption during a consumption disaster as reported by Barro and Ursua (2008).

For each country, we obtained the longest continuous and high-quality time series of
house price data available. To make the data comparable across countries and time peri-
ods, we focus on real house prices at an annual frequency. Finally, to increase historical
comparability across time within each time series, we report each index for the unit of
observation, for instance a city, for which the longest possible high quality time series
is available. For example, since a house price index for France is only available since
1936, but a similar index is available for Paris since 1840, we focus on the Paris index for
the entire history from 1840-2012. We stress, however, that for each index and country
we have carried out an extensive comparison with alternative indices, in particular with

1For this second set of countries and dates, we have also consulted Bordo et al. (2001), who confirm all
dates in Reinhart and Rogoff (2009), except 1985 for South Korea and 1989 for South Africa.
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indices available for the most recent time period, in order to ensure that we are observing
consistent patterns in the data. In the following, we detail the sources for each of the 20
countries in our sample:

• Australia: Real annual house price indices are from Stapledon (2012). For our
analysis, we use the arithmetic average of the indices (rebased such that 1880 =
100) for Melbourne and Sydney.

• Belgium, Canada, Denmark, Finland, Germany, Japan, Italy, New Zealand, South
Africa, South Korea, and Spain: Real annual house price indices are from the
Federal Reserve Bank of Dallas.2 The sources and methodology are described in
Mack and Martínez-García (2011).

• France: Nominal annual house price index and CPI are available from the Conseil
Général de l’Environnement et du Développement Durable (CGEDD).3 We obtain
the real house price index by deflating the nominal index using the CPI. For our
analysis, we use the longer time series available for the Paris house price index.

• Netherlands: Nominal annual house price index for Amsterdam and CPI for the
Netherlands are available from Eichholtz (1997) and Ambrose, Eichholtz and Lin-
denthal (2013).4 We obtain the real house price index by deflating the nominal index
using the CPI.

• Norway: Nominal annual house price index and CPI are from the Norges Bank.5

We obtain the real house price index by deflating the nominal index using the CPI.

• Singapore: Nominal annual house price index for the whole island is from the Ur-
ban Redevelopment Authority (http://www.ura.gov.sg). CPI is from Statistics
Singapore. We obtain the real house price index by deflating the nominal index
using the CPI.

• Sweden: Nominal house price index for one-or-two-dwelling buildings and CPI
are from Statistics Sweden. We obtain the real house price index by deflating the
nominal index by CPI.

2The data are available at: http://www.dallasfed.org/institute/houseprice/, last accessed
February 2018.

3http://www.cgedd.developpement-durable.gouv.fr/les-missions-du-cgedd-
r206.html, last accessed February 2014.

4Part of the data are available on Eicholtz’ website at: http://www.maastrichtuniversity.nl/
web/Main/Sitewide/Content/EichholtzPiet.htm, last accessed February 2014.

5http://www.norges-bank.no/en/price-stability/historical-monetary-
statistics/, last accessed February 2014.
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• Switzerland: Nominal house price index for Switzerland is available from Con-
stantinescu and Francke (2013). Among the various indices the authors estimate,
we focus on the local linear trend (LLT) index. The data are available for the period
1937-2007. We update the index for the period 2007-2012 by using the percentage
growth of the house price index for Switzerland available from the Dallas Fed.6

The CPI index for Switzerland is from the Office fédéral de la statistique (OFS). We
obtain the real house price index by deflating the nominal index using the CPI.

• U.K.: Annual nominal house price data are from the Nationwide House Price Index.
We divide the nominal index by the U.K. Office of National Statistics “long term
indicator of prices of consumer goods and services” to obtain the real house price
index. The Nationwide index has a missing value for the year 2005, for that year we
impute the value based on the percentage change in value of the house price index
produced by the England and Wales Land Registry.

• U.S.: Real annual house price data are originally from Shiller (2000). Updated data
are available on the author’s website.7

For all countries, the real annual consumption data are from Barro and Ursua (2008) and
available on the authors’ website.8

Figure 3 is produced by combining the time series of house prices and consumption
described in the previous subsection with the dates for banking crises and rare disasters
in Table A.7. When taking averages across countries in Panel A of Figure 3 for the 6 year
windows around a banking crisis, the following countries have missing observations for
the house price series: France data are unavailable for the year 2011 following the 2008
crisis, Netherlands data are unavailable for the years 2010 and 2011 following the 2008
crisis, and South Africa data are unavailable for the year 1974 before the 1977 crises. In
these cases, the crises are still included in the sample but the average reported in the
figure excludes these missing country-year observations.9

A.3.2 The Riskiness of Housing – Additional Evidence

In this section, we provide additional details and evidence for the riskiness of real estate
to complement the analysis in Section 1.3.

6This source is described in the second bullet point above.
7Available at: http://aida.wss.yale.edu/~shiller/data.htm, last accessed February 2018.
8Available at: https://scholar.harvard.edu/barro/data_sets, last accessed February 2018.
9In unreported results, we have verified that the result is essentially unchanged if we exclude the 2008

crisis for France and the Netherlands and the 1975 crisis for South Africa from the data.
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Figure A.9 plots the growth rates of rents and personal consumption expenditures
(PCE) in the U.S. since 1929. In periods of falling PCE, in particular the Great Depres-
sion, rents also fell noticeably. The bottom panel shows a (weak) positive relationship
between the growth rates of rents and personal consumption expenditures. This suggests
that housing rents tend to increase when consumption increases and marginal utility of
consumption is low. Figure A.10 indicates that rents in London are positively correlated
with house prices in London, but more volatile.

A.4 Details on Average Returns to Residential Real Estate

This section describes the methodology and data used to compute average real returns
and rent growth for residential properties for the price-rent approach and for the balance-
sheet approach presented in Section 1.3.1.

A.4.1 Details on the Price-Rent Approach

United States. For the U.S., we calculate returns between 1953 and 2016. For consistency
with the balance-sheet approach, we use Q4-indices. We follow Favilukis, Ludvigson
and Van Nieuwerburgh (2017) and use the house price index from Shiller (2000), which
combines data from two sources in its current version: The home purchase component
of the U.S. CPI from 1953 to 1975, and the S&P CoreLogic Case-Shiller Home Price Index
thereafter.10

For rent growth, we also follow Favilukis, Ludvigson and Van Nieuwerburgh (2017)
and use the shelter index from the BLS (the component of CPI related to shelter, item
CUUR0000SAH1 from the Federal Reserve Bank of St. Louis). However, for the period
up until 1985, we substitute for the BLS shelter index with the adjusted rental index from
Crone, Nakamura and Voith (2010). We do not use the BLS shelter index up until 1985
for two reasons: First, as documented by Gordon and vanGoethem (2007) and Crone,
Nakamura and Voith (2010), there appears to be a significant downward bias in all rental
CPIs published by the BLS up until the mid-80s, most likely due to a non-response bias
for units that were vacant or where tenants changed. Second, while we are interested in
housing as an unlevered asset, mortage interest rates directly affected BLS rental indices
until 1982 (see, e.g., Reed, 2014). For the same reasons, we use the CPI for All Urban
Consumers excluding shelter as our inflation measure before 1986 (item CUUR0000SA0L2),

10A continuously updated series is published on Shiller’s website http://www.econ.yale.edu/
~shiller/data.htm, last accessed February 2018.
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and including shelter (item CPIAUCNS) thereafter. The downside of this substitution is
that the rental index of Crone, Nakamura and Voith (2010) does not include (imputed)
owner-occupied rents, but at least since the BLS shelter index methodology has been
updated with regard to the treatment of mortgage interest in the mid-80s, the BLS shelter
index and the BLS rent index have tracked each other closely.

Unlike Favilukis, Ludvigson and Van Nieuwerburgh (2017), we choose 2012 as a
baseline year for our rent-to-price ratio, which we estimate to be 10%; the choice of the
baseline year is motivated by the availability of high-quality data obtained from real
estate portal Trulia that allows us to directly estimate rent-to-price ratios for the U.S.
Figure A.6 shows the distribution of rent-to-price ratios across the 100 largest MSAs
provided by Trulia and Figure A.7 suggests that these rent-to-price ratios are close to
their long-run average.11

In robustness checks, we use several complementary time series. First, our benchmark
rent-to-price ratio from Trulia might include rental properties where some utilities are
covered by the monthly rent. Using data from the balance-sheet approach (described
in detail in Section A.4.2), the “utilities yield” for water and gas for all residential real
estate was 0.6% in 2012. In a robustness check, we therefore reduce our gross rental yield
estimate by this amount. Alternatively, we use the 2012 gross rent-to-price ratio implied
by our preferred balance sheet approach specification that adjusts for revaluation-implied
housing stock growth as discussed in Section A.4.2. This estimate is slightly lower than
our Trulia estimate, at 8.6%.

Second, we use the FHFA house price index (formerly OFHEO house price index,
item USSTHPI from the Federal Reserve Bank of St. Louis) for the period since 1975. The
FHFA house price index differs on four main dimensions from the Case-Shiller House
Price Index: While the latter is only based on purchase prices, the former also includes re-
finance appraisals. While the Case-Shiller HPI relies on transaction information obtained
from county assessor and recorder offices, the FHFA HPI relies on data from conforming
mortgages provided by Fannie Mae and Freddie Mac. Moreover, while the Case-Shiller
HPI is value-weighted, the FHFA HPI is equal-weighted. Finally, the FHFA’s geograhic
coverage includes all U.S. states, while the Case-Shiller HPI does not.12

In a third robustness check, we use the BEA price index for personal consumption

11We thank Jed Kolko and Trulia for providing these data. Trulia observes a large set of both for-sale and
for-rent listings. The rent-to-price ratio is constructed using an MSA-level hedonic regression of ln(price)
on property attributes, zip-code fixed effects, and a dummy for whether the unit is for sale or for rent. The
rent-to-price ratio is constructed by taking the exponent of the coefficient on this dummy variable.

12For additional details, see https://www.fhfa.gov/Media/PublicAffairs/Pages/Housing-
Price-Index-Frequently-Asked-Questions.aspx#quest11, last accessed February 2018.
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expenditure on housing (NIPA Table Table 7.4.4. Line 1) in place of the BLS shelter index
for the years since 1985; for internal consistency, we use the BEA price index for personal
consumption expenditure to deflate nominal returns (NIPA Table 2.3.4. Line 1) instead
of the BLS CPI for this time period in this specification. While the BLS price indices
are the most widely known inflation measures, the Federal Reserve states its goal for
inflation in terms of the PCE price index. Both measures follow similar trends, but differ
along four key dimensions: First, CPI weights are based on a survey of what households
are buying, while PCE price index weights are based on surveys of what businesses are
selling. Second, the CPI only includes out-of-pocket expenditures, while the PCE price
index also includes expenditures indirectly paid for, e.g. insurance payments through
employer-provided medical insurance. Finally, the PCE price index reflects substitution
between goods when relative prices change, while the CPI does not.13

We assume a property tax impact of 0.67% for a representative household for the
price-rent approach. Property taxes in the U.S. are levied at the state level and, while
there is variation across states, are generally around 1% of house prices. Property taxes,
however, are deductible from federal income tax. We assume that the deductibility re-
flects a marginal U.S. federal income tax rate of 33%. The net impact is therefore (1−
0.33) ∗ 0.01 = 0.67%.

United Kingdom. For the U.K., we calculate returns between 1988 and 2016.14 For
consistency with the balance-sheet approach, we use Q4-indices. We use the house price
index from the U.K. Land Registry (series K02000001) to compute price appreciation.
This new house price index has been introduced in 2016 in an effort to provide a “single
definitive House Price Index (HPI)” that replaces the previously and separately published
house price indices by the Land Registry and the Office of National Statistics (ONS).15

It addresses a number of limitations of the previous house price indices, namely: It
has increased coverage and is therefore more representative of the overall U.K. housing
market, it is less sensitive to extreme prices, and it is internally consistent and therefore
fully comparable across time.16

13For additional details, see https://www.clevelandfed.org/newsroom-and-events/
publications/economic-trends/2014-economic-trends/et-20140417-pce-and-cpi-
inflation-whats-the-difference.aspx, last accessed February 2018.

14The data provided by the ONS would allow us to include 1987 as well, but housing returns were
extraordinary high in that year – in fact the inclusion of this one year would increase our return estimates
by almost a full percentage point. We therefore decided to drop it from our sample.

15For more details, see https://www.ons.gov.uk/economy/inflationandpriceindices/
methodologies/developmentofasingleofficialhousepriceindex, last accessed February 2018.

16Overall, growth rates are mostly comparable with the two outdated house
price indices from the Land Registry and the ONS. For more details, see
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To compute rent growth, we combine three rental indices from the ONS: For the years
before 1996, we use the RPI Component Housing Rent (series DOBP). For the years between
1996 and 2005, we use the CPI Component Actual Rents for Housing (series D7CE). For the
years since 2005, the ONS has included owner-occupied housing into its CPI measures
and calls these enriched series CPIH. For this period, we combine the CPIH Component
Actual Rents for Housing (series L536) with the CPIH Component Owner Occupiers’ Costs for
Housing (series L5P5) following the methodology outlined by the ONS in its Consumer
Price Indices Technical Manual ONS (2014). In particular, we calculate weighted arithmetic
means using the relevant COICOP weights for the respective current year (series L5E5,
L5PA) at the monthly level, and average across quarters to get to quarterly indices.17 We
use the CPI for All Items for the period before 2005 (series D7BT) and the CPIH for All Items
for the period since 2005 (series L522) to adjust for inflation.

For the baseline rent-to-price ratio, we rely on estimates for matched properties that
are both sold and rented out within six months in London from Bracke (2015), who finds
a median rent-to-price ratio of 5% between 2006 and 2012. In our setting, this translates
into a rent-to-price ratio of 5.2% in 2012. Since properties in city centers tend to have
lower rent-to-price ratios on average, we consider this a conservative estimate for the
average U.K. housing stock. Nevertheless, it is close to the rent-to-price ratio of 5.3%
that we estimate using the balance-sheet approach for 2012. Since U.K. rents typically do
not cover any utilities (see Bracke, 2015), we do not correct gross rent-to-price ratios for
utilities.

Singapore. For Singapore, we calculate returns between 1990 and 2016. For consistency
with the U.S. and the U.K., we use Q4-indices. We obtain time series of price and rental
indices for the whole island from the Urban Redevelopment Authority (the government’s
official housing arm: ura.gov.sg). Both series are published by the Department of Statistics
Singapore (series M212261 and M212311). We obtain the CPI from the same source (series
M212191). To estimate the baseline rent-to-price ratio, we use data from for-sale and for-
rent listings provided by iProperty.com, Asia’s largest online property listing portal in
2012. We observe approximately 105,000 unique listings from 2012, about 46% of which
are for-rent listings. To estimate the rent-to-price ratio, we run the following regression,
which pools both types of listings. The methodology is similar to the one used to construct

https://www.ons.gov.uk/economy/inflationandpriceindices/articles/
explainingtheimpactofthenewukhousepriceindex/may2016, last accessed February 2018.

17COICOP stands for “Classification of Individual Consumption according to Purpose”; it is a reference
published by the U.N. Statistics Division and followed by the ONS that divides individual consumption
expenditures into standardized divisions and groups. Housing, Water, Electricity, Gas and Other Fuels is
Division (04), and Actual Rentals for Housing and Imputed Rentals for Housing are groups (04.1) and (04.2).

A.15

https://www.ons.gov.uk/economy/inflationandpriceindices/articles/explainingtheimpactofthenewukhousepriceindex/may2016
https://www.ons.gov.uk/economy/inflationandpriceindices/articles/explainingtheimpactofthenewukhousepriceindex/may2016


rent-to-price ratios for the U.S. in Figure A.6:

ln (ListingPrice)i,t = α + βiForRenti + γControlsi,t + εi,t (A.6)

The dependent variable, ListingPrice, is equal to the list-price in “for-sale” listings, and
equal to the annual rent in “for-rent” listings. ForRenti is an indicator variable that is
equal to one if the listing is a for-rent listing. The results are reported in Table A.6. In
column 1, we control for postal code by quarter fixed effects. The estimated coefficient
on βi suggests a rent-to-price ratio of eβi = 4.5%. In columns 2–4, we also control for
other characteristics of the property, such as the property type, the number of bedrooms,
bathrooms as well as the size, age, and the floor of the building. In columns 3 and 4, we
tighten fixed effects to the month by postal code level and the month by postal code by
number of bedrooms level respectively. In all specifications, the estimated rent-to-price
ratio for 2012 is 4.4% or 4.5%.

We calibrate the property tax-impact to be 0.6%. Before 2003, Singapore levied a
10% annual tax on the estimated rental income of the property. A lower tax rate of 4%
applied to owner-occupied properties. Starting in 2011 for owner-occupiers and in 2014
for landlords, Singapore has introduced increasingly progressive tax schemes that start
at 0% and cap out at 16% for owner-occupiers, and start at 10% and cap out at 20% for
landlords since 2015. Even though homeownership rates are around 90% during our
sample period (numbers based on series M810401 - Resident Households By Tenancy as
published by Statistics Singapore on its website http://www.singstat.gov.sg), we
use the more conservative (higher) rate of 10% for rental properties as it has prevailed for
most of our sample period. The tax impact on returns is the tax rate times the average
rent-price ratio, estimated at around 6%. Hence, τ = 0.1 ∗ 0.06 = 0.6%.18

A.4.2 Details on the Balance-Sheet Approach

United States. For the U.S., we calculate returns between 1953 and 2016. We focus on
owner-occupied housing and tenant-occupied housing in the nonfinancial noncorporate
sector, the most representative sectors of the U.S. housing market (both sectors accounted
for more than 90% of the value of residential housing on average during our sample
period, and for roughly 95% towards the end of our sample period). Our data for the
U.S. come from two main sources, the Financial Accounts of the United States (FAUS) for

18For details, see https://www.iras.gov.sg/irashome/Property/Property-owners/
Working-out-your-taxes/Property-Tax-Rates-and-Sample-Calculations/, last accessed
February 2018.
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housing wealth (published by the Federal Reserve Board, FRB), and the National Income
and Product Accounts (NIPA) for rents (published by the Bureau of Economic Analysis,
BEA). In total, we calculate six objects: (1) The value of the housing stock, (2) net rents,
(3) depreciation, (4) maintenance and other intermediate inputs, (5) taxes, and (6) varying
measures of the physical housing stock. We add (3) & (4) to get a measure of depreciation
gross of maintenance. For each object, we describe in detail below how we perform the
sectoral match between NIPAs and FAUS to ensure that our rental yields are internally
consistent. The details are as follows:19

• Value of the Housing Stock: For the value of the housing stock, we use data ob-
tained from the FAUS. In particular, we sum Owner-Occupied Real Estate at Market
Value (FL155035013) and Residential Tenant-Occupied Real Estate at Market Value in
the Nonfinancial Noncorporate Business sector (FL115035023).

• Net Rents: To calculate net rents, we start from Mayerhauser and Reinsdorf (2006),
and sum Rental Income of Persons with Capital Consumption Adjustments of owner-
occupied housing (NIPA Table 7.12. Line 164) less mobile homes (NIPA Table 7.9.
Line 12) and of tenant-occupied housing in the nonfinancial noncorporate sector
with Proprietor’s Income with Inventory Valuation and Capital Consumption Adjustments
(NIPA Table 7.4.5. Line 20),20 where “with capital consumption adjustment” means
after depreciation. For rental income in the tenant-occupied nonfinancial noncor-
porate sector, we subtract rental income of persons with capital consumption ad-
justments for owner-occupiers and for nonprofits (NIPA Table 7.9. Line 14) from
all rental income of persons with capital consumption adjustments in the housing
sector (NIPA Table 7.4.5. Line 21).

Since we are interested in housing as an unlevered asset, we also add back mortgage
interest. For owner-occupied housing, we follow Piketty and Zucman (2014) and
use Monetary Interest Paid (NIPA Table 7.11. Line 16).21 For tenant-occupied nonfinan-
cial noncorporate housing, we compute monetary interest paid in two steps. First,

19Some time series that are used in a supportive function to derive key objects have missing data points
for the first few years in our sample. In those cases, we extrapolate back using a decadal trailing average of
yearly growth rates. All results are robust to setting these values to zero instead.

20(Nonfarm) proprietors are unincorporated (nonfarm) businesses that are included in the nonfinancial
noncorporate sector in the FAUS (for details, see Bond et al. (2007) and Bureau of Economic Analysis (2017),
Chapter 11).

21We effectively assume that the share of mobile homes corresponds to its share in owner-occupied
structure values based on FAUS data (FL155012013 for mobile homes and FL155012665 for all other owner-
occupied structures; the FAUS only publish structure values for mobile homes), and reduce the resulting
series accordingly. Mobile homes accounted for less than 3.5% of owner-occupied structure values over our
sample period and all results are robust to including mobile homes instead in our capital stock.
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note that the NIPA table for the housing sector lists Net Interest (NIPA Table 7.4.5.
Line 18) instead of monetary interest paid.22 We calculate net interest for tenant-
occupied housing as the difference between all net interest in the housing sector
(NIPA Table 7.4.5. Line 18) and net interest paid by owner-occupiers (NIPA Table 7.12.
Line 160). Second, to calculate monetary interest paid by tenant-occupied housing,
we assume that the percent difference between total interest and net interest is
the same for owner-occupied and tenant-occupied housing.23 To infer the share
of nonfinancial noncorporate tenant-occupied housing among all tenant-occupied
housing, we use its share in mortgages on tenant-occupied housing using data from
the FAUS (FL113165105, FL113165405, FL153165105, FL893065105, FL893065405).

Finally, to arrive at net operating surplus, i.e. our measure of net rents, we add
back Current Transfer Payments, which mainly consist of insurance settlements (see
Mayerhauser and Reinsdorf, 2006).24 For owner-occupiers, we use NIPA Table 7.12.
Line 163.25 For nonfinancial noncorporate tenant-occupied housing, we calculate
current transfer payments to all tenant-occupied housing as the difference between
current transfer payments to all housing (NIPA Table 7.4.5. Line 19) and current
transfer payments to owner-occupied housing, and infer the share of nonfinancial
noncorporate tenant-occupied housing among all tenant-occupied housing based
on its share in tenant-occupied housing wealth using data from the FAUS again
(FL105035023, FL115035023, FL165035023).26

22The difference between monetary interest paid and net interest is imputed interest. In the housing
sector, imputed interest essentially stems from mortgage borrowing and property insurance: Homeowners
and landlords that have financed their homes with mortgages are consuming financial intermediation
services. These are called “Financial Services Furnished Without Payments” in the NIPAs. They are treated
as intermediate inputs (i.e., maintenance and other intermediate inputs) instead of interest, and are typically
imputed as the margin between mortgage interest rates and a reference rate at which the lender refinances
itself. In a similar spirit, insurance premiums paid by homeowners and landlords are often supplemented
through interest earned as insurers invest these premiums, called “Premium Supplements for Property and
Casualty Insurance”, which is treated as earned interest in the NIPAs.

23The percent difference of total interest and net interest was 7% for owner-occupiers during our sample
period.

24Since our measure of maintenance and other intermediate inputs includes incurance payments, we
symmetrically include insurance settlements as a benefit accruing to the homeowner. It is by far the smallest
of the above items and all results are robust to its removal.

25As before, we effectively assume that the share of mobile homes corresponds to its share in owner-
occupied structure values and reduce the resulting series accordingly.

26Note that while NIPA housing flows include the government sector, the FAUS’ residential wealth
measures do not. To correct for this, we use data from the BEA Fixed Assets Accounts (FAA) to scale up
FAUS values for the non-profit sector using the ratio of non-profit to government sector values in the FAAs.
For example, for the value of real estate, we use the Current-Cost Net Stock of Residential Fixed Assets (FAA
Table 5.1, Lines 6 & 8), and for depreciation we use Current-Cost Depreciation of Residential Fixed Assets (FAA
Table 5.4, Lines 6 & 8). These allocations affect our measures of rents only marginally.
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• Depreciation: To calculate depreciation, we rely on data for the consumption of
fixed capital from the FAUS. For owner-occupiers, we use FU156320063, and for
nonfinancial noncorporate tenant-occupied housing, we use FU116320065.

• Maintenance and Other Intermediate Inputs: To calculate maintenance and other
intermediate inputs, we start from Mayerhauser and Reinsdorf (2006) as before.
For owner-occupiers, we use Intermediate Goods and Services Consumed (NIPA Table
7.12. Line 155). We infer the share of mobile homes among all owner-occupied
housing by assuming that the ratio of depreciation plus maintenance and other
intermediate inputs over housing wealth is constant across owner-occupied housing
sectors, and reduce the series by that share. For nonfinancial noncorporate tenant-
occupied housing, we proceed in two steps. First, we calculate intermediate goods
and services consumed by all tenant-occupied housing as the difference between
intermediate goods and services consumed by all housing (NIPA Table 7.4.5. Line
6) and intermediate goods and services consumed by owner-occupied housing. We
then infer the share of nonfinancial noncorporate tenant-occupied housing among
all tenant-occupied housing by assuming that the ratio of depreciation plus mainte-
nance and other intermediate inputs over housing wealth is constant across tenant-
occupied housing sectors. To do so, we calculate tenant-occupied housing wealth as
described above and tenant-occupied consumption of fixed capital using data from
the FAUS (FU106320065, FU116320065, FU166320063). Second, we add the cost for
compensation of employees to arrive at maintenance and other intermediate inputs
for nonfinancial noncorporate tenant-occupied housing. We start by assuming that
all compensation of employees (NIPA Table 7.4.5. Line 14) is paid by tenant-occupied
housing, and allocate the share of nonfinancial noncorporate tenant-occupied hous-
ing among all tenant-occupied housing based on its share in tenant-occupied hous-
ing wealth again. Finally, we remove the imputed interest that we added to net rents
above from both, owner-occupied and nonfinancial noncorporate tenant-occupied
maintenance and other intermediate inputs.

• Taxes: We calculate net taxes of owner-occupiers as Taxes on Production and Imports
(NIPA Table 7.12. Line 158) minus Subsidies (NIPA Table 7.12. Line 159).27 For nonfi-
nancial noncorporate tenant-occupied housing, we conservatively assume that the
remainder of all housing-related taxes is paid by tenant-occupied for-profit sectors,
and calculate these taxes as the difference between all taxes on production and

27As before, we effectively assume that the share of mobile homes corresponds to its share in owner-
occupied structure values and reduce the resulting series accordingly.

A.19



imports to housing (NIPA Table 7.4.5. Line 15), and taxes on production and imports
to owner-occupied housing. To calculate net taxes, we assume that the ratio of
taxes to subsidies is constant across owner-occupied and for-profit tenant-occupied
sectors (the implied assumption is that a large share of subsidies accrues to the
non-profit sector). Finally, we infer net taxes for nonfinancial noncorporate tenant-
occupied housing based on its share in for-profit tenant-occupied housing wealth
based on data from the FAUS again.

• Housing Stock: We adjust for the growth in the housing stock in various ways and
rely on a variety of data sources: Population estimates are based on U.S. Census data
and sourced from the Federal Reserve Bank of St. Louis (item POP). Housing Unit
estimates are based on Moura, Smith and Belzer (2015) for the years before 2010
and on the Census Housing Vacancy Survey Supplement of the Current Population
Survey (CPS/HVS) otherwise. Floor Space estimates are inferred from Moura, Smith
and Belzer (2015).28 Holding Period Gains are taken from the FAUS Revaluation
Accounts. We use FR155035013 for owner-occupiers and FR115035023 nonfinancial
noncorporate tenant-occupied housing.29 Quantity indices are taken from Davis and
Heathcote (2007). To be consistent with our price-rent approach, we use the quantity
indices derived from the Case-Shiller-Weiss price index for the period after 1975.30

We use the BEA price index for personal consumption expenditure to deflate nominal
returns (NIPA Table 2.3.4. Line 1) to be consistent with our housing consumption source
data. Consistent with our yearly flow and stock data, all price and quantity indices are
Q4-indices.

United Kingdom. For the U.K., we calculate returns between 1988 and 2016.31 We focus
on the Household Sector (S.14), the most representative sector of the U.K. housing market (it
accounted for close to 90% of residential housing on average during our sample period).
Since the U.K. National Accounts are based on the System of National Accounts (SNA), the
household sector includes activities associated with tenant-occupied housing (these are

28We extrapolate using a decadal trailing average of yearly growth rates for the years after 2011.
29We thank Eric Nielsen from the FRB for clarifying details of the Revaluation Accounts for us.
30Quantity indices are a widely used concept in national accounts and aim to capture changes in the

value of an asset that are not driven by (constant-quality) price changes. Quality changes are treated as
changes in quantity in such a decomposition. See Bureau of Economic Analysis (2017) for more details.

31The data provided by the ONS would allow us to include 1987 as well, but housing returns were
extraordinary high in that year – in fact the inclusion of this one year would increase our return estimates
by almost a full percentage point. We therefore decided to drop it from the sample. As we can see from
Figure A.8, our net return series for the U.K. starts around its long-run mean in 1988.
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included in the nonfinancial noncorporate business sector in the U.S.).32 Moreover, since
all our data (except some measures of the physical housing stock) are based on the U.K.
National Accounts as published by the Office of National Statistics (ONS), ensuring a
sectoral match between housing wealth and rental flows is more straight forward for the
U.K. than for the U.S. However, for the period before 1995, the ONS does not provide
separate statistics for the household sector, but combined statistics for the Household &
Nonprofit Institutions Serving Households (HH & NPISH) Sector (S.14 & S.15), which we use
to extrapolate levels from the household sector backwards (between 1995 and 2015, the
household sector accounted for around 98% of housing wealth in the combined sector).33

Overall, we calculate five objects: (1) The value of the housing stock, (2) net rents, (3)
depreciation, (4) maintenance and other intermediate inputs, and (5) varying measures
of the physical housing stock. We add (3) & (4) to get a measure of depreciation gross of
maintenance. Since there is no property tax in the U.K., we set taxes to zero. The details
are as follows:

• Value of the Housing Stock: For the period since 1995, we add the value of resi-
dential structures, (Dwellings, E46V) and the value of residential land, (Land, E44N),
to calculate the total value of residential housing in the household sector. For the
period before 1995, the ONS only reported a combined value of structures and land
for residential housing for the HH & NPISH sector (series CGRI), which we use to
extrapolate levels backwards.

• Net Rents: To calculate net rents, we follow Piketty and Zucman (2014) and start
from Gross Operating Surplus in the household sector (series HABM).34 Note that
gross operating surplus includes net interest, so we do not need to add it back
as we do for the U.S. However, following Piketty and Zucman (2014) again, to
fully correct our measure of net rents for mortgage-related interest payments, we
need to add back imputed interest, called Financial Intermediation Services Indirectly
Measured (FISIM) in the U.K. National Accounts.35 But, unlike Piketty and Zucman

32See Bond et al. (2007) for details.
33The ONS started to report values for the household sector separately with the 2017 edition of the Blue

Book, following guidelines of the European System of Accounts 2010 (ESA 2010); most time series we are
interested in were updated back to 1995 only.

34Gross operating surplus in the household sector is essentially gross rents minus intermediate
consumption and payment of employees. Indeed, the depreciation we record for housing in the household
sector is higher than the depreciation allocated to gross operating surplus in the household sector in the
U.K. National Accounts. If anything, this suggests that we may miss some of the surplus generated by
housing in the household sector.

35See our discussion for the U.S. on imputed interest, i.e., the difference between net interest and
monetary interest paid.
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(2014), we take a more conservative approach and consider that secured debt should
command lower interest rates than unsecured debt. Therefore, instead of calculating
the share of financial liabilities secured on dwellings amongst all financial liabilities
in the household sector and allocating FISIM back proportionally, we use data on
household-mortgage-related FISIM published by the ONS on its website for the
years since 2005.36 Between 2005 and 2016, the difference between FISIM markups
on loans secured on dwellings and all other household debt was fairly constant at
3.6 percentage points on average. We assume that this difference also holds for the
years before 2005 and calculate household-mortgage-related FISIM using data on
all household-debt-related FISIM (series CRNB), all household debt (series NIWJ),
and household loans secured on dwellings (series NIWV) accordingly.37 Finally, we
subtract depreciation as calculated below to arrive at net rents.

• Depreciation: To calculate depreciation rates, we use data on the Consumption of
Fixed Capital (series MJX9) in the household sector. For the period before 1995, we
combine the corresponding series for the consumption of fixed capital (series CIHB)
with housing wealth (series CGRI) in the HH & NPISH sector. For the time period
where both series overlap (1995 to 2009), depreciation was around 0.5 percentage
points higher in the updated data series. Therefore, we conservatively increase our
depreciation estimates for the years before 1995 by 0.5 percentage points each year.

• Maintenance and Other Intermediate Inputs: To calculate Maintenance and Other
Running Costs, we subtract net rents, depreciation, and net taxes from total personal
consumption expenditure in the household sector. We proceed in two steps to
calculate personal consumption expenditure on housing in the household sector:
First, we calculate total personal consumption expenditure on housing across all

36We use the non-risk-adjusted FISIM allocated to households as owners of dwellings underlying
Figure 19 of the article “Financial intermediation services indirectly measured (FISIM) in the UK revisited”,
retrieved from https://www.ons.gov.uk/economy/grossdomesticproductgdp/articles/
financialintermediationservicesindirectlymeasuredfisimintheukrevisited/2017-
04-24, last accessed February 2018.

37We calculate FISIM markups on loans secured on dwellings as household-mortgage-related FISIM
divided by loans secured on dwellings. FISIM markups on all other household debt are calculated as the
difference between all household-debt-related FISIM and household-mortgage-related FISIM, divided by
the difference between all household debt and loans secured on dwellings. While fairly constant overall, the
difference between household-mortgage-related FISIM markups and other household-debt FISIM markups
tends to vary somewhat with overall FISIM markup levels between 2005 and 2016 (at an average markup
of 3.6 percentage points, the standard deviation was 0.5 percentage points). However, since the average
overall FISIM markup before 2005 is lower than the average overall FISIM markup since 2005 (if slightly
at 1.4 vs. 1.9 percentage points) and much less volatile (with a standard deviation of 0.2 vs. 0.7 percentage
points), our estimate for household-mortgage-related FISIM before 2005 should be slightly conservative if
anything.
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sectors as the sum of Actual Rentals for Housing (series ADFT), Imputed Rentals for
Housing (series ADFU), and Maintenance and Repair of the Dwelling (series ADFV).
Second, we allocate this total across all sectors based on the fraction of housing
wealth in the household sector vs. all remaining sectors.38

• Housing Stock: We adjust for the growth in the housing stock in various ways and
rely on a variety of data sources again: Population estimates are retrieved from the
ONS (series UKPOP). Housing Unit estimates are based on dwelling stock data from
the DCLG for the U.K. until 2013 (Table 101) and for England thereafter (Table 104).
Quantity Indexes are derived following the baseline methodology outlined in Davis
and Heathcote (2007), that is, we discount the value of the housing stock with a
(constant-quality) house price index.39

To be consistent with our housing consumption source data and our approach for
the U.S., we use the ONS price index for personal consumption expenditure to deflate
nominal returns (series CRXB). Consistent with our yearly flow and stock data, all price
and quantity indices are Q4-indices.

A.4.3 Consistency Across Rent-Price and Balance-Sheet Approaches

Appendix Figure A.8 plots the net housing returns for the balance-sheet and the price-rent
approach for the U.S. and the U.K. (top row), the correlation between net housing returns
from the balance-sheet and the price-rent approach for the U.S. and the U.K. (middle
row), and housing depreciation (gross of maintenance) and tax yields from the balance-
sheet approach for the U.S. and the U.K. (bottom row; there are no taxes in the U.K.).
The U.S. results are based on specifications 2 and 9 in Table 4. The U.K. results are based
on specifications 11 and 15 in the same table. We can see that both approaches yield
similar net return time series that are highly correlated. Moreover, depreciation and taxes
as derived from the balance-sheet approach have been fairly stable and trending around
their long-run averages over our sample periods, which verifies our constant-adjustment
approach for depreciation and taxes for the price-rent approach.

38We think that this is a conservative assumption, since rental yields tend to be higher in the household
sector than in other sectors. Note however that this assumption has no impact on our results for net rents
as we derive these directly from gross operating surplus.

39See our discussion of data sources for the price-rent approach for details on the U.K. house price index.
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A.5 Price and Quantity of Risk Across the Term Structure

Section 1 showed empirically that the term structure of discount rates for real estate – a
risky asset – is steeply downward-sloping. In this section, we apply asset pricing theory
to discuss a decomposition of this term structure into its building blocks: risk and return
across the term structure. This decomposition will help us understand the forces that
drive discount rates at different horizons, and provides a link between discount rates
observed on tradable assets and investments in climate change abatement.

A.5.1 Per-Period Discount Rates and Expected One-Period Returns

Most of the insights of asset pricing theory are clearest to interpret when thinking about
one-period expected returns, independent of the maturity of the asset. Since any asset can
be bought, held for one period, and then sold at the end of that period (before its matu-
rity), looking at the one-period return is one way to reduce assets of different maturities
to a common horizon. This allows us to compare their risk and return properties.

We start by introducing our main notation and by linking together the concepts of
returns to maturity and one-period returns. In what follows, we will sometimes refer to
general assets with maturity n that could pay cash flows such as dividends or rents at any
point in time up to maturity; these will simply be denoted with superscript n. A subset
of these assets is the set of claims to single cash flows at a specific point in time, maturity
n; we will denote these with superscript (n).

Define the one-period (gross) return per dollar spent on any security with maturity n
as the total amount obtained from buying the security and liquidating it after one period:

Rn
t,t+1 ≡

Pn−1
t+1 + Dt+1

Pn
t

,

Note that at the time the asset is sold, its maturity has shortened to n− 1. The return to
holding the security over multiple periods (and reinvesting all intermediate cash flows)
can be found by compounding the one-period returns. For example, the return to matu-
rity of any investment with maturity n is

Rn
t,t+n =

n−1

∏
k=0

Rn−k
t+k,t+1+k.

Of particular interest to us are the one-period returns and discount rates for claims to a
single cash flow Dt+n. In this case, the one-period returns in all but the last period are
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entirely driven by price movements (since Dt+k is zero for all k, except for k = n, the last
cash flow at maturity). What makes the return to this security of particular interest is its
intimate link to our per-period discount rates for horizon-specific cash flows, rn

t . To see
this, we can rewrite the return to maturity of such a claim as:

R(n)
t,t+n =

Dt+n

P(n)
t

;

we can do this since there are no dividends to be reinvested over the life of this security.
Taking expectations on both sides, and then rearranging, we obtain:

P(n)
t =

Et[Dt+n]

Et[R
(n)
t,t+n]

.

Comparing this equation with equation A.2 in Section A.1, we immediately see that the
n-period expected return to maturity of a claim to a single dividend at t + n is exactly the
compounded discount rate to be applied to that security: Et[R

(n)
t,t+n] = (1 + rn

t )
n.

Next, we want to link these quantities to the one-period expected return, for which
we are able to provide a very intuitive risk-return decomposition. The focus of this
paper is on the average shape of the term structure of discount rates. Time-variation in
discount rates, while important in the asset pricing literature, plays a second-order role
in thinking about climate change investments. We therefore derive the link between one-
period expected returns Et[R

(n)
t,t+1] and per-period discount rates rn

t under the assumption
that per-period discount rates for a cash flow with a particular maturity are constant
over time; relaxing this assumption would complicate the intuition without adding any
economically relevant elements to the analysis. If expected returns are constant over time
(though they may be different across maturities, such that the term structure of discount
rates is not necessarily flat at each point in time), we have

Et[R
(n)
t,t+n] =

n−1

∏
k=0

Et[R
(n−k)
t,t+1 ],

where all the returns are for claims to single cash flows, Dt+k, at different horizons k. The
formula shows that in this case, not only the realized but also the expected returns are
linked through compounding. Since Et[R

(n)
t,t+n] is directly linked to rn

t as shown above, we
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can then easily substitute and take logs (and recall that ln(1 + x) ' x), to obtain:

rn
t '

1
n

n

∑
k=1

ln(Et[R
(k)
t,t+1]). (A.7)

Therefore, the discount rate for a particular horizon n is simply the average of the one-
period expected returns for claims to cash flows at each horizon. A flat term structure
of discount rates must then imply a flat term structure of expected one-period returns
across maturities; in fact, expected one-period returns and discount rates across maturi-
ties would all be equal. In Section A.5.2, we will build on this decomposition to further
elaborate on the forces that shape the term structure of discount rates.

A.5.2 Decomposing the Term Structure of Expected One-Period Returns

Now that we have clarified the link between one-period returns and per-period discount
rates, we focus on the one-period returns of securities with maturity n. We start by using
the fundamental asset pricing equation introduced in Section A.1.1 to decompose the
expected one-period returns R(n)

t,t+1 into a component that reflects time discounting and a
component that reflects the riskiness of the underlying cash flow. It follows from:40

1 = Et[Mt,t+1R(n)
t,t+1]

that:
Et[R

(n)
t,t+1] = R f

t,t+1 − Covt[R
(n)
t,t+1, Mt,t+1]R

f
t,t+1,

where the first component R f
t,t+1 = Et[Mt,t+1]

−1 is the one-period risk-free rate that
reflects time discounting, and the second component reflects an additional discount com-
pensating the investor for bearing risk (the covariance with the SDF reflects whether this
asset primarily pays off in good states of the world that have a low marginal utility
of consumption). The risk premium has the opposite sign of the covariance between
the stochastic discount factor (SDF) and the one-period return, Covt[Mt,t+1, R(n)

t,t+1]. This
reflects the fact that a claim with a higher return in states of the world in which extra
resources are less valuable (i.e., when marginal utility Mt,t+1 is low) is less valuable to the
investors, and thus has a positive risk premium. Finally, to highlight the fact that only
innovations in the SDF matter for the purpose of understanding risk premia (rather than

40The fundamental asset pricing equation introduced in Section A.1.1 (equation A.1) can be restated as

P(n)
t = Et

[
Mt,t+1P(n−1)

t+1

]
, which implies 1 = Et

[
Mt,t+1

P(n−1)
t+1

P(n)
t

]
= Et

[
Mt,t+1R(n)

t,t+1

]
.
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its mean, which instead pins down the risk-free rate), we can rewrite excess returns as:

Et[R
(n)
t,t+1]− R f

t,t+1 = −Covt[R
(n)
t,t+1, Mt,t+1 − Et[Mt,t+1]]R

f
t,t+1.

As is common in asset pricing theory, we make the additional assumption that log returns
r(n)t,t+1 ≡ ln(R(n)

t,t+1) as well as the log stochastic discount factor mt,t+1 ≡ ln(Mt,t+1) are at
least approximately jointly normally distributed, which allows us to simplify our expres-
sion for the risk premium to the covariance term alone (see, for example, Campbell and
Vuolteenaho, 2004):

Et[R
(n)
t,t+1]− R f

t,t+1 ' −Covt[r
(n)
t,t+1, mt,t+1 − Et[mt,t+1]], (A.8)

The above notation highlights again that only innovations in the (log-)SDF,
mt,t+1 − Et[mt,t+1], matter for expected returns.

To highlight the forces that shape the term structure of expected one-period returns,
we will focus on analyzing the set of linear and log-linear consumption-based asset pric-
ing models, in which the stochastic discount factor is a function of consumption growth.
This class of models encompasses the vast majority of modern asset pricing models, in
particular those employed in climate change analysis, such as power utility models as in
Lucas (1978), long-run risk models with Epstein–Zin preferences as in Bansal and Yaron
(2004), and rare disaster models as in Barro (2006) and Gabaix (2012). As noted in Dew-
Becker and Giglio (2013), these asset pricing models can be nested in the following general
representation for the SDF innovations:41

mt,t+1 − Et[mt,t+1] = −
∞

∑
k=0

zk · (Et+1 − Et)∆ct+1+k, (A.9)

where ∆ct+1− Et∆ct+1 (the first term of the sum, i.e. for k = 0) is the shock to current con-
sumption growth, while (Et+1− Et)∆ct+1+k with k > 0 is news about future consumption
growth at horizon k, received during the holding period (between t and t + 1).

The terms zk depend only on the parameters of the utility function (not on the con-
sumption growth process), and represent risk aversion regarding news about consump-
tion growth at a particular horizon. They can be thought of as horizon-specific risk prices.
Substituting equation A.9 into equation A.8, we can write the expected return of any asset

41More precisely, all of these models produce this representation of the SDF depending only on
consumption growth news as long as the variance of consumption growth and higher moments are
constant; the decomposition easily generalizes to cases with arbitrary affine processes.
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by decomposing it across horizons:

Et[R
(n)
t,t+1]− R f

t,t+1 ' z0Covt[r
(n)
t,t+1, ∆ct+1]

+ z1Covt[r
(n)
t,t+1, (Et+1 − Et)∆ct+2]

+ z2Covt[r
(n)
t,t+1, (Et+1 − Et)∆ct+3]

+ .... (A.10)

The above decomposition holds for any asset, and therefore holds for all claims to cash
flows at one particular point in the future, Dt+n, which jointly characterize the term struc-
ture of discount rates. It highlights that the shape of the term structure of expected one-
period returns (and thus ultimately of horizon-specific discount rates) can be attributed
to the interaction of two forces:

1. The term structure of horizon-specific risk prices zk, i.e., how much agents care about
long-term news relative to short-term news. The higher zk is for long maturities, the
more worried agents are about long-run risks in the economy.

2. The term structure of risk quantities, i.e. how much news about future consumption
growth there is in the economy, and how it affects claims at different maturities.
If there is no news about future consumption growth, for example if consumption
growth is iid, all the news terms (Et+1 − Et)∆ct+n and hence all of the respective
covariances will be equal to zero. If instead there is long-horizon consumption risk
(that is if consumption growth is predictable, for example because cash flows are
persistently mean-reverting), then the news terms (Et+1 − Et)∆ct+n are non-zero.
Moreover, the returns to claims of different horizons r(n)t,t+1 are then differentially
exposed to shocks at different horizons.

A.5.3 Explanations for a Downward-Sloping Term Structure of Dis-

count Rates for Risky Assets – Preferences vs. Cash Flows

We can put the above decomposition to work and ask what mechanisms can generate a
downward-sloping term structure of discount rates. As we can see from equation 14 of
our model as presented in Section 2, z0 = γ, but all zk’s are zero for k > 0 in equation
A.10 for an agent with power utility preferences. Put differently, such an agent is only
worried about one-period innovations in consumption. For an Epstein–Zin investor by
contrast, z0 = γ like in the power utility case, but zk = (γ− 1

ψ )θ
k for k > 0, where ψ is

the elasticity of intertemporal substitution and θ a parameter close to 1 related to the time
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discount factor. Epstein–Zin parameterizations with γ > 1
ψ , as in standard calibrations

of the long-run risk model, thus imply that agents are worried both about immediate
consumption growth and pure news regarding future consumption. Since claims to long-
run cash flows Dt+n are naturally exposed to all dividend growth shocks from t to t + n
(Dt+n = Dt exp[∆dt+1 + ... + ∆dt+n]), claims become more exposed to long-run shocks as
their maturity increases. Accordingly, their risk premium grows with maturity as more
and more of the positive covariance terms in equation A.10 are added up with positive
weights. Therefore, introducing Epstein–Zin preferences would push the slope of the
term structure of discount rates upwards. To match the data on a downward-sloping
term structure of discount rates for risky assets, we would require an even stronger mean
reversion in cash flows as a consequence in our model presented in Section 2. More
generally, we are not aware of a standard representation of preferences that would push
towards a downward-sloping term structure of discount rates for risky assets.

As we can see again from equation 14, what we require for a downward-sloping term
structure of discount rates for risky assets are declining exposures of claims of different
maturity r(n)t,t+1 to the consumption shock ∆ct+1, i.e. risk quantities. In our setting presented
in Section 2, mean reversion in cash flows makes growth in the economy predictable and
implies that a climate disaster that strikes today has larger effects on immediate cash flows
than on distant cash flows, which exposes short-run returns more than long-run returns
to a consumption shock.

A.6 Details on the Model

This section presents details on our model. We derive the prices of claims to consumption
and rents at different horizons and all results presented in Section 2.

A.6.1 Assumptions and Parameter Restrictions

Throughout, we are going to evaluate the term structure of discount rates and expected
returns at the ergodic mean of all variables, i.e. evaluated when λt = E [λt] ≡ λ̄, xt =

E [xt] ≡ x̄, and yt = E [yt] ≡ ȳ. We assume that x and y have mean zero, which implies:

µx = −λ̄φξ and µy = −λ̄ψξ.
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The unconditional mean of λt is:

λ̄ =
µλ

1− α− χξ
> 0.

The long-run growth rate of consumption is:

µ− λ̄ξ > 0.

We further assume that consumption and rents have the same long-run growth rates,
requiring:

µd = µ + (η − 1) λ̄ξ.

Our calibration is discussed in Section 2.2 and summarized in Table A.8.

A.6.2 Pricing Claims to Single-Period Cash Flows

In Section A.7.1, we derive the prices of claims to arbitrary cash flows Zt+1 at different
horizons. This section presents the results. We start by generalizing the cash flow process
to:

∆zt+1 = µz + πzyt − ηz Jt+1,

where yt still captures persistent changes in the growth rate of the cash flows and Jt+1

is the underlying economic shock. Including separate and flexible loadings on persistent
changes in the growth rate of cash flows, πz, as well as the underlying economic shock, ηz,
will allow us to nest the dynamics of all assets and liabilities relevant to our discussion
in Section 2. This allows us to solve the model once and parameterize the solution as
needed. The solution is recursive and takes the following form:

p(n)z,t = az
n + bz

nxt + ez
nyt + f z

n
(
λt − λ̄

)
, (A.11)

where p(n)z,t is the log price-dividend ratio of a claim to the cash flow n periods ahead

(in levels, we write PD(n)
z,t ). The full recursive expressions of the coefficients in terms of
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primitives are as follows:

az
n = ln δ− γµ + µz + az

n−1 + bz
n−1µx + ez

n−1µy + f z
n−1

(
µλ + λ̄ (α− 1)

)
+ ln

[
1 + λ̄

(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
)]

bz
n = −γ + bz

n−1ρ + f z
n−1ν

ez
n = ez

n−1ω + πz

f z
n = f z

n−1α +
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1

1 + λ̄
(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
) .

with az
0 = bz

0 = ez
0 = f z

0 = 0. The prices of all assets and liabilities we discuss in Section 2
can be derived based on various parameterizations of the above solution.

Consumption: To derive claims to consumption, we need ∆zt+1 = ∆ct+1, i.e. µz = µ,
πz = 1, and ηz = 1. Also note that we need to replace yt with xt as a consequence, i.e. µy

with µx, ω with ρ, and ψ with φ. The price of a consumption strip claim is then:

p(n)c,t = ac
n + bc

nxt + f c
n
(
λt − λ̄

)
. (A.12)

Note that we can sum bz
n and ez

n to get bc
n as x and y are the same for a consumption claim.

The full recursive expressions of the coefficients in terms of primitives are as follows:
ac

0 = bc
0 = f c

0 = 0, and

ac
n = ln δ + (1− γ) µ + ac

n−1 + bc
n−1µx + f c

n−1
(
µλ + λ̄ (α− 1)

)
+ ln

[
1 + λ̄

(
exp

{(
− (1− γ) + bc

n−1φ + f c
n−1χ

)
ξ
}
− 1
)]

bc
n = (1− γ) + bc

n−1ρ + f c
n−1ν

f c
n = f c

n−1α +
exp

{(
− (1− γ) + bc

n−1φ + f c
n−1χ

)
ξ
}
− 1

1 + λ̄
(
exp

{(
− (1− γ) + bc

n−1φ + f c
n−1χ

)
ξ
}
− 1
) .

Risk-Free Bond: To derive claims to a risk-free bond with maturity n, we need Zt+n = 1
and zero otherwise. We set µz = 0, πz = 0, and ηz = 0. The price of a risk-free strip claim
is then:

b(n)f ,t = a f
n + b f

nxt + f f
n
(
λt − λ̄

)
. (A.13)

Note that y and hence e f drops as a result of the above parameterization. The full recur-

sive expressions of the coefficients in terms of primitives are as follows: a f
0 = b f

0 = f f
0 = 0,
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and

a f
n = ln δ− γµ + a f

n−1 + b f
n−1µx + f f

n−1

(
µλ + λ̄ (α− 1)

)
+ ln

[
1 + λ̄

(
exp

{(
γ + b f

n−1φ + f f
n−1χ

)
ξ
}
− 1
)]

b f
n = −γ + b f

n−1ρ + f f
n−1ν

f f
n = f f

n−1α +
exp

{(
γ + b f

n−1φ + f f
n−1χ

)
ξ
}
− 1

1 + λ̄
[
exp

{(
γ + b f

n−1φ + f f
n−1χ

)
ξ
}
− 1
] .

Rents: To derive claims to rents, we need ∆zt+1 = ∆dt+1, i.e. µz = µd, πz = 1, and
ηz = η. The price of a rent strip claim is then:

p(n)d,t = ad
n + bd

nxt + ed
nyt + f d

n
(
λt − λ̄

)
. (A.14a)

The full recursive expressions of the coefficients in terms of primitives are as follows:
ad

0 = bd
0 = ed

0 = f d
0 = 0, and

ad
n = ln δ− γµ + µd + ad

n−1 + bd
n−1µx + ed

n−1µy + fn−1
(
µλ + λ̄ (α− 1)

)
(A.14b)

+ ln
[
1 + λ̄

(
exp

{(
γ− η + bd

n−1φ + ed
n−1ψ + f d

n−1χ
)

ξ
}
− 1
)]

bd
n = −γ + bd

n−1ρ + f d
n−1ν (A.14c)

ed
n = ed

n−1ω + 1 (A.14d)

f d
n = f d

n−1α +
exp

{(
γ− η + bd

n−1φ + ed
n−1ψ + f d

n−1χ
)

ξ
}
− 1

1 + λ̄
(
exp

{(
γ− η + bd

n−1φ + ed
n−1ψ + f d

n−1χ
)

ξ
}
− 1
) . (A.14e)

Damages: To derive claims to damages, we need ∆zt+1 = ∆qt+1, i.e. µz = µq, πz = −πq,
and ηz = −ηq. The price of a damage strip claim is then:

p(n)q,t = aq
n + bq

nxt + eq
nyt + f q

n
(
λt − λ̄

)
. (A.15)
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The full recursive expressions of the coefficients in terms of primitives are as follows:
aq

0 = bq
0 = eq

0 = f q
0 = 0, and

aq
n = ln δ− γµ + µq + aq

n−1 + bq
n−1µx + eq

n−1µy + f q
n−1

(
µλ + λ̄ (α− 1)

)
+ ln

[
1 + λ̄

(
exp

{(
γ + ηq + bq

n−1φ + eq
n−1ψ + f q

n−1χ
)

ξ
}
− 1
)]

bq
n = −γ + bq

n−1ρ + f q
n−1ν

eq
n = eq

n−1ω− πq

f q
n = f q

n−1α +
exp

{(
γ + ηq + bq

n−1φ + eq
n−1ψ + f q

n−1χ
)

ξ
}
− 1

1 + λ̄
(
exp

{(
γ + ηq + bq

n−1φ + eq
n−1ψ + f q

n−1χ
)

ξ
}
− 1
) .

A.6.3 Per-Period Discount Rates

We derive per-period discount rates for claims to arbitrary cash flows Zt+1 at different
horizons again and parameterize those accordingly to derive implied discount rates for
all assets and liabilities discussed in Section 2. Remember from Section A.5.1 that per-
period discount rates rn

z,t are implicitly defined by:

P(n)
z,t =

Et [Zt+n](
1 + rn

z,t
)n .

In Section A.7.2, we show that expected cash flows can be expressed as:

Et [Zt+n] = Zt exp

{
nµz + πz

1−ωn

1−ω
yt + πzµy

n−1

∑
s=0

1−ωs

1−ω

}
Az,n,t, (A.16)

where the second and third term inside the curly brackets are related to persistent changes
in the growth rate of the economy, and Az,n,t is a term that captures the history of (path-
dependent) jump events. Formally, Az,n,t is defined as:

Az,n,t ≡ Et

[
exp

{
n−1

∑
i=0

Jt+n−i

(
πzψ

1−ωi

1−ω
− ηz

)}]
. (A.17)

These expectations can be computed in closed form for short horizons, but are best com-
puted numerically for longer horizons. We outline a numerical solution algorithm in
Section A.7.3. Rearranging and substituting for Et [Zt+n] using equation A.16, we get:

(
1 + rn

z,t
)n

=
exp

{
nµz + πzµy ∑n−1

s=0
1−ωs

1−ω + πz
1−ωn

1−ω yt

}
Az,n,t

exp
{

p(n)z,t

} .
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Taking logs and approximating ln (1 + x) ' x, we get:

rn
z,t '

1
n

[
nµz + πzµy

n−1

∑
s=0

1−ωs

1−ω
+ πz

1−ωn

1−ω
yt + ln Az,n,t − p(n)z,t

]
.

Substituting for p(n)z,t using equation A.11, we get:

rn
z,t ' µz +

1
n

[
πzµy

n−1

∑
s=0

1−ωs

1−ω
+ πz

1−ωn

1−ω
yt + ln Az,n,t

]
(A.18)

− 1
n
[
az

n + bz
nxt + ez

nyt + f z
n
(
λt − λ̄

)]
,

with az
n, bz

n, ez
n, and f z

n are defined as in equation A.11, and Az,n,t is defined as above.

Consumption: To derive per-period discount rates for consumption, we need ∆zt+1 =

∆ct+1, i.e. µz = µ, πz = 1, and ηz = 1. Also note that long-run dynamics in consumption
are driven by x instead of y, and so we also need to replace yt with xt as a consequence,
i.e. µy with µx, ω with ρ, and ψ with φ. The per-period discount rate is then:

rn
c,t ' µ +

1
n

[
µx

n−1

∑
s=0

1− ρs

1− ρ
+

1− ρn

1− ρ
xt + ln Ac,n,t −

(
ac

n + bc
nxt + f c

n
(
λt − λ̄

))]
,

with ac
n, bc

n, and f c
n defined as in equation A.12 (note that we can sum bz

n and ez
n to get bc

n

as x and y are the same for a consumption claim), and Ac,n,t is defined as:

Ac,n,t = Et

[
exp

{
n−1

∑
i=0

Jt+n−i

(
φ

1− ρi

1− ρ
− 1
)}]

.

Risk-free rate: The risk-free rate in the economy is given by:

R f
t,n = 1/B(n)

t ,

and linked to the risk-free discount rate by R f
t,n =

(
1 + r f

t,n

)n
. Approximating ln (1 + x) '

x, we have:

r f
t,n '

1
n

ln R f
t,n = − 1

n
ln B(n)

t = − 1
n

b(n)f ,t = − 1
n

(
a f

n + b f
nxt + f f

n
(
λt − λ̄

))
,
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where a f
n, b f

n, and f f
n are defined as in equation A.13. The risk-free rate increases in xt and

decreases in the severity and probability of disasters.

Rents: To derive per-period discount rates for rents, we need ∆zt+1 = ∆dt+1, i.e. µz =

µd, πz = 1, and ηz = η. The per-period discount rate is then:

rn
d,t ' µd +

1
n

[
µy

n−1

∑
s=0

1−ωs

1−ω
+

1−ωn

1−ω
yt + ln Ad,n,t −

(
ad

n + bd
nxt + ed

nyt + f d
n
(
λt − λ̄

))]
.

where ad
n, bd

n, ed
n, and f d

n are defined as in equations A.14b to A.14e, and Ad,n,t is defined
as:

Ad,n,t ≡ Et

[
exp

{
n−1

∑
i=0

Jt+n−i

(
ψ

1−ωi

1−ω
− η

)}]
.

Damages: To derive claims to damages, we need ∆zt+1 = ∆qt+1, i.e. µz = µq, πz = −πq,
and ηz = −ηq. The per-period discount rate is then:

rn
q,t ' µq +

1
n

[
−πqµy

n−1

∑
s=0

1−ωs

1−ω
− πq

1−ωn

1−ω
yt + ln Aq,n,t

]

− 1
n
[
aq

n + bq
nxt + eq

nyt + f q
n
(
λt − λ̄

)]
, (A.19)

where aq
n, bq

n, eq
n, and f q

n are defined as in equation A.15, and Aq,n,t is defined as:

Aq,n,t ≡ Et

[
exp

{
n−1

∑
i=0

Jt+n−i

(
−πqψ

1−ωi

1−ω
+ ηq

)}]
.

A.6.4 Expected Returns and Return Decomposition for Rent Strips

In this section, we derive expressions for expected returns to rent strips and decompose
rent strip returns following the methodology outlined in Section A.5.2.

A.6.4.1 Expected Returns on Rent Strips

The return on a rent strip is given by:

R(n)
d,t,t+1 =

P(n−1)
d,t+1

P(n)
d,t

.
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Consequently, the log return on the strip is simply:

r(n)d,t,t+1 = ln P(n−1)
d,t+1 − ln P(n)

d,t = p(n−1)
d,t+1 − p(n)d,t + ∆dt+1

for n > 1, and ∆dt+1− p(1)d,t for n = 1 (for the first return, we just set p(0)d,t = 0; note that we
have to adjust for ∆dt+1 because we denote by p the log price-dividend ratio, not just the
log price). Substituting for the log price-dividend ratio and for dividend growth, we get:

r(n)d,t,t+1 =
[

ad
n−1 + bd

n−1xt+1 + ed
n−1yt+1 + f d

n−1
(
λt+1 − λ̄

)]
−
[

ad
n + bd

nxt + ed
nyt + f d

n
(
λt − λ̄

)]
+ [µd + yt − η Jt+1] .

Substituting for xt+1, yt+1, and λt+1 and collecting shock terms, we get:

r(n)d,t,t+1 =
[

ad
n−1 + bd

n−1 (µx + ρxt) + ed
n−1

(
µy + ωyt

)
+ f d

n−1
(
µλ + αλt + νxt − λ̄

)]
−
[

ad
n + bd

nxt + ed
nyt + f d

n
(
λt − λ̄

)]
+ [µd + yt] (A.20)

+
(

bd
n−1φ + ed

n−1ψ + f d
n−1χ− η

)
Jt+1.

For the expected return of the rent strip, we have:

Et

[
R(n)

d,t,t+1

]
= Et

[
exp

{
r(n)d,t,t+1

}]
= exp

{[
ad

n−1 + bd
n−1 (µx + ρxt) + ed

n−1
(
µy + ωyt

)
+ f d

n−1
(
µλ + αλt + νxt − λ̄

)]}
× exp

{
−
[

ad
n + bd

nxt + ed
nyt + f d

n
(
λt − λ̄

)]
+ [µd + yt]

}
(A.21)

×
[
1 + λt

(
exp

{(
bd

n−1φ + ed
n−1ψ + f d

n−1χ− η
)

ξ
}
− 1
)]

,

where the last line follows from Jt+1 only taking value ξ ∈ (0, 1) with probability λt and
zero else, and therefore:

Et

[
exp

{(
bd

n−1φ + ed
n−1ψ + f d

n−1χ− η
)

Jt+1

}]
= (1− λt) + λt exp

{(
bd

n−1φ + ed
n−1ψ + f d

n−1χ− η
)

ξ
}

.
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A.6.4.2 Return Decomposition for Rent Strips

As discussed in Section A.5, in our model with power utility, we have z0 = γ and zk = 0
for k > 0, and thus equation A.10 simplifies to:

Et[R
(n)
d,t,t+1]− R f

t,t+1 ' γCovt

[
r(n)d,t,t+1, ∆ct+1

]
.

Substituting for consumption growth ∆ct+1 = µ + xt − Jt+1 and the log strip return from
equation A.20, and dropping constant terms, we get:

γCovt

[
r(n)d,t,t+1, ∆ct+1

]
= γCovt

[(
bd

n−1φ + ed
n−1ψ + f d

n−1χ− η
)

Jt+1,−Jt+1

]
.

Since Vart [Jt+1] = ξ2λt (1− λt), we obtain:

γCovt

[
r(n)d,t,t+1, ∆ct+1

]
= γ

[
η − φbd

n−1 − ψed
n−1 − χ f d

n−1

]
ξ2λt (1− λt) ,

and therefore:

Et[R
(n)
d,t,t+1]− R f

t,t+1 ' γ Covt[r
(n)
d,t,t+1, ∆ct+1]

= γ
[
η − ψed

n−1 − φbd
n−1 − χ f d

n−1

]
ξ2λt(1− λt). (A.22)

where bd
n−1, ed

n−1, and f d
n−1 are defined in equations A.14c to A.14e.

A.6.5 Price-Rent Ratio Semi-Elasticity to Disaster Probability

The price-rent ratio of the freehold is simply the sum of the price-rent ratios of strips
across all maturities:

PD f h
d,t =

∞

∑
n=1

PD(n)
d,t =

∞

∑
n=1

exp
{

p(n)d,t

}
.

After substituting for the log price-rent ratio for the strips from equation A.14a, we can see
that the semi-elasticity of the price-dividend ratio with respect to the disaster probability
λt is:

∂pd,t

∂λt
=

1

PD f h
d,t

∞

∑
n=1

PD(n)
d,t f d

n .

It tells us by how much the price dividend-ratio moves (in percent) if the probability of
a disaster increases by one percentage point. Note that this semi-elasticity is affected by
two opposing forces: As the disaster probability increases, the risk-free rate falls for pre-
cautionary motives, while the risk premium increases. To isolate the effect of an increase
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in disaster probabilities (without a disaster having occurred) on the risk premium, we
can look at properties that are differentially exposed to the disaster risk. In particular, the
difference between the semi-elasticity of two properties, one with high and one with low
loadings on climate risk (ηH

d > ηL
d ) is:

∂
(

pH
d,t − pL

d,t

)
∂λt

=
1

PDH
d,t

∞

∑
n=1

PDH(n)
d,t f n,H

d − 1
PDL

d,t

∞

∑
n=1

PDL(n)
d,t f n,L

d .

Intuitively, we expect this number to be negative – all else equal, the risk premium of
a property with higher disaster-risk exposure should increase by more than the risk pre-
mium of a property with lower disaster-risk exposure as disaster risk increases (and hence
the price of a property with higher disaster-risk exposure should decrease relative to the
price of a property with lower disaster-risk exposure).

A.6.6 Expected Returns and Risk Premia for the Freehold

The return on the freehold is:

Et

[
R f h

d,t,t+1

]
=

∞

∑
n=1

PDn
d,t

PD f h
d,t

Et

[
R(n)

d,t,t+1

] .

The risk premium for the freehold then is:

Et

[
R f h

d,t,t+1 − R f
t,t+1

]
=

∞

∑
n=1

PD(n)
d,t

PD f h
d,t

Et

[
R(n)

d,t,t+1 − R f
t,t+1

] .

A.7 Solving the Model

A.7.1 Cash Flow Strip Prices

We are going to derive prices of arbitrary cash flows Zt+1 here, where

∆zt+1 = µz + πzyt − ηz Jt+1,

and where yt captures persistent changes in the growth rate of the cash flows and Jt+1

is the underlying economic shock. Including separate and flexible loadings on persistent
changes in the growth rate of cash flows, πz, as well as the underlying economic shock, ηz,
will allow us to nest the dynamics of all assets and liabilities relevant to our discussion
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in Section 2. This allows us to solve the model once and parameterize the solution as
needed. The solution is recursive:

For maturity 1: We can price a claim to next period’s cash flow (i.e., the first cash flow
strip) as:

P(1)
z,t = Et [Mt+1Zt+1] ,

or:
P(1)

z,t

Zt
= Et

[
Mt+1

Zt+1

Zt

]
.

Rewriting in logs and substituting for the log stochastic discount factor, we have:

exp
{

p(1)z,t

}
= Et [exp {ln δ− γ∆ct+1 + ∆zt+1}] ,

and substituting for the consumption and cash flow growth rates, and collecting terms,
we have:

= Et [exp {ln δ− γ (µ + xt) + µz + πzyt + (γ− ηz) Jt+1}] .

We can now pull time-t information out of the expectation:

= exp {ln δ− γ (µ + xt) + µz + πzyt} Et [exp {(γ− ηz) Jt+1}] ,

and recall that Jt+1 only takes value ξ with probability λt and zero else, and therefore:

Et [exp {(γ− ηz) Jt+1}] = (1− λt) + λt exp {(γ− ηz) ξ} .

After taking logs, we get:

p(1)z,t = ln δ− γ (µ + xt) + µz + πzyt + ln [1 + λt (exp {(γ− ηz) ξ} − 1)] .

Via Taylor expansion of the last term around the unconditional mean of λt, λ̄, we obtain:

ln [1 + λt (exp {(γ− ηz) ξ} − 1)]

' ln
[
1 + λ̄ (exp {(γ− ηz) ξ} − 1)

]
+

exp {(γ− ηz) ξ} − 1
1 + λ̄ (exp {(γ− ηz) ξ} − 1)

(
λt − λ̄

)
.

Thus:
p(1)z,t = ln δ− γ (µ + xt) + µz + πzyt
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+ ln
[
1 + λ̄ (exp {(γ− ηz) ξ} − 1)

]
+

exp {(γ− ηz) ξ} − 1
1 + λ̄ (exp {(γ− ηz) ξ} − 1)

(
λt − λ̄

)
,

or:
p(1)z,t = az

1 + bz
1xt + ez

1yt + f z
1
(
λt − λ̄

)
, (A.23)

with

az
1 = ln δ− γµ + µz + ln

[
1 + λ̄ (exp {(γ− ηz) ξ} − 1)

]
bz

1 = −γ

ez
1 = πz

f z
1 =

exp {(γ− ηz) ξ} − 1
1 + λ̄ (exp {(γ− ηz) ξ} − 1)

.

For arbitrary maturity n: For arbitrary maturities, we conjecture that all p(n)z,t will follow
the recursion:

p(n)z,t = az
n + bz

nxt + ed
z yt + f z

n
(
λt − λ̄

)
,

where az
1, bz

1, ez
1, and f z

1 are defined as above. We can price a claim to an n-period cash
flow (i.e., the n-th dividend strip) as:

P(n)
z,t = Et

[
Mt+1P(n−1)

z,t+1

]
,

or:
P(n)

z,t

Zt
= Et

Mt+1
P(n−1)

z,t+1

Zt+1

Zt+1

Zt

 .

Rewriting in logs and substituting for the log stochastic discount factor, we have:

exp
{

p(n)z,t

}
= Et

[
exp

{
ln δ− γ∆ct+1 + ∆zt+1 + p(n−1)

z,t+1

}]
,

and substituting for the consumption and cash flow growth rates and the log price-
dividend ratio, and collecting terms, we have:

= exp {ln δ− γ (µ + xt) + µz + πzyt}

×Et
[
exp

{
(γ− ηz) Jt+1 + az

n−1 + bz
n−1xt+1 + ez

n−1yt+1 + f z
n−1

(
λt+1 − λ̄

)}]
.

Substituting for xt+1, yt+1 and λt+1, and collecting a few terms and all shocks, we get:

= exp
{

ln δ− γµ + µz + az
n−1 + bz

n−1µx + ez
n−1µy + f z

n−1
(
µλ + λ̄ (α− 1)

)}
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× exp
{(
−γ + bz

n−1ρ + f z
n−1ν

)
xt +

(
πz + ez

n−1ω
)

yt + f z
n−1α

(
λt − λ̄

)}
×Et

[
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

Jt+1
}]

.

Recall that Jt+1 only takes value ξ with probability λt and zero else, and therefore:

Et
[
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

Jt+1
}]

= (1− λt) + λt exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)
ξ
}

.

After taking logs, we get:

p(n)z,t = ln δ− γµ + µz + az
n−1 + bz

n−1µx + ez
n−1µy + f z

n−1
(
µλ + λ̄ (α− 1)

)
+
(
−γ + bz

n−1ρ + f z
n−1ν

)
xt +

(
πz + ez

n−1ω
)

yt + f z
n−1α

(
λt − λ̄

)
+ ln

[
1 + λt

(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
)]

.

Via Taylor expansion of the last term around the unconditional mean of λt, λ̄, we obtain:

ln
[
1 + λt

(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
)]

' ln
[
1 + λ̄

(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
)]

+
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1

1 + λ̄
(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
) (λt − λ̄

)
.

Thus:

p(n)z,t = ln δ− γµ + µz + az
n−1 + bz

n−1µx + ez
n−1µy + f z

n−1
(
µλ + λ̄ (α− 1)

)
+ ln

[
1 + λ̄

(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
)]

+
(
−γ + bz

n−1ρ + f z
n−1ν

)
xt +

(
πz + ez

n−1ω
)

yt + f z
n−1α

(
λt − λ̄

)
+

exp
{(

γ− ηz + bz
n−1φ + ez

n−1ψ + f z
n−1χ

)
ξ
}
− 1

1 + λ̄
(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
) (λt − λ̄

)
.

Matching coefficients, we get the following expression for the log price-dividend ratio:

p(n)z,t = az
n + bz

nxt + ez
nyt + f z

n
(
λt − λ̄

)
, (A.24)
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with:

az
n = ln δ− γµ + µz + az

n−1 + bz
n−1µx + ez

n−1µy + f z
n−1

(
µλ + λ̄ (α− 1)

)
+ ln

[
1 + λ̄

(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
)]

bz
n = −γ + bz

n−1ρ + f z
n−1ν

ez
n = ez

n−1ω + πz

f z
n = f z

n−1α +
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1

1 + λ̄
(
exp

{(
γ− ηz + bz

n−1φ + ez
n−1ψ + f z

n−1χ
)

ξ
}
− 1
) ,

and az
0 = bz

0 = ez
0 = f z

0 = 0.

A.7.2 Expected Cash Flows

The expected flow from a strip of arbitrary maturity n is:

Et [Zt+n] = ZtEt [exp {∆zt+1 + ... + ∆zt+n}] .

To compute Et [exp {∆zt+1 + ... + ∆zt+n}], we iterate forward:

For n = 1: For n = 1, we have:

Et [exp {∆zt+1}] = Et [exp {µz + πzyt − ηz Jt+1}]

= exp {µz + πzyt} Et [exp {−ηz Jt+1}]

Recall that Jt+1 only takes value ξ with probability λt and zero else, and therefore:

Et [Zt+1] = Zt exp {µz + πzyt} [(1− λt) + λt exp {−ηzξ}] .

For n = 2: Iterating forward to n = 2, we have:

Et [exp {∆zt+1 + ∆zt+2}] = Et [exp {(µz + πzyt − ηz Jt+1) + (µz + πzyt+1 − ηz Jt+2)}] ,

substituting for yt+1 and collecting terms, we get:

= exp
{

2µz + πz (1 + ω) yt + πzµy
}

Et [exp {[πzψ− ηz] Jt+1 − ηz Jt+2}] .
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Note that the jump events are not independent unless λt is constant and define:

Az,2,t ≡ Et [exp {[πzψ− ηz] Jt+1 − ηz Jt+2}] .

Thus:
Et [Zt+2] = Zt exp

{
2µz + πz (1 + ω) yt + πzµy

}
Az,2,t.

For n = 3: Iterating forward to n = 3, we have:

Et [exp {∆zt+1 + ∆zt+2 + ∆zt+3}]

= Et [exp {(µz + πzyt − ηz Jt+1) + (µz + πzyt+1 − ηz Jt+2) + (µz + πzyt+2 − ηz Jt+3)}] ,

substituting for yt+1 and yt+2 iteratively and collecting terms, we get:

= exp
{

3µz + πz

(
1 + ω + ω2

)
yt + πz [1 + (1 + ω)] µy

}
×Et [exp {[πz (1 + ω)ψ− ηz] Jt+1 + [πzψ− ηz] Jt+2 − ηz Jt+3}] .

As before, define:

Az,3,t ≡ Et [exp {[πz (1 + ω)ψ− ηz] Jt+1 + [πzψ− ηz] Jt+2 − ηz Jt+3}] .

Thus:

Et [Zt+3] = Zt exp
{

3µz + πz

(
1 + ω + ω2

)
yt + πz [1 + (1 + ω)] µy

}
Az,3,t.

For arbitrary n: We conclude that cash flow growth is given by:

Et [Zt+n] = Zt exp

{
nµz + πz

1−ωn

1−ω
yt + πzµy

n−1

∑
s=0

1−ωs

1−ω

}
Az,n,t, (A.25a)

with

Az,n,t ≡ Et

[
exp

{
n−1

∑
i=0

Jt+n−i

(
πzψ

1−ωi

1−ω
− ηz

)}]
. (A.25b)

These expectations can be computed in closed form for short horizons, but are best com-
puted numerically for longer horizons. We outline a numerical solution algorithm in
Section A.7.3.
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A.7.3 Solution method for Az,n,t

In this section, we describe our numerical solution method for Az,n,t. Remember that
Az,n,t is defined as:

Az,n,t ≡ Et

[
exp

{
n−1

∑
i=0

Jt+n−i

(
πzψ

1−ωi

1−ω
− ηz

)}]
,

and captures the history of (path-dependent) jump events that go into cash flow growth.
More generically, we want to compute:

Az,n,t = Et [exp {βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n Jt+n}]

for arbitrary constants βz
1...βz

n and arbitrary maturity n, where Jt+1 is a variable that,
conditional on time-t information (particularly λt), has value ξ with probability λt and
zero else, and where

λt+1 = µλ + αλt + νxt + χJt+1,

with
xt+1 = µx + ρxt + φJt+1.

To solve for Az,n,t numerically, we start from the last period n. By the law of iterated
expectations, we have:

Et [exp {βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n Jt+n}]

= Et [Et+n−1 [exp {βz
1 Jt+1 + βz

2 Jt+2 + ... + βz
n Jt+n}]]

= Et
[
exp

{
βz

1 Jt+1 + βz
2 Jt+2 + ... + βz

n−1 Jt+n−1
}

Et+n−1 [exp {βz
n Jt+n}]

]
.

Note that the jumps Jt+1 to Jt+n−1 are all known by time t + n− 1, so we can pull them
outside the internal expectation. Next, we can solve for the internal expectation:

Et+n−1 [exp {βz
n Jt+n}] = (1− λt+n−1) + λt+n−1 exp {βz

nξ} .

We can think of this as a sort of binomial tree where jump probabilities change over time
– each period either a jump is realized or not, and that outcome also changes λ for the
next node. Note that the above expression is only a function of λ, call it fn−1 (λ, x) for
consistency with later steps:

fn−1 (λ, x) ≡ (1− λ) + λ exp {βz
nξ} .
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We compute fn−1 (λ, x) on a grid of possible values for λ and x and store it for later use.
Updating our expression for Az,n,t, we have:

Az,n,t = Et
[
exp

{
βz

1 Jt+1 + βz
2 Jt+2 + ... + βz

n−1 Jt+n−1
}

fn−1 (λt+n−1, xt+n−1)
]

.

Next, we iterate back, and condition on the information set at t + n− 2:

Et
[
Et+n−2

[
exp

{
βz

1 Jt+1 + βz
2 Jt+2 + ... + βz

n−1 Jt+n−1
}

fn−1 (λt+n−1, xt+n−1)
]]

=

Et
[
exp

{
βz

1 Jt+1 + ... + βz
n−2 Jt+n−2

}
Et+n−2

[
exp

{
βz

n−1 Jt+n−1
}

fn−1 (λt+n−1, xt+n−1)
]]

.

Note again that the internal expectation is only a function of λt+n−2 and xt+n−2. In
particular:

Et+n−2
[
exp

{
βz

n−1 Jt+n−1
}

fn−1 (λt+n−1, xt+n−1)
]
=

Et+n−2
[
exp

{
βz

n−1 Jt+n−1
}

fn−1 (µλ + αλt+n−2 + νxt+n−2 + χJt+n−1, µx + ρxt+n−2 + φJt+n−1)
]

= (1− λt+n−2) [ fn−1 (µλ + αλt+n−2 + νxt+n−2, µx + ρxt+n−2)]

+λt+n−2
[
exp

{
βz

n−1ξ
}

fn−1 (µλ + αλt+n−2 + νxt+n−2 + χξ, µx + ρxt+n−2 + φξ)
]

,

where the last expression reflects the fact that Jt+n−1 is ξ with probability λt+n−2 and zero
else. As before, call this function fn−2 (λ, x):

fn−2 (λ, x) ≡ (1− λ) [ fn−1 (µλ + αλ + νx, µx + ρx)]

+λ
[
exp

{
βz

n−1ξ
}

fn−1 (µλ + αλ + νx + χξ, µx + ρx + φξ)
]

.

We compute fn−2 (λ, x) on a grid of possible values for λ and x again and store it for
later use. Note that we are using the function fn−1 that we had computed in the previous
iteration to compute fn−2.

Next, we iterate back once more, and condition on the information set at t + n− 3:

Az,n,t = Et
[
exp

{
βz

1 Jt+1 + βz
2 Jt+2 + ... + βz

n−2 Jt+n−2
}

fn−2 (λt+n−2, xt+n−2)
]
=

Et
[
exp

{
βz

1 Jt+1 + ... + βz
n−3 Jt+n−3

}
Et+n−3

[
exp

{
βz

n−2 Jt+n−2
}

fn−2 (λt+n−2, xt+n−2)
]]

.

We keep iterating this way until we condition on the information set t, which only de-
pends on λt (and xt).
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Appendix Figures

Figure A.1: Heatmap of Climate Attention Index in New Jersey
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Note: Figure shows a heatmap of our “Climate Attention Index” in New Jersey at the zip-code level.
The “Climate Attention Index” is defined as the fraction of for-sale listings whose description includes
climate-related text for the period from 2008Q1 to 2017Q2.
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Figure A.2: Heatmap of Climate Attention Index in South Carolina
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Note: Figure shows a heatmap of our “Climate Attention Index” in South Carolina at the zip-code level.
The “Climate Attention Index” is defined as the fraction of for-sale listings whose description includes
climate-related text for the period from 2008Q1 to 2017Q2.

Figure A.3: Heatmap of Climate Attention Index in North Carolina
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Note: Figure shows a heatmap of our “Climate Attention Index” in North Carolina at the zip-code level.
The “Climate Attention Index” is defined as the fraction of for-sale listings whose description includes
climate-related text for the period from 2008Q1 to 2017Q2.
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Figure A.4: Hedonic Coefficients in Transaction Regression

Note: Figures show coefficients on hedonic controls from regression 1. The dependent variable is the
log price paid. Starting from the top left, the different panels show the coefficients on (i) indicators for
ventiles of property size, (ii) indicators for deciles of lot size, (iii) indicators for the number of bedrooms,
(iv) indicators for the number of bathrooms, (v) indicators on property age, and (vi) indicators on the
time since the last major remodeling of the property. The regression includes other control variables and
fixed effects as in Column 1 of Panel A, Table 1. The bars show 95% confidence intervals for standard
errors clustered at the zip-code-quarter level.
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Figure A.5: Hedonic Coefficients in Rental Regression

Note: Figures show coefficients on hedonic controls from regression 1. The dependent variable is the
log of the rental listing price. Starting from the top left, the different panels show the coefficients on
(i) indicators for ventiles of property size, (ii) indicators for deciles of lot size, (iii) indicators for the
number of bedrooms, (iv) indicators for the number of bathrooms, (v) indicators on property age, and
(vi) indicators on the time since the last major remodeling of the property. The regression includes other
control variables and fixed effects as in column 1 of Panel B, Table 1. The bars show 95% confidence
intervals for standard errors clustered at the zip-code-quarter level.
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Figure A.6: Cross-Sectional Distribution of the Rent-to-Price Ratio in the U.S.
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Note: The figure shows the distribution of the rent-to-price ratio for the 100 largest MSAs in the U.S.
in 2012 as constructed by Trulia, which observes a large set of both for-sale and for-rent listings. It is
constructed using a metro-level hedonic regression of log price on property attributes, zip-code fixed
effects, and a dummy for whether the unit is for rent. The rent-to-price ratio is constructed by taking the
exponent of the coefficient on this dummy variable.
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Figure A.7: Price-to-Rent Ratio Time-Series in the U.S.
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Note: The figure shows the time series of the price-rent ratio in the U.S., constructed as the ratio of the
Case-Shiller House Price Index and a rental price index that is constructed as discussed in Section A.4.1.
The index ratio is normalized to 100 in 2012.
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Figure A.8: Housing Return Estimates – Consistency Across Approaches

Note: Figures show the net housing returns for the balance-sheet and the price-rent approach for the U.S.
and the U.K. (top row), the correlation between net housing returns from the balance-sheet and the price-
rent approach for the U.S. and the U.K. (middle row), and housing depreciation (gross of maintenance)
and tax yields from the balance-sheet approach for the U.S. and the U.K. (bottom row; there are no
property taxes in the U.K.). The U.S. results are based on specifications (2) and (9) in Table 4. The U.K.
results are based on specifications (12) and (15) in the same table.
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Figure A.9: Rent Growth vs. PCE Growth in the U.S.
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Note: The figure shows the annual growth rates of the “Consumer Price Index for All Urban Consumers:
Rent of Primary Residence” (FRED ID: CUUR0000SEHA) and “Personal Consumption Expenditure”
(FRED ID: PCECA) since 1929.
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Figure A.10: House Prices and Rents in Prime Central London Areas during the 2007-
09 Financial Crisis
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Note: The figure shows the time series of house prices and rents for Prime Central London, Kensington,
and Chelsea for the period January 2005 to January 2012. The series are monthly and available from
John D Wood & Co. at http://www.johndwood.co.uk/content/indices/london-property-
prices/, last accessed February 2014.
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Appendix Tables

Table A.1: Dictionary for Climate Attention Index

Text Type Text

Single Words ’storm’,’storms’,’superstorm’,’hurricane’,’hurricanes’, ’fema’,
’tornado’, ’tornadoes’,’floodplain’

Pairs (’flood’,’risk’),(’flood’,’insurance’),(’flood’,’ins’),(’flood’,’plain’),(’flood’,’risk’),
(’flood’,’damage’),(’flood’,’zone’),(’flood’,’zones’),(’flood’,’protection’),
(’flood’,’safe’),(’hurricane’, ’zone’),(’hurricane’, ’zones’),(’hurricane’,’shutter’),
(’hurricane’,’shutters’),(’hurricane’,’shelter’),(’hurricane’,’shelters’),
(’hurricane’,’protection’),(’hurricane’,’safe’),(’hurricane’,’impact’),
(’hurricane’,’curtains’), (’sea’,’level’),(’storm’,’zone’),(’storm’,’zones’),
(’storm’, ’window’),(’storm’, ’windows’),(’storm’,’door’),(’storm’,’doors’),
(’storm’,’water’),(’storm’,’protection’),(’storm’,’safe’),(’tornado’,’shutter’),
(’tornado’,’shutters’),(’tornado’,’shelter’),(’tornado’,’shelters’)

Hurricane Names ’keith’,’allison’,’iris’,’michelle’,’isidore’,’lili’,’fabian’,’isabel’,’juan’,’charley’,
’frances’,’ivan’,’jeanne’,’dennis’,’katrina’,’rita’,’stan’,’wilma’,’dean’,’felix’,
’noel’,’gustav’,’ike’,’paloma’,’igor’,’tomas’,’irene’,’sandy’,’ingrid’,’erika’,
’joaquin’,’matthew’,’otto’

Note: The table shows the dictionary used to construct the “Climate Attention Index”.
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Table A.2: Top Climate Words in Florida

Words Number of Listings Containing the Word Frequency

hurricane(s) 465,308 3.309%
hurricane shutter(s) 241,812 1.720%
storm(s) 114,893 0.817%
hurricane impact 66,485 0.473%
flood insurance 57,737 0.411%
flood zone(s) 45,696 0.325%
hurricane protection 18,285 0.130%
storm door(s) 13,286 0.094%
storm window(s) 7,692 0.055%
storm protection 5,644 0.040%
sea level 3,808 0.027%
FEMA 3,448 0.025%
hurricane safe 1,798 0.013%
flood plain 1,684 0.012%
storm water 971 0.007%
hurricane shelter(s) 603 0.004%
storm safe 491 0.003%
tornado(es) 457 0.003%
flood risk 373 0.003%
flood damage 235 0.002%
hurricane zone(s) 178 0.001%
hurricane curtains 171 0.001%
flood protection 117 0.001%
tornado shelter(s) 74 0.001%
storm zone(s) 30 0.000%
flood safe 9 0.000%
tornado shutter(s) 1 0.000%

Total number of listings 14,059,936

Note: The table shows the most commonly occurring words signaling increased attention paid to
climate change in the state of Florida.
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Table A.3: Top Climate Words in New Jersey

Words Number of Listings Containing the Word Frequency

storm(s) 20,702 0.602%
flood insurance 15,342 0.446%
flood zone(s) 14,354 0.417%
storm door(s) 10,020 0.291%
hurricane(s) 5,842 0.170%
FEMA 5,253 0.153%
storm window(s) 2,316 0.067%
flood risk 1,395 0.041%
flood damage 834 0.024%
flood plain 678 0.020%
superstorm 529 0.015%
storm water 369 0.011%
sea level 326 0.009%
hurricane shutter(s) 213 0.006%
hurricane impact 68 0.002%
storm protection 27 0.001%
flood protection 25 0.001%
storm zone(s) 17 0.000%
hurricane protection 9 0.000%
storm safe 9 0.000%
flood safe 3 0.000%
hurricane zone(s) 2 0.000%

Total number of listings 3,441,094

Note: The table shows the most commonly occurring words signaling increased attention paid to
climate change in the state of New Jersey.
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Table A.4: Top Climate Words in North Carolina

Words Number of Listings Containing the Word Frequency

storm(s) 18,160 0.376%
flood zone(s) 11,788 0.244%
storm door(s) 11,075 0.229%
flood insurance 8,587 0.178%
hurricane(s) 5,232 0.108%
storm window(s) 4,161 0.086%
flood plain 4,215 0.087%
hurricane shutter(s) 2,639 0.055%
sea level 1,169 0.024%
FEMA 635 0.013%
storm water 385 0.008%
tornado(es) 211 0.004%
storm protection 107 0.002%
hurricane protection 74 0.002%
hurricane impact 74 0.002%
flood damage 55 0.001%
tornado shelter(s) 42 0.001%
flood risk 32 0.001%
flood protection 22 0.000%
hurricane shelter(s) 22 0.000%
storm safe 10 0.000%
hurricane safe 8 0.000%
hurricane zone(s) 6 0.000%
storm zone(s) 1 0.000%

Total number of listings 4,827,756

Note: The table shows the most commonly occurring words signaling increased attention paid to
climate change in the state of North Carolina.
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Table A.5: Top Climate Words in South Carolina

Words Number of Listings Containing the Word Frequency

storm(s) 11,354 0.472%
hurricane(s) 7,243 0.301%
storm door(s) 6,406 0.266%
flood insurance 5,340 0.222%
flood zone(s) 3,848 0.160%
hurricane shutter(s) 2,531 0.105%
storm window(s) 2,305 0.096%
flood plain 614 0.026%
sea level 422 0.018%
hurricane protection 343 0.014%
FEMA 300 0.012%
hurricane impact 182 0.008%
tornado(es) 175 0.007%
flood damage 165 0.007%
storm water 160 0.007%
hurricane zone(s) 103 0.004%
storm protection 101 0.004%
tornado shelter(s) 97 0.004%
hurricane shelter(s) 29 0.001%
hurricane safe 21 0.001%
flood risk 19 0.001%
storm safe 18 0.001%
flood safe 8 0.000%
flood protection 3 0.000%

Total number of listings 2,406,832

Note: The table shows the most commonly occurring words signaling increased attention paid to
climate change in the state of South Carolina.
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Table A.6: Rent-to-Price Ratio Singapore - 2012

(1) (2) (3) (4)

For-Rent Dummy -3.095∗∗∗ -3.131∗∗∗ -3.123∗∗∗ -3.107∗∗∗

(0.044) (0.019) (0.014) (0.025)

Fixed Effects Quarter × Quarter × Month × Month ×
Postal Code Postal Code Postal Code Postal Code ×

Bedrooms

Controls · X X X

Implied Rent-to-Price Ratio 4.5% 4.4% 4.4% 4.5%

R-squared 0.804 0.873 0.872 0.872
N 106,145 105,189 105,189 105,189

Note: This table shows results from regression (A.6). The rent-to-price ratio is constructed by taking the
exponent of the coefficient on this dummy variable. The dependent variable is the price (for-sale price
or annualized for-rent price) for properties listed on iProperty.com in Singapore in 2012. Fixed effects are
included as indicated. In columns 2 to 4, we also control for characteristics of the property: we include
dummy variables for the type of the property (condo, house, etc.), indicators for the number of bedrooms
and bathrooms, property age, property size (by adding dummy variables for 50 equal-sized buckets),
information on the kitchen (ceramic, granite, etc.), which floor the property is on, and the tenure type for
leaseholds. Standard errors are clustered at the level of the fixed effect. Significance levels are as follows: ∗
(p<0.10), ∗∗ (p<0.05), ∗∗∗ (p<0.01).
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Table A.7: House Prices, Banking Crises, Rare Disasters

House Price Index Time Period Banking Crises Rare Disasters

Australia 1880 - 2013 1893, 1989 1918, 1932, 1944
Belgium 1975 - 2012 2008
Canada 1975 - 2012
Denmark 1975 - 2012 1987
Finland 1975 - 2012 1991 1993
France 1840 - 2010 1882, 1889, 1907, 1930, 2008 1871, 1915, 1943
Germany 1975 - 2012 2008
Italy 1975 - 2012 1990, 2008
Japan 1975 - 2012 1992
Netherlands 1649 - 2009 1893, 1907, 1921, 1939, 2008 1893, 1918, 1944
New Zealand 1975 - 2012 1987
Norway 1819 - 2013 1899, 1922, 1931, 1988 1918, 1921, 1944
Singapore 1975 - 2012 1982
South Africa 1975 - 2012 1977, 1989
South Korea 1975 - 2012 1985, 1997 1998
Spain 1975 - 2012 1978, 2008
Sweden 1952 - 2013 1991, 2008
Switzerland 1937 - 2012 2008 1945
U.K. 1952 - 2013 1974, 1984, 1991, 2007
U.S. 1890 - 2012 1893, 1907, 1929, 1984, 2007 1921, 1933

Note: The table shows the time series of house price indices used in the first column. The second and third
column report dates of banking crises or rare consumption disasters for each country in the time period
provided in the first column. Banking crisis dates for all countries, except Singapore, Belgium, Finland,
New Zealand, South Korea, and South Africa, are from Schularick and Taylor (2012). Banking crisis dates
for the countries not covered by Schularick and Taylor (2012) are from Reinhart and Rogoff (2009). Rare
disaster dates indicate the year of the trough in consumption during a consumption disaster as reported by
Barro and Ursua (2008).
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Table A.8: Parameters of the Calibrated Model

Calibrated Variables Value

δ Time discount rate 0.99
γ Risk aversion 10
µ Average consumption growth 2%
ρ Consumption growth persistence 0.85
φ Consumption growth after disaster 0.025
η Exposure of rents to disaster 3
ω Rent growth persistence 0.915
ψ Rent growth after disaster 0.24
λ̄ Unconditional mean of disaster probability 3%
α Disaster probability persistence 0.75
ν Relation between disaster probability and consumption growth 0.1
χ Exposure of disaster probability to disaster 0.05
ξ Consumption drop after disaster 21%

Note: The table summarizes the calibration of the model in Section 2. Time discount rate δ, risk aversion
γ, the drop in consumption following a disaster ξ, the exposure of risky cash-flows to the climate shock
η, and average consumption growth in the absence of a disaster µ are set following the standard asset
pricing literature. All other parameters are calibrated to match some of our new moments estimated in
Section 1. The remaining parameters of the consumption process are chosen to generate a recovery in
consumption growth after disasters (φ > 0) and persistent growth rates (ρ > 0). The magnitude of these
parameters targets a term structure of real interest rates that is slightly upward-sloping with a level of
around 1.0%. The remaining parameters of the rent process are chosen to generate a recovery in rent growth
after disasters (ψ > 0) and persistent rent growth (ω > 0). The magnitudes of these parameters are chosen
to match the shape and the level of the observed term structure of discount rates in the housing market as
described in Section 1. The steady-state conditional probability of disasters, λ̄ is set based on estimates in
Barro (2006), and the remaining parameters for the λ-process are chosen to obtain economically reasonable
interactions between the real economy and the disaster probability, while at the same time matching the
term structure of the risk-free rate (which is directly affected by the disaster probability dynamics through
the precautionary savings channel). In particular, the disaster probability is persistent (α), increases after a
jump (χ), and increases when expected consumption growth is above its trend (ν). x and y are assumed to
have mean zero, which implies: µx = −λ̄φξ and µy = −λ̄ψξ. The unconditional mean of λ pins down µλ as
λ̄ = µλ

1−α−χξ > 0. Consumption and rents are assumed to have the same long-run growth rates, requiring:
µd = µ + (η − 1) λ̄ξ. Further details of the calibration are discussed in Section 2.2. Parameter restrictions
are discussed in Section A.6.1.
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