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Option Pricing and Replication with Transactions
Costs

HAYNE E. LELAND*

ABSTRACT

Transactions costs invalidate the Black-Scholes arbitrage argument for option pricing,
since continuous revision implies infinite trading. Discrete revision using Black-Scholes
deltas generates errors which are correlated with the market, and do not approach zero
with more frequent revision when transactions costs are included. This paper develops
a modified option replicating strategy which depends on the size of transactions costs
and the frequency of revision. Hedging errors are uncorrelated with the market and
approach zero with more frequent revision. The technique permits calculation of the
transactions costs of option replication and provides bounds on option prices.

OPTION PRICING THEORY AS developed by Black and Scholes [1] rests on an
arbitrage argument: by continuously adjusting a portfolio consisting of a stock
and a risk-free bond, an investor can exactly replicate the returns to any option
on that stock. The value of the option must, therefore, equal the value of the
replicating portfolio.

The assumption of continuous portfolio adjustment is awkward in the presence
of nonzero transactions costs. Because diffusion processes have infinite variation,
continuous trading would be ruinously expensive, no matter how small transac-
tions costs might be as a percentage of turnover.

Formally, the arbitrage argument used by Black-Scholes to price options no
longer can be used: because replicating the option by a dynamic strategy would
be infinitely costly, no effective option price bounds are implied.

The natural defense of the Black-Scholes approach is to assume that trading
takes place only at discrete intervals. This will bound the transactions costs of
the replicating strategy. And, if trading takes place reasonably frequently, hedging
errors may be relatively small. Black and Scholes and Boyle and Emanuel [2]
argue that these errors will be uncorrelated with the market return, and therefore
can be ignored if revision is reasonably frequent.

There are some problems with this defense in the presence of transactions
costs. First, hedging errors exclusive of transactions costs will not be small unless
portfolio revision is frequent. But transactions costs will rise (without limit) as
the revision interval becomes shorter: it may be very costly to assure a given

* School of Business Administration, University of California. The author thanks Richard Grinold,
Mark Rubinstein, Jay Shanken, and Frederic Sipiere for discussion on this topic, and the referee for
suggestions. Any remaining errors can be credited exclusively to the author.

! The advantage of the arbitrage approach is that it does not depend upon investor preferences.
An alternative approach is to use preference-based arguments to price options (e.g., Rubinstein [8]).
In this latter approach, transactions costs may not affect option price bounds.
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degree of accuracy in the replicating strategy before transactions costs. Paradox-
ically, we could find that the total cost of the replicating strategy exceeds that of
the stock itself, even though the stock returns dominate the option return.

A second, and perhaps more important problem, is that transactions costs
themselves are random, and will add significantly to the error of the Black-
Scholes replicating strategy. Let us briefly focus on this concern.

The cost of a replicating strategy must clearly include transactions costs. If we
wish to continue to use an arbitrage argument to bound option prices, we are
forced to consider the maximum transactions cost rather than simply the average.
But transactions costs associated with replicating strategies are path-dependent:
they depend not only on the initial and final stock prices, but also on the entire
sequence of stock prices in between. Computation of the maximum transactions
costs is a nontrivial problem. And, because the maximum transactions costs will
substantially exceed the average, the bounds on option prices will not be very
tight.?

Perhaps we could be more modest and look at only at expected transactions
costs from following the Black-Scholes replicating portfolio in discrete time.?
This could be justified if transaction costs, like hedging errors, were uncorrelated
with the market. But in general, this is not the case.*

A final problem exists because of path dependency and unboundedness of
transactions costs: the uncertainty of transactions costs will not become small as
the period of revision is shorter. One cannot hope for an arbitrarily good
replication (no matter how expensive) by shortening the revision period. While
replication errors exclusive of transactions costs will fall, they will not fall when
transactions costs are included.

These considerations lead us to pose the following question:

In the presence of transactions costs, is there an alternative to the Black-
Scholes replicating strategy which will overcome these problems?

In this paper, we show that there is an alternative replicating strategy. This
strategy depends upon the level of transactions costs and upon the revision

2We can readily compute an upper bound on the maximum transactions costs. The maximum
move between the underlying stock and the riskless asset is 100% at each revision period. If
readjustment occurs weekly, e.g., the maximum round trip turnover would be 0.5 X 52 X 100% =
2600%. While highly unlikely, enormous weekly swings in the underlying stock price could lead to a
maximum turnover approaching this level. Note that such a maximum turnover greatly exceeds
expected turnover, which from Table III does not exceed 115%.

3In a recent paper, Gilster and Lee [5] estimate expected transactions costs for Black-Scholes
strategies. Their analysis is flawed by the fact that their Equation (1) is not satisfied by the Black-
Scholes strategy, as they themselves admit. This precludes an appropriate use of the Cox-Ross “risk-
neutral” approach. However, as a heuristic approach, their results may be of interest.

* This can be seen by considering an in-the-money call option written on a stock which is (say)
positively correlated with the market. It is easily shown that the replicating portfolio_starts with
almost one share of stock (since the call option is in-the-money) and will move to one share if the
stock price expires at or above its initial price. Thus, there will be low transactions costs associated
with upward movements of the stock price (and on average, with upward movements of the market).
Major downward movements of the stock price will lead to a replicating portfolio expiring with zero
shares of stock, and consequently larger turnover. In short, we conclude that in-the-money options
will have replicating transactions costs which are negatively correlated with the market, while out-
of-the-money options will have positively correlated transactions costs.
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interval, as well as upon the option to be replicated and the environment. The
alternative strategy has the following properties:

1. Transactions costs remain bounded as the revision period becomes short.

2. The strategy replicates the option return inclusive of transactions costs,
with an error which is uncorrelated with the market and approaches zero
as the revision period becomes short.

3. Expected turnover and associated transactions costs of the modified repli-
cating strategy can easily be calculated, given the revision interval. Since
the error inclusive of transactions costs is uncorrelated with the market,
these transactions costs put bounds on option prices.

The modified strategy, therefore, can be used to replicate option returns
inclusive of transactions costs, with accuracy that increases as the revision period
becomes short. As one would expect, the modified strategy converges to the
Black-Scholes strategy as transactions costs become arbitrarily small.

I. Discrete-Time Replicating Strategies with Zero Transactions Costs:
A Review

We assume a Black-Scholes world where the stock (or portfolio) value follows

a stationary logarithmic diffusion process

dS

5 = mdt + ozVdt (1)
where z is a normally distributed random variable with E(z) = 0 and E(z2) = 1.
The riskless asset pays a continuous rate of return r.

Over a small (but noninfinitesimal) interval, At, it can be shown that
AS

< = pAt + ozvAt + O(AtY?), (2)
where a function h(x) is said to be 0(g(x)) if lim,_o| h(x)/g(x)| < oo.

Let C(S; K, T, r, a%) be the value of a call option when the current stock price
is S, the striking price is K, the time to maturity is T, the interest rate is r, and
the stock’s rate of return has variance ¢2. In the absence of transactions costs
but with possible continuous trading, Black and Scholes show that

C = SN(d,) — Ke™"N(d, — ¢VT) (3)

where d; = In(S/Ke™")/ov'T + Y oVT. It follows that C satisfies the partial
differential equation,

1/2053820'2 + Ct - r[C - CsS] =0 (4)
where subscripts indicate partial derivatives, and the boundary condition,
C[S; K, 0, r, ¢%] = max[S — K, 0]. (5)

Consider now holding a fixed portfolio of D shares of stock and Q dollars of
the risk-free security over the interval, At. The length of the interval, At, will be
termed the revision interval.
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Over the interval, At, the return to this portfolio will be

as
S
when the O(At?) term comes from the continuous compounding of interest.

Over the same interval At, the change in value of a call option
C[S; K, T, r, o?] will be

AP = DS ( ) + rQAt + O(At?), (6)

2
AC = CsS AS + C.At + 1 CssS? AS + O(AtY?), (7
S 2 S
. . . . ASY AS
using a Taylor series expansion for C and noting that both < and < At

are O(At%?), from (2).
The difference, AH, between the change in value of the portfolio and the call
option is given by

AH = AP — AC

= (DS = CsS) <A?S) + (rQ — C) At
2
- -;— CssS? (ésﬁ> + O(At*?). (8)

We define a replicating portfolio as one for which, at the beginning of each
interval 0, At, 2At, ---, T,

D=Cs, and 9
Q =C-CsS. (10)

Since P = DS + Q = C at each time period, this portfolio yields the option return
max[S — K, 0] at T. However, the portfolio will not be self-financing, since AP
# AC. AH, is a measure of the additional contribution needed over the period (t,
t + At). Substituting (9) and (10) into (8) and using (4) yields

1 AS\
AH = 2 Csssz[azAt - (—S—) ] + O(At*?) (11)
where we have suppressed the time subscript, t. Taking expectations, using (2),
and ignoring terms of O(At*?) gives

2
E[AH] = % CSSSZE[azAt - (és*—g) ] =0. (12)

2
Note that CgsS? is O(1), and o2At — (%S> is O(At), implying AH is O(At).

Thus, AH is a random variable with mean zero and variance of O(At)? whose

distribution is considered by Boyle and Emanuel [2].° Since the ésﬁ are

5 Boyle and Emanuel [2] also show AH will be uncorrelated with the market return.
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independent and, therefore, the AH are uncorrelated across each interval, At,
the variance of the sum of the T/At random variables, AH,, t = 0, At, 2At, - - -,

T — At will be O[% X (At)z] = O(At). As At — 0, the Law of Large Numbers

for Martingales implies that the hedging error will almost surely be zero.®” That
is, the payoff max[S — K, 0] will be delivered almost surely as At — 0.

While limiting results are suggestive, practical considerations (including pos-
sible transactions costs) prevent the interval At from becoming “arbitrarily”
small. In Table I, we examine the accuracy of replicating strategies for periods
of revision of one, four, and eight weeks. We consider a (currently) typical
environment where the risk-free rate is 10%, the expected return on the “stock”
is 16%, with standard deviation 20%. The latter figure reflects the risk of a
market portfolio.

¢ The Law of Large Numbers for Martingales states that if
Sp=Yka1 Xp, n=1, ... is a martingale.
and
S5 15 Ba(XD) < o,
then with probability one, n™'S, — 0 (see Feller [3]).
Let
X, = AHpa/At, n=T/At.
Then

1

1
k2 EX}) = Yi=1 5 Eo(AHEA).

Lia k2At?

Now (dropping time subscripts on AH)
2 2
EO(AH)2 = Eo[CssSzlE()((%g) - 02At>

=< 2Mo*At?,
where M < o is an upper bound on E[CssS?), over all t € [0, T'].
It follows that

1 1
Th=1 E E(X?) = 2Mo* 35, ? < oo,

implying that
At 1
n_12f=1Xk=?XIt2AH—>O. a.s.
which in turn implies
>AH -0 as.

" Boyle and Emanuel [2] examine the distribution of errors of AH for short intervals [1-5 days]
between trades, ignoring terms of O(At*?). Note that if the terms of O(At*2) do not have expected
value zero, then over a finite interval, T, they will be of the same order as the errors in > AH that
are included. Of course, this does not affect our limiting result that the replicating portfolio precisely
replicates the option as At — 0.
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Table I
Hedging Errors with No Transactions Costs

Time Until Expiration

Approximate
Revision Period 12 mos. 6 mos. 3 mos. Annualized
1 week E[AH] 0.000* 0.000 0.000 0.000
o[AH] 0.091° 0.099 0.115 0.830
4 weeks E[AH] -0.003 —0.002 -0.002 —-0.0300
o[AH] 0.368 0.402 0.471 1.700
8 weeks E[AH)] -0.009 -0.008 —0.008 -0.540
o[ AH] 0.744 0.821 0.981 2.500

2 Expected errors and standard deviation are expressed in dollar terms, where Sy, = 100, K = 100.
The cost of the call option being replicated is 12.99.

The accuracy of the replicating strategy is path-dependent and tends to be the
least good when the price of the stock is close to the striking price just before
expiration, but then jumps up or down over the last interval. Of course, paths
having these characteristics occur relatively infrequently.

Table I considers a one-year, “at-the-money” call option [K = S(0)]. We
consider three different revision periods: one week, four weeks, and eight weeks.
For each revision period, we report expected errors and standard deviation of
errors (as seen from the initial period) of the replicating portfolio over the next
revision interval, when three months, six months, and one year remain in the
option’s life.?

In Table I, we note that expected errors are small. Annualized standard
deviations are smaller when the revision period is shorter, as we would expect
from the theory. Indeed, halving the revision period reduces the standard devia-
tion by a factor of almost exactly 1/ V2.

II. Discrete-Time Replicating Strategies with Positive Transactions
Costs

Thus far, we have ignored the impact of transactions costs on the performance
of the replicating portfolio. One possible approach to replicating options with
transactions costs would be to follow the Black-Scholes strategy [Equations (9)

8 To be more explicit, consider the entries E[AH] and ¢[AH] when T = 6 months and the revision
interval is four weeks. From Table I, we see E[AH] = 0.002%. This is computed as follows: for a
given S(6), where S(6) is the stock price when six months remain (and six months have passed), we
compute

AH(S(6), AS) = {C[S(6) + AS, 5] — C[S(6), 6]}

— {Cs[S(6), 6]AS + F[C[S(6), 6] — Cs[S(6), 6]S(6)]}

where the first term in braces is the actual (exact) change in the call price given S(6) and AS over
the next four weeks, and the second term in braces is the return to the replicating portfolio, with 7
the interest rate over the 4-week (1-month) revision period. Using a lognormal distribution for both
S(6) and AS/S(6)—which are independent—we then compute E[AH] and o[ AH].
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and (10)], but add on an amount to the initial cost of the option which reflects
the expected transactions costs.

This approach can be criticized on three grounds. First, the expected transac-
tions cost is a difficult computation with no known closed form solution. Second,
the transactions costs will, in general, be correlated with the change in stock
price, and therefore with the market. Finally, transactions costs and their
uncertainty will become arbitrarily large as At — 0: in contrast to the case with
no transactions costs, accuracy of replicating the option (inclusive of transactions
costs) will not increase as At — 0.

We develop an alternative approach to the problem, where the hedging strategy
itself depends on the percent transactions cost and the revision interval.

Let k represent the round trip transaction cost, measured as a fraction of the
volume of transactions.

Define
A2 2 2 AS 2
d°(a? k, At) = ¢*|1 + kE 5 oAt
= ¢7[1 + V(2/7) k/aVAt] (13)
since
E ‘ %S ‘ = J(2/7) o VAL® (14)
Let
C(S; K, 6% r, T, k, At) = SN(d;) — Ke”"™N(d, — 6vT), (15)
where

d; = In[S/Ke™T|/6NT + L 6JT.

That is, C is the Black-Scholes option price based on the modified variance (13).
We now show that following the modified replicating strategy

D =Cs, and (16)

Q=C-0CsS (17)
will for small At yield an expected payoff of

max[S — K, 0] (18)

inclusive of transactions costs. Furthermore, the hedging errors, AH, including
transactions costs will almost surely approach zero as At — 0. This latter result
implies that, despite the path dependence of transactions costs, following the
modified replicating strategy yields, as At — 0, a path-independent net result,
which with probability one is equal to the desired option return.

® This is derived using the assumption that AS/S is normally distributed with mean zero. Allowing
for a drift term and for lognormality will create an additional term of O(At*?), which here and in the
subsequent analysis is ignored.



1290 The Journal of Finance

THEOREM. Following the replicating strategy {D = Cs, @ = C — CsS} where C is
the modified Black-Scholes price (15) will yield max[S — K, 0] almost surely
inclusive of transactions costs, as At — 0.

Proof: Consider the after-transactions-cost error, AH, of the replicating port-
folio over the interval, At, where

AH = AP - AC - TC (19)
with
AP = DAS + QrAt + O(At?)
= c‘ss<%s> + (€ = CsS)rat + O(At?) (20)

using (16) and (17); and
AC = C(S + AS, t + At) — C(S, ¢)
AS AS

. 1 A 2
= CSS(?> + 3 Css.5'2<—s—> + C. At + O(AtY?) (21)

TC

NI NIH NI= N -

E|AD(S + AS) ]|

E|[Cs(S + AS, t + At) — Cs(S, £)I(S + AS)|

k| Css(S, t)AS(S + AS)| + O(At*?)

kCssS?

%g 1 + O(At%?), (22)

where line 3 of (22) utilizes a first-order Taylor series approximation for ACs
and line 4 of (22) relies on the fact that CssS? > 0. X
It is important to note that CssS? as well as Csss and Cg; are O(AtY/?).1% ! This

explains the O(At*?) terms in (22), and implies% kCssS2 %S is O(At).

9 Recall CssS% = SN'(d)/6(T - )2, t<T
where

d, = [In(S/K) + (r + Y%6®(T — t))/6(T — t)*2
and
N'(dy) = exp(— %d})/(27)".
Recall also from (14) that
& = o(1 + v2/x k/a VAL ~ O(AL™).
From the definition of cil, it can be seen that
dy — %6(T — )2 as G — o,

ie., as At — 0.
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Substituting Equations (20) to (22) in (19) gives

2
AH = (€ - CSrac— L CS(%S) _ A

- % kCssS? | == | + O(At¥?). (23)
Since C satisfies
'12‘ C'SSSZ&Z + ét - r[(:’ - ésS] =0, 4’)
we may substitute for the first right-hand term in (23) to give
AH = 2 CSSS2 AL — (%S) k ASS } + 0(At3?)
% CssS?| o2At + KE ‘ ( ) ‘ %g H + 0(At%?)
eusTorne (3] o | 5] < |5 || s

Taking expectations yields

E(AH) = O(At*?) — 0. (25)
Thus, E ¥/ 5* AH,, the expected hedging error over the entire program is
O(Atl/ ?) and approaches zero as At becomes small. Along the lines of Boyle and
Emanuel [2], it can be shown that A H is uncorrelated with the market return.

2
In contrast with ¢?At — (A—S> in (11), note that E AS S

S 5 ’ TS_‘ in (24)

is O(At'?) rather than O(At), and transactions costs error will dominate as At
— 0. But we now use the fact that CssS? is O(At'/?) [whereas CssS? in (11) is
0(1)]. It is easily shown from (24) that as before

var(AH) = O(At?). (26)
The total hedging error over the period [0, T'] is 37 ** AH,. Since the AH’s are

Thus
dy ~ O(At™4), and
N'(d;) ~ Olexp(— Y2At™'?)),
It follows that
CssS? ~ Olexp(— YAt™2). At1A].
Since
lima,_o[exp(— Y2At~V2) AtY4/AtY?] = 0,

it follows by definition that CssS? is O(AtY2), and therefore o(at'?).

! Alternatively, we could have assumed that transactions costs, k, were “small”—of O(At"?)—not
utilized the fact that CssS? is O(At¥2). This approach does not permit convergence analysis with a
fixed transaction cost, k, however.



1292 The Journal of Finance

uncorrelated,
var(X 2 AH,) = Y5 var(AH,) = O(At). 27)

Thus, the replicating strategy yields max[S — K, 0] almost surely as
At — 0.2 Q.E.D.

Our result is encouraging: in the limit, as the readjustment interval becomes
small, the modified hedging strategy [(16) and (17)] yields the option result
almost surely, inclusive of transactions costs. But it remains to be seen, for
realistic values of k and At, just how accurate the hedging strategy is. Table II
gives results equivalent to Table I, when we follow the modified hedge strategy
but include transactions costs. Note that the errors increase only slightly when
transactions costs are included. Take, for example, a one-week revision period
when transactions costs are 1%. The expected error remains zero, the same as
the no-transactions-cost case. The annualized standard deviation rises from 0.830
to 0.887.

What if we had followed the Black-Scholes strategy, but paid the transactions
costs which resulted from that strategy? Of course, one would expect the average
error to be negative, reflecting the fact that transactions costs are not “covered”
by the initial option price. This average error reflects the average turnover, which
will in most cases be higher than the turnover associated with the modified
hedging strategy, since the latter is based on a higher volatility which tends to
“smooth” the required trading. (Tables III to VI, discussed in Section III, detail
the difference in turnover and, therefore, in expected transactions costs.)

Perhaps a more interesting question is the accuracy of option replication,
inclusive of transactions costs, of the modified strategy versus the Black-Scholes
strategy. Table VII details the hedging errors of alternative strategies. The first
strategy is the Black-Scholes strategy when there are no transactions costs (the
entries here simply reproduce Table I). The second strategy is the Black-Scholes
strategy when there are transactions costs of 1%. The third strategy is the
modified strategy when there are similar transactions costs (the entries here are
from Table II).

Consider the increment in standard deviation of error from the “base case” of
zero transactions costs. In every circumstance, the accuracy of the modified
strategy exceeds the accuracy of the Black-Scholes strategy when transactions
.costs are present. The incremental standard deviation of the modified strategy
averages about half that of the Black-Scholes strategy. The modified strategy
performs relatively better as the revision interval becomes shorter and as the
time to expiration is greater.

III. Estimating Turnover and Transactions Costs of Replicating
Strategies

Subject to the (small) hedging errors studied in the previous sections, we have
shown that:

12 Ag in the previous section, the variance of the error approaching zero implies that ¥ AH,
converges in probability to zero. The stronger “almost surely” result follows from the Law of Large
Numbers for Martingales. See footnote 6.
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Table III

Transactions Costs and Implied Annual Turnover of Option
Replicating Strategies: 1 Year Options, Weekly Revision

Striking Price Call Price Total TC Turnover (%)

Transactions Costs = 0.00%

80 27.67 0.000 28.01
90 19.68 0.000 63.18
100 12.99 0.000 97.16
110 7.97 0.000 113.25
120 4.55 0.000 107.59

Transactions Costs = 0.25%

80 27.67 0.070 28.15
90 19.68 0.156 62.45
100 12.99 0.240 95.81
110 7.97 0.280 112.20
120 4.55 0.267 106.89

Transactions Costs = 1.00%

80 27.67 0.300 29.96
90 19.68 0.621 62.12
100 12.99 0.922 92.18
110 7.97 1.069 106.91
120 4.55 1.027 102.68

Transactions Costs = 4.00%

80 27.67 1.352 33.80
90 19.68 2.377 59.43
100 12.99 3.259 81.47
110 7.97 3.694 92.34
120 4.55 3.616 90.40

Note: Revision interval = 1.0 weeks; standard deviation = 20%; horizon = 1.0
years; interest = 10%; T'C = transactions cost.

(i) The strategy {D = Cs, Q = C — CsS} with initial cost C[Sy; K, r, o, T]
provides max[S — K, 0] at the terminal date, T, when there are no
transactions costs. . .

(ii) The strategy {D = Cs, @ = C — CsS} with initial cost € = C[Sy; K, r, 4, T]
[where ¢ is defined in (13)] provides max[S — K, 0] at the terminal date,
T, inclusive of transaction costs.

It follows directly that the difference between the two initial option prices,
Z=20C - G (28)

is a valid measure of the total transactions costs associated with the replicating
strategy.
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Table IV

Transactions Costs and Implied Annual Turnover of Option
Replicating Strategies: 1 Year Options, Monthly Revision
Striking Price Call Price Total TC Turnover (%)

Transactions Costs = 0.00%

80 27.67 0.000 14.31
90 19.68 0.000 31.59
100 12.99 0.000 47.68
110 7.97 0.000 56.03
120 4.55 0.000 53.94

Transactions Costs = 0.25%

80 27.67 0.035 13.90
90 19.68 0.078 31.24
100 12.99 0.121 48.23
110 7.97 0.141 56.59
120 4.55 0.135 53.83

Transactions Costs = 1.00%

80 27.67 0.144 14.40
90 19.68 0.312 31.19
100 12.99 0.473 47.27
110 7.97 0.552 55.16
120 4.55 0.527 52.71

Transactions Costs = 4.00%

80 27.67 0.634 15.86
90 19.68 1.227 30.68
100 12.99 1.761 44.03
110 7.97 2.023 50.57
120 4.55 1.958 48.96

Note: Revision interval = 4.0 weeks; standard deviation = 20%; horizon = 1.0
years; interest = 10%; T'C = transactions cost.

Z is easily computed—it is the difference between two Black-Scholes option
values with only the volatility adjusted. Since the volatility adjustment depends
on the transactions cost rate, k, and the revision interval, At, these parameters
[as well as the environmental parameters (r, ¢°) and the option parameters (K,
T)] will importantly affect the total transactions cost, Z.

As At — 0, 6 — », and Cy,— S,. Thus, Z is bounded above by S, — C,, implying
transactions costs are bounded as At — 0. This, of course, is in contrast with
Black-Scholes hedging.'® Note that the actual transactions costs over any partic-

13 The reader might be tempted into the following paradox: as At — 0 and ¢ — o, Co — So,
C, — 1, and C,;, — 0, implying that in the limit, the option-replicating strategy is simply to hold a
share of stock and do no trading. (In addition, one might conclude that this strategy, which costs So
= (o, gives a final return S which strictly dominates the option return, max[S — K, 0].)
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Table V

Transactions Costs and Implied Annual Turnover of Option
Replicating Strategies: 1 Year Options, Bi-monthly Revision

Striking Price Call Price Total TC Turnover (%)

Transactions Costs = 0.00%

80 27.67 0.000 10.13
90 19.68 0.000 22.65
100 12.99 0.000 34.57
110 7.97 0.000 39.34
120 4.55 0.000 38.15

Transactions Costs = 0.25%

80 27.67 0.024 9.79
90 19.68 0.055 22.09
100 12.99 0.085 34.17
110 7.97 0.100 40.11
120 4.55 0.095 38.14

Transactions Costs = 1.00%

80 27.67 0.101 10.05
90 19.68 0.221 22.07
100 12.99 0.337 33.69
110 7.97 0.394 39.39
120 4.55 0.376 37.57

Transactions Costs = 4.00%

80 27.67 0.435 10.88
90 19.68 0.874 21.86
100 12.99 1.278 31.96
110 7.97 1.476 36.90
120 4.55 1.423 35.57

Note: Revision interval = 8.0 weeks; standard deviation = 20%; horizon = 1.0
years; interest = 10%; TC = transactions costs.

ular stock price path will not in general equal Z—even when At is small. But
whatever the transactions costs actually are, the modified hedge strategy will
deliver max[S — K, 0] to O(At*?). Thus, Z can be thought of as the cost of an
insurance policy guaranteeing coverage of transactions costs, whatever those may
actually be.

This paradox follows from an incorrect interchange of limits. While it is true that the average
trade size approaches zero as At — 0, the number of trades approaches infinity. Total transactions
equal the product of these two, which we have shown to be increasing as At — 0 but bounded above.
Also, for At > 0, the cost, Co, of delivering max[S — K, 0] is less than So, the cost of delivering S.
While most investors might not want to pay the high cost of achieving the option, one can show that
a sufficiently risk-averse investor will pay the cost. This is in contrast to following the Black-Scholes
strategy, where the cost inclusive of transactions costs increases without bound as At — 0, implying
the cost of delivering max[S — K, 0] could exceed the cost, Sy, of a share of stock.
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Table VI

Transactions Costs and Implied Annual Turnover of Option
Replicating Strategies: 5 Year Options, Monthly Revision

Striking Price Call Price Total TC Turnover (%)

Transactions Costs = 0.00%

80 51.11 0.000 5.13
90 45.61 0.000 8.05
100 40.45 0.001 11.27
110 35.69 0.001 14.42
120 31.33 0.001 17.17

Transactions Costs = 0.25%

80 51.11 0.066 5.25
90 45.61 0.101 8.08
100 40.45 0.140 11.19
110 35.69 0.179 14.34
120 31.33 0.216 17.30

Transactions Costs = 1.00%

80 51.11 0.271 5.43
90 45.61 0.410 8.19
100 40.45 0.560 11.20
110 35.69 0.710 14.21
120 31.33 0.851 17.02

Transactions Costs = 4.00%

80 51.11 1.182 591
90 45.61 1.686 8.43
100 40.45 2.214 11.07
110 35.69 2.729 13.64
120 31.33 3.202 16.01

Note: Revision interval = 4.0 weeks; standard deviation = 20%; horizon = 5.0
years; interest = 10%; TC = transactions costs.

Once Z has been computed, round trip turnover estimates follow immediately:
Turnover = Z/kS,. (29)

Note that turnover will depend upon k and the revision interval, At, as well as
upon the option being replicated.

Tables III to VI present the transactions costs, Z, and turnover for a variety
of different options, environments, transactions costs, and revision period as-
sumptions. While full comparative static results depend upon the behavior of
C — C, we can get a “feel” for the effect of parametric changes on transactions
costs when k is small by the Taylor series approximation

Z = C,(¢ — o), (30)
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Table VII
Hedging Errors: Black-Scholes Vs. Modified Replicating Strategies
Time Until Expiration

Revision
Period Strategy® 12 mos. 6 mos. 3 mos.
A E[AH] 0.001 0.000 0.000
: o[AH] 0.091 0.099 0.115
) E[AH) —0.019 -0.018 -0.018
1 week B: o[ AH] 0.104 0.114 0.132
c. E[AH) 0.000 0.000 0.000
: o[AH] 0.095 0.106 0.123
A E[AH] -0.003 -0.002 ~0.002
: o[AH] 0.368 0.402 0.471
) E[AH] -0.041 —0.040 ~0.040
4 weeks B: o[AH] 0.394 0.431 0.502
c E[AH] ~0.004 ~0.003 ~0.004
: o[AH] 0.377 0.416 0.489

2 Strategy A = Black-Scholes exclusive of transactions costs; Strategy B = Black-Scholes inclusive
of transactions costs (1%); and Strategy C = modified strategy inclusive of transactions costs (1%).

where
C. =% = 5N (@) VT, (31)
with N’(d;) = % exp(—— é d%) and d, as defined in (3). Now for small ¢ — o,
& — o = k/V2rAt, (32)
implying
Z = kSoN’(d\)VT/V2r At. (33)

PROPOSITION 1. Transactions costs are roughly proportional to rate, k and are
inversely proportional to the square root of the revision period, At.

This proposition follows directly from (33), noting that d; does not depend on At
or k.

Note that Z is approximately proportional to k£ only when ¢ — ¢ is small—it
can be seen from Table III that Z grows less than proportionately with k£ when
Z becomes sizable, reflecting the fact that the replicating strategy itself has
changed.

We may also show the following:

9Co _ _ So _1
0K ~ anTo P < 2 dl) & 34

which has the sign of d;. This generates:
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PRrROPOSITION II. Transactions costs will increase with the ‘<>'t,‘ril=einé,72 price, K, when
K < K* and decrease with K when K > K*, where K* = Sye"+1/2¢97,

Proof: Follows from (34) by noting d, > 0 iff
K< Soe(r+1/2a2)T.

It follows immediately from Proposition II that turnover is greatest when the
striking price is K*, i.e., an option whose present value of striking price is slightly
in the money. Finally, we examine the impact of changes in the horizon, T, on
the annualized transactions costs:

PROPOSITION III. There exist striking prices, K, and K,, such that annualized
transactions costs decrease with horizon, T, for K € [K,, K;] and increase for K &
[Ki, K3]. As T — o, [K;, K;] — [0, »), implying annualized transactions costs
decrease for all contracts when the horizon is distant.

Proof: C,/T = SN’(d,) T~'/2, and

ddy
aT T

i — 1 ’ —-3/2 ’
a7 LG/ T g SN'(d)T™" + SN'(d))

- % SN’(d\) T3 + % SN’(d;)RT—*72,

(o (o]

Therefore,

9[C,/T]
oT

N . SO ? 2 ]- 2 2
Now, R < 1 implies ln? =|T + r+§a T
which, in turn, will be satisfied for K ¢ [K;, K5], where
Ki = Seexp[—(a’T + ((r + %2 62 T)?)¥?}
K, = Soexp[(¢*T + ((r + % 0?)T)?)¥2.

Note, as T'— o, K; — 0 and K, — .

=0 iff R=1.

PROPOSITION IV.  Expected turnover for the Black-Scholes replicating strategy is
given by

N’(d)VT/V2rAt.

This proposition follows from (33) and (29), noting that the Black-Scholes
strategy is optimal in the limit as k — 0. Compare the simplicity of this formula
with the formulation of Gilster and Lee [5], which requires numerical approxi-
mation techniques.
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Since Propositions I to III were derived with the assumption that k& = 0, the
results of these propositions hold for Black-Scholes replicating strategies as well.

IV. Option Pricing Bounds

Clearly, C puts an upper bound on the price of an option, since if the price
exceeded that amount the option could be constructed by the replicating strategy.
On the other hand, the option can be shown never to have a price less than C,
where C is the Black-Scholes price using volatility ¢ = ¢2 — kE _Ag_S At.
Otherwise, an investor could buy the option, “undo” it by following the offsetting
replicating strategy, and make a return after transactions costs which exceeded
the risk-free rate. (We note that as before, the strategy will produce a hedging
error after transactions costs; however, this hedging error will be uncorrelated
with the market and will almost surely approach zero as At becomes small.)

When transactions costs are small enough for the approximation (30) to hold,
the size of the bound will be given by

C - C =~ 2C,k/V2rAtL
= 2kSoN'(d))VT/V2xAt,  using (33).

Propositions I to III indicate how the bound, € — C, will respond to changes in
the option under consideration. Proposition I, for example, suggests that the
widest price bounds will occur for options whose striking price has a present
value about equal to the current stock price. The width of the price bound as a
percent of the call option price increases as the call option becomes more out-of-
the-money, which may help explain the empirical observation that the Black-
Scholes formula prices these options less exactly.

V. Conclusions

This paper has developed a technique for replicating option returns in the
presence of transactions costs. The strategy depends upon the level of transac-
tions costs and the time period between portfolio revision, in addition to the
standard variables of option pricing. However, these additional parameters enter
in a very simple way, through adjustment of the volatility in the Black-Scholes
formula. The “pure” Black-Scholes strategy holds only in the limiting case of
zero transactions costs.

There is an intuitive explanation for our results. Inclusive of transactions
costs, the net price of purchasing stock is slightly higher than the price without
transactions costs. Similarly, the net price of selling stock is slightly lower. This
accentuation of up or down movements of the stock price can be modelled as if
the volatility of the actual stock price was higher.'*

4 To see intuitively where the adjustment (13) to variance comes from, we note that vibration
alone incurs an expected cost over the interval, At, of

l&éssszdzAt.
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Our methodology enabled us to develop simple formulae for the expected
turnover and transactions costs associated with replicating arbitrary
options.'® These formulae, in turn, enabled us to put bounds on option prices.

We might note that our analysis can easily be extended to include a fixed cost
of transactions, as well as the variable cost studied. Total fixed cost would simply
be the sum of the T/At fixed charges and would be added to the “Z ” cost derived
in the paper. But this remark points out an important assumption of our analysis,
that the portfolio is revised every At periods. A more complete model would allow
for the revision interval to be a choice variable. It may well be stochastic,
depending upon the change in the underlying stock price or upon the size of the
revision required. Work by Magill and Constantinides [7], Constantinides [3],
and Kandel and Ross [6] begins to explore this important area.

Transactions costs are an additional cost from price variation (vibration). Expected transactions
costs over At are given by (22):
AS

5= % kCssSA(V2/m)a VAL

% kCssS2E

Combining costs of vibration and transactions costs gives
16CssSHo? + kvV2/m o/ VAtIAt = 1%CssS262At

which is the same as the cost of vibration if the true variance were % and there were no transactions
costs.

15 Since any contingent payoff pattern can be represented as a portfolio of options, this technique
can be used to estimate the transactions costs of any pattern of returns which is either (globally)
convex or concave in the underlying stock return. For a convex pattern, we estimate the transactions
costs by the additional cost of the portfolio of options, when the higher volatility, ¢2, is used instead
of ¢% (For concavity, we adjust volatility downward.) This straightforward technique is not applicable
to functions which are convex and concave over different regions, since the transactions related to
the replicating options will cancel rather than be additive in this case.
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