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Active learning

Labels are often much more expensive than inputs:

I documents, images, audio, video,

I drug compounds, . . .

Can interaction help us learn more effectively?

Learn an accurate classifier requesting as few labels as possible.
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Why should we hope for success?

Threshold functions on the real line. Target is a threshold.
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Supervised: Need ≈ 1/ε labeled points. With high probability, any
consistent threshold has ≤ ε error.

Active learning: start with 1/ε unlabeled points.

Binary search: need just log 1/ε labels. Exponential improvement
in label complexity!

Nonseparable data? Other hypothesis classes?
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Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, . . . )

Biased sampling: the
labeled points are not
representative of the
underlying distribution!
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Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

“Missed cluster effect” (Schütze et al, 2006)
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Setting:

I Hypothesis class H. For h ∈ H,

err(h) = Pr
(x,y)

[h(x) 6= y]

I Minimum error rate ν = minh∈H err(h)

I Given ε, find h ∈ H with err(h) ≤ ν + ε

Desiderata:

I General H

I Consistent: always converge

I Agnostic: deal with arbitrary noise, ν ≥ 0

I Efficient: statistically and computationally

Is this achievable? Yes (BBL-2006, DHM-2007, BDL-2009,
BHLZ-2010, BHLZ-2016)
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Importance Weighted Active Learning
S0 = ∅
For t = 1, 2, . . . , n

1. Receive unlabeled example xt and set St = St−1.

2. Choose a probability of labeling pt.

3. Flip a coin Qt with E[Qt] = pt. If Qt = 1, request yt and add
(xt, yt,

1
pt

) to St.

4. Let ht+1 = LEARN(St).

Empirical importance-weighted error

errn(h) =
1

n

n∑
t=1

Qt
pt

1[h(xt) 6= yt]

Minimizer LEARN(St) = arg minh∈H errt(h)

Consistency: The algorithm is consistent as long as pt are
bounded away from 0.



How should pt be chosen?

Let ∆t = increase in empirical importance-weighted error rate if
learner is forced to change its prediction on xt.

Set pt = 1 if ∆t ≤ O
(√

log t
t

)
; otherwise, pt = O

(
log t
∆2

t t

)
.

I ht = arg min{errt−1(h) : h ∈ H}
I h′t = arg min{errt−1(h) : h ∈ H and h(xt) 6= ht(xt)}
I ∆t = errt−1(h′t)− errt−1(ht)

How can we compute ∆t in constant time?

I Find the smallest it such that ht+1 = h′t after (xt, h
′
t(xt), it)

update.

I We have (t− 1) · errt−1(h′t) ≤ (t− 1) · errt−1(ht) + it. Thus
∆t ≤ it/(t− 1).
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Practical Considerations

Importance weight aware SGD updates [Karampatziakis and
Langford]. Solve for it directly. E.g., for logistic,

it =
2wTt xt

ηt sign(wTt xt)x
T
t xt
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Guarantees

IWAL achieves error similar to that of supervised learning on n
points:

Accuracy Theorem: For all n ≥ 1,

err(hn) ≤ err(h∗) +

√
C log n

n− 1

with high probability.

Label Efficiency Theorem: With high probability, the expected
number of labels queried after n iteractions is at most

O(θ err(h∗)n)︸ ︷︷ ︸
minimum due to noise

+O
(
θ
√
n log n

)
where θ is the disagreement coefficient.
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The crucial ratio: Disagreement Coefficient
(Hanneke-2007)

r-ball around a minimum-error hypothesis h∗:

B(h∗, r) = {h ∈ H : Pr[h(x) 6= h∗(x)] ≤ r}

Disagreement region of B(h∗, r):

DIS(B(h∗, r)) = {x ∈ X | ∃h, h′ ∈ B(h∗, r) : h(x) 6= h′(x)}

The disagreement coefficient measures the rate of

θ = sup
r>0

Pr[DIS(B(h∗, r))]

r

Example:

I Thresholds in R, any data distribution. θ = 2.
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Benefits

1. Always consistent.

2. Efficient.

2.1 Label efficient, unlabeled data efficient, computationally
efficient.

3. Compatible.

3.1 With online algorithms
3.2 With any optimization-style classification algorithms
3.3 With any Loss function
3.4 With supervised learning
3.5 With switching learning algorithms (!)

4. Collected labeled set is reusable with a different algorithm or
hypothesis class.

5. It works, empirically.
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Applications

I News article categorizer

I Image classification

I Hate-speech detection / comments sentiment

I NLP sentiment classification (satire, newsiness, gravitas)



Active learning in Vowpal Wabbit

Simulating active learning: (knob c > 0)
vw --active simulation --active mellowness c

Deploying active learning:
vw --active learning --active mellowness c --daemon

I vw interacts with an active interactor (ai)

I receives labeled and unlabeled training examples from ai over
network

I for each unlabeled data point, vw sends back a query decision
(and an importance weight if label is requested)

I ai sends labeled importance-weighted examples as requested

I vw trains using labeled importance-weighted examples



Active learning in Vowpal Wabbit

active_interactor vw

x_1

(query, 1/p_1)

(x_1,y_1,1/p_1)

x_2

(no query)

(gradient
 update)

.
.
.

active interactor.cc (in git repository) demonstrates how to

implement this protocol.



Needle in a haystack problem: Rare classes

Learning interval functions ha,b(x) = 1[a ≤ x ≤ b], for
0 ≤ a ≤ b ≤ 1.

Supervised learning: need O(1/ε) labeled data.

Active learning: need O(1/W + log 1/ε) labels, where W is the
width of the target interval. No improvement over passive learning.

. . . but given any example of the rare class, the label complexity
drops to O(log 1/ε).

Dasgupta 2005; Attenberg & Provost 2010: Search and insertion
of labeled rare class examples helps.



Needle in a haystack problem: Rare classes

Learning interval functions ha,b(x) = 1[a ≤ x ≤ b], for
0 ≤ a ≤ b ≤ 1.

Supervised learning: need O(1/ε) labeled data.

Active learning: need O(1/W + log 1/ε) labels, where W is the
width of the target interval. No improvement over passive learning.

. . . but given any example of the rare class, the label complexity
drops to O(log 1/ε).

Dasgupta 2005; Attenberg & Provost 2010: Search and insertion
of labeled rare class examples helps.



predicted label: Entertainment

How can editors feed observed mistakes into an active learning
algorithm?
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Is this fixable?

Beygelzimer-Hsu-Langford-Zhang (NIPS-16):

Define a Search oracle:

The active learner
interactively restricts
the searchable space
guiding Search where
it’s most effective.



Search Oracle

Oracle Search

Require: Working set of candidate models V
Ensure: Labeled example (x, y) s.t. h(x) 6= y for all h ∈ V

(systematic mistake), or ⊥ if there is no such example.

How can a counterexample to a version space be used?

Nested sequence of model classes of increasing complexity:

H1 ⊆ H2 ⊆ . . . Hk∗ . . .

Advance to more complex classes as simple are proved inadequate.
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Search + Label

Search + Label can provide exponentially large problem-dependent
improvements over Label alone, with a general agnostic algorithm.

Union of intervals example:

• Õ(k∗ + log(1/ε)) Search queries

• Õ((poly log(1/ε) + log k∗)(1 + ν2

ε2
)) Label queries

How can we make it practical?

• Drawbacks as with any version space approach

• Can we reformulate as a reduction to supervised learning?
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Interactive Learning

Interactive settings:

• Active learning

• Contextual bandit learning

• Reinforcement learning

Bias is a pervasive issue:

• The learner creates the data it learns from / is evaluated on

• State of the world depends on the learner’s decisions

How can we use supervised learning techonology in these new
interactive settings?
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Optimal Multiclass Bandit Learning (ICML-2017)

For t = 1 . . . T :

1. Observe xt

2. Predict label ŷt ∈ [1, . . . ,K]

3. Pay and observe 1[ŷt 6= yt] (ad not clicked)

No stochastic assumptions on the input sequence.

Compete with multiclass linear predictors {W ∈ RK×d}, where

W (x) = arg max
k∈[K]

(W · x)k



Mistake Bounds

Banditron [Kakade-Shalev-Shwartz-Tewari, ICML-08]
SOBA [Beygelzimer-Orabona-Zhang, ICML-17]

Perceptron Banditron SOBA

L+
√
T L+ T 2/3 L+

√
T

where L is the competitor’s total hinge loss.

Per-round hinge loss of W

lt(W ) = max
r 6=yt

[1− (Wxt)yt + (Wxt)r]+ ≥ 1[yt 6= ŷt]

Resolves a COLT open problem (Abernethy and Rakhlin’09)



The Multiclass Perceptron

A linear multiclass predictor is defined by a matrix W ∈ Rk×d.
For t = 1 . . . T :

• Receive xt ∈ Rd

• Predict ŷt = arg maxr(W
txt)r

• Receive yt

• Update W t+1 = W t + U t where
Ut = 1[ŷt 6= yt](eyt − eŷt)⊗ xt



Bandit Setting

• If ŷt 6= yt, we are blind to the value of yt

• Solution: Randomization!

SOBA:

• A second order perceptron with a novel unbiased estimator for
the perceptron update and the second order update.

• Passive-aggressive update (sometimes updating when there is
no mistake but the margin is small)




