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Equilibrium, epidemic and 
catastrophe: diffusion of 
innovations with network effects 
Luis M.B. Cabral* 

1 INTRODUCTION 

It seems that important papers are characterised by long publication lags. 
Maskin's famous mechanism design theorem and Holmstrom's seminal 
paper on managerial concerns each took about 20 years to get published.' 
Prominent among the list of famous works that remained unpublished for 
a long time is Paul David's 'Contribution to the theory of diffusion' (David, 
1969). In that paper, David develops an equilibrium model of new tech- 
nology adoption and shows how S-shaped diffusion paths r e k t  hetero- 
geneity among adopters 

In this chapter, I too focw on the issue of diffusion of innovations, 
specifically innovations subject to network effects Like David and others, I 
start from an equilibrium model of adopter heterogeneity. However, I will 
argue that, in the presence of strong network effects, the nature of the adop- 
tion process is quite different from what was previously characterised. 
In particular, I show that network effects imply discontinuous adoption 
paths - mathmatidy speaking, a catastrophe. 

In a previous paper (Cabral, 1990), I noted how network effects may lead 
to discontinuous adoption paths. This chapter goes beyond Wral(1990) in 
two ways. First, I provide a more precise set of conditions under which acat- 
astrophe takes place (section 3). Second, I suggest a possible test to distin- 
guish b e e n  alternative theories of new technology adoption (section 5).2 

Sshaped diffusion paths, one of the most robust empirical regularities 
found in the literature, are consistent with a number of theories I consider 
two types: (1) equilibrium diffusion theories based on adopter heterogen- 
eity, and (2) epidemic theories based on some form of imperfect informa- 
tion andlor word-of-mouth effects I start from a model of the first type and 
add network effects to it. I then compare it to a model of the seoond type, 
also allowing for the possibility of network effects 



Assumption I Each adopter's benefit is proportional to use. 

I am also interested in the case when the innovation is subject to network 
effects, that is, the case when adoption benefits are increasing in the number 
of adopters. Specifically, suppose that each potential user derives a benefit 
from communicating with a set of other users. Such benefit can only be 
gained if the other users are also hooked up to the network, that is, if the 
other users have adopted the innovation as well. Suppose, moreover, that 
the event of being part of the list of desirable links is independent of the 
user's type. Then the use of (and benefit from) the innovation is a linear 
function of the number of users. 

Assumption 2 Each adopter's willingness to pay is a linear function of the 
number of users. 

I assume that potential adopters are different from each other. 
Specifically, each potential adopter is characterised by a parameter 0 E O 
that measures its willingness to pay for the innovation. Specifically, I assume 
that 

Assumption 3 Each adopter's use of the innovation is proportional to the 
adopter's type 8. 

Assumption 4 8 - N(p, a). 

The above assumptions imply that, upon adoption (which I assume is 
irreversible), an adopter of type 0 receives a benefit flow given by 

uf, = 0((l- A) + An,), 

where f is the density of 0. The first equation guarantees that the marginal 
adopter (type 0') is just indifferent between adopting and not adopting at 
time t: the left-hand side is the (flow) cost of adoption, whereas the right- 
hand side is the benefit from adoption. The second equation is a 'closure' 
condition: it implies that the network size is the measure of all adopters of 
type greater than the marginal type. 

The above equations can be combined to yield the following equilibrium 
condition: 

, . 
where F is the cumulative distribution function of 8. 

For each time t ,  and the corresponding value of c,, (15.2) can be solved 
for 0'. Each value of 0' in turn corresponds to a value of n. Therefore, 
(15.2) induces an equilibrium correspondence E(t) giving the possible 
equilibrium values n, for each t.3 Although the graph E(t) is a continuous 
and smooth manifold (Cabral, 1990), the equilibrium correspondence can, 
in principle, be multi-valued. In fact, in the presence of network effects this 
would not be a surprising feature. 

3 NETWORK EXTERNALITIES AND 
CATASTROPHIC ADOPTION PATHS 

If network effects are non-existent or mild, then (15.2) induces a single- 
valued equilibrium correspondence E(t) and a continuous equilibrium 
adoption path (EAP). This is illustrated in Figure 15.1. The left-hand side 
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Figure 15.1 Continuous adoption path with 'mil8 network externalities 
(p,=5, u = l ,  X=.25) 

LHS 

Figure 15.2 Strong network externalities and catastrophe adoption path 
(p,=5, u=I, A=.5)  - 

depicts the two sides in (15.2). As can be seen, for each value of t (and c,), 
there exits a unique solution to the equation. This implies that the equilib- 
rium correspondence Eft) is single valued and there is a unique EAP, 
namely n, = E(t )  . 

Consider now the case when network externalities are significant. This 
case is illustrated in Figure 15.2. The left-hand side of the figure shows that, 
for values of t slightly greater than the one corresponding to RHS2, several 
solutions exist to equation (15.2) (in this figure, equation (15.2) corres- 
ponds to LHS = RHS,). This results in an equilibrium correspondence E(t) 
that is multi-valued for an interval of values of t .  Such equilibrium corre- 
spondence is depicted in the right-hand side of the figure. A multi-valued 
equilibrium correspondence means that there are multiple possible EAPs, 
in fact a continuum of them. 
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bespite this multiplicity of equilibria, it can be readily seen that every 
EAP is discontinuous at least for some t. In fact, the most reasonable EAP 
consists of following the lower branch of E(t )  up to time t' and then 
jumping from n, = n* to n, = n**. In the jargon of topology, the point 
(t ,  n*) is a catastrophe point: although the equilibrium correspondence is 
continuous, a small increase in t implies a discontinuous change in the 
value of n,. 

Figures 15.1 and 15.2 suggest that catastrophes are more likely when 
network externalities are stronger. My first result formalises this intuition: 

Proposition I For given p and u, a catastrophe point exists if and only if 
X > A*. Conversely, for given p and X > 0, a catastrophe point exists if and 
only if a<u*. 

A formal proof may be found in the Appendix. 
In terms of actual behaviour, one would normally not expect to observe . 

a discontinuous EAP like the one suggested above. The shift from n* to 
n** would very likely occur over a period of time. In fact, if one assumes 
that potential adopters make their decisions at time t based on the 
installed base at time t - T (that is, there is an observation lag 7); then it 
can be shown that, for small 7,  the adoption path follows closely E ( t )  up 
to time t' and then moves gradually towards the upper portion of E f t )  
along a concave path. The result of this process is an S-shaped adop- 
tion path.4 

4 ALTERNATIVE THEORIES 

As I mentioned before, the economics literature has produced a large 
number of theoretical explanations consistent with the stylised fact of an 
S-shaped adoption path. Any claim for the worth of a new explanatory 
theory has to be confronted with competing claims. 

At the risk of over-generalising, we may classify the different theories 
into two different categories5 First, we have the equilibrium diffusion theo- 
ries based on adopter heterogeneity. These theories are similar to the model 
I presented above (or vice versa), except for the inclusion of network effects. 
In words, these theories explain diffusion as a result of adopter hetero- 
geneity. Specifically, an S-shaped adoption path results from the shape of 
the cumulative distribution function of the adopters' type. In particular, the 
steep portion of the adoption path corresponds to a high density of 
adopters around the relevant valuation parameter. 
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The epidemic theories, which are based on some form of imperfect infor- 
mation, provide an alternative explanation for S-shaped diffusion paths. In 
its simplest form, the epidemic theory assumes that potential adopters 
become aware of the existence of the innovation by word of mouth. Word- 
of-mouth dynamics are known to have the dynamics of medical epidemics, 
where the rate of change is proportional to the product of the number of 
infected and not-infected agents. This results in an S-shaped path very 
similar to the empirically observed paths6 

To summarize: an S-shaped adoption path does not require a catastrophe. 
In fact, it does not even require that there are network externalities at all or 
that adopters are heterogeneous, so long as there is imperfect information 
of some sort. Therefore, the simple observation of the aggregate rate of 
adoption is not sufficient to validate any theory in particular. In the next 
section, I focus on empirical implications that separate the different theories. 

5 TESTING BETWEEN THEORIES 

As I have argued in the previous sections, there exist many theories that are 
consistent with an S-shaped adoption path. Different theories must then be 
distinguished by observables other than the diffusion path. My second 
result implies one such test for the case when the intensity of use can be 
easily measured. 

As I mentioned before, one natural motivation for the utility function 
(1 5.1) is the distinction between stand-alone and network-related benefit. 
Network benefit is proportional to total use, which in turn is proportional 
to On,. Based on this observation, different theories have different implica- 
tions with respect to the time path of average use, a,, given by 

where g,(O) is the density of 0 types who adopt by time t .  Specifically, we 
have the following results: 

Proposition 2 Under equilibrium adoption with heterogeneous adopters, 
A = 0 implies that a, is decreasing for all t; A = 1 implies that a, is increasing 
for low t and decreasing for high t .  
Proposition 3 Under epidemic diffusion, A = 0 implies that a, is constant 
for all t; A = 1 implies that a, is increasing for all t .  

Table 15.1 summarises Propositions 2 and 3. 
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Table 15.1 Summary of Propositions 2 and 3 

Theory No net effects Net effects 

Heterogeneous adopters L 
Epidemic 

A L  
+ 2 

Installed base (18) 
6m 

Pages per machine (PPM) 

12000 
IB 

PPM 

Year 

Source: Farrell and Shapiro (1992); see also Economides and Himmelberg (1995). 

Figure 15.3 Fax machines in the US: installed base and intensity of use 

6 AN EXAMPLE: FAX MACHINES 

In order to test the applicability of my theoretical results, I consider data 
on the diffmion of fax machines in the USA. Figure 15.3 plots the value of 
the installed base of fax machines as well as the average use per machine 
@ages per machine), from the mid-1960s to 1990. 

The data seem roughly consistent with the theory of diffusion with 
heterogeneous adopters and strong network externalities. First, around 
1987 there was a sharp increase in the installed base, which suggests a 
catastrophe point in the diffusion of fax machines. Moreover, the time 
path of usage per machine seems consistent with the prediction of 
Proposition 2 for the case A = 1: the value of a, is initially increasing and 
then decreasing. 
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Several qualifications are in order, however. First, the time series in 
Figure 15.3 is a bit too short to uncover a clear pattern in the evolution 
of a,. I am currently working on trying to extend this series, in the hope of 
finding stronger results. One problem with extending the series to the 1990s 
is that serious consideration must be given to the emergence of email as an 
alternative to fax (including the emergence of electronic faxing). 

Second, it should be noted that the value of pages per minute (PPM) is 
not necessarily the best measure of a,. In fact, it is not uncommon for fax 
machines to be shared among several users. For this reason, using PPM as 
a measure of average use implicitly amounts to assuming that the number 
of users per machine remained constant throughout the sample period. 
However, anecdotal evidence suggests that, as the price of fax machines 
dropped over time, so did the number of users per machine. Figure 15.3 is 
therefore consistent with the epidemic-theory-cum-network-effects story. 
In other words, the time path of PPM is consistent with an ever increasing 
path of a,. 

7 CONCLUDING REMARKS 

Referring to the plethora of theories of S-shaped adoption paths, David 
(1969: 11/13) argues that 

It would be possible to find some pair of specifications [of 6 0 )  and c,] that would 
give rise to a diffusion path of the appropriate shape. Hence, meaningful efforts 
to distinguish between and verify alternative models of diffusion ought to 
involve some attempt at direct empirical validation of the component specifica- 
tions, including the postulated characteristics of the distributionAX). 

The analysis in this chapter suggests that the problem is deeper than that: 
not only there are multiple functional forms consistent with a given 
time path; there are multiple theories that would produce identical out- 
comes On the positive side, Propositions 2 and 3 suggest that, even with 
aggregate data only, there are ways of distinguishing between competing 
theories. 

To conclude, I should acknowledge that the model in this chapter is 
based on a somewhat narrow class of innovations, namely communication 
technologies, where benefits are derived from actual links between poten- 
tial users However, as in much of the networks literature, results from the 
direct network effects model can be extended to the case of indirect effects 
as well. The crucial point is that Assumptions 1 and 2 (or a variation 
thereof) hold. 
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APPENDIX 

Proof of Proposition I In a continuous equilibrium path (no catastrophe), 
all values 0 > 0 will correspond to the marginal adopter at some time t .  The 
condition determining the marginal adopter is 

A necessary and sufficient condition for the EAP to be continuous is that 
the RHS cut the LHS from above for every t ,  that is, 

or simply 

hf(0) 5 2, 
for all 0 > 0. Substiuting (1 5.3) for c, and simplifying, we get 

The next step is to show that F+ 0f is greater than 1 for some value of 0.7 ,, 

The derivative of F+ 0f with respect to 0 is 

It follows that, for 0 sufficiently large, 

Since, in addition 

it follows that there exists a 0 such that F(0) + Bf(0) > 1. It follows that if A 
is sufficiently large, then the condition (15.4) is violated for some 0. 

The second part of the proposition is quite straightforward. For 0 = p, 
( 1  5.4) reduces to 
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Clearly, for given p and A > O  this condition is violated for a sufficiently 
close to zero. 

Proof of Proposition 2 Under heterogeneous adopter diffusion, per capita 
use is given by 

Given that 8 is normally distributed, we have 

If A = 0, then a, = a2f(0')/ (1 - F(Ot)), which is increasing in 8. Since 0' is 
decreasing in t, it follows that a, is decreasing in t. If h = 1, then a, = dA0'). 
Since a is decreasing in t, the value of a, follows the value off(8'J: increas- 
ing for low values of t, decreasing for high values of t. 

Proof of Proposition 3 Under epidemic diffusion, the population of 
adopters at time t is a representative sample from the population of poten- 
tial adopters Moreover, type 8's use at time t is given by (lA)8+A0nt. 
Together, these facts imply that 

If A = 0, then a, = k, which is constant over time. If A = 1, then a, = pn,, 
which is increasing over time. 

NOTES 

Dimion of innovations with network e$ects 

4. Cf Cabral (1990). Notice I do not call this an equilibrium adoption path since, for a 
period of time, the system is in disequilibrium, gradually moving from a low-adoption 
to a high-adoption static equilibrium. 

5. See Geroski (1999) for a recent survey. 
6. Jensen (1982) proposes an interesting variant of the epidemic theory based on imperfect 

information about the value of the innovation. Specifically,' he assumes that adopters 
diier with respect to their prior beliefs that the innovation is profitable (ather than this, 
he assumes adopters are identical). He shows that, starting from a uniform distribution 
of prior beliefs, an S-shaped equilibrium adoption path is obtained. 

7. One side-result of the above condition is that, for given and u, the E M  is continuous 
if X is sufficiently small. 
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