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Abstract

In this paper we examine the research and results of dynamic pricing policies and their rela-
tion to Revenue Management. The survey is based on a generic Revenue Management problem
in which a perishable and non-renewable set of resources satisfy stochastic price-sensitive de-
mand processes over a finite period of time. In this class of problems, the owner (or the seller)
of these resources uses them to produce and offer a menu of final products to the end customers.
Within this context, we formulate the stochastic control problem of capacity that the seller
faces: how to dynamically set the menu and the quantity of products and their corresponding
prices in order to maximize the total revenue over the selling horizon.

1 Introduction

The aim of this paper is to review the growing literature on Dynamic Pricing Policies and its
connection to Revenue Management. In general terms, the Revenue Management model that we
investigate considers the problem faced by a seller who owns a fixed and perishable set of resources
that are sold to a price sensitive population of buyers. In this framework where capacity is fixed,
the seller is mainly interested in finding an optimal pricing strategy that maximizes the revenue
collected over the selling horizon.
The motivation for this work is our strong belief that pricing policies are today, more than ever
before, a fundamental component of the daily operations of manufacturing and service companies.
The reason is probably because price is one of the most effective variables that managers can
manipulate to encourage or discourage demand in the short run. Price is not only important from
a financial point of view but also from an operational standpoint. It is a tool that helps to regulate
inventory and production pressures. Airline companies and retail chains are good examples of
industries where dynamic pricing policies are becoming key drivers of the companies’ performance.
Not surprisingly, pricing models have become increasingly popular within the Management Science
community. Researchers have realized that classical operational problems such as optimal capacity
and inventory management or controlling congestion in a queueing network, among many others,
cannot be decoupled from marketing activities and especially pricing decisions. This broad range
of applications has generated an important volume of work. We believe it is time to survey the
field and to present the main results and their practical implications. We do not attempt, however,
an exhaustive review of the vast literature on pricing. Instead we focus on the work that has been
done in the context of Revenue Management.
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The rapid evolution of information technologies and the corresponding growth of the Internet and
E-commerce are sources of inspiration for a survey on dynamic pricing models for two main reasons.
First, in this electronic world, it is possible to collect valuable information (about demand, inventory
levels, competitors strategies, etc.) and process it in real time. This new reality allows –and forces–
managers to act and react dynamically to changes in the marketplace by adjusting any variable
under control, especially prices. Furthermore , Internet based selling systems make the logistics of
dynamic pricing much easier. The costs associated with relabelling the prices of the products and
informing customers about these changes have dropped significantly in the electronic environment
when compared to traditional brick and mortar businesses (e.g. Brynjolfsson and Smith [18]). On
the customer side, Internet price search intermediaries or web aggregators offer customers easy
access to better information about product variety and price lists (e.g., priceline.com). As a result,
new potential applications for Revenue Management techniques are emerging in connection to the
Internet. We consider it important to present the fundamental aspects of dynamic pricing models
to an audience that is currently working and developing E-commerce.
From a historical perspective, the interest in Revenue Management practices started with the
pioneering research of Rothstein [69]-[70] and Littlewood [52] on airline and hotel overbooking.
However, it was probably after the work of Belobaba [6]-[8] and the American Airlines success [72]
that the field really took off. The airline industry provided researchers with a concrete example of
the tremendous impact that Revenue Management tools can have on the operations of a company
(e.g., Smith et al. [72]). The publication of a survey paper by Weatherford and Bodily [83], where
a taxonomy of the field and an agenda for future work were proposed, was another symptom of
this revival. At this stage, however, much of the work was done on capacity management and over-
booking with little discussion of dynamic pricing policies. In essence, prices (fares) in these original
models were assumed to be fixed and managers were in charge of opening and closing different
fare classes as demand evolved. During the 90’s, the increasing interest in Revenue Management
become evident in the different applications that were considered. Models became industry specific
(e.g. airlines, hotels, or retail stores) with a higher degree of complexity (e.g. multi-class and multi-
period stochastic formulations). Furthermore, it was in the last decade that pricing policies really
became an active component of the Revenue Management literature (e.g., Gallego and van Ryzin
[36], Bitran and Mondschein [15], Feng and Gallego [27]-[28]). Today, dynamic pricing policies in
a Revenue Management context is an active field of research that has reached a certain level of
maturity.
In terms of applications, dynamic pricing practices are particularly useful for those industries having
high start-up costs, perishable capacity, short selling horizons, and a demand that is both stochastic
and price sensitive. Succinctly, the Revenue Management problem has been phrased as “selling the
right product to right customer at the right time”. On one hand, the sellers would like to sell their
products to those customers having a high valuation so that high margins can be achieved. On the
other hand, if they wait too long for those high valuation customers to appear, they might end the
selling period with unsold units that could have been sold to low valuation customers. Clearly, for
this trade off to be non trivial, both perishable capacity and stochastic demand are needed. As
we will discuss in this paper, it is precisely in this environment that dynamic pricing strategies are
especially useful to balance utilization and profitability of the available capacity.
As we already mentioned, the airline industry pioneered the use of Revenue Management techniques
in terms of capacity/seat control and dynamic pricing. Today, Revenue Management has spread
out naturally to other industries such as retailers (e.g. Bitran and Mondschein [15], Subrahmanyan
and Shoemaker [75]), car rental agencies (e.g. Carol and Grimes [19], Geraghty and Johnson
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[39]), hotels (e.g., Bitran and Mondschein [12]), Bitran and Gilbert [14]), bandwidth and Internet
providers (e.g., Nair and Bapna [62]), passenger railways (e.g., Ciancimino et al. [21]), cruise lines
(e.g., Ladany and Arbel [48]), electric power supply (e.g., Schweppe [71], Smith [73], Oren and
Smith [63]). Although different in many respects, these industries all share the basic properties
of the Revenue Management problems that we consider in this work, namely, perishable products,
finite selling horizons, and price sensitive and stochastic demand.
We conclude this introduction by positioning this paper with respect to other similar works that
have been published. In terms of goals, our objective is to present the main results that have
been reported in the literature during the last decades on dynamic pricing models. We concentrate
our efforts on understanding the main drivers and properties of optimal pricing strategies. In
this respect, we do not discuss in detail the somewhat related research that has been done in
the area of inventory and capacity control, although some related results for network Revenue
Management problems are presented in section §3.2.2. Our work differs from other survey papers
such as Weatherford and Bodily [83] or McGill and van Ryzin [56] since we do not attempt to
provide a taxonomy or an exhaustive enumeration of all the publications in the field. Similar in
many aspects to our work is the survey on dynamic pricing models by Elmaghraby and Keskinocak
[26] where a broad view of the field is presented from a set of different angles such as pricing policies
for long and short life cycle products, or combined inventory and pricing decisions, or pricing in
markets with rational customers. However, we preferred to narrow the scope of our work to dynamic
pricing models in a Revenue Management context so that we can explicitly present and discuss the
main results that have been obtained. In this regard, we believe that our work provides a helpful
summary of this field to those readers (researchers or practitioners) interested in getting a general
overview of the research that has been done thus far. Nevertheless, we believe that a good survey
should not only introduce the field and main results to the nonspecialists but also provide new
insights and guidance for future research to the experts. For this purpose, we have complemented
our review with some new results, and we have included a list of potential new directions of research
in section §4.
The remainder of this paper is organized as follows. We develop in section §2 a generic formulation
of the Revenue Management problem that provides a global view of the different elements and their
interrelationship. In particular, we present a general pricing problem and describe how the different
components such as demand attributes, product characteristics, information, and constraints affect
the formulation and its applicability. Next, in section §3 we review the literature and the main
results. We approach this review from different angles such as deterministic versus stochastic
models and single versus multi products models. Finally, in section §4, we summarize our results
and identify open problems and new potential directions of research.

2 A Generic Model

In this section, we describe the Revenue Management model under consideration. The model that
we present is sufficiently general to cover the research that we review in section §3 as a special
case. Furthermore, some of the elements of our generic formulation in §2.6 have not yet been fully
addressed in the literature. In this respect, our motivation for this apparent excess of generality is
twofold. First of all, we believe that our generic framework is more appealing to those nonspecialist
readers interested in getting the “big picture” behind the Revenue Management problem. Secondly,
the contrast between this general model and the specific research presented in §3 can be used to
identify potential research opportunity. In section §4, we suggest some new directions.
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2.1 Supply

Consider a seller or market player (e.g., an airline, hotel, car rental company, retail store, or an
Internet service provider) which has a fixed amount of initial capacity that is used to satisfy a
price-sensitive demand† during a certain selling period H = [0, T ]. We model this initial capacity
as an m-dimensional vector C0 = (c1(0), . . . , cm(0)) of resources where ck(0) is the initial amount of
resource k available. Capacity, in our context, is a rather broad concept that might include number
of rooms in a hotel, available seats for a specific origin-destination flight in a given day, or simply
the number of white shirts in stock at a garment store.
Under the “standard” Revenue Management problem that we consider, capacity is fixed and any
strategic considerations regarding how to acquire the initial level C0 have been excluded. Capacity
is essentially given and the seller is committed exclusively to finding the best way to sell it. This
assumption is by no means critical if we consider that in many industries capacity is flexible only in
the long run. Moreover, capacity decisions and price decisions take place on different time scales.
Issues regarding the size of a hotel or an airplane or the number of shirts to purchase from an
overseas supplier are decided long before demand is realized and price policies are implemented.
Critical to the revenue management problem are the characteristics of this available capacity and
how it is used to create a set (or menu) of final products. As we will see shortly, in some cases
much of the complexity of the revenue management problem comes from selecting the correct menu
of products. From a pricing perspective, two important attributes of the available capacity are its
degree of flexibility and its perishability.

Flexibility measures the ability to produce and offer different products using the initial capacity
C0. We say that capacity is dedicated if there is a one-to-one correspondence between capacity and
final product. For example, a retailer that purchases 500 white T-shirts to sell during the next
summer season has dedicated capacity. On the other hand, we say that capacity is flexible if it
can be used to produce different products or satisfy different customers’ needs. For example, an
Internet provider owning bandwidth capacity uses this specific resource to offer a wide range of
products from email services to video conferences. In general, flexibility is a continuous attribute
ranging from highly dedicated (retailing) to highly flexible (the bandwidth provider).
It should be intuitively obvious that flexibility is a desired feature. In essence, flexible capacity
allows the seller to allocate scarce resources efficiently based on observed demand rather than fore-
casted demand (production postponement). In practice, however, flexibility is not always possible.
A retailer buying from an overseas supplier needs to order months before the beginning of the
selling season. In the hotel industry, the allocation of the available space into luxury, suite, and
standard rooms is essentially decided when the hotel is built.
From a pricing standpoint, flexibility increases the complexity of the problem. As we will discuss
later, the action of selling a product has associated two quantities: (i) an immediate revenue equal
to the price and (ii) an opportunity cost which is the monetary penalty of using capacity today that
could be used to satisfy future demand. When capacity is dedicated, selling product i does not affect
the ability to supply product j. Thus, the opportunity cost of selling i involves essentially product
i and its demand. However, when capacity is flexible selling product i decreases the resources
available to produce product j. This interaction among products makes the computation of the
opportunity cost and the optimal pricing strategy much harder.

Perishability relates to the (lack of) ability to preserve capacity over time. For example, an

†Demand can also depend on other variables controlled by the seller like capacity itself.
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empty seat on a departing flight is a unit of capacity that cannot be stocked for a future flight.
In general, a distinctive feature of the Revenue Management problem is the perishability of the
available capacity. A simple way to treat this perishability is making capacity a time-dependent
quantity. For instance, a hotel’s unit of resource might be “Room 106 on Friday night, May 10,
2002” while an airline’s unit of capacity could be “Seat 22B on flight #1243 departing from Boston
to Chicago at 4:00pm on Tuesday, May 14, 2002”. How much detail is used to define the units
of capacity depends on customers’ preferences and the seller’s ability to profit from their choice.
For example, two economic-class seats 22A (window) and 22B (aisle) on a given flight could be
consider two different resources and priced differently if customers have significant differences on
their preferences for window and aisle seats. In practice, airlines do not discriminate based on this
feature and both seats 22A and 22B are considered two units of the same resource: economy-class
seats. Retailers, on the other hand, are much more active in this way, charging different prices for
a blue shirt and for a red shirt (same model, brand, and size).
From a modelling perspective, perishability increases the dimension of the problem, making capac-
ity, and therefore final products, time-dependent quantities. In our dynamic setting, perishability
is an inherent property of the model, although it might be irrelevant in some cases, e.g., when
capacity is fully inventoriable and the selling horizon goes to infinity.
As time progresses and resources are consumed (they are sold or they perish), capacity decreases
and we denote by Ct = (c1(t), . . . , cm(t)) the available capacity at time t.

2.2 The Product

Following our previous description of capacity, a product in this context is a sub-collection of the
available resources. Based on Gallego and van Ryzin’s [37] production model, we consider an m×n
matrix A = [aij ] such that aij represents the amount of resource i used to produce one unit of
product j. That is, every column j of A represents a different product –say product A·j– and the
collection M = {A·1, . . . , A·n} is the menu of products offered by the seller. We will consider for
the moment that there is no explicit costs associated to the production of the final products. This
is, by the way, a common assumption in the literature. In many situations, this assumption is not
very restrictive since production costs are negligible, or they are linear and can be incorporated
directly into the final price.
Given the available initial capacity C0 the first important decision of the seller is to define the menu
M of products that will be offered to the end customers. A näıve approach would be to consider
any possible subset of C0 as a product, i.e., M = {a ∈ IRm : 0 ≤ a ≤ C0}. However, even if a
demand exists for every conceivable subset of C0, the task of setting a different price strategy for
every combination is computationally demanding and hard to implement. On one hand, managing
a short list of products simplifies the pricing problem. On the other hand, a larger list is more
suitable for demand-skimming purposes. The right mix of products should balance this trade-off.
For instance, the simplest approach would be to set A = Ik, the (k × k) identity matrix. In this
case, every resource is dedicated and offered as a single product. Customers are left with the task
of purchasing the appropriate combination of each resource depending on their specific needs. In
this case a minimum set of prices is needed, one for each resource. The seller, however, can try to
do better by creating bundles, which are specific subsets of resources that match specific customers’
needs. By doing so, the seller is able to target the market and increase demand. In this case, a
larger set of prices has to be specified with the corresponding increment in management costs.
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2.3 Information

Crucial to any dynamic pricing policy is the knowledge of the system and its evolution over time.
Real-time pricing necessarily requires real-time demand data, the available capacity, and any other
relevant factors (e.g., competitors’ strategies, weather). Thus, an information system capable of
collecting the right information and making it available at decision points is critical. There is
little doubt that one of the major factors that influenced the rapid growth of Yield Management
in the airline industry was the development of electronic information systems capable of gathering
information about demand and ticket reservation over the large network of travel agencies (e.g.,
SABRE system for American Airlines, Smith et al. [72]). Similarly, as reported by Raman et al.
[66], retailers are investing large amounts of money (close to $30 billion a year) to improve IT
systems and reduce the systematic problem of inaccurate inventory records.
In our Revenue Management setting, short product life-cycles and perishability impose extra pres-
sure to improve the quality and management of information such as demand forecast and inventory
position. For instance, standard forecast methods rely heavily on demand history that is not
necessarily available in this short life-cycle environment, for example, retailers selling fashionable
products (e.g., Fisher and Ramana [35], Kurawarwala and Matsuo [55]).
Given an initial capacity C0, a product menu M, and a demand and price processes, we define
the observed history Ht of the selling process as the set of all relevant information available up to
t. This history should include at least the observed demand process and available capacity, and
it can also include some additional information such as demand forecasts. Most of the research
has focused on the simple but tractable Markovian case where Ht = Ct, in which only remaining
capacity is relevant for pricing decisions. However, path-dependent models are specially useful
when demand distribution is unknown and a learning process is incorporated to improve demand
estimates. In general, we expect some degree of information asymmetry between the seller and
the buyers. Issues regarding the quality of the product or the level of inventory, for instance, are
usually private information held by seller. On the other hand, customers have private information
about their product valuations and budget. This asymmetry of information can be modelled using
two sub-histories Hs

t ,Hb
t ⊆ Ht representing the information available to the seller and customers,

respectively, at time t.

2.4 Demand

On the demand side, we divide the set of potential customers into different segments each one
having its own set of attributes including needs, budget, and quality expectations. We define
a d-dimensional stochastic process N(t,Ht) = (N1(t,Ht), . . . , Nd(t,Ht)) where Nj(t,Ht) is the
cumulative potential demand up to time t from family j given the available information Ht.
Depending on the price (and probably other attributes such as quality) potential customers will
decide whether or not to purchase the products. Using Lazear [49] terminology, potential customers
are divided into (i) shoppers which are those customers that search for products but do not buy
because of price or quality considerations and (ii) buyers which are those customers that are
effectively willing to buy a product. In general, pricing policies should be computed on the bases
of both potential customers and buyers. However, in most applications the seller is only capable of
collecting information about the set of buyers according to sales data‡.

‡One exception is the catalog industry, here the seller controls the population of potential consumers according to
the mailing policy (e.g., Bitran and Mondschein [14]). E-commerce is another example since information on shoppers
(as opposed to buyers) can be obtained via the Internet, by storing the path customers follows on the website.
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In order to model this purchasing process, we define an n × d matrix B(P ) = [bij ] where bij

represents the units of product i ∈ M requested by a customer in family j = 1, . . . , d; the price
process Pt = {ps : s ∈ [0, t]} is described in detail in section §2.5 below. It is important to note
that bundling considerations are directly linked to the structure of this matrix B(P ) through its
dependence on the product menu M. Combining the vector of potential demand N(t,Ht) and the
matrix B(P ), we define an n-dimensional vector D(t, P,H) ≡ B(P ) N(t,Ht) that represents the
effective cumulative demand process in [0, t] at the product level.
Finally, we provide the seller with the ability to partially serve demand if it is profitable to do so.
For instance, retailers do not display their entire inventory during promotion days. In the same way,
airlines are able to reject low-fare reservations (closing a fare) even if they have available capacity.
In light of this, we define an n-dimensional vector S(t) that represents the cumulative sales up to
time t. Given the demand, sales, and price processes, the dynamics of the available capacity are
governed by the following conditions.

Ct = C0 −A S(t) and S(t) ≤ D(t, P,Ht) for all t ∈ [0, T ]. (1)

In some contexts, the distinction between sales S and demand D is unnecessary. For instance,
if the price can be adjusted continuously and unrestrictedly, the seller will prefer to increase the
price rather than reject customers. In this case, the price is the only variable that the seller needs
to control. For example, in the yield management literature of seat control, the notion of a null
price§ has been introduced to model the accept/reject decision in the context of dynamic pricing
policies (see section §3.2.2). We note that if the seller is constrained in the way that s/he can
adjust the price (see §2.5 below for some examples of constraints) then the distinction between
sales and demand becomes relevant and the accept/reject decision is not necessarily replicable
using a dynamic pricing strategy.
In terms of our assumptions, the use of a price-sensitive demand D(t, P,Ht) implies that the
seller has monopolistic market power over the set of buyers. Competition might be present in this
formulation, but it is hidden and only the residual demand N(t,Ht) faced by the seller is considered.
We do not incorporate any strategic behavior from the customers’ side, demand might depend on
the whole observed history of the selling process but we do not model the utility maximization
process solved by the customers. Demand in this respect is assumed to be given exogenously.
Similarly, customers are assumed to be price takers, meaning they observe the price list offered by
the seller and react by buying or not buying some of the products. We will postpone the discussion
of other allocation mechanisms such as auction models to section §4.
Certainly, good modeling and forecasting of demand are key for pricing purposes. The alternative
formulations available in the literature are unlimited especially in the deterministic demand case.
The simplest approach is probably to decompose this deterministic demand into a set of different
factors, each one addressing a specific aspect of the problem (e.g., Eliashberg and Jeuland [25],
Kalish [44], Jain and Rao [42]):

Ddet(t, p,Ht) = D(t)G(p)F(Ht), (2)

where D(t) is an estimate of the market size as a function of time, G(p) captures price elasticity
effects, and F(Ht) models the influence of the available information on customers’ purchasing
behavior.
From micro economics theory (e.g. Mas-Colell et al. [54]), the notions of consumers’ utility,
elasticity, and product substitution form the bases of our understanding and modeling of G(p). For

§A high price that makes demand equal to zero almost surely.
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example, exponential demand models are commonly used to model demand in the retail sector (e.g.,
Smith and Achabal [74]). That is, G(p) = exp(−ηp), where η is a measure of demand elasticity
per unit of price. Other models using constant elasticity, G(p) = p−η, have also been proposed
(e.g., Bitran et al. [16]). A functional form for F(Ht), for the case Ht = Ct, was developed and
empirically tested in Smith and Achabal [74].
On the other hand, the modeling of D(t) depends on the seasonality of demand and the life cycle of
the product. Diffusion models (e.g., Bass [3]) are widely used to model this evolution of demand.
In this framework, a population of consumers of size N gradually purchases the product. The rate
at which consumers buy the product depends linearly on the number of previous purchases (word-
of-mouth or diffusion effects) and the fraction of innovators existing in the population. Innovators
are those consumers that buy the product independently of the other consumers’ actions. In Bass’s
[3] diffusion model, the rate of purchase at time t is given by

dD(t)
dt

= pN + (q − p)D(t)− q

N
D2(t), (3)

where p is the fraction of innovators and q is a measure of the diffusion effect (imitation). The
combination of this diffusion model with price has been proposed in Bass [4] and Jeuland and
Doland [43].
The stochastic behavior of the demand has been added to these deterministic models for discrete and
continuous time formulations. For the discrete time case, the standard approach is to represent
demand as the sum of a deterministic part and a zero-mean stochastic component. Using the
notation dD(t, p,H) for the marginal demand in period t, the stochastic additive noise model is
given by

dDstoc(t, p,Ht) = dDdet(p, t,Ht) + ξ(t, p,Ht)︸ ︷︷ ︸
Random Noise

. (4)

The random noise, which usually follows a zero-mean normal random variable, depends on price
and time to reflect the changes on demand uncertainty over the life cycle. Another alternative
model is the multiplicative noise model

dDstoc(t, p,Ht) = dDdet(t, p,Ht) ξ(t, p,Ht). (5)

In this case, the expected value random noise is normally set to one. Combinations of the additive
and multiplicative models can also be used.
For the continuous time case, the most common formulation assumes that demand follows a Poisson
process with a deterministic intensity that depends on price and time (e.g., Gallego and van Ryzin
[36]-[37], Bitran and Mondschein [15], Feng and Gallego [28]), although it is possible to extend the
discrete time formulation above replacing the normally distributed random noise by a continuous
time Wiener process (e.g., Raman and Chatterjee [67]).

2.5 Pricing Strategies

In our dynamic setting, a pricing policy P := PT = {pt : t ∈ [0, T ]} is a collection of mappings
pt(·|Ht) : M→ IR+ where pt(i|Ht) is the price of product i ∈ M at time t given a current history
Ht. Depending on the application, some conditions have to be imposed to ensure that the resulting
pricing policy P is consistent with standard practices in industry. The following is a list of the
most common constraints that we have come across during our literature review and industrial
experience.

8



• Finite set of prices: In many applications the seller can only select prices from a finite list
of admissible prices, i.e., Pt = {p1, . . . , pKt} (e.g., Chatwin [20], Feng and Xiao [30]-[31],
Feng and Gallego [28]). The reasons range from marketing considerations such as customers’
perception of prices ($19.99 versus $20.00) to managerial aspects since a discrete list of prices
is easy to implement and control.

• Maximum number of price changes: Most companies restrict the number of price changes
during the selling horizon (e.g. Feng and Gallego [27]). In some cases, this restriction is not
critical since two-price policies have been shown to be asymptotically optimal (e.g., Gallego
and van Ryzin [36]). In practice, companies restrict the number of price changes because
changing prices too often is difficult and costly from an operational standpoint. We should
mention, however, that for the growing Internet-based sale systems, the costs of relabelling
the prices of products and those associated with informing customers about these changes
are dropping considerably (e.g. Brynjolfsson and Smith [18]).

• Markdowns, Markups, and Promotions: It is common practice in some industries to enforce a
predefined path of the price over time. For instance, retailers usually adopt a markdown pol-
icy, or clearance policy, that makes the prices of the products to decrease monotonically over
time (e.g., Bitran and Mondschein [15]). In general, these markdown policies are appropriate
for those industries which face customers whose willingness to pay for the product diminishes
over the selling season such as the retailing. On the contrary, airline companies prefer to
mark up their prices in order to discriminate among travellers and business passengers. In
this case, customers’ willingness to pay increases over time since the more profitable business
segment tends to make last minute travel arrangements. Markdowns or markups are rarely
advertised, and customers become aware of these variations only through past experiences and
word-of-mouth. Promotions, on the other hand, are discounts that companies offer at specific
moments in time (such as Mother’s Day). These discounts are advertised and reversible.

• Joint Price Constraints: In some situations, different products cannot be priced independently.
This happens naturally with bundles since the price of the bundle should depend on the
price of the different components. For instance, there are practical issues, such as marketing
considerations or competitors’ strategies, that can force the price of the bundle to be at least
x% (say 10%) cheaper than the sum of the price of the components. In this case, if product
i ∈ M is a bundle resulting from packing together all the products j ∈ Bi ⊆ M, then the
bundling constraint on the price is as follows.

pt(i) ≤ x
∑

j∈Bi

pt(j) for all t ∈ [0, T ]. (6)

Another case where joint price constraints arise naturally is when the same product is offered
at different locations that have independent demand. In this case, it can be argued that the
product in location k is different than the product in location l because they face different
demand processes and therefore a different price can be set at each location. In practice,
however, companies try to avoid this type of geographical discrimination because of image
and reputation issues (Bitran et al. [16]). In this case, the functional constraint that is added
to the model is

pt(k) = pt(l) for all t ∈ [0, T ]. (7)

Joint price constraints can also occur over time. For example in some industries price is forced
to follow a monotonic path. The path might be decreasing, such as permanent markdowns
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in the retail sector (Mantrala and Surya [53]), or increasing as it happens in the airline
industry. In general, most companies try to avoid pricing policies that may be viewed as
“unfair” by the end customers. Situations where two first-class passengers seated together
after having paid significantly different prices for their seats can have a negative impact on
customers’ perception (especially for the passenger having the expensive ticket). To minimize
this problem, the airline company could consider pricing policies that satisfy the following
condition.

pt − ps ≤ ξ for all t, s ∈ [0, T ], (8)

where ξ is an upper bound on the variability of the pricing policy.

• Cost-Based Pricing: Although capacity is a sunk cost in our setting and in most of the appli-
cations that we consider, there is still some tendency in practice to set prices based on costs.
The reason is probably a mixture of managers’ incentives based on margins and the classical
advice from economic theory where marginal cost plays a central role in pricing decisions. It
should be intuitively obvious, however, that once capacity is determined, then pricing policies
should only try to maximize the revenue without any cost consideration (except for produc-
tion costs that we have assumed are negligible). In some cases, however, there are legal
restrictions to price below cost, and so cost-based pricing is exogenously imposed. A simple
cost-based pricing constraint (that we have come across working in the apparel industry) is
given by pt ≥ (1 + x) r, where r is the unit cost of the product and x is a minimum margin
contribution imposed on the product. Note that if x and r are fixed, then we can redefine
the price as pt ← pt − (1 + x) r. Under this net margin price formulation, the cost-based
constraint above reduces to the nonnegativity of the pricing policy which is always satisfied
in our revenue maximization context.

In general, we will denote by P the set of all admissible pricing policies, those that satisfy all the
relevant constraints.

2.6 Revenue Management Formulation

Given the available capacity C0, the cumulative demand process N(t), the menu of available prod-
ucts M, and a set of admissible policies P, the seller’s objective is to find a pricing strategy Pt

that maximizes the total revenue collected from selling the products to the customers. In addition,
the seller has the ability to partially serve demand, and so the selling process St is also part of the
decision variables. The problem faced by the seller is to find the solution to the following optimal
control problem.

sup
P,S

EN

[∫ T

0
pt dS(t)

]
(9)

subject to: Ct = C0 −AS(t) ≥ 0 for all t ∈ [0, T ], (10)
0 ≤ S(t) ≤ D(t, P,Ht) for all t ∈ [0, T ], (11)
P ∈ P, and S(t) ∈ Ht. (12)

We first note that the model corresponds to a revenue maximization problem. The objective (9)
is simply the expected revenue collected from selling the products over the available selling period
[0, T ]. As we mentioned in §2.1 all considerations associated with acquiring the initial level of
capacity C0 have been excluded.
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Another key element of this formulation is the implicit risk-neutral behavior of the seller. The
seller’s objective in (9) is to maximize expected revenue without any consideration on the variability
of the resulting output. We made this assumption to stay in line with the literature where risk
neutrality is by far the most commonly used formulation. In those situations where the seller is
constantly solving this revenue management problem (e.g., airlines managing thousands of flights a
year or retailers selling thousands of SKU’s every season) the risk-neutral formulation is certainly
appropriate. Mathematical tractability is another reason for this simple modelling of the seller’s
preferences. We will return to this assumption later in section §4 where we discuss the extension
of this standard revenue management formulation to the more general case of utility management.
Finally, we point out that the single source of uncertainty in this formulation is on the demand
side. We conclude this section, with a pictorial representation on Figure 1 of the general Revenue
Management network that we consider.
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Figure 1: The Revenue Management network.

3 Main Results and Related Literature

We now proceed to a systematic review of the research, publications, and main results on the
pricing problem in (9)-(12). The goal of this section is to understand the structure and properties
of an optimal solution to this generic problem by examining the different models that have been
studied. Certainly, there is no single way to approach the task of reviewing the literature and
main results. From an exposition perspective, we find it convenient to start with a basic partition
between deterministic and stochastic models.

3.1 Deterministic Models

The deterministic models that we consider in this section assume that the seller has perfect infor-
mation about the demand process. This is, of course, a major simplification especially for those
applications where demand is hardly predictable at the beginning of the season, e.g., new products
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or fashion goods. Furthermore, we have argued in the Introduction that Revenue Management
techniques are particularly useful for industries facing stochastic demand. There are two important
reasons that explain why we have decided to review deterministic models. First of all, determin-
istic models are easy to analyze and they provide a good approximation for the more realistic
yet complicated stochastic models. Moreover, as we will show shortly, deterministic solutions are
in some cases asymptotically optimal for the stochastic demand problem (e.g., Gallego and van
Ryzin [36]-[37], Cooper [22]). The second reason is that deterministic models are commonly used
in practice.
In terms of the literature, deterministic models form the basis of the classic economic model on
monopolistic pricing, which is essentially the departing point of the research that is currently done in
marketing and operations. It is not in our interest, however, to review the vast economic literature
on pricing which mainly focuses on static equilibrium (or steady-state) pricing where marginal cost
equals marginal revenues. The reader is referred to Nagle [61] for a comprehensive discussion of
the economic literature on pricing theory.
As we argued above, deterministic models are good “first order” approximations (asymptotically
optimal in some cases) for more sophisticated stochastic models. In particular, they provide valuable
insight on how optimal pricing policies depend on the different parameters of the model.

3.1.1 Single Product Case

The simplest model in this deterministic setting considers the case of a monopolist selling a single
product to a price sensitive demand during a fixed period [0, T ] (i.e., |M| = 1). The initial inventory
is C, demand is deterministic with time dependent and price sensitive intensity λ(p, t). In addition,
the instantaneous revenue function r(p, t) = p λ(p, t) is assumed to be concave as in most real
situations. The Revenue Management problem (9)-(12) can be written in this case as follows.

max
P∈P

∫ T

0
pt λ(pt, t) dt (13)

subject to
∫ T

0
λ(pt, t) dt ≤ C. (14)

This is a standard problem in calculus of variations. Let H(pt, t) = (pt − η) λ(pt, t) be the corre-
sponding Hamiltonian function where η ≥ 0 is the Lagrangian multiplier for (14). The optimality
condition (e.g., Gelfand [38]) is given by

p∗t = η − λ(p∗t , t)
λp(p∗t , t)

, (15)

where λp is the partial derivative of λ with respect to the price. Let ε(p, t) = p
(

λp(p,t)
λ(p,t)

)
be the

elasticity of demand with respect to price at time t. Then, condition (15) (together with the fact
that η ≥ 0) asserts that at optimality ε(p∗t , t) ≤ −1. That is, demand is elastic† at the monopolist’s
optimal price. We note that the myopic solution pm

t to (13)-(14) that maximizes the instantaneous
rate of return solves

pm
t = − λ(pm

t , t)
λp(pm

t , t)
. (16)

Therefore, if η = 0, i.e., the capacity constraint (14) is not active, then the optimal strategy p∗ is
equal to the myopic strategy pm. On the other hand, if (14) is active then η ≥ 0 and the myopic

†We say that λ(p) is elastic at price p̄ if ε(p̄, t) = p̄
(

λp(p̄,t)

λ(p̄,t)

)
≤ −1.
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solution is a lower bound on the optimal strategy. From standard duality theory, η is the shadow
price associated with a unit of capacity. Thus, we can think of η as the opportunity cost of selling
a unit of product and so necessarily the optimal strategy must satisfy p∗t ≥ η.
For the case of a time homogeneous demand intensity (λ(p, t) = λ(p)) a fixed price solution can be
shown to be optimal over the entire selling period [0, T ]. In order to characterize this solution let
pm = argmax{p λ(p) : p ≥ 0} be the “myopic” price policy that maximizes the revenue rate and
λm = λ(pm) be the corresponding demand intensity. Similarly, let p̃ be the solution to λ(p̃) T = C
and λ̃ = λ(p̃) be the corresponding demand intensity‡. Then, the following is a straightforward
application of the Karush-Kuhn-Tucker (KKT) optimality conditions (e.g., Bazaraa et al. [5]).

Proposition 1 Consider the single product Revenue Management problem (13)-(14) with homoge-
nous demand intensity λ(p), and concave revenue rate r(p) = p λ(p).

Case 1. Abundant Capacity: If λm T ≤ C then the optimal price is pm and the optimal revenue is
equal to pm λm T .

Case 2. Scarce Capacity: If λm T > C then the optimal price is p̃ and the optimal revenue is equal
to p̃ C.

This result is also shown in Gallego and van Ryzin [36] (Proposition 2) and it is used as a building
block for constructing heuristics and bounds for the stochastic counterpart. As a direct corollary of
proposition 1 we have two important properties of the optimal price strategy: namely, the optimal
price is (i) nonincreasing in the initial capacity C and (ii) nondecreasing in the selling period T .
Graphically, these results are illustrated in Figure 2. From Figure 2 we can see that the optimal

Initial Capacity ( C )
Selling Horizon ( T )λ   Τm 

Optimal Price Strategy 

Optimal Revenue 

λ   / m 

Optimal Revenue 

Optimal Price Strategy 

C 

Figure 2: Optimal price strategy for the single product deterministic case. Both figures are drawn using an
multinomial demand rate λ(p) = (exp(p) + 1)−1.

revenue is evidently a nondecreasing function of both the initial inventory (C) and the length of
the selling season (T ). In terms of the initial inventory, there is an optimal level Cm = λmT that
maximizes the revenue. Above this threshold additional units of capacity will not increase revenue.
Managers should then try to target this optimal value Cm when determining the initial level of
capacity. On the other hand, the optimal revenue is monotonically increasing in T reflecting the
fact that as the selling horizon increases the seller faces a larger population of potential buyers and
therefore he can target the available capacity to those customers having higher valuation for the
product. In the limit, if p̄ = sup{p : λ(p) > 0} then the seller can obtain a maximum revenue of
p̄ C as T goes to infinity.

‡Notice that the existence of p̃ is not guaranteed for large C.
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Most extensions of this single product deterministic demand problem generalize some aspect of
the functional form of the demand process. For example, Smith and Achabal [74] studied the
case where demand intensity depends on price as well as on the level of inventory, i.e. λ(pt, Ct, t).
The idea (which naturally arises in the retail sector, for instance) is that demand decreases as
the inventory is depleted. Customers are less likely to find the product they want (e.g., in terms
of size, color, quality, etc.) when available inventory is low. In this setting, the authors derive
optimality conditions for the price similar to (15), and closed form solutions are reported for
the special case of a multiplicative separable demand rate with exponential price sensitivity, i.e.,
λ(p, C, t) = k(t) y(C) exp(−γp)).
Another extensive stream of research coming especially from marketing (e.g., Doland and Jeuland
[24]-[43], Kalish [44], Mesak and Berg [57], Mesak and Clark [58], Parker [64], among many others)
considers the case of a price sensitive diffusion model (à la Bass [3]) to describe the dynamics of
the demand. On the Revenue Management context, Feng and Gallego [28] use a diffusion model
to characterize the intensity of the demand process. The Bass diffusion model is generally used for
durable goods, for which demand at time t depends on the number of units sold previous to t and
the size of the population of potential customers. More specifically, the demand rate λ(t) at time t
is a function of the current price p(t), the amount sold by that time D(t), and the population size
N , that is,

λ(t) :=
∂D(t)

∂t
= λ(p(t), D(t), N). (17)

In general the diffusion effect, i.e., the dependence of the demand rate λ on the cumulative sale D(t),
is not uniform over time. Upon introduction, we expect a positive effect (meaning ∂λ/∂D ≥ 0) due
to factors such as word of mouth, improved reputation, or exclusivity. On the other hand, as time
passes and the number of sold units increases, we expect market saturation and obsolescence effects
to generate a negative impact on demand (i.e., ∂λ/∂D ≤ 0). According to Kalish [44] results, the
evolution of price over time can follow three generic paths: (i) monotonically increasing if word-
of-mouth effects have a positive impact on demand, (ii) unimodal: increasing at the beginning,
reaching a maximum at some intermediate time, and then decreasing for the rest of the selling
period. This situation occurs when there is a positive effect of word-of-mouth at the beginning
followed by demand saturation. Finally, (iii) the price is monotonically decreasing over the entire
horizon if there is a negative effect of penetration on demand. For a complete review of these single
product Bass diffusion models we refer the reader to section §2 in Elmaghraby and Keskinocak [26].
In a different context, Rajan et al. [65] and Abad [1] derive optimal pricing policies for the case
where inventory deteriorates continuously and deterministically over time at a rate proportional to
the inventory position. The special cases of linear demand and exponential decay are studied in
more detail.

3.1.2 Multiple Product Case

The case of multiple products (|M| ≥ 2) has received considerably less attention. The reason is
probably because of the higher degree of complexity attached to these multi-product formulations
especially to characterize demand correlation and product substitution effects. In the economics
literature, Wilson [85] studies deterministic, multi-product models in which the seller objective it
to design an optimal menu of prices and products.
The selection of an appropriate consumers’ choice model such as the multinomial logit or multi-
nomial probit (e.g. Ben-Akiva and Lerman [9]) to characterize customers’ preferences becomes a
critical component of the problem’s formulation (e.g., Talluri and van Ryzin [79]). We notice that
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in the case when capacity is dedicated and the price of product i does not affect the demand for
product j 6= i (independent demands) then the multi-product case reduces trivially to a set of
disconnected single-product problems. The interesting cases arise when capacity is flexible and/or
demand process depends on the whole vector of prices (substitute or complementary products).
In general, a similar result to proposition (1) can be derived in this multi dimensional case. For
exposition purposes, we consider here the simple case of time homogenous demand processes. In
this setting, it is not hard to show that a fixed price solution can be used without any sacrifice on
performance. Let Di(P ) = λi(P ) T be the cumulative demand for product i ∈M given a vector of
prices P = (p1, . . . , pn) (λi is the time homogenous demand rate). Let Λ(P ) = (λ1(P ), . . . , λn(P ))
be the vector of demand intensities and T Λ(P )′P be the revenue function (primes (’) denote vector
transpose). In this case, it is convenient to introduce for each product i ∈ M the inverse demand
function Pi(Λ) that represents the price of product i ∈ M given a vector of cumulative intensities
Λ. We assume then that P (Λ) is a real valued function that is continuous and differentiable and
such that the revenue function P (Λ)′Λ is strictly concave. The Revenue Management problem
(9)-(12) can be written in this case as:

max
Λ≥0

T P (Λ)′Λ (18)

subject to T AΛ ≤ C. (19)

This is a multidimensional nonlinear programming problem which has a unique solution given the
concavity assumption on the revenue function. Similar to proposition (1), two cases characterize
the optimal solution. Let Λm be the vector of cumulative demands that maximize P (Λ)′Λ. Then
Λm is optimal if and only if T A Λm ≤ C. If this condition is not satisfied, then the optimal solution
is a boundary point Λ̃ that satisfies the corresponding KKT optimality conditions. The following
proposition characterizes the multi-product case.

Proposition 2 Consider the multi product Revenue Management problem (18)-(19) with homoge-
nous inverse demand function P (Λ), and concave revenue function T P (Λ)′ Λ.

Case 1. Abundant Capacity: If T AΛm ≤ C then the optimal price is Pm = P (Λm).

Case 2. Scarce Capacity: If T AΛm 6≤ C then let Λ̃ be the unique solution to the following Karush-
Kuhn-Tucker optimality conditions

∇Λ[P (Λ)′Λ)]−A′ β = 0
β′(T AΛ− C) = 0 (20)
Λ ≥ 0 β ≥ 0,

where ∇Λ is the gradient operator with respect to Λ and β is an m-dimensional vector of
Lagrangian multipliers. The optimal price in this case is P̃ = P (Λ̃).

Let ∂ΛP (Λ) be the Jacobian matrix associated to the price vector P (Λ). That is, the ij element of
this matrix is given by [∂ΛP (Λ)]ij = ∂Pj(Λ)

∂λi
. Thus, the first KKT condition above implies that the

optimal price vector satisfies:
P (Λ) = A′β − ∂ΛP (Λ)Λ. (21)

Similar to the single product case, β is the vector of shadow prices associated with the available
capacity C, and A′β represents the vector of opportunity cost. Therefore, additional capacity is
valuable only if it is scarce, i.e. β ≥ 0.
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It is also important to notice that for the multi-product case it is possible that the optimal price
increases with the level of capacity. For instance, consider a simple example with two products
where (19) is given by two constraints: λ1 + λ2 ≤ C1 and λ1 ≤ C2. Suppose that the current level
of capacity is (C1 = 1, C2 = 0) and that the optimal solution is λ∗1 = 0, λ∗2 = 1. If we increase C2

to a new value C̃2 = 1, then under regular conditions on the revenue function the new solution will
satisfy λ̃1 > 0 and λ̃2 < 1. That is, an increase in C2 might induce a decrease in λ2. Thus, the
optimal price of product 2 will increase after the increase of C2. This example raises the question of
what the conditions are that will ensure that the optimal price is in fact nonincreasing in capacity.
We partially answer this question in the following proposition based on the work by Topkis [80]
and Milgrom and Roberts [59] on supermodularity and complementarity.

Proposition 3 Suppose that the inverse demand function is monotone, that is, if Λ1 ≥ Λ2 then
P (Λ1) ≤ P (Λ2). Suppose, moreover, that the objective P (Λ)′Λ is supermodular and the sets L(C) =
{Λ ≥ 0 : T A Λ ≤ C} are sublattices§ . Then, the optimal solution Λ∗ to (18)-(19) is nondecreasing
in C and the optimal price is nonincreasing in C.

The proof follows directly from Theorem 5 in Milgrom and Roberts [59]. The monotonicity of
P (Λ) is the extension of the classical “downward sloping demand function” condition to this multi-
dimensional case. We expect the supermodularity assumption to hold when there are product
substitution effects (such as for airline seats or hotel rooms) since in these cases the marginal
return on product i should be increasing on the price of product j. The requirement of L(C) being
a sublattice is more restrictive. This result holds trivially when capacity is dedicated, i.e., A = I
the identity matrix.
Similarly, in the time homogenous case an increase in the selling period (i.e., T ↑) can be interpreted
as a decrease in the level of capacity†. Thus, under the same set of assumptions of proposition 3,
we expect the optimal price to be an increasing function of T .

3.2 Stochastic Models

Pricing policies with stochastic demand are more complex and harder to compute than their deter-
ministic counterparts. For instance, in this setting a single price solution is rarely optimal unless
we strict ourselves to this type of static policies. On the other hand, stochastic models are clearly
used more appropriately to describe real life situations where the paths of demand and inventory
are unpredictable over time and managers are forced to react dynamically by adjusting prices as
uncertainty reveals itself.
The natural way to tackle a problem of this type is by using stochastic dynamic programming
(SDP) techniques. At every decision point during the selling season, the manager collects all
relevant information about the current inventory positions and sales and establishes the prices at
which the products should be sold. With a few exceptions, most of the research has been done for
the single product case under Markovian assumptions on the demand process. In this setting, the
inventory levels are the only relevant information that managers need to make pricing decisions.

§A function f : IRn → IR is supermodular if for all x, x′ ∈ IRn, f(x) + f(x′) ≤ f(min{x, x′}) + f(max{x, x′}. A set
L ⊆ IRn is a sublattice if for all x, x′ ∈ L, min{x, x′} ∈ L and max{x, x′} ∈ L.

†Notice that in the time homogenous case the feasible region T A Λ ≤ C is equivalent to A Λ ≤ C
T

.
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3.2.1 Single Product Case

In the single product case (|M| = 1), we can assume without any loss of generality that the initial
capacity C = C0 is a scalar representing the number of units of the product that are available at
time t = 0. Using an SDP formulation, we define Vt(Ct) to be the value function at time t if the
inventory is Ct, that is, Vt(Ct) is the optimal expected revenue from time t to the end of the season
given that the current inventory position at time t is Ct. Time t has been modelled in the literature
as either a continuous or discrete variable. From a practical perspective, we expect that managers
will revise their price decisions only at discrete points in times. However, the explosive growth of
the Internet and E-commerce make the continuous time model much more suitable for practical
uses.

Single Price Models:

The simplest approach to the problem is the single price solution. In this case, we restrict the
pricing policy to be a fixed price during the entire season, i.e., pt = p for all t ∈ [0, T ]. This type
of static policy is appropriate for products having one or more of the following characteristics: (i)
short selling period, (ii) high costs of changing prices, (iii) legal regulations that force the price
to be fixed. The fixed price model is simple and easy to implement and control. Hence, even if
price changes are possible, managers often choose to use the static fixed price approach. We will
see shortly that the fixed price model is asymptotically optimal in some situations. In this single
product fixed price model, formulation (9)-(12) is given by

V (C, T ) = max
p≥0

V (C, p, T ) = max
p≥0

E[p min{D(p, T );C}], (22)

where D(p, T ) is the random variable representing the cumulative demand in [0, T ] at a price
p. Closed-form solutions for this problem are not available for the general case of an arbitrary
distribution of D(p, T ) but we can characterize the optimal price in terms of the demand elasticity
as follows. Let f(D; p, T ) be the probability mass function of D(p, T ) (or the density function if
demand is modelled as a continuous variable). Let also F (D; p, T ) be the probability distribution
function of D(p, T ). We define the demand elasticity with respect to price as ε(D, p, T ) = pfp(D,p,T )

f(D,p,T )

where fp(D, p, T ) is the partial derivative of f(D, p, T ) with respect to p.

Proposition 4 The first order optimality condition for the solution of (22) is

E[min{D; C} ε(D, p, T )]
E[min{D;C}] = −1. (23)

Proof: See the appendix. We note that proposition 4 extends the well-known condition in economics
that says that the demand elasticity has to be equal to -1 at the optimal monopolistic price. In
the stochastic case, we have that the weighted expected value of the elasticity has to be equal to
-1, where the weight is given by the level of sales min{D, C}. Similar to the deterministic case, we
can show that the optimal price for this single price model is nonincreasing on the initial level of
capacity C. We summarize this observation for the case of a continuous demand distribution† in
the next proposition. We introduce the following definition: A function g(x, y) satisfies increasing
differences in (x, y) if g(xH , y)− g(xL, y) is nondecreasing in y for all xH ≥ xL.

Proposition 5 Suppose that F (D; p, T ) satisfies increasing differences in (D, p) and −F (D; p, T )
satisfies increasing differences in (p, T ). If there is a unique optimal solution p∗(C) for (22) then
the solution is nonincreasing in C and nondecreasing in T .

†The result and proof for the discrete case follows exactly the same line of arguments.
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Proof: See the appendix. As a direct consequence of the proposition we get an upper and a lower
bound for the optimal price p∗(C), namely, pmin := p∗(∞) ≤ p∗(C) ≤ p∗(1) := pmax. Figure
3 shows a numerical example of the behavior of the upper and lower bound for the case where
the demand process is Poisson with rate 100 exp(−0.0044p2). We can see from the figure on the
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Figure 3: Bounds for the single price model. Following Bitran and Mondschein [15], the demand process used in
this numerical computation is Poisson with rate λ = 100 exp(−0.0044 p2), i.e., customers’s reservation price follows
a Weibull distribution with parameters (2,0.0044).

left the asymptotical optimality of pmin and pmax. The figure on the right plots the behavior of
the value function when the optimal price and the two bounds pmin and pmax are used. For the
numerical example in the figure, the lower bound pmin performs better when it is used heuristically.
This observation is consistent with a set of numerical experiments that we have performed using
different demand distributions.
It is also possible to approximate the single price solution using the deterministic version of the
model (or certainty equivalent policy). Specifically, we can replace the value function in (22) by

V det(C, T ) = max
p≥0

V det(C, p, T ) = max
p≥0

p min{E[D(p, T )], C} ≥ max
p≥0

E [p min{D(p, T ), C}] . (24)

The inequality follows from the concavity of the function f(x) = min{x,C} and Jensen’s inequality.
We conclude that V (C, T ) ≤ V det(C, T ). Following closely the work by Gallego and van Ryzin [36]
(Section §3.3), let pdet be the optimal deterministic price which can be easily computed using
proposition 1. Let νdet(C, T ) be the coefficient of variation of D(pdet, T ) then it follows that

V (C, pdet, T ) = pdet E
[
D(pdet, T )− (D(pdet, T )− C)+

]
≥ pdetE[D(pdet, T )]

(
1− νdet(C, T )

2

)

≥ V det(C, T )

(
1− νdet(C, T )

2

)
≥ V (C, T )

(
1− νdet(C, T )

2

)
. (25)

The critical step in this derivation is to show that E[(D(pdet, T )−C)+] ≤ νdet(C, T ) E[D(pdet, T )]/2
which follows after some straightforward manipulations from proposition 1 above and equation (18)
in Gallego and van Ryzin [36]. Thus, the relative error of using the deterministic price instead of
the optimal solution is never greater than 1

2 νdet(C, T ), i.e.,

Proposition 6
V (C, pdet, T )

V (C, T )
≥ 1− νdet(C, T )

2
. (26)
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It is interesting to notice that the quality of the deterministic approximation depends on the
coefficient of variation rather than the variance itself. For instance, if the selling horizon increases
we should expect that the variance of the cumulative demand will also increase but the coefficient
of variation will probably decrease. Similarly, products having high-volume demand are more likely
to have a small coefficient of variation. Gallego and van Ryzin [37] derive a similar inequality for
the case where the demand intensity is time-varying. We will return to this point later when we
discuss the multi-period problem.
The first extension of the single period model is to allow the manager to revise the price only once
during the selling horizon. Lazear [49] considers a model of a retailer selling a single unit (C = 1)
to a population (N) of potential customers whose valuation (reservation price R) for the product
is unknown to the seller. The selling horizon is divided in two periods. The retailer’s problem is
to set the price for the good during the first and second periods, p1 and p2 respectively. Lazear’s
model is of incomplete information. If the product does not sell in the first period at price p1, then
the retailer can update his/her initial estimate of R to compute p2. In this stylized setting, Lazear
shows that the price is monotonically decreasing with time, p1 > p2, and that the magnitude of
the markdown p1 − p2 increases with N . This suggests that prices of high-demand goods (i.e., N
is large) adjust more rapidly to time on the market during which the good remains unsold.
In a different setting, Feng and Gallego [27] study a single product two price model where the prices
in both periods are fixed and the only decision is when to switch from one to the other. Three
cases are studied (i) the markdown case when p1 > p2 (e.g., the retail model), (ii) the markup case
p1 < p2 (e.g., the airline model), and (iii) the general case p1 ≤ or ≥ p2. Under the assumption that
demand at price pi is a Poisson process of intensity λi the authors derive structural properties of the
optimal stopping time problem. In particular, they show that the optimal policy is of a threshold
type. For example, for case (i) they show that there is an increasing sequence {xn : n = 1, 2, . . .}
of time thresholds such that if the inventory process is Ct then it is optimal to markdown the
items to p2 as soon as the time-to-go (T − t) is less than the time threshold xCt . Similar threshold
policies are derived for case (ii) and (iii). Feng and Xiao [29] extend the two price formulation in
Feng and Gallego [27] to the case of a risk-sensitive seller that penalizes the variance of revenue
linearly. Other related work on the timing of sales and promotions can be found in Courty and Li
[23], Krider and Weinberg [47], Warner and Barsky [82], Kinberg and Rao [46].

Dynamic Price Models:

One of the first papers that addresses the general issue of how to price a perishable product
dynamically is the work by Kincaid and Darling [45]. Their setting is a continuous time model
where demand follows a Poisson process with fixed intensity λ. An arriving customer at time
t has a reservation price rt for the product, i.e., the maximum price the customer is willing to
pay. From the seller perspective, the reservation price rt is a random variable with distribution
F (r, t). Kincaid and Darling consider two cases. In the first case, the seller does not post prices
but receives offers from potential incoming buyers, which he/she either accepts or rejects. It is
assumed that arriving customers offer their reservation price rt, i.e, it is assumed that customers
do not act as strategic players. In the second case, the seller posts the price pt and arriving
customers purchase the product only if rt ≥ pt. The demand process in this situation is Poisson
with intensity λ (1−F (pt, t)). Optimality conditions for the value function Vt(Ct) and the optimal
price pt(Ct) are derived for both cases, and closed-form solutions are reported for the special case
F (r, t) = 1−exp(−r). When prices are posted, the optimality condition (Hamilton-Jacobi Bellman
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equation) is given by

∂Vt(Ct)
∂t

= max
p≥0

{
λ(1− F (p, t))

[
p−

(
Vt(Ct)− Vt(Ct − 1)

)]}
(27)

According to this condition, it is not hard to see that the optimal price satisfies pt(Ct) ≥ Vt(Ct)−
Vt(Ct − 1). The difference Vt(Ct) − Vt(Ct − 1) represents the opportunity cost of selling a unit
of capacity at time t when the available inventory is Ct. In the Yield Management literature
Vt(Ct)−Vt(Ct− 1) is referred to as the bid price for the inventory level Ct at time t. Note that the
maximization in (27) guarantees that the optimal price pt(Ct) is larger than or equal to this bid
price and therefore the value function Vt(Ct) is nondecreasing in t. Under some mild restrictions
on F (p, t) and its density f(p, t)‡, the first order condition characterizes the optimal price pt(Ct)
as follows:

pt(Ct) =
1− F (pt(Ct), t)

f(pt(Ct), t)
+ Vt(Ct)− Vt(Ct − 1). (28)

Thus, the problem of computing an optimal price strategy reduces to the computation of the
opportunity cost Vt(Ct) − Vt(Ct − 1). In general, there are no exact closed-form solution for the
optimal price strategy in (27). One exception reported in Kincaid and Darling [45] is the case
of exponential reservation price distribution, that is, λ(p) = λ exp(−α p). Condition (27) is also
useful to compute a lower bound on pt(Ct).

Proposition 7 Suppose that demand is a Poisson process with price sensitive intensity λ(1 −
F (p, t)). Then, the optimal price pt(Ct) is bounded below by pmin, the solution to

pmin =
1− F (pmin, t)

f(pmin, t)
. (29)

Proof: See the appendix. Similar to Kincaid and Darling’s paper are the formulations by Gallego
and van Ryzin [36], Bitran and Mondschein [15], Bitran et al. [16], Feng and Xiao [30]-[31], Zhao
and Zheng [87] where a Poisson process is also used to model demand in a single product dynamic
price setting.
In a continuous time formulation, Gallego and van Ryzin [36] re-derive the optimality condition (27)
and prove that the value function Vt(Ct) is increasing and concave in both t and Ct and that the
optimal price pt(Ct) is increasing in t and decreasing in Ct. Schematically, Figure 4 shows the path
of an optimal price strategy and its corresponding inventory level for the continuous time model.
We can see from Figure 4 that the optimal price path is decreasing almost everywhere having
discrete positive jumps at every sale epoch. In addition, the slope at which the price decreases
over time tends to increase as the selling horizon gets shorter. From a practical perspective, this
erratic behavior of the continuous time solution is difficult to implement and control. Gallego and
van Ryzin [36] address this issue and show that the fixed-price heuristic that uses the deterministic
version of the problem to compute the price is asymptotically optimal as T or C0 go to infinity.
More specifically, suppose that the demand process is replaced by its deterministic counterpart,
i.e., the demand rate is simply the expected value of the Poisson process. Let pdet(Ct) be the
optimal deterministic price from time t on if the current inventory is Ct and let V det

t (Ct) be the
corresponding value function if pdet is used instead of the optimal price. Clearly, by the optimality

‡Bitran and Mondschein [15] show that if (1−F (p,t))2

f(p,t)
is decreasing function of t then the first order optimality

condition is also sufficient.
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Figure 4: Path of an optimal price policy and its inventory level. Demand is a time homogeneous Poisson process
with intensity λ(p) = exp(−0.1p), the initial inventory is C0 = 20, and the selling horizon is H = 100. The dashed

line corresponds to the minimum price pmin = 10.

of Vt(Ct) we must have that V det
t (Ct) ≤ Vt(Ct). However, Gallego and van Ryzin [36] show that

V det
t (Ct)
Vt(Ct)

≥ 1− 1

2
√

λ(pdet) (T − t)
, (30)

where λ(pdet) is the demand intensity at price pdet. According to this result, the deterministic price
heuristic is asymptotically optimal as T goes to infinity. Note, moreover, that a fixed price policy
minimizes management cost since it does not need to keep track of the evolution of the inventory
or the demand over time.
Bitran and Monschein [15] consider a periodic pricing review policy where prices are revised only
at a finite set of decision times. A distinctive element in their formulation is the inclusion of
a markdown constraint that forces prices to be nonincreasing over time, which is a commonly
encountered constraint in the retail sector. Similar to Kincaid and Darling, the demand model
is the combination of a Poisson arrival process of customers and a purchasing process based on
a reservation price which is unknown to the seller. Using a set of numerical experiments, the
authors argue that (i) the value function with and without the markdown constraint does not
differ significantly (less than 0.7%), (ii) the initial price is increasing on the variability of the
reservation price, and (iii) the expected revenue varies significantly with the number of periods at
which the prices are allowed to change.
Bitran et al. [16] extend the single product periodic review formulation in Bitran and Mondschein
[15] to the cases of a retail chain. In this situation, the same product is sold at different locations
with each one having its own Poisson demand process. Under the constraint that at every moment
in time the price must be the same at all the locations (coordinated price policy), the authors
derive optimality conditions and a set of heuristics for the cases when inventory transfers among
stores are and are not allowed. The heuristics are constructed using a rolling horizon approach,
whereby at every decision point the price is computed assuming that this is the last time that the
price will be revised. Computational experiments show that this type of heuristics performs quite
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well with an average error of 2%-3%. The paper also includes a set of numerical experiments that
were conducted using real data collected from a retail chain store.
Zhao and Zheng [87] study the single product pricing problem for the case where the arrival process
of customers is a time dependent Poisson process. They also use a reservation price formulation
similar to Kincaid and Darling [45] or Bitran and Mondschein [15] to model the purchasing decisions
of the customers. For this problem, Zhao and Zheng derive optimality condition equivalent to (27)
and show that the value function is concave on both the level of inventory and the duration of the
selling season. They also prove that the optimal price is nonincreasing in the level of inventory and
find a sufficient condition on the reservation price distribution that guarantees that the optimal
price is nondecreasing for the duration of the selling horizon.
Another variation to the basic single-product Poisson demand problem that has received some
attention is the case where there is a finite set of predetermined prices {p1, . . . , pk} from which the
seller can choose. Gallego and van Ryzin [36] discuss this issue and show that the deterministic
solution, which involved using at most two different prices from the list, is again asymptotically
optimal as the initial capacity and selling horizon increase. Independently, Chatwin [20] and Feng
and Xiao [31] provide a systematic analysis of the pricing policy and value function for the problem
with a finite set of prices. In these papers it is shown that the value function is concave on both
the initial inventory and duration of the selling horizon and that the optimal price is nonincreasing
in the inventory and decreasing in the time remaining. An upper bound on the maximum numbers
of price changes is also reported. In addition, Feng and Xiao [31] show that there is a maximal
subset P0 ⊆ {p1, . . . , pk} such that the revenue rate is increasing and concave within P0 and the
optimal price at any time belongs necessarily to P0. This observation is particularly useful since
it narrows down the set of potential optimal prices making the computation of the optimal pricing
strategy much easier. Feng and Xiao [30] impose the additional constraint that prices have to
change monotonically and both the markdown and markup cases are considered.
The stochastic version of Kalish [44] is studied by Raman and Chatterjee [67]. Specifically, the
authors consider a discounted infinite horizon problem where cumulative demand D(t) follows a
stochastic differential equation

dD(t) = f(D(t), p(t)) dt + σ(D(t)) dw(t). (31)

f(D, p) is a deterministic function of cumulative sales and price and w(t) is a Wiener process. For
this formulation, Raman and Chatterjee derive the Hamilton-Jacobi-Bellman optimality equation
and show that for the linear demand case, f(D, p) = a − bp, the optimal price strategy is linearly
decreasing in D and monotonically increasing in the demand uncertainty (σ). Similar results are
derived for two alternative demand formulations: the multiplicatively separable demand function
and the simple price-timing model.
Inspired by the results in Gallego and van Ryzin [36] related to the deterministic fixed-price heuris-
tic, we conclude this single product section extending their results to the discrete time formulation.
Specifically, we consider the case of a periodic review model with N periods. In each period
n = 1, . . . , N a fixed price pn is charged and Dn(pn) is the corresponding (random) demand. Let
{pdet

n : n = 1, . . . , N} be the optimal deterministic solution, i.e, the solution to the following
problem.

V det
1 (C0) = max

p1,...,pN

N∑

n=1

pn E[Dn(pn)] (32)
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subject to
N∑

n=1

E[Dn(pn)] ≤ C0. (33)

In order to ensure feasibility, we assume that there is a price p∞ such that
∑N

n=1 E[Dn(p∞)] < C0.
The following result provides an estimate of the quality of the deterministic solution. We define
Ddet

n :=
∑n

i=1 Dn(pdet) to be the cumulative demand up to period n and σ2
n to be the variance of

Ddet
n . We also define ηdet

n (C0) as follows.

ηdet
n (C0) :=

√
σ2

n + (C0 − E[Ddet
n ])2 − (C0 − E[Ddet

n ])

2
. (34)

Proposition 8 Suppose that the deterministic problem (32)-(33) is feasible with concave objective
and convex feasible region. Then, the optimal expected revenue V1(C0) is bounded above by the
deterministic solution, that is, V1(C0) ≤ V det

1 (C0). In addition, let V1(pdet, C0) be the expected
revenue that is obtained using the deterministic prices {pdet

n : n = 1, . . . , N}.Then, we have that

1 ≥ V1(pdet, C0)
V1(C0)

≥ 1
V det

1 (C0)

N∑

n=1

pdet
n E[Dn(pdet

n )]

(
1− ηdet

n (C0)
E[Dn(pdet

n )]

)
≥ 1−max

n

ηdet
n (C0)

E[Dn(pdet
n )]

.

(35)
Finally, in the time homogeneous case E[Dn(p)] = Tn λ(p), where λ(p) is time invariant demand
intensity and Tn is the duration of period n, a single price pdet solves (32)-(33) and

1 ≥ V1(pdet, C0)
V1(C0)

≥ 1− ν(C0)
2

, (36)

where ν(C0) is coefficient of variation of Ddet
N the cumulative demand over the entire selling horizon.

Proof: See the appendix. We note that if there is no uncertainty on the demand, then the bounds
are tied. Proposition 8 shows that it is the coefficient of variation of the demand and not the
variance that regulates the quality of the deterministic price heuristic. For instance, consider the
time homogeneous case where E[Dn(pdet)] = Tn λ(pdet) and Var(Dn(pdet)) = Tn σ2(pdet)§. In this
case, the results in proposition 8 imply that

1 ≥ V1(pdet, C0)
V1(C0)

≥ 1− νdet

2
√

T
where νdet =

σ(pdet)
λ(pdet)

and T =
N∑

n=1

Tn. (37)

This result says that the relative error of the deterministic solution is proportional to the inverse
of the square root of the selling horizon T . A similar result is reported by Gallego and van Ryzin
[36] for the case of a Poisson process.

3.2.2 Multiple Product Case

Similar to the deterministic case, the research on optimal pricing policy in a multiple product setting
is narrower in scope than the single product counterpart. There is an important case, however,
that has received considerable attention especially in the Yield Management literature on airline
seat control. The setting is that of a single resource that is used to satisfy a set of different demand

§Stochastic processes like the Poisson process or the Brownian motion with stationary and independent increments
satisfy these assumptions.
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classes. The example of airline seats is of course one where companies use the same resource to
accommodate leisure and business travellers. Other applications are in the management of hotel
rooms or bandwidth capacity of an Internet provider. In order to price the same units of capacity
differently, companies need to identify characteristics that differentiate their potential customers
and classify them accordingly. For example, airlines differentiate leisure passengers from business
passengers according to their willingness to stay a Saturday night at their destinations.

Static Price Models:

Much of the research on this problem takes a static view of the price. Specifically, prices or fares for
the different classes are predetermined and the seller’s problem is to accept or reject the incoming
requests of customers dynamically as functions of time, unsold capacity, and the type (fare). We
can still, however, view this problem as a dynamic pricing problem. In fact, for each class j the
seller has two possible prices to set at each moment of time. One is the fixed and predefined price
pj and the other is a high price pnull

j À pj , the null price, for which class-j demand at that price
is almost surely zero. The null price can be thought of as an artificial way to model customers’
rejections in the context of pricing policies.
For the sake of space, we do not provide here an exhaustive review of the literature that has
addressed this problem. Readers are referred to the survey papers by Belobaba [7] and McGill and
van Ryzin [56] for a more systematic review of the inventory (seat) control literature.
The general multiple product version of this problem can be stated as follows.

1. Data: An initial m-dimensional vector of resource C0, a menu of product M having fixed
and predetermined prices pj (j = 1, . . . ,M), and a consumption matrix A = [aij ] such that
aij is the amount of resource i consumed by one unit of product j.

2. Problem: Find an admission/rejection policy u(t, Ct, j) ∈ {0, 1} such that if the current
inventory at time t is Ct and there is a customer demanding product j then u = 1 if the order
is accepted and u = 0 if the order is rejected.

In our pricing setting, given an inventory Ct at time t we can redefine step 2 as follows: charge price
pj for product j if u(t, Ct, j) = 1 otherwise charge price pnull

j . The equivalence between rejections
and null prices implicitly assumes that the effects on the demand process of rejecting customers or
charging the null prices are the same.
As we already mentioned, much of the results on this problem have been obtained for the single
resource (or single leg) case using (i) a continuous time formulation with Poisson demand processes
(e.g. Liang [51], Zhao and Zheng [88], Feng and Xiao [32]-[33]), or (ii) a discrete time model
with arbitrary demand but with the restriction that at most one customer can arrive per period
(e.g., Lee and Hersh [50], Subramanian et al. [76]). Let Vt(C) be the optimal value function at
time t if the current inventory is C and let βt(C) = Vt(C) − Vt(C − 1) be the corresponding bid
price function. Then, it is optimal to sell a unit of product j at time t if and only if pj ≥ βt(C)
in the continuous time case or if pj ≥ βt−1(C) in the discrete time version. Otherwise, the null
price pnull

j (i.e., rejection) is recommended. If we assume that for all j pnull
j > βt(C) for all t

and C, then the optimal pricing policy for class j at time t, given an inventory C, is to set the
minimum price p ∈ {pj , p

null
j } such that p ≥ βt(C). This property of the optimal solution, which

follows directly from the Bellman equation, emphasizes the importance of the opportunity cost of
capacity described by the bid prices. Not surprisingly, then, much of the research has focused on
characterizing the main properties of βt(C) such as its monotonicity, i.e., nonincreasing in both t
and C. In this single resource case, these properties imply a nested structure of the optimal policy.

24



That is, if it is optimal at time t to accept class j with price pj then it is optimal to accept any
class k with pk ≥ pj .
The multi resource problem (or network Revenue Management) does not differ much from the
single resource case in terms of optimality condition. The main difference is that bid prices in
this case are dependent on the class of the demand. More specifically, if at time t the current
vector of capacity is C and there is a request for product j and if we accept the offer we collect
a price pj and inventory decreases to a new level C − A·j , where A·j is the jth column of the
consumption matrix A, i.e., the amount of resources used by product j. Thus, if Vt(C) is the value
function at time t when the inventory is C then it would be optimal to accept a product j request
if pj ≥ Vt(C)− Vt(C − A·j) := βt(C, j). Network Revenue Management models have been studied
by Glover et al. [40], Talluri and van Ryzin [77]-[78], You [86], de Boer et al. [17], Günther et al.
[41], Bertsimas and Popescu [10], Feng and Lin [34], Cooper [22]. In general, in these papers† the
seller does not control prices but he/she is only able to accept or reject incoming orders based on
their type and the bid prices βt(C, j).
The problem of computing, or estimating, bid prices has been addressed from different angles. The
first, and probably most straightforward, approach is to use a deterministic formulation to estimate
the value function. In particular, if the prices for the different products {pj} are fixed, then the
static deterministic version of our Revenue Management problem (9)-(12) is given by

V det
t (C) = max

x

∑

j

pjxj (38)

Subject to Ax ≤ C (39)
0 ≤ x ≤ E[D(t, T )], (40)

where E[D(t, T )] is the expected cumulative demand vector from t to the end of the horizon in
T . Williamson [84] was one of the first to compute bid prices using the deterministic network flow
formulation above. In particular, the dual variables associated with constraint (39) represent the
marginal change in V det

t (C) as a function of the RHS vector C. Thus, if we call δ the vector of
dual variables, it is possible to approximate βt(C, j) = Vt(C) − Vt(C − A·j) by δ′A·j . Regarding
the quality of this approximation, we can first note that δ captures only the marginal change of
V det

t (C) with respect to C, that is, δ = ∇V det
t (C). Thus, if the solution to (38)-(40) is sensitive to

the values of C then we should expect δ′A·j to be a bad approximation for βt(C, j). This problem,
however, can be easily corrected by computing directly the difference V det

t (C) − V det
t (C − A·j)

solving two times the deterministic problem (38)-(40) for the levels C and C −A·j of the capacity
(e.g., Bertsimas and Popescu [10]). In addition to this, the deterministic solution relies only on
the expected value of the demand. This is clearly another source of error especially when demand
variability is high. Talluri and van Ryzin [78] use a randomized version of (38)-(40) to solve this
problem. Specifically, they propose to estimate the value of δ simulating N independent values
of D(t, T ), for each value they compute the corresponding dual vector and finally estimate δ as
the average of the different dual vectors obtained from the simulations (a Monte Carlo simulation
approach is also proposed in Bertsimas and Popescu [10]).

Dynamic Price Models:

Dynamic pricing models for network Revenue Management have been studied by Gallego and van
Ryzin [37]. Using a Poisson demand formulation, the authors derive the HJB equation similar to

†One exception is the paper by Gallego and van Ryzin [37].
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(27). For this multiple product case, the optimality condition is given by

∂Vt(Ct)
∂t

= sup
p





n∑

j=1

λj(p) [pj − (Vt(Ct)− Vt(Ct −A·j))]



 , (41)

where λj(p) is the demand intensity for product j for a vector of prices p. Closed-form solutions
for this differential equation are rarely available. For this reason, Gallego and van Ryzin study two
heuristics based on the deterministic solution. Suppose that pdet(t) and λdet(t) are the optimal
price path and demand intensity, respectively, for the deterministic version of the problem, i.e.,
the problem that results from replacing the stochastic demand by its expected value. The value of
pdet(t) can be obtained using the results in section §3.1.2. The first heuristic, Make-to-Stock policy,
computes the expected number of orders for product j, say zj , under the deterministic solution.
That is,

zj =
⌊ ∫ T

0
λdet

j (t) dt
⌋

(42)

and it preassembles in advance exactly zj units of product j at the beginning of the selling period.
The price of the products is set to be the deterministic solution pdet(t). In this Make-to-Stock
heuristic, once the zj units of product are built there is no future rearrangement of capacity. The
second heuristic, Make-to-Order policy, also follows the deterministic price path, pdet(t), but it
does not assemble any product in advance. Rather, this policy waits for orders to arrive and
builds products as they are requested. Gallego and van Ryzin show that these two heuristics are
asymptotically optimal as the expected sales volume goes to infinity. They also extend their model
to include overbooking and no-shows.

4 Summary of Results and New Directions

In terms of results, much of the research on dynamic pricing has focused on the problem faced by a
monopolist selling a single product and having perfect information about the demand distribution.
The deterministic solution of this problem, where demand is replaced by its expected value, can be
obtained using standard optimization techniques (section §3.1) and represents a good approximation
for the more complicate stochastic version (proposition 8), especially for high-volume demand
products having long selling horizons. On the other hand, the exact analysis of the stochastic case
and its optimal pricing strategy requires the solution of the Hamilton-Jacobi-Bellman equation
(27). This is in general a complex differential equation for which closed form solutions are rarely
available; one exception is the case of exponential demand intensity (see Kincaid and Darling [45]).
From the HJB equation, the difference Vt(Ct)− Vt(Ct − 1), which represents the opportunity cost
of selling one unit of product at time t when the available inventory is Ct, is the key component
that has to be computed in order to determine the optimal pricing policy. Not surprisingly, the
approximation of this opportunity cost has been the departing point for many approximations and
heuristics like the well-known EMSR method proposed by Belobaba [6] for airline seat control.
Static single price formulations, like those presented in section §3.2.1, are also sources of good
approximations specially when they are used on a rolling-horizon basis (e.g., Bitran et al. [16]).
The multiple product dynamic pricing problem has received considerably less attention. Much of
the research on this subject has assumed a static view of prices, where the main decision is whether
to accept or reject a given customer’s request as a function of time, available inventory, and the
corresponding fixed price attached to the incoming order. Again, the deterministic version of the
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problem (certainty equivalent control) has been the starting point for most approximations. Gallego
and van Ryzin [37] show that two heuristics based on the deterministic solution are asymptotically
optimal as the volume of sales increases. In this multiple product case, the opportunity cost of
selling a unit of product j at time t is given by Vt(Ct) − Vt(Ct − A·j). Approximations for this
quantity form the basis of the so called bid price control methods. These bid prices are generally
computed at the resource level and they represent the opportunity cost of selling one unit of a
resource. Using a deterministic formulation like (38)-(40), bid prices can be interpreted as the
shadow prices for the capacity constraint. The connection between bid prices and opportunity
costs is studied in Talluri and van Ryzin [77]. In this paper, using a simple example, the authors
show that, while bid price policies are generally suboptimal, they are asymptotically optimal as
capacity increases (see also Cooper [22]).
As we compare our generic formulation in (9)-(12) with the results presented in section §3 a number
of research opportunities become evident. First of all, from the demand side there are at least two
important considerations: (i) demand learning and (ii) demand substitution effects. In general, the
research that we have presented in this paper assumes that the demand probability distribution is
perfectly known to the seller at the beginning of the selling horizon. In practice, this is hardly the
case especially for new products for which there are no historical sales data. It would be interesting
to extend the dynamic pricing models to capture demand learning as the selling process evolves,
for instance using Bayesian updating. In this case, the pricing strategy can be used to control not
only revenues but also the speed at which the seller learns about customers’ preferences.
On the demand substitution side, we believe there is an opportunity to combine the ongoing efforts
in marketing research to understand consumer choice behavior (e.g., Roberts and Lillien [68])
with the modeling and solution techniques that we have presented in this review. In general, the
Revenue Management literature has tangentially discussed this connection. Talluri and van Ryzin
[79] analyze the yield management problem of capacity control under a generic customer choice
model. However, the issue of setting a dynamic pricing strategy for a given choice model remains
open. Some results have been obtained using the traditional multinomial logit model.
Closely related to the issue of demand substitution is the problem of product design and bundling.
As we briefly mentioned in section §2, the seller owns an initial vector of capacity C0 that he can
use to produce a set of final products. All the research that we have discussed assumes that the
set of products is exogenously given. However, in practice the seller has the ability to decide which
specific configurations will be available to customers. The optimal decision of which products to
offer is strongly connected to the pricing strategy.
The problem of computing an optimal pricing strategy for the multiple product case with periodic
price reviews is technically challenging and certainly of practical importance. In this setting,
and because of product substitution effects, the whole path of the demand is needed to compute
revenues. This technicality makes the solution of the HJB equation particularly hard. In this area,
Awad et al. [2] have obtained some preliminary results using approximate dynamic programming.
Incorporating rationality on the behavior of customers is another interesting field of research. For
instance, how should the seller set the prices if customers act strategically. The natural way to
tackle this problem is using a game theoretical approach. For example, Besanko and Winston [11]
solve the problem of a seller having unlimited capacity that sets the price of the product during T
discrete time periods. In every period each consumer, who has not yet bought the product, decides
whether of not to make a purchase at the price posted by the seller. Besanko and Winston solve for
the subgame perfect Nash equilibria. A different setting occurs when the seller prefers to conduct an
auction to sell the units. Depending on the nature of the initial capacity and the menu of products
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offered by the seller the auction might be simple or combinatorial. Vulcano et al. [81] investigate
the case of a seller having k units to auction during T discrete time periods. Every period a random
number of consumers show-up at the auction and are assumed to be independent, in terms of their
valuation, of all other customers in the game. Thus, dynamic strategies from the customers’ side
are not captured by their model. Based on the revenue equivalent theorem the authors formulate a
dynamic programming model that solves the problem. We believe that incorporating the strategic
behavior of consumers –extending the models by Besanko and Winston or Vulcano et al.– is an
important topic especially for Internet based applications. The Internet offers customers the ability
to keep track of the evolution of the selling process and therefore to modify their buying behavior
accordingly. In addition, auction mechanisms are particularly suitable for the Internet.
Including market competition is another important extension to the model. For instance, a senior
executive of a mayor retailer chain in Latin America recognizes that price competition among
retailers is today the main driver in their selection of a particular pricing policy.
Finally, we conclude this list of potential new directions pointing at the seller’s risk neutrality.
Essentially all the models that we have discussed assume that the seller is risk neutral. Feng and
Xiao [29] is one of the exceptions. However, most product managers in charge of these dynamic
pricing policies present some degree of risk aversion. It would be interesting to measure the impact
of adding risk aversion to the Revenue Management formulation. Presumably, the quality of the
deterministic solution should be even better.
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Appendix

Proof of Proposition 4: We will prove the result for the case of a continuous demand function.
The proof of the discrete case is identical. From equation (22) we have

V (C0) = p

∫ ∞

0
min{D, C0} f(D, p) dD.

Thus, the first order condition is given by

0 =
∫ ∞

0
min{D,C0} (f(D, p) + p fp(D, p)) dD

=
∫ ∞

0
min{D,C0} (1 + ε(D, p)) f(D, p) dD

= E [min{D, C0}(1 + ε(D, p))] .

From this last equality the result of the proposition follows directly.

Proof of Proposition 5: The value function V (C0) in (22) can be written as

V (C) = p

∫ C

0
(1− F (D; p, T )) dD.

The first order optimality condition (FOC) is given by H(C, p, T ) :=
∫ C
0 (1−F (D; p, T )−pFp(D; p, T )) dD =

0 and let p∗(C) be the unique solution. Note that H(D, 0, T ) ≥ 0 for all D > 0 and so we must
have 1− F (C; p∗(C), T )− p∗(C) Fp(C; p∗(C), T ) ≤ 0. In addition, we have that

H(C + 1, p∗(C), T ) = H(C, p∗(C), T ) +
∫ C+1

C
(1− F (D; p∗(C), T )− p∗(C) Fp(D; p∗(C), T )) dD

=
∫ C+1

C
(1− F (D; p∗(C), T )− p∗(C) Fp(D; p∗(C), T )) dD.

From the increasing difference property of F (D; p, T ) on (D, p) it follows that for all D ≥ C we
have 1−F (D; p∗(C), T )−p∗(C) Fp(D; p∗(C), T ) ≤ 1−F (C; p∗(C), T )−p∗(C) Fp(C; p∗(C), T ) ≤ 0.
Thus, H(C + 1, 0, T ) ≥ 0 and H(C + 1, p∗(C), T ) < 0 and so under the uniqueness assumption of
the optimal price we must have 0 ≤ p∗(C + 1) ≤ p∗(C).
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By similarly arguments, under the increasing difference property of −F (D, p, T ) on (p, T ), it is
straightforward to show that H(C, p, T ) is nondecreasing in T which implies that p∗(C) is increasing
in T .

Proof of Proposition 7: From condition (27) the optimal price pt(Ct) satisfies:

pt(Ct) = argmaxp {λ (1− F (p, t))(p− Vt(Ct) + Vt(Ct − 1))}.
Let us define R(p, a) = λ (1 − F (p, t))(p − a). We first note that R(p, a) is supermodular,i.e.,
∂2R(p,a)

∂p∂a ≥ 0. Therefore, the set of optimizers p(a) = argmaxp R(p, a) is nondecreasing in a (see for
example Theorem 5 in Milgrom and Roberts [59]). Finally, the result follows from the fact that
Vt(Ct)− Vt(Ct − 1) ≥ 0.

Proof of Proposition 8: First we note that V det
1 (C0) define by (32)-(33) is concave in C0.

This follows directly from the concavity of (32) and the convexity of (33). Let us now show that
V1(C0) ≤ V det

1 (C0) using induction over N , the number of periods. For N = 1, we have that

V1(C0) = max
p

E[p min{D1(p), C0}] ≤ max
p

p min{E[D1(p)], C0} = V det
1 (C0),

where the inequality follows from Jensen’s inequality and the concavity of the function f(x) =
min{x,C0}.
Suppose the result holds for the case of N −1 periods. Let us prove the result for N . In fact, let us
recall that V2(C) and V det

2 (C) are the optimal and deterministic value functions for the last N − 1
periods. Therefore, we have that

V1(C0) = max
p1

E [p1 min{D1(p1), C0}+ V2(C0 −min{D1(p1), C0})]

≤ max
p1

E
[
p1 min{D1(p1), C0}+ V det

2 (C0 −min{D1(p1), C0})
]

≤ max
p1

E [p1 min{D1(p1), C0}] + V det
2 (C0 − E[min{D1(p1), C0}]),

where the first inequality follows from the step of induction and the second inequality from Jensen’s
inequality and the concavity of V det

2 (C). Using the definition of V det
2 (C) we have that

V1(C0) ≤ max
p1,...,pN

{
p1 E [min{D1(p1), C0}] +

N∑

n=2

pn E[Dn(pn)]

}

subject to E [min{D1(p1), C0}] +
N∑

n=2

E[Dn(pn)] ≤ C0.

Let β be the Lagrangian multiplier for the constraint, then by weak duality we have that

V1(C0) ≤ min
β≥0

{
β C0 + max

p1,...,PN

{
(p1 − β) E [min{D1(p1), C0}] +

N∑

n=2

(pn − β) E[Dn(pn)]

}}
.

We note that for a given β the solution of the maximization ensures that p1 ≥ β. Thus, by Jensen’s
inequality and the concavity of f(x) = min{x, C0} we get

V1(C0) ≤ min
β≥0

{
β C0 + max

p1,...,PN

{
(p1 − β) min{E[D1(p1)], C0}+

N∑

n=2

(pn − β) E[Dn(pn)]

}}
.
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In addition, for a given β it is never optimal to choose p1 such that E[D1(p1)] > C0 since increasing
p1 will necessarily increase the objective, therefore we have

V1(C0) ≤ min
β≥0

{
β C0 + max

p1,...,PN

{
(p1 − β) E[D1(p1)] +

N∑

n=2

(pn − β) E[Dn(pn)]

}}
≡ L.

Finally, we note that right hand side correspond to the dual of the following problem

V det
1 (C0) = max

p1,...,PN

{
N∑

n=1

pn E[Dn(pn)]

}

subject to
N∑

n=1

E[Dn(pn)] ≤ C0.

Given the concavity and convexity assumptions and the existence of an interior solution p∞, we
can apply the strong duality theorem (e.g., Bazaraa et al. [5]) to conclude that L = V det

1 (C0) which
implies V1(C0) ≤ V det

1 (C0).
To prove the second part of the proposition, we note that

V1(pdet, C0) =
N∑

n=1

pdet
n E

[
Dn(pdet

n )−
(
Dn(pdet

n )− (C0 −Ddet
n−1)

+
)+

]

=
N∑

n=1

pdet
n E[Dn(pdet

n )]


1−

E

[(
Dn(pdet

n )− (C0 −Ddet
n−1)

+
)+

]

E[Dn(pdet
n )]




≥
N∑

n=1

pdet
n E[Dn(pdet

n )]


1−

E
[
(Ddet

n − C0)
+

]

E[Dn(pdet
n )]


 ,

where the inequality follows from Dn(pdet
n ) − (C0 − Ddet

n−1)
+ ≤ Dn(pdet

n ) + −Ddet
n−1 − C0 = Ddet

n −
C0. The result follows now from two observations. First, we have by the previous part that
V1(C0) ≤ V det

1 (C0) =
∑N

n=1 pdet
n E[Dn(pdet

n )]. Second, using the inequality (*) below we have that
(Ddet

n − C0)+ ≤ ηdet
n (C0). Finally, for the time homogenous case, it clear that a single fixed price

pdet is optimal for all periods. Then, we have that

V1(pdet, C0) = pdetE[min{Ddet
N , C0}] = pdet

(
Ddet

N − (Ddet
N − C0)+

)

= pdet E[Ddet
N ]

(
1− E[(Ddet

N − C0)+]
E[Ddet

N ]

)
≥ V det

1 (C0)
(

1− ν(C0)
2

)

≥ V1(C0)
(

1− ν(C0)
2

)

The first inequality is a consequence of the following result by Gallego (1992) (σ2
N is the variance

of DN (pdet))

E[(Ddet
N − C0)+]

E[Ddet
N ]

≤
√

σ2 + (C0 − E[Ddet
N ])2 − (C0 − E[Ddet

N ])

2E[Ddet
N ]

≤ ν(C0)
2

, (*)

the last inequality follows from the fact that for the deterministic price solution E[Ddet
N ] ≤ C0.
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