Deposit Franchise Runs

Itamar Drechsler¹ Alexi Savov² Philipp Schnabl² Olivier Wang² ¹Wharton ²NYU Stern

1

2023 regional bank crisis

Between early 2022 and March 2023, the Fed raised short-term rates by 5%

- long-term rates up 2.5%

Banks held \$17T of long-term loans and securities with average duration 4 years

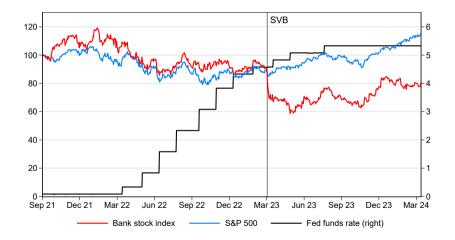
- implied loss of 0.025 x 4 x 17 = \$1.7T
- very large compared to \$2.2T bank equity

2023 regional bank crisis

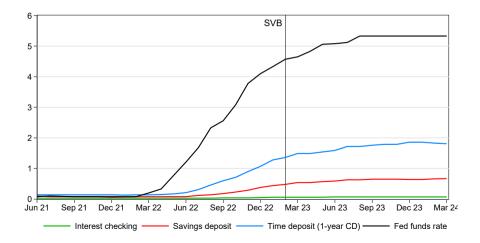
Between early 2022 and March 2023, the Fed raised short-term rates by 5%

- long-term rates up 2.5%

Banks held \$17T of long-term loans and securities with average duration 4 years


- implied loss of 0.025 x 4 x 17 = \$1.7T
- very large compared to \$2.2T bank equity

Lawrence H. Summers 🤣 @LHSummers • • •


SVB committed one of the most elementary errors in banking: borrowing money in the short term and investing in the long term. When interest rates went up, the assets lost their value and put the institution in a problematic situation.

But why not earlier? Why not all banks?

Low deposit betas and the deposit franchise hedge

(DSS 2017, 2021)

Deposit franchise hedges interest rate risk... ...**but only if depositors stay in the bank**

If they leave, deposit franchise is destroyed and hedge fails \rightarrow deposit franchise is a runnable asset

Main results

- 1. Uninsured deposit franchise is a runnable asset
 - ightarrow self-fulfilling runs even if loans/securities are fully liquid
- 2. Deposit franchise value rises with rates
 - $\rightarrow~$ bank run risk increases with interest rates
- 3. Risk management dilemma:
 - $\rightarrow\,$ tension between hedging interest rate risk and run risk
 - $ightarrow\,$ requires additional capital
- 4. Empirical implementation:
 - ightarrow estimate bank values with deposit franchise
 - ightarrow predicts which banks exposed to deposit franchise runs (and which not)

Model

Model: deposit franchise with outflows

- Bank starts with assets A and deposit base $D_{-1} = D$.
- In period t, remaining deposits D_{t-1}
 - pay deposit rate r_{d,t}
 - require operating costs c per dollar
 - withdrawals $X_t = D_{t-1} D_t$
- Date-0 bank value (EVE)

$$V = A - L$$

where L is PV of liabilities

$$= \underbrace{\sum_{t \geq 1} q_t D_{t-1} \left(r_{d,t} + c \right)}_{\text{interest expenses and costs}} + \underbrace{X_0 + \sum_{t \geq 1} q_t X_t}_{\text{withdrawals}}$$

Simplifying assumptions

- Initial interest rate $r_{-1} = r$. One-time shock to $r_0 = r_1 = \cdots = r'$. \rightarrow Deposit rate $r'_d = \frac{\beta}{r'}r'$
- + t = 0: endogenous outflows, focus on runs extension: rate-driven outflows $X_0 = w(r')D$
- + t \geq 1: exogenous outflows

$$X_t = \delta D_{t-1}$$

to capture natural decay of deposit base.

Deposit franchise value

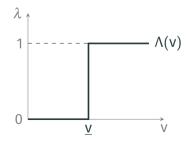
Rewrite
$$V(r') = A(r') + \underbrace{DF(r') - D}_{-L(r')}$$
 where $DF =$ **deposit franchise value**

Proposition

Without outflows,

Value:
$$DF(r') = D\left[\frac{(1-\beta)r'-c}{r'+\delta}\right]$$

Dollar duration: $DF'(r) = D\left[\frac{c+(1-\beta)\delta}{(r+\delta)^2}\right] > 0$


Uninsured depositors' run incentives

Exogenous share u of deposits uninsured: bank value

 $V = A - D + DF_I + \frac{\lambda}{\lambda} DF_U$

where λ : **endogenous** fraction of remaining uninsured depositors

 $\lambda = \Lambda(v)$ increasing in v = V/D (earnings, stock price):

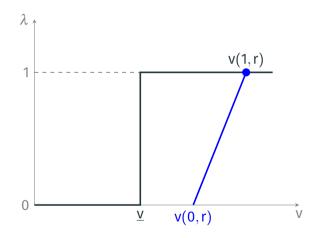
Deposit franchise runs

Bank solvency ratio given
$$\lambda$$
: $v(\lambda, r') = v(0, r') + \lambda \times u = \sqrt{\frac{(1 - \beta^U)r' - c^U}{r' + \delta}}$
Equilibrium given A(r'): λ s.t. $\Lambda(v(\lambda, r')) = \lambda$

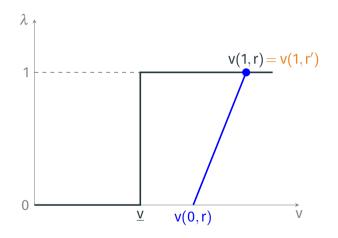
Deposit franchise runs

Bank solvency ratio given λ : $v(\lambda, r') = v(0, r') + \lambda \times u = \underbrace{(1 - \beta^U)r' - c^U}_{r' + \delta}$

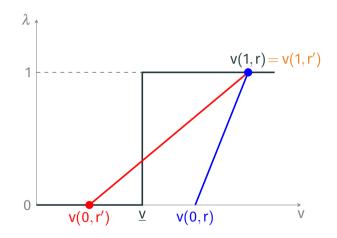
Equilibrium given A(r'): λ s.t. $| \Lambda (v(\lambda, r')) = \lambda |$

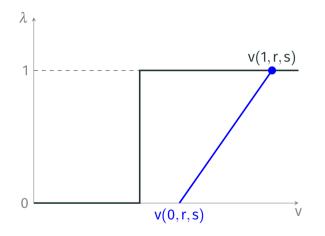

Proposition

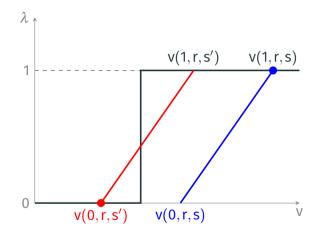
If $v(0,r') < \underline{v}$: run equilibrium $\lambda = 0$ exists (though A is fully liquid).


Given no-run value v(1,r'), the larger is $DF_U(r')$, the more likely a run equilibrium exists. This is when:

- the share of uninsured deposits u is higher
- the uninsured deposit beta β^{U} is lower
- $\boldsymbol{\cdot}$ the interest rate r^\prime is higher


DF run risk increases with interest rates


DF run risk increases with interest rates


DF run risk increases with interest rates

Adding credit risk A(r,s)

Adding credit risk A(r,s)

 \rightarrow At high interest rates, credit losses can be amplified into DF runs

Risk management

Asset duration choice

Proposition

Hedging no-run value against interest rate risk requires long asset duration

$$T_{A} = (1-u)\frac{(1-\beta^{I})\delta + c^{I}}{(r+\delta)^{2}} + u \times \frac{(1-\beta^{U})\delta + c^{U}}{(r+\delta)^{2}}$$

Asset duration choice

Proposition

Hedging no-run value against interest rate risk requires long asset duration

$$T_{A} = (1-u)\frac{(1-\beta^{I})\delta + c^{I}}{(r+\delta)^{2}} + u \times \frac{(1-\beta^{U})\delta + c^{U}}{(r+\delta)^{2}}$$

Hedging against deposit franchise run risk requires short asset duration

$$T_A = (1-u) \frac{(1-\beta^1)\delta + c^1}{(r+\delta)^2} + u \times 0$$

Asset duration choice

Proposition

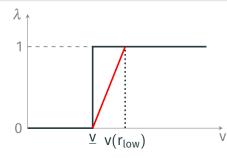
Hedging no-run value against interest rate risk requires long asset duration

$$T_{A} = (1-u)\frac{(1-\beta^{I})\delta + c^{I}}{(r+\delta)^{2}} + u \times \frac{(1-\beta^{U})\delta + c^{U}}{(r+\delta)^{2}}$$

Hedging against deposit franchise run risk requires short asset duration

$$T_{A} = (1-u) \frac{(1-\beta^{1})\delta + c^{1}}{(r+\delta)^{2}} + u \times 0$$

No dilemma as $\beta^U \rightarrow 1, c^U \rightarrow 0$: dilemma caused by **low-beta uninsured deposits** \rightarrow retail uninsured and corporate checking, **not** competitive wholesale funding

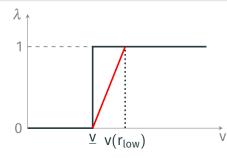

Solution: Capital

Proposition

Runs can be prevented if $v(r') \ge \underline{v} + DF_U(r')/D$.

Simple benchmark: To protect against **any** r' > r, need

 $v(r') \geq \underline{v} + u(1 - \beta^{U})$

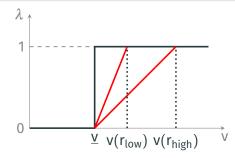

Solution: Capital

Proposition

Runs can be prevented if $v(r') \ge \underline{v} + DF_U(r')/D$.

Simple benchmark: To protect against **any** r' > r, need

 $v(r') \geq \underline{v} + u(1 - \beta^{U})$


Solution: Capital

Proposition

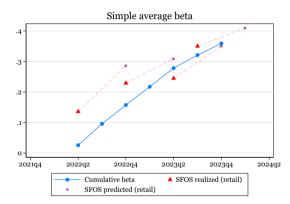
Runs can be prevented if $v(r') \ge \underline{v} + DF_U(r')/D$.

Simple benchmark: To protect against **any** r' > r, need

 $v(r') \geq \underline{v} + u(1 - \beta^{U})$

Empirical Implementation

Estimating bank values


- Goal: detect banks at risk of deposit franchise runs
 - $ightarrow\,$ requires estimating bank values with and without deposit franchise
- Required bank-level inputs:
 - 1. Asset losses due to interest rate increase $A(r^\prime)/A(r)$
 - 2. Insured and uninsured deposit betas (β^{I}, β^{U})
 - 3. Cost of insured and uninsured deposits $(\mathsf{c}^\mathsf{I},\mathsf{c}^\mathsf{U})$
 - 4. Run-off rate of deposits δ
- Results:
 - 1. Evaluate whether banks hedge asset losses with deposit franchise
 - 2. Assess whether banks are in multiple equilibrium region

Data and Sample

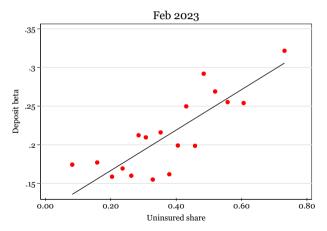
- US call reports (Federal Reserve)
 - 1. Assets: Asset holdings by refinancing maturity
 - 2. Deposits: deposit expense, non-interest expense, uninsured deposits
- Total sample of 715 banks
 - 1. US commercial banks: \geq \$1B assets, \geq 65% deposits as of Dec 2021 (pre rate hike)
 - 2. Drop foreign banks, custodian banks, credit card banks
 - 3. Time periods: Feb 2023 (pre SVB) and Feb 2024 (most recent)
- Treasury and MBS indices by maturity (Bloomberg) for asset losses

Deposit betas in 2022/23

Cumulative $\text{Beta}_{t,21}$ = $\Delta_{t,21}$ Deposit Rate / $\Delta_{t,21}$ Fed Funds rate

- 1. Deposit betas increase over hiking cycle (lagged adjustment, SVB crisis)
- 2. Consistent with historical betas and Senior Financial Officer Survey (SFOS)

Bank-level deposit beta


Cumulative $\text{Beta}_{t,21}$ = $\Delta_{t,21}$ Deposit Rate / $\Delta_{t,21}$ Fed Funds rate

	Dec 2021	Feb 2023	Feb 2024
	(1)	(2)	(3)
Deposit beta	0.254	0.213	0.421
	(0.139)	(0.162)	(0.163)
Obs.	710	715	690

- 1. Significant variation in deposit betas across banks (e.g., brand, service, uninsured, etc.)
- 2. Large increase in deposit betas from Feb 23 to Feb 24

Estimating insured and uninsured beta

Binscatter plot: Deposit beta and uninsured deposit share

 $\rightarrow~$ 10% increase in uninsured share raises beta by 0.03

Results: insured and uninsured beta

- 1. Assume uninsured beta minus insured beta is constant across banks
- 2. Compute betas based on observed deposit beta and uninsured share

	Dec 2021	Feb 2023	Feb 2024
	(1)	(2)	(3)
Insured deposit beta	0.211	0.108	0.329
	(0.122)	(0.131)	(0.142)
Uninsured deposit beta	0.341	0.370	0.581
	(0.122)	(0.131)	(0.142)
Obs.	711	715	690

Example: Insured 2023 deposit beta of Citibank (0.48) vs. Wells Fargo (0.19)

Results: Deposit costs

- 1. Estimate overall cost using hedonic cost regression (Hanson et al. 2015)
- 2. Regress cost of deposits on uninsured share
- 3. Assume insured cost minus uninsured cost is constant across banks

	Insured	Uninsured
	(1)	(2)
Cost of deposit provision	1.497	0.933
(s.d.)	(0.198)	(0.152)
Obs.	715	715

Estimating asset losses

- 1. Match asset holdings (Dec 21) to asset index by asset type and repricing maturity
- 2. Estimate losses as Δ asset index \times asset holdings

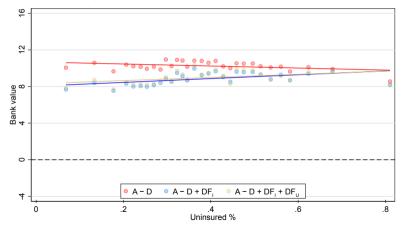
		All banks		Large banks		
	Dec 2021	Feb 2023	Feb 2024	Dec 2021	Feb 2023	Feb 2024
	(1)	(2)	(3)	(4)	(5)	(6)
Asset loss	0.00	8.22	7.36	0.00	6.75	5.98
	(0.00)	(2.41)	(2.38)	(0.00)	(1.84)	(1.42)
Obs.	717	715	690	17	17	14

Results: Bank Value

	All banks			
Bank Value	Dec 2021	Feb 2023	Feb 2024	
	(1)	(2)	(3)	
A – D (No DF)	10.26	2.03	2.91	
	(2.08)	(3.22)	(3.22)	
$\% \leq 0$	0.00	26.43	17.10	
$V(0,r) = A - D + DF_I$ (Run)	8.84	9.70	8.10	
	(2.40)	(3.78)	(3.57)	
$\% \leq 0$	0.00	0.70	1.16	
$V(1,r) = A - D + DF_I + DF_U$ (No run)	8.97	13.18	10.01	
	(2.52)	(4.01)	(4.02)	
$\% \leq 0$	0.00	0.14	0.72	
Obs.	717	715	690	

1. If we ignore DF, large decline in value, 1 out of 4 banks negative value

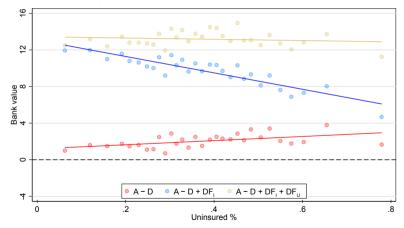
Results: Bank Value


	All banks			
Bank Value	Dec 2021	Feb 2023	Feb 2024	
	(1)	(2)	(3)	
A – D (No DF)	10.26	2.03	2.91	
	(2.08)	(3.22)	(3.22)	
$\% \leq 0$	0.00	26.43	17.10	
$V(0,r) = A - D + DF_I$ (Run)	8.84	9.70	8.10	
	(2.40)	(3.78)	(3.57)	
$\% \leq 0$	0.00	0.70	1.16	
$V(1,r) = A - D + DF_1 + DF_U$ (No run)	8.97	13.18	10.01	
	(2.52)	(4.01)	(4.02)	
$\% \leq 0$	0.00	0.14	0.72	
Obs.	717	715	690	

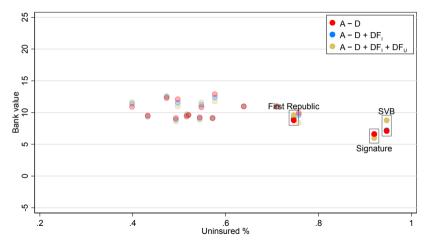
1. If we ignore DF, large decline in value, 1 out of 4 banks negative value

2. With DF, average bank hedged, almost no negative value

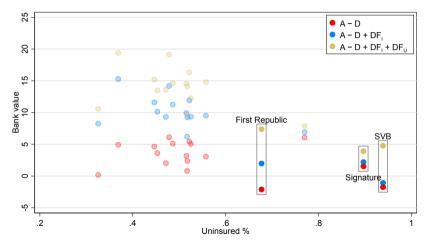
Results: Bank Value, Dec 21


Binscatter plot: Banks Value and uninsured deposit share

ightarrow Deposit franchise value close to zero at low interest rates


Results: Bank Value, Feb 23

Binscatter plot: Bank Value and uninsured deposit share


ightarrow Banks with high uninsured share vulnerable to deposit franchise run

Results: Large Banks' Value, Dec 21

SVB, Signature, First Republic look similar to other large banks pre rate hike - values $>5\% \rightarrow$ no deposit franchise run equilibrium

Results: Large Banks' Value, Feb 23

- SVB value < 0 without uninsured DF \rightarrow run equilibrium (Signature, FRB similar)
- Other large banks value > 5% of assets \rightarrow no run equilibrium

Event study

	SVB beta		
	(1)	(2)	(5)
Uninsured share u	-0.449***	-1.097***	
	(0.055)	(0.157)	
Uninsured beta β^{U}		-0.740***	
		(0.199)	
$u imes \beta^{U}$		1.834***	
		(0.422)	
DFu			-0.393***
			(0.060)
DFI			0.105**
			(0.049)
Obs.	171	171	171
R ²	0.280	0.356	0.246

SVB beta = bank stock return from March 6 to March 13, 2023

Counterfactuals

In the paper we use framework and estimates for counterfactuals:

- 1. Interest rate stress test: What if rates had risen to 10%? instead of 4%
 - deposit franchise run is an equilibrium for 4 additional large banks
 - most large banks have run value below 5% so close to run region
- 2. Increasing bank capital
 - in proportion of $u \text{ or } \mathsf{DF}_{\mathsf{U}}$
- 3. Cap u / expand deposit insurance

Conclusion

- 1. An uninsured deposit franchise is a runnable asset
 - deposit franchise runs can occur even if loans/securities fully liquid
- 2. Risk of deposit franchise runs increases during monetary tightening
- 3. Risk management dilemma: banks need assets with
 - long duration to hedge interest rate risk
 - short duration to avoid run risk
 - solution: requires additional capital
- 4. Estimation: detect banks at risk (or not) of deposit franchise runs