
Mathematical Programming
Author(s): R. E. Gomory
Source: The American Mathematical Monthly, Vol. 72, No. 2, Part 2: Computers and
Computing (Feb., 1965), pp. 99-110
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2313316 .
Accessed: 19/07/2011 12:49

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=maa. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
The American Mathematical Monthly.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=maa
http://www.jstor.org/stable/2313316?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=maa

MATHEMATICAL PROGRAMMING
R. E. GOMORY, Thomas J. Watson Research Center, IBM

Mathematical programming is the name used for the study of a variety of
maximization problems. In these problems, maxima can occur on the boundaries
as well as in the interior of a region. In many cases the maximization is actually
over a finite set of points. When this happens it is clear that: 1) the usual deriva-
tive criteria for a maximum, as used in the calculus, do not apply; and 2) that
the emphasis must be on algorithms for actually obtaining maxima rather than
on existence, for existence is trivial in these finite cases. Both these observations
do, in fact, apply to most of mathematical programming and the second is
the reason why the subject is intimately bound up with the use of computers.

In what follows we will discuss two of the most active areas of mathematical
programming: first, linear programming, and secondly, and very sketchily,
dynamic programming.

X'=O a2lxl+a22x=b2

a,llx+a12x2=b2

X2= 0
0

FIG. 1

Linear programming. The maximization problem here is to maximize a linear
form subject to linear inequality constraints. The basic problem can be written

j=N
(1) ~~~~~max E, CjXj, E aijxi -<~ bi, ,*** M,

xjO, j = .. , N,
or vectorially,

max c.x,
a x c,< bi i=1,t *, M + N.

Here the last N ai are negative unit row vectors and the last N bi are 0. A geo-
metrical way of looking at the problem is illustrated in Figure 1. Each inequality
constraint confines the variables to a closed half space, the intersection of these
half spaces gives a polyhedron of values satisfying the inequalities. This poly-
hedron is called the feasible region. The maximization problem is to find that
point of the feasible region which maximizes the "objective function" Ecjx1.

99

100 COMPUTERS AND COMPUTING

Maximization criterion. The usual condition for the free maximum of a func-
tion at an interior point is that the gradient of the function should vanish. If
there are also equality conditions to be satisfied, the condition for a maximum
is, roughly, that the gradient should point in a direction that is normal to the
equality surfaces. More precisely, the gradient should be a linear combination
of the normals to these constraint surfaces-this is the usual Lagrangian condi-
tion. When dealing with linear inequalities the condition is similar. The function
will be maximal at x if the gradient at x points into a region forbidden by the
inequalities. This means that it should be a nonnegative combination of the
normals of those (and only those) inequality constraints that are satisfied as
equalities at x. See Figure 2. Thus at x, the maximum point of (1), there will be
an M+N vector y = (y,, * * *, YM+N) satisfying

i-M+N
(2a) c = > aiyi, ys 2 0 and (2b) yi > 0 =*di i bi

i=1

and, if at a feasible point x? there is such a y, then ? is maximal.

N2

inGradient

\cx=-Max

FIG. 2

Duality. Further examination of the maximization condition leads to the
notion of duality due to Gale, Kuhn and Tucker [1].

Using (2a) and forming the scalar product with x yields, using (2b)

i=M+N i=M+N
(3) c yia =- E yibi.

For any other M+N vector y satisfying (2a)

M+N M+N
cx - =E y1ai x < E yibi.

MATHEMATICAL PROGRAMMING 101

Therefore y solves the minimization problem
M+N

(4) minb*y, c ?aiyi, yiO0.
i=l

Since am+, , aM+N are negative unit N-vectors, (4) is equivalent to the
problem

i=M

(5) miln b -y, Eaiyi _c, yi >-?,
i_1

in which y is now an M-vector.
(5) is a problem very much like (1). The rows of (1) are the columns of (4),

max in (1) has been replaced by min in (5), and the inequality sign reversed
in the first set of inequalities. Problem (5) is called the dual of (1). As (3) shows,
the max value of (4) and the mmn of (S), its dual, are numerically equal.

Clearly the dual of the dual is the original problem.
Once we have a solution x to (1), we need only represent the gradient at x

as a nonnegative combination of the normals of the faces on which it lies to
obtain a 9 minimizing the dual problem. In most methods of solving (1), this
nonnegative representation is usually obtained in the course of recognizing the
optimality of x, so the solution to the dual is usually at hand once the original
problem has been solved.

N Columns

Pi a,1, a.2, al,N

Pit a2, i,*

M Rows

PM amM,1 . aMt,N

ql, q2,* **,qN

FIG. 3

The theory of zero-sum two-person games provides an interesting illustra-
tion of duality. The essential data for a zero sum two-person game is represented
in Figure 3. The play of the game is as follows. One player, called the row player,
chooses a row, say row i. The other player, called the column player, chooses
a column, say column j, without knowing the choice of the row player. The row
player then pays the column player an amount as;. Of course, the row player
tries to minimize this amount, the column player to maximize it.

An allowable strategy for the row player is a probability vector
P (pi, * * *.. PM). At each play he then chooses the ith row randomly and

102 COMPUTERS AND COMPUTING

with probability pi. Similarly, the column player has a strategy Q = (ql, , qz).
The expected payment v, with strategies P and Q is

i-M j-N
(6) V = E aijpiqi.

i= j=1

Let us suppose that the row player's object is to choose P so that v <0 no matter
what his opponent's strategy Q is, and, subject to this condition, to make 0 as
small as possible.

To find the strategy P that does this we reason as follows: if the column
player plays one column only, say the jth, then the expected payment is
D._ piaij. The best strategy against an opponent confined to single column
strategies is the P that minimizes 0 subject to

i=M i=M

(7) i paij < 0 j = 1, , N and (8) ,pi= 1, pi> O,i = 1, ... ,M.
il1 i=l

One can easily verify that (7) implies v >0 even if a general Q is used by the
opponent since the payment then is a weighted sum of numbers each <0. So (7)
and (8) are actually the row player's entire maximization problem.

For simplicity of exposition we will assume here that the smallest possible 0,
0mi >O, SO (7) and (8) can be solved only for 0 _ Omin>O. Introducing p == (1/0)pi,
(7) becomes

i=M i=M 1
(7a) E paij : 1, and (8) becomes (8a) =p

i-l i=l 0

where p' > 0, ii= 1, *, M, and j=1, * , N. Thus the minimization prob-
lem becomes maximize >':M p ' subject to (7a) which is a problem of the form of
(1).

Its dual is min }fN q, subject to

6=N

(9) Eqjtaij >-.12 i=1,***, IM)
J=1

q!> 0 j=1, *.., N. When 1/f=f:Njq' and qj=flqj' are introduced, (9)
becomes

max ,B

(10) qj O j= 1, l,N,
jN

Eqj- 1.
j.1

Now (10) is the column player's problem, i.e., choose a Q such that the expected
payment is at least ,, no matter what the row player's strategy is. Thus, with

MATHEMATICAL PROGRAMMING 103

the aid of a change of variables, we see that the two players' problems are
dual to each other.

Since the max of (8a) equals the min in (9), l/min = l/lma, so omin =Oma.= V.
No matter what the column player does, the row player's expected payment

need never exceed u, if he plays optimally. Similarly, no matter what the row
player does, the column player's expectation, if he plays optimally, is always
_ u. If both play optimally, the expected payment is exactly v which is called
the value of the game. Also, because of duality, the strategy Q is usually im-
mediately available, once P is known.

Maximization method. It is geometrically clear, and easily proved, that the
maximum in equation (1) will be obtained at one of the vertices of the feasible
polyhedron. Thus we are dealing with a finite maximization problem. It is suffi-
cient to search through the vertices of the polyhedron to find the point taking
on the maximum value. The simplex method of G. B. Dantzig [2] the usual
maximization method of linear programming, inspects only vertices. Instead of
looking at all of them, however, it starts at one, moves on to a neighboring
vertex that gives a larger value to the function being maximized, and so on until
the maximum is reached.

To simplify the discussion of the simplex method, we introduce new variables
called "slacks." Slacks represent the difference between the left-hand side of the
inequalities of (1) and the right-hand side. When slacks are introduced these
equations become

j=N

j=1
(11)

j~-N

Eaijxj + si bi i1 = l* ..., M,
j=l

xj0, j-1, , N, s> 0, i=1, * * , M. If si is nonnegative, the x's satisfy
the ith inequality in (1); consequently the inequalities in (1) can be replaced
by equation (11) and the condition that all variables appearing are nonnegative.
Let us then denote the matrix of all coefficients appearing in the equations (11)
by A, and the M+N vector of all variables by y. (11) becomes

max c-y, Ay = b, y > 0.

A vertex is a point where N of the inequalities of (1) are satisfied as equalities.
This means that N of the components of y are zero. To obtain the values of the
remaining M variables (called basic variables), we simply strike out the columns
corresponding to the zero value variables (the nonbasic ones) and solve the re-
maining M equations in M unknowns. That is, if y is the M-vector of basic vari-
ables, and B the square matrix formed from the corresponding columns, then
y = Blb. Thus all components of y are determined, and so in particular x, the

104 COMPUTERS AND COMPUTING

location of the vertex is known. If all yi 0, the point x satisfies (1) and so is a
vertex of the feasible polyhedron; otherwise, it is merely an intersection of N
hyperplanes outside the feasible polyhedron.

In carrying out the simplex method we start with a feasible vertex. The
next step is to examine neighboring vertices and find those that are: 1) on the
polyhedron; 2) yield an improvement in the objective function.

It is clear from the geometry, Figure 4, that neighboring vertices have N-1
faces in common, hence their nonbasic sets of variables are the same except for
one element. It follows that to go to a neighboring vertex, one variable must
switch from the nonbasic to the basic set and one from basic to nonbasic.

~~~/ 

FIG. 4 

Specifying the variable to enter the basic set already determines the neigh- 
boring vertex. For let us suppose that the variable yi is to be added to the basic 
set. Let us give yi the value 0 and solve for the basic variables y. Then y(O) 
- B-1(b -Ovi) when vi is the column associated with yi. As 0 increases from zero, 
the values of the components of yi of y change, and there will be some last 0 
value at which they all are still nonnegative. Call this value 0minr With 0=0min 

one of the ys, say yj0, is zero. Geometrically, as 0 increased, the solution point of 
the equations moved from the original vertex along an edge created by displac- 
ing the hyperplane corresponding to the one equation which previously had a 
O slack but now has a positive one. Finally another vertex is reached. Going 
beyond this point would violate the inequality represented by Yio>O. Then yio 
is the variable removed from the basis. The new basis consists of yi and the 
remaining basic variables. With y. at the value Omin and the remaining yi com- 
ponents at their values in Y(Omin) the new basic variables provide a solution to 
the equations. Thus we have found the coordinates of a neighboring vertex on 
the polyhedron. 

To be able to repeat this process, we would need to find the B-1 correspond- 
ing to the new basic set. To do this it is not necessary to start over again. 
Using the old B-1 as a starting point, the new inverse can be obtained by a single 
Gaussian elimination step. 



MATHEMATICAL PROGRAMMING 105 

Next we turn to the question of finding a neighboring vertex that will yield 
an improvement. As we went up the edge from the old to the new vertex, was 
the objective function increasing or decreasing? Denoting by c' the row M- 
vector of costs corresponding to the basic variables y, the change in the objective 
function is given by 

C'(Y(Omin) - y(O)) = c'(B-'(b - Ominvi) - B-'b) =- -min(c'B-')vi = Ominvi, 

using Xr for the M-vector -c'B-1. 
The question of increase or decrease is determined by the sign of the scalar 

product 7r -vi. If this is positive, there is an increase, otherwise not. Note that 
the same ir can be used in considering all possible vi that might be introduced. 

To carry out the simplex procedure, then, one starts with a vertex, and com- 
putes 7r. Using 7r, one tests for vertices that will yield an improvement by form- 
ing the scalar product with all possible columns vi. If one of these yields a 
positive result, it is introduced into the basis, and one of the basic variables be- 
comes nonbasic as described above. This process is iterated. Finally we reach a 
point where all the scalar products of the current ir and the nonbasic vectors 
are zero or negative. This can easily be shown to be a maximum point. 

The effectiveness of the method depends on the number of vertices that must 
be inspected. Each vertex requires one Gaussian elimination. Two empirically 
observed facts are: (i) it helps to choose as the entering column the one for which 
7rvi is maximal. (ii) If the rule (i) is followed, problems like (1) are usually solved 
in between 2M and 3M vertex inspections. Although the entire practical success 
of linear programming rests on observation (ii), there is, at present, no theoreti- 
cal explanation. 

Integer solutions. The simplex method consists of a succession of matrix 
inversions, the successive matrices being so related that there are great econ- 
omies in passing from the inverse of one to the inverse of the next. One conse- 
quence of dealing with matrix inversions is that the calculation is not one where 
integral data will produce an integral answer. 

Many combinatorial problems are susceptible of a formulation like equation 
(1), but integral answers are usually needed. For an example, consider the 
assignment problem. In this problem N men are to be assigned to N jobs. If the 
ith man is assigned to the jth job, the cost of this assignment is taken to be ci,. 
The problem is to find that assignment which gives each man a job and each job 
a man, and minimizes the total cost. This can be formulated in terms of linear 
inequalities as follows: 

$=N j=N 
min EE cijxfij, 

(12) 
i= j=1 

ijN 

x,j _ 1, = 1, I N, E xi ? 1, j = * * , N 

xi,j0, i= 1, . - N , j * * , N. If xijj= 1, man i is assigned jobj, if xij=0 



106 COMPUTERS AND COMPUTING 

he is not assigned job j. If the xitg all turn out either 0 or 1, the inequalities in 
(12) will force a solution in which each man gets one assignment and each job 
one man. The difficulty lies in restricting the variables to be 0 or 1, and the 
simplex method outlined above might appear to be unable to provide an answer. 
A closer study of the coefficient matrix of (12) shows, however, that every square 
submatrix will have a determinant either +1, -1, or 0. Therefore, the matrix 
inversions involve division by ? 1 only and so will provide integral values for 
all the variables. In the particular case (12) it is easy to see the only possible 
integral values for the X*j are zero and one. 

A matrix all of whose sub-determinants are either +1, - 1, or 0 is said to 
have the unimodular property. It is an interesting and important problem to 
try to discover classes of matrices having this property. A typical result which 
includes the matrix of (12) is 

If A is the incidence matrix of the vertices versus the edges of an ordinary linear 
graph G, then for A to have the unimodular property it is necessary and sufficient 
that G have no loops with an odd number of vertices [3 ]. 

Even if a matrix does not have the unimodular property one may still want 
to find the best integral solution. The problem of finding the integer x that 
maximizes in (1) is called the integer programming problem. The integral points 
satisfying (1) are, of course, all within the polyhedron of feasible x's. They, 
together with the points that lie between them, form another polyhedron P' 
included in the first. All the vertices of P' are integral points. If one could pro- 
duce the inequalities that yield the faces of this P', the integer problem could be 
solved as an ordinary linear programming problem over P'. This approach has 
been developed in [4] and [5] and methods of generating the faces of p' do 
exist. Nothing like the computational effectiveness of the ordinary simplex 
method has been obtained so far, however, and much work remains to be 
done in this area. 

Nonlinear systems of inequalities. In the system (1) the linear objective 
function could be replaced by a nonlinear one. If the replacement is quadratic 
and positive definite an elegant adaptation of the simplex procedure, due to 
Wolfe, [6] is possible. For the general nonlinear objective function or when the 
inequalities involve nonlinearities, gradient methods are often used [7]. 

Large systems. Although the straightforward simplex method outlined above 
can be applied to problems of as many as a thousand inequalities and several 
thousand variables, many practical problems are even larger. 

Usually the very large problems involve matrices with special structures. 
For example, there is the problem of selecting the most profitable products to 
produce. One unit of the jth product requires an amount a*j of the ith resource. 
Resources are such things as labor, raw materials, etc. If the amount of the ith 
resource available is bi and the profit on a unit of the jth product is cj, then the 
problem is precisely (1), xi being the amount of the jth product produced to 



MATHEMATICAL PROGRAMMING 107 

N N R R R R. 

M al,, ... aM 
aM,-,*** am,N 

2 2 _ . |. . _ 
M al,1, 'I * a1,N 

aM,l,* amf,N 

.N - 11 -1-1-1 

R. 

1 -1-1-1* 

....I -I-- 1- -1 -1 -1 

R . I -~~~~ 1-- 1 '-- - 
R 

R 

FIG. 5 

maximize profit without using up more resources than are available. If we now 
envisage two plants and the possibility of supplying customers from either one 
plant or the other, depending on costs of production and transportation costs, 
we obtain a matrix with the structure shown in Figure 5. If either N, the number 
of products, or R, the number of customers, is large, the size of the matrix is 
largely determined by the highly structured part. Special methods for large 
structured problems have been developed, under the name of decomposition 
methods, during the past several years [8], and this is one of the most fruitful 
fields of current research. The spirit of these methods can be illustrated on an- 
other structured problem that leads us into the area of dynamic programming. 

Imagine that identical (parent) rolls of material are to be cut up to make 
narrower rolls of the same diameter. We will consider all possible cutting pat- 
terns, the jth way of cutting a parent roll being described by the numbers ai, 
of rolls of width wi which it produces. We try to cut up the rolls to satisfy cer- 
tain demands di for rolls of width wi. The corresponding system of linear in- 



108 COMPUTERS AND COMPUTING 

equalities is 

(13) min Ejxj, Ej aijxj ; di) xj ? 0, i 1, * * *, 
where j ranges over all possible cutting patterns and xj is the number of parent 
rolls cut up using the jth pattern. One difficulty is that the xi should be integers, 
but aside from this there is the fact that all the cutting patterns themselves are 
so numerous that this matrix could never really be written down, even for a 
problem in which M, the number of different widths to be produced is as small 
as 10 or 15. 

To carry out the calculations in spite of this, [9] we start with some fairly 
arbitrary square submatrix A, involving M patterns, and invert that. The next 
stage of the calculation is where the difficulty comes in. To follow out the sim- 
plex procedure we would next form the scalar product of 7r with all nonbasic 
columns v1 and select the one maximizing 7rvj to enter the basic set. The diffi- 
culty is that there are too many columns to allow this. 

This problem of finding the next column can, however, in a structured prob- 
lem, be a solvable maximization problem itself. In our example (13) a column 
vj is any set of nonnegative integers yi, * , YM satisfying 

i=M 
(14) yiWi ?,W ! W. 

i1 

Inequality (14) simply means that the width cut out of the roll should not total 
more than the width W of the parent roll. Thus the problem maxj 7r *v; becomes 
max wmiyi where the yi are nonnegative integers satisfying (13). Fortu- 
nately, this problem can be solved easily by one of the other important methods 
of mathematical programming, dynamic programming. 

Dynamic programming. 
Knapsack Problem: For the dynamic programming or recursive approach 

we introduce the function v.(x), which is defined to be the value of the solution 
to the problem 

i=J i=S 

(15) max 7riyi, wiy, ? X, 
i=1 i=1 

where the yi are nonnegative integers. Problem (15) is the same as (14) but now 
the total width is x and only yi, * * *, ys can be used. v8(x) satisfies the recursion 

(16) Vs(x) = max {v,_(x), 7r. + v.(x - w.)} 

since v.(x) =v8,(x) if w8 was not used in the solution to (15) (i.e. ys = 0) and 
equals w7r plus the best use of the remaining width x - ws if it was used (i. e. 
y >_ 1). Now v1(x) can be obtained trivially for all x ? W. Also v8(0) =0 for all s. 
Once provided with v1(x) and v2(0) we can compute v2(1), v2(2), * - *, V2(W) using 
(16). Then with v2(x) we compute v3(x), and so on. Finally we obtain vM(W) 
which is the maximum under the restriction (14) and solves the original problem. 



MATHEMATICAL PROGRAMMING 109 

The y* of the solution are easily obtained from (16) and form the column 
chosen for the next stage of the simplex method applied to the problem (13). 
A Gaussian elimination is then performed and the process can be iterated. In 
this manner the vast assemblage of possible columns or cutting patterns is 
never written down. Instead, the dynamic programming recursion is a device 
to create each column as it is needed. 

Dynamic programming has a large area of applications. The example above 
is an illustration of its use in a combinatorial problem. The combinatorial inter- 
pretation of the problem emerges if the wi are taken to be weights. Then we have 
just found the most valuable collection of objects that a man can carry in a 
knapsack if he is constrained by a weight limitation W and each object has a 
weight wi and worth 7r,. This is the origin of the name "knapsack problem." 

Inventory theory. Dynamic programming can be used in what appears to be 
a totally different area, that of inventory theory. To see this, consider the prob- 
lem of a firm wishing to keep an inventory of some item. The firm can purchase 
a supply y at the beginning of each week. The supply is delivered at the end of 
the week. During the week customers buy, depleting the inventory. The proba- 
bility that the customers will want to buy an amount z during the sth week is 
known and is denoted by p8(z). Let us suppose that after N weeks all items re- 
maining in inventory are disposed of at a price 7r per unit. The firm wishes to 
balance off storage costs, loss through being out of stock, etc. What amount 
should it buy to be most economical? 

If V8(x) is the maximal expected return to the firm for starting with a supply 
x and maintaining inventory for s weeks with the best possible buying decisions, 
then V8(x) satisfies the recursion 

V.(x) = max -cy + [p min (x, z) - 2s(x + max (0, x - z)) 
vo 

(17) 

+ V-,1(max (0, x - z) + y)]pS(z)dz 

where c is the unit price of the items bought, s the unit storage cost, and p the 
sales price. Once V81-(x) is known, the V,(x) values can be computed together 
with the y values that yield them. Since Vo(x) can be taken as the value ob- 
tained by selling the remaining stock when there are 0 weeks to go, Vo(x) is 
available, hence V1(x), * * *, VN(x) can be calculated using (17). If the present 
inventory is x, then the y that maximizes (17) in computing VN(x) is the amount 
to buy this week. 

The recursive approach of dynamic programming is often useful in situations 
where a sequence of decisions must be made about a system whose state can be 
described by a small number of variables, and where the effect of the decision 
is determined by the current state alone. In the inventory example the (single) 



110 COMPUTERS AND COMPUTING 

state variable was the inventory on hand, in the knapsack example it was the 
amount x of unfilled space remaining. 

Conclusions. A systematic discussion of dynamic programming is available 
in Bellman [10] and many applications are described in Bellman and Dreyfus 
[Ii]. Rather comprehensive treatments of linear programming and its applica- 
tions are to be found in Dantzig [12] and Charnes and Cooper [13]. 

This discussion has emphasized what is known, but only a small portion of 
the maximization problems that one would like to solve can be attacked by the 
methods of either linear or dynamic programming. There are a variety of special 
techniques that can be used [14, 15, 16], but there are still many important 
maximization problems for which no computationally reasonable method is now 
known. 

References 
1. D. Gale, H. W. Kuhn, and A. S. Tucker, Linear programming and the theory of games, 

Chapter XIX of the Cowles Comm. for Res. in Economics Monogr. No. 13, Activity Analysis of 
Production and Allocation, Proc. Conf. on Linear Programming, Chicago, (June 20-24, 1949) 
Wiley, New York (1951) 317-329. 

2. G. B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, 
Chapter XXI, ibid. pp. 339-347. 

3. A. J. Hoffman and J. B. Kruskal, Integral boundary points of convex polyhedra, Chapter in 
Linear Inequalities and Related Systems, Ann. Math. Studies No. 38, Princeton University Press, 
(1956) 223-246. 

4. R. E. Gomory, An algorithm for integer solutions to linear programs, Chapter in Recent 
Advances in Mathematical Programming, McGraw-Hill, New York, (1963) 269-302. 

5. , All-integer integer programming algorithm, Chapter in Industrial Scheduling, 
Prentice-Hall, Englewood Cliffs, N. J. (1963) 193-206. 

6. P. Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959) 382- 
398. 

7. W. S. Dorn, Non-linear programming, A Survey, Management Science, No. 2, 9 (June 
1963) 171-208. 

8. G. B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations Res., 
8 (1960) 101-111. 

9. P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting stock 
problem-Part II, Operation Res. No. 6, 11 (1963) 863-888. 

10. R. E. Bellman, Dynamic programming, Princeton University Press, 1957. 
11. R. E. Bellman and S. E. Dreyfus, Applied dynamic programming, Princeton University 

Press, 1962. 
12. G. B. Dantzig, Linear programming and extensions, Princeton University Press, 1963. 
13. A. Charnes and W. W. Cooper, Management models and industrial applications, 2 vols., 

Wiley, New York, 1961. 
14. P. C. Gilmore and R. E. Gomory, Sequencing a one-state variable machine, A solvable 

case of the Traveling Salesman Problem, Operations Res. No. 5, 12 (1964) 655-679. 
15. J. D. C. Little, K. G. Murty, D. W. Sweeney and C. Karel, An algorithm for the Traveling 

Salesman Problem, Operations Res., No. 6,11 (1963) 972-989. 
16. M. Held and R. E. Karp, A dynamic programming approach to sequencing problems, J. 

Soc. Indust. Appl. Math., No. 1, 10 (March 1962) 196-210. 


	Article Contents
	p. 99
	p. 100
	p. 101
	p. 102
	p. 103
	p. 104
	p. 105
	p. 106
	p. 107
	p. 108
	p. 109
	p. 110

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 72, No. 2, Part 2: Computers and Computing (Feb., 1965), pp. 1-156
	Front Matter [pp. ]
	Impact of Computers [pp. 1-7]
	The Post-War Computer Development [pp. 8-14]
	The Primality of Ramanujan's Tau-Function [pp. 15-18]
	The Prime Factors of Consecutive Integers [pp. 19-20]
	Combinatorial Analysis and Computers [pp. 21-28]
	The Quest of the Perfect Square [pp. 29-35]
	Permutation by Adjacent Interchanges [pp. 36-46]
	Error Estimation in Computer Calculation [pp. 47-58]
	Matrix Eigenvalue Problems [pp. 59-66]
	Iterative Methods for Solving Matrix Equations [pp. 67-74]
	Numerical Solution of Partial Differential Equations [pp. 74-84]
	Numerical Fluid Dynamics [pp. 84-91]
	Computers in Solid Mechanics:--A Case History [pp. 92-98]
	Mathematical Programming [pp. 99-110]
	Simulation of Human Processing of Information [pp. 111-118]
	The Processing of Files, Data and Information [pp. 119-124]
	A Perspective View of Discrete Automata and Their Design [pp. 125-134]
	Logic and Computers [pp. 135-140]
	Computer Languages [pp. 141-146]
	Computational Linguistics [pp. 147-150]
	Computer Systems [pp. 150-156]
	Back Matter [pp. ]



