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Options Arbitrage in Imperfect Markets
STEPHEN FIGLEWSKI*

ABSTRACT

Option valuation models are based on an arbitrage strategy—hedging the option against
the underlying asset and rebalancing continuously until expiration—that is only possible
in a frictionless market. This paper simulates the impact of market imperfections and
other problems with the “standard” arbitrage trade, including uncertain volatility,
transactions costs, indivisibilities, and rebalancing only at discrete intervals. We find
that, in an actual market such as that for stock index options, the standard arbitrage is
exposed to such large risk and transactions costs that it can only establish very wide
bounds on equilibrium options prices. This has important implications for price deter-
mination in options markets, as well as for testing of valuation models.

AMONG ALL THEORIES IN finance, the Black-Scholes option pricing model has
perhaps had the biggest impact on the real world of securities trading. Virtually
all market participants are aware of the model and use it in their decision making.
Academics regularly test the model’s valuation on actual market prices and’
typically conclude that, while not every feature is accounted for, the model works
very well in explaining observed option prices.!

Most option valuation models are based on an arbitrage argument. Under the
assumptions of the model, the option can be combined with the underlying asset
into a hedged position that is riskless for local changes in the asset’s price and
in time and must therefore earn the riskless interest rate. This leads to a
theoretical value for the option such that profitable arbitrage is ruled out.

However, while virtually all options traders are aware of option pricing theory
and most use it in some way, the arbitrage mechanism assumed in deriving the
theory cannot work in a real options market in the same way that it does in a
frictionless market. The disparity between options arbitrage in theory and in
practice is the subject of this paper.

Some of the important assumptions made in der1v1ng the Black-Scholes model
are the following.

* The price of the underlying asset follows a logarithmic diffusion process that
can be written ’

dP/P = R dt + v dz, (1)
where R is the drift of the price per unit time, dt denotes an infinitesimal

* Stern School of Business, New York University. The author would like to thank John Merrick,
Roni Michaely, William Silber, and the referee, Mark Rubinstein, for helpful comments.

! Empirical studies of the option pricing model include Black and Scholes (1972), Galai (1977),
and Macbeth and Merville (1979), among many others. Galai (1983b) provides a review of the
literature on testing option models.
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time increment, v is the volatility of proportional price change per unit time,

and dz represents Brownian motion, the realization of a random variable

distributed as normal with mean 0 dt and variance 1 dt.

The volatility v is known.

¢ There are no indivisibilities.

¢ There are no transactions costs.

o Markets are “perfect” in other ways. There is no limit on borrowing or
lending at the same riskless interest rate, and there are no taxes or con-
straints on short selling with full use of the proceeds.

In fact, none of these assumptions is true of real financial markets, and the
arbitrage by which the theoretical pricing relation is supposed to be enforced,
i.e., forming a riskless hedge, rebalancing continuously, and holding until option
expiration, cannot actually be done with real options. For example, prices do not
follow a continuous diffusion when the market is closed. Between trading ses-
sions, prices can make nonlocal changes from one trade to the next with no
possibility of rebalancing a hedged portfolio in between.”

One of the biggest problems in real world options trading is determining the
volatility of the underlying asset’s price. This is not a known constant parameter;
nor is there even general agreement on the best procedure for estimating it. On
the contrary, actual volatility, and also the market’s volatility estimate, appear
to vary randomly over a wide range.® Moreover, even if the true value for volatility
is known, the realized volatility in a given (finite) series of prices will differ from
the true value due to sampling variation.

Errors in predicting volatility lead to two kinds of errors in trading options.
Most important is the error in evaluating the fair price for the option. Too low
(high) a volatility estimate gives a model value that is also too low (high), and
for options that are not deep-in-the-money the price is quite sensitive to small
changes in the volatility parameter. An investor who has a more accurate
volatility estimate than the market can, in theory, form a fully hedged position
earning a return higher than the riskless rate. However, such a trade is compli-
cated by the fact that the unknown volatility is also a determinant of the hedge
ratio. The arbitrage position will not earn its excess return risklessly if an
incorrect hedge ratio is used. Thus, unknown volatility affects both the return
and the risk in options arbitrage.

Securities are also indivisible. Most traders would prefer to trade stock, for

2 Rebalancing at discrete intervals rather than continuously has been examined by several authors.
Galai (1983a) finds that there is little impact on the mean return earned by a hedged position but
that its variance is increased. Boyle and Emanuel (1980) observe that the probability distribution of
hedge returns is affected, and therefore so is the methodology required for empirical tests on options.
Interestingly, both Brennan (1979) and Rubinstein (1976) show that continuous rebalancing is not
necessary for the Black-Scholes model to hold. With the right combination of security price
distribution and investor utility function, the equilibrium option price will be the Black-Scholes value
even if rebalancing is impossible. An important assumption needed for this result is that aggregation
conditions hold, so that the market behaves as if there were a single “representative” investor.

3 Time variation in volatility of stock prices has been discussed by a number of authors, including
Black (1976), Beckers (1981), and Christie (1982). Volatility estimates implied by the option pricing
model also are’highly variable, as shown by Latane and Rendleman (1976) and Rubinstein (1985).
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example, in round lots of 100 shares. The effect of indivisibilities is greater when
futures contracts are used to hedge an options position, because contract size is
large. For instance, suppose stock index options with market exposure equal to
$500,000 worth of stock are to be hedged using Standard and Poor’s 500 futures
contracts. At current (January 1989) prices, the value of one S&P contract is
about $140,000. This allows one to construct only positions with hedge ratios of
0.28, 0.56, or 0.84 by selling one, two, or three contracts. Obviously, the indivisi-
bility of the futures contract will lead to hedging inaccuracy.

Probably the most important “imperfection” of real financial markets is the
existence of transactions costs. Arbitrage relationships that hold in theory are
always affected by transactions costs in practice. Broadly speaking, transactions
costs create bounds around the theoretical price within which the market price
may fall without giving rise to a profitable arbitrage opportunity large enough to
cover the cost of exploiting it.*

Arbitrage bounds on options prices cannot be easily computed. Because of the
dynamic nature of the hedging strategy, the total transaction cost in a particular
arbitrage trade will depend on how much the position has to be rebalanced. That.
is a function of the actual path taken by prices, so the trader cannot know in
advance how large these costs will be. Nor can a researcher testing an option
pricing model on market data know how big a deviation has to be before it
represents a large enough after-cost profit to be a true “mispricing.”

It is obvious that the other perfect markets assumptions, such as unlimited
borrowing at the riskless interest rate, short sales with full use of the proceeds,
absence of taxes, and so forth, do not hold any better in real markets than the
ones we have already mentioned.

How can we find out how much options arbitrage is affected by market
imperfections? One possibility would be to attempt to incorporate the imperfec-
tions directly into our theoretical valuation models. For some cases this is
possible. For example, we can compute the amount of mispricing that arises when
the wrong volatility estimate is used, and Leland (1985) is able to make some
headway in determining theoretically the effect of proportional transactions
costs. However, for the most part, the mathematical problems raised by treating
realistic market imperfections are too complex to be tractable theoretically.

A second solution is to simulate trading strategies on historical option price
data and to tabulate the results.® Analyzing historical data has always been the
standard approach for testing option models, but there are several problems with
it. The researcher is limited to examining a single set of data that may not be
very long and over which he or she has no control. The researcher cannot know,
for example, what the true ex ante distribution for prices was. Other difficulties

* Most published empirical tests of option pricing models find some mispricing in the market
relative to the models’ prescriptions, but they also find that these potential profit opportunities
disappear when some estimate of the transactions costs involved is considered. Phillips and Smith
(1980) document the costs of setting up and unwinding an options hedge and then show that these
outweigh the possible profits uncovered by many earlier studies.

® Garcia and Gould (1987) simulate the performance of portfolio insurance, an application of
option arbitrage, on historical data with realistic transactions costs and rebalancing. They find
substantial deviations between actual results and theoretical estimates.
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are that actual volatilities change over time, realized volatilities may differ
considerably from the ex ante values, market prices may at times be distinctly
nonlognormal, and so on.

The approach we will take in this paper is to simulate the performance of
options hedge strategies on simulated price data. We specify values for the drift
and volatility, R and v, and construct 250 randomly drawn price series and then
do Monte Carlo simulations to determine the effect of some of the market
imperfections discussed above.® This procedure has several things to commend
it. First, it is relatively easy to do. Second, we know exactly what the true
parameters of the price-generating process are. The results we obtain empirically,
therefore, are directly comparable to those we would obtain by using the same
parameters in a correctly specified theoretical model. Third, like other numerical
methods, our simulations can be made arbitrarily accurate simply by using (i.e.,
creating) more observations.

In the next section we describe the experimental design, how the prices are
generated, and how the hedged positions are constructed. Then we examine
summary statistics on the realized returns and risk on the securities in the
sample. These results will show that rebalancing the hedge daily rather than
continuously has a considerable impact on its risk. Section II looks at other
market imperfections which predominantly affect the level of risk in a hedged
option position. These are the use of an incorrect volatility estimate in computing
the hedge ratio and indivisibilities.

Section III analyzes transactions costs. We compute the after-costs returns
and risk on hedged positions using approximately the transactions cost structure
that currently applies to market makers and retail traders in stock index options.
We also look at the performance of alternative trading strategies designed to
reduce costs by rebalancing less frequently.

In Section IV we consider the arbitrage bounds that this cost structure would
imply and compare them to typical market bid-ask spreads. We find that hedging
an option with the underlying asset dynamically and rebalancing the position
once a day until expiration would be exposed to such large transactions costs and
risk in actual markets that it is impractical even for an options market maker.
Rebalancing less frequently can reduce costs, but risk increases. Thus, the
“standard” arbitrage can establish only very wide bounds on real option prices.
This has important implications for price determination in options markets, as
well as for testing valuation models.

The simulations we look at in the paper cover the standard arbitrage trade
with one-month options. In Section V we present some results and discussion
relating the analysis to longer maturity options and to other option replication
strategies, such as portfolio insurance and the trading of actual market makers.

The final section summarizes our findings in more detail.

In an early paper, Boyle (1977) proposes Monte Carlo simulation as a procedure for valuing
options. Etzioni (1986) uses a simulation strategy to examine alternative rebalancing procedures for
portfolio insurance. We will discuss the particular case of portfolio insurance in more detail below.
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I. Experimental Design

If an option is priced at its arbitrage-based value in the market, the strategy of
buying the option, forming the hedged portfolio, and carrying it, rebalancing
continuously, until expiration will return exactly the riskless rate of interest.” To
see how this strategy behaves with market imperfections such as are present in
actual options markets, we begin by constructing a set of price series and option
values to use as the basic data in the hedge tests.

The choice of parameters such as volatility is open. Throughout the paper we
use parameter values that have been typical for actual options on broad-based
stock indices. For convenience we will often refer to the underlying asset as the
“stock,” but our results will of course apply to other kinds of options as well.

Two hundred fifty price series of 25 observations each (indexed as ¢t = 0,- - -,
24) were constructed, each starting at the initial value of P, = 100. This
corresponds to a hedge period of about one month.® Notice that, in doing this,
we have already departed from a world in which continuous rebalancing is
possible. The hedge is rebalanced at most once a day.

For each series, subsequent prices are computed according to equation (2).
This process for prices is implied by the assumed returns equation (1):

t+1 = PteR+Uz, (2)

where R is the mean rate of price change per day, v is the daily volatility, and 2
is a random draw from a standardized normal probability distribution.

For this study we have set R and v to be the daily equivalent of an annual 15%
and 0.15, respectively. That is,

R = (log (1.15))/260 = 0.000538,
v = 0.15/260°° = 0.00930.

Next, corresponding series of option prices and theoretical hedge ratios were
constructed using the Black-Scholes model, for call options with four different
strike prices: 97, 100, 103, and 105. This gives us an in-the-money, an at-the-
money, an out-of-the-money, and a deep-out-of-the-money option. In pricing the
options, the riskless interest rate is assumed to be 5.0 percent and the volatility
is taken to be the true volatility, 0.15 at an annual rate.

Table I shows summary statistics for the constructed price series in our sample.
The first line describes the stock price series. The initial price was 100 for each
series, and the mean terminal price was 101.43, with a standard deviation across
series of 4.85. The mean of the annualized percentage rate of return was 15.52,
calculated from 100 X (Pys/Py; — 1) and annualized at simple interest. The
standard deviation was annualized by multiplying by the square root of 260/24.

” Note that, since the value of the funds invested in the portfolio changes as it is rebalanced,
earning the riskless rate implies earning a continuous cash flow at that rate on the current, time-
varying value of the portfolio.

8 There are between 250 and 260 trading days per year, so the typical month has 21 to 22 trading
days. We will use 260 in converting between daily and annualized parameter values.
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Table I

Summary Statistics for Simulation Data Sample
The table shows summary statistics from 250 simulated series of 25 daily prices
each. Stock prices are generated with an annual drift of 15% and volatility of 0.15.
Option prices are computed from the underlying stock prices using the Black-Scholes
model, assuming volatility of 0.15 and riskless interest of 5.0 percent. “Mean” and
“Std Dev” figures refer to sample means and standard deviations across the 250
series. Returns are annualized by multiplying by 260/24; volatilities by (260/24)°°.

Stock
" Final Price Percent Return Volatility
Initial
Price Mean Std. Dev. Mean  Std. Dev. Mean  Std. Dev.
100 101.43 4.85 15.52 15.95 0.150 0.022
Calls
. Final Value In the Money
Initial
Strike Price Mean Std. Dev. Number Avg. Amount
97 4.01 491 4.13 204 6.02
100 2.05 2.75 3.31 152 4.52
103 0.84 1.25 2.29 92 3.40
105 0.41 0.65 1.63 60 2.72

Within each series of 25 prices, the standard deviation of the log price relatives
produces a realized volatility. The mean of these sample volatilities in our
constructed data turned out to be 0.150, as it should. This suggests that the series
are representative.

It is very interesting to see that the standard deviation of the realized volatilities
across series was as high as 0.022. In other words, knowing that the true volatility
is 0.15 only tells us that there is about % probability that a given month’s
volatility will be somewhere between 0.128 and 0.172.° To options market makers,
a difference of that size between volatility estimates is considered very large.
What this shows is that, even if the true volatility is known, there is a sizable
standard error of forecast in predicting what volatility will actually be experienced
in daily prices over a month.

The second part of the table summarizes the returns to buying call options
“naked.” For example, the at-the-money call was priced initially at 2.05. Its end-
of-period value averaged 2.75, with a standard deviation of 3.31. Of course, the
distribution of these values is highly skewed: of 250 options, 152 ended up in the
money, by an average amount of 4.52. The remainder expired worthless.

Table II shows the trading strategies and expected arbitrage profits that a
trader would be able to earn under the perfect markets assumptions of the Black-
Scholes model, assuming that the market had mispriced these options.

Consider the at-the-money calls. Knowing that the true price volatility of the
underlying asset was 0.15, the trader would value the 100 strike price calls at
2.05. If the market’s volatility estimate was 0.10, those calls would be selling for
1.45. The indicated arbitrage would then be to buy the underpriced calls and

® Due to the effect of the Central Limit Theorem, the distribution of these realized volatilities is
very close to Gaussian in our sample.
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Table II
Theoretical Arbitrage Profit When True Volatility is 0.15
The table shows the standard option arbitrage trade from the perspective of an arbitrageur who
believes the true underlying volatility to be 0.15. Each line gives the market’s volatility, the market
option price, and hedge ratio and analyzes the arbitrage position that would be taken.

;::::; Excess Return
Market’s - " Cost of S
Strike  Volatility Call Hedge Riskless Annual
Price Estimate Price Ratio Call Stock Position $ amt. %
97 0.10 3.62 0.878 Buy Sell —74.90 0.385 5.57
0.13 3.84 0.817 Buy Sell —74.69 0.170 2.46
0.15 4.01 0.785 No Trade 74.52 0.000 0.00
0.17 4.19 0.759 Sell Buy 74.33 0.184 2.68
0.20 4.48 0.728 Sell Buy 74.04 0.478 6.99
100 0.10 1.45 0.565 Buy Sell —53.39 0.600 12.18
0.13 1.81 0.553 Buy Sell —53.03 0.240 4.91
0.15 2.05 0.548 No Trade 52.79 0.000 0.00
0.17 2.29 0.545 Sell Buy 52.55 0.241 4.96
0.20 2.65 0.542 Sell Buy 52.19 0.602 12.50
103 0.10 0.35 0.209 Buy Sell —29.56 0.490 17.95
0.13 0.64 0.269 Buy Sell —29.27 0.206 7.63
0.15 0.84 0.299 No Trade 29.07 0.000 0.00
0.17 1.06 0.323 Sell Buy 28.85 0.215 8.06
0.20 1.39 0.351 Sell Buy 28.52 0.548 20.81
105 0.10 0.10 0.075 Buy Sell —17.03 0.309 19.67
0.13 0.27 0.135 Buy Sell —16.87 0.144 9.24
0.15 0.41 0.171 No Trade 16.72 0.000 0.00
0.17 0.57 0.203 Sell Buy 16.56 0.163 10.69
0.20 0.84 0.242 Sell Buy 16.29 0.435 28.96

short the stock using a hedge ratio of 0.548 shares per call. The initial cost of
this position would be negative, meaning there would be a net cash inflow of
53.39.

As time elapsed and the stock price changed, this position would be rebalanced
by adjusting the amount of stock sold short, always computing the new hedge
ratio using 0.15 as the volatility estimate. Since the trade brings in cash at the
beginning, “earning the riskless rate of return” would correspond to a continuous
loss equal to paying the riskless interest rate on the net amount of funds remaining
in the position. Regardless of the actual course of prices during the 25-day hedge
period, the initial mispricing of the option would yield an excess return, (i.e., a
reduction in the cost of obtaining funds) of $0.600. As a percentage of the initial
value of the hedge portfolio, this would be an annualized 12.18 percent.

On the other hand, if the market’s volatility estimate were 0.20 instead of 0.10,
the arbitrageur would write calls at 2.65, buy stock, and create a hedged portfolio
costing 52.19. Over time this would earn the riskless rate plus the initial option
overpricing of $0.602. The excess return would be 12.50 percent.

The table shows two important properties of this arbitrage trade. One is that
the dollar value of the arbitrage portfolio tends to be large compared to the
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amount of mispricing, even for a large difference in volatility estimates. In the
example we just described, it was necessary to take a position in over 50 dollars
worth of securities and to be prepared to manage the position carefully for a
month in order to earn an excess return of 60 cents. This problem is less severe
for the out-of-the-money calls.

Also apparent in these figures is the fact that using an incorrect volatility
estimate makes a bigger difference in the value of a call than in its hedge ratio,
or delta. The delta for the at-the-money calls, in particular, is hardly affected at
all by changes in volatility over a wide range. By far the largest impact is on the
deep-out-of-the-money calls when the implied volatility is too low. In that case,
the market price and the delta both are much too close to zero. (It should be
understood that these properties come from the Black-Scholes equation—they
are not produced by our simulation.)

II. Market Imperfections and Risk

This section begins to examine hedge strategies. In every case we consider the
arbitrage trade of buying a call option at the market price and selling the number
of shares indicated by the hedge ratio. Thereafter, each day the hedge ratio is
recalculated and the hedged portfolio is rebalanced by buying or selling the
underlying asset. The day’s excess return is calculated using equation (3):

ER, = (C; — Ciy) — her(Py — Piy) — r(Coey — h 1Py y), (3)

where ER is the excess return, C is the call price, P is the price of the underlying
asset, h is the hedge ratio called for by the particular trading strategy, and r is
the one-day riskless interest rate, based on an annual rate of 5.00 percent.

The daily excess return figures are then cumulated, leading to 250 total excess
return amounts, one from each price series, for each combination of hedge
strategy and strike price. The sample mean and standard deviation statistics for
the excess return totals show how introducing different market imperfections
into the system affects the expected return and the risk of an options hedge.

As a base for comparison, we begin by analyzing a “Base Case” without
imperfections. As mentioned above, it is not the Black-Scholes case exactly, since
the position is rebalanced only once a day. It does, however, correspond to the
typical methodology used in empirical tests of option pricing models.

The first line in Table III gives the Base Case results on the standard deviation
of excess returns across the 250 price series. The figures are shown as annualized
percentage rates. Thus, although buying the 100 strike calls at the theoretical
value of 2.05 and selling short 0.548 shares per option would yield zero excess
return with a standard deviation of zero if it were possible to rebalance the
position continuously, daily rebalancing leads to a risky hedge whose annualized
rate of return over the holding period has a standard deviation of 6.52 percent.
The mean return is also nonzero in the sample but not statistically significant.
(Since none of the means for the strategies examined in Table III was significantly
different from zero, we do not report them.)

Before going on to look at market imperfections, it is worth reflecting briefly
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Table III

Effects of Market Imperfections on Hedge Standard

Deviation (Annualized Percent Standard Deviation)
The table shows the standard deviation across 250 price series of the annualized
cumulative excess returns to option expiration on hedged positions that are long the
call option and short the underlying stock. Positions are rebalanced daily. The Base
Case uses the exact hedge ratio computed from the true volatility of 0.15. Incorrect
Volatility results show the effect of computing the hedge ratio with an incorrect v.
Indivisibilities results show the effect of rounding the correct (v = 0.15) hedge ratio
to the nearest integer multiple of K.

X =97 X =100 X =103 X =105

Base Case 3.34 6.52 11.18 16.70
Incorrect Volatility
v=0.10 4.89 8.18 24.07 64.31
v=0.13 3.59 6.70 13.56 24.15
v=0.15 3.34 6.52 11.18 16.70
v=10.17 3.68 6.84 10.76 14.88
v=0.20 4.85 7.84 11.80 16.01
Indivisibilities
K =0.02 3.42 6.62 11.25 16.05
K =0.05 3.25 6.64 11.38 19.68
K=0.10 3.82 7.82 12.09 16.46
K=0.25 5.38 9.64 19.06 16.80
K=0,1 11.68 17.10 1680.91 2868.26

on the meaning of these standard deviations. The riskless interest rate has been
assumed to be five percent. In comparison, a standard deviation of more than six
percent makes the position quite risky. It is apparent that, simply by rebalancing
discretely instead of continuously, we have departed markedly from the theoret-
ical world of Black-Scholes.

In the second section of Table III we look at hedging when the volatility of the
underlying asset is not known. When a trader uses a volatility estimate that is
not equal to the volatility that is actually experienced during the option’s lifetime,
both the expected return and the risk of the trader’s arbitrage portfolio are
affected.

For example, we saw in Table II that, if the volatility is 0.15, the true value of
the 100 strike call is 2.05. Suppose the trader uses an incorrect volatility estimate
of 0.10. (This could be due to an incorrect estimation procedure, or it might be
the stock’s true ex ante volatility, but the realized prices during the option’s
lifetime could have a sample volatility of 0.15.)'° The call value at a 0.10 volatility
is only 1.45. If the trader were to write the option at that price and hedge it by
buying the stock, he or she would have sold it for 0.60 below its true value. A
perfect hedge would then lock that mispricing in as a certain loss on the trader’s
position.

The second problem caused by an inaccurate volatility estimate is that the

1% Note that the sample volatility can differ from the true volatility only in discrete time, such as
in the daily price series we are considering. If prices generated by a diffusion process could be followed
continuously, the realized volatility over any finite time interval must equal the true volatility with
probability 1.0.
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* hedge ratio used in forming the arbitrage portfolio will be wrong. In this case,
correct hedging (i.e., using v = 0.15) would lead to (approximately) a 0.60 loss;
incorrect hedging with a volatility of 0.10 would also induce a standard deviation
in the annualized hedge return of 8.18 percent.

For the in-the-money and the at-the-money options, the standard deviation of
returns on a hedged position does not increase much compared to the risk level
that is already present in the Base Case. However, for the out-of-the-money and
especially the deep-out-of-the-money calls, the impact is substantial. There is
also an interesting asymmetry between overestimating and underestimating the
volatility. Hedging with too high a volatility estimate does not seem to increase
hedge risk much at all. However, underestimating the volatility leads to a
considerably larger standard deviation. These results suggest that, in trying to
cope with uncertainty about the volatility, it might be appropriate to compute
the hedge ratio for out-of-the-money options using a higher volatility than what
the trader expects to prevail in the future, on the grounds that it is less costly to
err on the side of overestimating than underestimating volatility for these options.

The other imperfection we consider in Table III is the indivisibility of the
underlying asset. When the number of options to be traded is small or the
underlying asset is like a futures contract that must be traded in large units, the
hedge ratio cannot be set to the exact value dictated by the valuation model and
the position will necessarily be slightly over or under hedged at all times. How
much additional risk does this cause?

The third section of Table III shows the effect on hedge risk when the set of
possible hedge ratios is constrained by the indivisibility of the underlying asset.
Consider a hedged position consisting of an option on a single share of stock.
Regardless of the delta produced by the valuation model, the hedge ratio can take
only values of zero or one, depending on whether a share is sold. The hedger
attempting to use the Black-Scholes model in this case might sell a share if the
delta were greater than 0.5 and remain unhedged if it were less than 0.5.

With option contracts on N units of the underlying asset, the hedge ratio can
only take on values that are an integral multiple of K = 1/N. Table III shows
the standard deviation of hedge returns for several values of K. For the most
part, the results bear out the expectation that the larger the value of K (i.e., the
less accurate the hedge can be because of indivisibility), the greater will be the
risk. However, it is interesting that the effect of rounding the hedge ratio to the
nearest K is not very great for the out-of-the-money options even though a given
K leads to a relatively larger inaccuracy for them due to their smaller deltas. But
by the time K is 0.25, there is a sizable degradation in the effectiveness of the
hedge for all but the 105 strike calls.

The final line in Table III shows the strategy of either no hedge or a full hedge
(h =0 or 1.0), depending on whether the theoretical delta is less than or greater
than 0.5. This is close to a strategy of hedging only options that are in the money
and leaving out-of-the-money options unhedged. The impact on hedge risk is
substantial for in- and at-the-money calls. For the out-of-the-money options, the
initial “hedged” position contains only the naked call because the deltas are both
below 0.5. The standard deviation is expressed here as a percentage of the initial
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position value, which is very small; hence, the numbers in the table become very
large.

III. Transactions Costs

We now turn our attention to the impact of transactions costs on options
arbitrage. The market imperfections discussed in the last section induced risk
but no bias toward higher or lower returns, but transactions costs unambiguously
reduce the profitability of every trading strategy. The complication is that the
transactions costs that must be paid in hedging an options position depend on
the realized path taken by prices.

The transactions cost structure also varies considerably among different classes
of traders. Commissions paid by retail investors, in particular, are much larger
than those paid by market makers, and they depend on the brokerage firm
(whether a “discount” or a “full service” broker) as well as on the size of the
trade (with discounts for larger volume). We will look at two cost structures, one
corresponding to the trading costs borne by a typical options market maker, and
the other to the costs that would be paid by a retail trader dealing with a discount
broker. These are representative of the costs applying to trading in stock index
options in early 1987.

An options market maker is assumed to pay an exchange fee of $1 per option
contract traded (i.e., $0.01 per underlying share). There is no charge for exercise
of options finishing in the money, and it is assumed that the market maker
trades options without having to pay the bid-ask spread. For hedging transactions
in the underlying stock, the market maker pays $0.05 per share plus one half of
the bid-ask spread, which we assume to be 1. Transactions costs are paid on
both the initial sale and subsequent repurchase of the shares.

Since retail customers pay eommissions that vary with quantity, we assume
that three option contracts are traded, that is, calls on 300 shares. The cost is $8
per contract plus 1.5% of the dollar amount of the transaction. A similar fee
must be paid to exercise options expiring in the money. The commission on a
stock trade of $35 plus 0.5% of the dollar amount traded, plus half of the bid-ask
spread of ¥. Again, commissions are paid on both opening and closing trades.

Table IV shows the effect of transactions costs on the option hedges we have
been considering. As before, we begin with an analysis of the Base Case. We then
look at alternative strategies designed to limit transactions costs by reducing the
number of rebalancing transactions.

Consider the Base Case results for the 100 strike calls. The arbitrage trade is
to buy the call at its theoretical value of 2.05 and to sell 0.548 shares short,
rebalancing daily. At expiration, options finishing in the money are exercised
and the remainder expire worthless. (We assume cash settlement, so that one
does not have additional costs to dispose of stock acquired through exercise.)
The hedge position in the stock that remains on the expiration day is liquidated
in the stock market.

The mean number of stock trades across all 250 series was 24.6, and the mean
total number of shares traded was 2.64 (per call option on one share). Thus, on
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Table IV

Comparison of Mean Transactions Costs
The table shows the mean and standard deviation across 250 series for arbitrage excess returns
including transactions costs under different rebalancing strategies. The cost structure and arbitrage
strategies are described in the text. Returns are in dollars per option on one share. Trades is the
average number of days with a transaction in the stock. Shares traded is the average total number of
shares traded in hedging the option for 25 days.

Excess Return Including Transaction Costs

No Costs Market Maker Retail
Shares Std.
Trades Traded Mean Std. Dev. Mean Std. Dev. Mean Dev.
Strike 97
Base Case 24.2 2.64 0.037 0.230 —0.269 0.223 —10.104 0.684
No Rebalance 2.0 1.57 0.126 1.022 —0.060 1.022 —-1.638 1.019
Rebalance Every K Days
K=2 128  2.30 0.043 0.349 —0.226 0.341 —5.934 0.465
K=5 6.0 2.03 0.028 0.505 —0.210 0.496 —3.414 0.532
Rebalance When h
Changes by K
K=0.10 6.1 2.21 0.039 0.334 —0.220 0.326 —-3.508 1.175
K=0.25 2.8 1.73 0.128 0.720 -0.076 0.718 -1.951 0.879
Strike 100
Base Case 246 264 0.038 0318 —0.269 0.314 —10.144 0.664
No Rebalance 2.0 1.10 0.160 1.420 0.026  1.420 —-1.175 1.417
Rebalance Every K Days
K=2 12.9 2.20 0.043 0.457 —0.214 0.447 —5.785 0.607
K=5 6.0 1.76 0.051 0.687 —0.157 0.672 -3.100 0.710
Rebalance When h i
Changes by K
K=0.10 8.3 2.16 0.040 0.391 —0.213 0.380 —4.142 1.163
K=0.25 3.7 1.64 0.049 0.641 —0.145 0.633 —2.193 0.778
Strike 103
Base Case 24.4 2.11 0.043 0.300 —0.204 0.294 —9.694 0.870
No Rebalance 2.0 0.60 0.113  1.445 0.036  1.445 —0.801 1.443
Rebalance Every K Days
K=2 12.8 1.67 0.049 0.461 —0.149 0.440 —5.350 0.672
K=5 5.9 1.23 0.048 0.695 —0.101 0.674 —2.668 0.713
Rebalance When h
Changes by K
K=0.10 7.9 1.67 0.050 0.354 —0.148 0.345 —-3.607 1.509
K =025 3.7 1.21 0.025 0.592 —0.121 0.581 —1.880 0.819
Strike 105
Base Case 23.9 1.51 0.033 0.258 —0.147 0.254 -9.198 0.985
No Rebalance 20 034 0.076 1.216 0.027 1.216 —0.629 1.215
Rebalance Every K Days
K=2 12.6 1.18 0.042 0.415 —0.101 0.395 —4.982 0.684
K=5 59 0.83 0.032 0.570 —0.072 0.548 —2.385 0.599
Rebalance When h
Changes by K
K=0.10 6.3 1.14 0.022 0.332 —0.116 0.318 —2.704 1.621

K=0.25 3.0 0.82 -—0.004 0.618 —0.107 0.605 —1.411 0.956
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average, the dynamic hedging strategy required approximately five share trans-
actions for every share in the initial hedge position. This can lead to a very costly
hedge for retail traders who pay a minimum charge per stock trade no matter
how few shares are involved.

For comparison, the next two columns show the sample means and standard
deviations of excess returns when there are no transactions costs. The effect of
trading costs can then be seen in the deviations from these values. Thus, without
taking account of transactions costs, the sample mean excess return for the 100
strike hedges was $0.038, with a standard deviation of $0.318. Including trans-
actions costs, a market maker would have experienced a mean of $—0.269, with
a standard deviation of $0.314, meaning that the net impact of transactions costs
was to reduce mean excess returns by (—0.269 — 0.038) = $—0.307.

A retail trader would have huge costs if he or she attempted to trade the option
arbitrage according to the dictates of the Black-Scholes model, losing more than
$10 on average when the option’s initial value was only about $2. Due to the
variation across price series in the amount of rebalancing, and therefore trading
costs, the retail trader’s standard deviation was also substantially higher than
that borne by the market maker. However, this is obviously of lesser importance
than the éffect on the mean return.

The patterns exhibited by the at-the-money calls were also present in the
others. The reduction in mean for the market maker varied from —0.180 to
—0.307, while the standard deviation was only slightly affected. The retail trader
took losses far greater than the initial price of the option in each case.

It is clear from these figures that transactions costs make a substantial
difference in the outcome of an options arbitrage, even when done by a market
maker. We will see this in more detail in the next table. It suggests that trading
strategies that economize on the number of transactions or the number of shares
traded might be worth pursuing, even though one would expect risk to increase
when the hedge is not rebalanced as often as possible.

At the opposite pole from continuous rebalancing is no rebalancing at all. That
strategy is examined in the second line of results for each strike price. The trader
takes an options position at the outset, hedges it according to the theoretical
hedge ratio, and holds it until expiration without any further trading of the stock.
This reduces the number of transactions to two: an opening and a closing trade,
and the total number of shares traded is just twice the initial hedge ratio.

For the 100 strike call, the no-rebalancing strategy increases the mean excess
return without transactions costs to $0.160, but the standard deviation has more
than quadrupled, to $1.420. Commissions paid by a market maker reduce the
mean to $0.026, a net cost of $0.134 on average instead of the previous $0.307. A
retail trader’s cost is cut by nearly a factor of ten, but it remains high enough
that the trade is still very unattractive. ‘

What an arbitrageur wants is an intermediate strategy that limits both trading
costs and risk. Two possibilities are commonly suggested. One is to rebalance
less frequently than every day, perhaps every two days or every week. This limits
the number of trades but allows for the possibility that the hedge proportions
can get far out of line in between rebalancing points. A second approach is to
monitor the discrepancy between the actual and the theoretical hedge ratios
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daily, but only to rebalance when the hedge gets too far from the correct value.
This leads to frequent rebalancing in some cases and little in others, depending
on the actual stock price path. The strategy allows more variation in the number
of trades among hedges but keeps the hedge ratio close to the theoretical value
at all times.

The table shows the results of two such strategies of each type. Lines three
and four for each strike examine rebalancing the hedge every two days and once
a week (i.e., five trading days). The following two lines relate to the strategy of
rebalancing only when the actual hedge ratio differs from the theoretical by at
least 0.10 and 0.25, respectively.

Rebalancing only every two days or every week reduces the number of trades
substantially, with the latter leading to an average number of shares traded that
is about halfway between the two polar cases of rebalancing daily and not at all.
Once again, the retail trader has such heavy costs that he or she would not follow
any of these strategies. There is clearly no point in discussing the returns to
retail traders any further.

Rebalancing only when the actual hedge ratio gets too far away from the
theoretical value is a logical way to reduce the amount of trading of the underlying
asset. The two values for the maximum permitted deviation, K = 0.10 and K =
0.25, were chosen because the mean number of shares traded and the average
reduction in excess return were comparable to the equivalent figures for the
previous strategies.

Although these results can be analyzed carefully to try to determine which
strategy performed better for which options, for none of them is the resulting
combination of risk and return very favorable. In all cases, costs remain substan-
tial and risk levels increase quickly as the frequency of rebalancing is reduced.

One of the most apparent conclusions to be drawn from Table IV is that, even
for a market maker in options, the transactions costs entailed by the arbitrage
strategy underlying the Black-Scholes model are quite large. For example, Table
II shows that, if the market were pricing the 100 calls on a volatility of 0.13 while
the market maker believed the true value was 0.15, the model indicates an
arbitrage profit of $0.240. However, the transactions costs involved in trying to
capture that excess return would be $0.307, more than enough to wipe out all of
the profit.

IV. Arbitrage Bounds Based on the Standard Arbitrage

In a frictionless market, the force of arbitrage drives the price of an option
exactly to its Black-Scholes value. With costly arbitrage, there will be bounds
around the theoretical option price within which the market price may fluctuate
freely, because the potential arbitrage profit would be outweighed by the cost of
trying to capture it. The results of the previous section allow us to analyze these
bounds.

If arbitrageurs derive prices at which they will enter the market to buy or sell
calls by calculating the expected cost of the standard arbitrage, the figures shown
in Table IV can be used to compute the bid and ask prices required for them to
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break even or to achieve any specified probability of earning a profit. The results
of this calculation are displayed in Table V. We assume that arbitrageurs face
the market maker cost structure described above.

Consider the Base Case for the at-the-money calls. With a 0.15 volatility, the
option’s theoretical value is 2.05. In Table IV, we saw that the arbitrage trade
would entail an average total transactions cost of $0.307. If the arbitrageur’s
strategy is to trade the option and then hedge it and hold to expiration, he or she
must buy the option at no more than 1.74 or sell it no cheaper than 2.35 in order
to expect to break even. The width of the no-arbitrage band is (at least) 2 X
0.307 = $0.61.

Traders often think about option pricing in the market not in terms of prices
but in terms of implied volatilities. For instance, if they thought the true volatility
was 0.15, in this case they would be willing to “buy the option on a .125 volatility
and sell it on a .176 volatility.” For each case in Table V we show the arbitrage
boundary bid and ask prices in dollars and, on the following line, the implied
volatilities corresponding to those prices.

The break-even calculation involves only the expected cost of the arbitrage
trade: the risk does not enter. However, risk does come into the calculation if

Table V

Arbitrage Bounds with Transactions Costs
The table shows the arbitrage bounds on option prices and implied volatilities at which an arbitrageur
would bid for and offer options and have a 50 percent or 75 percent probability of covering costs.

Market Maker Cost Structure

. Breakeven 75% Profit Prob.
Rebalancing
Strategy Bid Ask Bid Ask
Strike 97—Model Value = 4.01
Base Case Price 3.70 4.31 3.55 4.46
. Vol. 0.112 0.183 0.087 0.198
No Rebalance Price 3.82 4.19 3.13 4.88
Vol. 0.128 0.170 Negative 0.239
Strike 100—Model Value = 2.05
Base Case Price 1.74 2.35 1.53 2.57
Vol. 0.125 0.176 0.107 0.193
No Rebalance Price 1.91 2.18 0.96 3.14
Vol. 0.139 0.161 0.058 0.241
Strike 103—Model Value = 0.84
Base Case Price 0.60 1.09 0.40 1.29
Vol. 0.126 0.173 0.105 0.191
No Rebalance Price 0.77 0.92 No Bid 1.90
Vol. 0.143 0.157 Negative 0.244
Strike 105—Model Value = 0.41
Base Case Price 0.23 0.59 0.06 0.76
Vol. 0.125 0.172 0.089 0.191
No Rebalance Price 0.36 0.46 No Bid 1.28

Vol. 0.144 0.156 Negative 0.244
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arbitrageurs require more than a 50 percent probability of covering their costs.
How large a profit probability traders will require to engage in the standard
arbitrage will depend on several factors, including their level of risk aversion and
the degree of competition among them. For illustration, we calculate the bid-ask
spreads that would produce a 75 percent probability of covering costs.

The 75th percentile of the normal distribution occurs at 0.67 standard devia-
tions, so an arbitrageur has a 75 percent chance of covering costs if he or she
quotes a bid lower than the model value and an offer above it by an amount
equal to the expected transactions cost plus 0.67 standard deviations. In the Base
Case for the 100 strike call, that would be a bid of 1.53 and an offer of 2.57
(implied volatilities of 0.107 and 0.193, respectively).

It is appropriate to note here that bid-ask spreads in actual options markets
are much smaller than these figures. The typical market bid-ask spread on a one-
month at-the-money stock index call option selling at about 2 would be no more
than % point, and normally less. That is, the price would be quoted as 1% bid,
offered at 24, or better.

The second case examined for each strike price is no rebalancing. This is the
strategy with the lowest average transactions cost but the highest standard
deviation. For the at-the-money option, an arbitrageur could expect to break
even bidding 1.91 and offering at 2.18, for a bid-ask spread of just about % point.
However, the risk involved in the arbitrage trade is so great that, to be 75 percent
sure of covering costs, the bid should be no more than 0.96 and the ask at least
3.14, a much larger spread than in the Base Case.

For the options with different strike prices, the risk of the No-Rebalance
strategy is sufficiently great that the appropriate bid price violates the option’s
boundary conditions. A bid price of 3.13 on the 97 call is less than the current
stock price minus the present value of the exercise price, so the implied volatility
would be negative. For the out-of-the-money options, there is no positive bid
price that would allow a 75 percent profit probability.

In comparing results in this table for the different strategies and strike prices,
several significant features are visible. First, only, the No-Rebalance break-even
strategy leads to bid-ask spreads that are comparable to those observed in actual
options markets. Typical spreads for these options would be % to 3 for the 97
strike calls, about % to ¥ for the 100 strikes, and about % for the 103s and 105s.
In no case would the spread indicated in Table V be close to the observed value
if market makers only did the standard arbitrage and required as much as a 75
percent probability of making a profit on their trades.'!

We do not report the results for the alternative strategies examined in Table
IV since they were not particularly effective. In all cases, the Base Case results
indicated the narrowest or almost the narrowest spread when a 75 percent
profitability hurdle was imposed, because the effect of the lower mean cost for
the other strategies was offset by their increased variability of returns.

1 Market makers, of course, are able to rebalance their positions more frequently than every day,
which would allow them to eliminate more of the risk than this table shows. However, more
rebalancing also means higher transactions costs. In the limit, as Leland (1985) observes, it is a
mathematical property of a logarithmic diffusion process that rebalancing continuously would require
an infinite number of transactions and would involve trading an infinite number of shares.
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V. Other Option Maturities and Trading Strategies

The results we have developed so far apply to call options that are not too far in
or out of the money and have about one month to expiration. How badly market
imperfections impact the standard arbitrage trade depends on the amount of
rebalancing required to keep the portfolio hedged. This in turn is a function of
how much the hedge ratio changes as the stock price moves—in other words, the
option’s “gamma.”’* Gamma is greatest for options that are close to expiration
and at the money, exactly the ones we are looking at.

For example, our 100 strike calls have a gamma of 0.082. Because delta changes,
if the stock price rises from 100 to 101 with no rebalancing in between, the value
of the “hedged” portfolio will change by $0.043. In other words, there would be
“replication error” of more than four cents. However, if this were a one-year
option, gamma would be only 0.024 and the same price change would only produce
a $0.012 replication error.

For exchange-traded options, the greatest trading volume and open interest is
nearly always in the contracts for which our results are representative, those
close to the money, with less than three months to expiration. However, arbitrage
involving long dated traded options, warrants, and other optional contracts is
not uncommon. One example of an arbitrage-like strategy that attempts to
replicate longer maturity options is portfolio insurance, which we will discuss in
detail below.

A. Longer Maturity Options

To see how much our results would change with longer dated options, we
created a new set of stock price series and call option values with 75 trading
days, following the same procedures as above. The only difference was that we
limited the sample to 100 price series. Table VI displays summary results for the
standard arbitrage with three-month calls. We have essentially computed the
most relevant results from each of the earlier tables with these new data.

Each stock price series started at 100 and then followed a logarithmic random
walk with an annualized drift of 15 percent and volatility of 0.15. Options prices
and hedge ratios for calls with strike prices of 97, 100, 103, and 105 were computed
from the Black-Scholes model.

The first three lines of the table show the theoretical option values and hedge
ratios at the outset, as well as the cost of the arbitrage portfolios. As before, the
arbitrage portfolio is long the option and short the underlying asset, so it produces
a net cash inflow (negative “cost”). The option theoretical values are higher than
those in Tables I and II, the deltas are closer to 0.5, and the values of the hedge
portfolios still are very large compared to a typical amount of mispricing of the
options.

Comparing the standard deviations of annualized holding-period returns on
the hedge portfolios to those shown for the Base Case in Table III reveals a
distinct decrease for the longer dated options. This is partly an artifact from
annualizing the returns. Multiplying N-day cumulative excess returns by 260/N

? Gamma is defined as the derivative of the hedge ratio with respect to the stock price or,
alternatively, the second derivative of the option value with respect to the stock.
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Table VI
Summary of Results for Three-Month Options
The table summarizes results from applying the procedures reported in the previous tables to a new
sample consisting of 190 price series of 75 trading days each. See the text and earlier tables for a full
description.

Strike Price 97 100 103 105
Theoretical
Call Value 5.76 3.91 2.49 1.78
Hedge Ratio 0.724 0.585 0.438 0.346
Arbitrage Portfolio Cost —66.62 ~54.55 —41.32 —32.82
Hedge Portfolio
Base Case Percent 1.29 2.07 3.24 3.70
Standard Deviation
Transactions Costs for Market
Maker (in $)
Mean Cost -0.406 —0.431 —0.422 -0.391
Std. Dev. of Hedge Portfolio 0.255 0.322 0.373 0.345
Arbitrage Band (Ask — Bid)
Breakeven 0.82 0.86 0.84 0.78
75% Profit Probability 1.16 1.30 1.34 1.24

to annualize them multiplies their sample standard deviation by the same factor.
However, if daily excess returns are serially independent, tripling the number of
days in each series should only increase the standard deviation of the cumulative
total by the square root of three. Thus, even if the risk per day of the arbitrage
portfolios for one-month and three-month options were the same, the standard
deviations of the annualized holding-period returns reported in Table VI would
appear to drop by a factor of about 1/1.73.

However, the annualized standard deviations for three-month calls are sub-
stantially lower than can be accounted for in this way, particularly for the out-
of-the-money options. It does seem that the arbitrage is considerably less risky
per day for three-month than for one-month options.

Transactions costs for longer holding periods, on the other hand, can be
expected to cumulate. At the outset, the lower gammas for three-month options
may yield smaller trading costs per day than for one-month options. However,
three-month calls eventually become one-month calls, since the standard arbi-
trage requires the position to be held until expiration. We might therefore expect
the total transactions cost for the standard arbitrage to rise monotonically with
option maturity. Table VI bears this out. The increase in mean transactions
costs ranges from about 30 percent for the 97 strike calls up to 117 percent for
the 105s. The standard deviations of hedge returns including costs increase also.

The combination of increased mean hedging cost and increased standard
deviation leads to substantially wider arbitrage bands for three-month than for
one-month options. For example, to break even on the at-the-money call, an
arbitrageur would bid no more than 0.307 below the Black-Scholes price for a
one-month option, but he or she would only pay the model prices less 0.431 for
a three-month call. The comparable figures to have a 75 percent chance of
covering costs would be 0.52 and 0.65, respectively.
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The results in Table VI indicate that the standard arbitrage trade becomes
less risky when longer dated options are involved. However, trading costs increase
with option maturity, leading to wider arbitrage bounds.

B. Market Making and Price Determination in the Options Market

Since a rational options market maker who based his or her trading on the
standard arbitrage strategy or any of the variants described in Table IV would
insist on much wider bid-ask spreads than are observed in the marketplace, a
reasonable conclusion is that actual market makers should probably not follow
these strategies. Indeed, observation reveals that they do not.

A typical market maker does not buy an options contract with the expectation
that it will be held in inventory and hedged until expiration. Rather, he or she
buys it at his or her bid price, anticipating that he or she will sell it again fairly
quickly at his or her offer price. More precisely, he or she buys on one implied
volatility, hedges the position, and tries to sell as soon as possible on a higher
implied volatility.

Options positions that are not turned over immediately are hedged, but not
necessarily by setting up the standard arbitrage against the underlying asset. An
option may be hedged with another option, or with a related futures contract,
rather than with the underlying asset. Normally, a market maker’s entire portfolio
of options on a given asset is aggregated, with the result that considerable netting
out of market exposure may occur. The resulting option position is evaluated not
only for its delta, but also for its gamma, and probably its theta (rate of time
decay) and its kappa or “vega” (sensitivity to volatility movements), as well.
Each of these represents exposure to a type of risk, and one that can potentially
be hedged with other -options.

This trading strategy embodies important deviations from the model of market
making implied by the Black-Scholes and other models based on the standard
arbitrage. ’

First, since arbitrage is not riskless, trading so as to profit from a theoretical
mispricing of the option relative to its underlying asset will not be the dominant
strategy, as it is in a frictionless world. The supply of arbitrage services to a real
market will not be perfectly elastic. As with other trading strategies, traders will
take limited positions and carefully weigh the expected profit against the risk.'
Under the right circumstances, options prices may be allowed to deviate very far
from their model values without inducing a large amount of arbitrage trading to
push them back into line.

Second, when a trader takes on an options position with the expectation that
it will be unwound quickly in the market, the important thing is how the market
will price options in the immediate future. The trader has less interest in the
true volatility of the underlying asset than in the option’s future implied volatility,
regardless of whether this is a very good estimate of how volatile the stock price

13 Piglewski (1988) examines the impact of incomplete arbitrage in the market for NYSE index
options. Mispricing of options relative to the underlying index is found to be associated with the use
of an alternative (risky) trading strategy involving NYSE index futures.
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will actually be over the option’s lifetime. Thus, it is perfectly appropriate for a
market maker to buy an option that he or she believes is currently overpriced
relative to its long run value, if he or she expects that the market will continue
to overprice such options for a while and he or she will be able to earn a quick
profit by reselling it at his or her ask price.**

All of these factors imply that, while the Black-Scholes model may give a great
deal of guidance about how one option should be priced to be consistent with
other options on the same stock, the force of arbitrage driving options prices to
their theoretical values relative to the underlying asset based on the market’s
best estimate of its true volatility is severely blunted.

C. Option Replication in Portfolio Insurance

Our results appear to contrast markedly with those from studies of portfolio
insurance, a well-known application of the same kind of option replication we
are examining. Etzioni (1986), for example, uses a methodology similar to ours
with daily rebalancing and finds that a portfolio insurance program replicating a
one-year, at-the-money put option on a $100 million stock portfolio would cost
$745.5 thousand and would have a replication error of only $199.1 thousand.

Several things account for this apparent discrepancy. A major one is that
portfolio insurance transactions are generally done in stock index futures con-
tracts rather than the underlying stocks, at approximately one tenth of the cost.
Thus, Etzioni’s results considerably understate what it would have cost to
replicate the put with stock transactions.

A second factor is that, as we have mentioned, portfolio insurance programs
try to replicate much longer dated options than we have been examining, which
reduces replication error. Moreover, they are often set up to reduce the problem
of high gamma near maturity, by targeting a final payoff pattern that is smooth
rather than kinked at the strike price.

Finally, it is important to recognize that we are comparing the costs and
replication errors of options arbitrage to the option’s price, and more specifically
to the amount by which it may be mispriced. This is what is relevant for pricing
traded options contracts in the market and evaluating a market maker’s arbitrage
strategy. However, in the context of portfolio insurance, the cost and risk of the
program are expressed relative to the total value of the insured portfolio, so they
naturally appear much smaller. Thus, the replication error of $199 thousand
found by Etzioni seems insignificant relative to the $100 million portfolio being
insured, even though it is pretty large compared with the $750 thousand total
value of the put options being replicated. Indivisibilities are also not a problem
when such a large portfolio is being hedged.

Thus, there is no inconsistency between our results and those from portfolio
insurance studies.

' Brennan and Schwartz (1988) have taken a first step in modeling the short run optimal trading
behavior of an arbitrageur with limited capital in a stock index futures market. Their approach offers
a useful starting point for analyzing the more complex option market maker’s problem.
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VI. Conclusions

In this paper we have addressed a number of issues involved in applying arbitrage-
based option valuation models to actual, imperfect, markets. Since these ques-
tions are sufficiently complex that a general theoretical treatment is infeasible,
we have adopted a simulation approach that allows us to derive accurate answers
for specific values of the underlying parameters of the market system. Our results,
therefore, are precise but not completely general. We have tried, as far as is
possible, to look at cases that accurately reflect the realities of exchange traded
stock index options contracts. We would anticipate that other parameter values
would lead to qualitatively similar, though quantitatively different, results.
The following are the major conclusions indicated by our results.

¢ The volatility of the underlying asset is an extremely important determinant
of option value, but sampling error makes the ex post volatility in daily
closing prices hard to predict accurately even when the true underlying
volatility is known. Mistakes in forecasting volatility cause both option
values and hedge ratios to be wrong. However, the impact on hedging
accuracy is relatively slight, except for out-of-the-money options. For them,
the impact is asymmetrical, so that it is substantially worse to underestimate
volatility than to overestimate it. '

 Indivisibilities, which make it impossible to achieve exactly the right hedge
ratio, increase risk in a hedged position but do not have a large effect on
expected return. Hedges involving futures contracts that are relatively large
will be most affected. If the hedge ratio can be set to the nearest 0.10 (per
share) or better, the impact of indivisibilities is limited. However, except for
far out-of-the-money options, limiting possible hedge ratios to multiples of
0.25 increased the standard deviation of the hedge return by more than half.
A “yes or no” hedge (i.e., h = 0 or 1) is highly risky.

* Transactions costs to do the standard arbitrage trade upon which the Black-
Scholes model is based are large, even for a market maker. For a retail
trader, they are prohibitive. Strategies for reducing transactions costs by
rebalancing the hedged position less frequently do not help much: there is a
substantial reduction in cost only at the expense of a substantial increase in
risk. The tradeoff appears to be slightly more favorable for a strategy of
rebalancing only as the hedge ratio moves far enough away from its correct
value, rather than rebalancing only after a fixed number of days.

e The normal transactions costs for the standard arbitrage induce arbitrage
bounds around the theoretical option value that are substantially wider than
the bid-ask spreads that are observed in practice. Partly based on direct
observation, we suggest that market makers and others engaged in arbitrage
of exchange traded options follow different strategies. They try to achieve
quick turnover, thus reducing costs, but this is not a riskless strategy. Quick
turnover also implies that traders will be more interested in forecasting the
option’s implied volatility for the immediate future than the true volatility
of the underlying asset.
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* The standard arbitrage with longer dated options is exposed to less risk per
day than with the one-month calls we examined in the bulk of the paper.
However, the total transactions cost to maintain a hedged position through
option expiration increases with option maturity, so that the arbitrage
bounds on the market price become wider.

One general conclusion suggested by this research is that, while empirical
research has shown that option valuation theory plays a very important role in
determining prices in real options markets, the impact of market imperfections
is also large, and probably larger than many researchers have realized. (Nor have
we covered all major imperfections, having left out margin requirements, nonlog-
normal price paths, and taxes, to name a few.) Under these conditions, the
standard arbitrage cited in the literature as the basis of valuation models becomes
a weak force to drive actual option prices toward their theoretical values.

We do not currently have a model of option pricing in a market populated by
arbitrageurs who engage almost exclusively in non-“standard”, short-term, in-
completely hedged, arbitrage-like strategies. The standard arbitrage eliminates
price expectations and risk aversion from option pricing in a frictionless market.
However, within the wide bounds on prices that are all that can be established
by the standard arbitrage in an actual, imperfect options market, there is certainly
room for these and many other factors to have an influence.
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