
Deterministic Dynamic Programming

1 Value Function

Consider the following optimal control problem in Mayer’s form:

V (t0, x0) = inf
u∈U

J(t1, x(t1)) (1)

subject to ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 (state dynamics) (2)

(t1, x(t1)) ∈ M (boundary conditions). (3)

The terminal set M is a closed subset of Rn+1. The admissible control set U is assumed to be the
set of piecewise continuous function on [t0, t1]. The performance function J is assumed to be C1.
The function V (·, ·) is called the value function and we shall use the convention V (t0, x0) = ∞ if the
control problem above admits no feasible solution. We will denote by U(x0, t0), the set of feasible
controls with initial condition (x0, t0), that is, the set of control u such that the corresponding
trajectory x satisfies x(t1) ∈ M .

Proposition 1 Let u(t) ∈ U(x0, t0) be a feasible control and x(t) the corresponding trajectory.
Then, for any t0 ≤ τ1 ≤ τ2 ≤ t1, V (τ1, x(τ1)) ≤ V (τ2, x(τ2)). That is, the value function is a
nondecreasing function along any feasible trajectory.

Proof:
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Corollary 1 The value function evaluated along any optimal trajectory is constant.



Proof: Let u∗ be an optimal control with corresponding trajectory x∗. Then V (t0, x0) = J(t1, x∗(t1)).
In addition, for any t ∈ [t0, t1] u∗ is a feasible control starting at (t, x∗(t)) and so V (t, x∗(t)) ≤
J(t1, x∗(t1)). Finally by proposition (1) V (t0, x0) ≤ V (t, x∗(t)) so we conclude V (t, x∗(t)) =
V (t0, x0) for all t ∈ [t0, t1].

According to the previous results a necessary condition for optimality is that the value function is
constant along the optimal trajectory. The following result provides a sufficient condition.

Theorem 1 Let W (s, y) be an extended real valued function defined on Rn+1 such that W (s, y) =
J(s, y) for all (s, y) ∈ M . Given an initial condition (t0, x0), suppose that for any feasible trajectory
x(t), the function W (t, x(t)) is finite and nondecreasing on [t0, t1]. If u∗ is a feasible control with
corresponding trajectory x∗ such that W (t, x∗(t)) is constant then u∗ is optimal and V (t0, x0) =
W (t0, x0).

Proof: For any feasible trajectory x, W (t0, x0) ≤ W (t1, x(t1)) = J(t1, x(t1). On the other hand, for
x∗,W (t0, x0) = W (t1, x∗(t1)) = J(t1, x∗(t1).

Corollary 2 Let u∗ be an optimal control with corresponding feasible trajectory x∗. Then the
restriction of u∗ to [t, t1] is an optimal for the control problem with initial condition (t, x∗(t)).

In many applications, the control problem is given in its Lagrange form

V (t0, x0) = inf
u∈U(x0,t0)

∫ t1

t0

L(t, x(t), u(t)) dt (4)

subject to ẋ(t) = f(t, x(t), u(t)), x(t0) = x0. (5)

In this case, the following result is the analogue to proposition (1)

Theorem 2 (Bellman’s Principle of Optimality). Consider an optimal control problem in Lagrange
form. For any u ∈ U(s, y) and its corresponding trajectory x

V (s, y) ≤
∫ τ

s
L(t, x(t), u(t)) dt + V (τ, x(τ)).

Proof: Given u ∈ U(s, y), let ũ ∈ U(τ, x(τ)) be arbitrary. Define

ū(t) =

{
u(t) s ≤ t ≤ τ

ũ(t) τ ≤ t ≤ t1.

Thus, ū ∈ U(s, y) so that

V (s, y) ≤
∫ t1

s
L(t, x̄(t), ū(t)) dt =

∫ τ

s
L(t, x(t), u(t)) dt +

∫ t1

τ
L(t, x̃(t), ũ(t)) dt. (6)
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Since the inequality holds for any ũ ∈ U(τ, x(τ)) we conclude

V (s, y) ≤
∫ τ

s
L(t, x(t), u(t)) dt + V (τ, x(τ).

Although the conditions given by theorem (1) are sufficient, they do not provide a concrete way to
construct an optimal solution. In the next section, we will provide a direct method to compute the
value function.

2 DP’s Partial Differential Equations

Define Q0 the reachable set as

Q0 = {(s, y) ∈ Rn+1 : U(s, y) 6= ∅}.

This set define the collection of initial conditions for which the optimal control problem is feasible.

Theorem 3 Let (s, y) be any interior point of Q0 at which V (s, y) is differentiable. Then V (s, y)
satisfies

Vs(s, y) + Vy(s, y) f(s, y, v) ≥ 0 for all v ∈ U.

If there is an optimal u∗ ∈ U(s, y), then the PDE

min
v∈U

{Vs(s, y) + Vy(s, y) f(s, y, v)} = 0

is satisfied and the minimum is achieved by the right limit u∗(s)+ of the optimal control at s.

Proof: Pick any v ∈ U and let xv(t) be the corresponding trajectory for s ≤ t ≤ s + ε, ε > 0 small.
Given the initial condition (s, y), we define the feasible control uε as follows

uε(t) =

{
v s ≤ t ≤ s + ε

ũ(t) s + ε ≤ t ≤ t1.

Where ũ ∈ U(s + ε, xv(s + ε)) is arbitrary. Note that for ε small (s + ε, xv(s + ε)) ∈ Q0 and so
uε ∈ U(s, y). We denote by xε(t) the corresponding trajectory. By proposition (1), V (t, xε(t)) is
nondecreasing, hence,

D+V (t, xε(t)) := lim
h↓0

V (t + h, xε(t + h))− V (t, xε(t))
h

≥ 0

for any t at which the limit exists, in particular t = s. Thus, from the chain rule we get

D+V (s, xε(s)) = Vs(s, y) + Vy(s, y) D+xε(s) = Vs(s, y) + Vy(s, y) f(s, y, v).
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The equalities use the indentity xε(s) = y and the system dynamic equation D+xε(t) = f(t, xε, uε(t)+).

If u∗ ∈ U(s, y) is an optimal control with trajectory x∗ then corollary 1 implies V (t, x∗(t)) =
J(t1, x∗(t1)) for all t ∈ [s, t1], so differentiating (from the right) this equality at t = 2 we conclude

Vs(s, y) + Vy(s, y) f(s, y, u∗(s)+) = 0.

Corollary 3 (Hamilton-Jacobi-Bellman equation (HJB)) For a control problem given in Lagrange
form (4)-(5), the value function at a point (s, y) ∈ int(Q0) satisfies

Vs(y, s) + Vy(s, y) f(s, y, v) + L(s, y, v) ≥ 0 for all v ∈ U.

If there exists an optimal control u∗ then the PDE

min
v∈U

{Vs(y, s) + Vy(s, y) f(s, y, v) + L(s, y, v)} = 0

is satisfied and the minimum is achieved by the right limit u∗(s)+ of the optimal control at s.

In many applications, instead of solving the HJB equation a candidate for the value function is
identified, say by inspection. It is important to be able to decide whether or not the proposed
solution is in fact optimal.

Theorem 4 (Verification Theorem) Let W (s, y) be a C1 solution to the partial differential equation

min
v∈U

{Vs(s, y) + Vy(s, y) f(s, y, v)} = 0

with boundary condition W (s, y) = J(s, y) for all (s, y) ∈ M . Let (t0, x0) ∈ Q0, u ∈ U(t0, x0) and x

the corresponding trajectory. Then, W (t, x(t)) is nondecreasing on t. If u∗ is a control in U(t0, x0)
defined on [t0, t∗1] with corresponding trajectory x∗ such that for any t ∈ [t0, t∗1]

Ws(t, x∗(t)) + Wy(t, x∗(t)) f(t, x∗(t), u∗(t)) = 0

then u∗ is an optimal control in calU(t0, x0) and V (s, y) = W (s, y).

Example 1:

min
‖u‖≤1

J(t0, x0, u) =
1
2
(x(τ))2

subject to ẋ(t) = u(t), x(t0) = x0

where ‖u‖ = max0≤t≤τ{|u(t)|}. The HJB equation is min|u|≤1 {Vt(t, x) + Vx(t, x)u} = 0 with

boundary condition V (τ, x) = 1
2x2. We can solve this problem by inspection. Since the only cost is

associated to the terminal state x(τ), and optimal control will try to make x(τ) as close to zero as

possible, i.e.,

u∗(t, x) = −sgn(x) =





1 x < 0
0 x = 0
−1 x > 0.

(Bang-Bang policy)
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We should now verify that u∗ is in fact an optimal control. Let J∗(t, x) = J(t, x, u∗). Then, it is

not hard to show that

J∗(t, x) =
1
2
(max{0 ; |x| − (τ − t)})2

which satisfies the boundary condition J∗(τ, x) = 1
2x2. In addition,

J∗t (t, x) = (|x| − (τ − t))+ and J∗x(t, x) = sgn(x) (|x| − (τ − t))+.

Therefore, for any u such that |u| ≤ 1 it follows that

J∗t (t, x) + J∗x(t, x)u = (1 + sgn(x)u) (|x| − (τ − t))+ ≥ 0

with the equality holding for u = u∗(t, x). Thus, J∗(t, x) is the value function and u∗ is optimal.

3 Feedback Control

In the previous example, the notion of a feedback control policy was introduced. Specifically, a
feedback control u is a mapping from Rn+1 to U such that u = u(t, x) and the system dynamics
ẋ = f(t, x,u(t, x)) has a unique solution for each initial condition (s, y) ∈ Q0. Given a feedback
control u and an initial condition (s, y), we can define the trajectory x(t; s, y) as the solution to

ẋ = f(t, x,u(t, x)) x(s) = y.

The corresponding control policy is u(t) = u(t, x(t; s, y)).

A feedback control u∗ is an optimal feedback control if for any (s, y) ∈ Q0 the control u(t) =
u∗(t, x(t; s, y)) solve the optimization problem (1)-(3) with initial condition (s, y).

Theorem 5 If there is an optimal feedback control u∗ and t1(s, y) and x(t1; s, y) are the terminal
time and terminal state for the trajectory

ẋ = f(t, x,u(t, x)) x(s) = y

then the value function V (s, y) is differentiable at each point at which t1(s, y) and x(t1; s, y) are
differentiable with respect to (s, y).

Proof: From the optimality of u∗ we have that

V (s, y) = J(t1(s, y), x(t1(s, y); s, y)).

The result follows from this identity and the fact that J is C1.
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4 The Linear-Quadratic Problem

Consider the following optimal control problem.

minx(T )′QT x(T ) +
∫ T

0

[
x(t)′Qx(t) + u(t)′R u(t)

]
dt (7)

subject to ẋ(t) = Ax(t) + B u(t) (8)

where the n× n matrices QT and Q are symmetric positive semidefinite and the m×m matrix R

is symmetric positive definite. The HJB equation for this problem is given by

min
u∈Rm

{
Vt(t, x) + Vx(t, x)′ (Ax + Bu) + x′Qx + u′R u

}
= 0

with boundary condition V (T, x) = x′QT x.

We guess a quadratic solution for the HJB equation. That is, we suppose that V (t, x) = x′K(t) x

for a n× n symmetric matrix K(t). If this is the case then

Vt(t, x) = 2K(t) x and Vx(t, x) = x′ K̇(t) x.

Plugging back these derivatives on the HJB equation we get

min
u∈Rm

{
x′ K̇(t) x + 2x′K(t)A x + 2x′K(t)B u + x′Qx + u′R u

}
= 0. (9)

Thus, the optimal control satisfies

2B′K(t) x + 2R u = 0 =⇒ u∗ = −R−1B′K(t) x.

Substituting the value of u∗ in equation (9) we obtain the condition

x′
(
K̇(t) + K(t)A + A′K(t)−K(t)BR−1B′K(t) + Q

)
x = 0 for all (t, x).

Therefore, for this to hold matrix K(t) must satisfy the continuous-time Ricatti equation in matrix
form

K̇(t) = −K(t)A−A′K(t) = K(t)BR−1B′K(t)−Q, with boundary condition K(T ) = QT . (10)

Reversing the argument it can be shown that if K(t) solves (10) then W (t, x) = x′K(t)x is a
solution of the HJB equation and so nt the verification theorem we conclude that it is equal to the
value function. In addition, the optimal feedback control is u∗(t, x) = −R−1B′K(t)x.
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5 The Method of Characteristics for First-Order PDEs

5.1 First-Order Homogeneous Case

Consider the following first-order homogeneous PDE

ut(t, x) + a(t, x)ux(t, x) = 0, x ∈ R, t > 0,

with boundary conditions u(x, 0) = φ(x) for all x ∈ R. We assume that a and φ are “smooth
enough” functions. A PDE problem in this form is referred to as a Cauchy problem.

We will investigate the solution to this problem using the method of characteristics. The charac-
teristics of this PDE are curves in the x− t plane defined by

ẋ(t) = a(x(t), t), x(0) = x0. (11)

Let x̃ = x̃(t) be a solution with x̃(0) = x0. Let u be a solution to the PDE, we want to study the
evolution of u along x̃(t).

u̇(t, x̃(t)) = ut(t, x̃(t)) + ux(t, x̃(t)) ˙̃x(t) = ut(t, x̃(t)) + ux(t, x̃(t)) a(x̃(t), t) = 0.

So, u(t, x) is constant along the characteristic curve x̃(t), that is,

u(t, x̃(t)) = u(0, x̃(0)) = φ(x0), ∀t > 0. (12)

Thus, if we are able to solve the ODE (13) then we would be able to find the solution to the original
PDE.

Example 2: Consider the Cauchy problem

ut + x ux = 0, x ∈ R, t > 0

u(x, o) = φ(x), x ∈ R.

The characteristic curves are defined by

ẋ(t) = x(t), x(0) = x0,

so x(t) = x0 exp(t). So for a given (t, x) the characteristic passing through this point has initial

condition x0 = x exp(−t). Since u(t, x(t)) = φ(x0) we conclude that u(t, x) = φ(x exp(−t)).
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5.2 First-Order NonHomogeneous Case

Consider the following nonhomogeneous problem.

ut(t, x) + a(t, x) ux(t, x) = b(t, x), x ∈ R, t > 0

u(x, 0) = φ(x), x ∈ R.

Again, the characteristic curves are given by

ẋ(t) = a(x(t), t), x(0) = x0. (13)

Thus, for a solution u(t, x) of the PDE along a characteristic curve x̃(t) we have that

u̇(t, x̃(t)) = ut(t, x̃(t)) + ux(t, x̃(t)) ˙̃x(t) = ut(t, x̃(t)) + ux(t, x̃(t)) a(x̃(t), t) = b(t, x̃(t)).

Hence, the solution to the PDE is given by

u(t, x̃(t)) = φ(x0) +
∫ t

0
b(τ, x̃(τ)) dτ

along the characteristic (t, x̃(t)).

Example 3: Consider the Cauchy problem

ut + ux = x, x ∈ R, t > 0

u(x, o) = φ(x), x ∈ R.

The characteristic curves are defined by

ẋ(t) = 1, x(0) = x0,

so x(t) = x0 + t. So for a given (t, x) the characteristic passing through this point has initial

condition x0 = x− t. In addition, along a characteristic x̃(t) = x0 + t starting at x0, we have

u(t, x̃(t)) = φ(x0) +
∫ t

0

x̃(τ) dτ = φ(x0) + x0 t +
1
2
t2.

Thus, the solution to the PDE is given by

u(t, x) = φ(x− t) +
(

x− t

2

)
t.
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5.3 Applications to Optimal Control

Given that the partial differential equation of dynamic programming is a first-order PDE, we can
try to apply the method of characteristic to find the value function. In general, the HJB is not a
standard first-order PDE because of the maximization that takes place. So in general, we can not
just solve a simple first-order PDE to get the value function of dynamic programming. Nevertheless,
in some situations it is possible to obtain good results as the following example shows.

Example 1:(Method of Characteristics) Consider the optimal control problem

min
‖u‖≤1

J(t0, x0, u) =
1
2
(x(τ))2

subject to ẋ(t) = u(t), x(t0) = x0

where ‖u‖ = max0≤t≤τ{|u(t)|}.

A candidate for value function W (t, x) should satisfy the HJB equation

min
|u|≤1

{Wt(t, x) + Wx(t, x)u} = 0,

with boundary condition W (τ, x) = 1
2x2.

For a given u ∈ U , let solve the PDE

Wt(t, x;u) + Wx(t, x; u)u = 0, W (τ, x;u) =
1
2
x2. (14)

A characteristic curve x̃(t) is found solving

ẋ(t) = u, x(0) = x0,

so x̃(t) = x0 + ut. Since the solution to the PDE is constant along the characteristic curve we

have

W (t, x̃(t); u) = W (τ, x̃(τ); u) =
1
2
(x(τ))2 =

1
2
(x0 + uτ)2.

The characteristic passing through the point (t, x) has initial condition x0 = x− ut, so the general

solution to the PDE (14) is

W (t, x;u) =
1
2
(x + (τ − t)u)2.

Since our objective is to minimize the terminal cost, we can identify a policy by minimizing

W (t, x; u) over u above. It is straightforward to see that the optimal control (in feedback form)

satisfies

u∗(x, t) =





−1 if x > τ − t
−x
τ−t if |x| ≤ τ − t

1 if x < t− τ.

The corresponding “candidate” for value function W ∗(t, x) = W (t, x;u∗(t, x)) satisfies

W (t, x) =
1
2

(
max{0 ; |x| − (τ − t)}

)2

which we already know satisfies the HJB equation.
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6 Extensions

6.1 Connecting the HJB Equation with Pontryagin Principle

We consider the optimal control problem in Lagrange form. In this case, the HJB equation is given
by

min
u∈U

{Vt(t, x) + Vx(t, x) f(t, x, u) + L(t, x, u)} = 0,

with boundary condition V (t1, x(t1)) = 0.

Let us define the so-called Hamiltonian

H(t, x, u, λ) := λf(x, t, u)− L(t, x, u).

Thus, the HJB equation implies that the value function satisfies

max
u∈U

H(t, x, u,−Vx) = 0,

and so the optimal control can be found maximizing the Hamiltonian. Specifically, let x∗(t) be
the optimal trajectory and let P (t) = −Vx(t, x∗(t)), then the optimal control satisfies the so-called
Maximum Principle

H(t, x∗(t), u∗(t), P (t)) ≤ H(t, x∗(t), u, P (t)), for all u ∈ U.

In order to complete the connection with Pontryagin principle we need to derive the adjoint equa-
tions. Let x∗(t) be the optimal trajectory and consider a small perturbation x(t) such that

x(t) = x∗(t) + δ(t), where |δ(t)| < ε.

First, we note that the HJB equation together with the optimality of x∗ and its corresponding
control u∗ implies that

H(t, x∗(t), u∗(t),−Vx(t, x∗(t)))− Vt(t, x∗(t)) ≥ H(t, x(t), u∗(t),−Vx(t, x(t)))− Vt(t, x(t)).

Therefore, the derivative of H(t, x(t), u∗(t),−Vx(t, x(t))) + Vt(t, x(t)) with respect to x so be equal
to zero at x∗(t). Using the definition of H this condition implies that

−Vxx(t, x∗(t)) f(t, x∗(t), u∗(t))−Vx(t, x∗(t)) fx(t, x∗(t), u∗(t))−Lx(t, x∗(t), u∗(t))−Vxt(t, x∗(t)) = 0.

In addition, using the dynamics of the system we get that

V̇x(t, x∗(t)) = Vtx(t, x∗(t)) + Vxx(t, x∗(t)) f(t, x∗(t), u∗(t)),
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therefore

V̇x(t, x∗(t)) = Vx(t, x∗(t)) f(t, x∗(t), u∗(t)) + L(t, x∗(t), u∗(t)).

Finally, using the definition of P (t) and H we conclude that P (t) satisfies the adjoint condition

Ṗ (t) =
∂

∂x
H(t, x∗(t), u∗(t), P (t)).

The boundary condition for P (t) are obtained from the boundary conditions of the HJB, that is,

P (t1) = −Vx(t1, x(t1)) = 0. (transversality condition)

6.2 Economic Interpretation of the Maximum Principle

Let us again consider the control problem in Lagrange form. In this case the performance measure
is

V (t, x) = min
∫ T

0
L(t, x(t), u(t)) dt.

The function L corresponds to the instantaneous “cost” rate. According to our definition of P (t) =
−Vx(t, x(t)), we can interpret this quantity as the marginal profit associated to a small change on
the state variable x. The economic interpretation of the Hamiltonian is as follows:

H dt = P (t) f(t, x, u) dt− L(t, x, u) dt

= P (t) ẋ(t) dt− L(t, x, u) dt

= P (t) dx(t)− L(t, x, u) dt.

The term −L(t, x, u) dt corresponds to the instantaneous profit made at time t at state x is control u

is selected. We can look at this profit as a direct contribution. The second term P (t) dx(t) represents
the instantaneous profit that it is generated by changing the state from x(t) to x(t) + dx(t). We
can look at this profit as an indirect contribution. Therefore H dt can be interpreted as the total
contribution made from time t to t + dt given the state x(t) and the control u.

With this interpretation, the Maximum Principle simply state that an optimal control should try to
maximize the total contribution for every time t. In other words, the Maximum Principle decouples
the dynamic optimization problem in to a series of static optimization problem, one for every time
t.

Note also that if we integrate the adjoint equation we get

P (t) =
∫ t1

t
Hx dt.

So P(t) is the cumulative gain obtained over [t, t1] by marginal change of the state space. In this
respect, the adjoint variables behave in much the same way as dual variables in LP.
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