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1 Introduction

In markets for experience goods, buyers learn about the quality of available products

through experimentation. After testing out one option, they reevaluate the alternatives

to identify those that better match their preferences. In their next decision, buyers

may choose one of the preferred products or may select a less well understood option to

sharpen their opinions further. Many markets feature this search behavior, including

consumers’ purchases of non-durable goods; manufacturers’ choices of suppliers; and

physicians’ recommendations of prescription drugs for their patients.1 The market for

prescription drugs is a particularly important example because improving the pace and

precision of the patient and physician’s learning process has consequences for health.

The health benefits come in two forms: patients may realize better outcomes while on

more tailored treatment and may adhere to the proper drug regimen at higher rates.

I develop a dynamic model of prescription drug demand to measure how drug prices

and promotion influence the search process. I then examine alternative insurance de-

signs to identify policies that maximize patient adherence and health while minimizing

insurers’ costs. If the incentives target treatments with better expected outcomes and

tolerability, physicians and patients will search among those drugs most likely to relieve

symptoms and least likely to cause side effects that discourage patients from continuing

treatment.

I focus specifically on the antidepressant market. The potential improvement in

depression care is substantial, as few patients continue treatment to the six month

threshold recommended by the American Psychiatric Association. In my empirical

setting, half of the patients discontinue treatment by the first month and over 90% exit

care before the recommended six months.2 In addition, physicians face uncertainty in

this market about how a new patient will respond to the treatments available. Six

classes of drugs compose the choice set, each affecting a distinct set of chemicals in

the brain; physicians cannot predict ex ante which mechanism will work best for a

particular patient.

To analyze this dynamic choice problem, I begin with a duration analysis. Using

1For empirical models of such markets, see Erdem and Keane (1996) and Ackerberg (2003) on
consumer products and Crawford and Shum (2005), Narayanan et al. (2005), and Chintagunta et al.
(2009) on demand for prescription drugs.

2Berndt et al. (2002) find that such short treatment spells limit the probability of short-run recovery.
Inadequate treatment duration also nearly doubles the rate of illness relapse (Melfi et al. (1998)). The
resulting increase in depressive symptoms inflicts serious pain: in surveys, patients equate 10 years
living with depression to only 6 years living without it (Fryback et al. (1993)).
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panel data on the treatment choices within a patient’s illness spell, I identify the charac-

teristics of drugs that more often cause patients to switch treatments. The results from

this flexible hazard model suggest that a drug with greater side effects, more frequent

doses per day, and higher out-of-pocket costs prompt patients to quit the treatment

more rapidly. Patients and physicians prefer branded treatments, and, at the popula-

tion level, have no clear favorite: the predicted probability that a drug will be effective

for a new patient range from 40% to 70%, with seven treatments in the range of 65% to

70% predicted effectiveness. The piecewise hazard estimates also suggest the likelihood

of finding a drug ineffective varies by drug and changes in a nonlinear fashion over the

course of an illness spell.

The uncertainty at the initial prescribing stage and the rich switching patterns call

for a more detailed model of the patient and physician’s dynamic choice problem. While

this modeling requires assumptions on the agents’ learning process, it will allow me to

measure the effect of counterfactual pricing and promotion policies designed to improve

adherence and patient outcomes.

The model involves three components. First, I specify the physician and patient’s

prior beliefs on the effectiveness of each option. In the model, sampling a drug treatment

in a month is a Bernoulli trial, where a successful outcome means the drug provided

“effective” relief. As typically defined in the medical literature, effectiveness encom-

passes more than simply whether a treatment improves the patient’s symptoms. An

effective treatment must also be convenient to administer, easy to acquire, and cause

relatively tolerable side effects. I assume the effectiveness of a drug is a patient-specific

endowment that may vary across patients depending on the severity of their mental

illness but is fixed over time. The goal of estimation is to recover the probability that

a drug is effective–that is, to identify the parameter of the Bernoulli distribution.

To characterize the joint distribution of these probabilities, I specify a prior dis-

tribution on each drug’s probability of being effective that depends on a drug’s price,

branded status, side effect profile, and dosing requirements. I allow the influence of

these drug characteristics to differ for patients with more severe illnesses and for pa-

tients that visit psychiatric specialists rather than general practitioners. Furthermore,

because most of the antidepressants I study entered the US pharmaceutical market sev-

eral years before my sample period, I assume the patient and physician have rational

expectations. At the time they make a drug selection, their priors on the effectiveness

of a treatment equal the parameters of the distribution that generates outcomes in the

population. However, there is still substantial heterogeneity across patients in a drug’s
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effectiveness; physicians and patients must search to identify the best match.

To complete the model, I must specify a learning process for the patient and physi-

cian as well as a decision rule for selecting a drug in each period. I choose a simple

learning process: after observing a Bernoulli draw on a drug’s effectiveness, the patient

and physician update their priors in a Bayesian fashion. For the decision rule, two

features of the market complicate the application of existing tools and call for method-

ological innovation. First, physicians select from among nineteen unique products in

the antidepressant class. The agent—and the econometrician—must hold in memory

the expected outcomes and the covariance in outcomes across the nineteen drugs when

evaluating possible treatment regimens. This large number of required state variables

reflects the “curse of dimensionality”; to handle a problem of this size, traditional meth-

ods require strong assumptions on the state variables to simplify computation.3 Second,

when searching for the drug best suited to a particular patient’s illness, physicians may

learn about the quality of each drug in a correlated fashion. After a poor outcome on

drug A, for example, the physician and patient may avoid drugs B and C if they share

drug A’s mechanism of action in the brain. The optimal sequence of products to sample

thus depends directly on the similarity among subsets of treatments within the choice

set. If several products share a characteristic, physicians and patients might start with

a drug in this set to learn rapidly about the patient’s match to all of the drug’s close

substitutes.

I accommodate these features with a new estimation approach. To deal with com-

putational roadblocks, I avoid direct dynamic programming solutions to the agent’s se-

quential choice problem. These approaches find solutions via backward induction, which

in my choice setting requires computing high-dimensional integrals for each patient-

physician pair. I avoid computing these multidimensional integrals by appealing to

an alternative solution to the physician’s sequence problem developed in the statistics

literature by Gittins and Jones (1979) and applied previously in economics contexts by

Miller (1984) and Bergemann and Valimaki (1996), among others. In the drug choice

setting, the actual effectiveness of a treatment is constant over time; the physician and

patient can always return to an option they overlooked initially and it will yield the

same outcome regardless of its place in the choice sequence.4 The physician and patient

3See Aguirregabiria and Mira (2010) for a survey of dynamic discrete choice models and a discussion
of the computational requirements.

4This assumption would be incorrect in settings in which a treatment changes the physiology of the
body such that it forecloses use of other treatments in the future. In general, this type of sequential
foreclosure is rare in medical care.
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can therefore apply forward induction to solve the sequence problem.

The classical forward induction solution, whose properties were first proven by Git-

tins and Jones (1979), provides a decision rule appropriate for a setting in which the

choices are independent. As I show later in the data, treatments in my setting ap-

pear to be correlated in an observable pattern. When physicians and patients switch

treatments, they do not shift according to a drug’s share in the market. Rather, they

more commonly switch in relation to the initial drug’s class designation. Thus, in

the antidepressant setting, the independence assumption likely fits the data structure

poorly.

Rather than employ Gittins’ index rule directly, I follow the suggestion of Pandey et

al. (2007), who provide a two-level index rule that explicitly accounts for the dependence

across choices. The approach relies on the same method of proof used to show the

optimality of Gittins’ index rule, but with a structure that, in my setting, requires the

decision maker to first select a drug class and then select a drug within the class. After

observing an outcome on a drug within the class, the patient and physician update

their priors on the effectiveness of the drug sampled and on the class as a whole. In this

way, a poor outcome on a drug within a class may diminish the perceived effectiveness

of all drugs that are members of the class.

The two-level index rule approach has three attractive features. First, the strategy

vastly reduces computation for both the agent and the econometrician relative to a full

dynamic programming solution that applies backward induction. Second, it captures

optimizing behavior using a policy that appears more like a “rule of thumb” that

physicians may follow in practice. Finally, the decision rule allows forward-looking

behavior, as in Crawford and Shum (2005) and Ching (2010), but also permits spillovers

in the learning process. A key contribution of this paper is to extend the literature on

dynamic discrete choice to allow both correlated learning and experimentation.

With the dynamic model, I test the effect of insurance design and informational

campaigns on both the insurer’s long-run costs and patient health, translated to dollar

terms. Prices and promotion enter the model through my specification of the patient

and physician’s prior probability that a product will be effective.

I find “value-based” insurance designs that set lower copayments for drugs with

higher effectiveness can steer physicians and patients toward treatments with a higher

probability of providing effective relief. With better matching, patients remain in

treatment longer. I convert this increased rate of adherence to improved health us-

ing previous estimates from the medical literature. “Value-based” designs outperform
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commonly-used tiered copayment policies both in terms of improving health and min-

imizing costs. For promotion, I test the effect of two informational campaigns. In

the first, I allow policymakers to restrict manufacturers from labeling reformulations of

branded drugs as distinct products, apart from differences in dosing. In this world, both

adherence and costs fall slightly. Second, I endow general practitioners with the same

preferences as psychiatric specialists. The result is a small improvement in adherence

and greater use of generic treatments.

Finally, I use the predictions of the structural model on the effectiveness of each drug

to form a list of recommended treatments. Observed switching patterns in the data

identify seven treatments that have higher probability of a successful outcome. Existing

protocols built from clinical trial outcomes recommend a larger list of products, some

of which far underperform these seven treatments in terms of adherence. Thus, in the

case of judging drug efficacy—and possibly for policy evaluation more generally—my

results suggest observed adherence rates provide valuable information to combine with

the treatment effects found in randomized trials.

I proceed in the paper by first describing the market for depression care and transi-

tion patterns observed in the data in Section 2. In Section 3, I describe the components

of the learning model built to explain the observed transitions. In Section 4, I describe

the data in detail and specify the econometric model. I describe the results and fit of

this model in Section 5. Finally, I conduct counterfactual simulations to test the effect

of insurer policies on costs and patient health in Section 6. Section 7 concludes.

2 Background and Preliminary Analyses

2.1 Depression Care

Major depression affects 6.5% of adults in the United States each year. The illness

causes patients to suffer significant impairment in their productivity, with surveys

finding 60% have symptoms severe enough to keep them from performing daily tasks

(Kessler et al. (2003)). The volume of diagnoses in the United States leads to a large

market for drug treatment. In 2008, patients filled 164 million monthly prescriptions

for antidepressants. As a class, only cholesterol regulators and pain medicines exceeded

this volume of sales. In dollar terms, sales of antidepressants reached $9.6 billion in

2008, roughly 3.3% of the U.S. prescription drug market.5

5“Top Therapeutic Classes by US Sales”, IMS National Sales Perspectives. IMS Health, 2008.
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The antidepressants I study fall into six distinct classes according to their effect

on the concentration of the chemicals serotonin, norepinephrine, and dopamine in the

brain. Patients react idiosyncratically to changes in the concentrations of these chem-

icals, creating uncertainty about the efficacy of any one biological mechanism for a

patient (Murphy et al. (2009)). The current set of treatments entered the market in

two waves. The first generation entered production in the late 1950s and 1960s, and

includes a class known as tricyclic antidepressants (TCAs). They provide symptomatic

relief, but at the cost of poor tolerability. In the late 1980s and 1990s, researchers

developed treatments with “selective” effects on the brain chemistry, providing similar

efficacy to the first generation of treatments but with lower risk of harm from over-

dose and fewer interactions with drugs for other conditions. These “second generation”

treatments include the most popular drug classes today: selective serotonin reuptake in-

hibitors (SSRIs); serotonin-norepinephrine reuptake inhibitors (SNRIs); norepinephrine

and dopamine reuptake inhibitors (NDRIs); noradrenergic and specific serotonergic an-

tidepressants (NASSAs); and serotonin antagonist and reuptake inhibitors (SARIs)

(Gartlehner et al. (2007)). In my sample period, the patient and physician can choose

among two TCAs, eight SSRIs, three SNRIs, two NDRIs, one NaSSA, and two SARIs.

2.2 Preliminary analysis of switching behavior

Identification of the learning model parameters requires a sufficiently rich set of ob-

served switches across products and classes with distinct characteristics. Although I

defer a detailed description of the data until Section 4.1, here I summarize the switch-

ing patterns to motivate the structure imposed in the learning model. Importantly,

because I focus on patients with more severe forms of depression, I interpret a switch

as evidence that the drugs failed to provide effective relief at a reasonable cost. For

the conditions I study, the American Psychiatric Association recommends at least six

months of treatment; 90% of the observed switches or exits occur within this timeframe

and so are unlikely to reflect successful treatment.6

2.2.1 Observed transitions

In Table 1, I illustrate the observed transitions in treatment from the initial drug

choice to the choice picked in the second period of treatment. I report these switches

6The American Psychiatric Association recommends treatment for a 6-8 week acute phase followed
by a 16-20 week continuation phase to prevent relapse (Karasu et al. (2000)).
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by drug class. Decision points, t, roughly correspond to one month of treatment. In

cases in which the physician writes a 90 day prescription, roughly 10% of all observed

prescriptions, the decision point corresponds to three months. When a patient returns

for follow-up before completing the initial prescription, the decision point corresponds

to the observed number of days between office visits.

Table 1 contains three matrices: (1) all transitions, (2) only transitions to a drug

treatment, excluding the outside good of no drug treatment, and (3) only transitions to

a drug treatment that is distinct from the treatment chosen in the initial period. Panel

A illustrates that roughly 20-35% of patients quit treatment after the first month,

though the rate depends importantly on the class of the drug chosen. For example,

patients beginning treatment on a drug in the SNRI class have the lowest rate of exit,

at 21%, while patients on drugs in the TCA or SARI class quit at rates over 30%. Panel

B shows that, for those patients remaining in treatment, the majority remain on the

same drug or the same drug class chosen initially, particularly if the initial treatment

was a second generation SSRI or SNRI product. Panel C focuses only on those patients

who switch to a new drug treatment.

The patterns of switching in Panel C motivate my decision to specify the expected

probability of success under a drug as a function of its class and to permit correlation

across products in the learning model. First, it is clear in the switching statistics that

patients do not switch to new drugs based on the average market shares in the choice

set. For example, of those patients who begin treatment on a drug in the SSRI class and

then switch to another drug, 54% choose another SSRI; if the drugs were uncorrelated

and patients chose the next treatment in proportion to market shares, we would expect

around 44% of patients to choose an SSRI. A similar pattern exists for drugs in the

SNRI and NDRI classes. These frequencies suggest a possible clustering of choices by

class. It also suggests a hazard model may be insufficient to explain observed behavior.

In particular, the pattern of switching likely depends on both the degree of correlation

of product quality within a class and the differentiation in quality across classes for a

particular patient. Even if a patient has a poor outcome on a drug in one class, he

may switch to a second drug within the class if the best option in any alternative class

still has worse expected quality. I develop a learning model later that features this

correlated learning structure.

To illustrate the timing of switches, I include in matrix form in Table 2 the share of

patients who remain on the initial choice at different decision points within an episode.

Conditional on the level of adherence, about 10-15% of patients switch at the first
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Table 1: Observed transitions between treatments after one period of care

Exit TCA NDRI SSRI SNRI NaSSA SARI

TCA 30.43 42.39 2.17 21.74 3.26 0.00 0.00
NDRI 29.27 0.39 62.90 5.78 0.77 0.13 0.77
SSRI 24.92 0.62 1.49 71.33 0.80 0.18 0.67
SNRI 21.05 0.25 1.37 2.99 73.35 0.12 0.87
NaSSA 28.30 0.00 1.89 11.32 1.89 54.72 1.89
SARI 36.17 4.26 5.67 15.60 2.84 0.00 35.46

TCA 9::::::::: 60.94 3.13 31.25 4.69 0.00 0.00
NDRI 9::::::::: 0.54 88.93 8.17 1.09 0.18 1.09
SSRI 9::::::::: 0.82 1.99 95.00 1.06 0.24 0.89
SNRI 9::::::::: 0.32 1.74 3.79 92.90 0.16 1.10
NaSSA 9::::::::: 0.00 2.63 15.79 2.63 76.32 2.63
SARI 9::::::::: 6.67 8.89 24.44 4.44 0.00 55.56

TCA 9::::::::: 0.00 9.38 78.13 9.38 0.00 3.13
NDRI 9::::::::: 3.29 33.55 49.34 7.89 0.66 5.26
SSRI 9::::::::: 7.04 19.68 51.62 12.64 1.26 7.76
SNRI 9::::::::: 1.82 20.91 40.91 25.45 0.91 10.00
NaSSA 9::::::::: 0.00 10.00 70.00 10.00 9::::::::: 10.00
SARI 9::::::::: 13.04 19.57 56.52 10.87 0.00 0.00

Panel:A::All:Transitions

Panel:B::Only:transitions:to:drug:treatments:(excludes:quitting)

Panel:C::Only:transititions:involving:substitution:to:a:different:product:(excludes:quitting)

Drug:class:chosen:in:period:2Drug:class:chosen:in:
period:1

Notes:S
1.:Observed:switches:recorded:for:the:10,000:patient:sample:drawn:from:the:MarketScan:database:
for:use:in:estimation.::Roughly:35%:of:patients:receive:no:drug:care:at:their:initial:visit:and:so:do:
not:appear:in:the:above:switch:statistics.S
2.:Selected:antidepressant:classes:shown.::The:number:of:individual:drugs:modeled:in:each:
subclass:are::SSRI,:8;:NDRI,:2;:SNRI,:3;:TCA,:2;:NaSSA,:1;:SARI,:2.::Thus,:no:patients:switch:
Zwithin:classZ:when:starting:on:a:NaSSA.S
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decision point. Physicians and patients appear to learn quickly about a patient’s match

to a treatment. This variation will help identify the precision in the physician and

patient’s priors.

Table 2: Share of patients who remain on the treatment chosen at their initial diagnosis
(in %), subset by observed treatment length

! " # $ % & ' (
! !))*) !))*) !))*) !))*) !))*) !))*) !))*) !))*)
" (%*! (&*( ((*+ (+*$ (+*& +)*$ +!*$
# ($*$ ($*" ($*' (%*( (&*$ ((*"
$ ("*# ("*) (#*) (#*+ (&*$
% ()*" (!*) ("*" ($*$
& '+*& ()*! ("*&
' '+*# ()*'
( '+*+
,-./01231
4.5.605 %&*'7 !"*+7 +*#7 &*$7 $*$7 #*!7 "*!7 !*'7

809:5-1231;/0.5<0951=>?62401@A1<295-BC1>/06D/?>5?29614?6>09604E
F/06D/?>5?291
D2G951?91
0>?6240

H2506IJ
!*1,2G/D01K1L0465.51L./M056D.91!"##$%&'()*!)('#+*(,-*.,&"/,0$%+1N.5.O.60P1C0./61
"))#K"))%*J
"*1,.<>B01D295.?961!)"P'")1G9?QG01>.5?0956P1R?5-1"&'P#+)12O60/S041>/06D/?>5?2961
2/12TD01S?6?561.D/2661>.5?09510>?62406*J

2.2.2 Hazard of switching

Finally, before specifying the learning model, I conduct a duration analysis to highlight

the key individual and drug characteristics that drive the decision to quit or switch

treatments. I use a flexible piecewise proportional hazard model to capture changes in

the duration on treatment at different points in the patient’s treatment spell. In this

setting, I interpret the estimated probability of switching as the probability that the

patient and physician together find the focal drug ineffective.7

For each patient, I group the observed durations into month-long intervals. I use

a piecewise constant proportional hazard, allowing for censoring at the end of treat-

7In Section 8.2 of the technical appendix, I use the hazard estimates in a two-stage model of drug
selection. I combine the hazard estimates on switch timing with a simple logit model of drug choice
for the periods in which the patient and physician switch treatment. I compare the predictions of this
simple model to the predictions of the main learning model to highlight the gains from introducing
Bayesian learning.
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ment.8 When patients leave treatment, I assume they do not return and thus I end the

treatment spell in that month.

The estimates suggest that patient and physicians believe most treatments will be

effective with probability ranging from 40-80%, with drugs in the SNRI and SSRI

classes most likely to be effective. Increases in out-of-pocket costs, in the number of

doses needed per day, and in the rate of side effects decrease the perceived probability

of successful treatment on a drug. The hazard of finding a drug ineffective increases

with the severity of the patient’s diagnosis. These characteristics will motivate the

specification of the priors in the later econometric model.

3 Learning Model

The preliminary analysis of the transition data in Section 2.2 suggests that patients

quit treatment sooner when prices are high, when side effects are more severe, and

when a drug simply provides little symptomatic relief for the patient. I now model this

learning process explicitly. The cost is imposing several assumptions on the agent’s

decision rule. The benefit is that we can predict choices—and therefore patient health

outcomes and medical costs—in counterfactual policy environments.

In specifying a learning model for patients and physicians, the goal is to capture

the richness of the switching patterns observed in each patient’s treatment episode

while keeping the decision rule sufficiently parsimonious that it is computable both

for decision-makers and for the econometrician. I describe the model in the following

two sections. I start by describing the latent outcome variable and the patient and

physician’s updating process. I then describe the decision rule the patient and physician

use to select a treatment.

3.1 Latent Outcomes and Updating

I describe three components to the updating process in the model: specification of the

patient and physician’s priors, the distribution of outcomes, and the updating process.

Before the patient begins treatment, the physician and patient together form priors

on how effective each drug will be for the patient. These priors vary only according

8I provide more detail on the specification of the hazard in Section 8.2 of the technical appendix. I
report the estimates from the model in Table 8. In Table 9, I report the predicted probability that a
drug is effective over three periods of treatment, as implied by the hazard estimates.
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to the observable characteristics of the patient, and so patients with the same charac-

teristics begin with the same priors. Setting the prior probabilities for the patient and

physician in this setting is akin to the initial conditions problem discussed in detail in

Heckman (1981) and summarized in Aguirregabiria and Mira (2010). In my baseline

model, I simply impose that in the first period of the structural model, all individuals

begin in the same unobserved state. Intuitively, I consider each patient at the time of

his diagnosis as having no history: the physician and patient start the search for an

effective treatment together in the initial period with no experience.9

To link these prior probabilities to observed outcomes, I assume rational expec-

tations. The patient and physician’s priors on the parameters of the distribution for

the probability that a drug is effective, pij, equals the parameters in the population of

patients with the same observable characteristics as patient i. What the patient and

physician must learn about in this setting is precisely how the focal patient will respond

to a treatment.

Formally, I assume there exists a discrete latent outcome, Yijt, for individual i, drug

j, and time period t that is drawn from a Bernoulli distribution with the probability of

a successful outcome equal to pij:

Yijt v pkij(1− pij)1−k, k ∈ {0, 1} (1)

where k = 1 if drug j proves effective in period t.10 For the prior distribution of pij,

I choose a beta distribution with parameters (aij,0, bij,0), and mean and variance equal

to:

µij,0 =
aij,0

aji,0 + bij,0
(2)

vij,0 =
aij,0bij,0

(aij,0 + bij,0)2(aij,0 + bij,0 + 1)
(3)

where aij,0 > 0 and bij,0 > 0.

In modeling outcomes as discrete events, I depart from previous empirical learning

models, including Erdem and Keane (1996), Crawford and Shum (2005), and Ching

(2010). I do so primarily to simplify the estimation procedure. In particular, with

9Keane and Wolpin (1997) use a similar assumption in the labor economics setting, presuming that
all individuals enter their dynamic model at age 16 with no work experience in previous years.

10Time period t refers to the interval between observed prescriptions, which generally equals 30 days.
In the empirical exercise, I adjust the definition of t depending upon whether I observe prescriptions
of 90 day duration and whether patients switch treatment in less than 30 days.
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discrete outcomes I can set up an exact likelihood without simulation, which is helpful

in settings in which choice sets are large such that most choices have small market

shares. In addition, updating in this setting with discrete outcomes is very simple.

Given that the beta distribution is the conjugate prior for the Bernoulli likelihood, the

posterior distribution of pij also follows a beta distribution. After t trials of treatment j,

simply replace (aij,0, bij,0) in the above formulas with (aij,t, bij,t) = (aij,0+s, bij,0+(t−s)),
where s is the number of successes in t trials on treatment j. That is, add to aij,0 the

number of successes observed and add to bij,0 the number of failures observed in t trials

on drug j. In the empirical application, the number of success and failures are not

observed; I integrate over the discrete number of possible realizations when computing

the likelihood.

3.2 Decision Rule

The physician and patient can follow one of two approaches in their treatment selection.

First, they may learn from experience but fail to consider the future implications of

their decision. I label this behavior Bayesian-myopic, following the nomenclature of

Brezzi and Lai (2002).11 Second, the physician and patient may be forward-looking,

considering the future implications of today’s choice in their decision rule. Under this

assumption, the physician and patient may experiment with lesser-known options to

identify those that produce a superior outcome. This dynamic experimentation process

takes the form of the classical multi-armed bandit problem. Gittins and Jones (1979)

and Gittins (1979) showed that the optimal solution to a sequential search problem of

this form is an index rule.

In economics, early applications of multi-armed bandit rules include Rothschild

(1974) on pricing under demand uncertainty, and Jovanovic (1979), Miller (1984), and

Mortensen (1986) on decision-making in labor markets. I follow this stream of research

and show how an index rule solves the physician and patient’s treatment decision prob-

lem.

I describe first the Bayesian-myopic rule followed by two versions of Gittins’ index

rule. The first of the latter two dynamic rules follows the classical multi-armed bandit

assumptions that require the choices to be independent. In the second version, I drop

11Several papers in the marketing and economics literatures use Bayesian-myopic models of learning
in the context of pharmaceuticals, including Chintagunta et al. (2009), Narayanan et al. (2005), and
Coscelli and Shum (2004).
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this assumption and instead group the choices into related clusters by an observed

characteristic. This version permits spillovers in learning across related treatments. A

key contribution of this paper is to develop an empirical framework that features both

correlated learning and forward-looking behavior in discrete choice.

3.2.1 Bayesian-myopic rule

The Bayesian-myopic physician and patient maximize the expected probability of suc-

cessful treatment under choice j, given past experience and idiosyncratic shocks to the

value of treatment under j:

max
j∈1,...,J

E(pi,j,T+1|a0, b0, Ŷij) + εijt = max
j∈1,...,J

µj,T+1 + εijt (4)

Here, the decision-maker has a history of experience over T periods and must select

a treatment to sample in the next period, labeled T + 1. The patient and physician

update their priors at T + 1 using the vector of realizations, Ŷij.
12 As written, the

expected probability of success under j depends only on realized outcomes on j and

the agents’ priors; there is no change in the expected utility from treatment j following

experience on options l 6= j. However, it is possible to relax this assumption and allow

the experience from other products to affect the agent’s posterior probability on drug

j. I describe how to allow correlation in learning in Section 3.2.3 in the context of the

fully dynamic model.

The idiosyncratic shock, εijt, captures features like advertising for j at t that change

over time but affect the choice at t. I assume it follows a Type I extreme value distri-

bution.13 The probability of a choice will therefore take a logit form.

3.2.2 Dynamic rule with independent options

In the data, physicians and patients appear to experiment with treatments, switching

to new medications after a trial period. To rationalize this observed behavior, I move

beyond the fairly straightforward Bayesian-myopic learning model and solve the agent’s

12If the patient and physician have not yet tried drug j, the vector Ŷij is empty and the agents’
perceived probability that drug j will be effective equals their prior beliefs.

13Including an idiosyncratic shock with a Type I extreme value distribution also serves as a compu-
tational simplification, as it generates smooth probabilities of each choice in the likelihood function.
As noted by Crawford and Shum (2005), previous authors, including Rust (1987) and Hotz and Miller
(1993) have introduced extreme value errors in part for computational convenience.
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fully dynamic problem. In this model, I allow physicians and patients to consider the

future implications of their current decisions.

Given the set of choices, j ∈ {1, ..., J}, the physician and patient choose a sequence

of drugs to maximize the expected discounted sum of outcomes, Yt:
14

∫
...

∫
Ep1,...,pJ

(
∞∑
t=1

δt−1Yt

)
dΠ(1)(p1) · · · dΠ(J)(pJ) (5)

The discount rate, δ, is given and p = (p1, ..., pJ) is the vector of probabilities that a

drug j ∈ 1, ..., J is effective. Here, p is unknown; the agent forms independent priors, Π,

on the elements of p. The state variables include the number of successes and failures

under each choice.

There is a long literature in econometrics, industrial organization, and labor eco-

nomics that proposes solutions to single-agent dynamic discrete choice problems of this

form. Early empirical work directly applied dynamic programming to solve the se-

quence problem in (5), using the methodology Rust (1987), Hotz and Miller (1993)

or Keane and Wolpin (1994) propose. Subsequent authors, including Arcidiacono and

Miller (2011), extended this framework to allow persistent unobserved heterogeneity.

I exploit features of the drug choice setting that allow me to avoid the computational

burden of backward induction. Instead, I apply a solution that uses forward induction.

Under forward induction, I can transform the multidimensional integrals in the dynamic

problem into a series of simpler one-dimensional integrals. There is still, however, a

need for some approximation. I describe this approach below.

An Index Rule for Dynamic Drug Choice A forward induction rule requires

two maximizations. In an inner maximization, the agent considers each choice as if

it were optimal and determines a stopping time at which she would prefer to retire

rather than continue using the option. The agent solves a one-dimensional optimal

stopping problem of this type for each choice. The sum of returns under each choice,

were it taken for the optimal length of time, is the “index” of the choice. In an outer

maximization step, the agent selects the option with the largest index. This procedure

repeats in each period after the agent updates her priors using past outcomes. I provide

a formal description of this procedure in Section 8.3 of the technical appendix.

14I drop i subscripts here to simplify notation.
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Gittins and Jones (1979) prove that the forward induction rule solves the sequence

problem in (5) if the following conditions hold: (1) the decision-maker selects only one

option at t; (2) the options not selected do not contribute to the individual’s outcome;

(3) the options not selected will produce the same average outcome in later periods as

they would in the initial period; and, (4) the options are independent.15 Independence

in this context implies that the probability of a successful outcome from treatment j is

independent of the probability of a successful outcome on treatment k.

The setting of antidepressant choice satisfies conditions (1) and (2): physicians

recommend only one drug per period and patients do not suffer side effects or health

benefits from drugs they do not take. Condition (3) also holds in this setting because

the effectiveness of a drug is individual-specific, not time-specific. The true effectiveness

of drug A for patient i remains stable over time. What changes over time is simply what

the patient believes about the drug’s quality based on past experience.16 Condition (4)

holds by assumption. I drop this assumption in the following subsection and propose

an alternative decision rule when choices are correlated.

To apply a forward induction rule, I must compute the one-dimensional optimal

stopping problem for each unique treatment choice and at each period in the patient’s

episode. I employ a closed form approximation to the optimal stopping problem in

the inner maximization step, as described in Brezzi and Lai (2002).17 This numerical

approximation is asymptotically optimal as the discount rate, δ, approaches 1. I provide

more detail on this final computational step in Section 8.4.1 of the Technical Appendix.

The index rule takes the following form, where Π
(j)
t denotes the posterior distribution

of the probability of success for individual i under choice j after t periods. Suppressing

i subscripts:

G(Π
(j)
t ) = µj,t +

√
vj,t ∗

[
ψ

(
vj,t

h(δ) ∗ σ2(µj,t)

)]
(6)

15See Mahajan and Teneketzis (2007). Whittle (1981) proves that Gittins’ index rule is also optimal
in settings in which new products enter the choice set, provided the entry is independent of the decision
maker’s past choices.

16In the antidepressant example, ignoring minor discontinuation periods, physicians can prescribe
drugs in any order without changing their treatment effects.

17This approximation allows the researcher to quickly compute the index in the discounted infinite
horizon setting. Previous work, including Gittins (1989) approximates the index rule in the infinite
horizon setting by choosing a finite horizon, N , and then computing the finite horizon analog using
backward induction. When the discount rate is close to 1, the researcher would need to choose a
large N to find a good approximation for the index rule, which is computationally costly. Brezzi and
Lai (2002) simplify this step in the computation by providing a closed form approximation to the
optimal stopping problem. They do so by using a diffusion approximation, which involves computing
the Gittins’ index for a Wiener process (See Section 2.1 of Brezzi and Lai (2002)).
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As described in Section 3.1, (µj,t, vj,t), are the mean and variance of the posterior

beta distribution for pj, the probability that drug j is effective. Equations (2) and (3)

contain the mean and variance for the prior distribution of pj; the mean and variance

of the posterior distribution take a similar form:

µj,t =
aj,t

aj,t + bj,t

vj,t =
aj,tbj,t

(aj,t + bj,t)2(aj,t + bj,t + 1)

σ2(µj,t) = µj,t ∗ (1− µj,t)

Here, (aj,t, bj,t) = (aj,0 + s, bj,0 + (t − s)), where s is the number of successes in t

trials under treatment j and (aj,0, bj,0) are the parameters of the prior beta distribution

for pj. The function ψ(.) represents the closed-form numerical approximation to the

boundary of the one-dimensional optimal stopping problem for each drug; I describe

its form in Section 8.4.1 of the Technical Appendix. Again, δ is the discount rate, and

h(δ) = − ln(δ). Finally, σ2(µj,t) is the variance of the distribution of Yijt, which equals

E[pj(1− pj)] = µjt ∗ (1− µjt), given that Yijt is a Bernoulli draw with parameter pj.

The distinction between the Bayesian-myopic rule and this index rule comes solely

from the second term in expression (6) above, which represents the incentive to exper-

iment.18 Intuitively, this incentive will be small in three cases. First, when physicians

and patients discount the future more heavily, the experimentation term decreases in

size. That is, there is less incentive to experiment if future outcomes matter less to the

decision-maker. Second, when past experience diminishes vj,t, the incentive shrinks.

Finally, when σ2(µj,t) is large, the experimentation incentive will be small. σ2(µj,t) is

maximal when µj,t = 0.5. That is, when success or failure is is equally likely, there is

little information to gain from experimentation.

As in the Bayesian-myopic decision rule, I allow an additive idiosyncratic shock, εijt,

to influence value of treatment under drug j. The complete decision rule is therefore:

max
j∈1,...,J

G(Π
(j)
t ) + εijt = max

j∈1,...,J
µj,t +

√
vj,t ∗ [ψ (.)] + εijt (7)

In contrast to the Bayesian-myopic rule in (4), the index rule in (7) accounts for the

18The idea that agents face a trade-off between “exploration” and “exploitation” in their decision
rule has a long history in the economics and statistics literature. Lai and Robbins (1985) and Lai
(1987) provide a early formulation of the multi-armed bandit problem and the key properties of the
optimal solution to such problems.
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variance in outcomes under each choice. In short, the physician and patient balance the

impulse to choose the drug with the highest expected outcome against the incentive to

experiment with lesser-known but potentially superior treatments.

3.2.3 Dynamic rule with correlated options

The index results due to Gittins (1979) hold under the assumption that the treatment

options are independent. In general, allowing correlation across choices is a more diffi-

cult problem, though newer work by Pandey et al. (2007) and Rusmevichientong and

Tsitsiklis (2010) provide guidance in cases in which the set of choices can be grouped

into clusters or recast as a linear parameterization of characteristics.

In the antidepressant setting, there is a natural clustering of the available treatments

according to their mechanism of action in the brain. As detailed earlier, the probability

of success on a particular treatment relates strongly to the drug class used, as each class

affects the brain’s chemistry differently. I therefore develop an estimation approach that

employs the index rule that Pandey et al. (2007) define for the case in which dependent

choices can be grouped into clusters.

I run a two-level algorithm. The patient and physician first select a drug class and

then select one of the drug options within the class. Formally, the patient and physician

first calculate an index by cluster, pooling together past successes and failures on all

drugs within the class. Once they select the class with the largest class-level index,

they must choose a drug from the class selected. To do so, the patient and physician

again calculate indices, but now at the drug level; the expected success of a drug in the

class depends only on the past successes or failures realized on that particular drug.

The patient and physician choose the drug at this step with the largest index value.

Updating in this model allows for spillovers or correlation across products. If the

patient experiences a negative outcome on a drug in class c, she will lower her ex-

pectation of successful treatment on all drugs within the class. In the likelihood, the

probability of choosing a drug within that class will fall, and so the next choice is more

likely to come from a different class. The degree to which the share declines depends on

the similarity between clusters. Decreasing the index on one drug within a cluster may

not cause an immediate switch across clusters if the next best option still lies within

the cluster. Pandey et al. (2007) provide a formal analysis of the optimality of index

rules of this form in the discounted infinite horizon setting.19 Similar to the nested logit

19Pandey et al. (2007) show in Theorem 1 of their paper that one can solve the full dynamic
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model in the static discrete choice context, this two-level approach applies most readily

to settings with a natural taxonomy to the choice set.

As in the independent Gittins’ index case, however, the optimal index rule proves

difficult to compute exactly in most settings; the size of the state space depends on the

number of choices and the set of possible outcomes that can result. Pandey et al. (2007)

instead provide an approximation to the optimal policy with an error that is bounded.

The approximation, which I adapt below to the setting of depression treatment, parallels

the algorithm used in Section 3.2.2 for the independent choice case. In both cases, I

choose the policy developed for settings in which there are only a limited number of

observations in the time series dimension of the data and the discount rate lies above .95.

For the case in which I allow correlation, Pandey et al. (2007) provide some analysis of

how well the approximation performs as a function of the cluster definition. The authors

show that the two-level policy performs best when the clusters have greater separation

and are more cohesive. That is, if agents follow an optimal rule, my approximation

that pre-specifies clusters will work best when the choices within a cluster are similar

in quality and the clusters themselves are differentiated in quality for each individual.

The two-level model involves the following steps. First, collect the prior experi-

ences of success or failure for all drugs within a class into (ac,t, bc,t), where c = 1, ..., C

represents the drug’s class designation defined in the medical literature:

ac,t =
∑
j

1{j ∈ c} ∗ aj,t

bc,t =
∑
j

1{j ∈ c} ∗ bj,t

Next, compute the dynamic allocation index by class. The index rule takes the same

form as in the independent case in Equation (6), but here Π
(c)
t denotes the posterior

distribution of the probability of success under all drugs in class c after t periods:

G(Π
(c)
t ) = µc,t +

√
vc,t ∗

[
ψ

(
vc,t

h(δ) ∗ σ2(µc,t)

)]
Here, (µc,t, vc,t), are the mean and variance of the posterior beta distribution for pc,

the probability that class c is effective.

The probability of choosing class c in period t, allowing again for Type 1 extreme

programming problem set out in Equation (5) by examining each cluster in isolation, in a manner
parallel to Gittins’ approach in the independent bandit problem.
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value shocks to the index under each cluster, takes the form:20

Probc,t =
exp(G(Π

(c)
t ))

1 +
∑C−1

s=1 exp(G(Π
(s)
t ))

In the second level, we use the same index policy rule, but only for those treatments

in the class chosen at the first level. Here, the index is at the drug level, as in (6).

The probability of choosing j ∈ c now equals the conditional probability of choosing j,

conditional on first choosing class c, multiplied by the probability of choosing c:

Probj∈c,t = Probc,t(Probj,t|1{c chosen})

= Probc,t ∗
exp(G(Π

(j)
t ))∑

k∈c exp(G(Π
(k)
t ))

4 Econometric Model

4.1 Data

I draw a sample from Thomson Reuter’s Commercial Claims and Encounters Mar-

ketScan database, collecting its patient-level insurance claims data for outpatient visits

and prescription drug services in the years 2003 through 2005. I link this data to pa-

tient demographics and plan design features from the Benefit Plan Design MarketScan

database. The individuals recorded in the data include active employees working for a

group of large, self-insured firms in the United States. The employees’ dependents and

some classes of retirees enter the database as well.

To form the sample, I identify patients in the outpatient data who receive a new

diagnosis in one of five categories of depression.21 A diagnosis is “new” if the patient

has not received any treatment for depression in the six months before the beginning

of the new illness episode.22 Starting from this index office visit, I collect panel data on

20In the choice of class, I set the index for the ‘outside good’ class equal to 0 as a level normalization.
21The depression diagnoses include major depression; dysthymia and depression with anxiety; pro-

longed depressive reaction; adjustment disorder with depressed mood; and, depression not otherwise
specified. These match the International Classification of Diseases (ICD-9-CM) codes of: 296.2, 296.3,
300.4, 309.0, 309.1, and 311. Melfi et al. (1998), Pomerantz et al. (2004), and Akincigil et al. (2007)
use similar diagnostic codes in selecting a sample of depression sufferers.

22I choose six months as my threshold for the pretreatment period because the medical literature
defines a “recurrence” as new symptoms that arise after a gap of at least six months. See Melfi et al.
(1998).
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Figure 1: Rates of nausea side effects reported during clinical trials. Percentage rates
shown for each drug, grouped by class.

the patients’ prescription drug use over the remaining months of the sample. There are

two benefits to conditioning on a diagnosis in creating the sample. First, I can restrict

attention to more severe diagnoses, avoiding patients prescribed antidepressants for

off-label uses or prescribed for conditions that may not strictly require drug treatment.

Second, I can study the extensive margin, as my data will contain individuals diagnosed

with major depression but who do not fill a prescription.

The initial filters lead to a dataset of 102,780 unique patient episodes of depression

care. The individuals are members of 307 insurance plans, each with a distinct set of

required drug copayments. I report summary statistics on the variables in the dataset

in Table 3. In the sample collected from the MarketScan database, 27% of patients

suffer from major depression, the most severe diagnosis examined. Of those patients

diagnosed with depression, 26% visit a psychiatrist, 47% visit general practitioners

and the remaining share visit other specialists, such as obstetricians. A more detailed

description of the creation of the sample dataset appears in Section 8.1 of the technical

appendix.

In addition to the MarketScan data, I collect aggregate information on a prod-

uct’s expected side effects and dosing requirements from Gartlehner et al. (2007). The

authors examine 2,099 relevant citations from the medical literature, collecting infor-
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mation on treatment effects and side effects from each study examined. I report the

dosing requirements in Table 3. I illustrate the variation in the nausea side effects by

drug compound in Figure 1. Side effects vary importantly across drug classes and, to

a lesser degree, across drugs in a given class. Choice behavior in the empirical model

will relate to this variation in the side effects and dosing requirements of the drugs.

In July 2003, 16 unique products competed in the market for antidepressants.23 In

November 2004, citalopram, the generic form of Celexa, entered the market. In August

2004, a new SNRI, Cymbalta (duloxetine) entered, providing 18 drug options and one

non-drug outside option by the end of the sample period. I allow the patient to face

the latest choice set available at the start of his treatment episode.

4.2 Priors

The goal of estimation is to recover the patient and physician’s prior beliefs on the

probability that each drug in the choice set will be a successful match for a patient.

Under rational expectations, these priors will also be the parameters of the distribution

that generates the latent outcomes. Given the distributional assumptions chosen in the

model, I design an estimation algorithm to recover the mean and variance of the beta

prior distribution on the individual match probability, pij.

To better address the policy questions of interest, I parameterize the prior distri-

bution of pij as a function of both choice characteristics and interactions of individual

characteristics with these choice characteristics. I list the characteristics in Table 4.

The product characteristics include the patient’s price, population-level reports of side

effects on product j, an indicator for whether the drug requires multiple doses per day,

class indicators, and indicators for whether a drug is branded or a branded reformula-

tion.24 The individual characteristics include an indicator for whether the patient has

the most severe depression diagnosis and an indicator for whether the physician is a

psychiatrist. With this parameterization, the probability pij reflects the quality of the

patient’s match in more dimensions than simply health. Key drivers of switching over

time include the patient’s recognition of the costs of the drug or its side effects.

23In defining the choice set, I include only drugs maintaining at least a 0.3% market share. This
cutoff rule excludes extremely rare, older generation treatments, such as MAOIs (monoamine oxidase
inhibitors). Their shares are simply too small to collect price information across distinct plans.

24Reformulations typically come in the form of “controlled-release” or “extended release” versions
of the original patented drug. If approved, the manufacturer of the reformulation receives three years
of additional exclusivity to market the new product (Huskamp et al. (2008)).
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Rather than directly parameterize ai,0 and bi,0, the two non-negative parameters

of the beta distribution, I follow Ferrari and Cribari-Neto (2004) and choose a beta

regression parameterization:25

pij|Xij v Beta(ai,0, bi,0) (8)

µ(Xij; γ1) =
ai,o

ai,0 + bi,0
=

exp(Xijγ1)

1 + exp(Xijγ1)
(9)

φ(γ2) = ai,0 + bi,0 = exp(γ2) (10)

The prior mean of pij, µ(Xij; γ1), takes a logit form, as seen in (9). The prior

variance of pj takes a more complicated form under my parameterization:

V (pji|Xij) =
ai,0bi,0

(ai,0 + bi,0)2(ai,0 + bi,0 + 1)
(11)

=
µ(1− µ)

1 + φ
(12)

=
exp(Xijγ1)

(1 + exp(Xijγ1))2(1 + exp(γ2))
(13)

This expression reveals the economic content of the second parameter, φ. Here, φ

functions similarly to a precision parameter: for a fixed µ, the larger the value of φ, the

smaller the variance in pij. The goal of estimation is to recover γ = (γ1, γ2).

4.3 Likelihood

The formation of choice probabilities follows directly from the learning model described

above. In the case in which we assume the products are independent, the likelihood for

individual i in period t is:

J∏
j=1

Eεi1t,...,εiJt
(1{Gijt(Π

(j)
t ) + εijt > Gikt(Π

(k)
t ) + εikt for all k 6= j}dijt) =

J∏
j=1

(
exp(Gijt(Xij, Ŷi,j,t−1; γ))

1 +
∑

k exp(Gikt(Xik, Ŷi,k,t−1; γ)

)dijt

25Under this parameterization, ai,0 = µ(.)φ(.) and bi,0 = (1− µ(.))φ(.).
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where Gijt is the index rule, dijt = 1 if individual i chose drug j in period t, and Ŷi,l,t−1

is a vector of realized outcomes under treatments l = 1, ..., J during the previous (t−1)

periods of experience, if any.26 The logit form follows from the assumption that the

idiosyncratic errors for each (i, j, t), labeled εijt, follow an extreme value distribution.

As the econometrician, I do not observe the vectors (Ŷi,1,t−1, ..., Ŷi,J,t−1). In the

model, I assume each element of Ŷi,j,t−1 is a Bernoulli trial, such that the distribution

of the number of successes observed in (t− 1) trials is binomial. Therefore, to form the

likelihood, I sum over the possible sequences of observed outcomes, weighting by the

probability of observing those sequences of choices up to period t, where t ∈ {1, ..., Ti}:

∑
s

ωi,s

J∏
j=1

(
exp(Gijt(Xij, Ŷ

s
i,j,t−1; γ))

1 +
∑

k exp(Gikt(Xik, Ŷ s
i,k,t−1; γ)

)dijt

Here, ωi,s is the probability of observing one of s ∈ S possible sequences of outcomes,

Ŷ s
i,j,t−1, for j = 1, ..., J . Ŷ s

i,j,t−1 represents discrete counts of successes and failures real-

ized over (t− 1) periods. The probability, ωi,s, follows a discrete binomial distribution.

Under rational expectations, the parameters that underlie ωi,s equal the parameters

of the agents’ priors. The number of points, S, represents all possible permutations

of {0, 1} for the number of periods up to t for which the patient tried a treatment.27

Because I model the outcome variable as discrete, I set up an exact likelihood and avoid

simulation error in my empirical implementation.

In the case with dependency across the drugs via clusters, I calculate the choice

probabilities at two levels: the probability of a class being chosen and the conditional

probability of a drug being chosen, conditional on the first-level class choice. The

likelihood at period t in this case has the following form:

∑
s

ωi,s

C∏
c=1

( exp(Gict(Π
(c),s
t ))

1 +
∑C−1

m exp(Gimt(Π
(m),s
t )

)dict Jc∏
j∈c

(
exp(Gijt(Π

(j),s
t ))∑Jc

k exp(Gikt(Π
(k),s
t )

)dijt


where drug j is a choice contained in class c.

26I normalize the index for the outside option to zero, such that exp(Gi,Outside,t(.)) = 1. If the

physician and patient have not yet sampled drug l, then Ŷi,l,t−1 will be an empty vector.
27In the implementation, I calculate the probability of all possible sequences of outcomes under each

product for Ti periods, where Ti is the number of choices observed for individual i. I sum over the
likelihood values for each of the possible sequences of latent outcomes, for the observed sequence of
drugs individual i chooses.
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4.4 Identification

Two sources of variation in the data separately identify the coefficients in the speci-

fication of the mean and precision of pij, the probability that drug j is effective for

individual i. First, the data reveals the identity of the patient and physician’s choices

throughout the episode of treatment. This identifies the expected mean outcome un-

der the available choices following standard arguments in the discrete choice literature.

Second, I extract information from the timing of the observed switches to identify the

precision of the agents’ priors.

Specifically, I observe both the identity of the drug from the main dataset and I

collect a vector of characteristics of each drug from the patient data and from external

sources, such as the report from each drug’s original clinical trial. Restricting to T = 6

periods in the panel data, there are 196 possible sequences of the 19 choices over six

periods, sampled with replacement. With a large enough dataset, it is possible to

estimate the probability that the decision vector equals each of these 196 vectors using

their frequency in the data. In my empirical model, I estimate a much lower dimensional

parameter space. Because the number of empirical probabilities is greater than the

number of parameters in my specification, the approach meets a necessary condition

for identification.

By choosing to parameterize the probability that a drug is effective as a function

of Xij, I gain identifying power when the covariates are sufficiently rich. Consider the

case in which I observe only the choice in the patient’s first period of treatment. A

logit assumption on the unobservables will allow me to form choice probabilities and to

identify J indices, one for each of the possible choices. However, conditioning on Xij

covariates, some of which are continuous, allows me to predict the choice probabilities

over the J options at different values of Xij. This requires variation in Xij that in turn

produces distinct drug shares. As I show in Table 3, observed copayments differ by

drug, as do side effect profiles, class status, and other characteristics. The data show

patients and physicians choose a distinct set of treatments depending on the patient’s

diagnosis, the physician’s specialty, and on drug characteristics like price.

Finally, to identify the precision of the agents’ priors, I exploit variation in the timing

of observed switches, conditional on the expected outcome by treatment. Intuitively, the

slower is the switching, conditional on the mean outcome, the higher is the uncertainty

in the agent’s prior probability. Slow switching thus implies the patient and physician

have lower precision in their priors. I identify the common precision parameter under
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three assumptions from the model described above: there are no switching costs, any

product characteristics not captured in the specification of the expected outcome are

independently and identically distributed over time, and the unobservables have an

extreme value distribution, suitably normalized. The strength of these assumptions

depends in part on the richness of the observable choice characteristics available to

the researcher. With few observables, the unobservables in the model may not be

idiosyncratic; one would then be unable to determine whether the lag before a switch

were due to low precision or to a persistent unobservable.

Table 2 illustrates that the majority of the observed switches occur after the initial

drug choice. Table 1 shows variation in the timing of the observed switches by drug

class. This variation allows me to identify a common precision parameter.28

5 Results

5.1 Model estimates

In Table 4, I report the estimated parameters, γ = (γ1, γ2) from three models: (1)

the two-level dynamic model, with choices clustered by class; (2) the Bayesian-Myopic

version of the two-level model, which lacks the experimentation incentive included in

the fully dynamic index rule; and (3) the one-level dynamic model in which I assume

the choices are independent. I fix the discount rate, δ, equal to .95 and calculate the

standard errors of these maximum likelihood estimates using a bootstrap procedure.29

The sign, if not the level, of the parameters is informative. In model (1), the

baseline model, patients and physicians begin with priors that suggest products with

greater population rates of nausea side effects, greater dosing requirements, and higher

patient costs are less likely to lead to successful outcomes. I use two indicator variables

to capture demand for branded products: an indicator for ‘branded’ and an indicator for

‘reformulation’, which are new versions of branded products often requiring fewer doses

per day. The coefficient on the reformulation indicator is large and positive, suggesting

that within the set of branded products, patients and physicians believe reformulations

are more likely to prompt a successful outcome.

28One could also specify a precision parameter that varies with patient or physician observables,
provided there is variation in the timing of switches according to these characteristics.

29See Efron and Tibshirani (1993). I use 30 bootstrap samples of patient illness episodes selected
with replacement in my bootstrap implementation.
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Table 4: Model estimates

Covariates*in*prior*mean Est Std.*Err Est Std.*Err Est Std.*Err
1{SSRI} 99.16 8.72 <0.84 6.75 181.64 35.66
1{SNRI} <22.58 2.23 <69.23 10.74 <91.43 110.30
1{NDRI} <43.09 5.77 <73.38 7.33 <171.71 157.10
1{NaSSA} <35.36 8.47 <15.08 3.24 <57.68 15.09
1{SARI} <40.03 2.04 <7.62 18.92 <56.81 14.79
1{TCA} <72.44 4.36 <13.72 8.88 <115.53 29.32
1{SSRI}*1{Major*Depression} 10.06 2.55 <0.48 1.62 9.11 52.90
1{SNRI}*1{Major*Depression} <0.67 1.89 40.79 6.08 <179.14 105.48
1{NDRI}*1{Major*Depression} <3.57 2.65 59.46 1.59 49.35 58.37
1{NaSSA}*1{Major*Depression} <4.01 2.11 <0.41 0.89 <5.69 1.65
1{SARI}*1{Major*Depression} <3.99 0.36 <0.12 4.40 <2.99 0.93
1{TCA}*1{Major*Depression} <9.44 0.69 <0.49 10.93 <13.49 3.69
1{SSRI}*1{psychiatrist} 16.85 4.98 <0.76 1.13 <66.48 28.81
1{SNRI}*1{psychiatrist} <1.04 2.15 <20.76 13.81 59.57 57.31
1{NDRI}*1{psychiatrist} <4.29 11.32 <57.70 1.74 <144.99 71.56
1{NaSSA}*1{psychiatrist} <3.55 1.45 <0.42 0.45 <4.64 1.33
1{SARI}*1{psychiatrist} <3.09 0.27 0.19 3.07 <2.18 0.63
1{TCA}*1{psychiatrist} <8.59 0.28 <0.20 15.48 <11.72 3.25
1{more*than*1*dose*needed*per*day} <76.77 3.66 <20.69 18.94 <74.60 43.14
pecentage*of*nausea*reports*in*trials <15.62 5.20 9.23 47.77 455.72 77.58
1{reformulation} 13.91 15.96 70.17 2.99 457.77 234.04
1{branded} <9.80 4.93 3.23 1.54 <36.25 53.51
copayment,*in*$/day <81.58 19.58 <3.42 2.26 <216.10 147.27
log(precision) <3.28 2.61 <32.06 0.02 <24.39 30.81

One<Level*Gittins*
Index*Model

(1) (2) (3)
Two<Level*Gittins*

Index*Model
Two<level*Bayesian<

Myopic*Model
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The parameter, φ = exp(γ2) = .037, illustrates the prior uncertainty patients and

physicians have at the time of the initial prescription. The variance of the priors equals:

v(pj|Xij) =
µ(1− µ)

1 + φ
=

exp(Xijγ1)

(1 + exp(Xijγ1))2(1 + exp(γ2))

where µ is the prior mean. The larger is φ, for a fixed µ, the smaller is the variance.

Here, for the average patient pair in the data, the expected probability of successful

treatment on the most common SSRI medications is 77%.

5.2 Model Fit

I assess model fit in two ways. First, I use the baseline model to predict the identity of

the choice selected within each patient’s illness spell and the timing of the patient’s exit

from care. I compare the observed choices against these predicted choice probabilities.

In my setting, there are 19 treatment options. Therefore, rather than report whether the

model’s top prediction equals the observed choice, I allow the model some flexibility

and instead report whether the model’s top three or top five predictions match the

observed choice in the data. Table 5 contains the predictions. I also include predictions

from the two-level Bayesian-myopic model as a comparison.

The exit rates in Panel A for Table 5 show the relative quality of fit for the adherence

rate. Relative to the raw data, the predicted initial quit rate of 32% under the dynamic

model lies close to the level in the raw data of 36%. The Bayesian-myopic rule predicts

a quit rate of 24%, far below the level in the raw data. The quality of this prediction is

important for the counterfactual exercises, as greater adherence translates into better

health outcomes. Comparing the fit of the model in predicting the choice of inside

good, both the Bayesian-myopic and dynamic model perform similarly, matching the

data at a rate of 45% to 75% when looking at the top three predictions and at a rate

of 66% to 80% when looking at the top five predictions.

In a second measure of fit, I follow Vuong (1989) and carry out a classical approach

to model selection to compare the one-level and two-level dynamic models. Using the

Kullback-Leibler Information Criterion to measure the closeness of the model to the

truth, I compute likelihood-ratio based statistics for testing the null hypothesis that

the competing models are equally close to the true data generating process. I find a test

statistic of 11.95; at the 95% critical value, the data favors using the two-level dynamic

model over the one-level model.
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Table 5: Model fit - Matching predicted product choices to observed selections by
patient

t=1 t=2 t=3
36.2 50.8 59.6
31.7 51.6 64.7
23.6 41.1 54.2

t=1 t=2 t=3
44.9 62.7 74.3
48.5 65.7 76.7
70.8 72.8 78.9
66.3 74.6 79.0

Compare5to5top555ranked5by5dynamic5model
Compare5to5top555ranked5by5Bayesian@myopic5model

Panel5A:5Percentage5of5patients5who5have5exited5care5in5the5first5three5months5of5treatment

Panel5B:5Percentage5of5patients5for5whom5the5obs5choice5equals5the5modelLs5top5predictions

Compare5to5top535ranked5by5dynamic5model
Compare5to5top535ranked5by5Bayesian@myopic5model

Examination

Raw5data
Dynamic5model,5clustered5by5type
Bayesian5myopic5model,5clustered5by5type

Model

6 Counterfactual Experiments

I return to the public policy question motivating the empirical work, employing the

dynamic model to predict how copayment policies and informational campaigns affect

the insurer’s net drug costs and adherence.

I run two sets of counterfactuals. In the first, I consider two alternative copayment

schemes: uniform pricing, under which all patient prices are set equal to $5, and “value-

based” insurance design, as described by Chernew et al. (2007). I carry out these pricing

changes under the assumption that the insurer acts as a central planner, changing the

entire vector of prices for the choice set patients and physicians face. In the second set

of counterfactuals, I simulate the effect of two informational campaigns. In the first,

policymakers discourage use of reformulated drugs, which are variants of existed drugs

for which the United States grants three additional years of patent protection. I simulate

this policy by adjusting the reformulation indicator in the prior mean. In the second,

I endow general practitioners with the same preferences as psychiatric specialists by

adjusting the physician-specific elements in the prior mean.

To quantify changes in patient health under the alternative policies, I translate the

rate of adherence to an expected number of weeks the patient suffers from depressive

symptoms, assigning a dollar value to the relief from symptoms. I describe the calcu-

lation in Section 8.5 of the Technical Appendix. In brief, I use results from a survey of

psychiatric specialists that Berndt et al. (2002) conduct. The results include the panel’s
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prediction of the median probability of longer run rates of full and partial recovery from

depressive symptoms under broad treatment categories. They define categories by the

length of time the patient adheres to the regimen and by whether the treatment is

a first or second generation antidepressant. I use the dynamic model to predict the

drug/adherence category for each patient in my sample within each counterfactual sce-

nario; I assign patients the matching recovery probability from the survey. In this way,

I use the observed heterogeneity in treatment choices and adherence for a patient of a

particular diagnosis to predict longer run health outcomes. The number of patients in

my sample that fall into each category will differ by counterfactual policy.30

In the baseline case, the distribution of treatments prescribed leads to an average

reduction in depressive symptoms after three months worth $930, versus a drug cost of

roughly $67. I compare the dollar value of symptomatic relief under the counterfactual

policies against the cost of drug care in Table 6.

6.1 Insurance Design

I measure the effect of two alternative copayment policies on insurer costs and patient

health. For the baseline case, I use the tiered pricing policies defined by the 307 benefit

plans in the database. In the first counterfactual, I set a uniform copayment of $5 for

all treatments. In the second, I set a “value-based” policy, as Chernew et al. (2007)

suggest. I set the copayments for generic treatments to $5 for a 30 day supply. For the

specific drug treatments that lead to the fewest switches and highest adherence in the

raw data, I set the copayment of the generic versions to $0 and the branded versions

of these high adherence drugs to $5. For all other branded treatments, including those

with both moderate and poor predicted adherence, I set the copayment equal to the

insurer’s cost for the drugs. In effect, the patient pays the entire cost for these non-

preferred medications.

For both policies, I simulate rates of adherence over three decision points and cal-

culate net costs to the insurer, which equal the cost charged by the manufacturer less

the copayments paid by patients.31 I translate adherence to a reduction in depressive

30In this calculation, I miss part of the heterogeneity in the heath effect that comes from being
matched to the correct drug within a treatment generation, conditional on adherence. One could use
the estimates from the structural model to determine the short run utility gain from more tailored
treatment.

31Copayments typically return to the insurer indirectly via a bargaining process with the drug
manufacturer (See Levy (1999)).
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Table 6: Patient health vs. drug costs, under counterfactual scenarios.

Three%month%drug%costs%

per%patient%(in%$)

Value%of%utility%gain%

from%symptomatic%

recovery%(in%$)

Baseline 67.25%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 929.90%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Change%in%three%month%

drug%costs%per%patient%

(in%$)

Change%in%symptomatic%

recovery%(in%$)

All%copayments%set%to%$5 30.28%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 10.42%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ValueHbased%design 3.13%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 193.35%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Change%in%three%month%

drug%costs%per%patient%

(in%$)

Change%in%symptomatic%

recovery%(in%$)

Discourage%use%of%reformulation%products %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(0.04) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(1.85)

Endow%all%physicians%with%psychiatristsM%priors 0.65%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2.18%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Effects%of%copayment%policies

Effects%of%informational%campaigns

Notes:P

1.%Per%patient%monthly%drug%costs%equal%the%average%recorded%insurer%cost%for%12%weeks%of%

treatment%less%the%patientMs%drug%copay,%for%the%set%of%patients%on%active%treatment.%%P

2.%The%dollar%value%of%the%utility%gain%from%symptomatic%relief%is%calculated%via%the%procedure%

described%in%the%Technical%Appendix.%%The%change%in%symptomatic%effect%by%policy%stems%from%the%

policyMs%effect%on%both%the%initiation%of%treatment%and%adherence.%%This%changes%the%distribution%of%

treatments%used%and%therefore%the%probability%of%symptomatic%relief%over%time.%%The%value%is%for%a%

16%week%interval.P

3.%Values%calculated%for%10,000%sample%patients%at%individualHspecific%prices.P

P

symptoms, denominated in dollar terms, and judge the performance of each policy by

its effect on the trade-off between insurer cost and patient health.

Looking first at the $5 uniform copayment policy, the main effect is to increase

the use of branded drugs relative to their generic counterparts. Physicians in the data

express strong preferences for particular brand names and so prescribe them readily

when price effects disappear. The policy leads to a 1% increase in adherence by month

three, stemming largely from the increased use of effective SSRIs and SNRIs. However,

the improvement comes at an added cost equal to 45% of the baseline level. By lowering

all copayments to $5, the insurer loses revenue from these patient contributions and

fails to encourage the use of cost-effective treatments. The policy leads to a $10 increase

in the value of health above the baseline average of $930 over three months of care, but

at an added cost of $30.

The “value-based” design offers a three month payoff of $193. Patients shift to

the most effective SSRIs and SNRIs and to generics more generally, incentivized by

copayments of $0 or $5 per month. Consumers of branded drugs with moderate or

poor expected adherence face the full insurer cost of the drug, typically $60-$80. As

a result of this shift, adherence increases by nearly 20% into the third month of care.

The change in the distribution of treatments prompts a $3 increase in costs, largely due

to the increase in the initiation of care.
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6.2 Informational campaigns

I use the model to test the effect of two informational campaigns. The goal of these

campaigns, much like the marketing efforts of pharmaceutical firms, is to change the

patient and physician’s priors. If the campaigns lead to greater use of the most effective

drugs, patients may adhere at higher rates and have better health outcomes.

In the first counterfactual campaign, policymakers discourage physicians and pa-

tients from using reformulations by prohibiting them from being marketed as distinct

medications from their original branded formulations, apart from the change in dosing.

To carry out this counterfactual scenario, I turn off the reformulation indicator for all

drugs. I leave the branded indicator and the dosing indicator at their original values

in the data. In reaction, the use of drug care falls about 1%, either because physicians

write fewer prescriptions or patients decide not to fill a prescription in hand. The main

effect, however, is to shift the distribution of prescriptions away from reformulations.

There is a small cost savings of $.04, but health falls $1.85 due to the drop in adherence.

In the second counterfactual campaign, I endow general practitioners with the same

priors as psychiatric specialists, say through new guidelines or through an electronic

medical record system that sends alerts to the general practitioner about best practices.

This campaign leads to a slight improvement in adherence and health: costs rise $.65,

but health rises $2.18 over 3 months.32

The simulations highlight a key feature of decisions in this market. After accounting

for learning, the largest gains in patient outcomes occur when policies promote treat-

ments with above-average efficacy and tolerability. Costs improve when the policies

use either informational campaigns or lower prices to encourage the cheapest products

within the set of effective options. This is precisely the approach of value-based insur-

ance design, on the price dimension, and “academic detailing”, as described by Soumerai

and Avorn (1990), on the informational dimension. However, the policies differ in costs.

Given information technology, the creation of multiple tiers for pricing involves little

additional expense. Campaigns, however, are costly. A small-scale academic detailing

program in Pennsylvania in 2006 required $1 million a year in funding.33

32A limitation of this analysis is that I do not observe drug promotion. It is possible that psychiatrists
receive more detailing than general practitioners, changing their priors. Ching and Ishihara (2012) and
Leffler (1981) find evidence that detailing can be persuasive.

33Scott Hensley, “Negative Advertising: As Drug Bill Soars, Some Doctors Get An ‘Unsales’ Pitch,”
The Wall Street Journal, March 13, 2006, sec. A, p.1.
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6.3 New Protocol

Finally, using the estimated probability of effectiveness by drug treatment from the

baseline model, I build a new treatment protocol. Policymakers might employ a protocol

of this type in informational campaigns directed to physicians to encourage them to

use the most effective and least costly treatments available.

Past theoretical and empirical work supports the notion that adherence or attrition

rates can provide valuable insight on effectiveness. Philipson and DeSimone (1997),

for example, argue that randomization and blinding in clinical trials may not actually

produce unbiased treatment effects when trial subjects are Bayesian and actively learn

about the effectiveness of the experimental drug. Attrition rates, in contrast, summarize

the effect of all unobserved aspects of a treatment that make it undesirable. Chan and

Hamilton (2006) judge the value of attrition rates empirically using data from a trial

of HIV treatments. I extend this notion to adherence rates in insurance claims data.

Since physicians in practice expend considerably less effort to ensure patient adherence

relative to the managers of clinical trials, the observed rates of quitting treatment

provide an externally valid measure of a drug’s effectiveness.

In Table 7, I report the recommendations for antidepressant treatment from three

published protocols. In the final columns, I include protocols built from the hazard

model and the dynamic model’s predictions. I use an expected probability of effec-

tiveness of 55% at the initial decision point as a lower threshold for recommending a

product.

There are two main distinctions between the model-based protocol and existing

recommendations. First, the new protocol de-emphasizes drugs in the NDRI and TCA

classes. Although clinical trials generally show little difference in efficacy between

classes, these two classes prompt high rates of switching in the panel data. Second, while

no existing protocol differentiates among available SSRIs, the model suggests using off-

patent compound fluoxetine (Prozac) and paroxetine (Paxil) over alternatives. This

preference arises both from the lower cost of these drugs and from greater tolerability.

The results suggest that analyses that use attrition rates can enhance existing pro-

tocols. Crismon et al. (1999), in their algorithm design project, argued for using such

analyses, but found few credible studies to incorporate. The methodology developed

here can help fill this evidence gap cheaply.
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7 Conclusion

I specify a model of learning that permits patients and physicians to search within

a large set of potentially correlated experience goods. To estimate the parameters of

this learning process, I depart from standard dynamic programming solutions due to

computational limitations. Employing a forward-induction rule, I design an estimation

framework that accommodates learning over potentially correlated options.

With this framework, I measure the importance of a key trade-off in incentive de-

sign: policies which promote cheaper but less effective options may lead to decreased

adherence. When patients quit treatment early, they suffer from depressive symp-

toms for longer periods. Patient health declines and the insurer’s long-run costs may

increase. Managing this trade-off requires “value-based” copayment schemes or infor-

mational campaigns that emphasize treatment regimens that balance high efficacy with

tolerability.
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8 Technical appendix (for online publication)

8.1 Formation of the Sample

To form a sample, I identify patients in the outpatient data who receive a new diagnosis

in one of the following depression categories, listed along with their International Clas-

sification of Diseases (ICD-9-CM) codes: major depression (296.2, 296.3); dysthymia

and depression with anxiety (300.4); prolonged depressive reaction (309.0); adjustment

disorder with depressed mood (309.1); and, depression not otherwise specified (311).

Starting from this index office visit, I collect panel data on the patients’ prescription

drug use over the remaining months of the sample. I impose the following additional

screens in creating the analysis dataset: patients cannot have a concurrent diagnosis

of bipolar disorder or schizophrenia or receive drugs that signal these conditions, as

these more complicated illnesses require distinct prescribing behavior;34 the patients’

age must be between 18 and 64, the range for which the data are complete; patients

must visit a health professional with the ability to prescribe all possible treatments

in the choice set; and, patients must not be pregnant, a condition that involves seri-

ous drug contraindications. To avoid patients whose illnesses began before the sample

period, I restrict the sample to exclude individuals prescribed medications in the first

six months of data. I choose six months as my threshold based on the definition of a

“recurrence” in the medical literature, as in Melfi et al. (1998).

To define the end of a patient’s treatment episode, I look for a gap of 90 days

within the treatment history where the patient neither fills a prescription nor visits his

physician. The 90 day gap begins after either the date of the last office visit or the date

at which the patient runs out of the last prescription he filled, whichever is later.35 If

such a gap occurs, I end the episode at the last prescription observed before the 90 day

wash-out period. If the individual appears again in the data after this period, I treat

the new observations as composing an independent episode.36 Using this definition of

an episode, 35% of patients do not fill a prescription in their episode; 22% of patients fill

one; 13% fill two; 9% fill three; and 6% fill four. 15% have episodes involving between

5 and 30 filled prescriptions.

34Patients excluded due to comorbidities have a diagnosis with one of the following ICD-9-CM codes:
bipolar and manic disorders (296.0, 296.1, 296.4-.8) and schizophrenic disorders (295.0-295.9).

35I assume a prescription runs out at the date the patient filled the prescription plus the number of
days supply of the prescription.

36Roughly 8% of the unique patient identifiers repeat in a new episode over the course of my sample
period. In a sensitivity, I remove these observations and find similar results.
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The initial filters lead to a dataset of 102,780 unique patient episodes of depression

care, comprised of 267,390 observations on antidepressant prescriptions. The individ-

uals are members of 307 insurance plans. To estimate the econometric model, I use

a smaller sample of 10,000 patient episodes drawn randomly from the original dataset

using a multinomial model. I set the drug characteristics, including price, equal to the

plan-specific and year-specific drug characteristics that correspond to the patient’s plan

at the time of his initial diagnosis. The rich variation in drug copayments appears in

Figure 2.
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Figure 2: Patient copayments by product and year. Error bars show the standard
deviation in copayments across insurance plans in the sample.

8.2 Two-stage panel data model without learning

The two-stage model uses the timing and identity of the observed transitions to estimate

a hazard model of switching in piecewise fashion over each period of treatment. In the

first stage, I estimate a piecewise proportional hazard model. The probability that
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choice j is found ineffective in period 1 is:

P (0 ≤ t < 1|t ≥ 0, X) = 1− α1(X, θ)

where αm(X, θ) = exp

(
−
∫ am

am−1

exp(Xβ)λmds

)
= exp (− exp(Xβ)λm(am − am−1))

In the case of t = 1:

P (0 ≤ t < 1|t ≥ 0, X) = 1− α1(X, θ)

= 1− exp (− exp(Xβ)λ1)

The utility function for the agent’s discrete choice incorporates this probability of

finding a drug ineffective by weighting the deterministic component of utility by this

probability:

Uijt = (1− Pr(j found ineffective at t− 1)) ∗ Zijθ + εijt

= exp(− exp(Xβ)λt−1) ∗ Zijθ + εijt

For periods in which the patient and physician choose a new drug, k, that they have

not tried previously, the probability term, Pr(j found ineffective at t− 1) equals 0 and

the expression for utility reduces to:

Uikt = Zikθ + εikt

The choice probabilities for this two-stage model take a logit form. I illustrate the

form of the choice probabilities for an example in which the patient and physician

sampled drug j for m periods but have not yet sampled other drugs k 6= j:

Pi,j,m+1 =
exp (exp(− exp(Xβ)λm)Zijθ)

exp (exp(− exp(Xβ)λm)Zijθ) +
∑

k 6=j exp(Zikθ)

Pi,k,m+1 =
exp(Zikθ)

exp (exp(− exp(Xβ)λm)Zijθ) +
∑

k 6=j exp(Zikθ)

I estimate the second-stage discrete choice model using maximum likelihood, con-

ditioning on the estimates of (β, λ) from the first-stage piecewise proportional hazard

model estimation described in Section 2.2.2. In Table 8 and Table 9, I report the esti-

mates and predicted probabilities from the first stage hazard model; in Table 10 I report
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Table 8: Estimates, piecewise proportional hazard model (in %)

Covariate Est S.E. T.stat
Constant .1.63 0.25 6.63
1{Diagnosis9of9major9depressive9disorder} .0.11 0.04 2.66
1{SNRI}*1{Diagnosis9of9MDD} .0.04 0.09 0.42
1{NDRI}*1{Diagnosis9of9MDD} 0.06 0.11 0.54
1{NaSSA}*1{Diagnosis9of9MDD} .0.26 0.34 0.77
1{SARI}*1{Diagnosis9of9MDD} 0.12 0.14 0.84
1{TCA}*1{Diagnosis9of9MDD} .0.17 0.30 0.57
1{SNRI} .0.58 0.11 5.25
1{NDRI} 0.00 0.05 0.07
1{NaSSA} 0.59 0.21 2.85
1{SARI} 0.43 0.17 2.58
1{TCA} 0.75 0.13 5.95
%9of9nausea9reports9in9clinical9trials 1.59 0.51 3.12
1{frequency9of9dosing9>1x/day} 0.44 0.09 4.69
1{reformulation} 0.02 0.04 0.58
1{branded} 0.40 0.05 8.66
copayment,9in9$/day .0.29 0.04 7.19
Time9period91 1.43 0.30 4.80
Time9period92 1.03 0.21 5.03
Time9period93 0.83 0.17 5.02
Time9period94 0.85 0.18 4.60
Time9period95 0.75 0.17 4.54
Time9period96 0.71 0.15 4.80
Time9period97 0.60 0.13 4.67
Time9period98 0.65 0.15 4.28
Time9period99 0.52 0.12 4.35
Time9period910 0.79 0.21 3.73
Time9period911 0.89 0.32 2.79

Piecewise9proportional9hazard9model9estimates
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Table 9: Predicted probability that a product is effective, using estimates from the
piecewise proportional hazard model (in %)

Ingredient Product Subclass Brand? Period41 Period42 Period43
Amitriptyline4 Amitriptyline4 TCA N 51.7 62.2 68.2
Nortriptyline4 Nortriptyline4 TCA N 53.0 63.3 69.2
TCA4average 52.4 62.7 68.7

Citalopram4 Citalopram SSRI N 72.0 79.0 82.7
Citalopram4 Celexa SSRI Y 66.1 74.2 78.6
Escitalopram Lexapro SSRI Y 64.6 73.0 77.6
Fluoxetine4 Fluoxetine4 SSRI N 70.6 77.8 81.7
Fluoxetine4 Prozac SSRI Y 65.5 73.8 78.2
Paroxetine4 Paroxetine4 SSRI N 69.3 76.8 80.8
Paroxetine4 Paxil4CR SSRI Y 58.3 67.8 73.1
Sertraline4 Zoloft SSRI Y 62.4 71.2 76.1
SSRI4average 66.1 74.2 78.6

Duloxetine4 Cymbalta SNRI Y 67.4 75.2 79.5
Venlafaxine4 Effexor SNRI Y 60.2 69.4 74.5
Venlafaxine4 EffexorSXR SNRI Y 71.1 78.2 82.0
SNRI4average 66.2 74.3 78.7

Bupropion4 Bupropion4 NDRI N 60.5 69.6 74.7
Bupropion4 Wellbutrin4XL NDRI Y 61.8 70.7 75.6
NDRI4average 61.1 70.2 75.1

Mirtazapine Mirtazapine NaSSA N 59.2 68.5 73.7
NaSSA4average 59.2 68.5 73.7

Nefazodone4 Nefazodone4 SARI N 41.7 53.3 60.2
Trazodone4 Trazodone4 SARI N 45.7 56.9 63.5
SARI4average 43.7 55.1 61.8

Periods4since4the4patientXs4
initial4diagnosis
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Table 10: Estimates, Two-stage Discrete Choice Model with Hazard Weighting

Covariate Est
1{Amitriptyline} 44.80
1{Bupropion} 42.41
1{Citalopram} 42.72
1{Duloxetine} 42.28
1{Escitalopram} 40.80
1{Fluoxetine} 42.21
1{Mirtazapine} 44.78
1{Trazodone} 44.84
1{Nortriptyline} 45.09
1{Paroxetine} 42.63
1{Sertraline} 41.06
1{Venlafaxine} 41.74
1{branded} 40.80
copayment 40.07

Two4stageQmodel,Q2ndQ
stageQestimates

the estimates from the second stage of the model. I convert these estimates to predicted

choices and report these in Table 11 for three periods of treatment. Comparing the pre-

dicted probabilities from this two-stage model to the predicted probabilities from the

learning model in the main text, the two-stage model does, broadly, capture the choice

behavior in the first period. It misses on the extensive margin, however, predicting 48%

of patients will quit at the first month relative to 36% in the raw data. The transitions

over time also miss the richer switching patterns seen in the data, instead predicting a

slow decline in each drug’s share as patients move toward the outside good of no drug

treatment.

8.3 Gittins’ Index rule

I consider a market with J choices available. The outcome under j, Yj, is a draw from

a univariate distribution, f(y; θj), where θj is an unknown parameter vector. Gittins

and Jones (1979) and the broader literature on “multi-armed bandits” sought to solve

the following basic but non-trivial question: how should a decision-maker select from

among the j choices in each period t to maximize the expected discounted sum of his
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Table 11: Model fit - Matching predicted product choices to observed selections by
patient under the two-stage model

t=1 t=2 t=3 t=1 t=2 t=3
None ! ! 36.20 50.80 59.57 47.55 68.43 78.72
Amitriptyline9 TCA N 0.69 0.49 0.28 0.42 0.25 0.17
Bupropion9 NDRI N 3.50 2.15 1.52 4.48 2.62 1.74
Wellbutrin9XL NDRI Y 5.22 3.55 2.52 2.18 1.44 1.01
Citalopram SSRI N 2.33 1.54 1.26 1.88 1.02 0.65
Celexa SSRI Y 1.53 1.00 0.78 1.42 0.84 0.60
Cymbalta SNRI Y 1.24 0.92 0.68 1.42 0.78 0.51
Lexapro SSRI Y 11.95 8.01 5.43 10.18 6.16 4.12
Fluoxetine9 SSRI N 9.87 6.69 4.39 5.91 3.72 2.50
Prozac SSRI Y 0.35 0.27 0.24 2.21 1.23 0.83
Mirtazapine NaSSA N 0.59 0.38 0.24 0.42 0.25 0.17
Nefazodone9 SARI N 0.11 0.10 0.08 0.36 0.20 0.13
Nortriptyline9 TCA N 0.44 0.25 0.19 0.30 0.17 0.11
Paroxetine9 SSRI N 3.90 2.63 1.86 3.54 2.13 1.44
Paxil9CR SSRI Y 2.88 1.85 1.27 1.66 1.04 0.72
Zoloft SSRI Y 10.18 6.92 4.43 7.93 4.88 3.27
Trazodone9 SARI N 1.49 0.80 0.43 0.43 0.25 0.17
Effexor SNRI Y 0.44 0.28 0.17 3.62 2.01 1.34
EffexorRXR SNRI Y 7.09 5.14 4.00 4.09 2.58 1.79

Hazard9Model9Combined9
with9Discrete9Choice

Product9Name Subclass Brand?
Raw9Data
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payoffs:

Eθ1,...,θJ

∞∑
t=1

δt−1Yt(θ)

for a given discount rate, δ. Here, θ = (θ1, ..., θJ) are unknown. Agents form indepen-

dent priors, Π(j), on θj for j = 1, ..., J . The optimal allocation rule maximizes:

∫
...

∫
Eθ1,...,θJ

(
∞∑
t=1

δt−1Yt(θ)

)
dΠ(1)(θ1) · · · dΠ(J)(θJ)

One can solve this sequence problem using a dynamic programming approach. Git-

tins and Jones (1979) and Whittle (1980) show that in the case in which agents form

independent priors on (θ1, ..., θJ) and several other conditions hold, there is a simpler

solution. The agent can apply a forward induction rule or “index” rule. He computes J

one-dimensional optimal stopping problems to determine the value of J indices in each

period t. The agent then chooses the option with the largest index. I describe briefly the

form of this index rule; the original contributions cited above provide detailed proofs.

In every period, the agent selects one of J choices and realizes an outcome, Yjt. Let

ψ(t) represent the action the agent takes at t.37 I denote the number of times option j

has been selected up to and including period t as:

nj(t) =
t∑

s=1

1{ψ(s) = j}

I previously defined Π(j) as the agent’s prior beliefs on the distribution of θj. The

posterior distribution at time t for j after nj(t) outcome realizations under j is Π
(j)
nj(t)

.

That is, the agent observes (Yj,1, ..., Yj,nj(t)) for the nj(t) periods when he selects j and

updates his prior beliefs on the distribution of θj from Π(j) to Π
(j)
nj(t)

.

Gittins’ Index is a function of the prior distribution of each independent option, j:

G(Π(j)) = sup
τ

{∫
Eθj

(∑τ−1
s=0 δ

sYj,s+1

)
dΠ(j)(θj)∫

Eθj
(∑τ−1

s=0 δ
s
)
dΠ(j)(θj)

}

where the supremum is over all stopping times τ ≥ 1 defined on {Yj,1, Yj,2, ...}. After

nj(t) realizations under choice j, the Gittins’ Index for j becomes G(Π
(j)
nj(t)

). The agent

37From Chang and Lai (1987), the allocation rule, ψ(t) can be specified by a sequence of random
variables, ψ(1), ψ(2), ..., for periods t = 1, 2, ... such that the event ψ(t+ 1) = j for j = 1, ..., J belongs
to the σ-field generated by the past observed sequence ψ(1), Y1, ..., ψ(t), Yt.
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need only calculate {G(Π
(1)
n1(t)

), ..., G(Π
(J)
nJ (t)

)} at t. He then chooses the option with the

maximal G(.).

An alternative way to express Gittins’ Index given Π(j)=Π
(j)
0 is as the infimum of

the set of solutions M of the equation:

sup
τ

∫
Eθj

{
τ−1∑
s=0

δs
∫
µ(θj)dΠ(j)

s (θj) +M

∞∑
s=τ

δs

}
dΠ(j)(θj) = M

∞∑
s=0

δs

where µ(θj) = Eθj(Yj), the mean outcome under j conditional on θ.

Intuitively, the agent solves an optimal stopping problem in which he decides be-

tween the choice j and a standard project that yields a constant reward, M .38 This

‘retirement’ value is specific to each option. The agent maximizes the expected dis-

counted value of playing choice j for the optimal number of periods τ given the pos-

terior distribution Π
(j)
nj(t)

. In the remaining time from τ forward, he receives M . The

infimum of the set of solutions for M is equivalent to the Gittins’ Index, G(Π
(j)
nj(t)

) given

a particular posterior distribution.

In the main analysis, outcomes take the following form:

Yijt v pij(θ)
k(1− pij(θ))1−k, k ∈ {0, 1}

Again, agents do not know pij(θ) for j = 1, ..., J at the time of the decision. They form

a prior distribution over pij(θ), where θ = (µij, φ). In the main text, µij denotes the

expected probability of success on drug j and φ denotes a measure of the precision of the

agents priors, common across choices. I reduce the dimensionality of θ = (µi1, ..., µiJ , φ)

by letting µij = exp(X ′ijγ1) and φ = exp(γ2). Then, θ becomes γ = (γ1, γ2). Agents

form priors Π(r) for the r = 1, ..., R elements in γ.

8.4 Computational Details

8.4.1 Diffusion Approximation to the Index Rule

To compute the experimentation incentive term in the index rule, I rely on a numerical

solution provided by Chang and Lai (1987). The authors numerically solve the optimal

stopping problem underlying the index rule by using a change of variables to reframe

the problem as a Brownian motion. Chang and Lai (1987) carry out Monte Carlo

38See Whittle (1980) and Brezzi and Lai (2002).
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simulations to demonstrate the robustness of this numerical solution.

The closed form approximation to the optimal stopping boundary in the Brownian

motion problem takes the following form in the finite horizon case:

h(s) =



{2 log(s−1)− log(log(s−1))− 1og(16π) + ...

.99 exp(−.038s−1/2)}1/2 if 0 < s ≤ .01

−1.58
√
s+ 1.53 + 0.07s−1/2 if .01 < s < .28

−.576s3/2 + .299s1/2 + .403s−1/2 if .28 < s ≤ .86

s−1(1− s)1/2{.639− .403(t−1 − 1)} if .86 < s ≤ 1


where s = t/T , with T the finite horizon and t the point in the episode along the

sequence to T .

In the discounted infinite horizon case, Chang and Lai (1987) replace the closed-form

h(s) with ψ(s):

ψ(s) =



√
s/2

.49− .11s−1/2

.63− .26s−1/2

.77− .58s−1/2

{2 log(s)− log(log(s))− log(16π)}1/2

if s ≤ 0.2

if 0.2 < s ≤ 1

if 1 < s ≤ 5

if 5 < s ≤ 15

if s > 15


The discussion of s in the index rule in Section 3.2.2 follows from Brezzi and Lai

(2002), who define the experimentation incentive as a function of ψ(.).

8.4.2 Computational time

I include below statistics on the computational time necessary to find the maximum

likelihood estimates for the three main specifications in the model. These computation

times come from using Knitro optimization software run through Matlab, on a desktop

computer with two 2.4 GHz Quad-Core Intel Xeon processors, with 16 GB 1066 MHz

memory. Using an uninformed starting value, the time to compute the coefficients

from maximum likelihood estimation of the two-level dynamic model is 61.91 hours

with 10,000 patient episodes. With a “warm start” to the optimization, the time to

convergence is considerably smaller, at 9.4 hours.
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8.5 Determining the Dollar Value of Symptomatic Relief

To assign a dollar value to the relief of symptoms that prescription drug treatments

provide, I carry out the following procedure.

First, I save the predicted sequence of treatments for the 10,000 patients from the

simulation of the baseline policy and the counterfactual policies. I divide the sample of

patients in each counterfactual into 5 categories based on the treatments used within

their episode: (1) no drug care; (2) use of a TCA for one month or less, followed by exit

from drug care; (3) use of a TCA for greater than one month; (4) use of any second

generation (non-TCA) drug class for one month or less; and, (5) use of any second

generation drug class for greater than 1 month. I choose these divisions to match a

subset of the treatment categories studied by Berndt et al. (2002). They employ a

panel of medical experts to rate the likelihood of both full and partial recovery given

a patient’s background and a treatment regime and duration. For example, in Table

1 of Berndt et al. (2002), treatment under an SSRI with 1-3 office visits produces a

probability of full remission of .20, and a probability of partial remission of .45 over

16 weeks. If the SSRI treatment extends for greater than 30 days, those probabilities

increase to .28 and .60, respectively.

Given the probabilities of full and partial remission over 16 weeks for each of the 5

categories above, I calculate the expected number of weeks out of 16 that an individual

suffers either the full symptoms of depression or partial symptoms. I follow a similar

procedure to that of Cutler (2004). Following the medical literature, I set the recovery

rate at 0% in the first two weeks of treatment, before an antidepressant takes full

effect. In every week for the next 16 weeks, I set a fixed rate of full and partial recovery

for those who have yet to recover such that the share of full and partial recovery

patients at the end of the 16 week period equals the median rate predicted by the

expert panel in Berndt et al. (2002) for the category of treatment. I then use these

per-week probabilities to calculate the expected number of weeks without full or partial

recovery. In the case without drug care, the patient suffers from depression for 11.9 out

of the 16 weeks, with partial recovery in an additional 2.8 weeks. The expected weeks

of depression and of partial depression for drug treatment differ a bit by the type and

duration care: with less than one month of TCAs or SSRIs, the expected number of

weeks equals approximately 10.3 and 3.9; for longer duration on SSRIs, the expected

number of weeks of full and partial depression change to 7.4 and 5.9, respectively.

Given the expected duration of complete or partial depressive symptoms, I multiply
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the savings in “depression weeks” against the quality disutility from depression, esti-

mated in Lave et al. (1998) to equal -.41 for full depression. That is, patients equate

10 years living with depression to roughly 6 years living without depression. As in

Cutler (2004), I set the disutility from partial depression at half the full depression

rate. Multiplying this savings in utility against $100,000 as the value of a year of life, I

find the per patient dollar value of treatment in each of the four treatment categories,

normalizing by the dollar value of no treatment. I multiply this by the share of patients

in each category in a particular counterfactual, summing across categories to get a total

dollar savings.

In Table 6, I report these the dollar savings for three months of treatment under

the counterfactual policies. The alternative policies change the distribution of treat-

ment types, driving the observed differences in the dollar value gained. When a policy

increases adherence and promotes use of SSRIs, for example, patients shift toward treat-

ment regimens with higher recovery probabilities; the effect is to increase the expected

number of weeks with relief of symptoms in the counterfactual relative to the baseline.
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