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a b s t r a c t 

We introduce ambiguity in conjunction with risk to study the relation between risk, am- 

biguity, and expected returns. Distinguishing between ambiguity and attitudes toward am- 

biguity, we develop an empirical methodology for measuring the degree of ambiguity and 

for assessing attitudes toward ambiguity from market data. The main findings indicate that 

ambiguity in the equity market is priced. Introducing ambiguity alongside risk provides 

stronger evidence on the role of risk in explaining expected returns in the equity mar- 

kets. The findings also indicate that investors’ level of aversion to or love for ambiguity is 

contingent on the expected probability of favorable returns. 
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1. Introduction 

In this paper, we propose looking at a dimension of

uncertainty not accounted for by risk—the uncertainty of

probabilities that make up risk, so-called ambiguity or
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Knightian uncertainty. Risk in equity markets means that

future returns are realized with known probabilities, while

ambiguity refers to situations where the probabilities as-

sociated with these realizations are not known or not

uniquely assigned. We investigate the relation between

risk, ambiguity, and expected return in the equity mar-

kets over time. To this end, we develop a new theoreti-

cally based empirical methodology for measuring the ex-

tent of ambiguity using stock return data. We show that,

when introducing ambiguity in conjunction with risk, risk

has a significant positive effect on the expected rate of re-

turn. This finding contrasts with prior puzzling results of

a negative, or insignificant, relation between risk and ex-

pected return. We find that ambiguity, on average, has a

significantly positive effect on expected returns. 

An important consequence of these findings is that the

risk-return relation cannot be studied without taking am-

biguity into consideration. We find that the ambiguity pre-

mium, embedded in the equity premium, is contingent

upon the expected probability of favorable returns and in-

vestors’ attitudes toward ambiguity. Introducing the idea
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of probabilistic contingent ambiguity attitudes, we elicit 

investors’ attitudes toward ambiguity and find that their 

aversion to ambiguity increases with the expected prob- 

ability of favorable returns (gain), and that their love for 

ambiguity increases with the expected probability of unfa- 

vorable returns (loss). 

Previous studies of ambiguity have focused mainly on 

the theoretical aspects of attitudes toward (aversion to) 

ambiguity, rather than on the actual measurement of 

ambiguity. 1 In general, these studies employ decision mod- 

els that do not provide the necessary separations be- 

tween risk and ambiguity and between tastes and be- 

liefs that are crucial for the measurement of ambiguity. 

For this reason, in most of these studies, the models are 

not tested empirically. The idea of the decision-making 

model that we employ is that the preferences for am- 

biguity are applied exclusively to probabilities, such that 

the attitude toward ambiguity is defined as the attitude 

toward mean-preserving spreads in probabilities, analo- 

gous to the Rothschild-Stiglitz risk attitude toward mean- 

preserving spreads in outcomes. Based on this idea, we 

propose an empirical measure of ambiguity, which is in- 

dependent of risk, attitudes toward risk, as well as atti- 

tudes toward ambiguity. Namely, we propose that the de- 

gree of ambiguity, denoted � 

2 (mho 2 ), be measured by the 

expected volatility of probabilities, across the relevant out- 

comes. That is, 

� 

2 [ r ] = 

∫ 
E [ ϕ ( r ) ] Var [ ϕ ( r ) ] dr, 

where ϕ( · ) is a probability density function, E[ ϕ( r )] is 

the expected probability of a given rate of return r , and 

Var[ ϕ( r )] is the variance of the probability of r . The intu- 

ition of � 

2 is that, as the degree of risk can be measured 

by the volatility of returns, so too can the degree of ambi- 

guity be measured by the volatility of the probabilities of 

returns. 

To illustrate the intuition behind � 

2 , consider the 

following binomial example of an asset with two pos- 

sible future returns: d = −10% and u = 20% . Assume 

that the probabilities, P( · ), of d and u are known, say 

P ( d ) = P ( u ) = 0 . 5 . The expected return is thus 5%, and the 

standard deviation of the return (measuring the degree 

of risk) is 15%. In this case, since the probabilities are 

known, ambiguity is not present ( � = 0 ), and investors 

face only risk. Assume next that the probabilities of d and 

u can be either P ( d ) = 0 . 4 and P ( u ) = 0 . 6 , or alternatively

P ( d ) = 0 . 6 and P ( u ) = 0 . 4 , where these two alternative 

distributions are equally likely. Investors now face not 

only risk but also ambiguity. The degree of ambiguity, 

in terms of probabilities, is � = 

√ ∑ 

i E [ P ( i ) ] Var [ P ( i ) ] = √ 

2 × 0 . 5 ×
(
0 . 5 × (0 . 4 − 0 . 5) 2 + 0 . 5 × (0 . 6 − 0 . 5) 2 

)
= 0 . 1 . 

Notice that the degree of risk, computed using the 

expected probabilities E [ P ( d ) ] = E [ P ( u ) ] = 0 . 5 , has not 

changed. 
1 See, for example, Chen and Epstein (2002) , Cao et al. (2005) , and 

Epstein and Schneider (2008) . For recent surveys, see Epstein and Schnei- 

der (2010) and Guidolin and Rinaldi (2013) . 
In this view, as opposed to other (arguable) measures 

of ambiguity that depend on the magnitude of outcomes, 

our measure, � 

2 , depends only on the probabilities of out- 

comes, regardless of their magnitude. Thereby, ambiguity 

is measured independently of risk. This measure of am- 

biguity can also be viewed as a nonlinear aggregate of 

the variance of the mean, the variance of the variance, 

and the variances of all other higher probability moments, 

through the variance of the probability density function. 

The measure � 

2 is employed in explaining the early ex- 

ercise of employee stock options ( Izhakian and Yermack, 

2017 ), the pricing of credit default swaps ( Augustin and 

Izhakian, 2016 ), dividend payout policy ( Dahya et al., 2017 ), 

and capital structure decisions ( Izhakian et al., 2017 ). This 

risk-independent measure, � 

2 , is our centerpiece of the 

empirical tests. 

Our point of departure is the underlying hypothesis that 

ambiguity is one of the determinants of the equity pre- 

mium. In particular, that the risk-ambiguity-return relation 

is given by the following model 

E t [ r t+1 ] − r f = γ
1 

2 

V ar t [ r t+1 ] ︸ ︷︷ ︸ 
Risk premium 

+ η
(
1 − E t [ P t+1 ] 

)
E t 

[| r t+1 − E t [ r t+1 ] | 
]
� 

2 
t [ r t+1 ] ︸ ︷︷ ︸ 

Ambiguity premium 

, (1) 

where r f is the risk-free rate of return, r is the return on 

the market portfolio, V ar t [ r t+1 ] is the degree of risk, mea- 

sured by the volatility of the market return, γ measures 

the aversion to risk of a representative investor or an ag- 

gregation of the risk aversion of investors, � 

2 
t [ r t+1 ] mea- 

sures the degree of ambiguity, and η measures the rep- 

resentative investor’s attitude toward ambiguity, which is 

contingent on the expected cumulative probability of an 

unfavorable return, E t [ P t+1 ] . 
2 The expectation, the variance, 

and the ambiguity of the market return are conditional on 

the information available at the beginning of the return pe- 

riod, time t . The equity premium, defined in Eq. (1) , has 

two separate components: a risk premium and an ambigu- 

ity premium. To see the intuition for the latter premium, 

recall that the conventional risk premium can be viewed 

as a premium that an investor is willing to pay to exchange 

a risky asset for a riskless one with an identical expected 

outcome. In a similar way, the ambiguity premium can be 

viewed as the premium that an investor is willing to pay 

to exchange a risky and ambiguous asset for a risky, but 

nonambiguous asset, with an identical expected outcome 

and identical risk. 

The ambiguity premium, defined in Eq. (1) , is a func- 

tion of the investor’s attitude toward ambiguity, and it is 

independent of her attitude toward risk. This property is of 

primary importance, not only from a theoretical perspec- 

tive but also is essential for an empirical implementation. 

In addition to our empirical pricing questions, we explore 

the nature of attitudes toward ambiguity. In particular, to 
2 For example, a return higher than the risk-free rate can be considered 

favorable, while a return lower than the risk-free rate can be considered 

unfavorable (e.g., Barberis et al., 2001 ). 
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address the question of whether attitudes toward ambi-

guity change over time and what are the determinants of

these changes, we focus on the subjective estimation of the

perceived probabilities of a favorable return. These empir-

ical questions have not previously been addressed in the

literature, except for a few attempts using laboratory ex-

periments. 3 To address this gap, we elicit attitudes toward

ambiguity from the ambiguity premium. This requires that

the ambiguity premium be attributed exclusively to ambi-

guity and attitudes toward it, such that ambiguity is mea-

sured from the data and the attitudes toward ambiguity

are uniquely and endogenously determined by the empiri-

cal model. This is not possible if the ambiguity premium is

also a function of risk attitudes. 

It is important to note that to elicit attitudes toward

ambiguity, it is necessary that the underpinning decision-

making model distinguishes between risk and ambiguity

and between tastes and beliefs. The classical models of

decision-making under ambiguity, for example, do not pro-

vide these necessary separations. In the max-min expected

utility (MEU) with multiple priors framework ( Gilboa and

Schmeidler, 1989 ), the set of priors reflects both infor-

mation (beliefs) and aversion to ambiguity (love for am-

biguity is not supported), which are not separable. Sim-

ilarly, in the Choquet expected utility (CEU) framework

( Gilboa and Schmeidler, 1989 ), capacities reflect both am-

biguity and aversion to ambiguity, which again are not

separable. 

We test four hypotheses implied by the theoretical as-

set pricing model in Eq. (1) , in line with prior behavioral

and asset pricing studies. The first hypothesis is that, when

ambiguity is introduced alongside risk, the latter has a

positive and significant effect on the equity premium (i.e.,

a positive risk premium). The second hypothesis is that, for

a high expected probability of favorable returns, the ambi-

guity premium is positive, implying ambiguity-averse be-

havior. The third hypothesis is that, for a high expected

probability of unfavorable returns, the ambiguity premium

is negative, implying ambiguity-loving behavior. The fourth

hypothesis is that aversion to ambiguity increases with the

expected probability of favorable returns, and love for am-

biguity increases with the expected probability of unfavor-

able returns. This implies that the magnitude of the am-

biguity premium increases with the expected probabilities.

These hypotheses do not imply that the equity premium

may be negative. We find that, even when the ambigu-

ity premium is negative, it is smaller than the risk pre-

mium such that the equity premium as a whole remains

positive. 

To test our four hypotheses empirically, we use the

model proposed in Eq. (1) . Aligned with findings in

the experimental literature (e.g., Cohen and Einav, 2007;

Schechter, 2007 ), we assume constant relative risk aver-

sion. Regarding attitudes toward ambiguity, in the exper-

imental literature, individuals typically have asymmetric

ambiguity preferences for unfavorable and favorable out-
3 These studies focus mainly on the differences between attitudes to- 

ward ambiguity concerning favorable and unfavorable outcomes and do 

not delve into studying the functional form and determinants of attitudes 

toward ambiguity (e.g., Baillon and Bleichrodt, 2015; Baillon et al., 2016 ). 
comes (e.g., Abdellaoui et al., 2011; Abdellaoui et al., 2005;

Du and Budescu, 2005 ). Yet, the functional form of at-

titudes toward ambiguity has not been identified. There-

fore, the empirical tests of our hypotheses are designed

without imposing a particular functional structure on at-

titudes toward ambiguity and aim to elicit attitudes to-

ward ambiguity from the data. As the model in Eq. (1) sug-

gests, the regression tests account for ambiguity attitudes

that are contingent upon the expected probability of fa-

vorable returns (gains) in time-series regressions of the

risk-ambiguity-return relation. With this design in place,

we explore the (nonlinear) relation between ambiguity

and the market expected return. To conduct these inves-

tigations, we use the exchange-traded fund (ETF), Stan-

dard & Poor’s Depositary Receipt (SPDR), on the Stan-

dard & Poor’s (S&P) 500 Index, as a proxy for the market

portfolio. 

Our empirical findings support the hypotheses, showing

that ambiguity significantly affects stock market returns.

That is to say, investors act as if they consider the degree

of ambiguity when they price financial assets. The findings

provide strong evidence that individuals exhibit ambigu-

ity aversion to favorable returns and love for ambiguity for

unfavorable returns. Moreover, their ambiguity aversion in-

creases with the expected probability of favorable returns,

and their ambiguity loving increases with the expected

probability of unfavorable returns. Introducing ambiguity,

in our model, alongside risk (volatility) shows that the ex-

pected volatility of the market portfolio has a positive and

significant effect on the portfolio’s expected return. These

findings provide evidence that support the classical theo-

retical risk-return relation. 

We conduct robustness tests to verify that our findings

are driven by ambiguity and related preferences and not by

other potential risk factors. Among other tests, we control

for skewness, kurtosis, volatility of the mean, and volatil-

ity of volatility. In addition, we test for the effect of in-

vestors’ sentiment ( Baker and Wurgler, 2006 ) and down-

side risk ( Ang et al., 2006 ) alongside ambiguity. In all

these tests, the effect and significance of ambiguity remain,

while the other factors are mostly insignificant. We also

conduct tests to verify that our results are derived from a

set of probability distributions and could not have been de-

rived from a (possible) single distribution due to sampling.

Finally, we test for alternative models of decision-making

under ambiguity, as well as for unstructured attitude to-

ward risk. 4 

The rest of the paper is organized as follows. In

Section 2 , we discuss the related literature. Section 3 pro-

vides the theoretical framework. In Section 4 , we dis-

cuss the data and develop the estimation methodology. In

Section 5 , there is a discussion of the regression tests and

the empirical findings. Robustness texts are described in

Section 6 . We consider alternative models in Section 7 . In

Section 8 , we provide the intuition behind our findings. We

conclude in Section 9 . 
4 By “unstructured attitude toward risk,” we mean that we do not im- 

pose a specific functional form over attitudes toward risk (e.g., constant 

relative risk aversion or constant absolute risk aversion). 
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2. Literature review 

As early as Merton (1980) , numerous studies have in- 

vestigated the fundamental (linear) relation between the 

risk and return of the market portfolio. The findings are 

conflicting, ranging from a positive relation (e.g., French 

et al., 1987; Campbell and Hentschel, 1992; Guo and 

Whitelaw, 2006; Pástor et al., 2008 ) to a negative one (e.g., 

Black, 1976; Campbell, 1987; Nelson, 1991; Harvey, 2001 ). 

Over the years, many studies have attempted to recon- 

cile the conflicting findings about the risk-return relation. 

Some have dealt with the econometric methodology em- 

ployed to estimate the conditional variance (e.g., Glosten 

et al., 1993; Harvey, 2001 ), while others have proposed al- 

ternative risk measures (e.g., Ghysels et al., 2005 ). Another 

strand of the literature includes time-varying elements 

such as regime switching (e.g., Campbell and Cochrane, 

1999; Whitelaw, 20 0 0 ), time-varying risk aversion (e.g., 

Campbell and Cochrane, 1999 ), and investor sentiment 

(e.g., Yu and Yuan, 2011 ). One of the most comprehensive 

empirical investigations of the risk–return relation is by 

Welch and Goyal (2008) , who find the variables suggested 

in previous studies are poor predictors of the equity pre- 

mium. 

The idea that ambiguity is a missing factor, in asset 

pricing models, that can affect asset prices and thus the 

risk-return relation has been studied mainly from a theo- 

retical perspective, focusing on individuals’ aversion to am- 

biguity. Recent theoretical studies have introduced ambi- 

guity into pricing models, suggesting that ambiguity is one 

of the determinants of expected return (e.g., Epstein and 

Schneider, 2010; Ui, 2011; Izhakian and Benninga, 2011 ). In 

some studies, an attempt is made to calibrate the model 

to the data (e.g., Epstein and Schneider, 2008 ), while oth- 

ers contain proxies for ambiguity, such as disagreement 

among analysts (e.g., Anderson et al., 2009; Antoniou et al., 

2015 ). Most empirical (behavioral) studies about ambiguity 

include data collected in controlled experiments and focus 

on individuals’ aversion to ambiguity, not on the impact 

of ambiguity on financial decision-making. Market data are 

used in only a few studies to measure ambiguity; for ex- 

ample, Ulrich (2013) uses entropy of inflation and Williams 

(2015) uses the Volatility Index (VIX). 

Driouchi et al. (2018) extract option implied ambiguity 

from the prices of put options written on the S&P 500 In- 

dex. 5 Focusing on the period prior to the 2008 subprime 

crisis, they infer the investors’ attitude toward ambiguity 

from market data and show that aversion to ambiguity 

shifted during that period. 6 While these authors explain 

the lead-lag relation between options’ implied volatility 

and realized volatility through the lens of ambiguity, we 

employ ambiguity (and risk) to explain the expected excess 

return on equities. In a follow-up paper, So et al. (2016) use 
5 In particular, Driouchi et al. (2018) extend Black and Scholes 

(1973) option pricing model by introducing ambiguity through Choquet- 

Brownian motions. Using this model, they measure implied ambiguity us- 

ing the minimum absolute error between observed index options prices 

and the suggested model’s intrinsic values. 
6 They show that implied ambiguity can reduce biases in predicting the 

realized market variance. 
the option implied ambiguity to explain the expected ex- 

cess return across different countries during the 1990–

2012 period. Using a different methodology, they find that 

ambiguity is an important determinant, in addition to risk, 

in explaining excess return. This finding, in general, is in 

line with our findings, although we differ by the direction 

of the effect of ambiguity. Also, our hypotheses differen- 

tiate between ambiguity and conditional attitudes toward 

it. Andreou et al. (2014) measure ambiguity using the dis- 

persion of volume-weighted strike prices of the S&P 500 

Index options. In our study, we deal with ambiguity and 

attitudes toward ambiguity in a different way. We elicit 

the investors’ attitudes toward ambiguity and suggest that 

aversion to ambiguity is subject to the expected probability 

of favorable outcomes, for which we find strong support in 

the empirical findings. 

In the literature concerning parameter uncertainty, the 

set of events and the nature of the probability distribution 

are known, but the parameters governing their distribu- 

tion are unknown. In addition, the decision maker max- 

imizes utility using posterior parameters that generate a 

set of priors à la ( Gilboa and Schmeidler, 1989 ), which 

can be viewed as reflecting both information (beliefs) and 

aversion to ambiguity (e.g., Bawa et al., 1979; Coles and 

Loewenstein, 1988; Coles et al., 1995 ). Therefore, param- 

eter uncertainty may be viewed as a special case of am- 

biguity in which the nature of the probability distribu- 

tions is known. A related approach is model uncertainty. 

In this approach, an uncertainty about the true probabil- 

ity law governing the realization of states is assumed, and 

a decision maker, with her concerns about misclassifica- 

tion, looks for a robust decision-making rule (e.g., Hansen 

et al., 1999; Hansen and Sargent, 2001 ). Other studies use 

a model risk approach to empirically account for uncer- 

tainty about the true set of predictive variables. To account 

for such model misspecification, a Bayesian (predictive dis- 

tribution) approach can be taken by assigning each set of 

variables (or model) a posterior probability (e.g., Pástor and 

Stambaugh, 1999; Pástor and Stambaugh, 20 0 0; Cremers, 

2002 ). 

Our empirical findings further the understanding of the 

nature of attitudes toward ambiguity and thus are re- 

lated to several behavioral studies. The behavioral litera- 

ture shows that investors who face a high probability of 

losses typically tend to embrace ambiguity, while if they 

face a high probability of gains, they can exhibit ambiguity 

aversion. For example, Viscusi and Chesson (1999) find that 

people exhibit ambiguity aversion (“fear” effects) for small 

probabilities of loss and love for ambiguity (“hope” ef- 

fects) for large probabilities of loss. Assuming risk neutral- 

ity, Maffioletti and Santoni (2005) find ambiguity seeking 

in individuals’ trading behavior. Wakker et al. (2007) ana- 

lyze health insurance information, concluding that individ- 

uals are ambiguity seeking. Other behavioral studies that 

find ambiguity-loving behavior when there is a relatively 

high probability of loss and ambiguity aversion when there 

is a relatively high probability of gain include Mangelsdorff

and Weber (1994) , Abdellaoui et al. (2005) , and Du and 

Budescu (2005) . Consistent with the findings in these stud- 

ies, our empirical findings show that investors have asym- 

metric preferences for ambiguity. Moreover, we analyze 
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aggregate preferences concerning ambiguity and contribute

to the literature by allowing for the identification of the

particular functional form of attitudes toward ambiguity. 

3. The theoretical model 

Knightian uncertainty has provided the basis for a

rich body of literature in decision theory. 7 We distin-

guish between risk and ambiguity by using the theoreti-

cal framework of expected utility with uncertain probabil-

ities (EUUP) proposed by Izhakian (2017) . The main idea

of EUUP is that preferences concerning ambiguity are ap-

plied exclusively to uncertain probabilities, such that am-

biguity aversion is defined as aversion to mean-preserving

spreads in probabilities. It is similar to Rothschild and

Stiglitz (1970) approach, which is applied to outcomes to

measure risk. Here this approach is applied to probabilities

to measure ambiguity. Unlike other measures of ambiguity

that are risk dependent and consider only the variance of a

single moment of the distribution (i.e., the variance of the

mean or the variance of the variance), our measure is risk

independent and accounts for all higher moments of the

return distribution. 

3.1. The ambiguity premium 

We employ EUUP to model two tiers of uncertainty:

one with respect to outcomes and the other with respect

to the probabilities of these outcomes. Under EUUP, there

are two phases of the decision-making process: one for

each of these tiers. In the first phase, the investor forms

her perceived probabilities for all events that are relevant

to her decision. In the second phase, she assesses the ex-

pected value of each alternative using her perceived prob-

abilities and chooses accordingly. Ambiguity—the uncer-

tainty about probabilities—dominates the first phase, while

risk—the uncertainty about outcomes—dominates the sec-

ond phase. 

To formally define the uncertain return r , let ( S, E, P )
be a probability space, where S is a state space, E is a σ -

algebra of subsets of the state space (i.e., a set of events),

P ∈ P is a probability measure, and the set of probability

measures P is convex. An algebra � of measurable sub-

sets of P is equipped with a probability measure, denoted

ξ . The uncertain return is then given by the “uncertain”
7 Knight (1921) distinguishes the concept of uncertainty from risk by 

conditions under which the set of events that may occur is a priori un- 

known, and the odds of these events are also either not unique or are 

unknown. Roughly speaking, this concept can be viewed as underpin- 

ning two strands of literature. The first is the “unawareness” literature, 

where decision makers may not be aware of a subset of events (e.g., Karni 

and Vierø, 2013 ). The second is the ambiguity literature, where the set of 

events is perfectly known, but their probabilities are either not unique or 

are unknown (e.g., Gilboa and Schmeidler, 1989; Schmeidler, 1989 ). These 

two strands of literature can be viewed as overlapping when dealing with 

monetary outcomes (real numbers). In this case, the “uncertain”—risky 

and ambiguous—variable is defined by a measurable function from states 

into the real numbers such that there is no real monetary outcome that 

the decision maker is not aware of. It is possible that the decision maker 

is not aware of some states of nature, which may affect the uncertainty 

about the probabilities of some outcomes. But such uncertainty is already 

accounted for by ambiguity. 

 

 

 

 

 

 

 

 

 

variable, r : S → R . Denote by ϕ( r ) the marginal probability

(density function or probability mass function) associated

with the cumulative probability P ∈ P of r . The expected

marginal and cumulative probability of r , taken using the

second-order probability measure ξ , are then respectively

defined by 

E [ ϕ ( r ) ] ≡
∫ 
P 
ϕ ( r ) dξ and E [ P ( r ) ] ≡

∫ 
P 

P ( r ) dξ , 

(2)

and the variance of the marginal probability is defined

by 

Var [ ϕ ( r ) ] ≡
∫ 
P 

(
ϕ ( r ) − E [ ϕ ( r ) ] 

)2 
dξ . (3)

The expected return and the variance of return are then

computed using the expected probabilities. That is, 

E [ r ] ≡
∫ 

E [ ϕ ( r ) ] rdr and 

V ar [ r ] ≡
∫ 

E [ ϕ ( r ) ] 
(
r − E [ r ] 

)2 
dr. (4)

As usual, investor preferences concerning risk are

modeled by a bounded, strictly increasing and twice-

differentiable utility function U : R + → R . Risk aversion

takes the form of a concave U ( · ), risk loving the form

of a convex U ( · ), and risk neutrality takes the form of a

linear U ( · ). Like Tversky and Kahneman (1992) cumula-

tive prospect theory, we normalize U ( · ) to U 

(
1 + r f 

)
= 0 ,

where the risk-free rate r f is the reference point relative

to which returns are classified as unfavorable (losses) or

favorable (gains). 8 That is, any return lower than r f is con-

sidered unfavorable, and any return higher than r f is con-

sidered favorable. An alternative reference point could be

a zero rate of return. However, it would be natural to as-

sume that investors classify their investment opportunities

relative to a neutral investment in a risk-free asset. 9 

As investors are sensitive to ambiguity, they do not

compound the set of priors P and the prior ξ over P
in a linear way (compounded lotteries), but instead they

aggregate these probabilities in a nonlinear way, reflect-

ing their ambiguity aversion. Preferences concerning am-

biguity are defined by preferences over mean-preserving

spreads in probabilities and modeled by a strictly increas-

ing and twice-differentiable function over probabilities, ϒ :

[ 0 , 1 ] → R , called the outlook function. Similar to risk, am-

biguity aversion takes the form of a concave ϒ( · ), ambi-

guity loving takes the form of a convex ϒ( · ), and ambigu-

ity neutrality the form of a linear ϒ( · ). In EUUP, ambiguity

aversion is demonstrated when an investor prefers the ex-

pectation of an uncertain probability of each payoff over

the uncertain probability itself. 
Consider a decision to invest one unit of wealth, where

future consumption is determined by the one-period (un-
certain) return r , which is the only source of wealth. In
8 The literature focuses on the implications of losses and gains for pref- 

erences (e.g., Barberis and Huang, 2001; Hirshleifer, 2001 ), while we focus 

on beliefs. 
9 We also test the model assuming that the zero rate of return is the 

reference point and the results are essentially the same. 
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ϒ

11 The volatility of the volatility (stochastic volatility) or the volatility of 

the mean are sometimes used as measures of ambiguity. The measure of 

ambiguity � 

2 is broader than either of these measures; it accounts for 
EUUP, when the investor does not distort perceived proba- 
bilities, the expected utility of this investment opportunity 
can be approximated by 10 

W ( 1 + r ) 

≈
∫ 

r≤r f 

U ( 1 + r ) E [ ϕ ( r ) ] 

(
1 − ϒ ′′ ( 1 − E [ P ( r ) ] ) 

ϒ ′ ( 1 − E [ P ( r ) ] ) 
Var [ ϕ ( r ) ] 

)
︸ ︷︷ ︸ 

Perceived probability of unfavorable return 

dr 

+ 

∫ 
r≥r f 

U ( 1 + r ) E [ ϕ ( r ) ] 

(
1 + 

ϒ ′′ ( 1 − E [ P ( r ) ] ) 

ϒ ′ ( 1 − E [ P ( r ) ] ) 
Var [ ϕ ( r ) ] 

)
︸ ︷︷ ︸ 

Perceived probability of favorable return 

dr, 

(5) 

where P( r ) is the cumulative probability of return being 

lower than r . Notice that when investors are ambiguity 

neutral ( ϒ( · ) is linear), Eq. (5) collapses to the conven- 

tional expected utility (i.e., investors compound probabili- 

ties linearly). In contrast, when the investors are ambiguity 

averse ( ϒ( · ) is concave), they do not aggregate probabil- 

ities linearly, and the perceived probabilities are affected 

by the intensity of aversion to ambiguity. The advantage 

of EUUP is that ambiguity preferences are applied exclu- 

sively to probabilities, such that ambiguity aversion is an 

aversion to mean-preserving spreads in probabilities. Con- 

ceptually, the perceived probability of a given outcome can 

be viewed as the certain probability values the investor is 

willing to accept in exchange for its uncertain probability. 

Using the notion of the volatility of probabilities in 

Eq. (5) , the measure of ambiguity, defined in Izhakian 

(2018) , is 

� 

2 [ r ] = 

∫ 
E [ ϕ ( r ) ] Var [ ϕ ( r ) ] dr. (6) 

The measure � 

2 can be used both in a continuous space 

with infinitely many outcomes or in a discrete state space 

with finitely many outcomes. The main idea of � 

2 is that 

ambiguity can be measured by the volatility of probabil- 

ities, just as the degree of risk can be measured by the 

volatility of returns ( Rothschild and Stiglitz, 1970 ). In gen- 

eral, irrespective of the decision-theoretic framework, � 

2 

encompasses not only an ambiguous variance and an am- 

biguous mean but also the ambiguity of the higher mo- 

ments of the probability distribution (i.e., skewness, kurto- 

sis, etc.) through the uncertainty of probabilities. This mea- 

sure, � 

2 ∈ [0 , ∞ ) , attains its minimum value, zero, only 

when all probabilities are known. 

The key property of � 

2 is risk independence, as it is 

a necessary property for studying the distinct role that 

ambiguity plays in pricing assets. Unlike other ambiguity 

measures, which are risk dependent and consider only the 

variance of a single moment of the distribution (e.g., the 
10 This functional representation is obtained by taking the Taylor expan- 

sion of the dual representation of EUUP, proposed by Izhakian (2017) . The 

reminder of this approximation is of order o 
(∫ 

E 
[| ϕ ( r ) − E [ ϕ ( r ) ] | 3 ]rdr 

)
as 

∫ 
| ϕ ( r ) − E [ ϕ ( r ) ] | dr → 0 , meaning that the accuracy of the ap- 

proximation is equivalent to the accuracy of the cubic approximation, 

o 
(
E 

[| r − E [ r ] | 3 ]), in which the fourth and higher absolute central mo- 

ments of outcomes are of strictly smaller order than the third absolute 

central moment as | r − E [ r ] | → 0 and are therefore negligible. 
variance of the mean or the variance of the variance), � 

2 

is risk independent and accounts for the variance of all 

the moments of the outcome distribution. 11 

EUUP, modeled in Eq. (5) , extends the Bayesian ap- 

proach to probabilities by asserting that uncertain proba- 

bilities are subject to a prior probability. This concept of 

second-order beliefs (prior probability over probabilities) 

and preferences is not unfamiliar and has been employed 

in earlier decision theory models of ambiguity (e.g., Nau, 

2006; Chew and Sagi, 2008 ). Some behavioral studies find 

evidence that decision makers act as if they have second- 

order preferences (e.g., Halevy, 2007; Hao and Houser, 

2012 ). Furthermore, neural responses to second-order un- 

certainty (ambiguity) are associated with areas of the brain 

that are distinct from those supporting first-order uncer- 

tainty (e.g., Huettel et al., 2006; Bach et al., 2011 ). 

The uncertainty premium of a risky and ambiguous 

consumption 1 + r delivered by Eq. (5) is 12 

K ≈ −1 

2 

U 

′′ ( 1 + E [ r ] ) 

U 

′ ( 1 + E [ r ] ) 
V ar [ r ] ︸ ︷︷ ︸ 

Risk premium 

−E 

[
ϒ ′′ ( 1 − E [ P ( r ) ] ) 

ϒ ′ ( 1 − E [ P ( r ) ] ) 

]
E 

[| r − E [ r ] | ]� 

2 [ r ] 

︸ ︷︷ ︸ 
Ambiguity premium 

. (7) 

The uncertainty premium is required by investors in return 

for bearing the risk and ambiguity associated with holding 

the asset. It consists of two components: the risk premium 

and the ambiguity premium. 

The model in Eq. (7) attains two separations. First, it 

distinguishes between the risk premium and the ambiguity 

premium. Second, within each premium, it distinguishes 

between the two sources of the premium: attitudes and 

beliefs. The risk premium is the Arrow-Pratt risk premium, 

where the expectation and the variance are taken with 

respect to expected probabilities. Independently, a higher 

risk, measured by V ar [ r ] , or a higher aversion to risk, mea- 

sured by the coefficient of absolute (local) risk aversion 

− U ′′ 
U ′ , result in a greater risk premium. The ambiguity pre- 

mium possesses attributes resembling those of the risk 

premium but with respect to probabilities rather than to 

outcomes. This premium separates ambiguity, measured by 

� 

2 , from attitudes toward ambiguity, measured by the co- 

efficient of absolute (local) ambiguity aversion −ϒ ′′ 
ϒ ′ . Aver- 

sion to ambiguity ( −ϒ ′′ 
′ > 0 ) implies a positive ambiguity 
both, as well as for the volatility of all higher moments of the probability 

distribution (e.g., skewness and kurtosis), through the variance of prob- 

abilities. As opposed to the volatility of volatility and to the volatility of 

the mean, the measure � 

2 is risk independent, as it does not depend on 

the magnitudes of outcomes but only on their probabilities. Furthermore, 

� 

2 solves some major issues that arise from the use of only the volatil- 

ity of volatility or only the volatility of mean as measures of ambiguity; 

for example, two equities with different degrees of ambiguity but con- 

stant volatility, or two equities with different degrees of ambiguity but 

constant mean. 
12 To prove this approximation, we assumed that returns and their prob- 

abilities are close to their expectation ( Izhakian, 2018 ). 
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premium. Love for ambiguity ( −ϒ ′′ 
ϒ ′ < 0 ) implies a nega-

tive premium. Indifference to ambiguity ( −ϒ ′′ 
ϒ ′ = 0 ) implies

a zero premium, which is also obtained when all proba-

bilities are perfectly known (i.e., when � 

2 = 0 ). A higher

degree of ambiguity or a higher aversion to ambiguity re-

sult in a greater ambiguity premium. The ambiguity pre-

mium is also a function of the expected absolute devia-

tion of returns from their expectation, E 

[| r − E [ r ] | ], which

scales the ambiguity premium to the units of returns. 

The unique functional representation of EUUP allows for

the identification of the different com ponents of each pre-

mium and the relation between these components. Previ-

ous attempts to extract the ambiguity premium using al-

ternative models generate ambiguity premiums that are

also a function of risk attitudes (e.g., Izhakian and Ben-

ninga, 2011; Ui, 2011 ), whereas in our model the ambigu-

ity premium is solely a function of ambiguity and the at-

titudes toward it. As discussed earlier, this property is of

primary importance for the empirical investigation of am-

biguity attitudes. Recall that, besides the pricing questions

we address, we explore the nature of ambiguity attitudes

with a focus on the effect of the subjective estimation of

the probability of a favorable return on investors ambigu-

ity attitudes. We attempt to elicit investors’ attitudes from

the ambiguity premium. 

3.2. The assumptions 

The ambiguity measure � 

2 is a centerpiece of our em-

pirical tests. To estimate the degree of ambiguity from

market data, the probability distributions of returns must

be derived from the data. To this end, we assume that

there is a representative investor whose set of priors is

an aggregation of the sets of priors of all investors in the

economy. We also assume that each subset of observed re-

turns is the result of a realization of one prior out of this

set of priors. In particular, every trading day is character-

ized by a different distribution of returns P, and the set

P of these distributions over a month represents the rep-

resentative investor’s set of priors. Returns on the market

portfolio are assumed to be normally distributed but not

independently identically distributed. 13 That is, every P ∈ P
is normal, governed by a different mean μ and variance

σ 2 . 14 The degree of ambiguity is, therefore, measured by 

� 

2 [ r ] = 

∫ 
E [ φ( r;μ, σ ) ] Var [ φ( r;μ, σ ) ] dr, (8)

where φ( · ) denotes the normal probability density func-

tion. 

To simplify the functional form of the equity premium,

defined in Eq. (7) , we rely upon prior behavioral find-

ings about risk and ambiguity attitudes, which assist us

in forming our four hypotheses. The interactions among

risk, ambiguity, and attitudes toward risk and ambiguity in

determining the equity premium are dictated by Eq. (7) .

In stating our hypotheses, the prior behavioral findings
13 In our robustness tests, we relax the assumption of normally dis- 

tributed returns, elaborated on in Section 6 . 
14 The volatility of μ and of σ 2 have been separately attributed to am- 

biguity (e.g., Cao et al., 2005; Faria and Correia-da Silva, 2014 ). 

 

 

 

assist us only in identifying the direction of the effect

that investor’s attitudes toward risk and toward ambiguity

have. Similar to classical asset pricing theory (e.g., Arrow-

Pratt’s theory), the risk aversion determining the positive

equity premium is not derived from the underlying (Von

Neumann-Morgenstern) expected utility theory but from

the behavioral findings of this theory. 

We consider previous work and assume that the atti-

tudes toward risk are of the constant relative risk aversion

(CRRA) class (e.g., Chetty, 2006; Schechter, 2007; Cohen

and Einav, 2007 ). However, there is no conclusive evidence

about the functional representation of attitudes toward

ambiguity. Therefore, no particular functional structure

is imposed on ϒ. Allowing the intensity of the effect of

attitudes toward ambiguity to be determined endoge-

nously, we examine the functional structure of ambiguity

attitudes. 

The uncertainty premium, defined in Eq. (7) , can thus

be simplified to 

K ≈ γ
1 

2 

V ar [ r ] ︸ ︷︷ ︸ 
Risk premium 

+ E 

[
η( 1 − E [ P ( r ) ] ) 

]
E 

[| r − E [ r ] | ]� 

2 [ r ] ︸ ︷︷ ︸ 
Ambiguity premium 

, 

(9)

where γ is the coefficient of relative risk aversion, and

η( ·) = −ϒ ′′ ( ·) 
ϒ ′ ( ·) characterizes the ambiguity attitudes con-

ditional on the expected cumulative probability E [ P ( r ) ] =
E [ 
( r;μ, σ ) ] , where 
( · ) denotes the normal cumula-

tive probability distribution. A positive (negative) γ implies

aversion to (love for) risk, and a positive (negative) η( · )

implies aversion to (love for) ambiguity. In this represen-

tation, while γ is constant across different returns, η( · )

can vary across different expected return probabilities. Risk

and ambiguity are measured separately and can have a dif-

ferent effect on excess returns. 

3.3. The hypotheses 

We next turn to present our hypotheses, based on the

model presented in Eq. (9) . Our first hypothesis is standard

in the asset pricing literature. 

Hypothesis 1 . When ambiguity is accounted for, the risk

premium is positive, as investors typically exhibit risk aver-

sion. 

The next two hypotheses are related to investors’ atti-

tudes toward ambiguity, as reflected in the ambiguity pre-

mium defined in Eq. (9) . These hypotheses rely on behav-

ioral findings regarding individuals’ attitudes toward ambi-

guity, which are found to be different for losses and gains

(e.g., Abdellaoui et al., 2005; Wakker et al., 2007 ). 

Hypothesis 2 . Investors typically exhibit aversion to ambi-

guity when expecting favorable returns. Therefore, for a

relatively high expected probability of favorable returns,

the ambiguity premium is positive. 

Hypothesis 3 . Investors typically exhibit love for ambiguity

when expecting unfavorable returns. Therefore, for a rela-

tively high expected probability of unfavorable returns, the

ambiguity premium is negative. 
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15 Under the ticker symbol SPY, the SPDR began trading on the American 

Stock Exchange (Amex) on January 29, 1993. 
16 Scholes and Williams (1977) suggest that the volatil- 

ity of returns takes the form σ 2 
t = 

∑ N t 
i =1 ( r t,i − E [ r t,i ] ) 

2 + 

2 
∑ N t 

i =2 ( r t,i − E [ r t,i ] ) ( r t,i −1 − E [ r t,i −1 ] ) . 
17 We focus on one-month intervals; however, the same procedure can 

be applied to shorter or longer periods than one month. 
Hypotheses 2 are 3 are related to the logic in Dow and 

Werlang (1992) . Assuming risk-neutral preferences, these 

authors show that, in the CEU and MEU frameworks, an 

investor buys an asset if the price is lower than the ex- 

pected payoff (a positive ambiguity premium) and sells it 

if the price is higher than the expected payoff (a negative 

ambiguity premium), where the expectations are estimated 

using capacities (CEU) or the worst-case prior (MEU). Re- 

call that in CEU (MEU), the capacities (the set of priors) 

do not distinguish between information (beliefs) and tastes 

(attitude) for ambiguity. Using our underlying framework, 

EUUP, we construct capacities from beliefs (information), 

captured by the set of priors, and tastes for ambiguity, cap- 

tured by the outlook function. This construction allows us 

to identify the effect of beliefs on the expected payoff, and 

thus on the ambiguity premium, separately from the ef- 

fect of tastes for ambiguity. Using Hypotheses 2 and 3 , we 

refine the results of Dow and Werlang (1992) and conjec- 

ture that what determines why the premium is positive or 

negative is the investor’s belief (information) about the ex- 

pected probability of favorable (unfavorable) returns. 

Our fourth hypothesis extends the discussion of ambi- 

guity preferences. In Hypothesis 4 , we conjecture that the 

intensity of attitudes toward ambiguity is subject to the 

expected probability of unfavorable returns (losses) and 

favorable returns (gains). Accordingly, the magnitude of 

the ambiguity premium is determined. This hypothesis is 

based on the behavioral findings of Mangelsdorff and We- 

ber (1994) , Viscusi and Chesson (1999) , and Du and Bude- 

scu (2005) . 

Hypothesis 4 . Aversion to ambiguity increases with the 

expected probability of favorable returns and love for am- 

biguity increases with the expected probability of unfavor- 

able returns. Therefore, the higher the expected probabil- 

ity of favorable returns, the higher is the positive ambigu- 

ity premium. On the other hand, the higher the expected 

probability of unfavorable returns, the higher is the nega- 

tive ambiguity premium. 

A higher expected probability of favorable returns is not 

a sufficient condition for a higher expected excess return. 

To see this, note that the reference point r f (the risk-free 

rate) must be lower than the expected return, E [ r ] ; oth- 

erwise, no rational investor would consider investing in 

the market. In this case, the expected probability of fa- 

vorable returns can increase by a higher probability mass 

for returns in the range r f ≤ r < E [ r ] , such that the ex- 

pected return E [ r ] decreases. Furthermore, a critical differ- 

ence between expected returns and expected probability of 

favorable returns is that the former is outcome dependent, 

which in turn implies risk dependence, while the latter is 

outcome independent. In Hypothesis 4 we conjecture that 

the ambiguity premium is increasing in the expected prob- 

ability of favorable returns through the channel of attitude 

toward ambiguity (tastes), rather than through the channel 

of beliefs about outcomes (expected return). In particular, 

as the expected likelihood of favorable returns increases, 

the investor becomes more ambiguity averse and requires 

a higher premium. 
4. Data and parameter estimation 

To test our hypotheses empirically, we first propose a 

new method to measure the degree of ambiguity in the 

market using trading data. 

4.1. Data 

We use intraday data of the ETF SPDR taken from the 

Trade and Quote (TAQ) database. The SPDR is designed 

to track the S&P 500 Index. The stocks in the SPDR have 

the same weights as in the Index. Quarterly dividends are 

added to the SPDR every three months. The SPDR can 

be sold short like any other stock. The SPDR is selected 

to minimize the bias in return variances, since it is fre- 

quently traded and its bid-ask spread is minimal. We use 

the SPDR as a proxy for the market portfolio since the it 

trades continuously, while the S&P 500 contains illiquid 

stocks, so its values can be stale. The data cover the pe- 

riod from February 1993 to December 2016, 287 months 

in total. 15 Daily and monthly returns, adjusted for divi- 

dends, are obtained from the Center for Research in Secu- 

rity Prices (CRSP) database. VIX values are obtained from 

the Chicago Board Options Exchange (CBOE) website. The 

risk-free rate is the one-month Treasury bill rate of return, 

provided by Ibbotson Associates. 

4.2. Estimating risk and ambiguity 

Our first step is to estimate the time-series values of 

the monthly degree of risk. The monthly risk (volatility) 

is measured by the variance of daily rates of return. As in 

French et al. (1987) , the variance of the returns is com- 

puted by applying the adjustment for non-synchronous 

trading, proposed by Scholes and Williams (1977) . 16 Fig. 1 

shows the time series of the volatility (in terms of standard 

deviation) for 1993–2016. 

Our next step is to develop a method to estimate the 

time-series values of the monthly degree of ambiguity. 17 

We take the prices of the SPDR every five minutes from 

9:30 a.m. to 4:00 p.m. each day, which provides 79 prices 

for each day. If there was no trade at a specific time, we 

take the volume-weighted average of the closest trading 

prices within five minutes of that time stamp. By not in- 

cluding returns between the closing prices and the open- 

ing prices of the following day, we eliminate the impact 

of overnight price changes (new information) and dividend 

distributions. Using these prices, we compute the five- 

minute returns, which provides a maximum of 78 returns 

for each day. Observations with extreme price changes 

( ± 10% log returns) within five minutes are omitted be- 

cause many of them are probably due to erroneous orders 

that were cancelled by the exchange. When we include 
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Fig. 1. Time series of volatility. 

The figure illustrates the realized volatility between February 1993 and December 2016. The x-axis shows the timeline. The y-axis shows the volatility in 

terms of standard deviation. The standard deviation, in monthly terms, is computed from daily returns of SPDR adjusted for dividends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these observations in the model, the effect of ambiguity is

even more significant than when we exclude these obser-

vations. 

The choice of five-minute intervals is dictated by the

measure of ambiguity. To perform meaningful time-series

tests, in our 24-year period (February 1993 to December

2016), we need to use monthly observations. To obtain a

statistically meaningful monthly measure of ambiguity, a

daily estimate of a probability distribution is needed. This,

in turn, requires intraday observations. The decision to

compute returns using five-minute intervals is motivated

by Andersen et al. (2001) , who show that this time inter-

val is sufficient to minimize microstructure effects. 18 

For each day in our sample period there are between 33

and 78 observations. We use these observations to com-

pute the normalized (by the number of intraday obser-

vations) daily mean and variance of the return, denoted

μ and σ 2 , respectively. This variance is also computed

by applying the adjustment for nonsynchronous trading,

proposed by Scholes and Williams (1977) . 19 Based on the

assumption that the intraday returns are normally dis-

tributed, we construct the set of priors P, where each prior

P within the set P is defined by a pair of μ and σ . Im-

portantly, in our approach, the set of priors P that under-

lies ambiguity is endogenously derived. To the best of our

knowledge, all other empirical and experimental studies,

except for Hey et al. (2010) , take the set of priors to be

exogenously given or designed by the experimenter. 

Given the set P of (normal) probability distribu-

tions, we first compute for each day (prior) the cumu-

lative probability of favorable returns (gain), P 
(
r ≥ r f 

)
=

1 − 

(
r f ;μ, σ

)
, where any return greater than the risk-
18 To ensure that our findings are not derived by the selection of 5- 

minute intervals, we also test our model using 10, 15, and 20-minute in- 

tervals; the results are essentially the same. 
19 We also test our model without the Scholes-Williams correction for 

nonsynchronous trading. The results are essentially the same. 

 

 

free rate is considered favorable. 20 For each month, there

are 20 to 22 different gain probabilities. Their expectation,

E[P( r ≥ r f )], is computed assuming that the daily ratios of

the sample mean and standard deviation, μ
σ , are student’s-

t distributed, which assigns lower weights to values of μ
σ

that deviate from the monthly mean of μ
σ . This method

implies that the cumulative probabilities of favorable re-

turns, P( r ≥ r f ), are uniformly distributed over the month.

See, for example, 2010, 21, Proposition 1.27 ( Kendall and

Stuart, 2010 ). It is consistent with the assumption that the

representative investor does not have any information in-

dicating which probability distributions is more likely and

thus acts as if she assigns an equal weight to each one.

The expected probabilities of favorable returns are used to

estimate ambiguity attitudes. 

To compute the monthly degree of ambiguity, specified

in Eq. (8) , we represent each daily return distribution by

a histogram. To this end, we divide the range of daily re-

turns, from −6% to +6% , into 60 intervals (bins), each of

width 0.2%. For each day, we compute the probability of

the return being in each bin. In addition, we compute the

probability of the return being lower than −6% and higher

than +6% . We then compute the mean and the variance of

the probabilities for each of the 62 bins separately. Then,

we estimate the degree of ambiguity of each month using

the following discrete form 

� 

2 [ r ] = 

1 

w ( 1 − w ) 

×

⎛ 

⎜ ⎝ 

E 

[

( r 0 ;μ, σ ) 

]
Var 

[

( r 0 ;μ, σ ) 

]
+ 

∑ 60 
i =1 E 

[

( r i ;μ, σ ) − 
( r i −1 ;μ, σ ) 

]
×Var [
(r i ;μ, σ ) − 
(r i −1 ;μ, σ )] 
+ E[1 − 
(r 60 ;μ, σ )] Var [1 − 
(r 60 ;μ, σ )] 

⎞ 

⎟ ⎠ 

,

where r 0 = −0 . 06 , w = r i − r i −1 = 0 . 002 , and 

1 
w ( 1 −w ) 

scales

the weighted-average volatilities of probabilities to the bin
20 We also test our model assuming that a positive return is considered 

favorable, i.e., P( r ≥ 0). The results are essentially the same. 
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Fig. 2. Time series of market ambiguity and excess return. 

The figure depicts the realized market ambiguity and excess return for the period between February 1993 and December 2016. The exchange-traded fund 

SPDR is the proxy of the market. The x-axis shows the timeline. The y-axis of the upper plot shows the monthly level of ambiguity � , measured by the 

standard deviation of the daily probabilities of returns over the month. Probabilities of returns are based on the daily mean and variance of returns on the 

SPDR, computed from five-minute returns, taken from the TAQ database and normalized to daily terms. The lower plot depicts the monthly, adjusted for 

dividends, excess return on the SPDR. The dotted vertical lines denote special events that had a significant impact on monthly excess returns. 
size. 21 This scaling, which is analogous to Sheppard’s cor- 

rection, is tested to verify that it minimizes the effect 

of the bin size on the values of � 

2 . As with the ex- 

pected probabilities, the variance of the probabilities is 

computed assuming that the daily ratios μ
σ are student’s- 

t distributed. As in the risk literature, since expected fu- 

ture returns (and therefore expected probabilities) cannot 

be observed, realized returns must be used to construct re- 

alized probability distributions. 

We next examine the time-series of ambiguity. The up- 

per plot in Fig. 2 shows the time-series of the monthly 

degree of ambiguity � for 1993–2016, and the lower plot 

shows the monthly excess returns on the market. We ob- 

serve only a few months that contain big downward moves 

in the market. The obvious one is September–October 

2008, during the recent financial crisis. Notice that crisis 

times, typified by negative or relatively low returns, are ac- 
21 We find that this scaling improves the pervious scaling 1 

w ln 1 
w 

for the 

bin size, used in Izhakian and Yermack (2017) , in the sense that it reduces 

the sensitivity of the estimated � 

2 to the bin size. 
companied by relatively high levels of ambiguity. For ex- 

ample, in September 2008, the excess return was −16 %, 

while ambiguity rose to 2.4, about 2.5 times the average 

ambiguity of 0.98 over the sample period. Another exam- 

ple is the “foot-and-mouth crisis” that began in February 

2001 in the United Kingdom and was seemingly the rea- 

son for the ambiguity level jumping to 1.4 at that time. 

Fig. 2 shows that during some years, there is a rela- 

tively high average level of ambiguity, accompanied by a 

relatively low rate of excess return (e.g., 20 04–20 07, 2014, 

and 2016). Fig. 1 shows that during these years the risk, 

measured by return volatility, was relatively low on aver- 

age. As the expected rate of return compensates for both 

risk and ambiguity, in these years, the effect of lower risk 

on expected return dominates the effect of ambiguity. This 

raises the question of what might explain the relatively 

high ambiguity in periods of relatively “high” prices (low 

rates of return). A glimpse of this phenomenon, high prices 

accompanied by high ambiguity, can be observed in 2016, 

when important political and economic events occurred 

(e.g., the UK Brexit decision and the US elections). In this 

period, the “feeling” in the financial markets was of high 
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Table 1 

Summary statistics. 

Descriptive statistics are reported for the sample of returns between February 1993 and December 2016. 

Panel A reports summary statistics of the daily parameters employed to compute probabilities of returns. N is the number of days in the 

sample. n denotes the five-minute returns in different five-minute time intervals. The mean return, μ, is the daily average five-minute 

SPDR (Ticker: SPY) return, in daily terms, where intraday returns are computed using prices taken from the TAQ database. σ is the 

daily standard deviation of five-minute returns, in daily terms. Probabilities of favorable returns, P, are based on the daily mean, μ, and 

variance, σ 2 , of the return, assuming a normally distributed return. A return is considered favorable if it is greater than the risk-free rate. 

Panel B reports summary statistics of the dependent and main independent variables. The monthly risk-free rate of return, r f , is the one- 

month Treasury bill rate of return, taken from Ibbotson Associates. The market return, r , is the monthly return, adjusted for dividends, of 

the exchange-traded fund SPDR, taken from the CRSP database. The volatility, 
√ 

ν, is the standard deviation of the daily return, adjusted 

for dividends in monthly terms. The absolute deviation ϑ is the average absolute daily deviation of returns from the monthly average 

daily return. The mean probability, P , is the average daily probability of favorable returns over a month. Ambiguity, � , is the standard 

deviation of the daily probabilities of returns over the month. 

Panel C reports the cross-correlations among the main estimates in the regression tests. Volatility is the variance of daily returns and 

ambiguity is the variance of daily probabilities, as used in the regression tests. p -values are in parentheses. 

N Mean Median Min Max Std. dev. Skewness Kurtosis 

Panel A: Daily descriptive statistics 

n Num. of obs. 6025 70.783 78.0 0 0 3.0 0 0 78.0 0 0 16.974 −2.246 3.518 

μ Mean return 6025 0.0 0 0 0.0 0 0 −0.094 0.101 0.011 0.032 7.871 

σ Std. dev. 6025 0.008 0.007 0.001 0.067 0.005 2.940 16.094 

μ/ σ Mean/Std 6025 0.073 0.057 −19.003 13.915 1.356 −0.234 16.062 

P Probability 6025 0.512 0.517 0.0 0 0 1.0 0 0 0.316 −0.037 −1.309 

Panel B: Monthly descriptive statistics 

r f Risk-free rate 287 0.002 0.002 0.0 0 0 0.006 0.002 0.187 −1.564 

r Return 287 0.008 0.013 −0.165 0.109 0.041 −0.648 1.246 

r − r f Excess return 287 0.006 0.010 −0.166 0.109 0.041 −0.641 1.250 √ 

ν Volatility 287 0.049 0.043 0.007 0.273 0.030 2.847 15.091 

VIX VIX 257 0.059 0.054 0.030 0.175 0.024 1.692 4.405 

ϑ Avg. absolute dev. 287 0.043 0.037 0.012 0.222 0.026 2.791 13.154 

P Mean Prob. 287 0.512 0.507 0.358 0.691 0.064 0.204 −0.332 

� Ambiguity 287 0.986 0.958 0.361 2.405 0.353 0.622 0.367 

Panel C: Cross-correlations 

r − r f ν ϑ P � 

2 

r − r f 1 

ν −0.347 1 

( < 0.0 0 01) 

ϑ −0.382 0.831 1 

( < 0.0 0 01) ( < 0.0 0 01) 

P 0.648 −0.153 −0.275 1 

( < 0.0 0 01) (0.0093) ( < 0.0 0 01) 

� 0.056 0.027 −0.327 0.244 1 

(0.3423) (0.6506) ( < 0.0 0 01) ( < 0.0 0 01) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncertainty, while risk measures like the VIX were very

low. However, the measure � 

2 indicates high levels of am-

biguity, which can reflect the perception in the financial

markets. In Section 4.3 , we further investigate this pattern,

observed for example in 20 04–20 07, when a sustained pe-

riod of high prices is accompanied by relatively high ambi-

guity. 

In other studies, different methodologies are employed

to extract ambiguity from trading data. For example, for

20 04–20 07, Andreou et al. (2014) and So et al. (2016) find

a relatively low degree of ambiguity. 22 One possible rea-

son for this difference compared to our paper may be the

nature of the measure used. The measures used in these

papers are outcome related. The former measures ambigu-

ity using the volume-weighted dispersion of option strike

prices, and the latter measures implied ambiguity by the

minimum absolute error between observed index options

prices and the suggested model intrinsic values. We take
22 For 20 06–20 07, Driouchi et al. (2018) ’s method also demonstrates a 

relatively low degree of ambiguity. 

 

 

 

 

a different approach with our ambiguity measure and sug-

gest an outcome-independent measure that relies only on

probabilities. 

4.3. Descriptive statistics 

The building blocks for measuring the degree of am-

biguity in the market are the daily means and vari-

ances, computed from the five-minute returns. Panel A of

Table 1 provides descriptive statistics of the intraday re-

turns. The statistics are reported in daily terms. The aver-

age number of five-minute return observations is 70.78 per

day. The probabilities of the favorable returns, P, are com-

puted using the ratio μ
σ , which ranges between −19 and

13.9, with an average of 0.073. The source of the variation

in this ratio shows that it is driven by the variations in

both μ and σ . Over the entire sample, the standard devi-

ation of μ, in terms of the daily return, is 1.1%, while the

standard deviation of σ is 0.5%. It is important to empha-

size that the mean of the realized returns, measured over

short intervals, is a poor proxy for the annual expected re-

turn (i.e., its standard error is very large). In our context,
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however, daily probabilities are extracted from the ratio of 
μ
σ , whose distribution gives very little weight to extreme 

observations. Indeed, the estimated probability values ap- 

pear to be very reasonable. On average, the probabilities 

of favorable returns in our sample is 0.51 as would be ex- 

pected, and their standard deviation is about 0.32. 

Panel B of Table 1 provides descriptive statistics of the 

variables. The dependent variable is the monthly return 

on the SPDR, r , which serves as a proxy for the return 

on the market portfolio, minus the risk-free rate, r f , which 

is the one-month Treasury bill rate. The monthly return 

on the market, r , is computed using the opening price on 

the first trading day of the month and the closing price 

on the last trading day of the month and is adjusted for 

monthly dividends. On average, between 1993 and 2016, 

this return is 0.79% (about 9.56% annually). On average, the 

monthly risk-free rate is 0.21% (about 2.56% annually), and 

the monthly excess return, r − r f , is 0.58% (about 6.99% an- 

nually). The distribution of r − r f is somewhat negatively 

skewed. The positive excess kurtosis, 1.2, indicates that the 

returns has tails. 

Our measure of risk, denoted 

√ 

ν, is the monthly stan- 

dard deviation, computed from daily returns and reported 

on a monthly basis. Across all 287 months, on average, the 

risk is about 5.0% (about 17.2% annually). The monthly av- 

erage absolute deviation of returns from the average re- 

turn E 

[| r − E [ r ] | ], denoted ϑ, is also computed from daily 

returns and reported on a monthly basis. On average, ϑ
(across all 287 months) is about 4.3% (about 15.01% annu- 

ally). Over the period between 1993 and 2016, the degree 

of ambiguity � ranges between 0.361 and 2.4. The aver- 

age ambiguity is 0.986. There are periods of relatively low 

ambiguity, like 1999–20 0 0, and periods of relatively high 

ambiguity, like 20 04–20 07, as observed in Fig. 2 . The phe- 

nomenon of relatively high ambiguity in periods of rela- 

tively “high” prices (low rates of return), as in 20 04–20 07, 

requires further investigation. A plausible explanation may 

be that in periods of sustained “high” prices investors‘ con- 

cern of a “correction” (i.e., a large price drop following a 

price run up) increases and manifests itself in relatively 

high ambiguity (the uncertainty of the probability) of a 

price drop. To test this conjecture empirically, we regress 

ambiguity against price run ups, measured by the number 

of months with a positive excess return in the preceding 

three months. We repeat this test for the preceding 4 to 

12 months. In all these regression tests, ambiguity is signif- 

icantly positively related to price run ups. For example, in 

the 3-month run-up regression, the t -statistics of the slope 

coefficient is 4.27, in the 6-month run-up regression the t - 

statistics of the slope coefficient is 5.28, and the 12-month 

run-up regression the t -statistics of the slope coefficient is 

4.53. 23 As the focus of this paper is to study the effect of 

ambiguity on the equity premium, we leave the thorough 

exploration of the determinants of ambiguity to future re- 

search. 

Panel C of Table 1 provides the cross-correlations 

among the main variables. For risk we use the variance of 
23 To ensure that our results are not driven by price run ups, in our main 

regression tests that follow, we control also for investors’ sentiment. 
returns, rather than the standard deviation, and for ambi- 

guity we use the variance of probabilities, rather than the 

standard deviation. As expected, the mean probability of 

favorable returns is positively and significantly correlated 

with the excess return (0.648). The excess return and the 

volatility are negatively and significantly correlated as ob- 

served in some studies (e.g., Nelson, 1991; Harvey, 2001 ). 

However, the lack of correlation between risk and ambigu- 

ity potentially provides independent evidence of their ef- 

fect on excess return. 

5. Empirical methodology and results 

We turn now to develop the empirical methodology for 

testing our hypotheses. We first estimate the expected risk 

and ambiguity. Then, we design the empirical tests of the 

model in Eq. (9) and conduct the regressions analysis. 

5.1. Estimating expected ambiguity and volatility 

The fundamental hypothesis is that expected ambiguity, 

in addition to expected volatility (risk), is a determinant 

of the expected return. Based on the model in Eq. (9) , we 

suggest in Hypotheses 1–4 that the effect of ambiguity on 

returns is subject to the investor’s attitude toward ambigu- 

ity, which in turn is contingent on the expected probability 

of favorable returns. Thus, to conduct the empirical tests, 

the expectations of the following four variables need to be 

estimated: the volatility ( ν), the average absolute deviation 

of returns from the expected return ( ϑ), the probability of 

favorable returns (P), and the degree of ambiguity ( � 

2 ). 

To select an appropriate estimation model, we first ex- 

amine the autocorrelations in Table 2 . The first-order au- 

tocorrelation of the volatility is large, the second-order is 

lower, while the decay beyond the fifth order is relatively 

slow. This behavior is indicative of a nonstationary inte- 

grated moving average (e.g., French et al., 1987 ). To ad- 

dress the issue of nonstationarity, we examine the changes 

in the natural logarithm of the standard deviation. These 

changes have a negative first-order autocorrelation, im- 

plying that the residuals have at least one lagged effect. 

The autocorrelation of the average absolute deviation, ϑ, is 
strongly positive for the first lag and decays consistently 

over the next eight lags; however, the changes in its nat- 

ural logarithm are negative, but meaningful, only for the 

first-order autocorrelation. Examining the first-order auto- 

correlation of the changes in the natural logarithm of the 

probabilities of favorable returns shows that it is highly 

negative and significant only for the first-order autocor- 

relation. 24 Similarly, the ambiguity time series is nonsta- 

tionary, while the autocorrelation of the changes in the 

natural logarithm of ambiguity is also highly negative and 

significant only for the first lag. We then conduct a Box- 

Pierce test of thes four variables, and in each case the null 

hypothesis that the observations are independently dis- 

tributed is rejected. 
24 By definition, probabilities are bounded between zero and one. As ex- 

pected, the negative autocorrelations of changes in their natural logarithm 

indicate that they follow a mean-reverting process; otherwise, the proba- 

bilities of this variable would deviate from the [0, 1] range. 
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Table 2 

Autocorrelations. 

Autocorrelations are reported for the monthly parameters employed in the empirical tests using monthly observations between February 1993 and Decem- 

ber 2016, 287 months in total. The volatility, ν , is the variance of the daily returns of the SPDR, adjusted for dividends, in monthly terms. The absolute 

deviation ϑ is the average absolute daily deviation of returns from the monthly average daily return. The mean probability, P , is the average daily proba- 

bility of favorable returns over a month. A return is considered favorable if it is greater than the risk-free rate, where returns are assumed to be normally 

distributed. Probabilities are based on the daily mean and variance of returns computed from the five-minute returns, taken from the TAQ database, given 

in daily terms. Ambiguity, � 

2 , is the variance of the daily probabilities of returns over the month. p -values are in parentheses. 

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 

ν Volatility 0.529 0.177 0.127 0.151 0.152 0.094 0.058 0.079 0.086 0.084 

( < 0.0 0 01) (0.0027) (0.0321) (0.0112) (0.0105) (0.1157) (0.3350) (0.1883) (0.1515) (0.1642) 

ln νt 

νt−1 
Volatility change −0.416 −0.023 −0.004 −0.070 −0.007 0.003 0.049 0.001 −0.027 0.073 

( < 0.0 0 01) (0.7008) (0.9483) (0.2429) (0.9087) (0.9652) (0.4113) (0.9882) (0.6534) (0.2242) 

ϑ Absolute dev. 0.733 0.571 0.470 0.400 0.357 0.294 0.253 0.245 0.212 0.194 

( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) (0.0 0 04) (0.0012) 

ln ϑ t 
ϑ t−1 

Absolute dev. change −0.355 −0.040 −0.017 −0.059 0.032 −0.012 −0.047 0.021 0.072 −0.087 

( < 0.0 0 01) (0.5050) (0.7739) (0.3201) (0.5913) (0.8412) (0.4383) (0.7275) (0.2348) (0.1475) 

P Mean prob. 0.097 0.131 0.116 0.004 0.146 0.131 0.061 0.146 0.196 0.037 

(0.1025) (0.0276) (0.0508) (0.94 4 4) (0.0140) (0.0281) (0.3123) (0.0146) (0.0010) (0.5377) 

ln P t 
P t−1 

Mean prob. change −0.520 0.034 0.049 −0.148 0.095 0.031 −0.091 0.019 0.125 −0.129 

( < 0.0 0 01) (0.5637) (0.4107) (0.0128) (0.1108) (0.6088) (0.1314) (0.7584) (0.0369) (0.0319) 

� 

2 Ambiguity 0.554 0.434 0.398 0.384 0.354 0.314 0.286 0.284 0.273 0.258 

( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0 .0 0 01) ( < 0 .0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) 

ln � 
2 

t 

� 2 
t−1 

Ambiguity change −0.331 −0.076 −0.014 −0.045 0.020 −0.007 −0.035 0.018 −0.066 0.021 

( < 0.0 0 01) (0.2005) (0.8125) (0.4565) (0.7377) (0.9102) (0.5563) (0.7680) (0.2740) (0.7265) 
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26 Andersen et al. (2003) provide the theoretical framework for integrat- 

ing high-frequency intraday data into the measurement of daily volatility. 
The estimated autocorrelations in Table 2 suggest that

an autoregressive moving average (ARMA) model is ap-

propriate for estimating each of these variables: expected

volatility, expected absolute deviation, expected probabil-

ity, and expected ambiguity. Using the formal link be-

tween realized and conditional volatilities, as provided by

Andersen et al. (2003) , we estimate the expected volatil-

ities by substituting the realized volatilities, ν , for the la-

tent monthly volatilities. To do so, for each month, ̂ ln 

√ 

νt 

is computed using the coefficients estimated by the time-

series ARMA( p , q ) model 

ln 

√ 

νt = ψ 0 + εt + 

p ∑ 

i =1 

ψ i · ln 

√ 

νt−i + 

q ∑ 

i =1 

θi · εt−i , (10)

with the minimal corrected Akaike information criterion

(AICC). This model uses the natural logarithm of volatility,

ln 

√ 

ν, to avoid negative expected volatility estimates and

because 
√ 

ν is skewed. The expected volatility is then cal-

culated as 

νE 
t+1 = E t [ νt+1 ] = exp 

(
2 ̂

 ln 

√ 

νt + 2 V ar [ u t ] 

)
, 

where V ar [ u t ] is the minimal predicted variance of the

error term. For every month t , using the data from the

30 preceding months, i.e., from month t − 30 to month

 − 1 , the regression in Eq. (10) is estimated for each p =
1 , . . . , 10 and q = 1 , . . . , 10 ; in total p × q = 100 combina-

tions. 25 The coefficients that attain the minimal AICC (i.e.,

the highest-quality model) are then used to estimate the

expected volatility. Similarly, we estimate the expected ab-

solute deviation, ϑ, using its monthly realized values, to ob-

tain ϑ 

E 
t . 
25 We also estimate the expected values using an extended window of 

all preceding month observations; the results are essentially the same. 
Expected ambiguity is also estimated with ARMA( p , q ),

using a method similar to the one used to estimate the ex-

pected volatilities. 26 Using realized ambiguity, the param-

eter ̂ ln � t is estimated using the coefficients of the time-

series model 

ln � t = ψ 0 + εt + 

p ∑ 

i =1 

ψ i · ln � t−i + 

q ∑ 

i =1 

θi · εt−i (11)

that attains the minimal AICC out of the p × q = 100 com-

binations of coefficients obtained from this regression. The

expected ambiguity is then calculated as 

(
� 

2 
t+1 

)E = E t 

[
� 

2 
t+1 

]
= exp 

(
2 ̂

 ln � t + 2 V ar [ u t ] 

)
. 

To estimate the expected probability of unfavorable re-

turns, the parameter ̂ ln Q t , where Q t = 

P t 
1 −P t 

, is estimated

using the coefficients of 

ln Q t = ψ 0 + εt + 

p ∑ 

i =1 

ψ i · ln Q t−i + 

q ∑ 

i =1 

θi · εt−i (12)

that attain the minimal AICC out of the p × q = 100 combi-

nations of coefficients of this regression. In this model, we

use the natural logarithm of the transformed probability,

ln Q = ln 

(
P 

1 −P 

)
, to avoid estimated probabilities that are

negative or are greater than one. The expected probability
They show that long-memory Gaussian vector autoregression for the log- 

arithmic daily realized volatilities performs admirably. We apply the same 

approach to ambiguity, since we use probabilities that are estimated from 

intraday data. 
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Table 3 

Expected values. 

Expected values are reported for the monthly observations between July 1995 and December 2016, 257 months in- 

total. 

Panel A reports summary statistics of the estimated expected values of the following factors: the expected volatility, 

νE , the expected absolute deviation, ϑE , the expected probability of favorable returns, P 
E 
, and the expected ambi- 

guity, � 

E . For each month t , the expected values are estimated based only on their realized values from month 

t − 30 to month t − 1 and using the ARMA( p , q ) model with the minimal AICC out of the n × m = 100 combina- 

tions of the coefficients. The volatility, ν , is the variance of the daily returns of the SPDR, adjusted for dividends, in 

monthly terms. The absolute deviation ϑ is the average absolute daily deviation of returns from the monthly average 

daily return. The mean probability, P , is the average daily probability of favorable returns over a month. A return is 

considered favorable if it is greater than the risk-free rate, where returns are assumed to be normally distributed. 

Probabilities are based on the daily mean and variance of returns computed from the five-minute returns, taken 

from the TAQ database. Ambiguity, � 

2 , is the variance of the daily probabilities of returns over the month. 

Panel B reports the cross-correlations of the estimated expected values. These serve as the main independent vari- 

ables in the empirical pricing tests. p -values are in parentheses. 

Panel A: Descriptive statistics of forecasted variables 

N Mean Median Min Max Std. dev. Skewness Kurtosis √ 

νE 257 0.047 0.044 0.018 0.221 0.020 3.399 23.130 

ϑE 257 0.042 0.036 0.020 0.201 0.020 3.418 19.693 

VIX 257 0.062 0.059 0.030 0.175 0.024 1.665 4.366 

P 
E 

257 0.514 0.513 0.453 0.572 0.026 −0.078 −0.865 

� 

E 257 0.948 0.936 0.466 1.623 0.262 0.309 −0.795 

Panel B: Cross-correlations of expected values of the variables 

νE ϑE VIX P 
E (

� 

2 
)E 

νE 1 

ϑE 0.850 1 

( < 0.0 0 01) 

VIX 0.783 0.908 1 

( < 0.0 0 01) ( < 0.0 0 01) 

P 
E −0.305 −0.458 −0.322 1 

( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) (
� 

2 
)E −0.314 −0.537 −0.451 0.570 1 

( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) 
is then calculated as 

P 

E 
t+1 = E t [ P t+1 ] = 

exp 

(
̂ ln Q t + 

1 
2 
V ar [ u t ] 

)
1 + exp 

(
̂ ln Q t + 

1 
2 
V ar [ u t ] 

) . 

Note that the estimates of expected volatility, expected ab- 

solute deviation, expected probability, and expected ambi- 

guity are all out-of-sample estimates. 

Panel A of Table 3 reports descriptive statistics of the 

estimated expectation of volatility, absolute deviation, the 

probability of favorable returns, and ambiguity. Each ex- 

pected variable is the out-of-sample fitted value from the 

relevant ARMA model described above. Comparing the 

statistics of their realized values in Table 1 to their expec- 

tations, we find that the dispersion of the expected val- 

ues is less than the dispersion of thier realized values. The 

differences between the minimum and maximum values, 

as well as the variance, the skewness, and the kurtosis of 

the estimated expected values, are all lower than those of 

the realized values. The lower dispersion implies that the 

time series of the expected values of all four variables—

volatility, absolute deviation, probability, and ambiguity—

are smoother than the related realized time series. Panel B 

of Table 3 reports the cross-correlations among the ex- 

pected values. The results show that the expected volatility 

is significantly correlated with the VIX, which is also highly 

correlated with the expected absolute deviation. Although 
expected volatility and expected ambiguity are negatively 

correlated, the value −0 . 314 is relatively low; it can affect 

the significance of both variables when used in the regres- 

sion tests of our model. 

5.2. Empirical design 

We next design the empirical tests of the risk- 

ambiguity-return relation, using the estimated expected 

volatility, expected absolute deviation, expected probabil- 

ity, and expected ambiguity. In particular, the attitudes to- 

ward ambiguity, given by 

E 

[
η( 1 − E [ P ( r ) ] ) 

]
= E 

[
ϒ ′′ ( 1 − E [ P ( r ) ] ) 

ϒ ′ ( 1 − E [ P ( r ) ] ) 

]

= 

∫ 
E [ ϕ ( r ) ] 

ϒ ′′ ( 1 − E [ P ( r ) ] ) 

ϒ ′ ( 1 − E [ P ( r ) ] ) 
dr, (13) 

determines the ambiguity–return relation in Eq. (9) . Ide- 

ally, we would like to compute this expression directly 

from market data. However, the functional form of ϒ( · ) 

is unknown, so we are constrained in extracting it from 

the data. Therefore, to elicit the functional form of η( · ), 

we consider only two subsets of returns: unfavorable and 

favorable. Accordingly, the empirical effect of investors’ at- 

titudes toward ambiguity on the ambiguity-return relation 

is determined by 

E 

[
η( 1 − E [ P ( r ) ] ) 

]
= η

(
P 

E 
)
, (14) 
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28 We also test our models using ( White, 1980 ) standard errors and 

without standard errors correction, and the results ( t -stats) are qualita- 
where P E is the expected probability of favorable

returns. 27 

To elicit the asymmetric attitudes toward ambiguity,

which can be nonlinearly contingent on expected proba-

bilities, as proposed by in Eq. (9) , we use the following de-

sign. The expected probabilities of favorable returns range

from 0.453 to 0.572 (see Table 3 ). Winsorizing the very few

outlier values provides the range [0.46,0.56] of expected

probabilities. This range is divided into ten equal intervals

(bins) of 0.01 each, indexed by i . For example, i = 1 denotes

the probability bin [0.46,0.47]. The few values lower than

0.46 are indexed as i = 1 , while the few values higher than

0.56 are indexed as i = 10 . The decision to use a ten-bin

resolution and not a higher one is dictated by the number

of observations, 257 (of expected values). To have mean-

ingful statistical results, a minimum number of observa-

tions is required for each bin; a smaller number of bins

will not allow us to clearly identify the shape of ϒ( · ). 

Next, a dummy variable, D , is constructed for each

probability bin. If the expected probability of favorable re-

turns in a given month t falls into bin i , the dummy vari-

able D i , t is assigned the value one; otherwise it is zero.

The empirical model is then given by 

r t+1 − r f,t+1 = α + γ · νE 
t + η ·

((
� 

2 
t 

)E × ϑ 

E 
t 

)

+ 

10 ∑ 

i =2 

ηi ·
(

D i,t × P 

E 
i ×

(
� 

2 
t 

)E × ϑ 

E 
t 

)
+ εt , (15)

where P E 
i 

is the midpoint of probability bin i . It should be

noted that, unlike the attitude toward risk that is constant,

the attitude toward ambiguity can vary with the expected

probability of favorable returns. The model in Eq. (15) is a

discrete model in which attitudes toward ambiguity only

have a finite number of values. We also examine a contin-

uous version of the model, given by 

r t+1 − r f,t+1 = α + γ · νE 
t + η ·

((
� 

2 
t 

)E × ϑ 

E 
t 

)
+ η

S 
·
(

P 

E 
t ×

(
� 

2 
t 

)E × ϑ 

E 
t 

)
+ εt . (16)

In this model, we assume that ambiguity attitudes are lin-

early contingent on the expected probability of favorable

returns P E t . Since all the estimates of the explanatory vari-

ables are out of sample, the first 30 months are dropped

and we use only the data that start at August 1995 in the

regressions. 

To interpret the discrete model, Eq. (15) , we can write

the coefficient of ambiguity attitude as η
(
P E 

i 

)
= ˆ η + ˆ ηi . This

expression represents the investor’s attitude toward ambi-

guity, conditional on the expected probability of favorable

returns, P E , being in probability bin i . A negative value of

η
(
P E 

i 

)
, determined by ˆ η + ˆ ηi , implies ambiguity-loving be-

havior and results in a negative ambiguity premium; a pos-

itive value implies ambiguity-averse behavior and results

in a positive ambiguity premium. Furthermore, a greater

| ̂  ηi | in the range of low probabilities of favorable returns
27 Note that, since every P ∈ P is additive, the expected probability of fa- 

vorable returns satisfies P E = 1 − E [ P ( r ) ] , where P( r ) is a cumulative prob- 

ability of unfavorable returns. 
implies an increasing love for ambiguity; a higher ˆ ηi in the

range of high probabilities of favorable returns implies an

increasing aversion to ambiguity. 

5.3. Findings 

We first examine the model using ordinary least

squares (OLS). The dependent variable in all the regression

tests is the monthly excess return on the SPDR. We use the

Newey-West estimator to deal with potential autocorrela-

tion and heteroskedasticity in the error terms. 28 Panel A of

Table 4 reports the coefficients of the regressions that test

the discrete model in Eq (15) . 

In the first regression, we examine the risk-return rela-

tion excluding ambiguity. In this univariate regression, the

only explanatory variable is the expected volatility, a proxy

for risk, which has a negative coefficient, a result con-

sistent with previous studies (e.g., Nelson, 1991; Harvey,

2001 ). We introduce expected ambiguity in the subsequent

regressions. We first use the unconditional expected ambi-

guity as a sole explanatory variable. Though the coefficient

is positive, as hypothesized, it is insignificant. We next use

the conditional attitude toward ambiguity terms, specified

in Eq. (15) , without the risk term. The results in Panel A of

Table 4 show that all ambiguity coefficients, except for ˆ η5 ,

are significant at the 5% level. In our fourth regression, we

incorporate the risk factor, expected volatility, as a main

explanatory variable in conjunction with the contingent

ambiguity terms. We find that the coefficient of expected

volatility is positive and highly significant. Thus, we can-

not reject Hypothesis 1 that risk does have a positive effect

on the equity premium when it is introduced in conjunc-

tion with ambiguity. To verify that our estimates are not

biased, we conduct Amihud and Hurvich (2004) test for bi-

ases in the estimated coefficients. 29 , 30 In this test, none of

the estimated slope coefficients in the residuals regression

is found to be significant, indicating that our estimates in

the regression test in Eq. (15) are not biased. 

Panel B of Table 4 provides a summary of the estimates

of attitudes toward ambiguity. It also shows the level of

aversion to (love for) ambiguity, contingent on the ex-

pected probability of favorable returns, computed for each

probability bin i by η
(
P E 

i 

)
= ˆ η + ˆ ηi . Fig. 3 depicts the prob-

abilistically contingent coefficients of ambiguity attitudes

in the fourth regression. 

To interpret these findings, recall that η1 is associated

with probabilities of favorable returns (gains) in the range

[0.46,0.47], η2 with probabilities in the range [0.47,0.48],

etc. The evidence is that the coefficient of attitude toward

ambiguity associated with probabilities of gains greater

than 0.49 (i.e., probabilities of losses lower than 0.51) is

positive. On the other hand, this coefficient is negative

for probabilities of gains lower than 0.49. The trend line
tively the same. 
29 We thank Yakov Amihud for suggesting this test. 
30 In particular, we regress the residuals obtained from the model in Eq. 

(15) against the residuals obtained from the following regression tests: 

νE 
t = α + β · νE 

t−1 + εt and 
(
� 

2 
t 

)E × ϑ E t = α + β ·
(
� 

2 
t−1 

)E × ϑ E t−1 + εt . 
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Table 4 

Main OLS regression tests. 

The table reports the results of the tests of the theoretical discrete model. The estimated expected values are for the period between August 1995 and 

December 2016, 257 monthly observations in total. 

Panel A reports the results obtained using OLS regressions defined by 

r t+1 − r f,t+1 = α + γ · νE 
t + η ·

((
� 

2 
t 

)E × ϑ E t 

)
+ 

∑ 10 
i =2 ηi ·

(
D i,t × P E 

i 
×

(
� 

2 
t 

)E × ϑ E t 

)
+ εt . 

All results utilize the Newey-West estimator. The estimated expected value of each variable at time t is the out-of-sample fitted value of an ARMA model 

over its realized values from month t − 30 to month t − 1 . All expectations are estimated using the out of sample ARMA( p , q ) model with the minimal 

AICC. The expected volatility, νE , is estimated from the variance of daily SPDR returns, adjusted for dividends and given in monthly terms. The expected 

absolute deviation ϑE is estimated from the average absolute daily deviation of returns from the monthly average daily return. The expected ambiguity, (
� 

2 
t 

)E 
, is estimated from the realized ambiguity, where ambiguity � 

2 , is the variance of the daily probabilities of returns over the month. Probabilities of 

returns are based on the daily mean and variance of returns computed from five-minute returns, taken from the TAQ database given in daily terms. The 

expected probability of favorable returns, P E , is estimated from the monthly averages of the daily probabilities of favorable returns. A return is considered 

favorable if it is greater than the risk-free rate, where returns are assumed to be normally distributed. The dummy variable D i is assigned the value one 

if the expected probability of favorable returns, P E , in that month falls into the range i of probabilities, and zero otherwise. ˆ θ is the coefficient of the 

univariate regression of expected ambiguity. 

Panel B reports the estimated coefficients of ambiguity attitude, calculated as η
(
P E 

i 

)
= ˆ η + ̂  ηi using the estimated coefficients of the regression tests in 

Panel A. t -statistics are in parentheses. 

# ˆ α ˆ γ ˆ θ ˆ η ˆ η2 ˆ η3 ˆ η4 ˆ η5 ˆ η6 ˆ η7 ˆ η8 ˆ η9 ˆ η10 N R 2 Adj. R 2 

Panel A: Regression results 

1 0.006 −0.098 257 0.0 0 0 −0.004 

(2.360) ( −0.160) 

2 0.005 0.001 257 0.0 0 0 −0.004 

(0.690) (0.160) 

3 0.012 −1.255 1.676 1.788 2.310 1.451 2.902 2.373 2.697 2.256 2.725 257 0.067 0.029 

(1.130) ( −3.310) (2.170) (2.690) (2.700) (1.800) (4.130) (3.520) (3.760) (3.350) (3.840) 

4 0.005 3.400 −1.446 1.762 1.176 2.542 1.853 3.325 2.897 3.159 2.806 3.275 257 0.095 0.055 

(0.420) (3.580) ( −3.970) (2.290) (1.670) (2.790) (2.200) (4.640) (4.050) (4.240) (3.990) (4.460) 

Panel B: Coefficients of ambiguity attitude 

P E −0.460 −0.470- −0.480 −0.490 −0.500 −0.510 −0.520 −0.530 −0.540 −0.550 

0.470 0.480 0.490 0.500 0.510 0.520 0.530 0.540 0.550 0.560 

3 −1.255 0.421 0.533 1.055 0.196 1.647 1.118 1.442 1.001 1.470 

4 −1.446 0.316 −0.270 1.096 0.407 1.879 1.451 1.713 1.360 1.829 

31 Constant absolute ambiguity attitude means that, given a return, 

when the range of its possible probabilities is shifted linearly, the am- 

biguity attitude remains unchanged. Constant relative ambiguity attitude 

means that ambiguity attitude is not sensitive to a positive probability 

scaling Izhakian (2017) . 
in Fig. 3 shows that ambiguity-averse behavior is demon- 

strated for probabilities of favorable returns greater than 

0.485, while ambiguity-loving behavior is demonstrated 

for probabilities of favorable returns lower than 0.485. 

These findings provide support for Hypotheses 2 and 3 and 

are consistent with the findings of other behavioral stud- 

ies (e.g., Mangelsdorff and Weber, 1994; Abdellaoui et al., 

2005; Du and Budescu, 2005 ). However, unlike these stud- 

ies, in our model, investors’ attitudes toward ambiguity are 

contingent on the probability of returns, rather than on the 

returns themselves. 

The confidence intervals in Fig. 3 imply that the co- 

efficients of ambiguity aversion associated with adjacent 

probability ranges are not necessarily significantly differ- 

ent from each other. One of the reasons is the small num- 

ber of observations available for each probability range. In 

total, we have 257 months for which the data to compute 

expected ambiguity were available. Thus, on average, we 

have 25.7 observations associated with each probability in- 

terval (there are ten intervals). This small number of ob- 

servations generates high standard errors and wide confi- 

dence intervals. Still, testing the null hypothesis that two 

coefficients of ambiguity aversion associated with different 

probability ranges are equal reveals that in many cases the 

coefficients are indeed significantly different. For example, 

pairwise hypothesis tests (not reported) show that each 

coefficient, η2 , η3 , and η5 , is significantly different from 

η6 , η7 , η8 , η9 , and η10 . Thus, in general, the ambiguity 

aversion coefficients associated with low probability ranges 
are significantly different from those associated with high 

probability ranges. 

The decrease in the coefficient of ambiguity attitude 

from its highest value of 1.829 to its lowest value of 

−1 . 446 indicates that aversion to ambiguity decreases with 

the expected probability of unfavorable returns and turns 

to love for ambiguity when this probability exceeds 0.51. 

This implies that investors’ attitudes toward ambiguity are 

not of the constant absolute class. 31 There is no conclu- 

sive evidence in the behavioral literature on whether in- 

vestors’ attitudes toward ambiguity are of the constant 

relative class or the constant absolute class. One of our 

goals is to narrow this gap by providing some evidence 

about the shape of ambiguity attitudes. To test whether 

investors’ ambiguity attitudes are of the former class, us- 

ing the same regression format as in Eq. (15) , we replace 

the independent variables representing expected ambiguity 

with 

( � 

2 
t ) 

E 

P E t 

. That is, expected ambiguity normalized by the 

expected probability of favorable returns. The coefficients 

(not reported) show the same pattern as in the regres- 

sions with the nonnormalized ambiguity, implying that in- 

vestors’ ambiguity attitudes are not of the constant relative 
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Fig. 3. Ambiguity attitudes. 

The figure depicts ambiguity attitudes contingent upon the expected probability of favorable returns. The x-axis shows the expected probability of favorable 

returns. The y-axis shows the coefficient of the ambiguity attitude, η. The solid broken line depicts the ambiguity attitude, and the smooth line is created 

by a polynomial of third degree. The dotted broken line depicts the 5% confidence interval of ambiguity attitudes. The monthly probabilities of favorable 

are based on the daily mean and variance of returns on the SPDR, computed from five-minute returns, taken from the TAQ database, given in daily terms. 

A return is considered favorable if it is greater than the risk-free rate, where returns are assumed to be normally distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 French et al. (1987) use one divided by the monthly standard devi- 

ation of the daily returns, 1 √ 

νE 
t 

, as weights in the WLS regression tests. 

Similarly, here we use 1 √ as weights. 
class either. The conclusion is, consistent with Hypothesis

4 , that investors’ relative ambiguity aversion increases in

the expected probability of favorable returns, and investors’

relative ambiguity loving increases in the probability of un-

favorable returns. 

Hypothesis 4 and the related findings imply an inverse

S-shape in the perceived probabilities. These findings co-

incide with et al. ( Abdellaoui et al., 2011 ), who attribute

this shape to different sources of uncertainty, which trans-

late the subjective probabilities into the willingness to bet.

They show that these probabilities depend “not only on the

person but also on the source of uncertainty” (page 720).

More importantly, our findings support the likelihood in-

sensitivity proposed by Abdellaoui et al. (2011) (page 701).

Likelihood insensitivity means “a lack of sensitivity to in-

termediate changes in likelihood, so that all intermediate

likelihoods are moved in the direction of 50-50,” suggest-

ing that “decisions will not be influenced much by the up-

dating of probabilities after receipt of new information.”

Aligned with the likelihood insensitivity phenomenon, our

findings indicate that, for the intermediate range of proba-

bilities, investors do not exhibit a clear sensitivity to ambi-

guity. 

In summary, we find that ambiguity explains at least

some of the variation in the equity premium; however,

the combined effect of risk and ambiguity is more pow-

erful. As can be observed in Panel A of Table 4 , the ef-

fect of expected volatility on expected return in the uni-

variate OLS regressions is insignificantly negative, aligned

with French et al. (1987) . However, when ambiguity is in-

troduced alongside volatility, the latter becomes positive

and significant. 

The degree of relative risk aversion can be elicited, for

example, using the values of the coefficients in Table 4 .

The value, 2 × ˆ γ = 6 . 80 , is in the upper part of the range

of values reported in many behavioral studies (e.g., Chetty,
2006; Booij et al., 2009 ) and empirical asset pricing studies

(e.g., Brown and Gibbons, 1985; French et al., 1987; Bliss

and Panigirtzoglou, 2004 ). 

We use the Newey-West, and alternatively the White

corrections, in the OLS regressions. We repeat our tests us-

ing weighted least squares (WLS). In the WLS regressions,

the weights are inversely proportional to the sum of the

estimated risk and the estimated ambiguity. 32 We report

the findings in Table 5 . Panel A of Table 5 shows that the

effect of expected volatility, by itself, is positive but in-

significant. The effect of expected ambiguity is significant

in all but one of the ten probability bins, as in the OLS re-

gressions. When expected ambiguity is added to expected

volatility (risk), the effect of expected volatility becomes

positive and significant, while the effect of expected ambi-

guity remains almost the same as in the previous regres-

sion. The findings of the WLS regressions are not quali-

tatively different form our results in Table 4 and provide

support for Hypotheses 1 –4 . 

Although our findings are in line with previous behav-

ioral findings, our main concern is that they can be af-

fected by the division of the probability space into ten bins.

Therefore, we examine a continuous (with respect to am-

biguity attitude) version of the model in Eq. (16) . Although

the pattern of the coefficient of ambiguity attitude, η( P E )

in Table 4 , in the discrete model does not indicate a clear

linear relation between ambiguity attitudes and the ex-

pected probabilities of favorable returns, this relation can

be viewed as roughly positively monotone. 

As in our previous tests, we test the model using both

OL S and WL S regressions. Panel A of Table 6 presents the
νE 
t + � E t 
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Table 5 

Main WLS regression tests. 

The table reports the results of the tests of the theoretical discrete model. The estimated expected values are for the period between August 1995 and 

December 2016, 257 monthly observations in total. 

Panel A reports the results obtained using WLS regressions defined by 

r t+1 − r f,t+1 = α + γ · νE 
t + η ·

((
� 

2 
t 

)E × ϑ E t 

)
+ 

∑ 10 
i =2 ηi ·

(
D i,t × P E 

i 
×

(
� 

2 
t 

)E × ϑ E t 

)
+ εt , 

where the weights are inversely proportional to the sum of the estimated risk and the estimated ambiguity. All results utilize the Newey-West estimator. 

The estimated expected value of each variable at time t is the fitted value of an ARMA model over its realized values from month t − 30 to month t − 1 . All 

expectations are estimated using the out of sample ARMA( p , q ) model with the minimal AICC. The expected volatility, νE , is estimated from the variance 

of daily SPDR returns, adjusted for dividends, in monthly terms. The expected absolute deviation ϑE is estimated from the average absolute daily deviation 

of returns from the monthly average daily return. The expected ambiguity, 
(
� 

2 
t 

)E 
, is estimated from the realized ambiguity, where ambiguity � 

2 is the 

variance of the daily probabilities of returns over the month. Probabilities of returns are based on the daily mean and variance of returns computed from 

five-minute returns, taken from the TAQ database, given in daily terms. The expected probability of favorable returns, P E , is estimated from the monthly 

averages of the daily probabilities of favorable returns. A return is considered favorable if it is greater than the risk-free rate, where returns are assumed 

to be normally distributed. The dummy variable D i is assigned the value one if the expected probability of favorable returns, P E , in that month falls into 

the range i of probabilities, and zero otherwise. ˆ θ is the coefficient of the univariate regression of expected ambiguity. 

Panel B reports the estimated coefficients of ambiguity attitude, calculated as η
(
P E 

i 

)
= ˆ η + ̂  ηi using the estimated coefficients of the regression tests in 

Panel A. 

t -statistics are in parentheses. 

# ˆ α ˆ γ ˆ θ ˆ η ˆ η2 ˆ η3 ˆ η4 ˆ η5 ˆ η6 ˆ η7 ˆ η8 ˆ η9 ˆ η10 N R 2 Adj. R 2 

Panel A: Regression results 

1 0.005 0.459 257 0.001 −0.003 

(1.450) (0.490) 

2 0.006 0.0 0 0 257 0.0 0 0 −0.004 

(0.700) (0.020) 

3 0.011 −1.244 1.785 1.772 2.422 1.301 2.993 2.446 2.746 2.260 2.745 257 0.065 0.027 

(0.990) ( −2.930) (2.050) (2.310) (2.650) (1.460) (3.890) (3.220) (3.470) (3.090) (3.530) 

4 0.002 4.114 −1.480 1.817 1.043 2.630 1.763 3.475 3.070 3.282 2.920 3.400 257 0.102 0.062 

(0.220) (3.770) ( −3.720) (2.080) (1.330) (2.740) (1.890) (4.520) (3.850) (4.030) (3.840) (4.290) 

Panel B: Coefficients of ambiguity attitude 

P E −0.460 −0.470 −0.480 −0.490 −0.500 −0.510 −0.520 −0.530 −0.540 −0.550 

0.470 0.480 0.490 0.500 0.510 0.520 0.530 0.540 0.550 0.560 

3 −1.244 0.541 0.528 1.178 0.057 1.749 1.202 1.502 1.016 1.501 

4 −1.480 0.337 −0.437 1.150 0.282 1.994 1.590 1.802 1.440 1.920 
OLS results, and Panel B presents the WLS results. These 

results are similar to those of the discrete model with 10 

probability bins ( Tables 4 and 5 ). Expected volatility is pos- 

itive and significant when expected ambiguity is included. 

The coefficients of expected ambiguity in both panels are 

significant and indicate an increasing aversion to ambiguity 

in the expected probability of favorable returns. The coef- 

ficient of expected volatility, however, is somewhat lower 

(2.44 in the OLS regression, and 3.20 in the WLS regres- 

sion), bringing the values more into the acceptable range 

of risk aversion coefficients reported in previous studies. 

In Panel B, when expected volatility is included, investors 

exhibit aversion to ambiguity when the expected probabil- 

ity of favorable returns P E > 

6 . 25 
11 . 31 = 0 . 55 . As expected, the 

explanatory power of the tests is smaller than the discrete 

tests. This model is less precise because we impose linear 

(in the expected probability of favorable returns) attitudes 

toward ambiguity. Similar to the discrete model, to ver- 

ify that our estimates are not biased, we conduct Amihud 

and Hurvich (2004) test for biases in the estimated coef- 

ficients. 33 In this test, none of the estimated slope coeffi- 

cients in the residuals regression is found to be significant, 
33 In particular, we regress the residuals obtained from the model in 

Eq. (16) against the residuals obtained from the following regression 

tests: νE 
t = α + β · νE 

t−1 + εt , 
(
� 

2 
t 

)E × ϑ E t = α + β ·
(
� 

2 
t−1 

)E × ϑ E t−1 + εt , and 

P E t ×
(
� 

2 
t 

)E × ϑ E t = P E t−1 ×
(
� 

2 
t−1 

)E × ϑ E t−1 + εt , 
indicating that our estimates in the regression test in Eq. 

(16) are not biased. 

6. Robustness tests 

Our findings provide support for the theoretical model 

and the related hypotheses. In this section, we examine 

whether the findings can be due to other, unaccounted for, 

risk factors or to our methodology. 

6.1. VIX as expected volatility 

In the previous tests, we estimated expected volatil- 

ity using historical observations. An alternative approach 

is to use the forward-looking volatility implied by op- 

tions on the S&P 500 index, given by the VIX. One of the 

main reasons that we rerun our tests using the VIX is be- 

cause sometimes it is used as a proxy for ambiguity (e.g., 

Williams, 2015 ). Thus, we want to rule out the possibility 

that our ambiguity measure � 

2 captures the same aspects 

of uncertainty as the VIX. We use the VIX value, at the be- 

ginning of month t , as a measure of the expected volatility 

for that month. We then estimate the following model 

r t+1 − r f,t+1 = α + γ · V IX t+1 + η ·
((

� 

2 
t 

)E × ϑ 

E 
t 

)
+ η

S 
·
(

P 

E 
t ×

(
� 

2 
t 

)E × ϑ 

E 
t 

)
+ εt . (17) 
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Table 6 

Continuous ambiguity attitudes. 

The table reports the results from testing the theoretical continuous model. The tests cover the 

period between August 1995 and December 2016, 257 monthly observations in total. 

Panel A reports the results obtained using OLS regressions defined by 

r t+1 − r f,t+1 = α + γ · νE 
t + η ·

((
� 

2 
t 

)E × ϑ E t 

)
+ η

S 
·
(

P E t ×
(
� 

2 
t 

)E × ϑ E t 

)
+ εt . 

All results utilize the Newey-West estimator. The estimated expected value of each variable at 

time t is the fitted value of an ARMA model over its realized values from month t − 30 to 

month t − 1 . All expectations are estimated using the out-of-sample ARMA( p , q ) model with 

the minimal AICC. The expected volatility, νE , is estimated from the variance of daily SPDR re- 

turns, adjusted for dividends, in monthly terms. The expected absolute deviation ϑE is estimated 

from the average absolute daily deviation of returns from the monthly average daily return. The 

expected ambiguity, 
(
� 

2 
t 

)E 
, is estimated from the realized ambiguity, where ambiguity � 

2 , is 

the variance of the daily probabilities of returns over the month. Probabilities of returns are 

based on the daily mean and variance of returns computed from five-minute returns, taken 

from the TAQ database, given in daily terms. The expected probability of favorable returns, P E , 

is estimated from the monthly averages of the daily probabilities of favorable returns. A return 

is considered favorable if it is greater than the risk-free rate, where returns are assumed to be 

normally distributed. ˆ θ is the coefficient of the univariate regression of expected ambiguity. 

Panel B reports the results form testing the above model using WLS regressions. 

t -statistics are in parentheses. 

# ˆ α ˆ γ ˆ θ ˆ η ˆ η
S 

N R 2 Adj. R 2 

Panel A: OLS 

1 0.006 −0.098 257 0.0 0 0 −0.004 

(2.370) ( −0.160) 

2 0.005 0.001 257 0.0 0 0 -0.004 

(0.700) (0.170) 

3 0.012 −2.656 4.786 257 0.024 0.016 

(2.010) (-2.640) (2.300) 

4 0.013 2.448 −5.070 9.089 257 0.045 0.033 

(2.210) (2.970) ( −3.550) (3.360) 

Panel B: WLS 

1 0.005 0.459 257 0.001 −0.003 

(1.450) (0.490) 

2 0.006 0.0 0 0 257 0.0 0 0 −0.004 

(0.710) (0.020) 

3 0.012 −3.085 5.639 257 0.021 0.013 

(1.730) ( −2.600) (2.290) 

4 0.011 3.207 −6.250 11.316 257 0.052 0.041 

(1.770) (3.310) ( −4.070) (3.880) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are of the same magnitude and show the same pattern as in the discrete 
We report the results in Table 7 . In both OLS and WLS

tests, the main findings regarding the effect of risk (ex-

pected volatility) and expected ambiguity are maintained,

although they are weaker. Expected volatility, proxied by

the VIX, has a positive effect on excess returns, but it is in-

significant, unlike our previous measure of risk. This could

be due to the relatively low volatility of the VIX, 2.4%, dur-

ing the sample period. Interestingly, the coefficients of ex-

pected volatility using VIX are significantly smaller than

those using realized volatility ( Table 4 ). These coefficients

(1.22 and 1.83) imply degrees of risk aversion ( 2 × ˆ γ =
2 . 44 and 3.66) that are more in line with behavioral-

experimental findings. Thus, the VIX can be considered a

better proxy of expected volatility than other proxies based

on past data. The findings regarding ambiguity are very

similar to our earlier findings for Eq. (16) in Table 6 . In par-

ticular, the coefficients of ambiguity are of the same mag-

nitude and show the same pattern—increasing in the ex-

pected probabilities of favorable returns. 34 These findings
34 We also test the discrete model of Eq. (15) , where VIX t is taken to be 

the expected volatility (not reported). Again, the coefficients of ambiguity 
alleviate our concern that our previous results could have

been due to a latent relation between the estimates of ex-

pected volatility and expected ambiguity. 

6.2. Is ambiguity a proxy for other factors? 

We next investigate whether our measure is a proxy

for other known factors that can affect returns (e.g., skew-

ness, kurtosis, volatility of volatility, etc.). We first examine

the correlations between expected volatility, expected am-

biguity, and the expectations of other moments of the em-

pirical distribution. We start by considering the third and

fourth moments (i.e., excess skewness and excess kurtosis)

computed from the daily returns of the SPDR and adjusted

for dividends, as additional factors. 35 Their expected values

are estimated using the same methodology as used for all
model using estimated expected volatility. 
35 We also test the model using skewness and kurtosis, computed from 

intraday data, taking the expected values of their monthly averages as 

additional factors. 
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Table 7 

VIX regression tests. 

The table reports the results from testing the theoretical continuous model. The tests cover 

the period between August 1995 and December 2016, 257 monthly observations in total. 

Panel A reports the results obtained using OLS regressions defined by 

r t+1 − r f,t+1 = α + γ · V IX t+1 + η ·
((

� 

2 
t 

)E × ϑ E t 

)
+ η

S 
·
(

P E t ×
(
� 

2 
t 

)E × ϑ E t 

)
+ εt . 

All results utilize the Newey-West estimator. V IX t+1 is the value of VIX at the beginning of 

month t + 1 . The estimated expected value of each variable at time t is the fitted value of 

an ARMA model over its realized values from month t − 30 to month t − 1 . All expecta- 

tions are estimated using the out-of-sample ARMA( p , q ) model with the minimal AICC. The 

expected absolute deviation ϑE is estimated from the average absolute daily deviation of re- 

turns from the monthly average daily return. The expected ambiguity, 
(
� 

2 
t 

)E 
, is estimated 

from the realized ambiguity, where ambiguity � 

2 is the variance of the daily probabilities 

of returns over the month. Probabilities of returns are based on the daily mean and variance 

of returns computed from five-minute returns, taken from the TAQ database, given in daily 

terms. The expected probability of favorable returns, P E , is estimated from the monthly av- 

erages of the daily probabilities of favorable returns. A return is considered favorable if it is 

greater than the risk-free rate, where returns are assumed to be normally distributed. ˆ θ is 

the coefficient of the univariate regression of expected ambiguity. 

Panel B reports the results from testing the above model using WLS regressions. 

t -statistics are in parentheses. 

# ˆ α ˆ γ ˆ θ ˆ η ˆ η
S 

N R 2 Adj. R 2 

Panel A: OLS 

1 0.007 −0.167 257 0.0 0 0 −0.004 

(1.630) ( −0.140) 

2 0.005 0.001 257 0.0 0 0 −0.004 

(0.700) (0.170) 

3 0.012 −2.656 4.786 257 0.024 0.016 

(2.010) ( −2.640) (2.300) 

4 0.006 1.224 −5.040 9.516 257 0.040 0.027 

(1.060) (0.980) ( −3.380) (3.230) 

Panel B: WLS 

1 0.004 0.424 257 0.001 −0.003 

(0.670) (0.300) 

2 0.005 0.001 257 0.0 0 0 −0.004 

(0.530) (0.160) 

3 0.010 −4.024 7.645 257 0.026 0.017 

(1.350) ( −2.730) (2.480) 

4 0.004 1.834 −5.992 11.351 257 0.044 0.032 

(0.580) (1.310) ( −3.400) (3.260) 

36 It does affect the significance of expected volatility, since it is highly 

correlated with it (both are outcome dependent). 
other variables. As functions of returns, skewness and kur- 

tosis change with the magnitude of the return, while ambi- 

guity is outcome independent (and thus risk independent) 

as it is exclusively a function of probabilities. As shown in 

Panel A of Table 8 , the correlation of expected skewness 

with expected ambiguity is insignificant. The correlation of 

expected kurtosis with expected ambiguity is significant, 

although its value 0.2 is rather low. Also, the correlations 

of expected skewness and expected kurtosis with expected 

volatility are insignificant. 

We next introduce into the continuous model of 

Eq. (16) the other factors (e.g., expected skewness and 

expected kurtosis) that can affect the expected returns, 

alongside expected ambiguity. The same tests are repeated 

for the discrete model (not reported) using Eq. (15) , where 

for both models we run both OLS and WLS regressions. The 

regression results in Panel B show that expected skewness 

and expected kurtosis have no effect on expected returns. 

Their coefficients are negligible and insignificant. Further- 

more, introducing these factors does not affect the signifi- 

cance of expected ambiguity. These findings strengthen our 

claim that ambiguity is not derived by sampling the same 
(skewed or leptokurtic) probability distribution over the 

month. 

Another concern regarding our methodology for esti- 

mating ambiguity is that the measure � 

2 can be an out- 

come of time-varying risk or volatility innovation (e.g., 

Brandt and Kang, 2004 ). To address this concern, we test 

our discrete (not reported) and continuous models by 

adding expected volatility of the volatility ( VolVol ) into the 

regression. VolVol is the variance of the daily variances, 

computed from intraday data, and its expectation is es- 

timated similarly to those of the other factors. Panel A 

in Table 8 shows that expected ambiguity and expected 

VolVol are not correlated ( −0 . 11 ). Although expected VolVol 

is highly correlated with expected volatility (0.92), the in- 

clusion of expected VolVol in the regressions shows that its 

effect is insignificant and has a negligible effect on the co- 

efficients of expected ambiguity. 36 Therefore, we can rule 
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Table 8 

Robustness tests. 

The table reports the findings of the robustness tests of the theoretical model. The tests cover the period between August 1995 and December 2016, 

257 monthly observations in total. 

Panel A reports the cross-correlations among the expected values of the uncertainty factors. The estimated expected value of each variable at time 

t is the fitted value of an ARMA model over its realized values in the months from month t − 30 to month t − 1 . All expectations are estimated 

using the out-of-sample ARMA( p , q ) model with the minimal AICC. The expected volatility, νE , is estimated from the variance of daily SPDR returns, 

adjusted for dividends, in monthly terms. The expected absolute deviation ϑE is estimated from the average absolute daily deviation of returns from 

the monthly average daily return. The expected ambiguity, 
(
� 

2 
t 

)E 
, is estimated from the realized ambiguity, where ambiguity � 

2 is the variance of 

the daily probabilities of returns over the month. Probabilities of favorable returns are based on the daily mean and variance of returns computed 

from five-minute returns, taken from the TAQ database given in daily terms. The expected probability of favorable returns, P E , is estimated from 

monthly averages of daily probabilities of favorable returns. A return is considered favorable if it is greater than the risk-free rate, where returns 

are assumed to be normally distributed. The expected skewness Skew 

E is estimated from the realized skewness of daily returns over the month. 

The expected kurtosis Kurt E is estimated from the realized kurtosis of daily returns over the month. The expected volatility of the mean VolM 

E is 

estimated from the volatility of the mean, computed as the variance of daily mean returns, which are computed from five-minute returns given in 

daily terms. The expected volatility of volatility VolV E is estimated from the volatility of volatility, computed as the variance of daily returns, which 

are computed from five-minute returns given in daily terms. p -values are in parentheses. 

Panel B reports the results from testing the OLS regressions defined by 

r t+1 − r f,t+1 = α + γ · νE 
t + η ·

((
� 

2 
t 

)E × ϑ E t 

)
+ η

S 
·
(

P E t ×
(
� 

2 
t 

)E × ϑ E t 

)
+ β1 · Skew 

E 
t + β2 · Kurt E t + β3 · VolM 

E 
t + β4 · VolV E t + εt . 

All results utilize the Newey-West estimator. t -values are in parentheses. 

Panel C reports the results form testing the WLS regressions. t -values are in parentheses 

Panel A: Cross-correlations 

r − r f νE ϑE P E 
(
� 

2 
)E 

Skew 

E Kurt E VolM 

E VolV E 

r − r f 1 

νE −0.103 1 

(0.0978) 

ϑE −0.139 0.850 1 

(0.0257) ( < 0.0 0 01) 

P E 0.217 −0.305 −0.458 1 

(0.0 0 05) ( < 0.0 0 01) ( < 0.0 0 01) (
� 

2 
)E 

0.021 −0.314 −0.537 0.570 1 

(0.7425) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) 

Skew 

E 0.053 0.006 0.025 −0.114 −0.062 1 

(0.3926) (0.9188) (0.6897) (0.0687) (0.3224) 

Kurt E 0.060 0.009 −0.026 0.378 0.212 −0.065 1 

(0.3380) (0.8870) (0.6820) ( < 0.0 0 01) (0.0 0 06) (0.2975) 

VolM 

E −0.134 0.872 0.861 −0.327 −0.324 0.011 0.060 1 

(0.0318) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) (0.8665) (0.3339) 

VolV E −0.135 0.922 0.741 −0.195 −0.119 −0.020 0.058 0.873 1 

(.0299) ( < 0.0 0 01) ( < .0 0 01) (0.0016) (.0558) (0.7470) (0.3541) ( < 0.0 0 01) 

# ˆ α ˆ γ ˆ η ˆ η
S 

ˆ β1 
ˆ β2 

ˆ β3 
ˆ β4 N R 2 Adj. R 2 

Panel B: OLS regressions 

1 0.012 2.461 −4.987 8.901 −0.022 257 0.053 0.038 

(2.190) (3.110) ( −3.530) (3.320) ( −1.300) 

2 0.012 2.423 −4.954 8.851 0.001 257 0.045 0.030 

(2.210) (2.990) ( −3.210) (2.990) (0.260) 

3 0.013 2.797 −4.840 8.673 −17.117 257 0.045 0.030 

(2.250) (2.180) ( −3.260) (3.100) ( −0.320) 

4 0.014 1.940 −5.162 9.206 128890.8 257 0.045 0.030 

(1.840) (0.750) ( −3.750) (3.500) (0.250) 

Panel C: WLS regressions 

1 0.011 3.187 −5.987 10.762 −0.030 257 0.065 0.050 

(1.760) (3.510) ( −4.070) (3.840) ( −1.600) 

2 0.011 3.181 −6.125 11.059 0.001 257 0.052 0.037 

(1.760) (3.420) ( −3.730) (3.480) (0.210) 

3 0.011 2.976 −6.397 11.583 11.155 257 0.052 0.037 

(1.740) (2.410) ( −3.740) (3.610) (0.200) 

4 0.013 2.690 −6.385 11.499 143229.1 257 0.052 0.037 

(1.420) (1.010) ( −4.160) (3.950) (0.240) 

 

 

 

 

 

 

 

 

 

out the possibility that the results are driven by the volatil-

ity of the volatility. 

Since the volatility of the mean ( VolMean ), the vari-

ance of the daily means, has been used as a proxy

for ambiguity in some studies (e.g., Cao et al., 2005;
Garlappi et al., 2007 ), we examine the possibility that

ambiguity is derived from expected VolMean . As can

be seen in Panel A of Table 8 , expected ambiguity

and expected VolMean are negatively correlated, −0 . 32 ,

but still too low to be considered a substitute for ex-



524 M. Brenner, Y. Izhakian / Journal of Financial Economics 130 (2018) 503–531 
pected ambiguity. The inclusion of expected VolMean 

in the regressions shows that its effect on the coeffi- 

cients of expected ambiguity and on their significance is 

negligible. 

6.3. Additional tests 

To address the concern that all probabilities within a 

month are derived from the same distribution, we conduct 

the following simulation. Assuming that monthly returns 

are determined by a single probability distribution, we 

compute the mean and variance using all intraday returns 

during the month. We then randomly form 22 groups of 78 

return observations each. For each group, we compute the 

mean and the variance. Based on these 22 mean-variance 

pairs, we compute the expected ambiguity for each month 

and rerun the regression in Eq. (15) . We repeat this pro- 

cedure 10 0 0 times, and generally the simulations do not 

present the pattern of ambiguity attitudes obtained in our 

previous regressions. Furthermore, in most cases the re- 

sults are not statistically significant. 

Next, we use a nonparametric test to examine whether 

all daily return distributions over a month are identical or 

are the same as the monthly return distribution. For each 

month, we conduct two-sample Kolmogorov-Smirnov tests 

among all pairs of 20–22 daily probability distributions, 

where the null hypothesis is that, in every pair, the two 

distributions are identical. We conduct 61,485 tests, and 

in 58,640 of these tests, the null hypothesis is rejected at 

the 5% level. Second, for each month, we conduct a one- 

sample Kolmogorov-Smirnov test between each daily prob- 

ability distribution and a reference probability distribution 

defined by all intraday observations during the month. We 

conduct 6082 tests, and in 5851 of these tests, the null hy- 

pothesis is rejected at the 5% level. These findings rule out 

the possibility that there is a single unique prior that in- 

vestors follow, rather than a set of priors, as suggested by 

the multiple prior ambiguity approach. 

Additional robustness tests are described next. As seen 

in Table 1 , returns are negatively skewed, which can be 

caused by negative shocks. To account for this skewness, 

we relax the assumption that intraday returns are normally 

distributed, and execute tests assuming that the returns 

obey an elliptical distribution with parameters estimated 

from the data. 37 Elliptical distributions are uniquely deter- 

mined by the mean and variance and can be skewed and 

at the same time platykurtic or leptokurtic. Thus, each dis- 

tribution accounts for the third and fourth moments of the 

distribution (i.e., skewness and kurtosis). The results are 

qualitatively the same. 

The skewness of the return distribution can affect ex- 

pected returns through two channels: risk and ambigu- 

ity. The former is reflected in more “volatile” return dis- 

tributions, i.e., higher outcome-dependent (risk-dependent) 

measures. The latter is reflected in a more “volatile”

set of priors, i.e., a higher outcome-independent (risk- 

independent) ambiguity measure, � 

2 . To investigate which 
37 Particular forms of the elliptical distribution include the normal dis- 

tribution, student- t distribution, logistic distribution, exponential power 

distribution, and Laplace distribution (e.g., Owen and Rabinovitch, 1983 ). 
effect dominates, we extract the daily (skewed) return dis- 

tributions using a skewed elliptical distribution and use 

them to compute expected ambiguity. We then include 

this expected ambiguity in the regressions alongside ex- 

pected skewness, computed from daily returns. Skewness 

is found to be insignificant. Next, we include this expected 

ambiguity in the regressions alongside expected average 

skewness, estimated from the monthly average of daily 

skewness computed from intraday returns. Again, expected 

skewness is insignificant. These findings indicate that the 

effect of skewness through the ambiguity channel domi- 

nates its effect through the risk channel and can explain 

spikes in the ambiguity premium when unusually negative 

returns occur. 

Next, we examine our model when downside risk is 

included as an additional factor (e.g., Ang et al., 2006 ). 38 

We conduct these tests with different cutoffs for downside 

risk, and the results are qualitatively the same. In addition, 

we test for the effect of investors’ sentiment ( Baker and 

Wurgler, 2006 ) alongside ambiguity, and again the results 

are qualitatively the same. Another concern is that our re- 

sults are driven by our proxy for the market return—the 

ETF SPDR. We thus test our model using another proxy for 

the market portfolio—a value-weighted portfolio of all the 

stocks quoted in the TAQ database. The results are qualita- 

tively the same as those obtained using the SPDR. 

Finally, a question can be raised regarding the method- 

ology for estimating ambiguity, whether � 

2 captures vari- 

ations in a singleton information set (a single probabil- 

ity distribution) across trading days over a month, gener- 

ated only by the new information that might be obtained 

overnight. To address this concern, we run all the tests 

omitting all trading transactions that occur during the first 

half-hour of the trading day. Berry and Howe (1994) show 

that the flow of public information to financial markets 

peaks between 4:30 and 5:00 p.m., after the market has 

closed. This implies that the most significant impact of the 

information flow (on bid-ask spread, volatility, and trad- 

ing volume) occurs in the first half-hour of the follow- 

ing trading day. In addition, “price discovery” (price for- 

mation) happens mainly in this part of the trading day 

(e.g., Lockwood and Linn, 1990; Heston et al., 2010; Pagano 

et al., 2013 ). The results of the tests excluding these trans- 

actions are essentially the same, ruling out the possibility 

that our findings are due only to changes in a single infor- 

mation set. 

To rule out the possibility that our ambiguity measure 

� 

2 only captures the changes in a single probability dis- 

tribution caused by news clustered on Mondays and Fri- 

days, we run all the tests omitting these two days. Chang 

et al. (1998) and Steeley (2001) show that the main ef- 

fect of macroeconomic news occurs on these days (e.g., the 

unemployment rate and nonfarm payroll are announced 

on Fridays). Dyl and Maberly (1988) , Schatzberg and Datta 

(1992) , and Damodaran (1989) show that firm-specific an- 
38 Our measure of ambiguity is different than downside risk. While 

downside risk is outcome dependent (risk dependent), measured by the 

variance of returns that are lower than a given threshold, ambiguity is 

risk independent, measured by the variance of probabilities, independent 

of returns. 
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39 Relative entropy (Kullback-Leibler divergence) measures the distance 

of one prior from a reference prior. This divergence index, D KL ( P | Q ) ≡∑ 

i 

P ( x i ) ln 
P ( x i ) 

Q(x i ) 
, is limited to only two probability distributions and is 

asymmetric. For this reason, we look at all the possible distribution pairs 

and pick the maximum as a proxy for the width of the set. 
40 The KS statistic is defined by D KS ( P , Q ) ≡ max | P ( x i ) − Q(x i ) | . 
nouncements are typically clustered on weekends such

that their main effect is on Mondays. As before, our results

are essentially the same. 

Overall, we could not find any evidence that our ambi-

guity measure is a proxy for some other known factors. 

7. Alternative models 

In this section, we consider alternative models of

decision-making under risk and ambiguity, as well as al-

ternative risk attitudes. 

7.1. Max-Min expected utility with multiple priors 

The point of departure of this paper is a functional

representation of preferences concerning risk and ambigu-

ity. Note that different classes of preferences representa-

tion may not provide the same decision rule and may pro-

vide different orderings by ambiguity, resulting in differ-

ent pricing schemes. In the EUUP, model we employ the

set of priors captures only beliefs (information), in isola-

tion from tastes for ambiguity and risk. This approach is

different than the MEU ( Gilboa and Schmeidler, 1989 ) ap-

proach in which the set of priors captures both beliefs

and tastes. Thus, although the “width” of the set of pri-

ors in MEU and the variance of probabilities in EUUP are

strongly related, in MEU the “width” of the set cannot be

attributed exclusively to ambiguity, independent of aver-

sion to ambiguity. Therefore, MEU does not allow for the

elicitation of aversion to ambiguity, as it is not distinguish-

able from beliefs. In addition, since MEU does not support

love for ambiguity, identifying the conditions where in-

vestors can act as ambiguity lovers is not possible in MEU

settings. 

In the MEU framework, decisions are made based only

on the worst prior within the set of priors and disregard

the width of the set of priors. An extension of the MEU

model, the α-MEU ( Ghirardato et al., 1998 ), accounts for

the width of the prior set by considering the worst and the

best priors. Yet, the information between these two pri-

ors is disregarded. Nevertheless, we next explore whether

DRE = max 

a , 
b ∈P 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 


( r 0 ;μa , σa ) ln 


( r 0 ;μa , σa ) 


( r 0 ;μb , σb ) 

+ 

60 ∑ 

i =1 

(

( r i ;μa , σa ) − 
( r i −1 ;μa , σa ) 

)
ln 

+ 

(
1 − 
( r 60 ;μa , σa ) 

)
ln 

1 − 
( r 60 ;μa , σ

1 − 
( r 60 ;μb , σ

DDS = max 

a , 
b ∈P 

⎛ 

⎜ ⎜ ⎝ 

∣∣
( r 0 ;μa , σa ) − 
( r 0 ;μb , σb ) 
∣∣

+ 

60 ∑ 

i =1 

∣∣( 
( r i ;μa , σa ) − 
( r i −1 ;μa , σa ) ) −

+ 

∣∣( 1 − 
( r 60 ;μa , σa ) ) − ( 1 − 
( r 60 ;μb , 
the width of the set of priors is priced. In such a frame-

work, attitudes toward ambiguity are independent of ex-

pected probabilities, since to compute expected probabili-

ties a second-order prior has to be defined (as in EUUP). 

We estimate the width of the set of priors similarly to

the estimation conducted for the ambiguity measure, as

detailed in Section 4.2 . We examine three alternative es-

timates of the width: 

1. The maximum relative entropy (RE) among all the pairs

within the set of priors, computed for each month by

the discrete form 

39 

a , σa ) − 
( r i −1 ;μa , σa ) 

b , σb ) − 
( r i −1 ;μb , σb ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

2. The maximum Kolmogorov-Smirnov (KS) statistic

among all the pairs within the set of priors, computed

for each month by the discrete form 

40 

DKS = max 

a , 
b ∈P 

[ 
max 

i ∈ 0 , ... , 60 

∣∣
( r i ;μa , σa ) − 
( r i ;μb , σb ) 
∣∣] . 

3. The maximum aggregate distance (DS) among all the

pairs within the set of priors, computed for each month

by the discrete statistic form 

μb , σb ) − 
( r i −1 ;μb , σb ) ) 
∣∣
⎞ 

⎟ ⎟ ⎠ 

. 

For each of these divergence indices, the expected value

is estimated using the same methodology as is used for all

other variables. The out-of-sample expected value of each

divergence index is then added to the regression that in-

cludes the expected risk and the ambiguity measures. Re-

call that under the MEU settings, only aversion to ambigu-

ity is supported, and aversion to ambiguity is not a func-

tion of expected probabilities as in the EUUP model. Ac-

cordingly, the expected value of each of the divergence

indices is added to the regression without an interaction

term with expected probabilities. The findings are reported

in Table 9 . 

Panel A of Table 9 reports the cross-correlations be-

tween the expected measure of ambiguity, � 

2 , and the ex-

pected value of each of the three divergence indices, DER ,

DKS , and DDS . The correlation between � 

2 and each of

these divergence indices is weak and insignificant. Panel B
i 
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Table 9 

Max-Min expected utility with multiple priors. 

The table reports the findings of the tests of the alternative theoretical model. The tests cover the period between August 1995 and De- 

cember 2016, 257 monthly observations in total. 

Panel A reports the cross-correlations among the expected values of the uncertainty factors.The estimated expected value of each variable 

at time t is the fitted value of an ARMA model over its realized values in the months from month t − 30 to month t − 1 . All expectations 

are estimated using the out-of-sample ARMA( p , q ) model with the minimal AICC. The expected volatility, νE , is estimated from the vari- 

ance of daily SPDR returns, adjusted for dividends, in monthly terms. The expected absolute deviation ϑE is estimated from the average 

absolute daily deviation of returns from the monthly average daily return. The expected ambiguity, 
(
� 

2 
t 

)E 
, is estimated from the realized 

ambiguity, where ambiguity � 

2 is the variance of the daily probabilities of returns over the month. Probabilities of favorable returns are 

based on the daily mean and variance of returns computed from five-minute returns, taken from the TAQ database given in daily terms. 

The expected probability of favorable returns, P E , is estimated from monthly averages of daily probabilities of favorable returns. A return 

is considered favorable if it is greater than the risk-free rate, where returns are assumed to be normally distributed. The expected max- 

imum relative entropy DRE E is estimated from the realized maximum relative entropy of daily return distributions over the month. The 

expected maximum Kolmogorov-Smirnov statistic DKS E is estimated from the realized maximum Kolmogorov-Smirnov statistic of daily 

return distributions over the month. The expected maximum distribution distance DRE E is estimated from the realized maximum distri- 

bution distance of daily return distributions over the month. p -values are in parentheses. 

Panel B reports the results from testing the OLS regressions defined by 

r t+1 − r f,t+1 = α + γ · νE 
t + η · ((� 

2 
t ) 

E × ϑ E t ) + η
S 
· (P E t × (� 

2 
t ) 

E × ϑ E t ) + + β1 · DRE E t + β2 · DKS E t + β3 · DDS E t + εt . 

All results utilize the Newey-West estimator. t -values are in parentheses. 

Panel C reports the results from using the WLS regressions. t -values are in parentheses. 

Panel A: Cross-correlations 

r − r f νE ϑE P E 
(
� 

2 
)E 

DRE E DKS E DDS E 

r − r f 1 

νE −0.103 1 

(.0978) 

ϑE −0.139 0.850 1 

(0.0257) ( < 0.0 0 01) 

P E 0.217 −0.305 −0.458 1 

(0.0 0 05) ( < 0.0 0 01) ( < 0.0 0 01) (
� 

2 
)E 

0.021 −0.314 −0.537 0.570 1 

(0.7425) ( < 0.0 0 01) ( < 0.0 0 01) ( < 0.0 0 01) 

DRE E 0.060 −0.124 −0.192 0.156 0.042 1 

(0.3379) (0.0458) (0.0019) (0.0118) (0.4971) 

DKS E −0.038 0.109 0.081 −0.230 −0.112 0.312 1 

(0.5411) (0.0792) (0.1927) (0.0 0 02) (0.0729) ( < 0.0 0 01) 

DDS E −0.027 0.061 0.020 −0.206 −0.103 0.385 0.959 1 

(0.6615) (0.3307) (0.7436) (0.0 0 09) (0.0984) ( < 0.0 0 01) ( < 0.0 0 01) 

# ˆ α ˆ γ ˆ η ˆ η
S 

ˆ β1 
ˆ β2 

ˆ β3 N R 2 Adj. R 2 

Panel B: OLS regressions 

1 0.003 0.651 0.0 0 0 258 −0.003 −0.011 

(0.870) (0.740) (1.680) 

2 0.048 0.411 −0.042 258 −0.005 −0.013 

(0.380) (0.530) ( −0.320) 

3 0.007 0.426 0.0 0 0 258 −0.006 -0.014 

(0.060) (0.540) (0.0 0 0) 

4 0.008 2.530 −5.075 9.111 0.0 0 0 258 0.048 0.033 

(1.070) (3.070) ( −3.520) (3.360) (1.760) 

5 −0.030 2.457 −5.187 9.316 0.044 258 0.045 0.030 

( −0.220) (2.980) ( −3.410) (3.220) (0.310) 

6 −0.091 2.492 −5.350 9.646 0.054 258 0.046 0.031 

( −0.670) (3.070) ( −3.580) (3.390) (0.760) 

Panel C: WLS regressions 

1 0.004 1.299 0.0 0 0 257 −0.009 −0.017 

(1.170) (1.050) (1.180) 

2 0.093 1.052 −0.091 257 −0.007 −0.015 

(0.590) (0.950) ( −0.550) 

3 0.030 1.073 −0.012 257 −0.009 -0.017 

(0.200) (0.950) ( −0.150) 

4 0.009 3.276 −6.216 11.251 0.0 0 0 257 0.053 0.038 

(1.170) (3.380) ( −4.050) (3.870) (1.180) 

5 −0.027 3.212 −6.340 11.494 0.039 257 0.052 0.037 

( −0.160) (3.340) ( −3.900) (3.720) (0.230) 

6 −0.098 3.238 −6.492 11.799 0.057 257 0.053 0.038 

( −0.600) (3.430) ( −4.100) (3.910) (0.670) 
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reports the OLS results, and Panel C reports the WLS re-

sults. In all the regressions, the effect of each of the three

divergence indices is insignificant. These findings do not

indicate that investors act as if they follow MEU or the α-

MEU decision criteria. 

Our findings show that expected probabilities can play

an important role in determining the ambiguity premium.

These findings can be interpreted more broadly with re-

spect to other models of decision-making under ambiguity

in multiple priors paradigm besides the EUUP model. 41 For

example, although in the MEU framework expected proba-

bilities are not formally defined, since a second-order be-

lief has to be defined, yet expected probabilities can affect

pricing. A “shift” in expected probabilities over time may

be a result of a “shift” of the set of priors, independent of

the decision theoretical model employed. Therefore, econo-

metrically, changes in expected probabilities can be used

as a statistical measure for changes in the set of priors,

establishing a connection between the multiple prior ap-

proach (MEU framework) and the statistic measure used

econometrically. 

7.2. Subjective expected utility 

The EUUP framework can be viewed as an extension of

the subjective expected utility (SEU) framework ( Savage,

1954 ) by applying a two-stage SEU: first to probabilities

and then to outcomes. In the special case of an ambiguity-

neutral attitude, investors reduce this two-stage “lottery”

linearly, ending up with the classical SEU representation. In

the pricing model in Eq. (1) , we decompose the equity pre-

mium into the risk and ambiguity premium. The former is

a function of the variance of outcomes computed using the

expected probabilities, which is equivalent to the volatil-

ity of outcomes (risk) computed using a two-stage lottery.

The latter is a function of the volatility of probabilities (lot-

tery of probability distributions). Through the lens of SEU,

when testing the effect of the expected variance of out-

comes alongside the expected variance of the probabilities,

the effect of the former should be significantly positive and

the effect of the latter not significantly different from zero.

Our results ( Tables 4 –7 ) show that the lottery of prob-

ability distributions—ambiguity—significantly affects pric-

ing. This means that the hypothesis that the effect of the

volatility of the probabilities is not a pricing factor is re-

jected, implying that SEU behavior is not supported by the

data. Our findings coincide with Halevy (2007) , who finds

that, while facing two-stage objective lotteries, individuals

may not reduce compound (objective) lotteries and exhibit

ambiguity-averse behavior. 42 

7.3. Unstructured risk attitudes 

In this section, we relax our assumption of CRRA and

repeat the analysis. Similar to our discrete model in Eq.

(15) , no particular functional structure is imposed on at-

titudes toward risk, allowing for the intensity of the effect
41 We thank the anonymous referee for this interpretation. 
42 Segal ’s 1987 theory supports these findings. 
of risk attitude to be determined endogenously. We exam-

ine whether unstructured attitudes toward risk can explain

our findings. 

In EUUP, formed in Eq. (5) , attitudes toward ambi-

guity are captured by the outlook function, ϒ, applied

to expected probabilities, while attitudes toward risk are

captured by the utility function, U , applied to outcomes

(wealth). In a representative investor economy, the wealth

of the investor can be normalized relative to the initial

wealth. Thus, we can take the aggregate return, w t , rela-

tive to the beginning of our sample as an estimate of the

investor’s wealth at time t . 43 

We test a discrete model in which ambiguity attitudes

may be nonlinearly contingent upon wealth. Analogous

to the model in Eq. (15) , we use the following design.

The (relative) wealth range is from 0.0 to 1.659 (not re-

ported). Winsorizing the few outlier values provides the

range [0.1,1.6] of wealth. This range is divided into ten

equal intervals (bins) of 0.15 each, indexed by j . For exam-

ple, j = 1 denotes the wealth bin [0.1,0.25]. The few values

lower than 0.1 are indexed as j = 1 , and the few values

higher than 1.6 are indexed as j = 10 . The decision to use

a ten-bin resolution is due to the number of observations,

257 (of expected values). 

Next, a dummy variable, C , is constructed for each

wealth bin. If the wealth in a given month t falls into bin

j , the dummy variable C j , t is assigned the value one; oth-

erwise it is zero. The model is then given by 

r t+1 − r f,t+1 

= α+ γ · νE 
t + 

10 ∑ 

j=2 

γ j ·
(
C j,t ×w j ×νE 

t 

)
+ η ·

((
� 

2 
t 

)E ×ϑ 

E 
t 

)

+ 

10 ∑ 

i =2 

ηi ·
(

D i,t × P 

E 
i ×

(
� 

2 
t 

)E × ϑ 

E 
t 

)
+ εt , (18)

where w j is the midpoint of wealth bin j . Note that risk

attitudes can vary with the wealth. Thus, this is a discrete

model in the sense that risk attitudes may obtain only a

finite number of values. 

To interpret the discrete model, we can write the coef-

ficients of risk attitude as γ
(
w j 

)
= ˆ γ + ˆ γ j . This expression

represents the investor’s attitude toward risk, conditional

upon the wealth w being in wealth bin j . A negative value

of γ ( w ) , determined by ˆ γ + ˆ γ j , implies risk-loving behav-

ior and results in a negative risk premium. On the other

hand, a positive value implies risk-averse behavior and re-

sults in a positive risk premium. Furthermore, a greater ˆ γ j 

in the range of high wealth implies an increasing aversion

to risk. On the other hand, a lower ˆ γ j in the range of high

wealth implies a decreasing aversion to risk. 

The results of these regression tests are reported in

Table 10 . With respect to attitude toward risk, we couldn’t

identify a consistent pattern, and the coefficients are

mostly insignificant. With respect to attitudes toward am-

biguity, as with CRRA, the same pattern is sustained, where

all coefficients except for one are statistically significant.
43 The wealth in the first observation serves as a numeraire. Thus, w t is 

taken to be log aggregate return for the period 0 to t . 
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Table 10 

Unstructured risk attitude. 

The table reports the results of the tests of the theoretical discrete model. The estimated expected values are for the period between August 1995 and 

December 2016, 257 monthly observations in total. 

Panel A reports the results from testing the OLS regressions defined by 

r t+1 − r f,t+1 = α + γ · νE 
t + 

∑ 10 
j=2 γ j ·

(
C j,t × w j × νE 

t 

)
+ η ·

((
� 

2 
t 

)E × ϑ E t 

)
+ 

∑ 10 
i =2 ηi ·

(
D i,t × P E 

i 
×

(
� 

2 
t 

)E × ϑ E t 

)
+ εt , 

All results utilize the Newey-West estimator. The estimated expected value of each variable at time t is the out-of-sample fitted value of an ARMA model 

over its realized values from month t − 30 to month t − 1 . All expectations are estimated using the out of sample ARMA( p , q ) model with the minimal 

AICC. The expected volatility, νE , is estimated from the variance of daily SPDR returns, adjusted for dividends and given in monthly terms. The expected 

absolute deviation ϑE is estimated from the average absolute daily deviation of returns from the monthly average daily return. The expected ambiguity, (
� 

2 
t 

)E 
, is estimated from the realized ambiguity, where ambiguity � 

2 is the variance of the daily probabilities of returns over the month. Probabilities of 

returns are based on the daily mean and variance of returns computed from five-minute returns, taken from the TAQ database given in daily terms. The 

expected probability of favorable returns, P E , is estimated from the monthly averages of the daily probabilities of favorable returns. A return is considered 

favorable if it is greater than the risk-free rate, where returns are assumed to be normally distributed. The dummy variable C j is assigned the value one if 

the wealth w in that month falls in the range j of wealth, and zero otherwise. The dummy variable D i is assigned the value one if the expected probability 

of favorable returns, P E , in that month falls in the range i of probabilities, and zero otherwise. 

Panel B reports the results from testing the above model using WLS regressions. t -statistics are in parentheses. 

# ˆ α ˆ γ ˆ γ2 ˆ γ3 ˆ γ4 ˆ γ5 ˆ γ6 ˆ γ7 ˆ γ8 ˆ γ9 ˆ γ10 

ˆ η ˆ η2 ˆ η3 ˆ η4 ˆ η5 ˆ η6 ˆ η7 ˆ η8 ˆ η9 ˆ η10 N R 2 Adj. R 2 

Panel A: OLS 

1 0.006 4.299 32.318 15.657 0.152 −5.548 −4.415 -4.664 −7.998 0.130 −1.443 257 0.056 0.018 

(1.090) (0.500) (1.640) (1.070) (0.010) ( −0.550) ( −0.550) ( −0.680) ( −1.280) (0.020) ( −0.340) 

2 0.012 −1.255 1.676 1.788 2.310 1.451 2.902 2.373 2.697 2.256 2.725 257 0.067 0.029 

(1.130) ( −3.310) (2.170) (2.690) (2.700) (1.800) (4.130) (3.520) (3.760) (3.350) (3.840) 

3 0.008 1.526 45.766 26.075 6.078 2.315 0.186 −0.974 −3.791 0.767 1.174 

(0.660) (0.140) (1.620) (1.520) (0.450) (0.190) (0.020) ( −0.110) ( −0.500) (0.090) (0.180) 

−1.443 1.812 1.073 2.467 1.844 3.291 2.635 3.088 2.728 3.184 257 0.144 0.072 

( −4.020) (2.360) (1.530) (2.670) (2.310) (4.750) (3.700) (4.040) (3.770) (4.130) 

Panel B: WLS 

1 0.005 5.311 33.054 13.954 −0.083 −6.491 −5.244 −5.319 −9.203 −1.527 −0.925 257 0.075 0.037 

(0.840) (0.580) (1.640) (0.910) ( −0.010) ( −0.590) ( −0.610) ( −0.730) ( −1.390) ( −0.250) ( −0.210) 

2 0.011 −1.244 1.785 1.772 2.422 1.301 2.993 2.446 2.746 2.260 2.745 257 0.065 0.027 

(0.990) ( −2.930) (2.050) (2.310) (2.650) (1.460) (3.890) (3.220) (3.470) (3.090) (3.530) 

3 0.006 2.912 49.417 25.159 5.490 1.078 −0.662 −1.662 −4.677 −1.577 1.226 

(0.490) (0.270) (1.630) (1.450) (0.390) (0.090) ( −0.070) ( −0.190) ( −0.610) ( −0.190) (0.180) 

−1.451 1.856 0.974 2.522 1.753 3.404 2.734 3.214 2.814 3.287 257 0.162 0.091 

( −3.720) (2.130) (1.240) (2.550) (1.970) (4.580) (3.430) (3.790) (3.580) (3.950) 

44 To understand this intuition, consider the effect of increasing variance 

on a normal distribution. In the most extreme case, when the variance 

goes to infinity, the distribution goes to a uniform one 
45 This can be obtained, for example, by a linear shifting of the proba- 

bility distributions within the set of priors. 
These findings alleviate our concern that our previous re- 

sults in Table 4 could have been due to more flexible am- 

biguity attitudes relative to risk attitudes. 

8. The risk-ambiguity-return relation 

Asset pricing theory, including our theoretical model, 

predicts a positive risk-return relation. However, broadly 

speaking, the multitude empirical tests of this fundamen- 

tal relation struggle to find consistent supporting evidence. 

This also includes our basic tests of the risk-return relation. 

Our investigation, which attempts to explain the returns 

exclusively by risk, show an insignificant negative relation, 

in contrast to what theory suggests. When we introduce 

ambiguity into the pricing model, the effect of risk be- 

comes positive and significant. This important result raises 

the question of why the risk premium is positive in the 

excess return regression only when ambiguity is included. 

To address this question, we focus on the risk- 

ambiguity relation. From the theoretical perspective, the 

degree of ambiguity can be affected by two elements: the 

shape of each distribution within the set and the variety 

of these distributions. Suppose that the shape of each dis- 

tribution within the set changes such that each distribu- 
tion becomes riskier, in the sense that higher probability 

mass is assigned to the tail outcomes. In this case, natu- 

rally, the risk increases. In contrast, if each distribution be- 

comes “flatter,” the volatility of the probability of each out- 

come can decrease such that ambiguity decreases. 44 In this 

case, we expect a negative risk-ambiguity relation. Suppose 

now that the shape of the probability distributions within 

the set of priors remains unchanged and only the disper- 

sion across the priors changes. 45 In this case, risk can in- 

crease, since the average probability of tail outcomes in- 

creases. At the same time, ambiguity increases such that 

we expect a positive risk-ambiguity relation. Using this 

intuition, in regular times, when the distributions within 

the set of priors are relatively stable (i.e., a relatively low 

dispersion across the probability distributions), a negative 

risk-ambiguity relation can be found. On the other hand, in 

highly uncertain (ambiguous) times, one can find a positive 

risk-ambiguity relation. 
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The consequences of these conjectures can be observed

in the correlation between risk and ambiguity. Panel C of

Table 1 shows that the correlation between risk and ambi-

guity is insignificant at 0.026. This value, however, is mis-

leading since this correlation (like other statistics) is time

varying. Measuring the correlation over the entire sam-

ple between 1993 and 2016 ignores the significant posi-

tive and negative correlations over subperiods. For exam-

ple, for the period of 20 04–20 07, the correlation between

risk and ambiguity is negative at −0 . 581 and significant.

On the other hand, for the period around the financial cri-

sis (2008–2010), the correlation between risk and ambigu-

ity was positive at 0.69 and significant. With regard to our

results, the relevant correlation is between expected am-

biguity and expected risk. For the period of 20 04–20 07,

this correlation is negative at −0 . 676 and significant, and

for the period around the financial crisis (2008–2010) it is

positive at 0.37. 

The varying risk-ambiguity relation over different time

periods can provide an explanation for the question of why

when omitting ambiguity from the regression tests that

explain excess return, risk has an insignificant negative co-

efficient, but when ambiguity is introduced, risk is positive

and significant. Clearly, a further exploration of the risk-

ambiguity relation is required. We leave this for future re-

search. 

9. Conclusion 

The basic tenet in asset pricing theory is the risk-return

relation, which has been tested a multitude of times us-

ing a variety of models and factors. The results have been

mixed at best. One possibility is that ambiguity is an im-

portant missing factor that can restore the risk-return re-

lationship. In this study, we introduce ambiguity into the

traditional risk-return relation. Our results show that the

excess return on the market as a whole, known as the eq-

uity premium, is determined by two distinct factors: am-

biguity and risk. Risk is measured in a variety of ways; for

example, using a rate of return volatility or alternatively

implied volatility. Ambiguity is measured by the volatility

of the uncertain probabilities of returns. To this end, we

introduce an empirical methodology for measuring the de-

gree of ambiguity and for eliciting probabilistically contin-

gent preferences directly from market data. 

We present four hypotheses to examine the effects of

risk, ambiguity, and ambiguity attitudes on the excess re-

turns. Consistent with the classical asset pricing paradigm,

one would expect excess return and risk to be positively

related. Regarding ambiguity, many behavioral experiments

find an aversion to ambiguity for gains and a love for am-

biguity for losses, although the particular form of ambi-

guity attitudes has yet to be determined. We find that in

the case of a high expected probability of gains, the ef-

fect of ambiguity is positive and highly significant, while

for a high expected probability of losses, it is negative and

highly significant. Furthermore, our findings indicate that

aversion to ambiguity increases with the expected proba-

bility of gains, while love for ambiguity increases with the

expected probability of losses. When we include ambigu-

ity in the pricing model, the effect of risk is positive and
significant, while its effect is insignificant when ambiguity

is not accounted for. The positive equity premium in this

instance contains a premium for risk and a premium for

ambiguity. 

The empirical methodology we propose to estimate am-

biguity can be employed in other economic and financial

studies. It has the potential to add clarification for some

anomalies that previously could not be fully explained. 
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