The Social Integration of International Migrants: Evidence from the Networks of Syrians in Germany

Michael Bailey (Facebook)
Drew Johnston (Harvard)
Martin Koenen (Harvard)
Theresa Kuchler (NYU Stern, CEPR, NBER)
Dominic Russel (Harvard)
Johannes Stroebel (NYU Stern, CEPR, NBER)
Background / Motivation

- Over 70 million people alive today have been forcibly displaced from their home country
- Big question: how can host countries help migrants integrate into their new communities?
 - Some prior work on job market integration
 - Little study of social integration
Our Contribution

• We answer five questions:

1. How can we measure migrants' social integration?
2. How much does integration vary across space?
3. What makes a place good at integrating migrants?
4. Can regional policies influence integration?
5. Does exposure to migrants affect natives' attitudes?
Our Contribution

- We answer five questions:
 1. How can we measure migrants’ social integration?
Our Contribution

- We answer five questions:
 1. How can we measure migrants’ social integration?
 2. How much does integration vary across space?
Our Contribution

- We answer five questions:
 1. How can we measure migrants’ social integration?
 2. How much does integration vary across space?
 3. What makes a place good at integrating migrants?
Our Contribution

- We answer five questions:
 1. How can we measure migrants’ social integration?
 2. How much does integration vary across space?
 3. What makes a place good at integrating migrants?
 4. Can regional policies influence integration?
 5. Does exposure to migrants affect natives’ attitudes?
Our Contribution

• We answer five questions:
 1. How can we measure migrants’ social integration?
 2. How much does integration vary across space?
 3. What makes a place good at integrating migrants?
 4. Can regional policies influence integration?
 5. Does exposure to migrants affect natives’ attitudes?
Our Approach

- We focus on Syrian refugees in Germany
 - \(\approx 900k \) migrants, largest refugee population in Europe
 - Almost all arrived after Syrian Civil War
- Work with de-identified data from Facebook
• Active Facebook users aged 18+ in Germany

• We split into Syrians/Natives/Others using:
 1. Past and present location signals
 2. Self reported hometown/high school
 3. Language usage

• Sample size = 350k Syrians, 18m Germans
• Each dot is a gender x age bucket x region bucket
1. Friendships to nearby German natives
1. Friendships to nearby German natives

2. German language usage
1. Friendships to nearby German natives

2. German language usage

3. Local groups with native Germans
 - Local soccer clubs, volunteering groups, etc
Sample Summary (1)

Panel (a): Syrian Migrant Sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>P10</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>P90</th>
<th>P99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>32.90</td>
<td>10.26</td>
<td>22</td>
<td>25</td>
<td>31</td>
<td>38</td>
<td>48</td>
<td>66</td>
</tr>
<tr>
<td>Female (0/100)</td>
<td>32.07</td>
<td>46.68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>DE College (0/100)</td>
<td>7.92</td>
<td>27.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>N Friends</td>
<td>347.89</td>
<td>385.84</td>
<td>62</td>
<td>117</td>
<td>226</td>
<td>423</td>
<td>751</td>
<td>2431</td>
</tr>
<tr>
<td>N Groups</td>
<td>104.55</td>
<td>137.09</td>
<td>8</td>
<td>22</td>
<td>56</td>
<td>129</td>
<td>256</td>
<td>831</td>
</tr>
<tr>
<td>Qs Since 1st on FB in DE</td>
<td>20.30</td>
<td>8.04</td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>25</td>
<td>28</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>P10</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
<th>P90</th>
<th>P99</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Local Native Friends</td>
<td>5.03</td>
<td>12.24</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>N Local Syrian Friends</td>
<td>14.99</td>
<td>17.43</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>20</td>
<td>36</td>
<td>103</td>
</tr>
<tr>
<td>Produces DE Content (0/100)</td>
<td>30.40</td>
<td>46.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N Local Native Groups</td>
<td>0.55</td>
<td>1.41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

- Syrian migrant sample is (correctly) young, male
- Relatively low levels of integration
 - Highly correlated within individuals
 - Matches SOEP survey (regular contact with 6 Germans on average)
Male, younger migrants better integrated
Measuring Local Integration

- Large data allow us to measure county-level integration
- Use average integration outcomes of SY migrants
 - Will focus on friendships to local German natives
- Ensure we capture real-world patterns by residualizing on (small) spatial differences in FB usage among natives
 - No differences in migrant usage
Regional Estimates of Integration - N Local Native Friends

- Top decile has 2x as many friends as bottom (3.9 vs 7.9)
- High reliability in split-sample
- Matches SOEP survey data on migrant friendships
What drives regional variation in integration outcomes?

- Three possible drivers:
 1. Differences in migrant observables
 2. Differences in migrant un-observables
 3. Effects of place

- Able to rule out possibility 1 directly
 - No large differences in observables across places

- We will separate possibilities 2 and 3 by looking at the (few) migrants who move between counties
• Consider a migrant who moves from a “low integration” place to a “high integration” place. If...

[1] Intuition follows number of recent movers papers [Card et al., 2013, Finkelstein et al., 2016, Finkelstein et al., 2019, Chetty and Hendren, 2018]
Consider a migrant who moves from a “low integration” place to a “high integration” place. If...

- ...place differences are from **migrant characteristics**, movers’ behavior *WILL NOT* change to stayer levels
• Consider a migrant who moves from a “low integration” place to a “high integration” place. If...
 • ...place differences are from **migrant characteristics**, movers’ behavior *WILL NOT* change to stayer levels
 • ...place differences are from **place effects**, movers’ behavior *WILL* change to stayer level
• Consider a migrant who moves from a “low integration” place to a “high integration” place. If...
 • ...place differences are from **migrant characteristics**, movers’ behavior *WILL NOT* change to stayer levels
 • ...place differences are from **place effects**, movers’ behavior *WILL* change to stayer level

• Intuition follows number of recent movers papers
 [Card et al., 2013, Finkelstein et al., 2016, Finkelstein et al., 2019, Chetty and Hendren, 2018]
Measuring the Effects of Place Using Movers (2)

- **Sample**: Migrants who move to a non-neighboring county
- **Outcome**: Do they make a local native friend in a quarter?
- **First**: Group counties by integration outcome terciles
- **Then**: Study migrants moving from one tercile to another
 - Can measure changes in integration around moves
 - Do people who move to a ”better” area integrate more?
Movers From Bottom Integration Tercile

- Suggestive evidence for place-based effects
• Now: Model migrants’ integration as sum of individual unobservables and place-based effects
 • These place-based effects can vary with observables

• When a migrant moves only place-based effect changes

• Movers then let us estimate the share of variation driven by place-based effects
\[y_{i,t}^\Delta = \alpha_0 + \alpha_1 x_{i,t}^\Delta + \xi_t + \epsilon_{i,t} \]

- \(y_{i,t}^\Delta \) = change in friending after moving
 - The change in a Syrian’s probability of making a local native friend in each of the 4 quarters after vs before moving

- \(x_{i,t}^\Delta \) = change in friending if user \(i \) adapted perfectly
 - The difference in average friending between Syrians in the origin and destination who match the mover on demographics

- \(\xi_t \) = Quarter of move fixed effect
- \(\alpha_1 \) identifies share of variation due to place effects
Measuring the Effects of Place Using Movers (6)

- Suggests 74% of variation is due to place-based effects
• Takeaway: Local environments have strong effects on migrants’ integration

• Our estimates are probably a lower bound
 • We can’t capture any place-based effects a person can bring with them (language, education, etc)
What makes environments better or worse for integration?
General and Relative Friendliness (1)

\[N_{\text{LocalFriends}}^{\text{SY} \rightarrow \text{DE}} \times \frac{N_{\text{LocalFriends}}^{\text{SY} \rightarrow \text{SY}}}{N_{\text{LocalFriends}}^{\text{DE} \rightarrow \text{DE}}} = \frac{N_{\text{LocalFriends}}^{\text{DE} \rightarrow \text{DE}}}{N_{\text{Syrj}} / N_{\text{Gerj}}} \]

- **General Friendliness**: How many friends do natives have?
- **Relative Friendliness**: Do natives befriend Syrians in proportion to their local population share?
- Both components are strongly correlated with economic outcomes among Syrians
 - However, this distinction is important for policy
General and Relative Friendliness (2)

(a) General Friendliness

(b) Relative Friending

[Map showing regional data for general friendliness and relative friending in Germany with color-coded data ranges from 0-20 to 80-100%tile]
General and Relative Friendliness (3)

Weighted Correlation = -0.051 (0.050)

Integration %-tile
- 0-20
- 20-40
- 40-60
- 60-80
- 80-100
Why do general/relative friendliness differ across places?
 • Could be characteristics of natives (e.g. preferences)
 • Could be institutions

Unlike the migrant case, there is no initial random assignment across places

Size of place-based effects is important for policy
To What Extent are Native Behaviors Place-Based? (2)

\[y_{i,t}^\Delta = \alpha_0 + \alpha_1 x_{i,t}^\Delta + \xi_t + \epsilon_{i,t} \]

- This design is similar to the design we used for migrants
- \(y_{i,t}^\Delta \) = change in the native’s behavior post-move
 \(\rightarrow \) The change in the native’s level of general/relative friending in the year following their move, relative to the year before
- \(x_{i,t}^\Delta \) = change in behavior if the native adapted perfectly
 \(\rightarrow \) Difference in general/relative friending between observably identical natives in the destination and origin
- \(\alpha_1 \) identifies share of variation due to place effects
To What Extent are Native Behaviors Place-Based? (3)

(a) General Friendliness

- Individual Level Corr = 0.130
- Slope = 0.685 (0.004)
- Y-Int = 2.605

(b) Relative Friending

- Individual Level Corr = 0.014
- Slope = 0.959 (0.064)
- Y-Int = 0.021

- Large slopes → large role for place-based factors
Something about places seems to determine integration.

But what is it?

- Civic programs?
- Geography?
- Government policies?
• Correlations give some sense, but are they causal?
• Do these affect general friendliness or relative friendliness?
Correlations give some sense, but are they are causal?
Do these affect general friendliness or relative friendliness?
Integration courses are the most common policy
Can teach language skills, culture, civics
Teachers in the courses need experience teaching German as a second language
 Relatively few have these qualifications
Areas varied in the availability of potential teachers in 2015-2016
 Instrument for course availability using unemployed specialized teachers
Integration Courses and Teacher Unemployment Rates

<table>
<thead>
<tr>
<th>Log Integration Courses per Syrian 2015-19</th>
<th>Log Unemp. General Schools Teachers 2014 per Syrian</th>
<th>0.088</th>
<th>(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Unemp. Vocat. School Teachers 2014 per Syrian</td>
<td>0.084</td>
<td>(0.05)</td>
</tr>
<tr>
<td></td>
<td>Log Unemp. Driving and Sports Teachers 2014 per Syrian</td>
<td>0.052</td>
<td>(0.06)</td>
</tr>
<tr>
<td></td>
<td>Log Unemp. Other School Teachers 2014 per Syrian</td>
<td>0.229***</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Control Covariates</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Control Log General Unemployment Rate</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>F-statistic</td>
<td>2.37</td>
<td>3.67</td>
<td>0.94</td>
</tr>
<tr>
<td>N</td>
<td>390</td>
<td>367</td>
<td>388</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.349</td>
<td>0.354</td>
<td>0.347</td>
</tr>
</tbody>
</table>

- Unemployment among German as a second language teachers predicts integration course completion
- Strong F-stat given county-level regression
Table 1: IV Estimates - Measures of Integration and Integration Courses

<table>
<thead>
<tr>
<th></th>
<th>Integration</th>
<th>General Friendliness</th>
<th>Relative Friending</th>
<th>Language</th>
<th>Employ. / Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Integration Courses per Syrian</td>
<td>1.698*** (0.33)</td>
<td>0.204 (0.21)</td>
<td>1.389*** (0.25)</td>
<td>0.193*** (0.07)</td>
<td>0.891*** (0.15)</td>
</tr>
<tr>
<td>Control Covariates</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Control Log General Unemployment Rate</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>N</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>390</td>
<td>384</td>
</tr>
</tbody>
</table>

- Integration courses tend to improve language acquisition, employment outcomes, and relative friending
- No large impact on general friendliness
- We tend to find IV estimates > OLS estimates
 - Marginal courses tend to be in low-integration areas
 - Women more likely to forgo courses if supply limited
Individual-level Determinants of Friending

- We’ve seen that:
 - Migrants in different regions vary in their integration
 - Migrant characteristics do not explain these differences
 - Characteristics of place matter more than characteristics of its residents

- But what explains heterogeneity within a place?
 - Previous contact may shape attitudes for natives
 - ...But not clear how wide-reaching these effects are.
School entry cutoffs cause quasi-random variation in contact

Students born before or after the cutoff are placed into cohorts with different demographics

Around the cutoff there is quasi-random variation in an individual’s social network

We consider neighboring cohorts in a school, where one year has a Syrian and one does not
\[Y_i = \alpha_1 \text{SyrianInCohort}_s + \xi_{t,L} + \gamma_s + \epsilon_{i,t}. \]

- Here, \(Y_i \) is a social outcome, \(\text{SyrianInCohort}_s \) is an indicator if an individual has a Syrian in their class, \(\xi_{t,L} \) is a county-by-year FE, and \(\gamma_s \) is a school FE.
High School Cohort Analysis (3)

<table>
<thead>
<tr>
<th></th>
<th>Syrian Friends</th>
<th>Syrian Friends (Excluding Classmates)</th>
<th>Syrian Friends (Excluding Syrian Classmates and their Friends)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrian in Cohort</td>
<td>0.020***</td>
<td>0.005***</td>
<td>0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Syrian in Cohort x Standardized Cohort Size</td>
<td>-0.007***</td>
<td>-0.003***</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>School FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Birth Year x County FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N</td>
<td>115,625</td>
<td>115,625</td>
<td>115,625</td>
</tr>
<tr>
<td>Mean in Control Cohort</td>
<td>0.054</td>
<td>0.029</td>
<td>0.027</td>
</tr>
</tbody>
</table>

- Germans exposed to a Syrian make more Syrian friends
- Even friends in totally different settings
- Points to a shift in attitudes
- Effect is larger in smaller cohorts
Summary

1. We present the most systematic measurements of the social integration of Syrians in Germany.

2. Integration levels are generally quite low, but with a lot of variation across people and places.

3. These differences seem to be largely driven by the characteristics of the place, not the people living there.

4. These local institutions can also be changed with policy, such as integration courses.

5. Contact between Syrians and native Germans can improve integration in the long run.
1. We present the most systematic measurements of the social integration of Syrians in Germany
Summary

1. We present the most systematic measurements of the social integration of Syrians in Germany
2. Integration levels are generally quite low, but with a lot of variation across people and places
1. We present the most systematic measurements of the social integration of Syrians in Germany
2. Integration levels are generally quite low, but with a lot of variation across people and places
3. These differences seem to be largely driven by the characteristics of the place, not the people living there
1. We present the most systematic measurements of the social integration of Syrians in Germany
2. Integration levels are generally quite low, but with a lot of variation across people and places
3. These differences seem to be largely driven by the characteristics of the place, not the people living there
4. These local institutions can also be changed with policy, such as integration courses
1. We present the most systematic measurements of the social integration of Syrians in Germany
2. Integration levels are generally quite low, but with a lot of variation across people and places
3. These differences seem to be largely driven by the characteristics of the place, not the people living there
4. These local institutions can also be changed with policy, such as integration courses
5. Contact between Syrians and native Germans can improve integration in the long run

Appendix - Multivariate Sample Summary

<table>
<thead>
<tr>
<th></th>
<th>Facebook Sample</th>
<th>N Local Native Friends</th>
<th>SOEP Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 25 - 34</td>
<td>-1.012***</td>
<td>-0.894***</td>
<td>-0.873***</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.052)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Age 35 - 44</td>
<td>-2.963***</td>
<td>-3.019***</td>
<td>-2.941***</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.061)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>Age 45 - 54</td>
<td>-4.012***</td>
<td>-4.102***</td>
<td>-4.147***</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.079)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Age 55+</td>
<td>-4.548***</td>
<td>-4.531***</td>
<td>-4.586***</td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.098)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>Female</td>
<td>-3.676***</td>
<td>-3.610***</td>
<td>-3.225***</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.042)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Household Member in DE 1+ Year Prior</td>
<td>-0.377***</td>
<td>-0.290**</td>
<td>-0.352***</td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.099)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>Non-Household Family in DE 1+ Year Prior</td>
<td>0.524***</td>
<td>0.621***</td>
<td>0.421***</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.089)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Quarters Since DE FEs</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Prev Quarters in NUTS3 FEs</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Personal Usage Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>County / State FEs</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Log (1 + Total Outside Germany Friends)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Log (1 + Total Other Groups)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Log (1 + Total Content Produced Past Year)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Household FE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>349,072</td>
<td>349,072</td>
<td>349,072</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.132</td>
<td>0.160</td>
<td>0.165</td>
</tr>
<tr>
<td>Sample Mean</td>
<td>5.029</td>
<td>5.029</td>
<td>5.029</td>
</tr>
</tbody>
</table>
Appendix - Multivariate Sample Summary

<table>
<thead>
<tr>
<th>Age 25 - 34</th>
<th>N Local SY Friends</th>
<th>General Friendliness</th>
<th>Relative Friendening</th>
<th>In Pro Imm. Group (0/100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.073***</td>
<td>-19.097***</td>
<td>-0.059***</td>
<td>0.359***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.098)</td>
<td>(0.001)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Age 35 - 44</td>
<td>-0.116***</td>
<td>-55.586***</td>
<td>-0.081***</td>
<td>0.951***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.103)</td>
<td>(0.001)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Age 45 - 54</td>
<td>-0.132***</td>
<td>-62.533***</td>
<td>-0.098***</td>
<td>1.116***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.108)</td>
<td>(0.001)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Age 55+</td>
<td>-0.139***</td>
<td>-82.666***</td>
<td>-0.098***</td>
<td>2.105***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.108)</td>
<td>(0.001)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.015***</td>
<td>-19.519***</td>
<td>-0.008***</td>
<td>0.882***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.056)</td>
<td>(0.001)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Has College</td>
<td>0.006***</td>
<td>4.131***</td>
<td>-0.000***</td>
<td>1.931***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.060)</td>
<td>(0.001)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Prev Quarters in NUTS3 FEs</td>
<td>X X X X</td>
<td>X X X X</td>
<td>X X X X</td>
<td>X X X X</td>
</tr>
<tr>
<td>Personal Usage Controls</td>
<td>X X X X</td>
<td>X X X X</td>
<td>X X X X</td>
<td>X X X X</td>
</tr>
<tr>
<td>County FEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N
| 17,768,822 |

R-Squared
| 0.020 0.031 |

Sample Mean
| 0.086 0.086 | 122.510 122.510 | 0.074 0.074 | 4.835 4.835 |
Our estimates match state-level survey results.